-
Notifications
You must be signed in to change notification settings - Fork 14
/
myloss.py
45 lines (32 loc) · 1.26 KB
/
myloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#
# myloss.py : implementation of the Dice coeff and the associated loss
#
import torch
from torch.autograd import Function, Variable
class DiceCoeff(Function):
"""Dice coeff for individual examples"""
def forward(self, input, target):
self.save_for_backward(input, target)
self.inter = torch.dot(input, target) + 0.0001
self.union = torch.sum(input) + torch.sum(target) + 0.0001
t = 2 * self.inter.float() / self.union.float()
return t
# This function has only a single output, so it gets only one gradient
def backward(self, grad_output):
input, target = self.saved_variables
grad_input = grad_target = None
if self.needs_input_grad[0]:
grad_input = grad_output * 2 * (target * self.union + self.inter) \
/ self.union * self.union
if self.needs_input_grad[1]:
grad_target = None
return grad_input, grad_target
def dice_coeff(input, target):
"""Dice coeff for batches"""
if input.is_cuda:
s = Variable(torch.FloatTensor(1).cuda().zero_())
else:
s = Variable(torch.FloatTensor(1).zero_())
for i, c in enumerate(zip(input, target)):
s = s + DiceCoeff().forward(c[0], c[1])
return s / (i + 1)