-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathprepare.py
611 lines (538 loc) · 23.5 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
import shutil
import numpy as np
import sys
# sys.path.append('./')
# import config_training
from config_training import config
# config = config_training.config
from scipy.io import loadmat
import numpy as np
import h5py
import pandas
import scipy
from scipy.ndimage.interpolation import zoom
from skimage import measure
import SimpleITK as sitk
from scipy.ndimage.morphology import binary_dilation,generate_binary_structure
from skimage.morphology import convex_hull_image
import pandas
from multiprocessing import Pool
from functools import partial
import warnings
# read filename dct to short the fname and speed up process time
name = ['fname', 'newname']
pdfrm = pandas.read_csv('fnamedct.csv', names=name)
fnamelst = pdfrm[name[0]].tolist()[1:]
newnamelst = pdfrm[name[1]].tolist()[1:]
fnamedct = {}
for i in xrange(len(fnamelst)):
fnamedct[fnamelst[i]] = newnamelst[i]
def resample(imgs, spacing, new_spacing,order=2):
if len(imgs.shape)==3:
new_shape = np.round(imgs.shape * spacing / new_spacing)
true_spacing = spacing * imgs.shape / new_shape
resize_factor = new_shape / imgs.shape
imgs = zoom(imgs, resize_factor, mode = 'nearest',order=order)
return imgs, true_spacing
elif len(imgs.shape)==4:
n = imgs.shape[-1]
newimg = []
for i in range(n):
slice = imgs[:,:,:,i]
newslice,true_spacing = resample(slice,spacing,new_spacing)
newimg.append(newslice)
newimg=np.transpose(np.array(newimg),[1,2,3,0])
return newimg,true_spacing
else:
raise ValueError('wrong shape')
def worldToVoxelCoord(worldCoord, origin, spacing):
stretchedVoxelCoord = np.absolute(worldCoord - origin)
voxelCoord = stretchedVoxelCoord / spacing
return voxelCoord
def load_itk_image(filename):
with open(filename) as f:
contents = f.readlines()
line = [k for k in contents if k.startswith('TransformMatrix')][0]
transformM = np.array(line.split(' = ')[1].split(' ')).astype('float')
transformM = np.round(transformM)
if np.any( transformM!=np.array([1,0,0, 0, 1, 0, 0, 0, 1])):
isflip = True
else:
isflip = False
itkimage = sitk.ReadImage(filename)
numpyImage = sitk.GetArrayFromImage(itkimage)
numpyOrigin = np.array(list(reversed(itkimage.GetOrigin())))
numpySpacing = np.array(list(reversed(itkimage.GetSpacing())))
return numpyImage, numpyOrigin, numpySpacing,isflip
def process_mask(mask):
convex_mask = np.copy(mask)
for i_layer in range(convex_mask.shape[0]):
mask1 = np.ascontiguousarray(mask[i_layer])
if np.sum(mask1)>0:
mask2 = convex_hull_image(mask1)
if np.sum(mask2)>1.5*np.sum(mask1):
mask2 = mask1
else:
mask2 = mask1
convex_mask[i_layer] = mask2
struct = generate_binary_structure(3,1)
dilatedMask = binary_dilation(convex_mask,structure=struct,iterations=10)
return dilatedMask
def lumTrans(img):
lungwin = np.array([-1200.,600.])
