forked from sigurdstorve/OpenBCSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_all_phantoms.py
287 lines (260 loc) · 8.31 KB
/
create_all_phantoms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import sys
sys.path.append("phantom_scripts")
# This is the main phantom script which creates all phantoms.
# Must be run from the folder which contains this file.
class Args:
pass
out_dir = "generated_phantoms"
def verify_correct_path():
dirs = [entry for entry in os.listdir('.') if os.path.isdir(entry)]
if "phantom_scripts" in dirs and "phantom_data" in dirs: return
print "This script must be run from the project root directory."
exit()
def ensure_output_folder_exists():
if not os.path.exists(out_dir):
os.mkdir(out_dir)
def create_artery_phantom():
"""
Stack cross-sectional splines and interpolate shape
in between.
"""
from realistic_artery import create_phantom
args = Args()
args.x_min = -0.06
args.x_max = 0.06
args.h5_out = os.path.join(out_dir, "realistic_artery.h5")
args.spline_files = ["phantom_data/artery_crossection_splines/spline_000.txt",
"phantom_data/artery_crossection_splines/spline_001.txt",
"phantom_data/artery_crossection_splines/spline_002.txt",
"phantom_data/artery_crossection_splines/spline_003.txt",
"phantom_data/artery_crossection_splines/spline_004.txt",
"phantom_data/artery_crossection_splines/spline_005.txt",
"phantom_data/artery_crossection_splines/spline_006.txt"]
args.scale = 3e-3
args.num_scatterers = 2000000
args.inside_factor = 0.1
args.outside_factor = 1.0
args.space_factor = 0.5
create_phantom(args)
def create_carotid_bifurcation_phantoms():
"""
Create carotid bifurcation phantom (1) without plaque and (2) with plaque
"""
from carotid_bifurcation import create_phantom
args = Args()
args.z0 = 0.025
args.x_min = -0.08
args.x_max = 0.08
args.y_min = -0.03
args.y_max = 0.03
args.z_min = 0.0
args.z_max = 0.05
args.num_scatterers = 5000000
args.small_r = 5e-3
args.large_r = 8.2e-3
args.common_x_max = 13e-3
args.theta = 3.141592*10/180.0
args.visualize = False
args.lumen_ampl = 0.1
args.enable_plaque = False
args.h5_file = os.path.join(out_dir, "carotid_no_plaque.h5")
create_phantom(args)
args.enable_plaque = True
args.h5_file = os.path.join(out_dir, "carotid_plaque.h5")
create_phantom(args)
def create_contracting_cylinder():
"""
A cylinder which contracts according to a scaling signal
which is a function of time.
"""
from contracting_cylinder_spline import create_phantom
args = Args()
args.h5_out = os.path.join(out_dir, "contracting_cylinder_spline.h5")
args.h5_scale = "phantom_data/real_left_ventricle_contraction.h5"
args.r0 = 1e-2
args.z0 = 0.12
args.num_scatterers = 20000
args.num_control_points = 10
args.spline_degree = 3
create_phantom(args)
def create_rotating_plaque_phantoms():
"""
A cross-sectional slice through e.g. an artery with a
lump of scatterers moving along the outer perimenter to
simulate a plaque which is moving.
"""
from rotating_plaque import create_phantom
args = Args()
args.x_min = -0.015
args.x_max = 0.015
args.z_min = 0.0
args.z_max = 0.03
args.num_scatterers = 100000
args.z0 = 0.015
args.radius = 5e-3
args.num_cs = 10
args.spline_degree = 3
args.num_plaque_scatterers = 1000
args.inside_ampl = 0.02
args.plaque_radius = 1.6e-3
args.h5_file = os.path.join(out_dir, "rotating_plaque_small.h5")
create_phantom(args)
args.plaque_radius = 2.9e-3
args.h5_file = os.path.join(out_dir, "rotating_plaque_large.h5")
create_phantom(args)
def create_rotating_cube_phantom():
"""
A rotating 3D cube of scatterers, which is a good example
of complex scatterer tracjectories in 3D.
