forked from allie-walker/Natural-product-function
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadInputFiles.py
329 lines (307 loc) · 16.1 KB
/
readInputFiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 8 10:45:34 2021
@author: allis
"""
import cluster_function_prediction_tools as tools
import numpy as np
import readFeatureFiles
import warnings
def checkForHits(feature_vector, pfam_list, resistance_list):
pfam_vector = feature_vector[0,0:len(pfam_list)]
resistance_vector = feature_vector[0,len(pfam_list):len(pfam_list)+len(resistance_list)]
remaining_vector = feature_vector[0,len(pfam_list)+len(resistance_list):feature_vector.shape[1]]
if np.sum(pfam_vector) == 0:
warnings.warn("no pfam features found, make sure to run antiSMASH with --fullhmmer option")
warnings.warn("if antiSMASH was run with fullhmmer then this BGC does not have enough similarity to the training set for useful predictions")
if np.sum(resistance_vector) == 0:
warnings.warn("no resistance features found, double check RGI input file")
if np.sum(remaining_vector) == 0:
warnings.warn("no CDS or smCOG features found, double check antiSMASH input file")
def processSecMetFeature(feature):
subtype = ""
pks_signature = ""
minowa = ""
consensus = ""
stachelhaus = ""
nrpspredictor = ""
pHMM = ""
predicat = ""
sandpuma = ""
for f in feature.qualifiers["sec_met"]:
if "NRPS/PKS subtype" in f:
subtype = f.split(":")[1]
if "Substrate specificity predictions" in f:
if "PKS_AT" in f:
predictions = f.split(":")[4]
pks_signature = predictions.split(",")[0].split()[0]
minowa = predictions.split(",")[1].split()[0]
consensus = predictions.split(",")[2].split()[0]
if "AMP-binding" in f:
predictions = f.split(":")[5]
stachelhaus = predictions.split(",")[0].split()[0]
nrpspredictor = predictions.split(",")[1].split()[0]
pHMM = predictions.split(",")[2].split()[0]
predicat = predictions.split(",")[3].split()[0]
sandpuma = predictions.split(",")[4].split()[0]
return (subtype, pks_signature, minowa, consensus, stachelhaus, nrpspredictor, pHMM, predicat, sandpuma)
def readAntismash4(as_features):
score_cutoff = 20
CDS_motif_list = []
smCOG_list = []
pfam_list = []
CDS_motifs = {}
smCOGs = {}
pfam_counts = {}
pks_nrp_subtypes = {}
pk_monomers_signature = {}
pk_monomers_minowa = {}
pk_monomers_consensus = {}
nrp_monomers_stachelhaus = {}
nrp_monomers_nrps_predictor= {}
nrp_monomers_pHMM = {}
nrp_monomers_predicat = {}
nrp_monomers_sandpuma= {}
for feature in as_features:
subtype = ""
pks_signature = ""
minowa = ""
consensus = ""
stachelhaus = ""
nrpspredictor = ""
pHMM = ""
predicat = ""
sandpuma = ""
if feature.type == "CDS" and "sec_met" in feature.qualifiers:
(subtype, pks_signature, minowa, consensus, stachelhaus, nrpspredictor, pHMM, predicat, sandpuma)= processSecMetFeature(feature)
if subtype != "":
if subtype not in pks_nrp_subtypes:
pks_nrp_subtypes[subtype] = 0
pks_nrp_subtypes[subtype] += 1
if pks_signature != "" and "no_call" not in pks_signature and "N/A" not in pks_signature and "n/a" not in pks_signature:
if pks_signature not in pk_monomers_signature:
pk_monomers_signature[pks_signature] = 0
pk_monomers_signature[pks_signature] += 1
if minowa != "" and "no_call" not in minowa and "N/A" not in minowa and "n/a" not in minowa:
if minowa not in pk_monomers_minowa:
pk_monomers_minowa[minowa] = 0
pk_monomers_minowa[minowa] += 1
if consensus != "" and "no_call" not in consensus and "N/A" not in consensus and "n/a" not in consensus:
if consensus not in pk_monomers_consensus:
pk_monomers_consensus[consensus] = 0
pk_monomers_consensus[consensus] += 1
if stachelhaus != "" and "no_call" not in stachelhaus and "N/A" not in stachelhaus and "n/a" not in stachelhaus:
if stachelhaus not in nrp_monomers_stachelhaus:
nrp_monomers_stachelhaus[stachelhaus] = 0
nrp_monomers_stachelhaus[stachelhaus] += 1
if nrpspredictor != "" and "no_call" not in nrpspredictor and "N/A" not in nrpspredictor and "n/a" not in nrpspredictor:
if nrpspredictor not in nrp_monomers_nrps_predictor:
nrp_monomers_nrps_predictor[nrpspredictor] = 0
nrp_monomers_nrps_predictor[nrpspredictor] += 1
if pHMM != "" and "no_call" not in pHMM and "N/A" not in pHMM and "n/a" not in pHMM:
if pHMM not in nrp_monomers_pHMM:
nrp_monomers_pHMM[pHMM] = 0
nrp_monomers_pHMM[pHMM] += 1
if predicat != "" and "no_call" not in predicat and "N/A" not in predicat and "n/a" not in predicat:
if predicat not in nrp_monomers_predicat:
