From 7f6892402dfafef95cf25a0aba0196c5ab14f079 Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 17:08:42 +0200 Subject: [PATCH 1/9] Update README.md --- README.md | 44 ++++++++++++++++++-------------------------- 1 file changed, 18 insertions(+), 26 deletions(-) diff --git a/README.md b/README.md index 42154894..725f0d63 100644 --- a/README.md +++ b/README.md @@ -1,22 +1,13 @@ -# XMRig AMD +# xmrig-termux-opencl -[![Github All Releases](https://img.shields.io/github/downloads/xmrig/xmrig-amd/total.svg)](https://github.com/xmrig/xmrig-amd/releases) -[![GitHub release](https://img.shields.io/github/release/xmrig/xmrig-amd/all.svg)](https://github.com/xmrig/xmrig-amd/releases) -[![GitHub Release Date](https://img.shields.io/github/release-date-pre/xmrig/xmrig-amd.svg)](https://github.com/xmrig/xmrig-amd/releases) -[![GitHub license](https://img.shields.io/github/license/xmrig/xmrig-amd.svg)](https://github.com/xmrig/xmrig-amd/blob/master/LICENSE) -[![GitHub stars](https://img.shields.io/github/stars/xmrig/xmrig-amd.svg)](https://github.com/xmrig/xmrig-amd/stargazers) -[![GitHub forks](https://img.shields.io/github/forks/xmrig/xmrig-amd.svg)](https://github.com/xmrig/xmrig-amd/network) - -XMRig is high performance Monero (XMR) OpenCL miner, with the official full Windows support. +xmrig-termux-opencl is android phone arm based opencl cryptonight miner based on xmrig. GPU mining part based on [Wolf9466](https://github.com/OhGodAPet) and [psychocrypt](https://github.com/psychocrypt) code. -* This is the AMD (OpenCL) GPU mining version, there is also a [CPU version](https://github.com/xmrig/xmrig) and [NVIDIA GPU version](https://github.com/xmrig/xmrig-nvidia). -* [Roadmap](https://github.com/xmrig/xmrig/issues/106) for next releases. +* There is also a [CPU version](https://github.com/xmrig/xmrig) and [NVIDIA GPU version](https://github.com/xmrig/xmrig-nvidia). -:warning: Suggested values for GPU auto configuration can be not optimal or not working, you may need tweak your threads options. Please fell free open an [issue](https://github.com/xmrig/xmrig-amd/issues) if auto configuration suggest wrong values. +:warning: Suggested values for GPU auto configuration can be not optimal or not working, you may need tweak your threads options. Please feel free open an [issue](https://github.com/BenjaminWegener/xmrig-termux-opencl) if auto configuration suggests wrong values. - #### Table of contents * [Features](#features) @@ -29,7 +20,6 @@ GPU mining part based on [Wolf9466](https://github.com/OhGodAPet) and [psychocry ## Features * High performance. -* Official Windows support. * Support for backup (failover) mining server. * CryptoNight-Lite support for AEON. * Automatic GPU configuration. @@ -37,12 +27,20 @@ GPU mining part based on [Wolf9466](https://github.com/OhGodAPet) and [psychocry * It's open source software. ## Download -* Binary releases: https://github.com/xmrig/xmrig-amd/releases -* Git tree: https://github.com/xmrig/xmrig-amd.git - * Clone with `git clone https://github.com/xmrig/xmrig-amd.git` :hammer: [Build instructions](https://github.com/xmrig/xmrig-amd/wiki/Build). -## Usage -Use [config.xmrig.com](https://config.xmrig.com/amd) to generate, edit or share configurations. +* use following instructions to use it: + * install termux from play store or aptoide + * termux-setup-storage + * pkg install cmake git libuv* openssl-dev unstable-repo -y + * pkg install libmicrohttpd-dev -y + * git clone https://github.com/xmrig/xmrig + * cd xmrig && mkdir build && cd build + * cmake .. + * make + * cp xmrig .. + * cd .. + * ./xmrig -a cryptonight/r -o stratum+tcp://cryptonightr.eu.nicehash.com:3375 -u 34yFoDVBQdrcupptL8BXSxYWsLCRj22DaE -p x --donate-level=1 --threads=16 --variant=1 + ### Command line options ``` @@ -94,10 +92,4 @@ Use [config.xmrig.com](https://config.xmrig.com/amd) to generate, edit or share ## Donations Default donation 5% (5 minutes in 100 minutes) can be reduced to 1% via option `donate-level`. -* XMR: `48edfHu7V9Z84YzzMa6fUueoELZ9ZRXq9VetWzYGzKt52XU5xvqgzYnDK9URnRoJMk1j8nLwEVsaSWJ4fhdUyZijBGUicoD` -* BTC: `1P7ujsXeX7GxQwHNnJsRMgAdNkFZmNVqJT` - -## Contacts -* support@xmrig.com -* [reddit](https://www.reddit.com/user/XMRig/) -* [twitter](https://twitter.com/xmrig_dev) +* BTC: `34yFoDVBQdrcupptL8BXSxYWsLCRj22DaE` From c7f84e3a62f8281cd0dd3379662d6438fca12e4d Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 17:09:53 +0200 Subject: [PATCH 2/9] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 725f0d63..43c17cd0 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# xmrig-termux-opencl +# xmrig-termux-opencl (NON WORKING BETA) xmrig-termux-opencl is android phone arm based opencl cryptonight miner based on xmrig. From a6f541036488ce359625f8fcecefec27056b3804 Mon Sep 17 00:00:00 2001 From: unknown Date: Sun, 4 Aug 2019 19:30:01 +0200 Subject: [PATCH 3/9] update --- CHANGELOG.md | 3 - CMakeLists.txt | 53 ++++++++++++- src/amd/opencl/cryptonight.cl | 36 +-------- src/common/cpu/BasicCpuInfo.cpp | 127 ++++---------------------------- src/core/Config.cpp | 16 ++-- src/crypto/CryptoNight.cpp | 3 +- src/version.h | 4 +- 7 files changed, 73 insertions(+), 169 deletions(-) diff --git a/CHANGELOG.md b/CHANGELOG.md index 031d65dc..0ccbd034 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,6 +1,3 @@ -# v2.14.5 -- Fixed compatibility with recent AMD drivers (19.7.2), thanks [@psychocrypt](https://github.com/psychocrypt). - # v2.14.4 - [#249](https://github.com/xmrig/xmrig-amd/pull/249) Added workaround for some drivers memory leak. - In HTTP API for unknown hashrate now used `null` instead of `0.0`. diff --git a/CMakeLists.txt b/CMakeLists.txt index 000f23b8..69952c8a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -7,19 +7,28 @@ option(WITH_CN_PICO "CryptoNight-Pico support" ON) option(WITH_CN_GPU "CryptoNight-GPU support" ON) option(WITH_HTTPD "HTTP REST API" ON) option(WITH_TLS "Enable OpenSSL support" ON) -option(WITH_ASM "Enable ASM PoW implementations" ON) +option(WITH_ASM "Enable ASM PoW implementations" OFF) option(STRICT_CACHE "Enable strict checks for OpenCL cache" ON) option(BUILD_STATIC "Build static binary" OFF) -option(ARM_TARGET "Force use specific ARM target 8 or 7" 0) +option(XMRIG_ARM "Build for ARM platforms" ON) + +option(ARM_TARGET "Force use specific ARM target 8 or 7" 8) option(WITH_DEBUG_LOG "Enable debug log output, network, etc" OFF) option(WITH_INTERLEAVE_DEBUG_LOG "Enable debug log for threads interleave" OFF) option(WITH_EMBEDDED_CONFIG "Enable internal embedded JSON config" OFF) + + + include (CheckIncludeFile) include (cmake/cpu.cmake) + + + + set(HEADERS src/amd/cryptonight.h src/amd/GpuContext.h @@ -238,6 +247,40 @@ include(cmake/flags.cmake) add_definitions(/DCL_TARGET_OPENCL_VERSION=200) add_definitions(/DCL_USE_DEPRECATED_OPENCL_1_2_APIS) +############################################################################### +# Find OpenCL +############################################################################### + +option(OpenCL_ENABLE "Enable or disable OpenCL spport (AMD GPU support)" ON) +if(OpenCL_ENABLE) + # try to find AMD OpenCL before NVIDIA OpenCL + find_path(OpenCL_INCLUDE_DIR + NAMES + cl.h + NO_DEFAULT_PATH + PATHS + ${CMAKE_SOURCE_DIR}/CL) + + find_library(OpenCL_LIBRARY + NAMES + libOpenCL.so + NO_DEFAULT_PATH + PATHS + /system/vendor/lib64) + # find package will use the previews searched path variables + # find_package(OpenCL) + # if(OpenCL_FOUND) + # list(APPEND BACKEND_TYPES "amd") + # include_directories(SYSTEM ${OpenCL_INCLUDE_DIRS}) + # #set(LIBS ${LIBS} ${OpenCL_LIBRARY}) + # link_directories(${OpenCL_LIBRARY}) + # else() + # message(FATAL_ERROR "OpenCL NOT found: use `-DOpenCL_ENABLE=OFF` to build without OpenCL support for AMD gpu's") + # endif() +else() + add_definitions("-DCONF_NO_OPENCL") +endif() + include(cmake/OpenSSL.cmake) include(cmake/cn-gpu.cmake) @@ -300,7 +343,7 @@ endif() include_directories(src) include_directories(src/3rdparty) -include_directories(${UV_INCLUDE_DIR}) + if (BUILD_STATIC) set(CMAKE_EXE_LINKER_FLAGS " -static") @@ -314,5 +357,7 @@ if (WITH_INTERLEAVE_DEBUG_LOG) add_definitions(/DAPP_INTERLEAVE_DEBUG) endif() + + add_executable(${CMAKE_PROJECT_NAME} ${HEADERS} ${SOURCES} ${SOURCES_OS} ${HEADERS_CRYPTO} ${SOURCES_CRYPTO} ${SOURCES_SYSLOG} ${HTTPD_SOURCES} ${TLS_SOURCES} ${CN_GPU_SOURCES} ${XMRIG_ASM_SOURCES}) -target_link_libraries(${CMAKE_PROJECT_NAME} ${XMRIG_ASM_LIBRARY} ${OPENSSL_LIBRARIES} ${UV_LIBRARIES} ${MHD_LIBRARY} ${EXTRA_LIBS} ${LIBS}) +target_link_libraries(${CMAKE_PROJECT_NAME} ${XMRIG_ASM_LIBRARY} ${OPENSSL_LIBRARIES} ${UV_LIBRARIES} ${MHD_LIBRARY} ${OpenCL_LIBRARY} ${EXTRA_LIBS} ${LIBS}) diff --git a/src/amd/opencl/cryptonight.cl b/src/amd/opencl/cryptonight.cl index 106d2b1a..de88663c 100644 --- a/src/amd/opencl/cryptonight.cl +++ b/src/amd/opencl/cryptonight.cl @@ -1712,40 +1712,8 @@ __kernel void Groestl(__global ulong *states, __global uint *BranchBuf, __global ulong State[8] = { 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0UL, 0x0001000000000000UL }; ulong H[8], M[8]; - // BUG: AMD driver 19.7.X crashs if this is written as loop - // Thx AMD for so bad software - { - ((ulong8 *)M)[0] = vload8(0, states); - - for (uint x = 0; x < 8; ++x) { - H[x] = M[x] ^ State[x]; - } - - PERM_SMALL_P(H); - PERM_SMALL_Q(M); - - for (uint x = 0; x < 8; ++x) { - State[x] ^= H[x] ^ M[x]; - } - } - - { - ((ulong8 *)M)[0] = vload8(1, states); - - for (uint x = 0; x < 8; ++x) { - H[x] = M[x] ^ State[x]; - } - - PERM_SMALL_P(H); - PERM_SMALL_Q(M); - - for (uint x = 0; x < 8; ++x) { - State[x] ^= H[x] ^ M[x]; - } - } - - { - ((ulong8 *)M)[0] = vload8(2, states); + for (uint i = 0; i < 3; ++i) { + ((ulong8 *)M)[0] = vload8(i, states); for (uint x = 0; x < 8; ++x) { H[x] = M[x] ^ State[x]; diff --git a/src/common/cpu/BasicCpuInfo.cpp b/src/common/cpu/BasicCpuInfo.cpp index d7778bdd..33961346 100644 --- a/src/common/cpu/BasicCpuInfo.cpp +++ b/src/common/cpu/BasicCpuInfo.cpp @@ -25,135 +25,34 @@ #include #include - -#ifdef _MSC_VER -# include -#else -# include -#endif - -#ifndef bit_AES -# define bit_AES (1 << 25) -#endif - -#ifndef bit_OSXSAVE -# define bit_OSXSAVE (1 << 27) -#endif - -#ifndef bit_AVX2 -# define bit_AVX2 (1 << 5) +#if __ARM_FEATURE_CRYPTO +# include +# include #endif #include "common/cpu/BasicCpuInfo.h" -#define VENDOR_ID (0) -#define PROCESSOR_INFO (1) -#define CACHE_TLB_DESCRIPTOR (2) -#define EXTENDED_FEATURES (7) -#define PROCESSOR_BRAND_STRING_1 (0x80000002) -#define PROCESSOR_BRAND_STRING_2 (0x80000003) -#define PROCESSOR_BRAND_STRING_3 (0x80000004) - -#define EAX_Reg (0) -#define EBX_Reg (1) -#define ECX_Reg (2) -#define EDX_Reg (3) - - -#ifdef _MSC_VER -static inline void cpuid(int level, int output[4]) { - __cpuid(output, level); -} -#else -static inline void cpuid(int level, int output[4]) { - int a, b, c, d; - __cpuid_count(level, 0, a, b, c, d); - - output[0] = a; - output[1] = b; - output[2] = c; - output[3] = d; -} -#endif - - -static inline void cpu_brand_string(char* s) { - int32_t cpu_info[4] = { 0 }; - cpuid(VENDOR_ID, cpu_info); - - if (cpu_info[EAX_Reg] >= 4) { - for (int i = 0; i < 4; i++) { - cpuid(0x80000002 + i, cpu_info); - memcpy(s, cpu_info, sizeof(cpu_info)); - s += 16; - } - } -} - - -static inline bool has_aes_ni() -{ - int32_t cpu_info[4] = { 0 }; - cpuid(PROCESSOR_INFO, cpu_info); - - return (cpu_info[ECX_Reg] & bit_AES) != 0; -} - - -static inline bool has_avx2() -{ - int32_t cpu_info[4] = { 0 }; - cpuid(EXTENDED_FEATURES, cpu_info); - - return (cpu_info[EBX_Reg] & bit_AVX2) != 0; -} - - -static inline bool has_ossave() -{ - int32_t cpu_info[4] = { 0 }; - cpuid(PROCESSOR_INFO, cpu_info); - - return (cpu_info[ECX_Reg] & bit_OSXSAVE) != 0; -} - - xmrig::BasicCpuInfo::BasicCpuInfo() : - m_assembly(ASM_NONE), - m_aes(has_aes_ni()), - m_avx2(has_avx2() && has_ossave()), + m_aes(false), + m_avx2(false), m_brand(), m_threads(std::thread::hardware_concurrency()) { - cpu_brand_string(m_brand); - -# ifndef XMRIG_NO_ASM - if (hasAES()) { - char vendor[13] = { 0 }; - int32_t data[4] = { 0 }; - - cpuid(0, data); - - memcpy(vendor + 0, &data[1], 4); - memcpy(vendor + 4, &data[3], 4); - memcpy(vendor + 8, &data[2], 4); +# ifdef XMRIG_ARMv8 + memcpy(m_brand, "ARMv8", 5); +# else + memcpy(m_brand, "ARMv7", 5); +# endif - if (memcmp(vendor, "GenuineIntel", 12) == 0) { - m_assembly = ASM_INTEL; - } - else if (memcmp(vendor, "AuthenticAMD", 12) == 0) { - m_assembly = ASM_RYZEN; - } - } +# if __ARM_FEATURE_CRYPTO + m_aes = getauxval(AT_HWCAP) & HWCAP_AES; # endif } size_t xmrig::BasicCpuInfo::optimalThreadsCount(size_t memSize, int maxCpuUsage) const { - const size_t count = threads() / 2; - - return count < 1 ? 