diff --git a/.github/workflows/pr.yaml b/.github/workflows/pr.yaml index d44f064aa14..46672e37048 100644 --- a/.github/workflows/pr.yaml +++ b/.github/workflows/pr.yaml @@ -30,7 +30,10 @@ jobs: scopes: | ui weave + weave_ts weave_query + app + dev wip: false requireScope: true validateSingleCommit: false diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index 64b764b99d2..0605b0534df 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -240,6 +240,7 @@ jobs: 'mistral1', 'notdiamond', 'openai', + 'scorers_tests', 'pandas-test', ] fail-fast: false @@ -292,6 +293,9 @@ jobs: WF_CLICKHOUSE_HOST: weave_clickhouse WEAVE_SERVER_DISABLE_ECOSYSTEM: 1 GOOGLE_API_KEY: ${{ secrets.GOOGLE_API_KEY }} + ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }} + MISTRAL_API_KEY: ${{ secrets.MISTRAL_API_KEY }} + OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }} run: | nox -e "tests-${{ matrix.python-version-major }}.${{ matrix.python-version-minor }}(shard='${{ matrix.nox-shard }}')" trace-tests-matrix-check: # This job does nothing and is only used for the branch protection diff --git a/.github/workflows/weave-node-tests.yaml b/.github/workflows/weave-node-tests.yaml new file mode 100644 index 00000000000..ad401503879 --- /dev/null +++ b/.github/workflows/weave-node-tests.yaml @@ -0,0 +1,32 @@ +name: Node.js Tests + +on: + push: + +jobs: + test: + runs-on: ubuntu-latest + strategy: + matrix: + node-version: [20] + steps: + - uses: actions/checkout@v4 + - name: Install pnpm + uses: pnpm/action-setup@v4 + with: + version: 9 + run_install: false + - name: Use Node.js ${{ matrix.node-version }} + uses: actions/setup-node@v4 + with: + node-version: ${{ matrix.node-version }} + cache: 'pnpm' + cache-dependency-path: sdks/node/pnpm-lock.yaml + - name: Install dependencies + run: pnpm install + working-directory: sdks/node + - name: Run tests + run: pnpm test + working-directory: sdks/node + env: + WANDB_API_KEY: ${{ secrets.WANDB_API_KEY }} diff --git a/.gitignore b/.gitignore index 866ec62f011..0f6040766e8 100644 --- a/.gitignore +++ b/.gitignore @@ -18,3 +18,4 @@ gha-creds-*.json .nox *.log */file::memory:?cache=shared +weave/trace_server/model_providers \ No newline at end of file diff --git a/docs/docs/guides/core-types/media.md b/docs/docs/guides/core-types/media.md index 9d64a0f5e08..09a0ef66f49 100644 --- a/docs/docs/guides/core-types/media.md +++ b/docs/docs/guides/core-types/media.md @@ -72,3 +72,5 @@ make_audio_file_streaming("Hello, how are you?") This audio will be logged to weave and automatically displayed in the UI, with an audio player. The player can be expanded to view the raw audio waveform, in addition to a download button. ![Screenshot of audio trace view](imgs/audio-trace.png) + +Try our cookbook for [Audio Logging](/reference/gen_notebooks/audio_with_weave) or
Open In Colab
Open in Colab
. The cookbook also includes an advanced example of a Real Time Audio API based assistant integrated with Weave. diff --git a/docs/docs/guides/core-types/prompts.md b/docs/docs/guides/core-types/prompts.md new file mode 100644 index 00000000000..9a2d50ecf2b --- /dev/null +++ b/docs/docs/guides/core-types/prompts.md @@ -0,0 +1,373 @@ +# Prompts + +Creating, evaluating, and refining prompts is a core activity for AI engineers. +Small changes to a prompt can have big impacts on your application's behavior. +Weave lets you create prompts, save and retrieve them, and evolve them over time. +Some of the benefits of Weave's prompt management system are: + +- Unopinionated core, with a batteries-included option for rapid development +- Versioning that shows you how a prompt has evolved over time +- The ability to update a prompt in production without redeploying your application +- The ability to evaluate a prompt against many inputs to evaluate performance + +## Getting started + +If you want complete control over how a Prompt is constructed, you can subclass the base class, `weave.Prompt`, `weave.StringPrompt`, or `weave.MessagesPrompt` and implement the corresponding `format` method. When you publish one of these objects with `weave.publish`, it will appear in your Weave project on the "Prompts" page. + +``` +class Prompt(Object): + def format(self, **kwargs: Any) -> Any: + ... + +class StringPrompt(Prompt): + def format(self, **kwargs: Any) -> str: + ... + +class MessagesPrompt(Prompt): + def format(self, **kwargs: Any) -> list: + ... +``` + +Weave also includes a "batteries-included" class called `EasyPrompt` that can be simpler to start with, especially if you are working with APIs that are similar to OpenAI. This document highlights the features you get with EasyPrompt. + +## Constructing prompts + +You can think of the EasyPrompt object as a list of messages with associated roles, optional +placeholder variables, and an optional model configuration. +But constructing a prompt can be as simple as providing a single string: + +```python +import weave + +prompt = weave.EasyPrompt("What's 23 * 42?") +assert prompt[0] == {"role": "user", "content": "What's 23 * 42?"} +``` + +For terseness, the weave library aliases the `EasyPrompt` class to `P`. + +```python +from weave import P +p = P("What's 23 * 42?") +``` + +It is common for a prompt to consist of multiple messages. Each message has an associated `role`. +If the role is omitted, it defaults to `"user"`. + +**Some common roles** + +| Role | Description | +| --------- | -------------------------------------------------------------------------------------------------------------------- | +| system | System prompts provide high level instructions and can be used to set the behavior, knowledge, or persona of the AI. | +| user | Represents input from a human user. (This is the default role.) | +| assistant | Represents the AI's generated replies. Can be used for historical completions or to show examples. | + +For convenience, you can prefix a message string with one of these known roles: + +```python +import weave + +prompt = weave.EasyPrompt("system: Talk like a pirate") +assert prompt[0] == {"role": "system", "content": "Talk like a pirate"} + +# An explicit role parameter takes precedence +prompt = weave.EasyPrompt("system: Talk like a pirate", role="user") +assert prompt[0] == {"role": "user", "content": "system: Talk like a pirate"} + +``` + +Messages can be appended to a prompt one-by-one: + +```python +import weave + +prompt = weave.EasyPrompt() +prompt.append("You are an expert travel consultant.", role="system") +prompt.append("Give me five ideas for top kid-friendly attractions in New Zealand.") +``` + +Or you can append multiple messages at once, either with the `append` method or with the `Prompt` +constructor, which is convenient for constructing a prompt from existing messages. + +```python +import weave + +prompt = weave.EasyPrompt() +prompt.append([ + {"role": "system", "content": "You are an expert travel consultant."}, + "Give me five ideas for top kid-friendly attractions in New Zealand." +]) + +# Same +prompt = weave.EasyPrompt([ + {"role": "system", "content": "You are an expert travel consultant."}, + "Give me five ideas for top kid-friendly attractions in New Zealand." +]) +``` + +The Prompt class is designed to be easily inserted into existing code. +For example, you can quickly wrap it around all of the arguments to the +OpenAI chat completion `create` call including its messages and model +configuration. If you don't wrap the inputs, Weave's integration would still +track all of the call's inputs, but it would not extract them as a separate +versioned object. Having a separate Prompt object allows you to version +the prompt, easily filter calls by that version, etc. + +```python +from weave import init, P +from openai import OpenAI +client = OpenAI() + +# Must specify a target project, otherwise the Weave code is a no-op +# highlight-next-line +init("intro-example") + +# highlight-next-line +response = client.chat.completions.create(P( + model="gpt-4o-mini", + messages=[ + {"role": "user", "content": "What's 23 * 42?"} + ], + temperature=0.7, + max_tokens=64, + top_p=1 +# highlight-next-line +)) +``` + +:::note +Why this works: Weave's OpenAI integration wraps the OpenAI `create` method to make it a Weave Op. +When the Op is executed, the Prompt object in the input will get saved and associated with the Call. +However, it will be replaced with the structure the `create` method expects for the execution of the +underlying function. +::: + +## Parameterizing prompts + +When specifying a prompt, you can include placeholders for values you want to fill in later. These placeholders are called "Parameters". +Parameters are indicated with curly braces. Here's a simple example: + +```python +import weave + +prompt = weave.EasyPrompt("What's {A} + {B}?") +``` + +You will specify values for all of the parameters or "bind" them, when you [use the prompt](#using-prompts). + +The `require` method of Prompt allows you to associate parameters with restrictions that will be checked at bind time to detect programming errors. + +```python +import weave + +prompt = weave.EasyPrompt("What's {A} + 42?") +prompt.require("A", type="int", min=0, max=100) + +prompt = weave.EasyPrompt("system: You are a {profession}") +prompt.require("profession", oneof=('pirate', 'cartoon mouse', 'hungry dragon'), default='pirate') +``` + +## Using prompts + +You use a Prompt by converting it into a list of messages where all template placeholders have been filled in. You can bind a prompt to parameter values with the `bind` method or by simply calling it as a function. Here's an example where the prompt has zero parameters. + +```python +import weave +prompt = weave.EasyPrompt("What's 23 * 42?") +assert prompt() == prompt.bind() == [ + {"role": "user", "content": "What's 23 * 42?"