forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-timit.py
executable file
·122 lines (96 loc) · 4.27 KB
/
train-timit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: train-timit.py
# Author: Yuxin Wu
import argparse
import os
import tensorflow as tf
from tensorpack import *
from tensorpack.tfutils.gradproc import GlobalNormClip, SummaryGradient
from timitdata import TIMITBatch
rnn = tf.contrib.rnn
BATCH = 64
NLAYER = 2
HIDDEN = 128
NR_CLASS = 61 + 1 # 61 phoneme + epsilon
FEATUREDIM = 39 # MFCC feature dimension
class Model(ModelDesc):
def inputs(self):
return [tf.TensorSpec([None, None, FEATUREDIM], tf.float32, 'feat'), # bxmaxseqx39
tf.TensorSpec([None, None], tf.int64, 'labelidx'), # label is b x maxlen, sparse
tf.TensorSpec([None], tf.int32, 'labelvalue'),
tf.TensorSpec([None], tf.int64, 'labelshape'),
tf.TensorSpec([None], tf.int32, 'seqlen'), # b
]
def build_graph(self, feat, labelidx, labelvalue, labelshape, seqlen):
label = tf.SparseTensor(labelidx, labelvalue, labelshape)
cell = rnn.MultiRNNCell([rnn.LSTMBlockCell(num_units=HIDDEN) for _ in range(NLAYER)])
initial = cell.zero_state(tf.shape(feat)[0], tf.float32)
outputs, last_state = tf.nn.dynamic_rnn(cell, feat,
seqlen, initial,
dtype=tf.float32, scope='rnn')
# o: b x t x HIDDEN
output = tf.reshape(outputs, [-1, HIDDEN]) # (Bxt) x rnnsize
logits = FullyConnected('fc', output, NR_CLASS, activation=tf.identity,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.01))
logits = tf.reshape(logits, (BATCH, -1, NR_CLASS))
loss = tf.nn.ctc_loss(label, logits, seqlen, time_major=False)
cost = tf.reduce_mean(loss, name='cost')
logits = tf.transpose(logits, [1, 0, 2])
if self.training:
# beam search is too slow to run in training
predictions = tf.cast(
tf.nn.ctc_greedy_decoder(logits, seqlen)[0][0], tf.int32)
else:
predictions = tf.cast(
tf.nn.ctc_beam_search_decoder(logits, seqlen)[0][0], tf.int32)
err = tf.edit_distance(predictions, label, normalize=True)
err.set_shape([None])
err = tf.reduce_mean(err, name='error')
summary.add_moving_summary(err, cost)
return cost
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=5e-3, trainable=False)
opt = tf.train.AdamOptimizer(lr, epsilon=1e-3)
return optimizer.apply_grad_processors(
opt, [GlobalNormClip(5), SummaryGradient()])
def get_data(path, isTrain, stat_file):
ds = LMDBSerializer.load(path, shuffle=isTrain)
mean, std = serialize.loads(open(stat_file, 'rb').read())
ds = MapDataComponent(ds, lambda x: (x - mean) / std)
ds = TIMITBatch(ds, BATCH)
if isTrain:
ds = MultiProcessRunnerZMQ(ds, 1)
return ds
def get_config(ds_train, ds_test):
return TrainConfig(
data=QueueInput(ds_train),
callbacks=[
ModelSaver(),
StatMonitorParamSetter('learning_rate', 'error',
lambda x: x * 0.2, 0, 5),
HumanHyperParamSetter('learning_rate'),
PeriodicTrigger(
InferenceRunner(ds_test, [ScalarStats('error')]),
every_k_epochs=2),
],
model=Model(),
max_epoch=70,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--train', help='path to training lmdb', required=True)
parser.add_argument('--test', help='path to testing lmdb', required=True)
parser.add_argument('--stat', help='path to the mean/std statistics file',
default='stats.data')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
logger.auto_set_dir()
ds_train = get_data(args.train, True, args.stat)
ds_test = get_data(args.test, False, args.stat)
config = get_config(ds_train, ds_test)
config.session_init = SmartInit(args.load)
launch_train_with_config(config, SimpleTrainer())