1 : count; + return threads(); } diff --git a/src/core/Config.cpp b/src/core/Config.cpp index 593ea104..13040b5f 100644 --- a/src/core/Config.cpp +++ b/src/core/Config.cpp @@ -57,14 +57,8 @@ xmrig::Config::Config() : xmrig::CommonConfig(), m_cache(true), m_shouldSave(false), m_platformIndex(0), -# if defined(__APPLE__) - m_loader("/System/Library/Frameworks/OpenCL.framework/OpenCL"), -# elif defined(_WIN32) - m_loader("OpenCL.dll"), -# else - m_loader("libOpenCL.so"), -# endif - m_vendor(xmrig::OCL_VENDOR_AMD) + m_loader("libOpenCL.so")/*, + m_vendor(xmrig::OCL_VENDOR_AMD)*/ { } @@ -93,13 +87,13 @@ bool xmrig::Config::oclInit() { LOG_WARN("compiling code and initializing GPUs. This will take a while..."); - if (m_vendor != OCL_VENDOR_MANUAL) { + //if (m_vendor != OCL_VENDOR_MANUAL) { m_platformIndex = OclGPU::findPlatformIdx(this); if (m_platformIndex == -1) { - LOG_ERR("%s%s OpenCL platform NOT found.", isColors() ? "\x1B[1;31m" : "", vendorName(m_vendor)); + LOG_ERR("%s%s OpenCL platform not found.", isColors() ? "\x1B[1;31m" : "", vendorName(m_vendor)); return false; } - } + //} if (m_platformIndex >= static_cast(OclLib::getNumPlatforms())) { LOG_ERR("%sSelected OpenCL platform index %d doesn't exist.", isColors() ? "\x1B[1;31m" : "", m_platformIndex); diff --git a/src/crypto/CryptoNight.cpp b/src/crypto/CryptoNight.cpp index 74a47f3e..3cc38017 100644 --- a/src/crypto/CryptoNight.cpp +++ b/src/crypto/CryptoNight.cpp @@ -34,7 +34,8 @@ #include "Mem.h" #include "crypto/CryptoNight.h" #include "crypto/CryptoNight_test.h" -#include "crypto/CryptoNight_x86.h" +/*#include "crypto/CryptoNight_x86.h"*/ +#include "crypto/CryptoNight_arm.h" #include "net/JobResult.h" diff --git a/src/version.h b/src/version.h index 1cab2ee5..91c775b0 100644 --- a/src/version.h +++ b/src/version.h @@ -28,7 +28,7 @@ #define APP_ID "xmrig-amd" #define APP_NAME "XMRig-AMD" #define APP_DESC "XMRig OpenCL miner" -#define APP_VERSION "2.14.5" +#define APP_VERSION "2.14.4" #define APP_DOMAIN "xmrig.com" #define APP_SITE "www.xmrig.com" #define APP_COPYRIGHT "Copyright (C) 2016-2019 xmrig.com" @@ -36,7 +36,7 @@ #define APP_VER_MAJOR 2 #define APP_VER_MINOR 14 -#define APP_VER_PATCH 5 +#define APP_VER_PATCH 4 #ifdef _MSC_VER # if (_MSC_VER >= 1920) From 3079f6aec66af5d3154aa12e3d47a73d51b3c223 Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 19:42:41 +0200 Subject: [PATCH 4/9] Update CHANGELOG.md --- CHANGELOG.md | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/CHANGELOG.md b/CHANGELOG.md index 0ccbd034..c5a6b294 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,3 +1,8 @@ +# v0.1 FORK for arm based android devices +- removed some vendor specific opencl codelines +- build is passing under termux, but opencl in not working yet +- edited readme + # v2.14.4 - [#249](https://github.com/xmrig/xmrig-amd/pull/249) Added workaround for some drivers memory leak. - In HTTP API for unknown hashrate now used `null` instead of `0.0`. From bb95c4f7a2693908e5f3db416623ffb287b168b8 Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 19:48:40 +0200 Subject: [PATCH 5/9] Update version.h --- src/version.h | 41 +++++++++++------------------------------ 1 file changed, 11 insertions(+), 30 deletions(-) diff --git a/src/version.h b/src/version.h index 91c775b0..2bb9e9f9 100644 --- a/src/version.h +++ b/src/version.h @@ -1,4 +1,4 @@ -/* XMRig +/* xmrig-termux-opencl * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones @@ -7,6 +7,7 @@ * Copyright 2017-2018 XMR-Stak , * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig , + * Copyright 2019 Benjamin Wegener * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by @@ -25,35 +26,15 @@ #ifndef XMRIG_VERSION_H #define XMRIG_VERSION_H -#define APP_ID "xmrig-amd" -#define APP_NAME "XMRig-AMD" -#define APP_DESC "XMRig OpenCL miner" -#define APP_VERSION "2.14.4" -#define APP_DOMAIN "xmrig.com" -#define APP_SITE "www.xmrig.com" -#define APP_COPYRIGHT "Copyright (C) 2016-2019 xmrig.com" -#define APP_KIND "amd" +#define APP_ID "xmrig-termux-opencl" +#define APP_NAME "xmrig-termux-opencl" +#define APP_DESC "cryptonight ARM (OpenCL) miner (for android phones)" +#define APP_VERSION "0.1" +#define APP_SITE "https://github.com/BenjaminWegener/xmrig-termux-opencl" +#define APP_COPYRIGHT " * Copyright 2019 Benjamin Wegener " +#define APP_VER_MAJOR 0 +#define APP_VER_MINOR 1 +#define APP_VER_PATCH 0 -#define APP_VER_MAJOR 2 -#define APP_VER_MINOR 14 -#define APP_VER_PATCH 4 - -#ifdef _MSC_VER -# if (_MSC_VER >= 1920) -# define MSVC_VERSION 2019 -# elif (_MSC_VER >= 1910 && _MSC_VER < 1920) -# define MSVC_VERSION 2017 -# elif _MSC_VER == 1900 -# define MSVC_VERSION 2015 -# elif _MSC_VER == 1800 -# define MSVC_VERSION 2013 -# elif _MSC_VER == 1700 -# define MSVC_VERSION 2012 -# elif _MSC_VER == 1600 -# define MSVC_VERSION 2010 -# else -# define MSVC_VERSION 0 -# endif -#endif #endif /* XMRIG_VERSION_H */ From 9af4b151bef5ff5eb4c19e9500aada19cdfeeee5 Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 20:13:39 +0200 Subject: [PATCH 6/9] copied from https://github.com/xmrig/xmrig --- src/crypto/CryptoNight_arm.h | 844 +++++++++++++++++++ src/crypto/SSE2NEON.h | 1497 ++++++++++++++++++++++++++++++++++ src/crypto/cn_gpu_arm.cpp | 240 ++++++ 3 files changed, 2581 insertions(+) create mode 100644 src/crypto/CryptoNight_arm.h create mode 100644 src/crypto/SSE2NEON.h create mode 100644 src/crypto/cn_gpu_arm.cpp diff --git a/src/crypto/CryptoNight_arm.h b/src/crypto/CryptoNight_arm.h new file mode 100644 index 00000000..d762929c --- /dev/null +++ b/src/crypto/CryptoNight_arm.h @@ -0,0 +1,844 @@ +/* XMRig + * Copyright 2010 Jeff Garzik + * Copyright 2012-2014 pooler + * Copyright 2014 Lucas Jones + * Copyright 2014-2016 Wolf9466 + * Copyright 2016 Jay D Dee + * Copyright 2016 Imran Yusuff + * Copyright 2017-2019 XMR-Stak , + * Copyright 2018 Lee Clagett + * Copyright 2018-2019 SChernykh + * Copyright 2016-2019 XMRig , + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + +#ifndef XMRIG_CRYPTONIGHT_ARM_H +#define XMRIG_CRYPTONIGHT_ARM_H + + +#include "common/crypto/keccak.h" +#include "common/utils/mm_malloc.h" +#include "crypto/CryptoNight.h" +#include "crypto/CryptoNight_constants.h" +#include "crypto/CryptoNight_monero.h" +#include "crypto/soft_aes.h" + + +extern "C" +{ +#include "crypto/c_groestl.h" +#include "crypto/c_blake256.h" +#include "crypto/c_jh.h" +#include "crypto/c_skein.h" +} + + +static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) { + blake256_hash(output, input, len); +} + + +static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) { + groestl(input, len * 8, output); +} + + +static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) { + jh_hash(32 * 8, input, 8 * len, output); +} + + +static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) { + xmr_skein(input, output); +} + + +void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; + + +static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b) +{ + return vcombine_u64(vcreate_u64(b), vcreate_u64(a)); +} + + +#if __ARM_FEATURE_CRYPTO +static inline __attribute__((always_inline)) __m128i _mm_aesenc_si128(__m128i v, __m128i rkey) +{ + alignas(16) const __m128i zero = { 0 }; + return veorq_u8(vaesmcq_u8(vaeseq_u8(v, zero)), rkey ); +} +#else +static inline __attribute__((always_inline)) __m128i _mm_aesenc_si128(__m128i v, __m128i rkey) +{ + alignas(16) const __m128i zero = { 0 }; + return zero; +} +#endif + + +/* this one was not implemented yet so here it is */ +static inline __attribute__((always_inline)) uint64_t _mm_cvtsi128_si64(__m128i a) +{ + return vgetq_lane_u64(a, 0); +} + + +#if defined (__arm64__) || defined (__aarch64__) +static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi) +{ + unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b; + *hi = r >> 64; + return (uint64_t) r; +} +#else +static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) { + // multiplier = ab = a * 2^32 + b + // multiplicand = cd = c * 2^32 + d + // ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d + uint64_t a = multiplier >> 32; + uint64_t b = multiplier & 0xFFFFFFFF; + uint64_t c = multiplicand >> 32; + uint64_t d = multiplicand & 0xFFFFFFFF; + + //uint64_t ac = a * c; + uint64_t ad = a * d; + //uint64_t bc = b * c; + uint64_t bd = b * d; + + uint64_t adbc = ad + (b * c); + uint64_t adbc_carry = adbc < ad ? 1 : 0; + + // multiplier * multiplicand = product_hi * 2^64 + product_lo + uint64_t product_lo = bd + (adbc << 32); + uint64_t product_lo_carry = product_lo < bd ? 1 : 0; + *product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry; + + return product_lo; +} +#endif + + +// This will shift and xor tmp1 into itself as 4 32-bit vals such as +// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) +static inline __m128i sl_xor(__m128i tmp1) +{ + __m128i tmp4; + tmp4 = _mm_slli_si128(tmp1, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + tmp4 = _mm_slli_si128(tmp4, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + tmp4 = _mm_slli_si128(tmp4, 0x04); + tmp1 = _mm_xor_si128(tmp1, tmp4); + return tmp1; +} + + +template +static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2) +{ + __m128i xout1 = soft_aeskeygenassist(*xout2); + xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem + *xout0 = sl_xor(*xout0); + *xout0 = _mm_xor_si128(*xout0, xout1); + xout1 = soft_aeskeygenassist<0x00>(*xout0); + xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem + *xout2 = sl_xor(*xout2); + *xout2 = _mm_xor_si128(*xout2, xout1); +} + + +template +static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) +{ + __m128i xout0 = _mm_load_si128(memory); + __m128i xout2 = _mm_load_si128(memory + 1); + *k0 = xout0; + *k1 = xout2; + + soft_aes_genkey_sub<0x01>(&xout0, &xout2); + *k2 = xout0; + *k3 = xout2; + + soft_aes_genkey_sub<0x02>(&xout0, &xout2); + *k4 = xout0; + *k5 = xout2; + + soft_aes_genkey_sub<0x04>(&xout0, &xout2); + *k6 = xout0; + *k7 = xout2; + + soft_aes_genkey_sub<0x08>(&xout0, &xout2); + *k8 = xout0; + *k9 = xout2; +} + + +template +static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) +{ + if (SOFT_AES) { + *x0 = soft_aesenc((uint32_t*)x0, key); + *x1 = soft_aesenc((uint32_t*)x1, key); + *x2 = soft_aesenc((uint32_t*)x2, key); + *x3 = soft_aesenc((uint32_t*)x3, key); + *x4 = soft_aesenc((uint32_t*)x4, key); + *x5 = soft_aesenc((uint32_t*)x5, key); + *x6 = soft_aesenc((uint32_t*)x6, key); + *x7 = soft_aesenc((uint32_t*)x7, key); + } + else { + *x0 = _mm_aesenc_si128(*x0, key); + *x1 = _mm_aesenc_si128(*x1, key); + *x2 = _mm_aesenc_si128(*x2, key); + *x3 = _mm_aesenc_si128(*x3, key); + *x4 = _mm_aesenc_si128(*x4, key); + *x5 = _mm_aesenc_si128(*x5, key); + *x6 = _mm_aesenc_si128(*x6, key); + *x7 = _mm_aesenc_si128(*x7, key); + } +} + + +inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7) +{ + __m128i tmp0 = x0; + x0 = _mm_xor_si128(x0, x1); + x1 = _mm_xor_si128(x1, x2); + x2 = _mm_xor_si128(x2, x3); + x3 = _mm_xor_si128(x3, x4); + x4 = _mm_xor_si128(x4, x5); + x5 = _mm_xor_si128(x5, x6); + x6 = _mm_xor_si128(x6, x7); + x7 = _mm_xor_si128(x7, tmp0); +} + + +template +static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output) +{ + __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; + __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; + + aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); + + xin0 = _mm_load_si128(input + 4); + xin1 = _mm_load_si128(input + 5); + xin2 = _mm_load_si128(input + 6); + xin3 = _mm_load_si128(input + 7); + xin4 = _mm_load_si128(input + 8); + xin5 = _mm_load_si128(input + 9); + xin6 = _mm_load_si128(input + 10); + xin7 = _mm_load_si128(input + 11); + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + for (size_t i = 0; i < 16; i++) { + aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + + mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7); + } + } + + for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { + aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); + + _mm_store_si128(output + i + 0, xin0); + _mm_store_si128(output + i + 1, xin1); + _mm_store_si128(output + i + 2, xin2); + _mm_store_si128(output + i + 3, xin3); + _mm_store_si128(output + i + 4, xin4); + _mm_store_si128(output + i + 5, xin5); + _mm_store_si128(output + i + 6, xin6); + _mm_store_si128(output + i + 7, xin7); + } +} + + +#ifndef XMRIG_NO_CN_GPU +template +void cn_explode_scratchpad_gpu(const uint8_t *input, uint8_t *output) +{ + constexpr size_t hash_size = 200; // 25x8 bytes + alignas(16) uint64_t hash[25]; + + for (uint64_t i = 0; i < MEM / 512; i++) + { + memcpy(hash, input, hash_size); + hash[0] ^= i; + + xmrig::keccakf(hash, 24); + memcpy(output, hash, 160); + output += 160; + + xmrig::keccakf(hash, 24); + memcpy(output, hash, 176); + output += 176; + + xmrig::keccakf(hash, 24); + memcpy(output, hash, 176); + output += 176; + } +} +#endif + + +template +static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output) +{ + __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; + __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; + + aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); + + xout0 = _mm_load_si128(output + 4); + xout1 = _mm_load_si128(output + 5); + xout2 = _mm_load_si128(output + 6); + xout3 = _mm_load_si128(output + 7); + xout4 = _mm_load_si128(output + 8); + xout5 = _mm_load_si128(output + 9); + xout6 = _mm_load_si128(output + 10); + xout7 = _mm_load_si128(output + 11); + + for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) + { + xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); + xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); + xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); + xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); + xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); + xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); + xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); + xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); + + aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); + } + } + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { + xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); + xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); + xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); + xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); + xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); + xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); + xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); + xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); + + aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + + mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); + } + + for (size_t i = 0; i < 16; i++) { + aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); + + mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); + } + } + + _mm_store_si128(output + 4, xout0); + _mm_store_si128(output + 5, xout1); + _mm_store_si128(output + 6, xout2); + _mm_store_si128(output + 7, xout3); + _mm_store_si128(output + 8, xout4); + _mm_store_si128(output + 9, xout5); + _mm_store_si128(output + 10, xout6); + _mm_store_si128(output + 11, xout7); +} + + +static inline __m128i aes_round_tweak_div(const __m128i &in, const __m128i &key) +{ + alignas(16) uint32_t k[4]; + alignas(16) uint32_t x[4]; + + _mm_store_si128((__m128i*) k, key); + _mm_store_si128((__m128i*) x, _mm_xor_si128(in, _mm_set_epi64x(0xffffffffffffffff, 0xffffffffffffffff))); + + #define BYTE(p, i) ((unsigned char*)&x[p])[i] + k[0] ^= saes_table[0][BYTE(0, 0)] ^ saes_table[1][BYTE(1, 1)] ^ saes_table[2][BYTE(2, 2)] ^ saes_table[3][BYTE(3, 3)]; + x[0] ^= k[0]; + k[1] ^= saes_table[0][BYTE(1, 0)] ^ saes_table[1][BYTE(2, 1)] ^ saes_table[2][BYTE(3, 2)] ^ saes_table[3][BYTE(0, 3)]; + x[1] ^= k[1]; + k[2] ^= saes_table[0][BYTE(2, 0)] ^ saes_table[1][BYTE(3, 1)] ^ saes_table[2][BYTE(0, 2)] ^ saes_table[3][BYTE(1, 3)]; + x[2] ^= k[2]; + k[3] ^= saes_table[0][BYTE(3, 0)] ^ saes_table[1][BYTE(0, 1)] ^ saes_table[2][BYTE(1, 2)] ^ saes_table[3][BYTE(2, 3)]; + #undef BYTE + + return _mm_load_si128((__m128i*)k); +} + + +template +static inline void cryptonight_monero_tweak(const uint8_t* l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i bx1, __m128i& cx) +{ + uint64_t* mem_out = (uint64_t*)&l[idx]; + + if (BASE == xmrig::VARIANT_2) { + VARIANT2_SHUFFLE(l, idx, ax0, bx0, bx1, cx, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0)); + _mm_store_si128((__m128i *)mem_out, _mm_xor_si128(bx0, cx)); + } else { + __m128i tmp = _mm_xor_si128(bx0, cx); + mem_out[0] = _mm_cvtsi128_si64(tmp); + + uint64_t vh = vgetq_lane_u64(tmp, 1); + + uint8_t x = vh >> 24; + static const uint16_t table = 0x7531; + const uint8_t index = (((x >> (VARIANT == xmrig::VARIANT_XTL ? 4 : 3)) & 6) | (x & 1)) << 1; + vh ^= ((table >> index) & 0x3) << 28; + + mem_out[1] = vh; + } +} + + +template +inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ + constexpr size_t MASK = xmrig::cn_select_mask(); + constexpr size_t ITERATIONS = xmrig::cn_select_iter(); + constexpr size_t MEM = xmrig::cn_select_memory(); + constexpr xmrig::Variant BASE = xmrig::cn_base_variant(); + + if (BASE == xmrig::VARIANT_1 && size < 43) { + memset(output, 0, 32); + return; + } + + xmrig::keccak(input, size, ctx[0]->state); + + cn_explode_scratchpad((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory); + + const uint8_t* l0 = ctx[0]->memory; + uint64_t* h0 = reinterpret_cast(ctx[0]->state); + + VARIANT1_INIT(0); + VARIANT2_INIT(0); + VARIANT4_RANDOM_MATH_INIT(0); + + uint64_t al0 = h0[0] ^ h0[4]; + uint64_t ah0 = h0[1] ^ h0[5]; + __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); + __m128i bx1 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); + + uint64_t idx0 = al0; + + for (size_t i = 0; i < ITERATIONS; i++) { + __m128i cx; + if (VARIANT == xmrig::VARIANT_TUBE || !SOFT_AES) { + cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); + } + + const __m128i ax0 = _mm_set_epi64x(ah0, al0); + if (VARIANT == xmrig::VARIANT_TUBE) { + cx = aes_round_tweak_div(cx, ax0); + } + else if (SOFT_AES) { + cx = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0); + } + else { + cx = _mm_aesenc_si128(cx, ax0); + } + + if (BASE == xmrig::VARIANT_1 || BASE == xmrig::VARIANT_2) { + cryptonight_monero_tweak(l0, idx0 & MASK, ax0, bx0, bx1, cx); + } else { + _mm_store_si128((__m128i *)&l0[idx0 & MASK], _mm_xor_si128(bx0, cx)); + } + + idx0 = _mm_cvtsi128_si64(cx); + + uint64_t hi, lo, cl, ch; + cl = ((uint64_t*) &l0[idx0 & MASK])[0]; + ch = ((uint64_t*) &l0[idx0 & MASK])[1]; + + if (BASE == xmrig::VARIANT_2) { + if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) { + VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1); + if (VARIANT == xmrig::VARIANT_4) { + al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); + ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); + } + } else { + VARIANT2_INTEGER_MATH(0, cl, cx); + } + } + + lo = __umul128(idx0, cl, &hi); + + if (BASE == xmrig::VARIANT_2) { + if (VARIANT == xmrig::VARIANT_4) { + VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx0, bx1, cx, 0); + } else { + VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx0, bx1, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0)); + } + } + + al0 += hi; + ah0 += lo; + + ((uint64_t*)&l0[idx0 & MASK])[0] = al0; + + if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0; + } else if (BASE == xmrig::VARIANT_1) { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0; + } else { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; + } + + al0 ^= cl; + ah0 ^= ch; + idx0 = al0; + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + const int64x2_t x = vld1q_s64(reinterpret_cast(&l0[idx0 & MASK])); + const int64_t n = vgetq_lane_s64(x, 0); + const int32_t d = vgetq_lane_s32(x, 2); + const int64_t q = n / (d | 0x5); + + ((int64_t*)&l0[idx0 & MASK])[0] = n ^ q; + + if (VARIANT == xmrig::VARIANT_XHV) { + idx0 = (~d) ^ q; + } + else { + idx0 = d ^ q; + } + } + + if (BASE == xmrig::VARIANT_2) { + bx1 = bx0; + } + + bx0 = cx; + } + + cn_implode_scratchpad((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state); + + xmrig::keccakf(h0, 24); + extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); +} + + +#ifndef XMRIG_NO_CN_GPU +template +void cn_gpu_inner_arm(const uint8_t *spad, uint8_t *lpad); + + +template +inline void cryptonight_single_hash_gpu(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ + constexpr size_t MASK = xmrig::CRYPTONIGHT_GPU_MASK; + constexpr size_t ITERATIONS = xmrig::cn_select_iter(); + constexpr size_t MEM = xmrig::cn_select_memory(); + + static_assert(MASK > 0 && ITERATIONS > 0 && MEM > 0, "unsupported algorithm/variant"); + + xmrig::keccak(input, size, ctx[0]->state); + cn_explode_scratchpad_gpu(ctx[0]->state, ctx[0]->memory); + + fesetround(FE_TONEAREST); + + cn_gpu_inner_arm(ctx[0]->state, ctx[0]->memory); + + cn_implode_scratchpad((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state); + + xmrig::keccakf((uint64_t*) ctx[0]->state, 24); + memcpy(output, ctx[0]->state, 32); +} +#endif + + +template +inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ + constexpr size_t MASK = xmrig::cn_select_mask(); + constexpr size_t ITERATIONS = xmrig::cn_select_iter(); + constexpr size_t MEM = xmrig::cn_select_memory(); + constexpr xmrig::Variant BASE = xmrig::cn_base_variant(); + + if (BASE == xmrig::VARIANT_1 && size < 43) { + memset(output, 0, 64); + return; + } + + xmrig::keccak(input, size, ctx[0]->state); + xmrig::keccak(input + size, size, ctx[1]->state); + + const uint8_t* l0 = ctx[0]->memory; + const uint8_t* l1 = ctx[1]->memory; + uint64_t* h0 = reinterpret_cast(ctx[0]->state); + uint64_t* h1 = reinterpret_cast(ctx[1]->state); + + VARIANT1_INIT(0); + VARIANT1_INIT(1); + VARIANT2_INIT(0); + VARIANT2_INIT(1); + VARIANT4_RANDOM_MATH_INIT(0); + VARIANT4_RANDOM_MATH_INIT(1); + + cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); + cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); + + uint64_t al0 = h0[0] ^ h0[4]; + uint64_t al1 = h1[0] ^ h1[4]; + uint64_t ah0 = h0[1] ^ h0[5]; + uint64_t ah1 = h1[1] ^ h1[5]; + + __m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); + __m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); + __m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); + __m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]); + + uint64_t idx0 = al0; + uint64_t idx1 = al1; + + for (size_t i = 0; i < ITERATIONS; i++) { + __m128i cx0, cx1; + if (VARIANT == xmrig::VARIANT_TUBE || !SOFT_AES) { + cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); + cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); + } + + const __m128i ax0 = _mm_set_epi64x(ah0, al0); + const __m128i ax1 = _mm_set_epi64x(ah1, al1); + if (VARIANT == xmrig::VARIANT_TUBE) { + cx0 = aes_round_tweak_div(cx0, ax0); + cx1 = aes_round_tweak_div(cx1, ax1); + } + else if (SOFT_AES) { + cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0); + cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1); + } + else { + cx0 = _mm_aesenc_si128(cx0, ax0); + cx1 = _mm_aesenc_si128(cx1, ax1); + } + + if (BASE == xmrig::VARIANT_1 || (BASE == xmrig::VARIANT_2)) { + cryptonight_monero_tweak(l0, idx0 & MASK, ax0, bx00, bx01, cx0); + cryptonight_monero_tweak(l1, idx1 & MASK, ax1, bx10, bx11, cx1); + } else { + _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0)); + _mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx10, cx1)); + } + + idx0 = _mm_cvtsi128_si64(cx0); + idx1 = _mm_cvtsi128_si64(cx1); + + uint64_t hi, lo, cl, ch; + cl = ((uint64_t*) &l0[idx0 & MASK])[0]; + ch = ((uint64_t*) &l0[idx0 & MASK])[1]; + + if (BASE == xmrig::VARIANT_2) { + if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) { + VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01); + if (VARIANT == xmrig::VARIANT_4) { + al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); + ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); + } + } else { + VARIANT2_INTEGER_MATH(0, cl, cx0); + } + } + + lo = __umul128(idx0, cl, &hi); + + if (BASE == xmrig::VARIANT_2) { + if (VARIANT == xmrig::VARIANT_4) { + VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx00, bx01, cx0, 0); + } else { + VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx00, bx01, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0)); + } + } + + al0 += hi; + ah0 += lo; + + ((uint64_t*)&l0[idx0 & MASK])[0] = al0; + + if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0; + } else if (BASE == xmrig::VARIANT_1) { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0; + } else { + ((uint64_t*)&l0[idx0 & MASK])[1] = ah0; + } + + al0 ^= cl; + ah0 ^= ch; + idx0 = al0; + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + const int64x2_t x = vld1q_s64(reinterpret_cast(&l0[idx0 & MASK])); + const int64_t n = vgetq_lane_s64(x, 0); + const int32_t d = vgetq_lane_s32(x, 2); + const int64_t q = n / (d | 0x5); + + ((int64_t*)&l0[idx0 & MASK])[0] = n ^ q; + + if (VARIANT == xmrig::VARIANT_XHV) { + idx0 = (~d) ^ q; + } + else { + idx0 = d ^ q; + } + } + + cl = ((uint64_t*) &l1[idx1 & MASK])[0]; + ch = ((uint64_t*) &l1[idx1 & MASK])[1]; + + if (BASE == xmrig::VARIANT_2) { + if ((VARIANT == xmrig::VARIANT_WOW) || (VARIANT == xmrig::VARIANT_4)) { + VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11); + if (VARIANT == xmrig::VARIANT_4) { + al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32); + ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32); + } + } else { + VARIANT2_INTEGER_MATH(1, cl, cx1); + } + } + + lo = __umul128(idx1, cl, &hi); + + if (BASE == xmrig::VARIANT_2) { + if (VARIANT == xmrig::VARIANT_4) { + VARIANT2_SHUFFLE(l1, idx1 & MASK, ax1, bx10, bx11, cx1, 0); + } else { + VARIANT2_SHUFFLE2(l1, idx1 & MASK, ax1, bx10, bx11, hi, lo, (VARIANT == xmrig::VARIANT_RWZ ? 