RMS: 5.887 [Baseline: 6.081]
- Download and Unzip Pretrained Model
- WITH Guided Filtering Layer [Google Drive|BaiduYunPan]
- WITHOUT Guided Filtering Layer [Google Drive|BaiduYunPan]
- Run on an Image !
- WITHOUT Guided Filtering Layer
python monodepth_simple.py --image_path [IMAGE_PATH] --checkpoint_path [MODEL_PATH]
- WITH Guided Filter as PostProcessing
python monodepth_simple.py --image_path [IMAGE_PATH] --checkpoint_path [MODEL_PATH] --guided_filter_eval
- WITH Guided Filtering Layer
python monodepth_simple.py --image_path [IMAGE_PATH] --checkpoint_path [MODEL_PATH] --guided_filter
- Download KITTI
wget -i utils/kitti_archives_to_download.txt -P [SAVE_FOLDER]
- (Optional) Convert *.png to *.jpg to save space.
find [SAVE_FOLDER] -name '*.png' | parallel 'convert {.}.png {.}.jpg && rm {}'
- Let's train the model !
- WITHOUT Guided Filtering Layer
python monodepth_main.py --mode train \ --model_name monodepth_kitti \ --data_path [SAVE_FOLDER] \ --filenames_file utils/filenames/kitti_train_files.txt \ --log_directory checkpoints
- WITH Guided Filtering Layer
python monodepth_main.py --mode train \ --model_name monodepth_kitti_dgf \ --data_path [SAVE_FOLDER] \ --filenames_file utils/filenames/kitti_train_files.txt \ --log_directory checkpoints \ --guided_filter
- WITHOUT Guided Filtering Layer
- Download Test Dataset
- Testing
- WITHOUT Guided Filtering Layer
python monodepth_main.py --mode test \ --data_path [SAVE_FOLDER] \ --filenames_file utils/filenames/kitti_stereo_2015_test_files.txt \ --checkpoint_path [MODEL_PATH]
- WITH Guided Filter as PostProcessing
python monodepth_main.py --mode test \ --data_path [SAVE_FOLDER] \ --filenames_file utils/filenames/kitti_stereo_2015_test_files.txt \ --checkpoint_path [MODEL_PATH] \ --guided_filter_eval
- WITH Guided Filtering Layer
python monodepth_main.py --mode test \ --data_path [SAVE_FOLDER] \ --filenames_file utils/filenames/kitti_stereo_2015_test_files.txt \ --checkpoint_path [MODEL_PATH] \ --guided_filter
- WITHOUT Guided Filtering Layer
- Evaluation on KITTI
python utils/evaluate_kitti.py --split kitti --predicted_disp_path [disparities.npy] --gt_path [SAVE_FOLDER]
A part of the code has been borrowed from monodepth.