forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_custom_ops.py
167 lines (128 loc) · 5.23 KB
/
test_custom_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Owner(s): ["module: onnx"]
import unittest
import numpy as np
import onnx
from test_pytorch_onnx_caffe2 import do_export
from test_pytorch_onnx_onnxruntime import run_model_test
import caffe2.python.onnx.backend as c2
import torch
import torch.utils.cpp_extension
from torch.onnx.symbolic_helper import _unimplemented
class TestCustomOps(unittest.TestCase):
def test_custom_add(self):
op_source = """
#include <torch/script.h>
torch::Tensor custom_add(torch::Tensor self, torch::Tensor other) {
return self + other;
}
static auto registry =
torch::RegisterOperators("custom_namespace::custom_add", &custom_add);
"""
torch.utils.cpp_extension.load_inline(
name="custom_add",
cpp_sources=op_source,
is_python_module=False,
verbose=True,
)
class CustomAddModel(torch.nn.Module):
def forward(self, a, b):
return torch.ops.custom_namespace.custom_add(a, b)
def symbolic_custom_add(g, self, other):
return g.op("Add", self, other)
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic(
"custom_namespace::custom_add", symbolic_custom_add, 9
)
x = torch.randn(2, 3, 4, requires_grad=False)
y = torch.randn(2, 3, 4, requires_grad=False)
model = CustomAddModel()
onnxir, _ = do_export(model, (x, y), opset_version=11)
onnx_model = onnx.ModelProto.FromString(onnxir)
prepared = c2.prepare(onnx_model)
caffe2_out = prepared.run(inputs=[x.cpu().numpy(), y.cpu().numpy()])
np.testing.assert_array_equal(caffe2_out[0], model(x, y).cpu().numpy())
class TestCustomAutogradFunction(unittest.TestCase):
opset_version = 9
keep_initializers_as_inputs = False
onnx_shape_inference = True
def test_symbolic(self):
class MyClip(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scalar):
ctx.save_for_backward(input)
return input.clamp(min=scalar)
@staticmethod
def symbolic(g, input, scalar):
return g.op("Clip", input, min_f=scalar)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.clip = MyClip.apply
def forward(self, x):
h = self.clip(x, 2)
return h
x = torch.randn(2, 3, 4, requires_grad=True)
model = MyModule()
run_model_test(self, model, input=(x,))
def test_register_custom_op(self):
class MyClip(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scalar):
ctx.save_for_backward(input)
return input.clamp(min=scalar)
class MyRelu(torch.autograd.Function):
@staticmethod
def forward(ctx, input):
ctx.save_for_backward(input)
return input.clamp(min=0)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.clip = MyClip.apply
self.relu = MyRelu.apply
def forward(self, x):
h = self.clip(x, 2)
h = self.relu(h)
return h
def symbolic_pythonop(ctx: torch.onnx.SymbolicContext, g, *args, **kwargs):
n = ctx.cur_node
name = kwargs["name"]
if name == "MyClip":
return g.op("Clip", args[0], min_f=args[1], outputs=n.outputsSize())
elif name == "MyRelu":
return g.op("Relu", args[0], outputs=n.outputsSize())
else:
return _unimplemented("prim::PythonOp", "unknown node kind: " + name)
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic("prim::PythonOp", symbolic_pythonop, 1)
x = torch.randn(2, 3, 4, requires_grad=True)
model = MyModule()
run_model_test(self, model, input=(x,))
class TestExportAsContribOps(unittest.TestCase):
opset_version = 14
keep_initializers_as_inputs = False
onnx_shape_inference = True
def test_contrib_op_with_loop(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.gelu = torch.nn.GELU(approximate="none")
def forward(self, x):
res = []
res2 = []
for i in range(x.size(0)):
if len(res) > 0:
res2.append(res[0])
else:
res2.append(self.gelu(x[0]))
res.append(x[0])
return torch.stack(res), torch.stack(res2)
def symbolic_custom_gelu(g, input, approximate):
return g.op("com.microsoft::Gelu", input).setType(input.type())
from torch.onnx import register_custom_op_symbolic
register_custom_op_symbolic("::gelu", symbolic_custom_gelu, 1)
x = torch.randn(3, 3, 4, requires_grad=True)
model = torch.jit.script(M())
run_model_test(self, model, input=(x,))
if __name__ == "__main__":
unittest.main()