forked from HiKapok/X-Detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xdet_v2_resnet_train.py
411 lines (351 loc) · 21.3 KB
/
xdet_v2_resnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright 2018 Changan Wang
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
#from scipy.misc import imread, imsave, imshow, imresize
import tensorflow as tf
from net import xdet_body_v2
from utility import train_helper
from dataset import dataset_factory
from preprocessing import preprocessing_factory
from preprocessing import anchor_manipulator
# hardware related configuration
tf.app.flags.DEFINE_integer(
'num_readers', 16,
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 48,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer(
'num_cpu_threads', 0,
'The number of cpu cores used to train.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', '../PASCAL/VOC_TF/VOC0712TF/',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_string(
'dataset_name', 'pascalvoc_0712', 'The name of the dataset to load.')
tf.app.flags.DEFINE_integer(
'num_classes', 21, 'Number of classes to use in the dataset.')
tf.app.flags.DEFINE_string(
'dataset_split_name', 'train', 'The name of the train/test split.')
tf.app.flags.DEFINE_string(
'model_dir', './logs_v2/',
'The directory where the model will be stored.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are print.')
tf.app.flags.DEFINE_integer(
'save_summary_steps', 500,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_checkpoints_secs', 7200,
'The frequency with which the model is saved, in seconds.')
# model related configuration
tf.app.flags.DEFINE_integer(
'train_image_size', 304,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'resnet_size', 50,
'The size of the ResNet model to use.')
tf.app.flags.DEFINE_integer(
'train_epochs', None,
'The number of epochs to use for training.')
tf.app.flags.DEFINE_integer(
'batch_size', 16,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_string(
'data_format', 'channels_first', # 'channels_first' or 'channels_last'
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
tf.app.flags.DEFINE_float(
'negative_ratio', 3., 'Negative ratio in the loss function.')
tf.app.flags.DEFINE_float(
'match_threshold', 0.5, 'Matching threshold in the loss function.')#0.6
tf.app.flags.DEFINE_float(
'neg_threshold', 0.5, 'Matching threshold for the negtive examples in the loss function.')#0.4
# optimizer related configuration
tf.app.flags.DEFINE_float(
'weight_decay', 0.0002, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('learning_rate', 0.002, 'Initial learning rate.')#0.001
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.0001,
'The minimal end learning rate used by a polynomial decay learning rate.')
# for learning rate exponential_decay
tf.app.flags.DEFINE_float(
'learning_rate_decay_factor', 0.96, 'Learning rate decay factor.')
tf.app.flags.DEFINE_float(
'decay_steps', 1000,
'Number of epochs after which learning rate decays.')
# for learning rate piecewise_constant decay
tf.app.flags.DEFINE_string(
'decay_boundaries', '70000, 90000',
'Learning rate decay boundaries by global_step (comma-separated list).')
tf.app.flags.DEFINE_string(
'lr_decay_factors', '1, 0.8, 0.1',
'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './model/resnet50',#None,
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', '',
'Model scope in the checkpoint. None if the same as the trained model.')
tf.app.flags.DEFINE_string(
'model_scope', 'xdet_resnet',
'Model scope name used to replace the name_scope in checkpoint.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_scopes', 'xdet_resnet/xdet_head, xdet_resnet/xdet_multi_path, xdet_resnet/xdet_additional_conv',#None
'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.')
tf.app.flags.DEFINE_boolean(
'ignore_missing_vars', True,
'When restoring a checkpoint would ignore missing variables.')
tf.app.flags.DEFINE_boolean(
'run_on_cloud', True,
'Wether we will train on cloud (pre-trained model will be placed in the "data_dir/cloud_checkpoint_path").')
tf.app.flags.DEFINE_string(
'cloud_checkpoint_path', 'resnet50',
'The path to a checkpoint from which to fine-tune.')
