-
Notifications
You must be signed in to change notification settings - Fork 1
/
extract_features.py
302 lines (246 loc) · 8.94 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
from scipy import fftpack
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
def moment(sample, p, q):
m = np.mean((sample**(p-q)) * (np.conjugate(sample)**q))
return m
def featureExtraction(X):
features = np.zeros([len(X), 27])
for i in range(len(X)):
print(i)
sample = X[i][0] + X[i][1]*1j
sample = sample/np.power(moment(sample, 2,1), 0.5)
tmpSample = sample
#'''high-order moments and cumulants'''
M20 = moment(sample, 2,0)
M21 = moment(sample, 2,1)
M22 = moment(sample, 2,2)
M40 = moment(sample, 4,0)
M41 = moment(sample, 4,1)
M42 = moment(sample, 4,2)
M43 = moment(sample, 4,3)
M60 = moment(sample, 6,0)
M61 = moment(sample, 6,1)
M62 = moment(sample, 6,2)
M63 = moment(sample, 6,3)
M80 = moment(sample, 8,0)
C20 = M20
C21 = M21
C40 = M40 - 3*(M20**2)
C41 = M41 - 3*M20*M21
C42 = M42 - (np.abs(M20))**2 -2*(M21**2)
C60 = M60 - 15*M20*M40 + 3*(M20**3)
C61 = M61 - 5*M21*M40 - 10*M20*M41 + 30*(M20**2)*M21
C62 = M62 - 6*M20*M42 - 8*M21*M41 - M22*M40 + 6*(M20**2)*M22 + 24*(M21**2)*M20
C63 = M63 - 9*M21*M42 + 12*(M21**3) - 3*M20*M43 - 3*M22*M41 + 18*M20*M21*M22
C80 = M80 - 35*M40**2 - 28*M60*M20 + 420*M40 - 630*M20**4
sample_ht = np.imag(sample)
sample = np.real(sample)
A_n = np.power(np.power(sample, 2) + np.power(sample_ht, 2), 0.5)
phi_n = np.zeros(len(sample))
pi = 3.1415926
for j in range(len(phi_n)):
if sample[j]>0 and sample_ht[j]>0:
phi_n[j] = np.arctan(sample_ht[j]/sample[j])
elif sample[j]==0 and sample_ht[j]>0:
phi_n[j] = pi
elif sample[j]<0 and sample_ht[j]>0:
phi_n[j] = pi - np.arctan(sample_ht[j]/sample[j])
elif sample[j]<0 and sample_ht[j]<0:
phi_n[j] = pi + np.arctan(sample_ht[j]/sample[j])
elif sample[j]==0 and sample_ht[j]<0:
phi_n[j] = pi * 1.5
elif sample[j]>0 and sample_ht[j]<0:
phi_n[j] = 2*pi - np.arctan(sample_ht[j]/sample[j])
Ck = np.zeros(len(sample))
for j in range(1, len(Ck)):
if phi_n[j] - phi_n[j-1] > pi:
Ck[j] = Ck[j-1] - 2*pi
elif phi_n[j-1] - phi_n[j] > pi:
Ck[j] = Ck[j-1] + 2*pi
else:
Ck[j] = Ck[j-1]
phi_n_1 = phi_n + Ck
phi_NL = phi_n_1
f_n = np.zeros(len(sample))
for j in range(1, len(f_n)):
f_n[j] = (phi_NL[j] - phi_NL[j-1])*4 / pi
A_cn = A_n/np.mean(A_n) - 1
gamma = np.max(np.power(np.abs(np.fft.fft(A_cn)), 2)) / len(sample)
tmp = A_n/np.mean(A_n)
index_upcap = np.array([])
for j in range(len(tmp)):
if tmp[j]>1:
index_upcap = np.append(index_upcap, j)
PH1 = 0
PH2 = 0
PH3 = 0
F1 = 0
F2 = 0
f_n = f_n - np.mean(f_n)
index_upcap = index_upcap.astype(int)
for j in index_upcap:
PH1 = PH1 + np.power(phi_NL[j], 2)
PH2 = PH2+ np.abs(phi_NL[j])
PH3 = PH3 + phi_NL[j]
F1 = F1 + np.power(f_n[j], 2)
F2 = F2 + np.abs(f_n[j])
'''
segma_ap: the standard deviation of the absolute value of the non-linear component of the instantaneous phase
segma_dp: the standard deviation of the direct instantaneous phase
segma_aa: The fourth feature is the standard deviation of the absolute value of the normalized instantaneous amplitude of the simulated signal
segma_af: the standard deviation of the absolute normalized centered instantaneous frequency for the signal segment
'''
segma_ap = np.power(PH1/len(index_upcap) - np.power(PH2/len(index_upcap), 2), 0.5)
segma_dp = np.power(PH1/len(index_upcap) - np.power(PH3/len(index_upcap), 2), 0.5)
segma_aa = np.power(np.mean(np.power(A_cn, 2)) - np.power(np.mean(np.abs(A_cn)), 2), 0.5)
segma_af = np.power(F1/len(index_upcap) - np.power(F2/len(index_upcap), 2), 0.5)
A_v = np.power(A_n/np.var(A_n), 0.5) - 1
segma_v = np.power((np.power(np.sum(np.abs(A_v)), 2))/len(A_v) - np.mean(np.power(A_v, 2)) , 0.5)
features[i][0] = gamma
features[i][1] = segma_ap
features[i][2] = segma_dp
features[i][3] = segma_aa
features[i][4] = segma_af
