-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_multi_human.py
448 lines (376 loc) · 24.5 KB
/
train_multi_human.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import argparse
import math
import os
import pickle
import random
import sys
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from torch import nn
from torch.optim import lr_scheduler
from torch.utils import data
import torchvision.transforms as transforms
import transforms as extended_transforms
from loss import prediction_stat
from main import get_data_path
from main.loader import get_loader
from main.models import get_model
from utils import dotdict, float2str
# paths
ROOT = '/home/wenlidai/sunets-reproduce/'
RESULT = 'results'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def main(args):
print('='*10, 'Starting', '='*10, '\n')
print(device)
# Set the seed for reproducing the results
random.seed(args.manual_seed)
np.random.seed(args.manual_seed)
torch.manual_seed(args.manual_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.manual_seed)
cudnn.benchmark = True
# Set up results folder
if not os.path.exists(os.path.join(ROOT, RESULT, 'saved_val_images')):
os.makedirs(os.path.join(ROOT, RESULT, 'saved_val_images'))
if not os.path.exists(os.path.join(ROOT, RESULT, 'saved_train_images')):
os.makedirs(os.path.join(ROOT, RESULT, 'saved_train_images'))
# Setup Dataloader
data_loader = get_loader(args.dataset)
input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
target_transform = extended_transforms.MaskToTensor()
traindata = data_loader('train', n_classes=args.n_classes, transform=input_transform, target_transform=target_transform, do_transform=True)
trainloader = data.DataLoader(traindata, batch_size=args.batch_size, num_workers=2, shuffle=True)
valdata = data_loader('val', n_classes=args.n_classes, transform=input_transform, target_transform=target_transform)
valloader = data.DataLoader(valdata, batch_size=args.batch_size, num_workers=2, shuffle=False)
n_classes = traindata.n_classes
n_trainsamples = len(traindata)
n_iters_per_epoch = np.ceil(n_trainsamples / float(args.batch_size * args.iter_size))
# Setup Model
model = get_model(
name=args.arch,
n_classes=n_classes,
ignore_index=traindata.ignore_index,
output_stride=args.output_stride,
pretrained=args.pretrained,
momentum_bn=args.momentum_bn,
dprob=args.dprob
).to(device)
epochs_done=0
X=[]
Y1=[]
Y1_test=[]
Y2=[]
Y2_test=[]
avg_pixel_acc = 0
mean_class_acc = 0
mIoU = 0
avg_pixel_acc_test = 0
mean_class_acc_test = 0
mIoU_test = 0
best_mIoU = 0
best_epoch = 0
if args.model_path:
model_name = args.model_path.split('.')
checkpoint_name = model_name[0] + '_optimizer.pkl'
checkpoint = torch.load(os.path.join(ROOT, RESULT, checkpoint_name))
optm = checkpoint['optimizer']
model.load_state_dict(checkpoint['state_dict'])
split_str = model_name[0].split('_')
epochs_done = int(split_str[-1])
saved_loss = pickle.load( open(os.path.join(ROOT, RESULT, "saved_loss.p"), "rb") )
saved_accuracy = pickle.load( open(os.path.join(ROOT, RESULT, "saved_accuracy.p"), "rb") )
X=saved_loss["X"][:epochs_done]
Y=saved_loss["Y"][:epochs_done]
Y_test=saved_loss["Y_test"][:epochs_done]
avg_pixel_acc = saved_accuracy["P"][:epochs_done,:]
mean_class_acc = saved_accuracy["M"][:epochs_done,:]
mIoU = saved_accuracy["I"][:epochs_done,:]
avg_pixel_acc_test = saved_accuracy["P_test"][:epochs_done,:]
mean_class_acc_test = saved_accuracy["M_test"][:epochs_done,:]
mIoU_test = saved_accuracy["I_test"][:epochs_done,:]
if args.best_model_path:
best_model_name = args.best_model_path.split('_')
best_mIoU = float(best_model_name[-2])
best_epoch = int(best_model_name[-3])
# Learning rates: For new layers (such as final layer), we set lr to be 10x the learning rate of layers already trained
bias_10x_params = filter(lambda x: ('bias' in x[0]) and ('final' in x[0]) and ('conv' in x[0]),
model.named_parameters())
bias_10x_params = list(map(lambda x: x[1], bias_10x_params))
bias_params = filter(lambda x: ('bias' in x[0]) and ('final' not in x[0]),
model.named_parameters())
bias_params = list(map(lambda x: x[1], bias_params))
nonbias_10x_params = filter(lambda x: (('bias' not in x[0]) or ('bn' in x[0])) and ('final' in x[0]),
model.named_parameters())
nonbias_10x_params = list(map(lambda x: x[1], nonbias_10x_params))
nonbias_params = filter(lambda x: ('bias' not in x[0]) and ('final' not in x[0]),
model.named_parameters())
nonbias_params = list(map(lambda x: x[1], nonbias_params))
optimizer = torch.optim.SGD([{'params': bias_params, 'lr': args.lr},
{'params': bias_10x_params, 'lr': 20 * args.lr if args.pretrained else args.lr},
{'params': nonbias_10x_params, 'lr': 10 * args.lr if args.pretrained else args.lr},
{'params': nonbias_params, 'lr': args.lr},],
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay,
nesterov=(args.optim == 'Nesterov'))
num_param_groups = 4
# optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# Setting up scheduler
if args.model_path and args.restore:
# Here we restore all states of optimizer
optimizer.load_state_dict(optm)
total_iters = n_iters_per_epoch * args.epochs
lambda1 = lambda step: 0.5 + 0.5 * math.cos(np.pi * step / total_iters)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda1]*num_param_groups, last_epoch=epochs_done*n_iters_per_epoch)
# scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1, last_epoch=epochs_done)
else:
# scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.1)
# Here we simply restart the training
# if args.T0:
# total_iters = args.T0 * n_iters_per_epoch
# else:
total_iters = ((args.epochs - epochs_done) * n_iters_per_epoch)
lambda1 = lambda step: 0.5 + 0.5 * math.cos(np.pi * step / total_iters)
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=[lambda1]*num_param_groups)
global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
global steps, steps_test
criterion_sbd = nn.CrossEntropyLoss(size_average=False, ignore_index=traindata.ignore_index)
criterion_lip = nn.CrossEntropyLoss(size_average=False, ignore_index=traindata.ignore_index)
criterions = [criterion_sbd, criterion_lip]
for epoch in range(epochs_done, args.epochs):
print('='*10, 'Epoch %d' % (epoch + 1), '='*10)
l_avg = [0, 0]
totalclasswise_pixel_acc = [0, 0]
totalclasswise_gtpixels = [0, 0]
totalclasswise_predpixels = [0, 0]
l_avg_test = [0, 0]
totalclasswise_pixel_acc_test = [0, 0]
totalclasswise_gtpixels_test = [0, 0]
totalclasswise_predpixels_test = [0, 0]
steps = [0, 0]
steps_test = [0, 0]
# scheduler.step()
train(model, optimizer, criterions, trainloader, epoch, scheduler, traindata)
val(model, criterions, valloader, epoch, valdata)
# save the model every 5 epochs
if (epoch + 1) % 5 == 0 or epoch == args.epochs - 1:
if (epoch + 1) > 5:
os.remove(os.path.join(ROOT, RESULT, "{}_{}_{}.pkl".format(args.arch, args.dataset, epoch - 4)))
os.remove(os.path.join(ROOT, RESULT, "{}_{}_{}_optimizer.pkl".format(args.arch, args.dataset, epoch - 4)))
torch.save(model, os.path.join(ROOT, RESULT, "{}_{}_{}.pkl".format(args.arch, args.dataset, epoch + 1)))