newimg = (img-lungwin[0])/(lungwin[1]-lungwin[0])
newimg[newimg<0]=0
newimg[newimg>1]=1
newimg = (newimg*255).astype('uint8')
return newimg
def binarize_per_slice(image, spacing, intensity_th=-600, sigma=1, area_th=30, eccen_th=0.99, bg_patch_size=10):
bw = np.zeros(image.shape, dtype=bool)
# prepare a mask, with all corner values set to nan
image_size = image.shape[1]
grid_axis = np.linspace(-image_size/2+0.5, image_size/2-0.5, image_size)
x, y = np.meshgrid(grid_axis, grid_axis)
d = (x**2+y**2)**0.5
nan_mask = (d<image_size/2).astype(float)
nan_mask[nan_mask == 0] = np.nan
for i in range(image.shape[0]):
# Check if corner pixels are identical, if so the slice before Gaussian filtering
if len(np.unique(image[i, 0:bg_patch_size, 0:bg_patch_size])) == 1:
current_bw = scipy.ndimage.filters.gaussian_filter(np.multiply(image[i].astype('float32'), nan_mask), sigma, truncate=2.0) < intensity_th
else:
current_bw = scipy.ndimage.filters.gaussian_filter(image[i].astype('float32'), sigma, truncate=2.0) < intensity_th
# select proper components
label = measure.label(current_bw)
properties = measure.regionprops(label)
valid_label = set()
for prop in properties:
if prop.area * spacing[1] * spacing[2] > area_th and prop.eccentricity < eccen_th:
valid_label.add(prop.label)
current_bw = np.in1d(label, list(valid_label)).reshape(label.shape)
bw[i] = current_bw
return bw
def all_slice_analysis(bw, spacing, cut_num=0, vol_limit=[0.68, 8.2], area_th=6e3, dist_th=62):
# in some cases, several top layers need to be removed first
if cut_num > 0:
bw0 = np.copy(bw)
bw[-cut_num:] = False
label = measure.label(bw, connectivity=1)
# remove components access to corners
mid = int(label.shape[2] / 2)
bg_label = set([label[0, 0, 0], label[0, 0, -1], label[0, -1, 0], label[0, -1, -1], \
label[-1-cut_num, 0, 0], label[-1-cut_num, 0, -1], label[-1-cut_num, -1, 0], label[-1-cut_num, -1, -1], \
label[0, 0, mid], label[0, -1, mid], label[-1-cut_num, 0, mid], label[-1-cut_num, -1, mid]])
for l in bg_label:
label[label == l] = 0
# select components based on volume
properties = measure.regionprops(label)
for prop in properties:
if prop.area * spacing.prod() < vol_limit[0] * 1e6 or prop.area * spacing.prod() > vol_limit[1] * 1e6:
label[label == prop.label] = 0
# prepare a distance map for further analysis
x_axis = np.linspace(-label.shape[1]/2+0.5, label.shape[1]/2-0.5, label.shape[1]) * spacing[1]
y_axis = np.linspace(-label.shape[2]/2+0.5, label.shape[2]/2-0.5, label.shape[2]) * spacing[2]
x, y = np.meshgrid(x_axis, y_axis)
d = (x**2+y**2)**0.5
vols = measure.regionprops(label)
valid_label = set()
# select components based on their area and distance to center axis on all slices
for vol in vols:
single_vol = label == vol.label
slice_area = np.zeros(label.shape[0])
min_distance = np.zeros(label.shape[0])
for i in range(label.shape[0]):
slice_area[i] = np.sum(single_vol[i]) * np.prod(spacing[1:3])
min_distance[i] = np.min(single_vol[i] * d + (1 - single_vol[i]) * np.max(d))
if np.average([min_distance[i] for i in range(label.shape[0]) if slice_area[i] > area_th]) < dist_th:
valid_label.add(vol.label)
bw = np.in1d(label, list(valid_label)).reshape(label.shape)
# fill back the parts removed earlier
if cut_num > 0:
