forked from wingood-xu/Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
layer.py
53 lines (41 loc) · 1.6 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
predition = add_layer(l1, 10, 1, activation_function=None)
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - predition), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.global_variables_initializer()
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()
with tf.Session() as sess:
sess.run(init)
for i in range(5000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
try:
ax.lines.remove(lines[0])
except Exception:
pass
# print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
predition_val = sess.run(predition,feed_dict={xs: x_data})
lines = ax.plot(x_data,predition_val,'r-',lw=5)
# ax.lines.remove(lines[0])
plt.pause(0.1)