-
Notifications
You must be signed in to change notification settings - Fork 0
/
final-code-static.py
98 lines (73 loc) · 2.4 KB
/
final-code-static.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# Part 1 - Building the CNN
from tensorflow.keras import optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, Flatten,Dropout
# Initialing the CNN
classifier = Sequential()
# Step 1 - Convolutio Layer
classifier.add(Conv2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
#step 2 - Pooling
classifier.add(MaxPool2D(pool_size =(2,2)))
# Adding second convolution layer
classifier.add(Conv2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPool2D(pool_size =(2,2)))
#Adding 3rd Concolution Layer
classifier.add(Conv2D(64, 3, 3, activation = 'relu'))
classifier.add(MaxPool2D(pool_size =(2,2)))
#Step 3 - Flattening
classifier.add(Flatten())
#Step 4 - Full Connection
classifier.add(Dense(256, activation = 'relu'))
classifier.add(Dropout(0.5))
classifier.add(Dense(26, activation = 'softmax'))
#Compiling The CNN
classifier.compile(
optimizer = optimizers.SGD(lr = 0.01),
loss = 'categorical_crossentropy',
metrics = ['accuracy'])
#Part 2 Fittting the CNN to the image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'mydata/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='categorical')
test_set = test_datagen.flow_from_directory(
'mydata/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='categorical')
model = classifier.fit_generator(
training_set,
steps_per_epoch=800,
epochs=25,
validation_data = test_set,
validation_steps = 6500
)
'''#Saving the model
import h5py
classifier.save('Trained_model.h5')'''
print(model.history.keys())
import matplotlib.pyplot as plt
# summarize history for accuracy
plt.plot(model.history['acc'])
plt.plot(model.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(model.history['loss'])
plt.plot(model.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()