# bw1 is bw with removed slices, bw2 is a dilated version of bw, part of their intersection is returned as final mask
bw1 = np.copy(bw)
bw1[-cut_num:] = bw0[-cut_num:]
bw2 = np.copy(bw)
bw2 = scipy.ndimage.binary_dilation(bw2, iterations=cut_num)
bw3 = bw1 & bw2
label = measure.label(bw, connectivity=1)
label3 = measure.label(bw3, connectivity=1)
l_list = list(set(np.unique(label)) - {0})
valid_l3 = set()
for l in l_list:
indices = np.nonzero(label==l)
l3 = label3[indices[0][0], indices[1][0], indices[2][0]]
if l3 > 0:
valid_l3.add(l3)
bw = np.in1d(label3, list(valid_l3)).reshape(label3.shape)
return bw, len(valid_label)
def fill_hole(bw):
# fill 3d holes
label = measure.label(~bw)
# idendify corner components
bg_label = set([label[0, 0, 0], label[0, 0, -1], label[0, -1, 0], label[0, -1, -1], \
label[-1, 0, 0], label[-1, 0, -1], label[-1, -1, 0], label[-1, -1, -1]])
bw = ~np.in1d(label, list(bg_label)).reshape(label.shape)
return bw
def two_lung_only(bw, spacing, max_iter=22, max_ratio=4.8):
def extract_main(bw, cover=0.95):
for i in range(bw.shape[0]):
current_slice = bw[i]
label = measure.label(current_slice)
properties = measure.regionprops(label)
properties.sort(key=lambda x: x.area, reverse=True)
area = [prop.area for prop in properties]
count = 0
sum = 0
while sum < np.sum(area)*cover:
sum = sum+area[count]
count = count+1
filter = np.zeros(current_slice.shape, dtype=bool)
for j in range(count):
bb = properties[j].bbox
filter[bb[0]:bb[2], bb[1]:bb[3]] = filter[bb[0]:bb[2], bb[1]:bb[3]] | properties[j].convex_image
bw[i] = bw[i] & filter
label = measure.label(bw)
properties = measure.regionprops(label)
properties.sort(key=lambda x: x.area, reverse=True)
bw = label==properties[0].label
return bw
def fill_2d_hole(bw):
for i in range(bw.shape[0]):
current_slice = bw[i]
label = measure.label(current_slice)
properties = measure.regionprops(label)
for prop in properties:
bb = prop.bbox
current_slice[bb[0]:bb[2], bb[1]:bb[3]] = current_slice[bb[0]:bb[2], bb[1]:bb[3]] | prop.filled_image
bw[i] = current_slice
return bw
found_flag = False
iter_count = 0
bw0 = np.copy(bw)
while not found_flag and iter_count < max_iter:
label = measure.label(bw, connectivity=2)
properties = measure.regionprops(label)
properties.sort(key=lambda x: x.area, reverse=True)
if len(properties) > 1 and properties[0].area/properties[1].area < max_ratio:
found_flag = True
bw1 = label == properties[0].label
bw2 = label == properties[1].label
else:
bw = scipy.ndimage.binary_erosion(bw)
iter_count = iter_count + 1
if found_flag:
d1 = scipy.ndimage.morphology.distance_transform_edt(bw1 == False, sampling=spacing)
d2 = scipy.ndimage.morphology.distance_transform_edt(bw2 == False, sampling=spacing)
bw1 = bw0 & (d1 < d2)
bw2 = bw0 & (d1 > d2)
bw1 = extract_main(bw1)
bw2 = extract_main(bw2)
else:
bw1 = bw0
bw2 = np.zeros(bw.shape).astype('bool')
bw1 = fill_2d_hole(bw1)
bw2 = fill_2d_hole(bw2)
bw = bw1 | bw2
return bw1, bw2, bw
def step1_python_tianchi(case_path):
# case = load_scan(case_path)
# case_pixels, spacing = get_pixels_hu(case)
''' For the mhd file reader '''
resolution = np.array([1,1,1])
sliceim,origin,spacing,isflip = load_itk_image(case_path+'.mhd')
if isflip:
sliceim = sliceim[:,::-1,::-1]
print('flip!')
