Skip to content

Latest commit

 

History

History
133 lines (106 loc) · 4.73 KB

reference.md

File metadata and controls

133 lines (106 loc) · 4.73 KB

Reference

The other models compared with AT-DGNN and unitized in the source code are listed as follows.

LGGNet

LGGNet: Learning from local-global-graph representations for brain–computer interface

@article{ding2023lggnet,
  title={Lggnet: Learning from local-global-graph representations for brain--computer interface},
  author={Ding, Yi and Robinson, Neethu and Tong, Chengxuan and Zeng, Qiuhao and Guan, Cuntai},
  journal={IEEE Transactions on Neural Networks and Learning Systems},
  year={2023},
  publisher={IEEE}
}

EEGNet

EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces

@article{lawhern2018eegnet,
  title={EEGNet: a compact convolutional neural network for EEG-based brain--computer interfaces},
  author={Lawhern, Vernon J and Solon, Amelia J and Waytowich, Nicholas R and Gordon, Stephen M and Hung, Chou P and Lance, Brent J},
  journal={Journal of neural engineering},
  volume={15},
  number={5},
  pages={056013},
  year={2018},
  publisher={iOP Publishing}
}

DeepConvNet & ShallowConvNet

Deep learning with convolutional neural networks for EEG decoding and visualization

@article{schirrmeister2017deep,
  title={Deep learning with convolutional neural networks for EEG decoding and visualization},
  author={Schirrmeister, Robin Tibor and Springenberg, Jost Tobias and Fiederer, Lukas Dominique Josef and Glasstetter, Martin and Eggensperger, Katharina and Tangermann, Michael and Hutter, Frank and Burgard, Wolfram and Ball, Tonio},
  journal={Human brain mapping},
  volume={38},
  number={11},
  pages={5391--5420},
  year={2017},
  publisher={Wiley Online Library}
}

TSception

Tsception: a deep learning framework for emotion detection using EEG

@inproceedings{ding2020tsception,
  title={Tsception: a deep learning framework for emotion detection using EEG},
  author={Ding, Yi and Robinson, Neethu and Zeng, Qiuhao and Chen, Duo and Wai, Aung Aung Phyo and Lee, Tih-Shih and Guan, Cuntai},
  booktitle={2020 international joint conference on neural networks (IJCNN)},
  pages={1--7},
  year={2020},
  organization={IEEE}
}

EEG-TCNet

EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain--machine interfaces

@inproceedings{ingolfsson2020eeg,
  title={EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain--machine interfaces},
  author={Ingolfsson, Thorir Mar and Hersche, Michael and Wang, Xiaying and Kobayashi, Nobuaki and Cavigelli, Lukas and Benini, Luca},
  booktitle={2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC)},
  pages={2958--2965},
  year={2020},
  organization={IEEE}
}

TCN-Fusion

Electroencephalography-based motor imagery classification using temporal convolutional network fusion

@article{musallam2021electroencephalography,
  title={Electroencephalography-based motor imagery classification using temporal convolutional network fusion},
  author={Musallam, Yazeed K and AlFassam, Nasser I and Muhammad, Ghulam and Amin, Syed Umar and Alsulaiman, Mansour and Abdul, Wadood and Altaheri, Hamdi and Bencherif, Mohamed A and Algabri, Mohammed},
  journal={Biomedical Signal Processing and Control},
  volume={69},
  pages={102826},
  year={2021},
  publisher={Elsevier}
}

ATCNet

Physics-informed attention temporal convolutional network for EEG-based motor imagery classification

@article{altaheri2022physics,
  title={Physics-informed attention temporal convolutional network for EEG-based motor imagery classification},
  author={Altaheri, Hamdi and Muhammad, Ghulam and Alsulaiman, Mansour},
  journal={IEEE transactions on industrial informatics},
  volume={19},
  number={2},
  pages={2249--2258},
  year={2022},
  publisher={IEEE}
}

DGCNN

EEG emotion recognition using dynamical graph convolutional neural networks

@article{song2018eeg,
  title={EEG emotion recognition using dynamical graph convolutional neural networks},
  author={Song, Tengfei and Zheng, Wenming and Song, Peng and Cui, Zhen},
  journal={IEEE Transactions on Affective Computing},
  volume={11},
  number={3},
  pages={532--541},
  year={2018},
  publisher={IEEE}
}