} +] +``` + +If a prompt has parameters, you would specify values for them when you use the prompt. +Parameter values can be passed in as a dictionary or as keyword arguments. + +```python +import weave +prompt = weave.EasyPrompt("What's {A} + {B}?") +assert prompt(A=5, B="10") == prompt({"A": 5, "B": "10"}) +``` + +If any parameters are missing, they will be left unsubstituted in the output. + +Here's a complete example of using a prompt with OpenAI. This example also uses [Weave's OpenAI integration](../integrations/openai.md) to automatically log the prompt and response. + +```python +import weave +from openai import OpenAI +client = OpenAI() + +weave.init("intro-example") +prompt = weave.EasyPrompt() +prompt.append("You will be provided with a tweet, and your task is to classify its sentiment as positive, neutral, or negative.", role="system") +prompt.append("I love {this_thing}!") + +response = client.chat.completions.create( + model="gpt-4o-mini", + messages=prompt(this_thing="Weave"), + temperature=0.7, + max_tokens=64, + top_p=1 +) +``` + +## Publishing to server + +Prompt are a type of [Weave object](../tracking/objects.md), and use the same methods for publishing to the Weave server. +You must specify a destination project name with `weave.init` before you can publish a prompt. + +```python +import weave + +prompt = weave.EasyPrompt() +prompt.append("What's 23 * 42?") + +weave.init("intro-example") # Use entity/project format if not targeting your default entity +weave.publish(prompt, name="calculation-prompt") +``` + +Weave will automatically determine if the object has changed and only publish a new version if it has. +You can also specify a name or description for the Prompt as part of its constructor. + +```python +import weave + +prompt = weave.EasyPrompt( + "What's 23 * 42?", + name="calculation-prompt", + description="A prompt for calculating the product of two numbers.", +) + +weave.init("intro-example") +weave.publish(prompt) +``` + +## Retrieving from server + +Prompt are a type of [Weave object](../tracking/objects.md), and use the same methods for retrieval from the Weave server. +You must specify a source project name with `weave.init` before you can retrieve a prompt. + +```python +import weave + +weave.init("intro-example") +prompt = weave.ref("calculation-prompt").get() +``` + +By default, the latest version of the prompt is returned. You can make this explicit or select a specific version by providing its version id. + +```python +import weave + +weave.init("intro-example") +prompt = weave.ref("calculation-prompt:latest").get() +# ":", for example: +prompt = weave.ref("calculation-prompt:QSLzr96CTzFwLWgFFi3EuawCI4oODz4Uax98SxIY79E").get() +``` + +It is also possible to retrieve a Prompt without calling `init` if you pass a fully qualified URI to `weave.ref`. + +## Loading and saving from files + +Prompts can be saved to files and loaded from files. This can be convenient if you want your Prompt to be versioned through +a mechanism other than Weave such as git, or as a fallback if Weave is not available. + +To save a prompt to a file, you can use the `dump_file` method. + +```python +import weave + +prompt = weave.EasyPrompt("What's 23 * 42?") +prompt.dump_file("~/prompt.json") +``` + +and load it again later with `Prompt.load_file`. + +```python +import weave + +prompt = weave.EasyPrompt.load_file("~/prompt.json") +``` + +You can also use the lower level `dump` and `Prompt.load` methods for custom (de)serialization. + +## Evaluating prompts + +The [Parameter feature of prompts](#parameterizing-prompts) can be used to execute or evaluate variations of a prompt. + +You can bind each row of a [Dataset](./datasets.md) to generate N variations of a prompt. + +```python +import weave + +# Create a dataset +dataset = weave.Dataset(name='countries', rows=[ + {'id': '0', 'country': "Argentina"}, + {'id': '1', 'country': "Belize"}, + {'id': '2', 'country': "Canada"}, + {'id': '3', 'country': "New Zealand"}, +]) + +prompt = weave.EasyPrompt(name='travel_agent') +prompt.append("You are an expert travel consultant.", role="system") +prompt.append("Tell me the capital of {country} and about five kid-friendly attractions there.") + + +prompts = prompt.bind_rows(dataset) +assert prompts[2][1]["content"] == "Tell me the capital of Canada and about five kid-friendly attractions there." +``` + +You can extend this into an [Evaluation](./evaluations.md): + +```python +import asyncio + +import openai +import weave + +weave.init("intro-example") + +# Create a dataset +dataset = weave.Dataset(name='countries', rows=[ + {'id': '0', 'country': "Argentina", 'capital': "Buenos Aires"}, + {'id': '1', 'country': "Belize", 'capital': "Belmopan"}, + {'id': '2', 'country': "Canada", 'capital': "Ottawa"}, + {'id': '3', 'country': "New Zealand", 'capital': "Wellington"}, +]) + +# Create a prompt +prompt = weave.EasyPrompt(name='travel_agent') +prompt.append("You are an expert travel consultant.", role="system") +prompt.append("Tell me the capital of {country} and about five kid-friendly attractions there.") + +# Create a model, combining a prompt with model configuration +class TravelAgentModel(weave.Model): + + model_name: str + prompt: weave.EasyPrompt + + @weave.op + async def predict(self, country: str) -> dict: + client = openai.AsyncClient() + + response = await client.chat.completions.create( + model=self.model_name, + messages=self.prompt(country=country), + ) + result = response.choices[0].message.content + if result is None: + raise ValueError("No response from model") + return result + +# Define and run the evaluation +@weave.op +def mentions_capital_scorer(capital: str, model_output: str) -> dict: + return {'correct': capital in model_output} + +model = TravelAgentModel(model_name="gpt-4o-mini", prompt=prompt) +evaluation = weave.Evaluation( + dataset=dataset, + scorers=[mentions_capital_scorer], +) +asyncio.run(evaluation.evaluate(model)) + +``` diff --git a/docs/docs/guides/evaluation/scorers.md b/docs/docs/guides/evaluation/scorers.md new file mode 100644 index 00000000000..ce7ea3b86c1 --- /dev/null +++ b/docs/docs/guides/evaluation/scorers.md @@ -0,0 +1,670 @@ +# Evaluation Metrics + +## Evaluations in Weave +In Weave, Scorers are used to evaluate AI outputs and return evaluation metrics. They take the AI's output, analyze it, and return a dictionary of results. Scorers can use your input data as reference if needed and can also output extra information, such as explanations or reasonings from the evaluation. + +Scorers are passed to a `weave.Evaluation` object during evaluation. There are two types of Scorers in weave: + +1. **Function-based Scorers:** Simple Python functions decorated with `@weave.op`. +2. **Class-based Scorers:** Python classes that inherit from `weave.Scorer` for more complex evaluations. + +Scorers must return a dictionary and can return multiple metrics, nested metrics and non-numeric values such as text returned from a LLM-evaluator about its reasoning. + +## Create your own Scorers +### Function-based Scorers +These are functions decorated with `@weave.op` that return a dictionary. They're great for simple evaluations like: + +```python +import weave + +@weave.op +def evaluate_uppercase(text: str) -> dict: # Added return type hint + return {"text_is_uppercase": text.isupper()} + +my_eval = weave.Evaluation( + dataset=[{"text": "HELLO WORLD"}], + scorers=[evaluate_uppercase] +) +``` + +When the evaluation is run, `evaluate_uppercase` checks if the text is all uppercase. + +### Class-based Scorers +For more advanced evaluations, especially when you need to keep track of additional scorer metadata, try different prompts for your LLM-evaluators, or make multiple function calls, you can use the `Scorer` class. + +**Requirements:** +1. Inherit from `weave.Scorer`. +2. Define a `score` method decorated with `@weave.op`. +3. The `score` method must return a dictionary. + +Example: + + +```python +import weave +from openai import OpenAI +from weave import Scorer + +llm_client = OpenAI() + +#highlight-next-line +class SummarizationScorer(Scorer): + model_id: str = "gpt-4o" + system_prompt: str = "Evaluate whether the summary is good." + + @weave.op + def some_complicated_preprocessing(self, text: str) -> str: + processed_text = "Original text: \n" + text + "\n" + return processed_text + + @weave.op + def call_llm(self, summary: str, processed_text: str) -> dict: + res = llm_client.chat.completions.create( + messages=[ + {"role": "system", "content": self.system_prompt}, + {"role": "user", "content": ( + f"Analyse how good the summary is compared to the original text." + f"Summary: {summary}\n{processed_text}" + )}]) + return {"summary_quality": res} + + @weave.op + def score(self, output: str, text: str) -> dict: + """Score the summary quality. + + Args: + output: The summary generated by an AI system + text: The original text being summarized + """ + processed_text = self.some_complicated_preprocessing(text) + eval_result = self.call_llm(summary=output, processed_text=processed_text) + return {"summary_quality": eval_result} + +evaluation = weave.Evaluation( + dataset=[{"text": "The quick brown fox jumps over the lazy dog."}], + scorers=[summarization_scorer]) +``` +This class evaluates how good a summary is by comparing it to the original text. + +## How Scorers Work +### Scorer Keyword Arguments +Scorers can access both the output from your AI system and the input data from the dataset row. + +- **Input:** If you would like your scorer to use data from your dataset row, such as a "label" or "target" column then you can easily make this available to the scorer by adding a `label` or `target` keyword argument to your scorer definition. + +For example if you wanted to use a column called "label" from your dataset then your scorer function (or `score` class method) would have a parameter list like this: + +```python +@weave.op +def my_custom_scorer(output: str, label: int) -> dict: # Added return type hint + ... +``` + +When a weave `Evaluation` is run, the output of the AI system is passed to the `output` parameter. The `Evaluation` also automatically tries to match any additional scorer argument names to your dataset columns. If customizing your scorer arguments or dataset columns is not feasible, you can use column mapping - see below for more. + +- **Output:** Include an `output` parameter in your scorer function's signature to access the AI system's output. + + +### Mapping Column Names with column_map +Sometimes, the `score` methods' argument names don't match the column names in your dataset. You can fix this using a `column_map`. + +If you're using a class-based scorer, pass a dictionary to the `column_map` attribute of `Scorer` when you initialise your scorer class. This dictionary maps your `score` method's argument names to the dataset's column names, in the order: `{scorer_keyword_argument: dataset_column_name}`. + +Example: + +```python +import weave +from weave import Scorer + +# A dataset with news articles to be summarised +dataset = [ + {"news_article": "The news today was great...", "date": "2030-04-20", "source": "Bright Sky Network"}, + ... +] + +# Scorer class +class SummarizationScorer(Scorer): + + @weave.op + def score(output, text) -> dict: + """ + output: output summary from a LLM summarization system + text: the text being summarised + """ + ... # evaluate the quality of the summary + +# create a scorer with a column mapping the `text` argument to the `news_article` data column +scorer = SummarizationScorer(column_map={"text" : "news_article"}) +``` + +Now, the `text` argument in the `score` method will receive data from the `news_article` dataset column. + +**Notes:** +- Another equivalent option to map your columns is to subclass the `Scorer` and overload the `score` method mapping the columns explicitly. + +```python +import weave +from weave import Scorer + +class MySummarizationScorer(SummarizationScorer): + + @weave.op + def score(self, output: str, news_article: str) -> dict: # Added type hints + # overload the score method and map columns manually + return super().score(output=output, text=news_article) +``` + +### Final summarization of the scorer + +During evaluation, the scorer will be computed for each row of your dataset. To provide a final score for the evaluation we provide an `auto_summarize` depending on the returning type of the output. + - average will be computed for numerical columns + - count and fraction for boolean cols + - other col types are ignored + +You can override the `summarize` method on the `Scorer` class and provide your own way of computing the final scores. The `summarize` function expects: + +- A single parameter `score_rows`: This is a list of dictionaries, where each dictionary contains the scores returned by the `score` method for a single row of your dataset. +- It should return a dictionary containing the summarized scores. + +**Why this is useful?