FLAGS = tf.app.flags.FLAGS
def input_pipeline():
image_preprocessing_fn = lambda image_, shape_, glabels_, gbboxes_ : preprocessing_factory.get_preprocessing(
'xdet_resnet', is_training=True)(image_, glabels_, gbboxes_, out_shape=[FLAGS.train_image_size] * 2, data_format=('NCHW' if FLAGS.data_format=='channels_first' else 'NHWC'))
anchor_creator = anchor_manipulator.AnchorCreator([FLAGS.train_image_size] * 2,
layers_shapes = [(38, 38)],
anchor_scales = [[0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]],
extra_anchor_scales = [[0.1]],
anchor_ratios = [[1., 2., 3., .5, 0.3333]],
layer_steps = [8])
def input_fn():
all_anchors, num_anchors_list = anchor_creator.get_all_anchors()
anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(all_anchors,
num_classes = FLAGS.num_classes,
allowed_borders = [0.05],
positive_threshold = FLAGS.match_threshold,
ignore_threshold = FLAGS.neg_threshold,
prior_scaling=[0.1, 0.1, 0.2, 0.2])
list_from_batch, _ = dataset_factory.get_dataset(FLAGS.dataset_name,
FLAGS.dataset_split_name,
FLAGS.data_dir,
image_preprocessing_fn,
file_pattern = None,
reader = None,
batch_size = FLAGS.batch_size,
num_readers = FLAGS.num_readers,
num_preprocessing_threads = FLAGS.num_preprocessing_threads,
num_epochs = FLAGS.train_epochs,
anchor_encoder = anchor_encoder_decoder.encode_all_anchors)
return list_from_batch[-1], {'targets': list_from_batch[:-1],
'decode_fn': lambda pred : anchor_encoder_decoder.decode_all_anchors([pred])[0],
'num_anchors_list': num_anchors_list}
return input_fn
def modified_smooth_l1(bbox_pred, bbox_targets, bbox_inside_weights = 1., bbox_outside_weights = 1., sigma = 1.):
"""
ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2
|x| - 0.5 / sigma^2, otherwise
"""
sigma2 = sigma * sigma
inside_mul = tf.multiply(bbox_inside_weights, tf.subtract(bbox_pred, bbox_targets))
smooth_l1_sign = tf.cast(tf.less(tf.abs(inside_mul), 1.0 / sigma2), tf.float32)
smooth_l1_option1 = tf.multiply(tf.multiply(inside_mul, inside_mul), 0.5 * sigma2)
smooth_l1_option2 = tf.subtract(tf.abs(inside_mul), 0.5 / sigma2)
smooth_l1_result = tf.add(tf.multiply(smooth_l1_option1, smooth_l1_sign),
tf.multiply(smooth_l1_option2, tf.abs(tf.subtract(smooth_l1_sign, 1.0))))
outside_mul = tf.multiply(bbox_outside_weights, smooth_l1_result)
return outside_mul
def xdet_model_fn(features, labels, mode, params):
"""Our model_fn for ResNet to be used with our Estimator."""
num_anchors_list = labels['num_anchors_list']
num_feature_layers = len(num_anchors_list)
shape = labels['targets'][-1]
glabels = labels['targets'][:num_feature_layers][0]
gtargets = labels['targets'][num_feature_layers : 2 * num_feature_layers][0]
gscores = labels['targets'][2 * num_feature_layers : 3 * num_feature_layers][0]
with tf.variable_scope(params['model_scope'], default_name = None, values = [features], reuse=tf.AUTO_REUSE):
backbone = xdet_body_v2.xdet_resnet_v2(params['resnet_size'], params['data_format'])
body_cls_output, body_regress_output = backbone(inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
cls_pred, location_pred = xdet_body_v2.xdet_head(body_cls_output, body_regress_output, params['num_classes'], num_anchors_list[0], (mode == tf.estimator.ModeKeys.TRAIN), data_format=params['data_format'])
if params['data_format'] == 'channels_first':
cls_pred = tf.transpose(cls_pred, [0, 2, 3, 1])
location_pred = tf.transpose(location_pred, [0, 2, 3, 1])
bboxes_pred = labels['decode_fn'](location_pred)#(tf.reshape(location_pred, tf.shape(location_pred).as_list()[0:-1] + [-1, 4]))
cls_pred = tf.reshape(cls_pred, [-1, params['num_classes']])
location_pred = tf.reshape(location_pred, [-1, 4])
glabels = tf.reshape(glabels, [-1])
gscores = tf.reshape(gscores, [-1])
gtargets = tf.reshape(gtargets, [-1, 4])