features[i][5] = segma_v
sample = tmpSample
'''belta: power of quadrature / power of in-phrase'''
belta = np.sum(np.power(np.imag(sample), 2)) / np.sum(np.power(np.real(sample), 2))
features[i][6] = belta
'''citation: Wang L, Ge L D. Algorithm for Blind Identification of OFDM Signal Based on Higher Order Moment'''
v20 = M42/np.power(M21, 2)
features[i][7] = v20
#print('v20')
#print(v20)
'''X1: the mean value of the signal magnitude'''
X1 = np.mean(np.abs(A_n))
features[i][8] = X1
'''X2: the normalized square root value of sum of amplitude of signal samples'''
X2 = np.power(np.sum(np.abs(A_n)), 0.5) / len(sample)
features[i][9] = X2
features[i][10] = C20
features[i][11] = C21
features[i][12] = C40
features[i][13] = C41
features[i][14] = C42
features[i][15] = C63
features[i][16] = C80
'''kurtosis'''
factor = sample - np.mean(sample)
K = np.abs(np.mean(np.power(factor, 4)) / np.power(np.mean(np.power(factor, 2)), 2))
features[i][17] = K
'''skewness'''
S = np.abs(np.mean(np.power(factor, 3)) / np.power(np.mean(np.power(factor, 2)), 1.5))
features[i][18] = S
'''PR: peak-to-rms ratio'''
PR = np.max(np.power(np.abs(A_n), 2)) / np.mean(np.power(A_n, 2))
features[i][19] = PR
'''PA: peak-to-average ratio'''
PA = np.max(np.abs(A_n)) / np.mean(A_n)
features[i][20] = PA
k1 = np.abs(C42)
k2 = C63/np.power(C21, 3)
features[i][21] = k1
features[i][22] = k2
v30 = M63/np.power(M21, 3)
features[i][23] = v30
features[i][24] = C60
features[i][25] = C61
features[i][26] = C62
return features
#X_train = np.load('train_set.npy')
#X_test = np.load('test_set.npy')
#X_train_feature = featureExtraction(X_train)
#X_test_feature = featureExtraction(X_test)
#np.save('train_set_feature.npy', X_train_feature)
#np.save('test_set_feature.npy', X_test_feature)
xmajorLocator = MultipleLocator(150)
xmajorFormatter = FormatStrFormatter('%1d')
xminorLocator = MultipleLocator(30)
ymajorLocator = MultipleLocator(5)
ymajorFormatter = FormatStrFormatter('%1.1f')
yminorLocator = MultipleLocator(0.3)
X = np.load('train_set.npy')
Y = np.load('train_label.npy')
Z = np.load('train_snr.npy')
n = 588
sample = X[n]
print(Y[n])
print(Z[n])
[f, p] = plt.subplots(nrows=5, ncols=2, figsize=(5,10))
for i in range(5):
for j in range(2):
p[i][j].xaxis.set_major_locator(xmajorLocator)
p[i][j].xaxis.set_major_formatter(xmajorFormatter)
p[i][j].yaxis.set_major_locator(ymajorLocator)
p[i][j].yaxis.set_major_formatter(ymajorFormatter)
p[i][j].xaxis.set_minor_locator(xminorLocator)
p[i][j].yaxis.set_minor_locator(yminorLocator)
p[0][0].plot(sample[0][0:150])
p[0][0].plot(sample[1][0:150])
p[0][0].set_title('BPSK')
n = 592
print(Y[n])
print(Z[n])
sample = X[n]
p[1][0].plot(sample[0][0:150])
p[1][0].plot(sample[1][0:150])
p[1][0].set_title('QPSK')
n = 560
print(Y[n])
print(Z[n])
sample = X[n]
p[2][0].plot(sample[0][0:150])
p[2][0].plot(sample[1][0:150])
p[2][0].set_title('8PSK')
n = 768
print(Y[n])
print(Z[n])
sample = X[n]
p[3][0].plot(sample[0][0:150])
p[3][0].plot(sample[1][0:150])
p[3][0].set_title('QAM16')
n = 630
print(Y[n])
print(Z[n])
sample = X[n]
p[4][0].plot(sample[0][0:150])
p[4][0].plot(sample[1][0:150])
p[4][0].set_title('QAM64')
n = 202
sample = X[n]
print(Y[n])
print(Z[n])
p[0][1].plot(sample[0][0:150])
p[0][1].plot(sample[1][0:150])
p[0][1].set_title('BPSK')
n = 124
print(Y[n])
print(Z[n])
sample = X[n]
p[1][1].plot(sample[0][0:150])
p[1][1].plot(sample[1][0:150])
p[1][1].set_title('QPSK')
n = 309
print(Y[n])
print(Z[n])
sample = X[n]
p[2][1].plot(sample[0][0:150])
p[2][1].plot(sample[1][0:150])
p[2][1].set_title('8PSK')
n = 451
print(Y[n])
print(Z[n])
sample = X[n]
p[3][1].plot(sample[0][0:150])
p[3][1].plot(sample[1][0:150])
p[3][1].set_title('QAM16')
n = 672
print(Y[n])
print(Z[n])
sample = X[n]
p[4][1].plot(sample[0][0:150])
p[4][1].plot(sample[1][0:150])
p[4][1].set_title('QAM64')
plt.show()