** + +When you need to score all rows before deciding on the final value of the score for the dataset. + +```python +class MyBinaryScorer(Scorer): + """ + Returns True if the full output matches the target, False if not + """ + + @weave.op + def score(output, target): + return {"match": if output == target} + + def summarize(self, score_rows: list) -> dict: + full_match = all(row["match"] for row in score_rows) + return {"full_match": full_match} +``` +> In this example, the default `auto_summarize` would have returned the count and proportion of True. + +If you want to learn more, check the implementation of [CorrectnessLLMJudge](/tutorial-rag#optional-defining-a-scorer-class). + +## Predefined Scorers + +**Installation** + +To use Weave's predefined scorers you need to install some additional dependencies: + +```bash +pip install weave[scorers] +``` + +**LLM-evaluators** + +The pre-defined scorers that use LLMs support the OpenAI, Anthropic, Google GenerativeAI and MistralAI clients. They also use `weave`'s `InstructorLLMScorer` class, so you'll need to install the [`instructor`](https://github.com/instructor-ai/instructor) Python package to be able to use them. You can get all necessary dependencies with `pip install "weave[scorers]"` + +### `HallucinationFreeScorer` + +This scorer checks if your AI system's output includes any hallucinations based on the input data. + +```python +from weave.scorers import HallucinationFreeScorer + +llm_client = ... # initialize your LLM client here + +scorer = HallucinationFreeScorer( + client=llm_client, + model_id="gpt4o" +) +``` + +**Customization:** +- Customize the `system_prompt` and `user_prompt` attributes of the scorer to define what "hallucination" means for you. + +**Notes:** +- The `score` method expects an input column named `context`. If your dataset uses a different name, use the `column_map` attribute to map `context` to the dataset column. + +Here you have an example in the context of an evaluation: + +```python +import asyncio +from openai import OpenAI +import weave +from weave.scorers import HallucinationFreeScorer + +# Initialize clients and scorers +llm_client = OpenAI() +hallucination_scorer = HallucinationFreeScorer( + client=llm_client, + model_id="gpt-4o", + column_map={"context": "input", "output": "other_col"} +) + +# Create dataset +dataset = [ + {"input": "John likes various types of cheese."}, + {"input": "Pepe likes various types of cheese."}, +] + +@weave.op +def model(input: str) -> str: + return "The person's favorite cheese is cheddar." + +# Run evaluation +evaluation = weave.Evaluation( + dataset=dataset, + scorers=[hallucination_scorer], +) +result = asyncio.run(evaluation.evaluate(model)) +print(result) +# {'HallucinationFreeScorer': {'has_hallucination': {'true_count': 2, 'true_fraction': 1.0}}, 'model_latency': {'mean': 1.4395725727081299}} +``` +--- + +### `SummarizationScorer` + +Use an LLM to compare a summary to the original text and evaluate the quality of the summary. + +```python +from weave.scorers import SummarizationScorer + +llm_client = ... # initialize your LLM client here + +scorer = SummarizationScorer( + client=llm_client, + model_id="gpt4o" +) +``` + +**How It Works:** + +This scorer evaluates summaries in two ways: + +1. **Entity Density:** Checks the ratio of unique entities (like names, places, or things) mentioned in the summary to the total word count in the summary in order to estimate the "information density" of the summary. Uses an LLM to extract the entities. Similar to how entity density is used in the Chain of Density paper, https://arxiv.org/abs/2309.04269 + +2. **Quality Grading:** Uses an LLM-evaluator to grade the summary as `poor`, `ok`, or `excellent`. These grades are converted to scores (0.0 for poor, 0.5 for ok, and 1.0 for excellent) so you can calculate averages. + +**Customization:** +- Adjust `summarization_evaluation_system_prompt` and `summarization_evaluation_prompt` to define what makes a good summary. + +**Notes:** +- This scorer uses the `InstructorLLMScorer` class. +- The `score` method expects the original text that was summarized to be present in the `input` column of the dataset. Use the `column_map` class attribute to map `input` to the correct dataset column if needed. + + +Here you have an example usage of the `SummarizationScorer` in the context of an evaluation: + +```python +import asyncio +from openai import OpenAI +import weave +from weave.scorers import SummarizationScorer + +class SummarizationModel(weave.Model): + @weave.op() + async def predict(self, input: str) -> str: + return "This is a summary of the input text." + +# Initialize clients and scorers +llm_client = OpenAI() +model = SummarizationModel() +summarization_scorer = SummarizationScorer( + client=llm_client, + model_id="gpt-4o", +) +# Create dataset +dataset = [ + {"input": "The quick brown fox jumps over the lazy dog."}, + {"input": "Artificial Intelligence is revolutionizing various industries."} +] + +# Run evaluation +evaluation = weave.Evaluation(dataset=dataset, scorers=[summarization_scorer]) +results = asyncio.run(evaluation.evaluate(model)) +print(results) +# {'SummarizationScorer': {'is_entity_dense': {'true_count': 0, 'true_fraction': 0.0}, 'summarization_eval_score': {'mean': 0.0}, 'entity_density': {'mean': 0.0}}, 'model_latency': {'mean': 6.210803985595703e-05}} +``` + +--- + +### `OpenAIModerationScorer` + +The `OpenAIModerationScorer` uses OpenAI's Moderation API to check if the AI system's output contains disallowed content, such as hate speech or explicit material. + +```python +from weave.scorers import OpenAIModerationScorer +from openai import OpenAI + +oai_client = OpenAI(api_key=...) # initialize your LLM client here + +scorer = OpenAIModerationScorer( + client=oai_client, + model_id="text-embedding-3-small" +) +``` + +**How It Works:** + +- Sends the AI's output to the OpenAI Moderation endpoint and returns a dictionary indicating whether the content is flagged and details about the categories involved. + +**Notes:** +- Requires the `openai` Python package. +- The client must be an instance of OpenAI's `OpenAI` or `AsyncOpenAI` client. + + +Here you have an example in the context of an evaluation: +```python +import asyncio +from openai import OpenAI +import weave +from weave.scorers import OpenAIModerationScorer + +class MyModel(weave.Model): + @weave.op + async def predict(self, input: str) -> str: + return input + +# Initialize clients and scorers +client = OpenAI() +model = MyModel() +moderation_scorer = OpenAIModerationScorer(client=client) + +# Create dataset +dataset = [ + {"input": "I love puppies and kittens!"}, + {"input": "I hate everyone and want to hurt them."} +] + +# Run evaluation +evaluation = weave.Evaluation(dataset=dataset, scorers=[moderation_scorer]) +results = asyncio.run(evaluation.evaluate(model)) +print(results) +# {'OpenAIModerationScorer': {'flagged': {'true_count': 1, 'true_fraction': 0.5}, 'categories': {'violence': {'true_count': 1, 'true_fraction': 1.0}}}, 'model_latency': {'mean': 9.500980377197266e-05}} +``` + +--- + +### `EmbeddingSimilarityScorer` + +The `EmbeddingSimilarityScorer` computes the cosine similarity between the embeddings of the AI system's output and a target text from your dataset. It's useful for measuring how similar the AI's output is to a reference text. + +```python +from weave.scorers import EmbeddingSimilarityScorer + +llm_client = ... # initialise your LlM client + +similarity_scorer = EmbeddingSimilarityScorer( + client=llm_client + target_column="reference_text", # the dataset column to compare the output against + threshold=0.4 # the cosine similarity threshold to use +) +``` + +**Parameters:** + +- `target`: This scorer expects a `target` column in your dataset, it will calculate the cosine similarity of the embeddings of the `target` column to the AI system output. If your dataset doesn't contain a column called `target` you can use the scorers `column_map` attribute to map `target` to the appropriate column name in your dataset. See the Column Mapping section for more. +- `threshold` (float): The minimum cosine similarity score between the embedding of the AI system output and the embdedding of the `target`, above which the 2 samples are considered "similar", (defaults to `0.5`). `threshold` can be in a range from -1 to 1: + - 1 indicates identical direction. + - 0 indicates orthogonal vectors. + - -1 indicates opposite direction. + +The correct cosine similarity threshold to set can fluctuate quite a lot depending on your use case, we advise exploring different thresholds. + + +Here you have an example usage of the `EmbeddingSimilarityScorer` in the context of an evaluation: + +```python +import asyncio +from openai import OpenAI +import weave +from weave.scorers import EmbeddingSimilarityScorer + +# Initialize clients and scorers +client = OpenAI() +similarity_scorer = EmbeddingSimilarityScorer( + client=client, + threshold=0.7, + column_map={"target": "reference"} +) + +# Create dataset +dataset = [ + { + "input": "He's name is John", + "reference": "John likes various types of cheese.", + }, + { + "input": "He's name is Pepe.", + "reference": "Pepe likes various types of cheese.", + }, +] + +# Define model +@weave.op +def model(input: str) -> str: + return "John likes various types of cheese." + +# Run evaluation +evaluation = weave.Evaluation( + dataset=dataset, + scorers=[similarity_scorer], +) +result = asyncio.run(evaluation.evaluate(model)) +print(result) +# {'EmbeddingSimilarityScorer': {'is_similar': {'true_count': 1, 'true_fraction': 0.5}, 'similarity_score': {'mean': 0.8448514031462045}}, 'model_latency': {'mean': 0.45862746238708496}} +``` + +--- + +### `ValidJSONScorer` + +The ValidJSONScorer checks whether the AI system's output is valid JSON. This scorer is useful when you expect the output to be in JSON format and need to verify its validity. + +```python +from weave.scorers import ValidJSONScorer + +json_scorer = ValidJSONScorer() +``` + +Here you have an example usage of the `ValidJSONScorer` in the context of an evaluation: + +```python +import asyncio +import weave +from weave.scorers import ValidJSONScorer + +class JSONModel(weave.Model): + @weave.op() + async def predict(self, input: str) -> str: + # This is a placeholder. + # In a real scenario, this would generate JSON. + return '{"key": "value"}' + +model = JSONModel() +json_scorer = ValidJSONScorer() + +dataset = [ + {"input": "Generate a JSON object with a key and value"}, + {"input": "Create an invalid JSON"} +] + +evaluation = weave.Evaluation(dataset=dataset, scorers=[json_scorer]) +results = asyncio.run(evaluation.evaluate(model)) +print(results) +# {'ValidJSONScorer': {'json_valid': {'true_count': 2, 'true_fraction': 1.0}}, 'model_latency': {'mean': 8.58306884765625e-05}} +``` + + +--- + +### `ValidXMLScorer` + +The `ValidXMLScorer` checks whether the AI system's output is valid XML. This is useful when expecting XML-formatted outputs. + +```python +from weave.scorers import ValidXMLScorer + +xml_scorer = ValidXMLScorer() +``` + + +Here you have an example usage of the `ValidXMLScorer` in the context of an evaluation: + +```python +import asyncio +import weave +from weave.scorers import ValidXMLScorer + +class XMLModel(weave.Model): + @weave.op() + async def predict(self, input: str) -> str: + # This is a placeholder. In a real scenario, this would generate XML. + return 'value' + +model = XMLModel() +xml_scorer = ValidXMLScorer() + +dataset = [ + {"input": "Generate a valid XML with a root element"}, + {"input": "Create an invalid XML"} +] + +evaluation = weave.Evaluation(dataset=dataset, scorers=[xml_scorer]) +results = asyncio.run(evaluation.evaluate(model)) +print(results) +# {'ValidXMLScorer': {'xml_valid': {'true_count': 2, 'true_fraction': 1.0}}, 'model_latency': {'mean': 8.20159912109375e-05}} +``` + +--- + +### `PydanticScorer` + +The `PydanticScorer` validates the AI system's output against a Pydantic model to ensure it adheres to a specified schema or data structure. + +```python +from weave.scorers import PydanticScorer +from pydantic import BaseModel + +class FinancialReport(BaseModel): + revenue: int + year: str + +pydantic_scorer = PydanticScorer(model=FinancialReport) +``` + +--- + +### RAGAS - `ContextEntityRecallScorer` + +The `ContextEntityRecallScorer` estimates context recall by extracting entities from both the AI system's output and the provided context, then computing the recall score. Based on the [RAGAS](https://github.com/explodinggradients/ragas) evaluation library + +```python +from weave.scorers import ContextEntityRecallScorer + +llm_client = ... # initialise your LlM client + +entity_recall_scorer = ContextEntityRecallScorer( + client=llm_client + model_id="your-model-id" +) +``` + +**How It Works:** + +- Uses an LLM to extract unique entities from the output and context and calculates recall. +- **Recall** indicates the proportion of important entities from the context that are captured in the output, helping to assess the model's effectiveness in retrieving relevant information. +- Returns a dictionary with the recall score. + +**Notes:** + +- Expects a `context` column in your dataset, use `column_map` to map `context` to another dataset column if needed. + +--- + +### RAGAS - `ContextRelevancyScorer` + +The `ContextRelevancyScorer` evaluates the relevancy of the provided context to the AI system's output. It helps determine if the context used is appropriate for generating the output. Based on the [RAGAS](https://github.com/explodinggradients/ragas) evaluation library. + +```python +from weave.scorers import ContextRelevancyScorer + +llm_client = ... # initialise your LlM client + +relevancy_scorer = ContextRelevancyScorer( + llm_client = ... # initialise your LlM client + model_id="your-model-id" + ) +``` + +**How It Works:** + +- Uses an LLM to rate the relevancy of the context to the output on a scale from 0 to 1. +- Returns a dictionary with the `relevancy_score`. + +**Notes:** + +- Expects a `context` column in your dataset, use `column_map` to map `context` to another dataset column if needed. +- Customize the `relevancy_prompt` to define how relevancy is assessed. + + +Here you have an example usage of `ContextEntityRecallScorer` and `ContextRelevancyScorer` in the context of an evaluation: + +```python +import asyncio +from textwrap import dedent +from openai import OpenAI +import weave +from weave.scorers import ContextEntityRecallScorer, ContextRelevancyScorer + +class RAGModel(weave.Model): + @weave.op() + async def predict(self, question: str) -> str: + "Retrieve relevant context" + return "Paris is the capital of France." + + +model = RAGModel() + +# Define prompts +relevancy_prompt: str = dedent(""" + Given the following question and context, rate the relevancy of the context to the question on a scale from 0 to 1. + + Question: {question} + Context: {context} + Relevancy Score (0-1): + """) + +# Initialize clients and scorers +llm_client = OpenAI() +entity_recall_scorer = ContextEntityRecallScorer( + client=client, + model_id="gpt-4o", +) + +relevancy_scorer = ContextRelevancyScorer( + client=llm_client, + model_id="gpt-4o", + relevancy_prompt=relevancy_prompt +) + +# Create dataset +dataset = [ + { + "question": "What is the capital of France?", + "context": "Paris is the capital city of France." + }, + { + "question": "Who wrote Romeo and Juliet?", + "context": "William Shakespeare wrote many famous plays." + } +] + +# Run evaluation +evaluation = weave.Evaluation( + dataset=dataset, + scorers=[entity_recall_scorer, relevancy_scorer] +) +results = asyncio.run(evaluation.evaluate(model)) +print(results) +# {'ContextEntityRecallScorer': {'recall': {'mean': 0.3333333333333333}}, 'ContextRelevancyScorer': {'relevancy_score': {'mean': 0.5}}, 'model_latency': {'mean': 9.393692016601562e-05}} +``` + diff --git a/docs/docs/guides/integrations/langchain.md b/docs/docs/guides/integrations/langchain.md index b382e793e70..4487a85dfd4 100644 --- a/docs/docs/guides/integrations/langchain.md +++ b/docs/docs/guides/integrations/langchain.md @@ -196,7 +196,7 @@ Evaluations help you measure the performance of your models. By using the [`weav ```python -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 sentences = [ "There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy.", diff --git a/docs/docs/guides/tracking/costs.md b/docs/docs/guides/tracking/costs.md index 8bcddeb2e0c..bedca15aa17 100644 --- a/docs/docs/guides/tracking/costs.md +++ b/docs/docs/guides/tracking/costs.md @@ -1,9 +1,5 @@ # Costs -:::info -Custom costs are accessible via Python and REST queries. UI uptake is under development and expected to be complete by middle of October 2024 -::: - ## Adding a custom cost You can add a custom cost by using the [`add_cost`](/reference/python-sdk/weave/trace/weave.trace.weave_client#method-add_cost) method. diff --git a/docs/docs/media/multi-agent-structured-output/0.png b/docs/docs/media/multi-agent-structured-output/0.png new file mode 100644 index 00000000000..a49c7d93219 Binary files /dev/null and b/docs/docs/media/multi-agent-structured-output/0.png differ diff --git a/docs/docs/media/multi-agent-structured-output/1.png b/docs/docs/media/multi-agent-structured-output/1.png new file mode 100644 index 00000000000..4aaea4187f7 Binary files /dev/null and b/docs/docs/media/multi-agent-structured-output/1.png differ diff --git a/docs/docs/media/multi-agent-structured-output/2.png b/docs/docs/media/multi-agent-structured-output/2.png new file mode 100644 index 00000000000..96007934546 Binary files /dev/null and b/docs/docs/media/multi-agent-structured-output/2.png differ diff --git a/docs/docs/media/multi-agent-structured-output/3.png b/docs/docs/media/multi-agent-structured-output/3.png new file mode 100644 index 00000000000..269f70399e1 Binary files /dev/null and b/docs/docs/media/multi-agent-structured-output/3.png differ diff --git a/docs/docs/reference/gen_notebooks/audio_with_weave.md b/docs/docs/reference/gen_notebooks/audio_with_weave.md new file mode 100644 index 00000000000..a8c6b45efc1 --- /dev/null +++ b/docs/docs/reference/gen_notebooks/audio_with_weave.md @@ -0,0 +1,1198 @@ +--- +title: Log Audio With Weave +--- + + +:::tip[This is a notebook] + +
Open In Colab
Open in Colab
+ +
View in Github
View in Github
+ +::: + + + + + +# How to use Weave with Audio Data: An OpenAI Example + +This demo uses the OpenAI chat completions API with GPT 4o Audio Preview to generate audio responses to text prompts and track these in Weave. + + + + +For the advanced use case, we leverage the OpenAI Realtime API to stream audio in realtime. Click the following thumbnail to view the video demonstration, or click [here](https://www.youtube.com/watch?v=lnnd73xDElw). + +[![Everything Is AWESOME](https://img.youtube.com/vi/lnnd73xDElw/0.jpg)](https://www.youtube.com/watch?v=lnnd73xDElw "Everything Is AWESOME") + + + +## Setup + +Start by installing the OpenAI (`openai`) and Weave (`weave`) dependencies, as well as API key management dependencey `set-env`. + + +```python +%%capture +!pip install openai +!pip install weave +!pip install set-env-colab-kaggle-dotenv -q # for env var +``` + +Next, load the required API keys for OpenAI and Weave. Here, we use set_env which is compatible with google colab's secret keys manager, and is an alternative to colab's specific `google.colab.userdata`. See: [here](https://pypi.org/project/set-env-colab-kaggle-dotenv/) for usage instructions. + + +```python +# Set environment variables. +from set_env import set_env + +_ = set_env("OPENAI_API_KEY") +_ = set_env("WANDB_API_KEY") +``` + +And finally import the required libraries. + + +```python +import base64 +import os +import time +import wave + +import numpy as np +from IPython.display import display +from openai import OpenAI + +import weave +``` + +## Audio Streaming and Storage Example + +Now we will setup a call to OpenAI's completions endpoint with audio modality enabled. First create the OpenAI client and initiate a Weave project. + + +```python +client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY")) +weave.init("openai-audio-chat") +``` + +Now we will define our OpenAI completions request and add our Weave decorator (op). + +Here, we define the function `prompt_endpont_and_log_trace`. This function has three primary steps: +1. We make a completion object using the `GPT 4o Audio Preview` model that supports text and audio inputs and outputs. + - We prompt the model to count to 13 slowly with varying accents. + - We set the completion to "stream". + +2. We open a new output file to which the streamed data is writen chunk by chunk. + +3. We return an open file handler to the audio file so Weave logs the audio data in the trace. + + +```python +SAMPLE_RATE = 22050 + + +@weave.op() +def prompt_endpoint_and_log_trace(system_prompt=None, user_prompt=None): + if not system_prompt: + system_prompt = "You're the fastest counter in the world" + if not user_prompt: + user_prompt = "Count to 13 super super slow, enunciate each number with a dramatic flair, changing up accents as you go along. British, French, German, Spanish, etc." + # Request from the OpenAI API with audio modality + completion = client.chat.completions.create( + model="gpt-4o-audio-preview", + modalities=["text", "audio"], + audio={"voice": "fable", "format": "pcm16"}, + stream=True, + messages=[ + {"role": "system", "content": system_prompt}, + {"role": "user", "content": user_prompt}, + ], + ) + + # Open a wave file for writing + with wave.open("./output.wav", "wb") as wav_file: + wav_file.setnchannels(1) # Mono + wav_file.setsampwidth(2) # 16-bit + wav_file.setframerate(SAMPLE_RATE) # Sample rate (adjust if needed) + + # Write chunks as they are streamed in from the API + for chunk in completion: + if ( + hasattr(chunk, "choices") + and chunk.choices is not None + and len(chunk.choices) > 0 + ): + if ( + hasattr(chunk.choices[0].delta, "audio") + and chunk.choices[0].delta.audio.get("data") is not None + ): + # Decode the base64 audio data + audio_data = base64.b64decode( + chunk.choices[0].delta.audio.get("data") + ) + + # Write the current chunk to the wave file + wav_file.writeframes(audio_data) + + # Return the file to Weave op + return wave.open("output.wav", "rb") +``` + +## Testing + +Run the following cell. The system and user prompt will be stored in a Weave trace as well as the output audio. +After running the cell, click the link next to the "🍩" emoji to view your trace. + + +```python +from IPython.display import Audio, display + +# Call the function to write the audio stream +prompt_endpoint_and_log_trace( + system_prompt="You're the fastest counter in the world", + user_prompt="Count to 13 super super slow, enunciate each number with a dramatic flair, changing up accents as you go along. British, French, German, Spanish, etc.", +) + +# Display the updated audio stream +display(Audio("output.wav", rate=SAMPLE_RATE, autoplay=True)) +``` + +# Advanced Usage: Realtime Audio API with Weave + +