torch.save({'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
os.path.join(ROOT, RESULT, "{}_{}_{}_optimizer.pkl".format(args.arch, args.dataset, epoch + 1)))
# remove old loss & accuracy files
if os.path.isfile(os.path.join(ROOT, RESULT, "saved_loss.p")):
os.remove(os.path.join(ROOT, RESULT, "saved_loss.p"))
if os.path.isfile(os.path.join(ROOT, RESULT, "saved_accuracy.p")):
os.remove(os.path.join(ROOT, RESULT, "saved_accuracy.p"))
# save train and validation loss
X.append(epoch + 1)
Y1.append(l_avg[0] / steps[0])
Y1_test.append(l_avg_test[0] / steps_test[0])
Y2.append(l_avg[1] / steps[1])
Y2_test.append(l_avg_test[1] / steps_test[1])
saved_loss={"X": X, "Y1": Y1, "Y2": Y2, "Y1_test": Y1_test, "Y2_test": Y2_test}
pickle.dump(saved_loss, open(os.path.join(ROOT, RESULT, "saved_loss.p"), "wb"))
# pixel accuracy
totalclasswise_pixel_acc[0] = totalclasswise_pixel_acc[0].reshape((-1, n_classes[0])).astype(np.float32)
totalclasswise_gtpixels[0] = totalclasswise_gtpixels[0].reshape((-1, n_classes[0]))
totalclasswise_predpixels[0] = totalclasswise_predpixels[0].reshape((-1, n_classes[0]))
totalclasswise_pixel_acc_test[0] = totalclasswise_pixel_acc_test[0].reshape((-1, n_classes[0])).astype(np.float32)
totalclasswise_gtpixels_test[0] = totalclasswise_gtpixels_test[0].reshape((-1, n_classes[0]))
totalclasswise_predpixels_test[0] = totalclasswise_predpixels_test[0].reshape((-1, n_classes[0]))
totalclasswise_pixel_acc[1] = totalclasswise_pixel_acc[1].reshape((-1, n_classes[1])).astype(np.float32)
totalclasswise_gtpixels[1] = totalclasswise_gtpixels[1].reshape((-1, n_classes[1]))
totalclasswise_predpixels[1] = totalclasswise_predpixels[1].reshape((-1, n_classes[1]))
totalclasswise_pixel_acc_test[1] = totalclasswise_pixel_acc_test[1].reshape((-1, n_classes[1])).astype(np.float32)
totalclasswise_gtpixels_test[1] = totalclasswise_gtpixels_test[1].reshape((-1, n_classes[1]))
totalclasswise_predpixels_test[1] = totalclasswise_predpixels_test[1].reshape((-1, n_classes[1]))
if isinstance(avg_pixel_acc, list):
avg_pixel_acc[0] = np.vstack((avg_pixel_acc[0], np.sum(totalclasswise_pixel_acc[0], axis=1) / np.sum(totalclasswise_gtpixels[0], axis=1)))
mean_class_acc[0] = np.vstack((mean_class_acc[0], np.mean(totalclasswise_pixel_acc[0] / totalclasswise_gtpixels[0], axis=1)))
mIoU[0] = np.vstack((mIoU[0], np.mean(totalclasswise_pixel_acc[0] / (totalclasswise_gtpixels[0] + totalclasswise_predpixels[0] - totalclasswise_pixel_acc[0]), axis=1)))
avg_pixel_acc[1] = np.vstack((avg_pixel_acc[1], np.sum(totalclasswise_pixel_acc[1], axis=1) / np.sum(totalclasswise_gtpixels[1], axis=1)))
mean_class_acc[1] = np.vstack((mean_class_acc[1], np.mean(totalclasswise_pixel_acc[1] / totalclasswise_gtpixels[1], axis=1)))
mIoU[1] = np.vstack((mIoU[1], np.mean(totalclasswise_pixel_acc[1] / (totalclasswise_gtpixels[1] + totalclasswise_predpixels[1] - totalclasswise_pixel_acc[1]), axis=1)))
avg_pixel_acc_test[0] = np.vstack((avg_pixel_acc_test[0], np.sum(totalclasswise_pixel_acc_test[0],axis=1) / np.sum(totalclasswise_gtpixels_test[0], axis=1)))
mean_class_acc_test[0] = np.vstack((mean_class_acc_test[0], np.mean(totalclasswise_pixel_acc_test[0] / totalclasswise_gtpixels_test[0], axis=1)))
mIoU_test[0] = np.vstack((mIoU_test[0], np.mean(totalclasswise_pixel_acc_test[0] / (totalclasswise_gtpixels_test[0] + totalclasswise_predpixels_test[0] - totalclasswise_pixel_acc_test[0]), axis=1)))
avg_pixel_acc_test[1] = np.vstack((avg_pixel_acc_test[1], np.sum(totalclasswise_pixel_acc_test[1],axis=1) / np.sum(totalclasswise_gtpixels_test[1], axis=1)))
