-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.py
196 lines (148 loc) · 5.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from tqdm import tqdm
# ================================================================ #
# Load and normalize the data #
# ================================================================ #
transform = transforms.Compose([
transforms.Pad(4),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# ================================================================ #
# Hyper Parameters and Device #
# ================================================================ #
batch_size = 32
epochs = 5
learning_rate = 0.001
momentum = 0.9
num_classes = 10
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_data = torchvision.datasets.CIFAR10(
root='data',
train=True,
download=True,
transform=transform
)
test_data = torchvision.datasets.CIFAR10(
root='data',
train=False,
download=True,
transform=transform
)
train_loader = torch.utils.data.DataLoader(
dataset=train_data,
batch_size=batch_size,
shuffle=True
)
test_loader = torch.utils.data.DataLoader(
dataset=test_data,
batch_size=batch_size,
shuffle=False
)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=(3, 3), stride=stride, padding=(1, 1), bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=(1, 1), stride=stride, bias=False)
class BasicBlock(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = conv3x3(3, self.in_planes)
self.bn = nn.BatchNorm2d(self.in_planes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.in_planes != planes:
downsample = nn.Sequential(
conv1x1(self.in_planes, planes, stride),
nn.BatchNorm2d(planes)
)
layers = []
layers.append(block(self.in_planes, planes, stride, downsample))
self.in_planes = planes
for _ in range(1, blocks):
layers.append(block(self.in_planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
net = ResNet(BasicBlock, [2, 2, 2, 2]).to(device)
# ================================================================ #
# Optimizer and Loss function #
# ================================================================ #
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
# ================================================================ #
# Train and Test the Model #
# ================================================================ #
for epoch in range(epochs):
progress_bar = tqdm(train_loader, nrows=len(train_loader))
for i, (images, labels) in enumerate(progress_bar):
inputs, labels = images.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
print(f'Epochs: {epoch + 1}/{epochs} Loss: {loss:.4f}')
print('Finished Training')
print('Started Testing')
correct = 0
total = 0
with torch.no_grad():
for images, labels in tqdm(test_loader, nrows=len(test_loader)):
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on test data: {100 * correct / total}')