+ (Advanced) Realtime Audio API with Weave +OpenAI's realtime API is a highly functional and reliable conversational API for building realtime audio and text assistants. + +Please note: +- Review the cells in [Microphone Configuration](#microphone-configuration) +- Due to limitations of the Google Colab execution environment, **this must be run on your host machine** as a Jupyter Notebook. This cannot be ran in the browser. + - On MacOS you will need to install `portaudio` via Brew (see [here](https://formulae.brew.sh/formula/portaudio)) for Pyaudio to function. +- OpenAI's Python SDK does not yet provide Realtime API support. We implement the complete OAI Realtime API schema in Pydantic for greater legibility, and may deprecate once official support is released. +- The `enable_audio_playback` toggle will cause playback of assistant outputted audio. Please note that **headphones are required if this is enabled**, as echo detection requires a highly complex implementation. + + +## Requirements Setup + + +```python +%%capture +!pip install numpy==2.0 +!pip install weave +!pip install pyaudio # On mac, you may need to install portaudio first with `brew install portaudio` +!pip install websocket-client +!pip install set-env-colab-kaggle-dotenv -q # for env var +!pip install resampy +``` + + +```python +import base64 +import io +import json +import os +import threading +import time +import wave +from typing import Dict, List, Optional + +import numpy as np +import pyaudio +import resampy +import websocket +from set_env import set_env + +import weave +``` + + +```python +# Set environment variables. +# See: https://pypi.org/project/set-env-colab-kaggle-dotenv/ for usage instructions. +_ = set_env("OPENAI_API_KEY") +_ = set_env("WANDB_API_KEY") +``` + +## Microphone Configuration + +Run the following cell to find all available audio devices. Then, populate the `INPUT_DEVICE_INDEX` and the `OUTPUT_DEVICE_INDEX` based on the devices listed. Your input device will have at least 1 input channels, and your output device will have at least 1 output channels. + + +```python +# Get device list from pyaudio so we can configure the next cell +p = pyaudio.PyAudio() +devices_data = {i: p.get_device_info_by_index(i) for i in range(p.get_device_count())} +for i, device in devices_data.items(): + print( + f"Found device @{i}: {device['name']} with sample rate: {device['defaultSampleRate']} and input channels: {device['maxInputChannels']} and output channels: {device['maxOutputChannels']}" + ) +``` + + +```python +INPUT_DEVICE_INDEX = 3 # @param # Choose based on device list above. Make sure device has > 0 input channels. +OUTPUT_DEVICE_INDEX = 12 # @param # Chose based on device list above. Make sure device has > 0 output channels. +enable_audio_playback = True # @param {type:"boolean"} # Toggle on assistant audio playback. Requires headphones. + +# Audio recording and streaming parameters +INPUT_DEVICE_CHANNELS = devices_data[INPUT_DEVICE_INDEX][ + "maxInputChannels" +] # From device list above +SAMPLE_RATE = int( + devices_data[INPUT_DEVICE_INDEX]["defaultSampleRate"] +) # From device list above +CHUNK = int(SAMPLE_RATE / 10) # Samples per frame +SAMPLE_WIDTH = p.get_sample_size(pyaudio.paInt16) # Samples per frame for the format +CHUNK_DURATION = 0.3 # Seconds of audio per chunk sent to OAI API +OAI_SAMPLE_RATE = ( + 24000 # OAI Sample Rate is 24kHz, we need this to play or save assistant audio +) +OUTPUT_DEVICE_CHANNELS = 1 # Set to 1 for mono output +``` + +## OpenAI Realtime API Schema Implementation + +The OpenAI Python SDK does not yet provide Realtime API support. We implement the complete OAI Realtime API schema in Pydantic for greater legibility, and may deprecate once official support is released. + +
+ Pydantic Schema for OpenAI Realtime API (OpenAI's SDK lacks Realtime API support) + + +```python +from enum import Enum +from typing import Any, Dict, List, Literal, Optional, Union + +from pydantic import BaseModel, Field, ValidationError + + +class BaseEvent(BaseModel): + type: Union["ClientEventTypes", "ServerEventTypes"] + event_id: Optional[str] = None # Add event_id as an optional field for all events + + # def model_dump_json(self, *args, **kwargs): + # # Only include non-None fields + # return super().model_dump_json(*args, exclude_none=True, **kwargs) + + +class ChatMessage(BaseModel): + role: Literal["user", "assistant"] + content: str + timestamp: float + + +""" CLIENT EVENTS """ + + +class ClientEventTypes(str, Enum): + SESSION_UPDATE = "session.update" + CONVERSATION_ITEM_CREATE = "conversation.item.create" + CONVERSATION_ITEM_TRUNCATE = "conversation.item.truncate" + CONVERSATION_ITEM_DELETE = "conversation.item.delete" + RESPONSE_CREATE = "response.create" + RESPONSE_CANCEL = "response.cancel" + INPUT_AUDIO_BUFFER_APPEND = "input_audio_buffer.append" + INPUT_AUDIO_BUFFER_COMMIT = "input_audio_buffer.commit" + INPUT_AUDIO_BUFFER_CLEAR = "input_audio_buffer.clear" + ERROR = "error" + + +#### Session Update +class TurnDetection(BaseModel): + type: Literal["server_vad"] + threshold: float = Field(..., ge=0.0, le=1.0) + prefix_padding_ms: int + silence_duration_ms: int + + +class InputAudioTranscription(BaseModel): + model: Optional[str] = None + + +class ToolParameterProperty(BaseModel): + type: str + + +class ToolParameter(BaseModel): + type: str + properties: Dict[str, ToolParameterProperty] + required: List[str] + + +class Tool(BaseModel): + type: Literal["function", "code_interpreter", "file_search"] + name: Optional[str] = None + description: Optional[str] = None + parameters: Optional[ToolParameter] = None + + +class Session(BaseModel): + modalities: Optional[List[str]] = None + instructions: Optional[str] = None + voice: Optional[str] = None + input_audio_format: Optional[str] = None + output_audio_format: Optional[str] = None + input_audio_transcription: Optional[InputAudioTranscription] = None + turn_detection: Optional[TurnDetection] = None + tools: Optional[List[Tool]] = None + tool_choice: Optional[str] = None + temperature: Optional[float] = None + max_output_tokens: Optional[int] = None + + +class SessionUpdate(BaseEvent): + type: Literal[ClientEventTypes.SESSION_UPDATE] = ClientEventTypes.SESSION_UPDATE + session: Session + + +#### Audio Buffers +class InputAudioBufferAppend(BaseEvent): + type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_APPEND] = ( + ClientEventTypes.INPUT_AUDIO_BUFFER_APPEND + ) + audio: str + + +class InputAudioBufferCommit(BaseEvent): + type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_COMMIT] = ( + ClientEventTypes.INPUT_AUDIO_BUFFER_COMMIT + ) + + +class InputAudioBufferClear(BaseEvent): + type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_CLEAR] = ( + ClientEventTypes.INPUT_AUDIO_BUFFER_CLEAR + ) + + +#### Messages +class MessageContent(BaseModel): + type: Literal["input_audio"] + audio: str + + +class ConversationItemContent(BaseModel): + type: Literal["input_text", "input_audio", "text", "audio"] + text: Optional[str] = None + audio: Optional[str] = None + transcript: Optional[str] = None + + +class FunctionCallContent(BaseModel): + call_id: str + name: str + arguments: str + + +class FunctionCallOutputContent(BaseModel): + output: str + + +class ConversationItem(BaseModel): + id: Optional[str] = None + type: Literal["message", "function_call", "function_call_output"] + status: Optional[Literal["completed", "in_progress", "incomplete"]] = None + role: Literal["user", "assistant", "system"] + content: List[ + Union[ConversationItemContent, FunctionCallContent, FunctionCallOutputContent] + ] + call_id: Optional[str] = None + name: Optional[str] = None + arguments: Optional[str] = None + output: Optional[str] = None + + +class ConversationItemCreate(BaseEvent): + type: Literal[ClientEventTypes.CONVERSATION_ITEM_CREATE] = ( + ClientEventTypes.CONVERSATION_ITEM_CREATE + ) + item: ConversationItem + + +class ConversationItemTruncate(BaseEvent): + type: Literal[ClientEventTypes.CONVERSATION_ITEM_TRUNCATE] = ( + ClientEventTypes.CONVERSATION_ITEM_TRUNCATE + ) + item_id: str + content_index: int + audio_end_ms: int + + +class ConversationItemDelete(BaseEvent): + type: Literal[ClientEventTypes.CONVERSATION_ITEM_DELETE] = ( + ClientEventTypes.CONVERSATION_ITEM_DELETE + ) + item_id: str + + +#### Responses +class ResponseCreate(BaseEvent): + type: Literal[ClientEventTypes.RESPONSE_CREATE] = ClientEventTypes.RESPONSE_CREATE + + +class ResponseCancel(BaseEvent): + type: Literal[ClientEventTypes.RESPONSE_CANCEL] = ClientEventTypes.RESPONSE_CANCEL + + +# Update the Event union to include all event types +ClientEvent = Union[ + SessionUpdate, + InputAudioBufferAppend, + InputAudioBufferCommit, + InputAudioBufferClear, + ConversationItemCreate, + ConversationItemTruncate, + ConversationItemDelete, + ResponseCreate, + ResponseCancel, +] + +""" SERVER EVENTS """ + + +class ServerEventTypes(str, Enum): + ERROR = "error" + RESPONSE_AUDIO_TRANSCRIPT_DONE = "response.audio_transcript.done" + RESPONSE_AUDIO_TRANSCRIPT_DELTA = "response.audio_transcript.delta" + RESPONSE_AUDIO_DELTA = "response.audio.delta" + SESSION_CREATED = "session.created" + SESSION_UPDATED = "session.updated" + CONVERSATION_CREATED = "conversation.created" + INPUT_AUDIO_BUFFER_COMMITTED = "input_audio_buffer.committed" + INPUT_AUDIO_BUFFER_CLEARED = "input_audio_buffer.cleared" + INPUT_AUDIO_BUFFER_SPEECH_STARTED = "input_audio_buffer.speech_started" + INPUT_AUDIO_BUFFER_SPEECH_STOPPED = "input_audio_buffer.speech_stopped" + CONVERSATION_ITEM_CREATED = "conversation.item.created" + CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED = ( + "conversation.item.input_audio_transcription.completed" + ) + CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED = ( + "conversation.item.input_audio_transcription.failed" + ) + CONVERSATION_ITEM_TRUNCATED = "conversation.item.truncated" + CONVERSATION_ITEM_DELETED = "conversation.item.deleted" + RESPONSE_CREATED = "response.created" + RESPONSE_DONE = "response.done" + RESPONSE_OUTPUT_ITEM_ADDED = "response.output_item.added" + RESPONSE_OUTPUT_ITEM_DONE = "response.output_item.done" + RESPONSE_CONTENT_PART_ADDED = "response.content_part.added" + RESPONSE_CONTENT_PART_DONE = "response.content_part.done" + RESPONSE_TEXT_DELTA = "response.text.delta" + RESPONSE_TEXT_DONE = "response.text.done" + RESPONSE_AUDIO_DONE = "response.audio.done" + RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA = "response.function_call_arguments.delta" + RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE = "response.function_call_arguments.done" + RATE_LIMITS_UPDATED = "rate_limits.updated" + + +#### Errors +class ErrorDetails(BaseModel): + type: Optional[str] = None + code: Optional[str] = None + message: Optional[str] = None + param: Optional[str] = None + + +class ErrorEvent(BaseEvent): + type: Literal[ServerEventTypes.ERROR] = ServerEventTypes.ERROR + error: ErrorDetails + + +#### Session +class SessionCreated(BaseEvent): + type: Literal[ServerEventTypes.SESSION_CREATED] = ServerEventTypes.SESSION_CREATED + session: Session + + +class SessionUpdated(BaseEvent): + type: Literal[ServerEventTypes.SESSION_UPDATED] = ServerEventTypes.SESSION_UPDATED + session: Session + + +#### Conversation +class Conversation(BaseModel): + id: str + object: Literal["realtime.conversation"] + + +class ConversationCreated(BaseEvent): + type: Literal[ServerEventTypes.CONVERSATION_CREATED] = ( + ServerEventTypes.CONVERSATION_CREATED + ) + conversation: Conversation + + +class ConversationItemCreated(BaseEvent): + type: Literal[ServerEventTypes.CONVERSATION_ITEM_CREATED] = ( + ServerEventTypes.CONVERSATION_ITEM_CREATED + ) + previous_item_id: Optional[str] = None + item: ConversationItem + + +class ConversationItemInputAudioTranscriptionCompleted(BaseEvent): + type: Literal[ + ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED + ] = ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED + item_id: str + content_index: int + transcript: str + + +class ConversationItemInputAudioTranscriptionFailed(BaseEvent): + type: Literal[ + ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED + ] = ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED + item_id: str + content_index: int + error: Dict[str, Any] + + +class ConversationItemTruncated(BaseEvent): + type: Literal[ServerEventTypes.CONVERSATION_ITEM_TRUNCATED] = ( + ServerEventTypes.CONVERSATION_ITEM_TRUNCATED + ) + item_id: str + content_index: int + audio_end_ms: int + + +class ConversationItemDeleted(BaseEvent): + type: Literal[ServerEventTypes.CONVERSATION_ITEM_DELETED] = ( + ServerEventTypes.CONVERSATION_ITEM_DELETED + ) + item_id: str + + +#### Response +class ResponseUsage(BaseModel): + total_tokens: int + input_tokens: int + output_tokens: int + input_token_details: Optional[Dict[str, int]] = None + output_token_details: Optional[Dict[str, int]] = None + + +class ResponseOutput(BaseModel): + id: str + object: Literal["realtime.item"] + type: str + status: str + role: str + content: List[Dict[str, Any]] + + +class ResponseContentPart(BaseModel): + type: str + text: Optional[str] = None + + +class ResponseOutputItemContent(BaseModel): + type: str + text: Optional[str] = None + + +class ResponseStatusDetails(BaseModel): + type: str + reason: str + + +class ResponseOutputItem(BaseModel): + id: str + object: Literal["realtime.item"] + type: str + status: str + role: str + content: List[ResponseOutputItemContent] + + +class Response(BaseModel): + id: str + object: Literal["realtime.response"] + status: str + status_details: Optional[ResponseStatusDetails] = None + output: List[ResponseOutput] + usage: Optional[ResponseUsage] + + +class ResponseCreated(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_CREATED] = ServerEventTypes.RESPONSE_CREATED + response: Response + + +class ResponseDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_DONE] = ServerEventTypes.RESPONSE_DONE + response: Response + + +class ResponseOutputItemAdded(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED] = ( + ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED + ) + response_id: str + output_index: int + item: ResponseOutputItem + + +class ResponseOutputItemDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE] = ( + ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE + ) + response_id: str + output_index: int + item: ResponseOutputItem + + +class ResponseContentPartAdded(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_CONTENT_PART_ADDED] = ( + ServerEventTypes.RESPONSE_CONTENT_PART_ADDED + ) + response_id: str + item_id: str + output_index: int + content_index: int + part: ResponseContentPart + + +class ResponseContentPartDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_CONTENT_PART_DONE] = ( + ServerEventTypes.RESPONSE_CONTENT_PART_DONE + ) + response_id: str + item_id: str + output_index: int + content_index: int + part: ResponseContentPart + + +#### Response Text +class ResponseTextDelta(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_TEXT_DELTA] = ( + ServerEventTypes.RESPONSE_TEXT_DELTA + ) + response_id: str + item_id: str + output_index: int + content_index: int + delta: str + + +class ResponseTextDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_TEXT_DONE] = ( + ServerEventTypes.RESPONSE_TEXT_DONE + ) + response_id: str + item_id: str + output_index: int + content_index: int + text: str + + +#### Response Audio +class ResponseAudioTranscriptDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE] = ( + ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE + ) + transcript: str + + +class ResponseAudioTranscriptDelta(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA] = ( + ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA + ) + delta: str + + +class ResponseAudioDelta(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_AUDIO_DELTA] = ( + ServerEventTypes.RESPONSE_AUDIO_DELTA + ) + response_id: str + item_id: str + delta: str + + +class ResponseAudioDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_AUDIO_DONE] = ( + ServerEventTypes.RESPONSE_AUDIO_DONE + ) + response_id: str + item_id: str + output_index: int + content_index: int + + +class InputAudioBufferCommitted(BaseEvent): + type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED] = ( + ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED + ) + previous_item_id: Optional[str] = None + item_id: Optional[str] = None + event_id: Optional[str] = None + + +class InputAudioBufferCleared(BaseEvent): + type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED] = ( + ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED + ) + + +class InputAudioBufferSpeechStarted(BaseEvent): + type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED] = ( + ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED + ) + audio_start_ms: int + item_id: str + + +class InputAudioBufferSpeechStopped(BaseEvent): + type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED] = ( + ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED + ) + audio_end_ms: int + item_id: str + + +#### Function Calls +class ResponseFunctionCallArgumentsDelta(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA] = ( + ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA + ) + response_id: str + item_id: str + output_index: int + call_id: str + delta: str + + +class ResponseFunctionCallArgumentsDone(BaseEvent): + type: Literal[ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE] = ( + ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE + ) + response_id: str + item_id: str + output_index: int + call_id: str + arguments: str + + +#### Rate Limits +class RateLimit(BaseModel): + name: str + limit: int + remaining: int + reset_seconds: float + + +class RateLimitsUpdated(BaseEvent): + type: Literal[ServerEventTypes.RATE_LIMITS_UPDATED] = ( + ServerEventTypes.RATE_LIMITS_UPDATED + ) + rate_limits: List[RateLimit] + + +ServerEvent = Union[ + ErrorEvent, + ConversationCreated, + ResponseAudioTranscriptDone, + ResponseAudioTranscriptDelta, + ResponseAudioDelta, + ResponseCreated, + ResponseDone, + ResponseOutputItemAdded, + ResponseOutputItemDone, + ResponseContentPartAdded, + ResponseContentPartDone, + ResponseTextDelta, + ResponseTextDone, + ResponseAudioDone, + ConversationItemInputAudioTranscriptionCompleted, + SessionCreated, + SessionUpdated, + InputAudioBufferCleared, + InputAudioBufferSpeechStarted, + InputAudioBufferSpeechStopped, + ConversationItemCreated, + ConversationItemInputAudioTranscriptionFailed, + ConversationItemTruncated, + ConversationItemDeleted, + RateLimitsUpdated, +] + +EVENT_TYPE_TO_MODEL = { + ServerEventTypes.ERROR: ErrorEvent, + ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE: ResponseAudioTranscriptDone, + ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA: ResponseAudioTranscriptDelta, + ServerEventTypes.RESPONSE_AUDIO_DELTA: ResponseAudioDelta, + ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED: ConversationItemInputAudioTranscriptionCompleted, + ServerEventTypes.SESSION_CREATED: SessionCreated, + ServerEventTypes.SESSION_UPDATED: SessionUpdated, + ServerEventTypes.CONVERSATION_CREATED: ConversationCreated, + ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED: InputAudioBufferCommitted, + ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED: InputAudioBufferCleared, + ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED: InputAudioBufferSpeechStarted, + ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED: InputAudioBufferSpeechStopped, + ServerEventTypes.CONVERSATION_ITEM_CREATED: ConversationItemCreated, + ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED: ConversationItemInputAudioTranscriptionFailed, + ServerEventTypes.CONVERSATION_ITEM_TRUNCATED: ConversationItemTruncated, + ServerEventTypes.CONVERSATION_ITEM_DELETED: ConversationItemDeleted, + ServerEventTypes.RESPONSE_CREATED: ResponseCreated, + ServerEventTypes.RESPONSE_DONE: ResponseDone, + ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED: ResponseOutputItemAdded, + ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE: ResponseOutputItemDone, + ServerEventTypes.RESPONSE_CONTENT_PART_ADDED: ResponseContentPartAdded, + ServerEventTypes.RESPONSE_CONTENT_PART_DONE: ResponseContentPartDone, + ServerEventTypes.RESPONSE_TEXT_DELTA: ResponseTextDelta, + ServerEventTypes.RESPONSE_TEXT_DONE: ResponseTextDone, + ServerEventTypes.RESPONSE_AUDIO_DONE: ResponseAudioDone, + ServerEventTypes.RATE_LIMITS_UPDATED: RateLimitsUpdated, +} + + +def parse_server_event(event_data: dict) -> ServerEvent: + event_type = event_data.get("type") + if not event_type: + raise ValueError("Event data is missing 'type' field") + + model_class = EVENT_TYPE_TO_MODEL.get(event_type) + if not model_class: + raise ValueError(f"Unknown event type: {event_type}") + + try: + return model_class(**event_data) + except ValidationError as e: + raise ValueError(f"Failed to parse event of type {event_type}: {str(e)}") +``` + +