mean_class_acc_test[1] = np.vstack((mean_class_acc_test[1], np.mean(totalclasswise_pixel_acc_test[1] / totalclasswise_gtpixels_test[1], axis=1)))
mIoU_test[1] = np.vstack((mIoU_test[1], np.mean(totalclasswise_pixel_acc_test[1] / (totalclasswise_gtpixels_test[1] + totalclasswise_predpixels_test[1] - totalclasswise_pixel_acc_test[1]), axis=1)))
else:
avg_pixel_acc = []
mean_class_acc = []
mIoU = []
avg_pixel_acc.append( np.sum(totalclasswise_pixel_acc[0], axis=1) / np.sum(totalclasswise_gtpixels[0], axis=1) )
mean_class_acc.append( np.mean(totalclasswise_pixel_acc[0] / totalclasswise_gtpixels[0], axis=1) )
mIoU.append( np.mean(totalclasswise_pixel_acc[0] / (totalclasswise_gtpixels[0] + totalclasswise_predpixels[0] - totalclasswise_pixel_acc[0]), axis=1) )
avg_pixel_acc.append( np.sum(totalclasswise_pixel_acc[1], axis=1) / np.sum(totalclasswise_gtpixels[1], axis=1) )
mean_class_acc.append( np.mean(totalclasswise_pixel_acc[1] / totalclasswise_gtpixels[1], axis=1) )
mIoU.append( np.mean(totalclasswise_pixel_acc[1] / (totalclasswise_gtpixels[1] + totalclasswise_predpixels[1] - totalclasswise_pixel_acc[1]), axis=1) )
avg_pixel_acc_test = []
mean_class_acc_test = []
mIoU_test = []
avg_pixel_acc_test.append( np.sum(totalclasswise_pixel_acc_test[0], axis=1) / np.sum(totalclasswise_gtpixels_test[0], axis=1) )
mean_class_acc_test.append( np.mean(totalclasswise_pixel_acc_test[0] / totalclasswise_gtpixels_test[0], axis=1) )
mIoU_test.append( np.mean(totalclasswise_pixel_acc_test[0] / (totalclasswise_gtpixels_test[0] + totalclasswise_predpixels_test[0] - totalclasswise_pixel_acc_test[0]), axis=1) )
avg_pixel_acc_test.append( np.sum(totalclasswise_pixel_acc_test[1], axis=1) / np.sum(totalclasswise_gtpixels_test[1], axis=1) )
mean_class_acc_test.append( np.mean(totalclasswise_pixel_acc_test[1] / totalclasswise_gtpixels_test[1], axis=1) )
mIoU_test.append( np.mean(totalclasswise_pixel_acc_test[1] / (totalclasswise_gtpixels_test[1] + totalclasswise_predpixels_test[1] - totalclasswise_pixel_acc_test[1]), axis=1) )
saved_accuracy = {
"X": X,
"P1": avg_pixel_acc[0], "P2": avg_pixel_acc[1],
"M1": mean_class_acc[0], "M2": mean_class_acc[1],
"I1": mIoU[0], "I2": mIoU[1],
"P1_test": avg_pixel_acc_test[0], "P2_test": avg_pixel_acc_test[1],
"M1_test": mean_class_acc_test[0], "M2_test": mean_class_acc_test[1],
"I1_test": mIoU_test[0], "I2_test": mIoU_test[1]
}
pickle.dump(saved_accuracy, open(os.path.join(ROOT, RESULT, "saved_accuracy.p"), "wb"))
# print validation mIoU of both tasks
this_mIoU1 = np.mean(totalclasswise_pixel_acc_test[0] / (totalclasswise_gtpixels_test[0] + totalclasswise_predpixels_test[0] - totalclasswise_pixel_acc_test[0]), axis=1)[0]
this_mIoU2 = np.mean(totalclasswise_pixel_acc_test[1] / (totalclasswise_gtpixels_test[1] + totalclasswise_predpixels_test[1] - totalclasswise_pixel_acc_test[1]), axis=1)[0]
print('Val: mIoU_sbd = {}, mIoU_lip = {}'.format(this_mIoU1, this_mIoU2))
def train(model, optimizer, criterions, trainloader, epoch, scheduler, data):
global l_avg, totalclasswise_pixel_acc, totalclasswise_gtpixels, totalclasswise_predpixels
global steps
model.train()
for i, (images, sbd_labels, lip_labels) in enumerate(trainloader):
sbd_valid_pixel = float( (sbd_labels.data != criterions[0].ignore_index).long().sum() )
lip_valid_pixel = float( (lip_labels.data != criterions[1].ignore_index).long().sum() )
images = images.to(device)
sbd_labels = sbd_labels.to(device)
lip_labels = lip_labels.to(device)
