forked from Davidham3/ASTGCN-2019-mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
247 lines (204 loc) · 8.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# -*- coding:utf-8 -*-
import os
import shutil
from time import time
from datetime import datetime
import configparser
import argparse
import numpy as np
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
from mxboard import SummaryWriter
from lib.utils import compute_val_loss, evaluate, predict
from lib.data_preparation import read_and_generate_dataset
from model.model_config import get_backbones
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
help="configuration file path", required=True)
parser.add_argument("--force", type=str, default=False,
help="remove params dir", required=False)
args = parser.parse_args()
# mxboard log dir
if os.path.exists('logs'):
shutil.rmtree('logs')
print('Remove log dir')
# read configuration
config = configparser.ConfigParser()
print('Read configuration file: %s' % (args.config))
config.read(args.config)
data_config = config['Data']
training_config = config['Training']
adj_filename = data_config['adj_filename']
graph_signal_matrix_filename = data_config['graph_signal_matrix_filename']
num_of_vertices = int(data_config['num_of_vertices'])
points_per_hour = int(data_config['points_per_hour'])
num_for_predict = int(data_config['num_for_predict'])
model_name = training_config['model_name']
ctx = training_config['ctx']
optimizer = training_config['optimizer']
learning_rate = float(training_config['learning_rate'])
epochs = int(training_config['epochs'])
batch_size = int(training_config['batch_size'])
num_of_weeks = int(training_config['num_of_weeks'])
num_of_days = int(training_config['num_of_days'])
num_of_hours = int(training_config['num_of_hours'])
merge = bool(int(training_config['merge']))
# select devices
if ctx.startswith('cpu'):
ctx = mx.cpu()
elif ctx.startswith('gpu'):
ctx = mx.gpu(int(ctx[ctx.index('-') + 1:]))
# import model
print('Model is %s' % (model_name))
if model_name == 'MSTGCN':
from model.mstgcn import MSTGCN as model
elif model_name == 'ASTGCN':
from model.astgcn import ASTGCN as model
else:
raise SystemExit('Wrong type of model!')
# make model params dir
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
if 'params_dir' in training_config and training_config['params_dir'] != "None":
params_path = os.path.join(training_config['params_dir'], model_name)
else:
params_path = 'params/%s_%s/' % (model_name, timestamp)
# check parameters file
if os.path.exists(params_path) and not args.force:
raise SystemExit("Params folder exists! Select a new params path please!")
else:
if os.path.exists(params_path):
shutil.rmtree(params_path)
os.makedirs(params_path)
print('Create params directory %s' % (params_path))
class MyInit(mx.init.Initializer):
xavier = mx.init.Xavier()
uniform = mx.init.Uniform()
def _init_weight(self, name, data):
if len(data.shape) < 2:
self.uniform._init_weight(name, data)
print('Init', name, data.shape, 'with Uniform')
else:
self.xavier._init_weight(name, data)
print('Init', name, data.shape, 'with Xavier')
if __name__ == "__main__":
# read all data from graph signal matrix file
print("Reading data...")
all_data = read_and_generate_dataset(graph_signal_matrix_filename,
num_of_weeks,
num_of_days,
num_of_hours,
num_for_predict,
points_per_hour,
merge)
# test set ground truth
true_value = (all_data['test']['target'].transpose((0, 2, 1))
.reshape(all_data['test']['target'].shape[0], -1))
# training set data loader
train_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['train']['week'], ctx=ctx),
nd.array(all_data['train']['day'], ctx=ctx),
nd.array(all_data['train']['recent'], ctx=ctx),
nd.array(all_data['train']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=True
)
# validation set data loader
val_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['val']['week'], ctx=ctx),
nd.array(all_data['val']['day'], ctx=ctx),
nd.array(all_data['val']['recent'], ctx=ctx),
nd.array(all_data['val']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=False
)
# testing set data loader
test_loader = gluon.data.DataLoader(
gluon.data.ArrayDataset(
nd.array(all_data['test']['week'], ctx=ctx),
nd.array(all_data['test']['day'], ctx=ctx),
nd.array(all_data['test']['recent'], ctx=ctx),
nd.array(all_data['test']['target'], ctx=ctx)
),
batch_size=batch_size,
shuffle=False
)
# save Z-score mean and std
stats_data = {}
for type_ in ['week', 'day', 'recent']:
stats = all_data['stats'][type_]
stats_data[type_ + '_mean'] = stats['mean']
stats_data[type_ + '_std'] = stats['std']
np.savez_compressed(
os.path.join(params_path, 'stats_data'),
**stats_data
)
# loss function MSE
loss_function = gluon.loss.L2Loss()
# get model's structure
all_backbones = get_backbones(args.config, adj_filename, ctx)
net = model(num_for_predict, all_backbones)
net.initialize(ctx=ctx)
for val_w, val_d, val_r, val_t in val_loader:
net([val_w, val_d, val_r])
break
net.initialize(ctx=ctx, init=MyInit(), force_reinit=True)
# initialize a trainer to train model
trainer = gluon.Trainer(net.collect_params(), optimizer,
{'learning_rate': learning_rate})
# initialize a SummaryWriter to write information into logs dir
sw = SummaryWriter(logdir=params_path, flush_secs=5)
# compute validation loss before training
compute_val_loss(net, val_loader, loss_function, sw, epoch=0)
# compute testing set MAE, RMSE, MAPE before training
evaluate(net, test_loader, true_value, num_of_vertices, sw, epoch=0)
# train model
global_step = 1
for epoch in range(1, epochs + 1):
for train_w, train_d, train_r, train_t in train_loader:
start_time = time()
with autograd.record():
output = net([train_w, train_d, train_r])
l = loss_function(output, train_t)
l.backward()
trainer.step(train_t.shape[0])
training_loss = l.mean().asscalar()
sw.add_scalar(tag='training_loss',
value=training_loss,
global_step=global_step)
print('global step: %s, training loss: %.2f, time: %.2fs'
% (global_step, training_loss, time() - start_time))
global_step += 1
# logging the gradients of parameters for checking convergence
for name, param in net.collect_params().items():
try:
sw.add_histogram(tag=name + "_grad",
values=param.grad(),
global_step=global_step,
bins=1000)
except:
print("can't plot histogram of {}_grad".format(name))
# compute validation loss
compute_val_loss(net, val_loader, loss_function, sw, epoch)
# evaluate the model on testing set
evaluate(net, test_loader, true_value, num_of_vertices, sw, epoch)
params_filename = os.path.join(params_path,
'%s_epoch_%s.params' % (model_name,
epoch))
net.save_parameters(params_filename)
print('save parameters to file: %s' % (params_filename))
# close SummaryWriter
sw.close()
if 'prediction_filename' in training_config:
prediction_path = training_config['prediction_filename']
prediction = predict(net, test_loader)
np.savez_compressed(
os.path.normpath(prediction_path),
prediction=prediction,
ground_truth=all_data['test']['target']
)