forked from gray-stanton/spamGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CustomDynamicDecode.py
324 lines (282 loc) · 12.8 KB
/
CustomDynamicDecode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Seq2seq layer operations for use in neural networks."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import six
from tensorflow.python.eager import context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import control_flow_util
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import rnn
from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import tensor_array_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.util import nest
__all__ = ["Decoder", "dynamic_decode"]
_transpose_batch_time = rnn._transpose_batch_time # pylint: disable=protected-access
_zero_state_tensors = rnn_cell_impl._zero_state_tensors # pylint: disable=protected-access
@six.add_metaclass(abc.ABCMeta)
class Decoder(object):
"""An RNN Decoder abstract interface object.
Concepts used by this interface:
- `inputs`: (structure of) tensors and TensorArrays that is passed as input to
the RNNCell composing the decoder, at each time step.
- `state`: (structure of) tensors and TensorArrays that is passed to the
RNNCell instance as the state.
- `finished`: boolean tensor telling whether each sequence in the batch is
finished.
- `outputs`: Instance of BasicDecoderOutput. Result of the decoding, at each
time step.
"""
@property
def batch_size(self):
"""The batch size of input values."""
raise NotImplementedError
@property
def output_size(self):
"""A (possibly nested tuple of...) integer[s] or `TensorShape` object[s]."""
raise NotImplementedError
@property
def output_dtype(self):
"""A (possibly nested tuple of...) dtype[s]."""
raise NotImplementedError
@abc.abstractmethod
def initialize(self, name=None):
"""Called before any decoding iterations.
This methods must compute initial input values and initial state.
Args:
name: Name scope for any created operations.
Returns:
`(finished, initial_inputs, initial_state)`: initial values of
'finished' flags, inputs and state.
"""
raise NotImplementedError
@abc.abstractmethod
def step(self, time, inputs, state, name=None):
"""Called per step of decoding (but only once for dynamic decoding).
Args:
time: Scalar `int32` tensor. Current step number.
inputs: RNNCell input (possibly nested tuple of) tensor[s] for this time
step.
state: RNNCell state (possibly nested tuple of) tensor[s] from previous
time step.
name: Name scope for any created operations.
Returns:
`(outputs, next_state, next_inputs, finished)`: `outputs` is an object
containing the decoder output, `next_state` is a (structure of) state
tensors and TensorArrays, `next_inputs` is the tensor that should be used
as input for the next step, `finished` is a boolean tensor telling whether
the sequence is complete, for each sequence in the batch.
"""
raise NotImplementedError
def finalize(self, outputs, final_state, sequence_lengths):
raise NotImplementedError
@property
def tracks_own_finished(self):
"""Describes whether the Decoder keeps track of finished states.
Most decoders will emit a true/false `finished` value independently
at each time step. In this case, the `dynamic_decode` function keeps track
of which batch entries are already finished, and performs a logical OR to
insert new batches to the finished set.
Some decoders, however, shuffle batches / beams between time steps and
`dynamic_decode` will mix up the finished state across these entries because
it does not track the reshuffle across time steps. In this case, it is
up to the decoder to declare that it will keep track of its own finished
state by setting this property to `True`.
Returns:
Python bool.
"""
return False
def _create_zero_outputs(size, dtype, batch_size):
"""Create a zero outputs Tensor structure."""
def _create(s, d):
return _zero_state_tensors(s, batch_size, d)
return nest.map_structure(_create, size, dtype)
def dynamic_decode(decoder,
output_time_major=False,
impute_finished=False,
maximum_iterations=None,
parallel_iterations=32,
swap_memory=False,
scope=None):
"""Perform dynamic decoding with `decoder`.
Calls initialize() once and step() repeatedly on the Decoder object.
Args:
decoder: A `Decoder` instance.
output_time_major: Python boolean. Default: `False` (batch major). If
`True`, outputs are returned as time major tensors (this mode is faster).
Otherwise, outputs are returned as batch major tensors (this adds extra
time to the computation).
impute_finished: Python boolean. If `True`, then states for batch
entries which are marked as finished get copied through and the
corresponding outputs get zeroed out. This causes some slowdown at
each time step, but ensures that the final state and outputs have
the correct values and that backprop ignores time steps that were
marked as finished.
maximum_iterations: `int32` scalar, maximum allowed number of decoding
steps. Default is `None` (decode until the decoder is fully done).
parallel_iterations: Argument passed to `tf.while_loop`.
swap_memory: Argument passed to `tf.while_loop`.
scope: Optional variable scope to use.
Returns:
`(final_outputs, final_state, final_sequence_lengths)`.
Raises:
TypeError: if `decoder` is not an instance of `Decoder`.
ValueError: if `maximum_iterations` is provided but is not a scalar.
