forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bisect_percentile_op.h
165 lines (148 loc) · 4.91 KB
/
bisect_percentile_op.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#ifndef CAFFE2_OPERATORS_BISECT_PERCENTILE_OP_H_
#define CAFFE2_OPERATORS_BISECT_PERCENTILE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <class Context>
class BisectPercentileOp final : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit BisectPercentileOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
pct_raw_(OperatorBase::GetRepeatedArgument<float>(
"percentile_raw",
vector<float>{})),
pct_mapping_(OperatorBase::GetRepeatedArgument<float>(
"percentile_mapping",
vector<float>{})),
pct_lower_(OperatorBase::GetRepeatedArgument<float>(
"percentile_lower",
vector<float>{})),
pct_upper_(OperatorBase::GetRepeatedArgument<float>(
"percentile_upper",
vector<float>{})),
pct_lens_(
OperatorBase::GetRepeatedArgument<int>("lengths", vector<int>{})) {
CAFFE_ENFORCE_EQ(
pct_raw_.size(),
pct_mapping_.size(),
"Feature (raw) data and percentile value dimension should match.");
CAFFE_ENFORCE_EQ(
pct_raw_.size(),
pct_lower_.size(),
"Feature (raw) data and lower bound dimension should match.");
CAFFE_ENFORCE_EQ(
pct_raw_.size(),
pct_upper_.size(),
"Feature (raw) data and upper bound dimension should match.");
n_features = pct_lens_.size();
index.resize(n_features + 1);
index[0] = 0;
for (int i = 1; i <= n_features; ++i) {
index[i] = index[i - 1] + pct_lens_[i - 1];
}
CAFFE_ENFORCE_EQ(
index[n_features], // The sum of lengths_data
pct_raw_.size(),
"Sum of lengths should be equal to the total number of percentile "
"mapping data samples");
}
bool RunOnDevice() override {
// Input
const auto& raw = Input(RAW);
CAFFE_ENFORCE_EQ(raw.dim(), 2);
const auto batch_size = raw.size(0);
const auto num_features = raw.size(1);
CAFFE_ENFORCE_EQ(num_features, pct_lens_.size());
const float *const raw_data = raw.template data<float>();
// Output
auto *const pct = Output(PCT, raw.sizes(), at::dtype<float>());
float *const pct_output = pct->template mutable_data<float>();
// Compute percentile for each raw feature value
int feature_start_index = 0;
int feature_length = 0;
int cur_index = 0;
for (const auto i : c10::irange(num_features)) {
cur_index = i;
feature_start_index = index[i];
feature_length = pct_lens_[i];
for (const auto j : c10::irange(batch_size)) {
(void)j; // Suppress unused variable warning
pct_output[cur_index] = compute_percentile(
pct_raw_.begin() + feature_start_index,
pct_mapping_.begin() + feature_start_index,
pct_lower_.begin() + feature_start_index,
pct_upper_.begin() + feature_start_index,
feature_length,
raw_data[cur_index]);
cur_index += num_features;
}
}
return true;
}
protected:
INPUT_TAGS(RAW);
OUTPUT_TAGS(PCT);
private:
int n_features;
vector<float> pct_raw_;
vector<float> pct_mapping_;
vector<float> pct_lower_;
vector<float> pct_upper_;
vector<int> pct_lens_;
vector<int> index;
vector<std::map<float, float>> fast_pct;
static constexpr float kEPSILON = 1e-10;
int64_t binary_search(
const std::vector<float>::iterator& data,
int64_t lo,
int64_t hi,
const float val) {
while (lo < hi) {
const auto mid = lo + (hi - lo) / 2;
const bool low_cond = (data[mid] <= val);
const bool high_cond = (val < data[mid + 1]);
if (low_cond && high_cond) {
return mid;
} else if (!low_cond) {
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return lo;
}
float compute_percentile(
const std::vector<float>::iterator& pct_raw_it,
const std::vector<float>::iterator& pct_mapping_it,
const std::vector<float>::iterator& pct_lower_it,
const std::vector<float>::iterator& pct_upper_it,
const int size,
const float val) {
// Corner cases where no interpolation is needed.
if (val < pct_raw_it[0]) {
return 0.;
}
if (val > pct_raw_it[size - 1]) {
return 1.;
}
// Interpolation by binary search
const auto k = binary_search(pct_raw_it, 0, size - 1, val);
if (pct_raw_it[k] == val) {
// Exact match
return pct_mapping_it[k];
} else {
// interpolation
const float w = (val - pct_raw_it[k]) /
(pct_raw_it[k + 1] - pct_raw_it[k] + kEPSILON);
return (1 - w) * pct_upper_it[k] + w * pct_lower_it[k + 1];
}
}
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_BISECT_PERCENTILE_OP_H_