# sliceim = lumTrans(sliceim)
# sliceim1,_ = resample(sliceim,spacing,resolution,order=1)
case_pixels = np.array(sliceim)
bw = binarize_per_slice(case_pixels, spacing)
flag = 0
cut_num = 0
cut_step = 2
bw0 = np.copy(bw)
while flag == 0 and cut_num < bw.shape[0]:
bw = np.copy(bw0)
bw, flag = all_slice_analysis(bw, spacing, cut_num=cut_num, vol_limit=[0.68,7.5])
cut_num = cut_num + cut_step
bw = fill_hole(bw)
bw1, bw2, bw = two_lung_only(bw, spacing)
return case_pixels, bw1, bw2, spacing, origin, isflip
def savenpy(id, annos, filelist, data_path, prep_folder):
resolution = np.array([1, 1, 1])
name = filelist[id]
im, m1, m2, spacing, origin, isflip = step1_python_tianchi(os.path.join(data_path, name))
missingmask = False
if os.path.exists(os.path.join(prep_folder,name+'_clean.npy')) and \
os.path.exists(os.path.join(prep_folder,name+'_originbox.npy')) and \
os.path.exists(os.path.join(prep_folder,name+'_spacing.npy')) and \
os.path.exists(os.path.join(prep_folder,name+'_origin.npy')) and \
os.path.exists(os.path.join(prep_folder,name+'_label.npy')):
if not isflip:
print 'skip', name
return
else:
missingmask = True
print 'process', name
label = annos[annos[:,0]==name]
# label = label.astype('float')
label = label[:, [3,1,2,4]].astype('float') # z, y, x, d
Mask = m1 + m2
newshape = np.round(np.array(Mask.shape) * spacing / resolution)
xx,yy,zz = np.where(Mask)
if xx.size == 0 or yy.size == 0 or zz.size == 0:
print name
assert 1 == 0
box = np.array([[np.min(xx), np.max(xx)], [np.min(yy), np.max(yy)], [np.min(zz), np.max(zz)]])
box = box * np.expand_dims(spacing, 1) / np.expand_dims(resolution, 1)
box = np.floor(box).astype('int')
margin = 5
extendbox = np.vstack([np.max([[0,0,0],box[:,0]-margin],0),np.min([newshape,box[:,1]+2*margin],axis=0).T]).T
extendbox = extendbox.astype('int')
if extendbox[0,0] == extendbox[0,1] or extendbox[1,0] == extendbox[1,1] or extendbox[2,0] == extendbox[2,1]:
print name
assert 1==0
convex_mask = m1
dm1 = process_mask(m1)
dm2 = process_mask(m2)
dilatedMask = dm1+dm2
Mask = m1+m2
if missingmask:
np.save(os.path.join(prep_folder,name+'_mask.npy'), Mask)
print 'skip', name
return
extramask = dilatedMask - Mask
bone_thresh = 210
pad_value = 170
im[np.isnan(im)]=-2000
sliceim = lumTrans(im)
sliceim = sliceim*dilatedMask+pad_value*(1-dilatedMask).astype('uint8')
bones = sliceim*extramask>bone_thresh
sliceim[bones] = pad_value
sliceim1,_ = resample(sliceim,spacing,resolution,order=1)
sliceim2 = sliceim1[extendbox[0,0]:extendbox[0,1],
extendbox[1,0]:extendbox[1,1],
extendbox[2,0]:extendbox[2,1]]
sliceim = sliceim2[np.newaxis,...]
np.save(os.path.join(prep_folder,name+'_clean.npy'), sliceim)
np.save(os.path.join(prep_folder,name+'_originbox.npy'), extendbox)
np.save(os.path.join(prep_folder,name+'_spacing.npy'), spacing)
np.save(os.path.join(prep_folder,name+'_origin.npy'), origin)
print im.shape, '_clean', sliceim.shape, '_originbox', extendbox.shape, '_space', spacing, '_origin', origin
this_annos = np.copy(annos[annos[:,0]==name])
label = []
print 'label', this_annos.shape, name
if len(this_annos)>0:
for c in this_annos:
pos = worldToVoxelCoord(c[1:4][::-1],origin=origin,spacing=spacing)
if isflip:
pos[1:] = Mask.shape[1:3]-pos[1:]
label.append(np.concatenate([pos,[c[4]/spacing[1]]]))
label = np.array(label)
if len(label)==0:
label2 = np.array([[0,0,0,0]])
else:
label2 = np.copy(label).T
label2[:3] = label2[:3]*np.expand_dims(spacing,1)/np.expand_dims(resolution,1)
label2[3] = label2[3]*spacing[1]/resolution[1]
label2[:3] = label2[:3]-np.expand_dims(extendbox[:,0],1)
label2 = label2[:4].T
np.save(os.path.join(prep_folder,name+'_label.npy'),label2)
print name
def full_prep(train=True, val=True, test=True):
warnings.filterwarnings("ignore")
#preprocess_result_path = './prep_result'
train_prep_folder = config['train_preprocess_result_path']
val_prep_folder = config['val_preprocess_result_path']
test_prep_folder = config['test_preprocess_result_path']
train_data_path = config['train_data_path']
val_data_path = config['val_data_path']
test_data_path = config['test_data_path']
finished_flag = '.flag_preptianchi'