# raw mask for positive > 0.5, and for negetive < 0.3
# each positive examples has one label
positive_mask = glabels > 0#tf.logical_and(glabels > 0, gscores > params['match_threshold'])
fpositive_mask = tf.cast(positive_mask, tf.float32)
n_positives = tf.reduce_sum(fpositive_mask)
batch_glabels = tf.reshape(glabels, [tf.shape(features)[0], -1])
batch_n_positives = tf.count_nonzero(batch_glabels, -1)
batch_negtive_mask = tf.equal(batch_glabels, 0)
batch_n_negtives = tf.count_nonzero(batch_negtive_mask, -1)
batch_n_neg_select = tf.cast(params['negative_ratio'] * tf.cast(batch_n_positives, tf.float32), tf.int32)
batch_n_neg_select = tf.minimum(batch_n_neg_select, tf.cast(batch_n_negtives, tf.int32))
# hard negative mining for classification
predictions_for_bg = tf.nn.softmax(tf.reshape(cls_pred, [tf.shape(features)[0], -1, params['num_classes']]))[:, :, 0]
prob_for_negtives = tf.where(batch_negtive_mask,
0. - predictions_for_bg,
# ignore all the positives
0. - tf.ones_like(predictions_for_bg))
topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=tf.shape(prob_for_negtives)[1])
score_at_k = tf.gather_nd(topk_prob_for_bg, tf.stack([tf.range(tf.shape(features)[0]), batch_n_neg_select - 1], axis=-1))
selected_neg_mask = prob_for_negtives >= tf.expand_dims(score_at_k, axis=-1)
negtive_mask = tf.reshape(tf.logical_and(batch_negtive_mask, selected_neg_mask), [-1])#tf.logical_and(tf.equal(glabels, 0), gscores > 0.)
#negtive_mask = tf.logical_and(tf.logical_and(tf.logical_not(positive_mask), gscores < params['neg_threshold']), gscores > 0.)
#negtive_mask = tf.logical_and(gscores < params['neg_threshold'], tf.logical_not(positive_mask))
# # random select negtive examples for classification
# selected_neg_mask = tf.random_uniform(tf.shape(gscores), minval=0, maxval=1.) < tf.where(
# tf.greater(n_negtives, 0),
# tf.divide(tf.cast(n_neg_to_select, tf.float32), n_negtives),
# tf.zeros_like(tf.cast(n_neg_to_select, tf.float32)),
# name='rand_select_negtive')
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(negtive_mask, positive_mask))
total_examples = tf.reduce_sum(tf.cast(final_mask, tf.float32))
# add mask for glabels and cls_pred here
glabels = tf.boolean_mask(tf.clip_by_value(glabels, 0, params['num_classes']), tf.stop_gradient(final_mask))
cls_pred = tf.boolean_mask(cls_pred, tf.stop_gradient(final_mask))
location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
gtargets = tf.boolean_mask(gtargets, tf.stop_gradient(positive_mask))
predictions = {
'classes': tf.argmax(cls_pred, axis=-1),
'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1),
'bboxes_predict': tf.reshape(bboxes_pred, [-1, 4]) }
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
cross_entropy = tf.cond(n_positives > 0., lambda: tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred), lambda: 0.)
#cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=glabels, logits=cls_pred)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy_loss')
tf.summary.scalar('cross_entropy_loss', cross_entropy)
loc_loss = tf.cond(n_positives > 0., lambda: modified_smooth_l1(location_pred, tf.stop_gradient(gtargets), sigma=1.), lambda: tf.zeros_like(location_pred))
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1))
loc_loss = tf.identity(loc_loss, name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
loss = 1.2 * (cross_entropy + loc_loss) + params['weight_decay'] * tf.add_n(
[tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name])
total_loss = tf.identity(loss, name='total_loss')
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[int(_) for _ in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype))
# Create a tensor named learning_rate for logging purposes.
tf.identity(truncated_learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
cls_accuracy = tf.metrics.accuracy(glabels, predictions['classes'])