1 : 0)); + } + } + + al1 += hi; + ah1 += lo; + + ((uint64_t*)&l1[idx1 & MASK])[0] = al1; + + if (BASE == xmrig::VARIANT_1 && (VARIANT == xmrig::VARIANT_TUBE || VARIANT == xmrig::VARIANT_RTO)) { + ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1 ^ al1; + } else if (BASE == xmrig::VARIANT_1) { + ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1; + } else { + ((uint64_t*)&l1[idx1 & MASK])[1] = ah1; + } + + al1 ^= cl; + ah1 ^= ch; + idx1 = al1; + + if (ALGO == xmrig::CRYPTONIGHT_HEAVY) { + const int64x2_t x = vld1q_s64(reinterpret_cast(&l1[idx1 & MASK])); + const int64_t n = vgetq_lane_s64(x, 0); + const int32_t d = vgetq_lane_s32(x, 2); + const int64_t q = n / (d | 0x5); + + ((int64_t*)&l1[idx1 & MASK])[0] = n ^ q; + + if (VARIANT == xmrig::VARIANT_XHV) { + idx1 = (~d) ^ q; + } + else { + idx1 = d ^ q; + } + } + if (BASE == xmrig::VARIANT_2) { + bx01 = bx00; + bx11 = bx10; + } + bx00 = cx0; + bx10 = cx1; + } + + cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); + cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); + + xmrig::keccakf(h0, 24); + xmrig::keccakf(h1, 24); + + extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); + extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); +} + + +template +inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ +} + + +template +inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ +} + + +template +inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height) +{ +} + +#endif /* __CRYPTONIGHT_ARM_H__ */ diff --git a/src/crypto/SSE2NEON.h b/src/crypto/SSE2NEON.h new file mode 100644 index 00000000..6a00448d --- /dev/null +++ b/src/crypto/SSE2NEON.h @@ -0,0 +1,1497 @@ +#ifndef SSE2NEON_H +#define SSE2NEON_H + +// This header file provides a simple API translation layer +// between SSE intrinsics to their corresponding ARM NEON versions +// +// This header file does not (yet) translate *all* of the SSE intrinsics. +// Since this is in support of a specific porting effort, I have only +// included the intrinsics I needed to get my port to work. +// +// Questions/Comments/Feedback send to: jratcliffscarab@gmail.com +// +// If you want to improve or add to this project, send me an +// email and I will probably approve your access to the depot. +// +// Project is located here: +// +// https://github.com/jratcliff63367/sse2neon +// +// Show your appreciation for open source by sending me a bitcoin tip to the following +// address. +// +// TipJar: 1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p : +// https://blockchain.info/address/1PzgWDSyq4pmdAXRH8SPUtta4SWGrt4B1p +// +// +// Contributors to this project are: +// +// John W. Ratcliff : jratcliffscarab@gmail.com +// Brandon Rowlett : browlett@nvidia.com +// Ken Fast : kfast@gdeb.com +// Eric van Beurden : evanbeurden@nvidia.com +// Alexander Potylitsin : apotylitsin@nvidia.com +// +// +// ********************************************************************************************************************* +// apoty: March 17, 2017 +// Current version was changed in most to fix issues and potential issues. +// All unit tests were rewritten as a part of forge lib project to cover all implemented functions. +// ********************************************************************************************************************* +// Release notes for January 20, 2017 version: +// +// The unit tests have been refactored. They no longer assert on an error, instead they return a pass/fail condition +// The unit-tests now test 10,000 random float and int values against each intrinsic. +// +// SSE2NEON now supports 95 SSE intrinsics. 39 of them have formal unit tests which have been implemented and +// fully tested on NEON/ARM. The remaining 56 still need unit tests implemented. +// +// A struct is now defined in this header file called 'SIMDVec' which can be used by applications which +// attempt to access the contents of an _m128 struct directly. It is important to note that accessing the __m128 +// struct directly is bad coding practice by Microsoft: @see: https://msdn.microsoft.com/en-us/library/ayeb3ayc.aspx +// +// However, some legacy source code may try to access the contents of an __m128 struct directly so the developer +// can use the SIMDVec as an alias for it. Any casting must be done manually by the developer, as you cannot +// cast or otherwise alias the base NEON data type for intrinsic operations. +// +// A bug was found with the _mm_shuffle_ps intrinsic. If the shuffle permutation was not one of the ones with +// a custom/unique implementation causing it to fall through to the default shuffle implementation it was failing +// to return the correct value. This is now fixed. +// +// A bug was found with the _mm_cvtps_epi32 intrinsic. This converts floating point values to integers. +// It was not honoring the correct rounding mode. In SSE the default rounding mode when converting from float to int +// is to use 'round to even' otherwise known as 'bankers rounding'. ARMv7 did not support this feature but ARMv8 does. +// As it stands today, this header file assumes ARMv8. If you are trying to target really old ARM devices, you may get +// a build error. +// +// Support for a number of new intrinsics was added, however, none of them yet have unit-tests to 100% confirm they are +// producing the correct results on NEON. These unit tests will be added as soon as possible. +// +// Here is the list of new instrinsics which have been added: +// +// _mm_cvtss_f32 : extracts the lower order floating point value from the parameter +// _mm_add_ss : adds the scalar single - precision floating point values of a and b +// _mm_div_ps : Divides the four single - precision, floating - point values of a and b. +// _mm_div_ss : Divides the scalar single - precision floating point value of a by b. +// _mm_sqrt_ss : Computes the approximation of the square root of the scalar single - precision floating point value of in. +// _mm_rsqrt_ps : Computes the approximations of the reciprocal square roots of the four single - precision floating point values of in. +// _mm_comilt_ss : Compares the lower single - precision floating point scalar values of a and b using a less than operation +// _mm_comigt_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than operation. +// _mm_comile_ss : Compares the lower single - precision floating point scalar values of a and b using a less than or equal operation. +// _mm_comige_ss : Compares the lower single - precision floating point scalar values of a and b using a greater than or equal operation. +// _mm_comieq_ss : Compares the lower single - precision floating point scalar values of a and b using an equality operation. +// _mm_comineq_s : Compares the lower single - precision floating point scalar values of a and b using an inequality operation +// _mm_unpackhi_epi8 : Interleaves the upper 8 signed or unsigned 8 - bit integers in a with the upper 8 signed or unsigned 8 - bit integers in b. +// _mm_unpackhi_epi16: Interleaves the upper 4 signed or unsigned 16 - bit integers in a with the upper 4 signed or unsigned 16 - bit integers in b. +// +// ********************************************************************************************************************* +/* +** The MIT license: +** +** Permission is hereby granted, free of charge, to any person obtaining a copy +** of this software and associated documentation files (the "Software"), to deal +** in the Software without restriction, including without limitation the rights +** to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +** copies of the Software, and to permit persons to whom the Software is furnished +** to do so, subject to the following conditions: +** +** The above copyright notice and this permission notice shall be included in all +** copies or substantial portions of the Software. + +** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +** IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +** FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +** AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, +** WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +** CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +*/ + +#define ENABLE_CPP_VERSION 0 + +#if defined(__GNUC__) || defined(__clang__) +# pragma push_macro("FORCE_INLINE") +# pragma push_macro("ALIGN_STRUCT") +# define FORCE_INLINE static inline __attribute__((always_inline)) +# define ALIGN_STRUCT(x) __attribute__((aligned(x))) +#else +# error "Macro name collisions may happens with unknown compiler" +# define FORCE_INLINE static inline +# define ALIGN_STRUCT(x) __declspec(align(x)) +#endif + +#include +#include "arm_neon.h" + + +/*******************************************************/ +/* MACRO for shuffle parameter for _mm_shuffle_ps(). */ +/* Argument fp3 is a digit[0123] that represents the fp*/ +/* from argument "b" of mm_shuffle_ps that will be */ +/* placed in fp3 of result. fp2 is the same for fp2 in */ +/* result. fp1 is a digit[0123] that represents the fp */ +/* from argument "a" of mm_shuffle_ps that will be */ +/* places in fp1 of result. fp0 is the same for fp0 of */ +/* result */ +/*******************************************************/ +#define _MM_SHUFFLE(fp3,fp2,fp1,fp0) \ + (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0))) + +/* indicate immediate constant argument in a given range */ +#define __constrange(a,b) \ + const + +typedef float32x4_t __m128; +typedef int32x4_t __m128i; + + +// ****************************************** +// type-safe casting between types +// ****************************************** + +#define vreinterpretq_m128_f16(x) \ + vreinterpretq_f32_f16(x) + +#define vreinterpretq_m128_f32(x) \ + (x) + +#define vreinterpretq_m128_f64(x) \ + vreinterpretq_f32_f64(x) + + +#define vreinterpretq_m128_u8(x) \ + vreinterpretq_f32_u8(x) + +#define vreinterpretq_m128_u16(x) \ + vreinterpretq_f32_u16(x) + +#define vreinterpretq_m128_u32(x) \ + vreinterpretq_f32_u32(x) + +#define vreinterpretq_m128_u64(x) \ + vreinterpretq_f32_u64(x) + + +#define vreinterpretq_m128_s8(x) \ + vreinterpretq_f32_s8(x) + +#define vreinterpretq_m128_s16(x) \ + vreinterpretq_f32_s16(x) + +#define vreinterpretq_m128_s32(x) \ + vreinterpretq_f32_s32(x) + +#define vreinterpretq_m128_s64(x) \ + vreinterpretq_f32_s64(x) + + +#define vreinterpretq_f16_m128(x) \ + vreinterpretq_f16_f32(x) + +#define vreinterpretq_f32_m128(x) \ + (x) + +#define vreinterpretq_f64_m128(x) \ + vreinterpretq_f64_f32(x) + + +#define vreinterpretq_u8_m128(x) \ + vreinterpretq_u8_f32(x) + +#define vreinterpretq_u16_m128(x) \ + vreinterpretq_u16_f32(x) + +#define vreinterpretq_u32_m128(x) \ + vreinterpretq_u32_f32(x) + +#define vreinterpretq_u64_m128(x) \ + vreinterpretq_u64_f32(x) + + +#define vreinterpretq_s8_m128(x) \ + vreinterpretq_s8_f32(x) + +#define vreinterpretq_s16_m128(x) \ + vreinterpretq_s16_f32(x) + +#define vreinterpretq_s32_m128(x) \ + vreinterpretq_s32_f32(x) + +#define vreinterpretq_s64_m128(x) \ + vreinterpretq_s64_f32(x) + + +#define vreinterpretq_m128i_s8(x) \ + vreinterpretq_s32_s8(x) + +#define vreinterpretq_m128i_s16(x) \ + vreinterpretq_s32_s16(x) + +#define vreinterpretq_m128i_s32(x) \ + (x) + +#define vreinterpretq_m128i_s64(x) \ + vreinterpretq_s32_s64(x) + + +#define vreinterpretq_m128i_u8(x) \ + vreinterpretq_s32_u8(x) + +#define vreinterpretq_m128i_u16(x) \ + vreinterpretq_s32_u16(x) + +#define vreinterpretq_m128i_u32(x) \ + vreinterpretq_s32_u32(x) + +#define vreinterpretq_m128i_u64(x) \ + vreinterpretq_s32_u64(x) + + +#define vreinterpretq_s8_m128i(x) \ + vreinterpretq_s8_s32(x) + +#define vreinterpretq_s16_m128i(x) \ + vreinterpretq_s16_s32(x) + +#define vreinterpretq_s32_m128i(x) \ + (x) + +#define vreinterpretq_s64_m128i(x) \ + vreinterpretq_s64_s32(x) + + +#define vreinterpretq_u8_m128i(x) \ + vreinterpretq_u8_s32(x) + +#define vreinterpretq_u16_m128i(x) \ + vreinterpretq_u16_s32(x) + +#define vreinterpretq_u32_m128i(x) \ + vreinterpretq_u32_s32(x) + +#define vreinterpretq_u64_m128i(x) \ + vreinterpretq_u64_s32(x) + + +// union intended to allow direct access to an __m128 variable using the names that the MSVC +// compiler provides. This union should really only be used when trying to access the members +// of the vector as integer values. GCC/clang allow native access to the float members through +// a simple array access operator (in C since 4.6, in C++ since 4.8). +// +// Ideally direct accesses to SIMD vectors should not be used since it can cause a performance +// hit. If it really is needed however, the original __m128 variable can be aliased with a +// pointer to this union and used to access individual components. The use of this union should +// be hidden behind a macro that is used throughout the codebase to access the members instead +// of always declaring this type of variable. +typedef union ALIGN_STRUCT(16) SIMDVec +{ + float m128_f32[4]; // as floats - do not to use this. Added for convenience. + int8_t m128_i8[16]; // as signed 8-bit integers. + int16_t m128_i16[8]; // as signed 16-bit integers. + int32_t m128_i32[4]; // as signed 32-bit integers. + int64_t m128_i64[2]; // as signed 64-bit integers. + uint8_t m128_u8[16]; // as unsigned 8-bit integers. + uint16_t m128_u16[8]; // as unsigned 16-bit integers. + uint32_t m128_u32[4]; // as unsigned 32-bit integers. + uint64_t m128_u64[2]; // as unsigned 64-bit integers. +} SIMDVec; + + +// ****************************************** +// Set/get methods +// ****************************************** + +// extracts the lower order floating point value from the parameter : https://msdn.microsoft.com/en-us/library/bb514059%28v=vs.120%29.aspx?f=255&MSPPError=-2147217396 +FORCE_INLINE float _mm_cvtss_f32(__m128 a) +{ + return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); +} + +// Sets the 128-bit value to zero https://msdn.microsoft.com/en-us/library/vstudio/ys7dw0kh(v=vs.100).aspx +FORCE_INLINE __m128i _mm_setzero_si128() +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(0)); +} + +// Clears the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/tk1t2tbz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setzero_ps(void) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(0)); +} + +// Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set1_ps(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Sets the four single-precision, floating-point values to w. https://msdn.microsoft.com/en-us/library/vstudio/2x1se8ha(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps1(float _w) +{ + return vreinterpretq_m128_f32(vdupq_n_f32(_w)); +} + +// Sets the four single-precision, floating-point values to the four inputs. https://msdn.microsoft.com/en-us/library/vstudio/afh0zf75(v=vs.100).aspx +FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x) +{ + float __attribute__((aligned(16))) data[4] = { x, y, z, w }; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the four single-precision, floating-point values to the four inputs in reverse order. https://msdn.microsoft.com/en-us/library/vstudio/d2172ct3(v=vs.100).aspx +FORCE_INLINE __m128 _mm_setr_ps(float w, float z , float y , float x ) +{ + float __attribute__ ((aligned (16))) data[4] = { w, z, y, x }; + return vreinterpretq_m128_f32(vld1q_f32(data)); +} + +// Sets the 4 signed 32-bit integer values to i. https://msdn.microsoft.com/en-us/library/vstudio/h4xscxat(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set1_epi32(int _i) +{ + return vreinterpretq_m128i_s32(vdupq_n_s32(_i)); +} + +// Sets the 4 signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/019beekt(v=vs.100).aspx +FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0) +{ + int32_t __attribute__((aligned(16))) data[4] = { i0, i1, i2, i3 }; + return vreinterpretq_m128i_s32(vld1q_s32(data)); +} + +// Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/s3h4ay6y(v=vs.100).aspx +FORCE_INLINE void _mm_store_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/44e30x22(v=vs.100).aspx +FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a) +{ + vst1q_f32(p, vreinterpretq_f32_m128(a)); +} + +// Stores four 32-bit integer values as (as a __m128i value) at the address p. https://msdn.microsoft.com/en-us/library/vstudio/edk11s13(v=vs.100).aspx +FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a) +{ + vst1q_s32((int32_t*) p, vreinterpretq_s32_m128i(a)); +} + +// Stores the lower single - precision, floating - point value. https://msdn.microsoft.com/en-us/library/tzz10fbx(v=vs.100).aspx +FORCE_INLINE void _mm_store_ss(float *p, __m128 a) +{ + vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0); +} + +// Reads the lower 64 bits of b and stores them into the lower 64 bits of a. https://msdn.microsoft.com/en-us/library/hhwf428f%28v=vs.90%29.aspx +FORCE_INLINE void _mm_storel_epi64(__m128i* a, __m128i b) +{ + uint64x1_t hi = vget_high_u64(vreinterpretq_u64_m128i(*a)); + uint64x1_t lo = vget_low_u64(vreinterpretq_u64_m128i(b)); + *a = vreinterpretq_m128i_u64(vcombine_u64(lo, hi)); +} + +// Loads a single single-precision, floating-point value, copying it into all four words https://msdn.microsoft.com/en-us/library/vstudio/5cdkf716(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load1_ps(const float * p) +{ + return vreinterpretq_m128_f32(vld1q_dup_f32(p)); +} + +// Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/zzd50xxt(v=vs.100).aspx +FORCE_INLINE __m128 _mm_load_ps(const float * p) +{ + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Loads four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/x1b16s7z%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_loadu_ps(const float * p) +{ + // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are equivalent for neon + return vreinterpretq_m128_f32(vld1q_f32(p)); +} + +// Loads an single - precision, floating - point value into the low word and clears the upper three words. https://msdn.microsoft.com/en-us/library/548bb9h4%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_load_ss(const float * p) +{ + return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0)); +} + + +// ****************************************** +// Logic/Binary operations +// ****************************************** + +// Compares for inequality. https://msdn.microsoft.com/en-us/library/sf44thbx(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32( vmvnq_u32( vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)) ) ); +} + +// Computes the bitwise AND-NOT of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/68h7wd02(v=vs.100).aspx +FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vbicq_s32(vreinterpretq_s32_m128(b), vreinterpretq_s32_m128(a)) ); // *NOTE* argument swap +} + +// Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-bit value in a. https://msdn.microsoft.com/en-us/library/vstudio/1beaceh8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vbicq_s32(vreinterpretq_s32_m128i(b), vreinterpretq_s32_m128i(a)) ); // *NOTE* argument swap +} + +// Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/6d1txsa8(v=vs.100).aspx +FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// Computes the bitwise AND of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/73ck1xc5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes the bitwise OR of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/7ctdsyy0(v=vs.100).aspx +FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes bitwise EXOR (exclusive-or) of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/ss6k3wk8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_s32( veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)) ); +} + +// Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/vstudio/ew8ty0db(v=vs.100).aspx +FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b. https://msdn.microsoft.com/en-us/library/fzt08www(v=vs.100).aspx +FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32( veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)) ); +} + +// NEON does not provide this method +// Creates a 4-bit mask from the most significant bits of the four single-precision, floating-point values. https://msdn.microsoft.com/en-us/library/vstudio/4490ys29(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_ps(__m128 a) +{ +#if ENABLE_CPP_VERSION // I am not yet convinced that the NEON version is faster than the C version of this + uint32x4_t &ia = *(uint32x4_t *)&a; + return (ia[0] >> 31) | ((ia[1] >> 30) & 2) | ((ia[2] >> 29) & 4) | ((ia[3] >> 28) & 8); +#else + static const uint32x4_t movemask = { 1, 2, 4, 8 }; + static const uint32x4_t highbit = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; + uint32x4_t t0 = vreinterpretq_u32_m128(a); + uint32x4_t t1 = vtstq_u32(t0, highbit); + uint32x4_t t2 = vandq_u32(t1, movemask); + uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2)); + return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1); +#endif +} + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of b and places it into the high end of the result. +FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a32, b10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in high end of result +// takes the higher two 32 bit values from b and swaps them and places in low end of result. +FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b23)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b) +{ + float32x2_t a21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a21, b03)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b) +{ + float32x2_t a03 = vget_low_f32(vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3)); + float32x2_t b21 = vget_high_f32(vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3)); + return vreinterpretq_m128_f32(vcombine_f32(a03, b21)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a01, b10)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vcombine_f32(a01, b01)); +} + +// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the high +FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a10, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b) +{ + float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a11, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b) +{ + float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a22, b00)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b) +{ + float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t b22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vcombine_f32(a00, b22)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b) +{ + float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0); + float32x2_t a22 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0); + float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* apoty: TODO: use vzip ?*/ + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(a02, b32)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b) +{ + float32x2_t a33 = vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1); + float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1); + return vreinterpretq_m128_f32(vcombine_f32(a33, b11)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b) +{ + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a10, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b) +{ + float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a))); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a01, b20)); +} + +FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b) +{ + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32_t b2 = vgetq_lane_f32(b, 2); + float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0); + float32x2_t b20 = vset_lane_f32(b2, b00, 1); + return vreinterpretq_m128_f32(vcombine_f32(a32, b20)); +} + +// NEON does not support a general purpose permute intrinsic +// Currently I am not sure whether the C implementation is faster or slower than the NEON version. +// Note, this has to be expanded as a template because the shuffle value must be an immediate value. +// The same is true on SSE as well. +// Selects four specific single-precision, floating-point values from a and b, based on the mask i. https://msdn.microsoft.com/en-us/library/vstudio/5f0858x0(v=vs.100).aspx +#if ENABLE_CPP_VERSION // I am not convinced that the NEON version is faster than the C version yet. +FORCE_INLINE __m128 _mm_shuffle_ps_default(__m128 a, __m128 b, __constrange(0,255) int imm) +{ + __m128 ret; + ret[0] = a[imm & 0x3]; + ret[1] = a[(imm >> 2) & 0x3]; + ret[2] = b[(imm >> 4) & 0x03]; + ret[3] = b[(imm >> 6) & 0x03]; + return ret; +} +#else +#define _mm_shuffle_ps_default(a, b, imm) \ +({ \ + float32x4_t ret; \ + ret = vmovq_n_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & 0x3)); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), ret, 1); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), ret, 2); \ + ret = vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), ret, 3); \ + vreinterpretq_m128_f32(ret); \ +}) +#endif + +//FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255) int imm) +#define _mm_shuffle_ps(a, b, imm) \ +({ \ + __m128 ret; \ + switch (imm) \ + { \ + case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_ps_1032((a), (b)); break; \ + case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_ps_2301((a), (b)); break; \ + case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_ps_0321((a), (b)); break; \ + case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_ps_2103((a), (b)); break; \ + case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_ps_1010((a), (b)); break; \ + case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_ps_1001((a), (b)); break; \ + case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_ps_0101((a), (b)); break; \ + case _MM_SHUFFLE(3, 2, 1, 0): ret = _mm_shuffle_ps_3210((a), (b)); break; \ + case _MM_SHUFFLE(0, 0, 1, 1): ret = _mm_shuffle_ps_0011((a), (b)); break; \ + case _MM_SHUFFLE(0, 0, 2, 2): ret = _mm_shuffle_ps_0022((a), (b)); break; \ + case _MM_SHUFFLE(2, 2, 0, 0): ret = _mm_shuffle_ps_2200((a), (b)); break; \ + case _MM_SHUFFLE(3, 2, 0, 2): ret = _mm_shuffle_ps_3202((a), (b)); break; \ + case _MM_SHUFFLE(1, 1, 3, 3): ret = _mm_shuffle_ps_1133((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 1, 0): ret = _mm_shuffle_ps_2010((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 0, 1): ret = _mm_shuffle_ps_2001((a), (b)); break; \ + case _MM_SHUFFLE(2, 0, 3, 2): ret = _mm_shuffle_ps_2032((a), (b)); break; \ + default: ret = _mm_shuffle_ps_default((a), (b), (imm)); break; \ + } \ + ret; \ +}) + +// Takes the upper 64 bits of a and places it in the low end of the result +// Takes the lower 64 bits of a and places it into