nrp_monomers_predicat[predicat] = 0
nrp_monomers_predicat[predicat] += 1
if sandpuma != "" and "no_call" not in sandpuma and "N/A" not in sandpuma and "n/a" not in sandpuma:
if sandpuma not in nrp_monomers_sandpuma:
nrp_monomers_sandpuma[sandpuma] = 0
nrp_monomers_sandpuma[sandpuma] += 1
if feature.type == "CDS_motif":
note_text = feature.qualifiers['note'][0]
if "(" not in note_text:
continue
motif_name = note_text[0:note_text.index("(")-1]
if motif_name not in CDS_motif_list:
CDS_motif_list.append(motif_name)
if motif_name not in CDS_motifs:
CDS_motifs[motif_name] = 0
CDS_motifs[motif_name] += 1
elif feature.type == "CDS":
if "note" in feature.qualifiers:
for note in feature.qualifiers["note"]:
if "smCOG" in note:
if ":" not in note or "(" not in note:
continue
smCOG_type = note[note.index(":")+2:note.index("(")-1]
if smCOG_type not in smCOG_list:
smCOG_list.append(smCOG_type)
if smCOG_type not in smCOGs:
smCOGs[smCOG_type] = 0
smCOGs[smCOG_type] += 1
elif feature.type == "PFAM_domain":
score = float(feature.qualifiers["score"][0])
if score <score_cutoff:
continue
domain_description = feature.qualifiers["description"][0]
if domain_description not in pfam_list:
pfam_list.append(domain_description)
if domain_description not in pfam_counts:
pfam_counts[domain_description] = 0
pfam_counts[domain_description] += 1
return (pfam_counts, smCOGs, CDS_motifs, pks_nrp_subtypes, pk_monomers_signature, pk_monomers_minowa, \
pk_monomers_consensus, nrp_monomers_stachelhaus, nrp_monomers_nrps_predictor, nrp_monomers_pHMM, nrp_monomers_predicat, nrp_monomers_sandpuma)
def readAntismash5(as_features):
score_cutoff = 20
CDS_motifs = {}
smCOGs = {}
pfam_counts = {}
pk_monomers_consensus = {}
for feature in as_features:
consensus = ""
if feature.type == "aSDomain":
if "specificity" not in feature.qualifiers:
continue
for f in feature.qualifiers["specificity"]:
if "consensus" in f:
consensus = f.split(":")[1].replace('"','')
if consensus != "" and "no_call" not in consensus and "N/A" not in consensus and "n/a" not in consensus:
if consensus not in pk_monomers_consensus:
pk_monomers_consensus[consensus] = 0
pk_monomers_consensus[consensus] += 1
if feature.type == "CDS_motif":
if 'label' not in feature.qualifiers: #this happens for ripp sequences
continue
motif_name = feature.qualifiers['label'][0]
if motif_name not in CDS_motifs:
CDS_motifs[motif_name] =0
CDS_motifs[motif_name] += 1
elif feature.type == "CDS":
if "gene_functions" in feature.qualifiers:
for note in feature.qualifiers["gene_functions"]:
if "SMCOG" in note:
if ":" not in note or "(" not in note:
continue
smCOG_type = note[note.index(":")+2:note.rfind("(")-1]
if smCOG_type not in smCOGs:
smCOGs[smCOG_type] = 0
smCOGs[smCOG_type] += 1
elif feature.type == "PFAM_domain":
score = float(feature.qualifiers["score"][0])
if score <score_cutoff:
continue
domain_description = feature.qualifiers["description"][0]
pfam_id = feature.qualifiers["db_xref"][0]
pfam_id = pfam_id[pfam_id.find(" ")+1:len(pfam_id)]
if domain_description not in pfam_counts:
pfam_counts[domain_description] = 0
pfam_counts[domain_description] += 1
return (pfam_counts, CDS_motifs, smCOGs, pk_monomers_consensus)
def readRGIFile3(rgi_infile):
e_value_threshold = 0.1
resistance_genes = {}
resistance_genes_list = []
for line in rgi_infile:
if "ORF_ID" in line:
continue
entries = line.split("\t")
e_value = float(entries[7])
if e_value > e_value_threshold:
continue
best_hit = entries[8]
hit_names = entries[11]
if best_hit not in resistance_genes_list:
resistance_genes_list.append(best_hit)
if best_hit not in resistance_genes:
resistance_genes[best_hit] = 0
resistance_genes[best_hit] += 1
rgi_infile.close()
return resistance_genes
def readRGIFile5(rgi_infile):
bit_score_threshold = 40
e_value_threshold = 0.1
resistance_genes = {}
use_bit_score = True
for line in rgi_infile:
if "ORF_ID" in line:
if line.split("\t")[7] == "Best_Hit_evalue":
warnings.warn('training set was generated using bit scores but RGI output has e-values, will use e-value threshold but this could increase error in predictions')
use_bit_score = False
continue
entries = line.split("\t")
bit_score = float(entries[7])
if use_bit_score:
if bit_score < bit_score_threshold:
continue
elif bit_score > e_value_threshold:
continue
best_hit = entries[8]
if best_hit not in resistance_genes:
resistance_genes[best_hit] = 0
resistance_genes[best_hit] += 1
rgi_infile.close()