sbd_outputs, lip_outputs = model(images, task=2)
sbd_loss = criterions[0](sbd_outputs, sbd_labels)
classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat([sbd_outputs], sbd_labels, data.n_classes[0])
classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
classwise_predpixels = torch.FloatTensor([classwise_predpixels])
totalclasswise_pixel_acc[0] += classwise_pixel_acc.sum(0).data.numpy()
totalclasswise_gtpixels[0] += classwise_gtpixels.sum(0).data.numpy()
totalclasswise_predpixels[0] += classwise_predpixels.sum(0).data.numpy()
sbd_total_loss = sbd_loss.sum()
sbd_total_loss = sbd_total_loss / float(sbd_valid_pixel)
sbd_total_loss.backward(retain_graph=True)
lip_loss = criterions[1](lip_outputs, lip_labels)
classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat([lip_outputs], lip_labels, data.n_classes[1])
classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
classwise_predpixels = torch.FloatTensor([classwise_predpixels])
totalclasswise_pixel_acc[1] += classwise_pixel_acc.sum(0).data.numpy()
totalclasswise_gtpixels[1] += classwise_gtpixels.sum(0).data.numpy()
totalclasswise_predpixels[1] += classwise_predpixels.sum(0).data.numpy()
lip_total_loss = lip_loss.sum()
lip_total_loss = lip_total_loss / float(lip_valid_pixel)
lip_total_loss.backward()
l_avg[0] += sbd_loss.sum().data.cpu().numpy()
steps[0] += sbd_valid_pixel
l_avg[1] += lip_loss.sum().data.cpu().numpy()
steps[1] += lip_valid_pixel
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# if (i + 1) % args.log_size == 0:
# pickle.dump(images[0].cpu().numpy(),
# open(os.path.join(ROOT, RESULT, "saved_train_images/" + str(epoch) + "_" + str(i) + "_input.p"), "wb"))
# pickle.dump(np.transpose(data.decode_segmap(outputs[0].data.cpu().numpy().argmax(0)), [2, 0, 1]),
# open(os.path.join(ROOT, RESULT, "saved_train_images/" + str(epoch) + "_" + str(i) + "_output.p"), "wb"))
# pickle.dump(np.transpose(data.decode_segmap(labels[0].cpu().numpy()), [2, 0, 1]),
# open(os.path.join(ROOT, RESULT, "saved_train_images/" + str(epoch) + "_" + str(i) + "_target.p"), "wb"))
def val(model, criterions, valloader, epoch, data):
global l_avg_test, totalclasswise_pixel_acc_test, totalclasswise_gtpixels_test, totalclasswise_predpixels_test
global steps_test
model.eval()
for i, (images, sbd_labels, lip_labels) in enumerate(valloader):
sbd_valid_pixel = float( (sbd_labels.data != criterions[0].ignore_index).long().sum() )
lip_valid_pixel = float( (lip_labels.data != criterions[1].ignore_index).long().sum() )
images = images.to(device)
sbd_labels = sbd_labels.to(device)
lip_labels = lip_labels.to(device)
with torch.no_grad():
sbd_outputs, lip_outputs = model(images, task=2)
sbd_loss = criterions[0](sbd_outputs, sbd_labels)
lip_loss = criterions[1](lip_outputs, lip_labels)
classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat([sbd_outputs], sbd_labels, data.n_classes[0])
classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
classwise_predpixels = torch.FloatTensor([classwise_predpixels])
totalclasswise_pixel_acc_test[0] += classwise_pixel_acc.sum(0).data.numpy()
totalclasswise_gtpixels_test[0] += classwise_gtpixels.sum(0).data.numpy()
totalclasswise_predpixels_test[0] += classwise_predpixels.sum(0).data.numpy()
classwise_pixel_acc, classwise_gtpixels, classwise_predpixels = prediction_stat([lip_outputs], lip_labels, data.n_classes[1])
classwise_pixel_acc = torch.FloatTensor([classwise_pixel_acc])
classwise_gtpixels = torch.FloatTensor([classwise_gtpixels])
classwise_predpixels = torch.FloatTensor([classwise_predpixels])