if not os.path.exists(finished_flag):
trainlabelfiles = config['train_annos_path']
vallabelfiles = config['val_annos_path']
testlabelfiles = config['test_annos_path']
traincontent = np.array(pandas.read_csv(trainlabelfiles))
traincontent = traincontent[traincontent[:, 0] != np.nan]
trainalllabel = traincontent[1:, :] # filename, x, y, z, d
trainfilelist = []
for f in os.listdir(config['train_data_path']):
if f.endswith('.mhd'):
if f[:-4] in config['black_list']:
continue
trainfilelist.append(f[:-4])
valcontent = np.array(pandas.read_csv(vallabelfiles))
valcontent = valcontent[valcontent[:, 0] != np.nan]
valalllabel = valcontent[1:, :] # filename, x, y, z, d
valfilelist = []
for f in os.listdir(config['val_data_path']):
if f.endswith('.mhd'):
if f[:-4] in config['black_list']:
continue
valfilelist.append(f[:-4])
testcontent = np.array(pandas.read_csv(testlabelfiles))
testcontent = testcontent[testcontent[:, 0] != np.nan]
testalllabel = testcontent[1:, :] # filename, x, y, z, d
testfilelist = []
for f in os.listdir(config['test_data_path']):
if f.endswith('.mhd'):
if f[:-4] in config['black_list']:
continue
testfilelist.append(f[:-4])
if not os.path.exists(train_prep_folder):
os.mkdir(train_prep_folder)
if not os.path.exists(val_prep_folder):
os.mkdir(val_prep_folder)
if not os.path.exists(test_prep_folder):
os.mkdir(test_prep_folder)
#eng.addpath('preprocessing/',nargout=0)
if train:
print('starting train preprocessing')
pool = Pool(24)
partial_savenpy = partial(savenpy, annos=trainalllabel, filelist=trainfilelist, data_path=train_data_path, prep_folder=train_prep_folder)
N = len(trainfilelist)
# savenpy(1)
_=pool.map(partial_savenpy, range(N))
print('end train preprocessing')
if val:
print('starting val preprocessing')
partial_savenpy = partial(savenpy, annos=valalllabel, filelist=valfilelist, data_path=val_data_path, prep_folder=val_prep_folder)
N = len(valfilelist)
# savenpy(1)
_=pool.map(partial_savenpy, range(N))
print('end val preprocessing')
if test:
print('starting test preprocessing')
partial_savenpy = partial(savenpy, annos=testalllabel, filelist=testfilelist, data_path=test_data_path, prep_folder=test_prep_folder)
N = len(testfilelist)
# savenpy(1)
_=pool.map(partial_savenpy, range(N))
pool.close()
pool.join()
print('end test preprocessing')
f= open(finished_flag,"w+")
def splitvaltestcsv():
testfiles = []
for f in os.listdir(config['test_data_path']):
if f.endswith('.mhd'):
testfiles.append(f[:-4])
valcsvlines = []
testcsvlines = []
import csv
valf = open(config['val_annos_path'], 'r')
valfcsv = csv.reader(valf)
for line in valfcsv:
if line[0] in testfiles:
testcsvlines.append(line)
else:
valcsvlines.append(line)
valf.close()
testf = open(config['test_annos_path']+'annotations.csv', 'w')
testfcsv = csv.writer(testf)
for line in testcsvlines:
testfcsv.writerow(line)
testf.close()
valf = open(config['val_annos_path'], 'w')
valfcsv = csv.writer(valf)
for line in valcsvlines:
valfcsv.writerow(line)
valf.close()
def savenpy_luna(id, annos, filelist, luna_segment, luna_data,savepath):
islabel = True
isClean = True
resolution = np.array([1,1,1])
# resolution = np.array([2,2,2])
name = filelist[id]
sliceim,origin,spacing,isflip = load_itk_image(os.path.join(luna_data,name+'.mhd'))
Mask,origin,spacing,isflip = load_itk_image(os.path.join(luna_segment,name+'.mhd'))
if isflip:
Mask = Mask[:,::-1,::-1]
newshape = np.round(np.array(Mask.shape)*spacing/resolution).astype('int')
m1 = Mask==3
m2 = Mask==4
Mask = m1+m2
xx,yy,zz= np.where(Mask)
box = np.array([[np.min(xx),np.max(xx)],[np.min(yy),np.max(yy)],[np.min(zz),np.max(zz)]])
box = box*np.expand_dims(spacing,1)/np.expand_dims(resolution,1)
box = np.floor(box).astype('int')
margin = 5
extendbox = np.vstack([np.max([[0,0,0],box[:,0]-margin],0),np.min([newshape,box[:,1]+2*margin],axis=0).T]).T
this_annos = np.copy(annos[annos[:,0]==(name)])
if isClean:
convex_mask = m1
dm1 = process_mask(m1)
dm2 = process_mask(m2)
dilatedMask = dm1+dm2
Mask = m1+m2
extramask = dilatedMask ^ Mask
bone_thresh = 210
pad_value = 170
if isflip:
sliceim = sliceim[:,::-1,::-1]
print('flip!')