+ +## Audio Stream Writer (To Disk and In Memory) + + +```python +class StreamingWavWriter: + """Writes audio integer or byte array chunks to a WAV file.""" + + wav_file = None + buffer = None + in_memory = False + + def __init__( + self, + filename=None, + channels=INPUT_DEVICE_CHANNELS, + sample_width=SAMPLE_WIDTH, + framerate=SAMPLE_RATE, + ): + self.in_memory = filename is None + if self.in_memory: + self.buffer = io.BytesIO() + self.wav_file = wave.open(self.buffer, "wb") + else: + self.wav_file = wave.open(filename, "wb") + + self.wav_file.setnchannels(channels) + self.wav_file.setsampwidth(sample_width) + self.wav_file.setframerate(framerate) + + def append_int16_chunk(self, int16_data): + if int16_data is not None: + self.wav_file.writeframes( + int16_data.tobytes() + if isinstance(int16_data, np.ndarray) + else int16_data + ) + + def close(self): + self.wav_file.close() + + def get_wav_buffer(self): + assert self.in_memory, "Buffer only available if stream is in memory." + return self.buffer +``` + +## Realtime Audio Model + +The realtime (RT) audio model uses a websocket to send events to OpenAI's Realtime audio API. This works as follows: + +1. __init:__ We initialize local buffers (input audio) and streams (assistant playback stream, user audio disk writer stream) and open a connection to the Realtime API. +2. __receive_messages_thread__: A thread handles receiving messages from the API. Four primary event types are handled: + - RESPONSE_AUDIO_TRANSCRIPT_DONE: + + The server indicates the assistant's response is completed and provides the transcript. + + - CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED: + + The server indicates the user's audio has been transcribed, and sends the transcript of the user's audio. We log the transcript to Weave and print it for the user. + + - RESPONSE_AUDIO_DELTA: + + The server sends a new chunk of assistant response audio. We append this to the ongoing response data via the response ID, and add this to the output stream for playback. + + - RESPONSE_DONE: + + The server indicates completion of an assistant response. We get all audio chunks associated with the response, as well as the transcript, and log these in Weave. +3.__send_audio__: A handler appends user audio chunks to a buffer, and sends chunks of audio when the audio buffer reaches a certain size. + + +```python +class RTAudioModel(weave.Model): + """Model class for realtime e2e audio OpenAI model interaction with Whisper user transcription for logging.""" + + realtime_model_name: str = "gpt-4o-realtime-preview-2024-10-01" # realtime e2e audio only model interaction + + stop_event: Optional[threading.Event] = threading.Event() # Event to stop the model + ws: Optional[websocket.WebSocket] = None # Websocket for OpenAI communications + + user_wav_writer: Optional[StreamingWavWriter] = ( + None # Stream for writing user output to file + ) + input_audio_buffer: Optional[np.ndarray] = None # Buffer for user audio chunks + assistant_outputs: Dict[str, StreamingWavWriter] = ( + None # Assistant outputs aggregated to send to weave + ) + playback_stream: Optional[pyaudio.Stream] = ( + None # Playback stream for playing assistant responses + ) + + def __init__(self): + super().__init__() + self.stop_event.clear() + self.user_wav_writer = StreamingWavWriter( + filename="user_audio.wav", framerate=SAMPLE_RATE + ) + self.input_audio_buffer = np.array([], dtype=np.int16) + self.ws = websocket.WebSocket() + self.assistant_outputs = {} + + # Open the assistant audio playback stream if enabled + if enable_audio_playback: + self.playback_stream = pyaudio.PyAudio().open( + format=pyaudio.paInt16, + channels=OUTPUT_DEVICE_CHANNELS, + rate=OAI_SAMPLE_RATE, + output=True, + output_device_index=OUTPUT_DEVICE_INDEX, + ) + + # Connect Websocket + try: + self.ws.connect( + f"wss://api.openai.com/v1/realtime?model={self.realtime_model_name}", + header={ + "Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}", + "OpenAI-Beta": "realtime=v1", + }, + ) + + # Send config msg + config_event = SessionUpdate( + session=Session( + modalities=["text", "audio"], # modalities to use + input_audio_transcription=InputAudioTranscription( + model="whisper-1" + ), # whisper-1 for transcription + turn_detection=TurnDetection( + type="server_vad", + threshold=0.3, + prefix_padding_ms=300, + silence_duration_ms=600, + ), # server VAD to detect silence + ) + ) + self.ws.send(config_event.model_dump_json(exclude_none=True)) + self.log_ws_message(config_event.model_dump_json(exclude_none=True), "Sent") + + # Start listener + websocket_thread = threading.Thread(target=self.receive_messages_thread) + websocket_thread.daemon = True + websocket_thread.start() + + except Exception as e: + print(f"Error connecting to WebSocket: {e}") + + ##### Weave Integration and Message Handlers ##### + def handle_assistant_response_audio_delta(self, data: ResponseAudioDelta): + if data.response_id not in self.assistant_outputs: + self.assistant_outputs[data.response_id] = StreamingWavWriter( + framerate=OAI_SAMPLE_RATE + ) + + data_bytes = base64.b64decode(data.delta) + self.assistant_outputs[data.response_id].append_int16_chunk(data_bytes) + + if enable_audio_playback: + self.playback_stream.write(data_bytes) + + return {"assistant_audio": data_bytes} + + @weave.op() + def handle_assistant_response_done(self, data: ResponseDone): + wave_file_stream = self.assistant_outputs[data.response.id] + wave_file_stream.close() + wave_file_stream.buffer.seek(0) + weave_payload = { + "assistant_audio": wave.open(wave_file_stream.get_wav_buffer(), "rb"), + "assistant_transcript": data.response.output[0] + .content[0] + .get("transcript", "Transcript Unavailable."), + } + return weave_payload + + @weave.op() + def handle_user_transcription_done( + self, data: ConversationItemInputAudioTranscriptionCompleted + ): + return {"user_transcript": data.transcript} + + ##### Message Receiver and Sender ##### + def receive_messages_thread(self): + while not self.stop_event.is_set(): + try: + data = json.loads(self.ws.recv()) + self.log_ws_message(json.dumps(data, indent=2)) + + parsed_event = parse_server_event(data) + + if parsed_event.type == ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE: + print("Assistant: ", parsed_event.transcript) + elif ( + parsed_event.type + == ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED + ): + print("User: ", parsed_event.transcript) + self.handle_user_transcription_done(parsed_event) + elif parsed_event.type == ServerEventTypes.RESPONSE_AUDIO_DELTA: + self.handle_assistant_response_audio_delta(parsed_event) + elif parsed_event.type == ServerEventTypes.RESPONSE_DONE: + self.handle_assistant_response_done(parsed_event) + elif parsed_event.type == ServerEventTypes.ERROR: + print( + f"\nError from server: {parsed_event.error.model_dump_json(exclude_none=True)}" + ) + except websocket.WebSocketConnectionClosedException: + print("\nWebSocket connection closed") + break + except json.JSONDecodeError: + continue + except Exception as e: + print(f"\nError in receive_messages: {e}") + break + + def send_audio(self, audio_chunk): + if self.ws and self.ws.connected: + self.input_audio_buffer = np.append( + self.input_audio_buffer, np.frombuffer(audio_chunk, dtype=np.int16) + ) + if len(self.input_audio_buffer) >= SAMPLE_RATE * CHUNK_DURATION: + try: + # Resample audio to OAI sample rate + resampled_audio = ( + resampy.resample( + self.input_audio_buffer, SAMPLE_RATE, OAI_SAMPLE_RATE + ) + if SAMPLE_RATE != OAI_SAMPLE_RATE + else self.input_audio_buffer + ) + + # Send audio chunk to OAI API + audio_event = InputAudioBufferAppend( + audio=base64.b64encode( + resampled_audio.astype(np.int16).tobytes() + ).decode("utf-8") # Convert audio array to b64 bytes + ) + self.ws.send(audio_event.model_dump_json(exclude_none=True)) + self.log_ws_message( + audio_event.model_dump_json(exclude_none=True), "Sent" + ) + finally: + self.user_wav_writer.append_int16_chunk(self.input_audio_buffer) + + # Clear the audio buffer + self.input_audio_buffer = np.array([], dtype=np.int16) + else: + print("Error sending audio: websocket not initialized.") + + ##### General Utility Functions ##### + def log_ws_message(self, message, direction="Received"): + with open("websocket_log.txt", "a") as log_file: + log_file.write( + f"{time.strftime('%Y-%m-%d %H:%M:%S')} - {direction}: {message}\n" + ) + + def stop(self): + self.stop_event.set() + + if self.ws: + self.ws.close() + + self.user_wav_writer.close() +``` + +## Audio recorder + +We use a pyaudio input stream with a handler linked to the `send_audio` method of the RTAudio model. The stream is returned to the main thread so it can be safely exited upon program completion. + + +```python +# Audio capture stream +def record_audio(realtime_model: RTAudioModel) -> pyaudio.Stream: + """Setup a Pyaudio input stream and use the RTAudioModel as a callback for streaming data.""" + + def audio_callback(in_data, frame_count, time_info, status): + realtime_model.send_audio(in_data) + return (None, pyaudio.paContinue) + + p = pyaudio.PyAudio() + stream = p.open( + format=pyaudio.paInt16, + channels=INPUT_DEVICE_CHANNELS, + rate=SAMPLE_RATE, + input=True, + input_device_index=INPUT_DEVICE_INDEX, + frames_per_buffer=CHUNK, + stream_callback=audio_callback, + ) + stream.start_stream() + + print("Recording started. Please begin speaking to your personal assistant...") + return stream +``` + +## Main Thread (Run me!) + +The main thread initiates a Realtime Audio Model with Weave integrated. Next, a reccording is opened and we wait for a keyboard interrupt from the user. + + +```python +weave.init(project_name="realtime-oai-audio-testing") + +realtime_model = RTAudioModel() + +if realtime_model.ws and realtime_model.ws.connected: + recording_stream: pyaudio.Stream = record_audio(realtime_model) + + try: + while not realtime_model.stop_event.is_set(): + time.sleep(1) + except KeyboardInterrupt: + pass + except Exception as e: + print(f"Error in main loop: {e}") + import traceback + + traceback.print_exc() + finally: + print("Exiting...") + realtime_model.stop() + if recording_stream and recording_stream.is_active(): + recording_stream.stop_stream() + recording_stream.close() +else: + print( + "WebSocket connection failed. Please check your API key and internet connection." + ) +``` + + +
diff --git a/docs/docs/reference/gen_notebooks/custom_model_cost.md b/docs/docs/reference/gen_notebooks/custom_model_cost.md index fc7bf819c2a..093286e9f06 100644 --- a/docs/docs/reference/gen_notebooks/custom_model_cost.md +++ b/docs/docs/reference/gen_notebooks/custom_model_cost.md @@ -92,6 +92,7 @@ class YourModel(Model): "usage": { "input_tokens": prompt_tokens, "output_tokens": completion_tokens, + "total_tokens": prompt_tokens + completion_tokens, }, "model": "your_model_name", "output": prediction, diff --git a/docs/docs/reference/gen_notebooks/multi-agent-structured-output.md b/docs/docs/reference/gen_notebooks/multi-agent-structured-output.md new file mode 100644 index 00000000000..24043311b12 --- /dev/null +++ b/docs/docs/reference/gen_notebooks/multi-agent-structured-output.md @@ -0,0 +1,711 @@ +--- +title: Structured Outputs for Multi-Agent Systems +--- + + +:::tip[This is a notebook] + +
Open In Colab
Open in Colab
+ +
View in Github
View in Github
