-
Notifications
You must be signed in to change notification settings - Fork 252
/
Copy pathREADME.md~
51 lines (36 loc) · 1.73 KB
/
README.md~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# BASNet
Code for CVPR 2019 paper '[*BASNet: Boundary-Aware Salient Object Detection*](https://webdocs.cs.ualberta.ca/~xuebin/BASNet.pdf)', [Xuebin Qin](https://webdocs.cs.ualberta.ca/~xuebin/), Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan and Martin Jagersand. [(supplementary)](https://webdocs.cs.ualberta.ca/~xuebin/BASNet-supp.pdf)
__Contact__: xuebin[at]ualberta[dot]ca
## Required libraries
Python 3.6
numpy 1.15.2
scikit-image 0.14.0
PIL 5.2.0
PyTorch 0.4.0
torchvision 0.2.1
glob
The SSIM loss is adapted from [pytorch-ssim](https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py).
## Usage
1. Clone this repo
```
git clone https://github.com/NathanUA/BASNet.git
```
2. Download the pre-trained model [basnet.pth](https://drive.google.com/file/d/1qeKYOTLIOeSJGqIhFJOEch48tPyzrsZx/view?usp=sharing) and put it into the dirctory 'saved_models/basnet_bsi/'
3. Cd to the directory 'BASNet', run the training or inference process by command: ```python basnet_train.py```
or ```python basnet_test.py``` respectively.
We also provide the predicted [saliency maps](https://drive.google.com/file/d/1K9y9HpupXT0RJ4U4OizJ_Uk5byUyCupK/view?usp=sharing) for datasets SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and DUTS-TE.
## Architecture
![BASNet architecture](figures/architecture.png)
## Quantitative Comparison
![Quantitative Comparison](figures/quan.png)
## Qualitative Comparison
![Qualitative Comparison](figures/qual.png)
## Citation
```
@InProceedings{Qin2019BASNet,
author = {Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Gao, Chao and Dehghan, Masood and Jagersand, Martin},
title = {BASNet: Boundary Aware Salient Object Detection},
booktitle={IEEE CVPR},
year = {2019}
}
```