metrics = {'cls_accuracy': cls_accuracy}
# Create a tensor named train_accuracy for logging purposes.
tf.identity(cls_accuracy[1], name='cls_accuracy')
tf.summary.scalar('cls_accuracy', cls_accuracy[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics,
scaffold = tf.train.Scaffold(init_fn=train_helper.get_init_fn_for_scaffold(FLAGS)))
def parse_comma_list(args):
return [float(s.strip()) for s in args.split(',')]
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction = FLAGS.gpu_memory_fraction)
config = tf.ConfigProto(allow_soft_placement = True, log_device_placement = False, intra_op_parallelism_threads = FLAGS.num_cpu_threads, inter_op_parallelism_threads = FLAGS.num_cpu_threads, gpu_options = gpu_options)
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(
save_checkpoints_secs=FLAGS.save_checkpoints_secs).replace(
save_checkpoints_steps=None).replace(
save_summary_steps=FLAGS.save_summary_steps).replace(
keep_checkpoint_max=5).replace(
log_step_count_steps=FLAGS.log_every_n_steps).replace(
session_config=config)
xdetector = tf.estimator.Estimator(
model_fn=xdet_model_fn, model_dir=FLAGS.model_dir, config=run_config,
params={
'resnet_size': FLAGS.resnet_size,
'data_format': FLAGS.data_format,
'model_scope': FLAGS.model_scope,
'num_classes': FLAGS.num_classes,
'negative_ratio': FLAGS.negative_ratio,
'match_threshold': FLAGS.match_threshold,
'neg_threshold': FLAGS.neg_threshold,
'weight_decay': FLAGS.weight_decay,
'momentum': FLAGS.momentum,
'learning_rate': FLAGS.learning_rate,
'end_learning_rate': FLAGS.end_learning_rate,
'learning_rate_decay_factor': FLAGS.learning_rate_decay_factor,
'decay_steps': FLAGS.decay_steps,
'decay_boundaries': parse_comma_list(FLAGS.decay_boundaries),
'lr_decay_factors': parse_comma_list(FLAGS.lr_decay_factors),
})
tensors_to_log = {
'lr': 'learning_rate',
'ce_loss': 'cross_entropy_loss',
'loc_loss': 'location_loss',
'total_loss': 'total_loss',
'cls_acc': 'cls_accuracy',
}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps)
print('Starting a training cycle.')
xdetector.train(input_fn=input_pipeline(), hooks=[logging_hook])
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
# 0.5, 0.5
# INFO:tensorflow:loc_loss = 0.675493, total_loss = 3.02218, ce_loss = 0.556885, cls_acc = 0.803118, lr = 0.002 (14.741 sec)
# 2018-05-06 17:15:47,413 INFO (MainThread-421) loc_loss = 0.675493, total_loss = 3.02218, ce_loss = 0.556885, cls_acc = 0.803118, lr = 0.002 (14.741 sec)
# INFO:tensorflow:step = 119401, loss = 1.61156 (163.394 sec)
# 2018-05-08 19:01:31,997 INFO (MainThread-421) step = 119401, loss = 1.61156 (163.394 sec)
# INFO:tensorflow:global_step/sec: 0.673582
# 2018-05-08 19:01:46,842 INFO (MainThread-421) global_step/sec: 0.673582
# INFO:tensorflow:loc_loss = 0.315306, total_loss = 1.64389, ce_loss = 0.235289, cls_acc = 0.873122, lr = 0.0002 (14.846 sec)
# 2018-05-08 19:01:46,843 INFO (MainThread-421) loc_loss = 0.315306, total_loss = 1.64389, ce_loss = 0.235289, cls_acc = 0.873122, lr = 0.0002 (14.846 sec)
# INFO:tensorflow:global_step/sec: 0.726808
# 2018-05-08 19:02:00,601 INFO (MainThread-421) global_step/sec: 0.726808
# INFO:tensorflow:loc_loss = 0.423853, total_loss = 1.852, ce_loss = 0.300177, cls_acc = 0.873125, lr = 0.0002 (13.759 sec)
# 2018-05-08 19:02:00,602 INFO (MainThread-421) loc_loss = 0.423853, total_loss = 1.852, ce_loss = 0.300177, cls_acc = 0.873125, lr = 0.0002 (13.759 sec)
# INFO:tensorflow:global_step/sec: 0.615656
# 2018-05-08 19:02:16,844 INFO (MainThread-421) global_step/sec: 0.615656
# INFO:tensorflow:loc_loss = 0.218686, total_loss = 1.50142, ce_loss = 0.213196, cls_acc = 0.873128, lr = 0.0002 (16.243 sec)
# 2018-05-08 19:02:16,844 INFO (MainThread-421) loc_loss = 0.218686, total_loss = 1.50142, ce_loss = 0.213196, cls_acc = 0.873128, lr = 0.0002 (16.243 sec)