the high end of the result. +FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a10)); +} + +// takes the lower two 32-bit values from a and swaps them and places in low end of result +// takes the higher two 32 bit values from a and swaps them and places in high end of result. +FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a23)); +} + +// rotates the least significant 32 bits into the most signficant 32 bits, and shifts the rest down +FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a) +{ + return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1)); +} + +// rotates the most significant 32 bits into the least signficant 32 bits, and shifts the rest up +FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a) +{ + return vreinterpretq_m128i_s32(vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3)); +} + +// gets the lower 64 bits of a, and places it in the upper 64 bits +// gets the lower 64 bits of a and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a) +{ + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a10, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits +// gets the lower 64 bits of a, and places it in the upper 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a)); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a10)); +} + +// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the upper 64 bits +// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the lower 64 bits +FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a) +{ + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a01, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a) +{ + int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1); + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + return vreinterpretq_m128i_s32(vcombine_s32(a11, a22)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a) +{ + int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0); + int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a))); + return vreinterpretq_m128i_s32(vcombine_s32(a22, a01)); +} + +FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a) +{ + int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1); + return vreinterpretq_m128i_s32(vcombine_s32(a32, a33)); +} + +//FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) +#if ENABLE_CPP_VERSION +FORCE_INLINE __m128i _mm_shuffle_epi32_default(__m128i a, __constrange(0,255) int imm) +{ + __m128i ret; + ret[0] = a[imm & 0x3]; + ret[1] = a[(imm >> 2) & 0x3]; + ret[2] = a[(imm >> 4) & 0x03]; + ret[3] = a[(imm >> 6) & 0x03]; + return ret; +} +#else +#define _mm_shuffle_epi32_default(a, imm) \ +({ \ + int32x4_t ret; \ + ret = vmovq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm) & 0x3)); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 2) & 0x3), ret, 1); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), ret, 2); \ + ret = vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), ret, 3); \ + vreinterpretq_m128i_s32(ret); \ +}) +#endif + +//FORCE_INLINE __m128i _mm_shuffle_epi32_splat(__m128i a, __constrange(0,255) int imm) +#if defined(__aarch64__) +#define _mm_shuffle_epi32_splat(a, imm) \ +({ \ + vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm))); \ +}) +#else +#define _mm_shuffle_epi32_splat(a, imm) \ +({ \ + vreinterpretq_m128i_s32(vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm)))); \ +}) +#endif + +// Shuffles the 4 signed or unsigned 32-bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/56f67xbk%28v=vs.90%29.aspx +//FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_shuffle_epi32(a, imm) \ +({ \ + __m128i ret; \ + switch (imm) \ + { \ + case _MM_SHUFFLE(1, 0, 3, 2): ret = _mm_shuffle_epi_1032((a)); break; \ + case _MM_SHUFFLE(2, 3, 0, 1): ret = _mm_shuffle_epi_2301((a)); break; \ + case _MM_SHUFFLE(0, 3, 2, 1): ret = _mm_shuffle_epi_0321((a)); break; \ + case _MM_SHUFFLE(2, 1, 0, 3): ret = _mm_shuffle_epi_2103((a)); break; \ + case _MM_SHUFFLE(1, 0, 1, 0): ret = _mm_shuffle_epi_1010((a)); break; \ + case _MM_SHUFFLE(1, 0, 0, 1): ret = _mm_shuffle_epi_1001((a)); break; \ + case _MM_SHUFFLE(0, 1, 0, 1): ret = _mm_shuffle_epi_0101((a)); break; \ + case _MM_SHUFFLE(2, 2, 1, 1): ret = _mm_shuffle_epi_2211((a)); break; \ + case _MM_SHUFFLE(0, 1, 2, 2): ret = _mm_shuffle_epi_0122((a)); break; \ + case _MM_SHUFFLE(3, 3, 3, 2): ret = _mm_shuffle_epi_3332((a)); break; \ + case _MM_SHUFFLE(0, 0, 0, 0): ret = _mm_shuffle_epi32_splat((a),0); break; \ + case _MM_SHUFFLE(1, 1, 1, 1): ret = _mm_shuffle_epi32_splat((a),1); break; \ + case _MM_SHUFFLE(2, 2, 2, 2): ret = _mm_shuffle_epi32_splat((a),2); break; \ + case _MM_SHUFFLE(3, 3, 3, 3): ret = _mm_shuffle_epi32_splat((a),3); break; \ + default: ret = _mm_shuffle_epi32_default((a), (imm)); break; \ + } \ + ret; \ +}) + +// Shuffles the upper 4 signed or unsigned 16 - bit integers in a as specified by imm. https://msdn.microsoft.com/en-us/library/13ywktbs(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_shufflehi_epi16_function(__m128i a, __constrange(0,255) int imm) +#define _mm_shufflehi_epi16_function(a, imm) \ +({ \ + int16x8_t ret = vreinterpretq_s16_s32(a); \ + int16x4_t highBits = vget_high_s16(ret); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & 0x3), ret, 4); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, 5); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, 6); \ + ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, 7); \ + vreinterpretq_s32_s16(ret); \ +}) + +//FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a, __constrange(0,255) int imm) +#define _mm_shufflehi_epi16(a, imm) \ + _mm_shufflehi_epi16_function((a), (imm)) + + +// Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros. : https://msdn.microsoft.com/en-us/library/z2k3bbtb%28v=vs.90%29.aspx +//FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_slli_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) {\ + ret = a; \ + } \ + else if ((imm) > 31) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s32(vshlq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +//Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros. https://msdn.microsoft.com/en-us/library/w486zcfa(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm)> 31) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_u32(vshrq_n_u32(vreinterpretq_u32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 4 signed 32 - bit integers in a right by count bits while shifting in the sign bit. https://msdn.microsoft.com/en-us/library/z1939387(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm) +#define _mm_srai_epi32(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 31) { \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), 16)); \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(ret), 16)); \ + } \ + else { \ + ret = vreinterpretq_m128i_s32(vshrq_n_s32(vreinterpretq_s32_m128i(a), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 128 - bit value in a right by imm bytes while shifting in zeros.imm must be an immediate. https://msdn.microsoft.com/en-us/library/305w28yz(v=vs.100).aspx +//FORCE_INLINE _mm_srli_si128(__m128i a, __constrange(0,255) int imm) +#define _mm_srli_si128(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 15) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s8(vextq_s8(vreinterpretq_s8_m128i(a), vdupq_n_s8(0), (imm))); \ + } \ + ret; \ +}) + +// Shifts the 128-bit value in a left by imm bytes while shifting in zeros. imm must be an immediate. https://msdn.microsoft.com/en-us/library/34d3k2kt(v=vs.100).aspx +//FORCE_INLINE __m128i _mm_slli_si128(__m128i a, __constrange(0,255) int imm) +#define _mm_slli_si128(a, imm) \ +({ \ + __m128i ret; \ + if ((imm) <= 0) { \ + ret = a; \ + } \ + else if ((imm) > 15) { \ + ret = _mm_setzero_si128(); \ + } \ + else { \ + ret = vreinterpretq_m128i_s8(vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(a), 16 - (imm))); \ + } \ + ret; \ +}) + +// NEON does not provide a version of this function, here is an article about some ways to repro the results. +// http://stackoverflow.com/questions/11870910/sse-mm-movemask-epi8-equivalent-method-for-arm-neon +// Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a and zero extends the upper bits. https://msdn.microsoft.com/en-us/library/vstudio/s090c8fk(v=vs.100).aspx +FORCE_INLINE int _mm_movemask_epi8(__m128i _a) +{ + uint8x16_t input = vreinterpretq_u8_m128i(_a); + static const int8_t __attribute__((aligned(16))) xr[8] = { -7, -6, -5, -4, -3, -2, -1, 0 }; + uint8x8_t mask_and = vdup_n_u8(0x80); + int8x8_t mask_shift = vld1_s8(xr); + + uint8x8_t lo = vget_low_u8(input); + uint8x8_t hi = vget_high_u8(input); + + lo = vand_u8(lo, mask_and); + lo = vshl_u8(lo, mask_shift); + + hi = vand_u8(hi, mask_and); + hi = vshl_u8(hi, mask_shift); + + lo = vpadd_u8(lo, lo); + lo = vpadd_u8(lo, lo); + lo = vpadd_u8(lo, lo); + + hi = vpadd_u8(hi, hi); + hi = vpadd_u8(hi, hi); + hi = vpadd_u8(hi, hi); + + return ((hi[0] << 8) | (lo[0] & 0xFF)); +} + + +// ****************************************** +// Math operations +// ****************************************** + +// Subtracts the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/1zad2k61(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit integers of a. https://msdn.microsoft.com/en-us/library/vstudio/fhh866h0(v=vs.100).aspx +FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128_f32(vsubq_s32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Adds the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/c9848chc(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// adds the scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/be94x2y6(v=vs.100).aspx +FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b) +{ + float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0); + float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0); + //the upper values in the result must be the remnants of . + return vreinterpretq_m128_f32(vaddq_f32(a, value)); +} + +// Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/vstudio/09xs4fkk(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/fceha5k4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/9ks1472s(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// Multiplies the 4 signed or unsigned 32-bit integers from a by the 4 signed or unsigned 32-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/bb531409(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vmulq_s32(vreinterpretq_s32_m128i(a),vreinterpretq_s32_m128i(b))); +} + +// Multiplies the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/22kbk6t9(v=vs.100).aspx +FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Divides the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/edaw8147(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b) +{ + float32x4_t recip0 = vrecpeq_f32(vreinterpretq_f32_m128(b)); + float32x4_t recip1 = vmulq_f32(recip0, vrecpsq_f32(recip0, vreinterpretq_f32_m128(b))); + return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip1)); +} + +// Divides the scalar single-precision floating point value of a by b. https://msdn.microsoft.com/en-us/library/4y73xa49(v=vs.100).aspx +FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// This version does additional iterations to improve accuracy. Between 1 and 4 recommended. +// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx +FORCE_INLINE __m128 recipq_newton(__m128 in, int n) +{ + int i; + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + for (i = 0; i < n; ++i) + { + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); + } + return vreinterpretq_m128_f32(recip); +} + +// Computes the approximations of reciprocals of the four single-precision, floating-point values of a. https://msdn.microsoft.com/en-us/library/vstudio/796k1tty(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rcp_ps(__m128 in) +{ + float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in)); + recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in))); + return vreinterpretq_m128_f32(recip); +} + +// Computes the approximations of square roots of the four single-precision, floating-point values of a. First computes reciprocal square roots and then reciprocals of the four values. https://msdn.microsoft.com/en-us/library/vstudio/8z67bwwk(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in) +{ + float32x4_t recipsq = vrsqrteq_f32(vreinterpretq_f32_m128(in)); + float32x4_t sq = vrecpeq_f32(recipsq); + // ??? use step versions of both sqrt and recip for better accuracy? + return vreinterpretq_m128_f32(sq); +} + +// Computes the approximation of the square root of the scalar single-precision floating point value of in. https://msdn.microsoft.com/en-us/library/ahfsc22d(v=vs.100).aspx +FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in) +{ + float32_t value = vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0)); +} + +// Computes the approximations of the reciprocal square roots of the four single-precision floating point values of in. https://msdn.microsoft.com/en-us/library/22hfsh53(v=vs.100).aspx +FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in) +{ + return vreinterpretq_m128_f32(vrsqrteq_f32(vreinterpretq_f32_m128(in))); +} + +// Computes the maximums of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/ff5d607a(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Computes the minima of the four single-precision, floating-point values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/wh13kadz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Computes the maximum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/s6db5esz(v=vs.100).aspx +FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Computes the minimum of the two lower scalar single-precision floating point values of a and b. https://msdn.microsoft.com/en-us/library/0a9y7xaa(v=vs.100).aspx +FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b) +{ + float32_t value = vgetq_lane_f32(vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + return vreinterpretq_m128_f32(vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0)); +} + +// Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/6te997ew(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b))); +} + +// epi versions of min/max +// Computes the pariwise maximums of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb514055(v=vs.100).aspx +FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Computes the pariwise minima of the four signed 32-bit integer values of a and b. https://msdn.microsoft.com/en-us/library/vstudio/bb531476(v=vs.100).aspx +FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s32(vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. https://msdn.microsoft.com/en-us/library/vstudio/59hddw1d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b) +{ + /* apoty: issue with large values because of result saturation */ + //int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)); /* =2*a*b */ + //return vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1)); + int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */ + int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */ + uint16x8x2_t r = vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654)); + return vreinterpretq_m128i_u16(r.val[1]); +} + +// Computes pairwise add of each argument as single-precision, floating-point values a and b. +//https://msdn.microsoft.com/en-us/library/yd9wecaa.aspx +FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b ) +{ +#if defined(__aarch64__) + return vreinterpretq_m128_f32(vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); //AArch64 +#else + float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_f32(vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32))); +#endif +} + +// ****************************************** +// Compare operations +// ****************************************** + +// Compares for less than https://msdn.microsoft.com/en-us/library/vstudio/f330yhc8(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than. https://msdn.microsoft.com/en-us/library/vstudio/11dy102s(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for greater than or equal. https://msdn.microsoft.com/en-us/library/vstudio/fs813y2t(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for less than or equal. https://msdn.microsoft.com/en-us/library/vstudio/1s75w83z(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares for equality. https://msdn.microsoft.com/en-us/library/vstudio/36aectz5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b) +{ + return vreinterpretq_m128_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than. https://msdn.microsoft.com/en-us/library/vstudio/4ak0bf5d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32(vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than. https://msdn.microsoft.com/en-us/library/vstudio/1s9f2z0y(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_u32(vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b))); +} + +// Compares the four 32-bit floats in a and b to check if any values are NaN. Ordered compare between each value returns true for "orderable" and false for "not orderable" (NaN). https://msdn.microsoft.com/en-us/library/vstudio/0h9w00fx(v=vs.100).aspx +// see also: +// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean +// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics +FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b ) +{ + // Note: NEON does not have ordered compare builtin + // Need to compare a eq a and b eq b to check for NaN + // Do AND of results to get final + uint32x4_t ceqaa = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t ceqbb = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb)); +} + +// Compares the lower single-precision floating point scalar values of a and b using a less than operation. : https://msdn.microsoft.com/en-us/library/2kwe606b(v=vs.90).aspx +// Important note!! The documentation on MSDN is incorrect! If either of the values is a NAN the docs say you will get a one, but in fact, it will return a zero!! +FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b) +{ + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_lt_b = vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a greater than operation. : https://msdn.microsoft.com/en-us/library/b0738e0t(v=vs.100).aspx +FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_gt_b = vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a less than or equal operation. : https://msdn.microsoft.com/en-us/library/1w4t7c57(v=vs.90).aspx +FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_le_b = vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using a greater than or equal operation. : https://msdn.microsoft.com/en-us/library/8t80des6(v=vs.100).aspx +FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_ge_b = vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using an equality operation. : https://msdn.microsoft.com/en-us/library/93yx2h2b(v=vs.100).aspx +FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b) +{ + //return vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan)); + uint32x4_t a_eq_b = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)); + return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0) ? 1 : 0; +} + +// Compares the lower single-precision floating point scalar values of a and b using an inequality operation. : https://msdn.microsoft.com/en-us/library/bafh5e0a(v=vs.90).aspx +FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b) +{ + //return !vgetq_lane_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)), 0); + uint32x4_t a_not_nan = vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)); + uint32x4_t b_not_nan = vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b)); + uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan); + uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))); + return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0) ? 1 : 0; +} + +// according to the documentation, these intrinsics behave the same as the non-'u' versions. We'll just alias them here. +#define _mm_ucomilt_ss _mm_comilt_ss +#define _mm_ucomile_ss _mm_comile_ss +#define _mm_ucomigt_ss _mm_comigt_ss +#define _mm_ucomige_ss _mm_comige_ss +#define _mm_ucomieq_ss _mm_comieq_ss +#define _mm_ucomineq_ss _mm_comineq_ss + +// ****************************************** +// Conversions +// ****************************************** + +// Converts the four single-precision, floating-point values of a to signed 32-bit integer values using truncate. https://msdn.microsoft.com/en-us/library/vstudio/1h005y6x(v=vs.100).aspx +FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a) +{ + return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))); +} + +// Converts the four signed 32-bit integer values of a to single-precision, floating-point values https://msdn.microsoft.com/en-us/library/vstudio/36bwxcx5(v=vs.100).aspx +FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a) +{ + return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a))); +} + +// Converts the four unsigned 8-bit integers in the lower 32 bits to four unsigned 32-bit integers. https://msdn.microsoft.com/en-us/library/bb531467%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a) +{ + uint8x16_t u8x16 = vreinterpretq_u8_s32(a); /* xxxx xxxx xxxx DCBA */ + uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */ + uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */ + return vreinterpretq_s32_u32(u32x4); +} + +// Converts the four signed 16-bit integers in the lower 64 bits to four signed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514079%28v=vs.100%29.aspx +FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a) +{ + return vreinterpretq_m128i_s32(vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a)))); +} + +// Converts the four single-precision, floating-point values of a to signed 32-bit integer values. https://msdn.microsoft.com/en-us/library/vstudio/xdc42k5e(v=vs.100).aspx +// *NOTE*. The default rounding mode on SSE is 'round to even', which ArmV7 does not support! +// It is supported on ARMv8 however. +FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a) +{ +#if defined(__aarch64__) + return vcvtnq_s32_f32(a); +#else + uint32x4_t signmask = vdupq_n_u32(0x80000000); + float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a), vdupq_n_f32(0.5f)); /* +/- 0.5 */ + int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/ + int32x4_t r_trunc = vcvtq_s32_f32(vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */ + int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */ + int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone), vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */ + float32x4_t delta = vsubq_f32(vreinterpretq_f32_m128(a), vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */ + uint32x4_t is_delta_half = vceqq_f32(delta, half); /* delta == +/- 0.5 */ + return vreinterpretq_m128i_s32(vbslq_s32(is_delta_half, r_even, r_normal)); +#endif +} + +// Moves the least significant 32 bits of a to a 32-bit integer. https://msdn.microsoft.com/en-us/library/5z7a9642%28v=vs.90%29.aspx +FORCE_INLINE int _mm_cvtsi128_si32(__m128i a) +{ + return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0); +} + +// Moves 32-bit integer a to the least significant 32 bits of an __m128 object, zero extending the upper bits. https://msdn.microsoft.com/en-us/library/ct3539ha%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_cvtsi32_si128(int a) +{ + return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0)); +} + + +// Applies a type cast to reinterpret four 32-bit floating point values passed in as a 128-bit parameter as packed 32-bit integers. https://msdn.microsoft.com/en-us/library/bb514099.aspx +FORCE_INLINE __m128i _mm_castps_si128(__m128 a) +{ + return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a)); +} + +// Applies a type cast to reinterpret four 32-bit integers passed in as a 128-bit parameter as packed 32-bit floating point values. https://msdn.microsoft.com/en-us/library/bb514029.aspx +FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a) +{ + return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a)); +} + +// Loads 128-bit value. : https://msdn.microsoft.com/en-us/library/atzzad1h(v=vs.80).aspx +FORCE_INLINE __m128i _mm_load_si128(const __m128i *p) +{ + return vreinterpretq_m128i_s32(vld1q_s32((int32_t *)p)); +} + +// ****************************************** +// Miscellaneous Operations +// ****************************************** + +// Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates. https://msdn.microsoft.com/en-us/library/k4y4f7w5%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s8(vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)), vqmovn_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 16 signed 16 - bit integers from a and b into 8 - bit unsigned integers and saturates. https://msdn.microsoft.com/en-us/library/07ad1wx4(v=vs.100).aspx +FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b) +{ + return vreinterpretq_m128i_u8(vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)), vqmovun_s16(vreinterpretq_s16_m128i(b)))); +} + +// Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates. https://msdn.microsoft.com/en-us/library/393t56f9%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b) +{ + return vreinterpretq_m128i_s16(vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)), vqmovn_s32(vreinterpretq_s32_m128i(b)))); +} + +// Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/xf7k860c%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b) +{ + int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +} + +// Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/btxb17bw%28v=vs.90%29.aspx +FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b) +{ + int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +} + +// Interleaves the lower 2 signed or unsigned 32 - bit integers in a with the lower 2 signed or unsigned 32 - bit integers in b. https://msdn.microsoft.com/en-us/library/x8atst9d(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b) +{ + int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +} + +// Selects and interleaves the lower two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/25st103b%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b) +{ + float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +} + +// Selects and interleaves the upper two single-precision, floating-point values from a and b. https://msdn.microsoft.com/en-us/library/skccxx7d%28v=vs.90%29.aspx +FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b) +{ + float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a)); + float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b)); + float32x2x2_t result = vzip_f32(a1, b1); + return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1])); +} + +// Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned 8-bit integers in b. https://msdn.microsoft.com/en-us/library/t5h7783k(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b) +{ + int8x8_t a1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a))); + int8x8_t b1 = vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b))); + int8x8x2_t result = vzip_s8(a1, b1); + return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1])); +} + +// Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned 16-bit integers in b. https://msdn.microsoft.com/en-us/library/03196cz7(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b) +{ + int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a)); + int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b)); + int16x4x2_t result = vzip_s16(a1, b1); + return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1])); +} + +// Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned 32-bit integers in b. https://msdn.microsoft.com/en-us/library/65sa7cbs(v=vs.100).aspx +FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b) +{ + int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a)); + int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b)); + int32x2x2_t result = vzip_s32(a1, b1); + return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1])); +} + +// Extracts the selected signed or unsigned 16-bit integer from a and zero extends. https://msdn.microsoft.com/en-us/library/6dceta0c(v=vs.100).aspx +//FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm) +#define _mm_extract_epi16(a, imm) \ +({ \ + (vgetq_lane_s16(vreinterpretq_s16_m128i(a), (imm)) & 0x0000ffffUL); \ +}) + +// Inserts the least significant 16 bits of b into the selected 16-bit integer of a. https://msdn.microsoft.com/en-us/library/kaze8hz1%28v=vs.100%29.aspx +//FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, const int b, __constrange(0,8) int imm) +#define _mm_insert_epi16(a, b, imm) \ +({ \ + vreinterpretq_m128i_s16(vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm))); \ +}) + +// ****************************************** +// Streaming Extensions +// ****************************************** + +// Guarantees that every preceding store is globally visible before any subsequent store. https://msdn.microsoft.com/en-us/library/5h2w73d1%28v=vs.90%29.aspx +FORCE_INLINE void _mm_sfence(void) +{ + __sync_synchronize(); +} + +// Stores the data in a to the address p without polluting the caches. If the cache line containing address p is already in the cache, the cache will be updated.Address p must be 16 - byte aligned. https://msdn.microsoft.com/en-us/library/ba08y07y%28v=vs.90%29.aspx +FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a) +{ + *p = a; +} + +// Cache line containing p is flushed and invalidated from all caches in the coherency domain. : https://msdn.microsoft.com/en-us/library/ba08y07y(v=vs.100).aspx +FORCE_INLINE void _mm_clflush(void const*p) +{ + // no corollary for Neon? +} + +#if defined(__GNUC__) || defined(__clang__) +# pragma pop_macro("ALIGN_STRUCT") +# pragma pop_macro("FORCE_INLINE") +#endif + +#endif diff --git a/src/crypto/cn_gpu_arm.cpp b/src/crypto/cn_gpu_arm.cpp new file mode 100644 index 00000000..b463dd2e --- /dev/null +++ b/src/crypto/cn_gpu_arm.cpp @@ -0,0 +1,240 @@ +/* XMRig + * Copyright 2010 Jeff Garzik + * Copyright 2012-2014 pooler + * Copyright 2014 Lucas Jones + * Copyright 2014-2016 Wolf9466 + * Copyright 2016 Jay D Dee + * Copyright 2017-2019 XMR-Stak , + * Copyright 2018-2019 SChernykh + * Copyright 2016-2019 XMRig + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + */ + + +#include + + +#include "crypto/CryptoNight_constants.h" + + +inline void vandq_f32(float32x4_t &v, uint32_t v2) +{ + uint32x4_t vc = vdupq_n_u32(v2); + v = (float32x4_t)vandq_u32((uint32x4_t)v, vc); +} + + +inline void vorq_f32(float32x4_t &v, uint32_t v2) +{ + uint32x4_t vc = vdupq_n_u32(v2); + v = (float32x4_t)vorrq_u32((uint32x4_t)v, vc); +} + + +template +inline void vrot_si32(int32x4_t &r) +{ + r = (int32x4_t)vextq_s8((int8x16_t)r, (int8x16_t)r, v); +} + +template <> +inline void vrot_si32<0>(int32x4_t &r) +{ +} + + +inline uint32_t vheor_s32(const int32x4_t &v) +{ + int32x4_t v0 = veorq_s32(v, vrev64q_s32(v)); + int32x2_t vf = veor_s32(vget_high_s32(v0), vget_low_s32(v0)); + return (uint32_t)vget_lane_s32(vf, 0); +} + + +inline void prep_dv(int32_t *idx, int32x4_t &v, float32x4_t &n) +{ + v = vld1q_s32(idx); + n = vcvtq_f32_s32(v); +} + + +inline void sub_round(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, const float32x4_t &rnd_c, float32x4_t &n, float32x4_t &d, float32x4_t &c) +{ + float32x4_t ln1 = vaddq_f32(n1, c); + float32x4_t nn = vmulq_f32(n0, c); + nn = vmulq_f32(ln1, vmulq_f32(nn, nn)); + vandq_f32(nn, 0xFEFFFFFF); + vorq_f32(nn, 0x00800000); + n = vaddq_f32(n, nn); + + float32x4_t ln3 = vsubq_f32(n3, c); + float32x4_t dd = vmulq_f32(n2, c); + dd = vmulq_f32(ln3, vmulq_f32(dd, dd)); + vandq_f32(dd, 0xFEFFFFFF); + vorq_f32(dd, 0x00800000); + d = vaddq_f32(d, dd); + + //Constant feedback + c = vaddq_f32(c, rnd_c); + c = vaddq_f32(c, vdupq_n_f32(0.734375f)); + float32x4_t r = vaddq_f32(nn, dd); + vandq_f32(r, 0x807FFFFF); + vorq_f32(r, 0x40000000); + c = vaddq_f32(c, r); +} + + +inline void round_compute(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, const float32x4_t &rnd_c, float32x4_t &c, float32x4_t &r) +{ + float32x4_t n = vdupq_n_f32(0.0f), d = vdupq_n_f32(0.0f); + + sub_round(n0, n1, n2, n3, rnd_c, n, d, c); + sub_round(n1, n2, n3, n0, rnd_c, n, d, c); + sub_round(n2, n3, n0, n1, rnd_c, n, d, c); + sub_round(n3, n0, n1, n2, rnd_c, n, d, c); + sub_round(n3, n2, n1, n0, rnd_c, n, d, c); + sub_round(n2, n1, n0, n3, rnd_c, n, d, c); + sub_round(n1, n0, n3, n2, rnd_c, n, d, c); + sub_round(n0, n3, n2, n1, rnd_c, n, d, c); + + // Make sure abs(d) > 2.0 - this prevents division by zero and accidental overflows by division by < 1.0 + vandq_f32(d, 0xFF7FFFFF); + vorq_f32(d, 0x40000000); + r = vaddq_f32(r, vdivq_f32(n, d)); +} + + +// 112×4 = 448 +template +inline int32x4_t single_compute(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, float cnt, const float32x4_t &rnd_c, float32x4_t &sum) +{ + float32x4_t c = vdupq_n_f32(cnt); + float32x4_t r = vdupq_n_f32(0.0f); + + round_compute(n0, n1, n2, n3, rnd_c, c, r); + round_compute(n0, n1, n2, n3, rnd_c, c, r); + round_compute(n0, n1, n2, n3, rnd_c, c, r); + round_compute(n0, n1, n2, n3, rnd_c, c, r); + + // do a quick fmod by setting exp to 2 + vandq_f32(r, 0x807FFFFF); + vorq_f32(r, 0x40000000); + + if (add) { + sum = vaddq_f32(sum, r); + } else { + sum = r; + } + + const float32x4_t cc2 = vdupq_n_f32(536870880.0f); + r = vmulq_f32(r, cc2); // 35 + return vcvtq_s32_f32(r); +} + + +template +inline void single_compute_wrap(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, float cnt, const float32x4_t &rnd_c, float32x4_t &sum, int32x4_t &out) +{ + int32x4_t r = single_compute(n0, n1, n2, n3, cnt, rnd_c, sum); + vrot_si32(r); + out = veorq_s32(out, r); +} + + +template +inline int32_t *scratchpad_ptr(uint8_t* lpad, uint32_t idx, size_t n) { return reinterpret_cast(lpad + (idx & MASK) + n * 16); } + + +template +void cn_gpu_inner_arm(const uint8_t *spad, uint8_t *lpad) +{ + uint32_t s = reinterpret_cast(spad)[0] >> 8; + int32_t *idx0 = scratchpad_ptr(lpad, s, 0); + int32_t *idx1 = scratchpad_ptr(lpad, s, 1); + int32_t *idx2 = scratchpad_ptr(lpad, s, 2); + int32_t *idx3 = scratchpad_ptr(lpad, s, 3); + float32x4_t sum0 = vdupq_n_f32(0.0f); + + for (size_t i = 0; i < ITER; i++) { + float32x4_t n0, n1, n2, n3; + int32x4_t v0, v1, v2, v3; + float32x4_t suma, sumb, sum1, sum2, sum3; + + prep_dv(idx0, v0, n0); + prep_dv(idx1, v1, n1); + prep_dv(idx2, v2, n2); + prep_dv(idx3, v3, n3); + float32x4_t rc = sum0; + + int32x4_t out, out2; + out = vdupq_n_s32(0); + single_compute_wrap<0>(n0, n1, n2, n3, 1.3437500f, rc, suma, out); + single_compute_wrap<1>(n0, n2, n3, n1, 1.2812500f, rc, suma, out); + single_compute_wrap<2>(n0, n3, n1, n2, 1.3593750f, rc, sumb, out); + single_compute_wrap<3>(n0, n3, n2, n1, 1.3671875f, rc, sumb, out); + sum0 = vaddq_f32(suma, sumb); + vst1q_s32(idx0, veorq_s32(v0, out)); + out2 = out; + + out = vdupq_n_s32(0); + single_compute_wrap<0>(n1, n0, n2, n3, 1.4296875f, rc, suma, out); + single_compute_wrap<1>(n1, n2, n3, n0, 1.3984375f, rc, suma, out); + single_compute_wrap<2>(n1, n3, n0, n2, 1.3828125f, rc, sumb, out); + single_compute_wrap<3>(n1, n3, n2, n0, 1.3046875f, rc, sumb, out); + sum1 = vaddq_f32(suma, sumb); + vst1q_s32(idx1, veorq_s32(v1, out)); + out2 = veorq_s32(out2, out); + + out = vdupq_n_s32(0); + single_compute_wrap<0>(n2, n1, n0, n3, 1.4140625f, rc, suma, out); + single_compute_wrap<1>(n2, n0, n3, n1, 1.2734375f, rc, suma, out); + single_compute_wrap<2>(n2, n3, n1, n0, 1.2578125f, rc, sumb, out); + single_compute_wrap<3>(n2, n3, n0, n1, 1.2890625f, rc, sumb, out); + sum2 = vaddq_f32(suma, sumb); + vst1q_s32(idx2, veorq_s32(v2, out)); + out2 = veorq_s32(out2, out); + + out = vdupq_n_s32(0); + single_compute_wrap<0>(n3, n1, n2, n0, 1.3203125f, rc, suma, out); + single_compute_wrap<1>(n3, n2, n0, n1, 1.3515625f, rc, suma, out); + single_compute_wrap<2>(n3, n0, n1, n2, 1.3359375f, rc, sumb, out); + single_compute_wrap<3>(n3, n0, n2, n1, 1.4609375f, rc, sumb, out); + sum3 = vaddq_f32(suma, sumb); + vst1q_s32(idx3, veorq_s32(v3, out)); + out2 = veorq_s32(out2, out); + + sum0 = vaddq_f32(sum0, sum1); + sum2 = vaddq_f32(sum2, sum3); + sum0 = vaddq_f32(sum0, sum2); + + const float32x4_t cc1 = vdupq_n_f32(16777216.0f); + const float32x4_t cc2 = vdupq_n_f32(64.0f); + vandq_f32(sum0, 0x7fffffff); // take abs(va) by masking the float sign bit + // vs range 0 - 64 + n0 = vmulq_f32(sum0, cc1); + v0 = vcvtq_s32_f32(n0); + v0 = veorq_s32(v0, out2); + uint32_t n = vheor_s32(v0); + + // vs is now between 0 and 1 + sum0 = vdivq_f32(sum0, cc2); + idx0 = scratchpad_ptr(lpad, n, 0); + idx1 = scratchpad_ptr(lpad, n, 1); + idx2 = scratchpad_ptr(lpad, n, 2); + idx3 = scratchpad_ptr(lpad, n, 3); + } +} + +template void cn_gpu_inner_arm(const uint8_t* spad, uint8_t* lpad); From 1afba552b8134fba5816dee2f5ec174ed504b899 Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 20:17:13 +0200 Subject: [PATCH 7/9] Update version.h --- src/version.h | 1 + 1 file changed, 1 insertion(+) diff --git a/src/version.h b/src/version.h index 2bb9e9f9..dc38e56d 100644 --- a/src/version.h +++ b/src/version.h @@ -35,6 +35,7 @@ #define APP_VER_MAJOR 0 #define APP_VER_MINOR 1 #define APP_VER_PATCH 0 +#define APP_KIND "mining software" #endif /* XMRIG_VERSION_H */ From e7f15ac42d591d25fab400c9304ebedc3b5ea2cf Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 20:17:43 +0200 Subject: [PATCH 8/9] Update version.h --- src/version.h | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/version.h b/src/version.h index dc38e56d..0dda9367 100644 --- a/src/version.h +++ b/src/version.h @@ -31,11 +31,11 @@ #define APP_DESC "cryptonight ARM (OpenCL) miner (for android phones)" #define APP_VERSION "0.1" #define APP_SITE "https://github.com/BenjaminWegener/xmrig-termux-opencl" -#define APP_COPYRIGHT " * Copyright 2019 Benjamin Wegener " +#define APP_COPYRIGHT "Copyright 2019 Benjamin Wegener " #define APP_VER_MAJOR 0 #define APP_VER_MINOR 1 #define APP_VER_PATCH 0 -#define APP_KIND "mining software" +#define APP_KIND "mining software" #endif /* XMRIG_VERSION_H */ From 82ad9f52b61fae535e3e26dc89b374b02209811f Mon Sep 17 00:00:00 2001 From: "@BenjaminWegener" Date: Sun, 4 Aug 2019 22:03:04 +0200 Subject: [PATCH 9/9] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 43c17cd0..2cf15be2 100644 --- a/README.md +++ b/README.md @@ -39,7 +39,7 @@ GPU mining part based on [Wolf9466](https://github.com/OhGodAPet) and [psychocry * make * cp xmrig .. * cd .. - * ./xmrig -a cryptonight/r -o stratum+tcp://cryptonightr.eu.nicehash.com:3375 -u 34yFoDVBQdrcupptL8BXSxYWsLCRj22DaE -p x --donate-level=1 --threads=16 --variant=1 + * ./xmrig -a cryptonight/r -o stratum+tcp://cryptonightr.eu.nicehash.com:3375 -u 34yFoDVBQdrcupptL8BXSxYWsLCRj22DaE -p x --opencl-devices 0 --opencl-launch 8x8 --opencl-mem-chunk 2 --opencl-strided-index 0 --opencl-unroll 0 --nicehash --no-cache ### Command line options