sliceim = lumTrans(sliceim)
sliceim = sliceim*dilatedMask+pad_value*(1-dilatedMask).astype('uint8')
bones = (sliceim*extramask)>bone_thresh
sliceim[bones] = pad_value
sliceim1,_ = resample(sliceim,spacing,resolution,order=1)
sliceim2 = sliceim1[extendbox[0,0]:extendbox[0,1],
extendbox[1,0]:extendbox[1,1],
extendbox[2,0]:extendbox[2,1]]
sliceim = sliceim2[np.newaxis,...]
np.save(os.path.join(savepath, fnamedct[name]+'_clean.npy'), sliceim)
np.save(os.path.join(savepath, fnamedct[name]+'_spacing.npy'), spacing)
np.save(os.path.join(savepath, fnamedct[name]+'_extendbox.npy'), extendbox)
np.save(os.path.join(savepath, fnamedct[name]+'_origin.npy'), origin)
np.save(os.path.join(savepath, fnamedct[name]+'_mask.npy'), Mask)
if islabel:
this_annos = np.copy(annos[annos[:,0]==(name)])
label = []
if len(this_annos)>0:
for c in this_annos:
pos = worldToVoxelCoord(c[1:4][::-1],origin=origin,spacing=spacing)
if isflip:
pos[1:] = Mask.shape[1:3]-pos[1:]
label.append(np.concatenate([pos,[c[4]/spacing[1]]]))
label = np.array(label)
if len(label)==0:
label2 = np.array([[0,0,0,0]])
else:
label2 = np.copy(label).T
label2[:3] = label2[:3]*np.expand_dims(spacing,1)/np.expand_dims(resolution,1)
label2[3] = label2[3]*spacing[1]/resolution[1]
label2[:3] = label2[:3]-np.expand_dims(extendbox[:,0],1)
label2 = label2[:4].T
np.save(os.path.join(savepath,fnamedct[name]+'_label.npy'), label2)
print(name, fnamedct[name])
def preprocess_luna():
luna_segment = config['luna_segment']
savepath = config['preprocess_result_path']
luna_data = config['luna_data']
luna_label = config['luna_label']
finished_flag = '.flag_preprocessluna'
print('starting preprocessing luna')
if not os.path.exists(finished_flag):
annos = np.array(pandas.read_csv(luna_label))
pool = Pool()
if not os.path.exists(savepath):
os.mkdir(savepath)
for setidx in xrange(10):
print 'process subset', setidx
filelist = [f.split('.mhd')[0] for f in os.listdir(luna_data+'subset'+str(setidx)) if f.endswith('.mhd') ]
if not os.path.exists(savepath+'subset'+str(setidx)):
os.mkdir(savepath+'subset'+str(setidx))
partial_savenpy_luna = partial(savenpy_luna, annos=annos, filelist=filelist,
luna_segment=luna_segment, luna_data=luna_data+'subset'+str(setidx)+'/',
savepath=savepath+'subset'+str(setidx)+'/')
N = len(filelist)
#savenpy(1)
_=pool.map(partial_savenpy_luna,range(N))
pool.close()
pool.join()
print('end preprocessing luna')
f= open(finished_flag,"w+")
if __name__=='__main__':
# preprocess_luna()
full_prep(train=True, val=True, test=False)