"""
#if not isinstance(decoder, Decoder):
# raise TypeError("Expected decoder to be type Decoder, but saw: %s" %
# type(decoder))
with variable_scope.variable_scope(scope, "decoder") as varscope:
# Determine context types.
ctxt = ops.get_default_graph()._get_control_flow_context() # pylint: disable=protected-access
is_xla = control_flow_util.GetContainingXLAContext(ctxt) is not None
in_while_loop = (
control_flow_util.GetContainingWhileContext(ctxt) is not None)
# Properly cache variable values inside the while_loop.
# Don't set a caching device when running in a loop, since it is possible
# that train steps could be wrapped in a tf.while_loop. In that scenario
# caching prevents forward computations in loop iterations from re-reading
# the updated weights.
if not context.executing_eagerly() and not in_while_loop:
if varscope.caching_device is None:
varscope.set_caching_device(lambda op: op.device)
if maximum_iterations is not None:
maximum_iterations = ops.convert_to_tensor(
maximum_iterations, dtype=dtypes.int32, name="maximum_iterations")
if maximum_iterations.get_shape().ndims != 0:
raise ValueError("maximum_iterations must be a scalar")
initial_finished, initial_inputs, initial_state = decoder.initialize()
zero_outputs = _create_zero_outputs(decoder.output_size,
decoder.output_dtype,
decoder.batch_size)
if is_xla and maximum_iterations is None:
raise ValueError("maximum_iterations is required for XLA compilation.")
if maximum_iterations is not None:
initial_finished = math_ops.logical_or(
initial_finished, 0 >= maximum_iterations)
initial_sequence_lengths = array_ops.zeros_like(
initial_finished, dtype=dtypes.int32)
initial_time = constant_op.constant(0, dtype=dtypes.int32)
def _shape(batch_size, from_shape):
if (not isinstance(from_shape, tensor_shape.TensorShape) or
from_shape.ndims == 0):
return tensor_shape.TensorShape(None)
else:
batch_size = tensor_util.constant_value(
ops.convert_to_tensor(
batch_size, name="batch_size"))
return tensor_shape.TensorShape([batch_size]).concatenate(from_shape)
dynamic_size = maximum_iterations is None or not is_xla
def _create_ta(s, d):
return tensor_array_ops.TensorArray(
dtype=d,
size=0 if dynamic_size else maximum_iterations,
dynamic_size=dynamic_size,
element_shape=_shape(decoder.batch_size, s))
initial_outputs_ta = nest.map_structure(_create_ta, decoder.output_size,
decoder.output_dtype)
def condition(unused_time, unused_outputs_ta, unused_state, unused_inputs,
finished, unused_sequence_lengths):
return math_ops.logical_not(math_ops.reduce_all(finished))
def body(time, outputs_ta, state, inputs, finished, sequence_lengths):
"""Internal while_loop body.
Args:
time: scalar int32 tensor.
outputs_ta: structure of TensorArray.
state: (structure of) state tensors and TensorArrays.
inputs: (structure of) input tensors.
finished: bool tensor (keeping track of what's finished).
sequence_lengths: int32 tensor (keeping track of time of finish).
Returns:
`(time + 1, outputs_ta, next_state, next_inputs, next_finished,
next_sequence_lengths)`.
```
"""
(next_outputs, decoder_state, next_inputs,
decoder_finished) = decoder.step(time, inputs, state)
if decoder.tracks_own_finished:
next_finished = decoder_finished
else:
next_finished = math_ops.logical_or(decoder_finished, finished)
next_sequence_lengths = array_ops.where(
math_ops.logical_not(finished),
array_ops.fill(array_ops.shape(sequence_lengths), time + 1),
sequence_lengths)
# Literally just disable checking.
#nest.assert_same_structure(state, decoder_state)
nest.assert_same_structure(outputs_ta, next_outputs)
nest.assert_same_structure(inputs, next_inputs)
# Zero out output values past finish
if impute_finished:
emit = nest.map_structure(
lambda out, zero: array_ops.where(finished, zero, out),
next_outputs,
zero_outputs)
else:
emit = next_outputs
# Copy through states past finish
def _maybe_copy_state(new, cur):
# TensorArrays and scalar states get passed through.
if isinstance(cur, tensor_array_ops.TensorArray):
pass_through = True
else:
new.set_shape(cur.shape)
pass_through = (new.shape.ndims == 0)
return new if pass_through else array_ops.where(finished, cur, new)
if impute_finished:
next_state = nest.map_structure(
_maybe_copy_state, decoder_state, state)
else:
next_state = decoder_state
outputs_ta = nest.map_structure(lambda ta, out: ta.write(time, out),
outputs_ta, emit)
return (time + 1, outputs_ta, next_state, next_inputs, next_finished,
next_sequence_lengths)
res = control_flow_ops.while_loop(
condition,
body,
loop_vars=(
initial_time,
initial_outputs_ta,
initial_state,
initial_inputs,
initial_finished,
initial_sequence_lengths,
),
parallel_iterations=parallel_iterations,
maximum_iterations=maximum_iterations,
swap_memory=True)
final_outputs_ta = res[1]
final_state = res[2]
final_sequence_lengths = res[5]
final_outputs = nest.map_structure(lambda ta: ta.stack(), final_outputs_ta)
try:
final_outputs, final_state = decoder.finalize(
final_outputs, final_state, final_sequence_lengths)
except NotImplementedError:
pass
if not output_time_major:
final_outputs = nest.map_structure(_transpose_batch_time, final_outputs)
return final_outputs, final_state, final_sequence_lengths