-
Notifications
You must be signed in to change notification settings - Fork 68
/
datasets.py
179 lines (149 loc) · 6.81 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#
# Authors: Bowen Wen
# Contact: [email protected]
# Created in 2020
#
# Copyright (c) Rutgers University, 2020 All rights reserved.
#
# Wen, B., C. Mitash, B. Ren, and K. E. Bekris. "se (3)-TrackNet:
# Data-driven 6D Pose Tracking by Calibrating Image Residuals in
# Synthetic Domains." In IEEE/RSJ International Conference on Intelligent
# Robots and Systems (IROS). 2020.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the PRACSYS, Bowen Wen, Rutgers University,
# nor the names of its contributors may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
import os, sys,time
dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path+'/../../')
import json,yaml
from torch.utils.data.dataset import Dataset
from PIL import Image
from Utils import *
from data_augmentation import *
import numpy as np
import cv2
import glob
import torch
import transformations as T
class TrackDataset(Dataset):
def __init__(self, root,mode,images_mean, images_std, pretransforms=None, augmentations=None, posttransforms=None, dataset_info=None, trans_normalizer=0.03, rot_normalizer=5*np.pi/180):
self.mode = mode
self.images_mean = images_mean
self.images_std = images_std
self.data_pose = []
self.data_pair = {}
self.pretransforms = pretransforms
self.augmentations = augmentations
self.posttransforms = posttransforms
self.root = root
self.data_transforms = []
self.dataset_info = dataset_info
if dataset_info!=None:
self.cam_K = cam_K_from_dict(dataset_info['camera'])
print('self.cam_K:\n',self.cam_K)
else:
print('[WARN] In TrackDataset, dataset_info is None !!')
print("making dataset... for {}".format(self.mode))
self.rgbA_files = sorted(glob.glob(self.root+'/*rgbA.png'))
print('#dataset:',self.__len__())
self.trans_normalizer = trans_normalizer
self.rot_normalizer = rot_normalizer # 30*np.pi/180 for YCBInEOAT
print("self.trans_normalizer={}, self.rot_normalizer={}".format(self.trans_normalizer,self.rot_normalizer))
def __getitem__(self, index):
"""
@data: [rgbA, depthA, rgbB, depthB, poseA]. Depth data unit is mm (uint16).
@target [pose_labels]
"""
maskB = None
rgbB = np.array(Image.open(self.rgbA_files[index].replace('A','B')))
depthB = cv2.imread(self.rgbA_files[index].replace('rgbA','depthB'), cv2.IMREAD_UNCHANGED)
maskB = cv2.imread(self.rgbA_files[index].replace('rgbA','segB'), cv2.IMREAD_UNCHANGED)
meta = np.load(self.rgbA_files[index].replace('rgbA.png','meta.npz'))
B_in_cam = meta['B_in_cam']
rgbA = np.array(Image.open(self.rgbA_files[index]))
depthA = cv2.imread(self.rgbA_files[index].replace('rgbA','depthA'), cv2.IMREAD_UNCHANGED)
A_in_cam = meta['A_in_cam']
if rgbB.shape[0]!=self.dataset_info['resolution']:
resolution = self.dataset_info['resolution']
rgbA = cv2.resize(rgbA,(resolution,resolution),interpolation=cv2.INTER_NEAREST)
rgbB = cv2.resize(rgbB,(resolution,resolution),interpolation=cv2.INTER_NEAREST)
depthA = cv2.resize(depthA,(resolution,resolution),interpolation=cv2.INTER_NEAREST)
depthB = cv2.resize(depthB,(resolution,resolution),interpolation=cv2.INTER_NEAREST)
maskB = cv2.resize(maskB,(resolution,resolution),interpolation=cv2.INTER_NEAREST)
if maskB is None:
maskB = (depthB>100).astype(np.uint8)
assert np.sum(maskB)>0, 'index={}'.format(index)
data, target, rgbA, rgbB, maskA, maskB = self.processData(rgbA,depthA,A_in_cam,rgbB,depthB,B_in_cam,maskB)
return data, target, A_in_cam, B_in_cam, rgbA, rgbB, maskA, maskB
def __len__(self):
return len(self.rgbA_files)
def processData(self,rgbA,depthA,A_in_cam,rgbB,depthB,B_in_cam,maskB=None,original_size=None):
'''
After posttransforms,
@sample: [dataA, dataB] where dataA and dataB are concatenated rgb with depth CHW
@A_in_cam: 4x4 mat
'''
maskA = (depthA>100).astype(np.uint8)
if maskB is None:
maskB = (depthB>100).astype(np.uint8)
sample = [rgbA, depthA, rgbB, depthB,maskA,maskB,A_in_cam]
if self.pretransforms:
sample = self.pretransforms(sample)
rgbA_viz = rgbA.astype(np.uint8)
rgbB_viz = rgbB.astype(np.uint8)
if self.augmentations:
sample = self.augmentations(sample)
rgbA, depthA, rgbB, depthB, maskA, maskB, prior = sample
rgbA_viz = rgbA.astype(np.uint8)
rgbB_viz = rgbB.astype(np.uint8)
if self.posttransforms:
sample,maskA,maskB = self.posttransforms(sample)
trans_label = np.zeros((3))
rot_label = np.zeros((3))
trans_label = B_in_cam[:3,3] - A_in_cam[:3,3]
trans_label /= self.trans_normalizer # Normalize
A2B_in_cam_rot = np.eye(3)
A2B_in_cam_rot = B_in_cam[:3,:3].dot(A_in_cam[:3,:3].T)
A2B_in_cam_rot = normalize_rotation_matrix(A2B_in_cam_rot)
rod = cv2.Rodrigues(A2B_in_cam_rot)[0].reshape(-1)
rod = rod/self.rot_normalizer
rot_label = rod
if self.mode=='train':
assert (trans_label<=1).all() and (trans_label>=-1).all()
assert (rot_label>=-1).all() and (rot_label<=1).all(),'root:\n{}\nrot_label\n{}\n A2B_in_cam_rot{}\n'.format(self.root,rot_label,A2B_in_cam_rot)
return sample, [trans_label, rot_label], rgbA_viz, rgbB_viz, maskA, maskB
def processPredict(self,A_in_cam,predB,original_size=None):
'''Recover the predicted pose to the true pose
@A_in_cam: 4x4 mat
@predB: trans, rot, ...
return ob pose in cam frame
'''
B_in_cam = np.eye(4)
trans_pred = predB[0]
rot_pred = predB[1]
trans_pred = trans_pred*self.trans_normalizer
B_in_cam[:3,3] = trans_pred+A_in_cam[:3,3]
rot_pred = rot_pred*self.rot_normalizer
A2B_in_cam_rot = cv2.Rodrigues(rot_pred)[0].reshape(3,3)
B_in_cam[:3,:3] = A2B_in_cam_rot.dot(A_in_cam[:3,:3])
return B_in_cam