"""
from rotating_cube import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "rot_cube.h5")
args.x_min = -0.03
args.x_max = 0.03
args.y_min = -0.03
args.y_max = 0.03
args.z_min = -0.0
args.z_max = 0.03
args.z0 = 0.06
args.num_cs = 20
args.spline_degree = 3
args.t0 = 0.0
args.t1 = 1.0
args.num_scatterers = 100000
# velocities are chosen so that the motion has a period of one second
args.x_angular_velocity = 3.14159*2
args.y_angular_velocity = 3.14159*4
args.z_angular_velocity = 3.14159*8
create_phantom(args)
def create_random_spline_noise_phantom():
"""
Scatterers moving along random 3D trajectories.
"""
from spline_noise import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "random_spline_noise.h5")
args.num_scatterers = 100000
args.x_min = -0.04
args.x_max = 0.04
args.y_min = -0.04
args.y_max = 0.04
args.z_min = 0.01
args.z_max = 0.08
args.spline_degree = 3
args.num_cs = 20
create_phantom(args)
def create_harmonic_box_phantom():
"""
A cube of scatterers moving harmonically up and down along
the Z-axis.
"""
from harmonic_box import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "harmonic_box.h5")
args.x_min = -0.025
args.x_max = 0.025
args.y_min = -0.025
args.y_max = 0.025
args.thickness = 0.05
args.z0 = 8e-2
args.ampl = 1e-2
args.freq = 1.3
args.num_scatterers = 100000
args.num_control_points = 10
args.t_start = 0.0
args.t_end = 1.0
args.spline_degree =3
create_phantom(args)
def create_lv_spline_phantom():
"""
3D left ventricle phantom which contracts according to a realistic
contraction function.
"""
from lv_spline_model import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "lv_spline_model.h5")
args.thickness = 8e-3
args.z_ratio = 0.7
args.x_min = -0.02
args.x_max = 0.02
args.y_min = -0.02
args.y_max = 0.02
args.z_min = 0.008
args.z_max = 0.09
args.num_scatterers_in_box = 400000
args.motion_ampl = 0.25
args.t0 = 0.0
args.t1 = 1.0
args.spline_degree = 2
args.num_cs = 10
args.scale_h5_file = "phantom_data/real_left_ventricle_contraction.h5"
args.lv_max_amplitude = 1.0
args.rotation_scale = 3.0
create_phantom(args)
def create_2d_cyst_phantom():
"""
Create a 2D cyst phantom.
"""
from cyst_phantom_2d import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "cyst_2d.h5")
args.density = 500.0
args.cyst_scale = 0.3
create_phantom(args)
def create_simple_phantom():
"""
A few scatterers along the positive z-axis.
"""
from simple import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "simple.h5")
args.num_scatterers=12
args.z0 = 0.005
args.z1 = 0.12
create_phantom(args)
def create_tissue_flow_phantom():
from tissue_with_flow import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "tissue_with_constant_flow.h5")
args.num_tissue_scatterers = 1000000
args.num_flow_scatterers = 500000
args.box_dim = 0.03
args.radius = 0.008
args.tissue_length = 8e-2
args.flow_ampl_factor = 0.2
args.peak_velocity = 15e-2
args.end_time = 1.0
args.exponent = 20 # approximate constant flow
create_phantom(args)
args.exponent = 2
args.h5_file = os.path.join(out_dir, "tissue_with_parabolic_flow.h5")
create_phantom(args)
def create_spinning_disk_phantom():
from spinning_disc import create_phantom
args = Args()
args.h5_file = os.path.join(out_dir, "spinning_disc.h5")
args.degree = 2
args.num_cs = 10
args.period = 1.0
args.num_scatterers = 20000
args.z0 = 0.025
args.radius = 2e-2
create_phantom(args)
if __name__ == '__main__':
verify_correct_path()
ensure_output_folder_exists()
create_lv_spline_phantom()
create_carotid_bifurcation_phantoms()
create_contracting_cylinder()
create_rotating_plaque_phantoms()
create_rotating_cube_phantom()
create_random_spline_noise_phantom()
create_harmonic_box_phantom()
create_2d_cyst_phantom()
create_simple_phantom()
create_tissue_flow_phantom()
create_spinning_disk_phantom()
print 'NOTE: This is the last script and may take a while to finish...'
create_artery_phantom()