The architecture is divided into three vertical layers and multiple horizontal modules:
- app
https://github.com/FedML-AI/FedML/tree/master/android/app
- fedmlsdk_demo
https://github.com/FedML-AI/FedML/tree/master/android/fedmlsdk_demo
https://github.com/FedML-AI/FedML/tree/master/android/fedmlsdk
https://github.com/FedML-AI/FedML/tree/master/android/fedmlsdk/MobileNN
https://github.com/FedML-AI/MNN
https://github.com/FedML-AI/pytorch
https://doc.fedml.ai/cross-device/examples/cross_device_android_example.html
android/fedmlsdk_demo
is a short tutorial for integrating Android SDK for your host App.
- add repositories by maven
maven { url 'https://s01.oss.sonatype.org/content/repositories/snapshots' }
- add dependency in build.gradle
check android/fedmlsdk_demo/build.gradle
as an example:
implementation 'ai.fedml:fedml-edge-android:1.0.0-SNAPSHOT'
- add FedML account id to meta-data in AndroidManifest.xml
check android/fedmlsdk_demo/src/main/AndroidManifest.xml
as an example:
<meta-data android:name="fedml_account" android:value="208" />
or
<meta-data android:name="fedml_account" android:resource="@string/fed_ml_account" />
You can find your account ID at FedML Open Platform (https://open.fedml.ai):
- initial FedML Android SDK on your
Application
class.
Taking android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/App.java
as an example:
package ai.fedml.edgedemo;
import android.app.Application;
import android.os.Handler;
import android.os.Looper;
import ai.fedml.edge.FedEdgeManager;
public class App extends Application {
private static Handler sHandler = new Handler(Looper.getMainLooper());
@Override
public void onCreate() {
super.onCreate();
// initial Edge SDK
FedEdgeManager.getFedEdgeApi().init(this);
// set data path (to prepare data, please check this script `android/data/prepare.sh`)
FedEdgeManager.getFedEdgeApi().setPrivatePath(Environment.getExternalStorageDirectory().getPath()
+ "/ai.fedml/device_1/user_0");
}
}
At the current stage, we provide high-level APIs with the following three classes.
- ai.fedml.edge.FedEdgeManager
This is the top APIs in FedML Android SDK, it supports core training engine and related control commands on your Android devices.
- ai.fedml.edge.OnTrainProgressListener
This is the message flow to interact between FedML Android SDK and your host APP.
- ai.fedml.edge.request.RequestManager
This is used to to connect your Android SDK with FedML Open Platform (https://open.fedml.ai), which helps you to simplify the deployment, edge collaborative training, experimental tracking, and more.
You can import them in your Java/Android projects as follows. See android/fedmlsdk_demo/src/main/java/ai/fedml/edgedemo/ui/main/MainFragment.java as an example.
import ai.fedml.edge.FedEdgeManager;
import ai.fedml.edge.OnTrainProgressListener;
import ai.fedml.edge.request.RequestManager;
- Running Android SDK Demo with MLOps (https://open.fedml.ai)
Please follow this tutorial (https://doc.fedml.ai/mlops/user_guide.html) to start training using FedML BeeHive Platform.
https://doc.fedml.ai/cross-device/examples/cross_device_android_example.html
We'd love to listen to your feedback!
FedML team has rich experience in Android Platform and Federated Learning Algorithmic Research. If you want advanced feature supports, please send emails to [email protected] and [email protected]