totalclasswise_pixel_acc_test[1] += classwise_pixel_acc.sum(0).data.numpy()
totalclasswise_gtpixels_test[1] += classwise_gtpixels.sum(0).data.numpy()
totalclasswise_predpixels_test[1] += classwise_predpixels.sum(0).data.numpy()
l_avg_test[0] += sbd_loss.sum().data.cpu().numpy()
steps_test[0] += sbd_valid_pixel
l_avg_test[1] += lip_loss.sum().data.cpu().numpy()
steps_test[1] += lip_valid_pixel
# if (i + 1) % 800 == 0:
# pickle.dump(images[0].cpu().numpy(),
# open(os.path.join(ROOT, RESULT, "saved_val_images/" + str(epoch) + "_" + str(i) + "_input.p"), "wb"))
# pickle.dump(np.transpose(data.decode_segmap(outputs[0].data.cpu().numpy().argmax(0)), [2, 0, 1]),
# open(os.path.join(ROOT, RESULT, "saved_val_images/" + str(epoch) + "_" + str(i) + "_output.p"), "wb"))
# pickle.dump(np.transpose(data.decode_segmap(labels[0].cpu().numpy()), [2, 0, 1]),
# open(os.path.join(ROOT, RESULT, "saved_val_images/" + str(epoch) + "_" + str(i) + "_target.p"), "wb"))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('--arch', nargs='?', type=str, default='sunet64_multi',
help='Architecture to use [\'sunet64, sunet128, sunet7128 etc\']')
parser.add_argument('--model_path', help='Path to the saved model', type=str)
parser.add_argument('--best_model_path', help='Path to the saved best model', type=str)
parser.add_argument('--dataset', nargs='?', type=str, default='human',
help='Dataset to use [\'sbd, coco, cityscapes etc\']')
parser.add_argument('--img_rows', nargs='?', type=int, default=512,
help='Height of the input image')
parser.add_argument('--img_cols', nargs='?', type=int, default=512,
help='Width of the input image')
parser.add_argument('--epochs', nargs='?', type=int, default=90,
help='# of the epochs')
parser.add_argument('--batch_size', nargs='?', type=int, default=10,
help='Batch Size')
parser.add_argument('--lr', nargs='?', type=float, default=0.0005,
help='Learning Rate')
parser.add_argument('--manual_seed', default=0, type=int,
help='manual seed')
parser.add_argument('--iter_size', type=int, default=1,
help='number of batches per weight updates')
parser.add_argument('--log_size', type=int, default=400,
help='iteration period of logging segmented images')
parser.add_argument('--dprob', nargs='?', type=float, default=1e-7,
help='Dropout probability')
parser.add_argument('--momentum', nargs='?', type=float, default=0.95,
help='Momentum for SGD')
parser.add_argument('--momentum_bn', nargs='?', type=float, default=0.01,
help='Momentum for BN')
parser.add_argument('--weight_decay', nargs='?', type=float, default=1e-4,
help='Weight decay')
parser.add_argument('--output_stride', nargs='?', type=str, default='16',
help='Output stride to use [\'32, 16, 8 etc\']')
parser.add_argument('--freeze', action='store_true',
help='Freeze BN params')
parser.add_argument('--restore', action='store_true',
help='Restore Optimizer params')
parser.add_argument('--epoch_log_size', nargs='?', type=str, default=20,
help='Every [epoch_log_size] iterations to print loss in each epoch')
parser.add_argument('--pretrained', action='store_true',
help='Use pretrained ImageNet initialization or not')
parser.add_argument('--n_classes', nargs='?', type=int, action='append',
help='number of classes of the labels')
parser.add_argument('--optim', nargs='?', type=str, default='SGD',
help='Optimizer to use [\'SGD, Nesterov etc\']')
global args
args = parser.parse_args()
RESULT = '{}_{}_{}'.format(RESULT, args.arch, args.dataset)
if args.pretrained:
RESULT = RESULT + '_pretrained'
main(args)