return resistance_genes
def readInputFiles(as_features, as_version, rgi_infile, rgi_version, training_features, data_path, test_SSN_matrix):
CDS_motifs = {}
smCOGs = {}
pfam_counts = {}
pks_nrp_subtypes = {}
pk_monomers_signature = {}
pk_monomers_minowa = {}
pk_monomers_consensus = {}
nrp_monomers_stachelhaus = {}
nrp_monomers_nrps_predictor= {}
nrp_monomers_pHMM = {}
nrp_monomers_predicat = {}
nrp_monomers_sandpuma= {}
try:
used_pks_nrps_type_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pks_nrps_type_list.txt")
used_pk_signature_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pk_signature_list.txt")
used_pk_minowa_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pk_minowa_list.txt")
used_pk_consensus_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pk_consensus_list.txt")
used_nrp_stachelhaus_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/nrp_stachelhaus_list.txt")
used_nrp_nrps_predictor_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/nrp_nrpspredictor_list.txt")
used_nrp_pHMM_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/nrp_pHMM_list.txt")
used_nrp_predicat_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/nrp_predicat_list.txt")
used_nrp_sandpuma_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/nrp_sandpuma_list.txt")
if as_version == 4:
used_pfam_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/PFAM_list.txt")
used_CDS_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CDS_motifs_list.txt")
used_smCOG_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/SMCOG_list.txt")
if as_version == 5:
used_pfam_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pfam_list5.txt")
used_smCOG_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/smCOG_list5.txt")
used_CDS_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CDS_motifs_list5.txt")
used_pk_consensus_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/pk_nrp_consensus_list5.txt")
if rgi_version == 3:
used_resistance_genes_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CARD_gene_list.txt")
else:
used_resistance_genes_list = readFeatureFiles.readFeatureList(data_path+"feature_matrices/CARD5_gene_list.txt")
except:
print("did not find file containing training data, please keep script located in directory downloaded from github")
exit()
if as_version == 4:
(pfam_counts, smCOGs, CDS_motifs, pks_nrp_subtypes, pk_monomers_signature, pk_monomers_minowa, \
pk_monomers_consensus, nrp_monomers_stachelhaus, nrp_monomers_nrps_predictor, nrp_monomers_pHMM, nrp_monomers_predicat, nrp_monomers_sandpuma) = readAntismash4(as_features)
else:
(pfam_counts, CDS_motifs, smCOGs, pk_monomers_consensus) = readAntismash5(as_features)
if rgi_version == 3:
resistance_genes = readRGIFile3(rgi_infile)
else:
resistance_genes = readRGIFile5(rgi_infile)
test_features = np.zeros((1, training_features.shape[1]))
i = 0
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pfam_counts, used_pfam_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, resistance_genes, used_resistance_genes_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, smCOGs, used_smCOG_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, CDS_motifs, used_CDS_list)
if len(test_SSN_matrix) > 0:
test_features[0,i:i+test_SSN_matrix.shape[1]] = test_SSN_matrix
i += test_SSN_matrix.shape[1]
if as_version ==4:
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pks_nrp_subtypes, used_pks_nrps_type_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pk_monomers_signature, used_pk_signature_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pk_monomers_minowa, used_pk_minowa_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pk_monomers_consensus, used_pk_consensus_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, nrp_monomers_stachelhaus, used_nrp_stachelhaus_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, nrp_monomers_nrps_predictor, used_nrp_nrps_predictor_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, nrp_monomers_pHMM, used_nrp_pHMM_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, nrp_monomers_predicat, used_nrp_predicat_list)
(test_features, i) = tools.addToFeatureMatrix(test_features, i, nrp_monomers_sandpuma, used_nrp_sandpuma_list)
else:
(test_features, i) = tools.addToFeatureMatrix(test_features, i, pk_monomers_consensus, used_pk_consensus_list)
checkForHits(test_features, used_pfam_list, used_resistance_genes_list)
return test_features