+ +::: + + + + + +# Structured Outputs for Multi-Agent Systems + +OpenAI relased [Structured Outputs](https://openai.com/index/introducing-structured-outputs-in-the-api/) to enable users to ensure the model will always generate responses that adhere to your supplied JSON Schema without strongly worded prompts. With Structured Outputs, we don't need to validate or retry incorrectly formatted responses. + +By using the new parameter `strict: true`, we are able to guarantee the response abides by a provided schema. + +The use of structured outputs in a multi-agent system enhances communication by ensuring consistent, easily processed data between agents. It also improves safety by allowing explicit refusals and boosts performance by eliminating the need for retries or validations. This simplifies interactions and increases overall system efficiency. + +This tutorial demonstrates how we can utilize structured outputs in multi-agent system and trace them with [Weave](https://weave-docs.wandb.ai/). + +:::tip [Source](https://cookbook.openai.com/examples/structured_outputs_multi_agent) +This cookbook is based on [sample code from OpenAI's structured outputs](https://cookbook.openai.com/examples/structured_outputs_multi_agent), with some modifications added for improved visualization using Weave. +::: + +## Installing the Dependencies + +We need the following libraries for this tutorial: +- [OpenAI](https://openai.com/index/openai-api/) to create multi-agent system. +- [Weave](../../introduction.md) to track our LLM workflow and evaluate our prompting strategies. + + + +```python +!pip install -qU openai weave wandb +``` + +We set `WANDB_API_KEY` in our env so that we may easily login with wandb.login() (this should be given to the colab as a secret). + +We set the project in W&B we want to log this into in `name_of_wandb_project`. + +**NOTE**: `name_of_wandb_project` may also be in the format of `{team_name}/{project_name}` to specify a team to log the traces into. +We then fetch a weave client by calling weave.init() + + +Since we'll be using [OpenAI API](https://openai.com/index/openai-api/), we will also need an OpenAI API key. You can [sign up](https://platform.openai.com/signup) on the OpenAI platform to get your own API key. (this should be given to the colab as a secret too.) + + + + +```python +import base64 +import json +import os +from io import BytesIO, StringIO + +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import wandb +from google.colab import userdata +from openai import OpenAI + +import weave +``` + + +```python +os.environ["WANDB_API_KEY"] = userdata.get("WANDB_API_KEY") +os.environ["OPENAI_API_KEY"] = userdata.get("OPENAI_API_KEY") + +wandb.login() +name_of_wandb_project = "multi-agent-structured-output" +weave.init(name_of_wandb_project) + +client = OpenAI() +MODEL = "gpt-4o-2024-08-06" +``` + +## Agents set up + +The use case we will tackle is a data analysis task. +Let's first set up our 4-agents system: + +* Triaging agent: Decides which agent(s) to call +* Data pre-processing Agent: Prepares data for analysis - for example by cleaning it up +* Data Analysis Agent: Performs analysis on the data +* Data Visualization Agent: Visualizes the output of the analysis to extract insights +We will start by defining the system prompts for each of these agents. + + +```python +triaging_system_prompt = """You are a Triaging Agent. Your role is to assess the user's query and route it to the relevant agents. The agents available are: +- Data Processing Agent: Cleans, transforms, and aggregates data. +- Analysis Agent: Performs statistical, correlation, and regression analysis. +- Visualization Agent: Creates bar charts, line charts, and pie charts. + +Use the send_query_to_agents tool to forward the user's query to the relevant agents. Also, use the speak_to_user tool to get more information from the user if needed.""" + +processing_system_prompt = """You are a Data Processing Agent. Your role is to clean, transform, and aggregate data using the following tools: +- clean_data +- transform_data +- aggregate_data""" + +analysis_system_prompt = """You are an Analysis Agent. Your role is to perform statistical, correlation, and regression analysis using the following tools: +- stat_analysis +- correlation_analysis +- regression_analysis""" + +visualization_system_prompt = """You are a Visualization Agent. Your role is to create bar charts, line charts, and pie charts using the following tools: +- create_bar_chart +- create_line_chart +- create_pie_chart""" +``` + +We will then define the tools for each agent. + +Apart from the triaging agent, each agent will be equipped with tools specific to their role: + +**Data pre-processing agent** : 1. Clean data, 2. Transform data, 3. Aggregate data + +**Data analysis agent** : 1. Statistical analysis, 2. Correlation analysis, 3. Regression Analysis + +**Data visualization agent** : 1. Create bar chart, 2. Create line chart, 3. Create pie chart + + + +```python +triage_tools = [ + { + "type": "function", + "function": { + "name": "send_query_to_agents", + "description": "Sends the user query to relevant agents based on their capabilities.", + "parameters": { + "type": "object", + "properties": { + "agents": { + "type": "array", + "items": {"type": "string"}, + "description": "An array of agent names to send the query to.", + }, + "query": { + "type": "string", + "description": "The user query to send.", + }, + }, + "required": ["agents", "query"], + }, + }, + "strict": True, + } +] + +preprocess_tools = [ + { + "type": "function", + "function": { + "name": "clean_data", + "description": "Cleans the provided data by removing duplicates and handling missing values.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The dataset to clean. Should be in a suitable format such as JSON or CSV.", + } + }, + "required": ["data"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "transform_data", + "description": "Transforms data based on specified rules.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The data to transform. Should be in a suitable format such as JSON or CSV.", + }, + "rules": { + "type": "string", + "description": "Transformation rules to apply, specified in a structured format.", + }, + }, + "required": ["data", "rules"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "aggregate_data", + "description": "Aggregates data by specified columns and operations.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The data to aggregate. Should be in a suitable format such as JSON or CSV.", + }, + "group_by": { + "type": "array", + "items": {"type": "string"}, + "description": "Columns to group by.", + }, + "operations": { + "type": "string", + "description": "Aggregation operations to perform, specified in a structured format.", + }, + }, + "required": ["data", "group_by", "operations"], + "additionalProperties": False, + }, + }, + "strict": True, + }, +] + + +analysis_tools = [ + { + "type": "function", + "function": { + "name": "stat_analysis", + "description": "Performs statistical analysis on the given dataset.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The dataset to analyze. Should be in a suitable format such as JSON or CSV.", + } + }, + "required": ["data"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "correlation_analysis", + "description": "Calculates correlation coefficients between variables in the dataset.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The dataset to analyze. Should be in a suitable format such as JSON or CSV.", + }, + "variables": { + "type": "array", + "items": {"type": "string"}, + "description": "List of variables to calculate correlations for.", + }, + }, + "required": ["data", "variables"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "regression_analysis", + "description": "Performs regression analysis on the dataset.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The dataset to analyze. Should be in a suitable format such as JSON or CSV.", + }, + "dependent_var": { + "type": "string", + "description": "The dependent variable for regression.", + }, + "independent_vars": { + "type": "array", + "items": {"type": "string"}, + "description": "List of independent variables.", + }, + }, + "required": ["data", "dependent_var", "independent_vars"], + "additionalProperties": False, + }, + }, + "strict": True, + }, +] + +visualization_tools = [ + { + "type": "function", + "function": { + "name": "create_bar_chart", + "description": "Creates a bar chart from the provided data.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The data for the bar chart. Should be in a suitable format such as JSON or CSV.", + }, + "x": {"type": "string", "description": "Column for the x-axis."}, + "y": {"type": "string", "description": "Column for the y-axis."}, + }, + "required": ["data", "x", "y"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "create_line_chart", + "description": "Creates a line chart from the provided data.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The data for the line chart. Should be in a suitable format such as JSON or CSV.", + }, + "x": {"type": "string", "description": "Column for the x-axis."}, + "y": {"type": "string", "description": "Column for the y-axis."}, + }, + "required": ["data", "x", "y"], + "additionalProperties": False, + }, + }, + "strict": True, + }, + { + "type": "function", + "function": { + "name": "create_pie_chart", + "description": "Creates a pie chart from the provided data.", + "parameters": { + "type": "object", + "properties": { + "data": { + "type": "string", + "description": "The data for the pie chart. Should be in a suitable format such as JSON or CSV.", + }, + "labels": { + "type": "string", + "description": "Column for the labels.", + }, + "values": { + "type": "string", + "description": "Column for the values.", + }, + }, + "required": ["data", "labels", "values"], + "additionalProperties": False, + }, + }, + "strict": True, + }, +] +``` + +## Enable tracking of multi-agent using Weave + +We need to write the code logic to: + +* handle passing the user query to the multi-agent system +* handle the internal workings of the multi-agent system +* execute the tool calls + + +```python +# Example query + +user_query = """ +Below is some data. I want you to first remove the duplicates then analyze the statistics of the data as well as plot a line chart. + +house_size (m3), house_price ($) +90, 100 +80, 90 +100, 120 +90, 100 +""" +``` + +From the user query, we can infer that the tools we would need to call are `clean_data`, `start_analysis` and `use_line_chart`. + +We will begin by defining the execution function responsible for running tool calls. + +By decorating Python functions with `@weave.op()`, we can log and debug language model inputs, outputs, and traces. + +When creating a multi-agent system, many functions will appear, but it's sufficient to simply add `@weave.op()` on top of them. + + +```python +@weave.op() +def clean_data(data): + data_io = StringIO(data) + df = pd.read_csv(data_io, sep=",") + df_deduplicated = df.drop_duplicates() + return df_deduplicated + + +@weave.op() +def stat_analysis(data): + data_io = StringIO(data) + df = pd.read_csv(data_io, sep=",") + return df.describe() + + +@weave.op() +def plot_line_chart(data): + data_io = StringIO(data) + df = pd.read_csv(data_io, sep=",") + + x = df.iloc[:, 0] + y = df.iloc[:, 1] + + coefficients = np.polyfit(x, y, 1) + polynomial = np.poly1d(coefficients) + y_fit = polynomial(x) + + plt.figure(figsize=(10, 6)) + plt.plot(x, y, "o", label="Data Points") + plt.plot(x, y_fit, "-", label="Best Fit Line") + plt.title("Line Chart with Best Fit Line") + plt.xlabel(df.columns[0]) + plt.ylabel(df.columns[1]) + plt.legend() + plt.grid(True) + + # Save the plot to a BytesIO buffer before showing it + buf = BytesIO() + plt.savefig(buf, format="png") + buf.seek(0) + + # Display the plot + plt.show() + + # Encode the image in base64 for the data URL + image_data = buf.getvalue() + base64_encoded_data = base64.b64encode(image_data) + base64_string = base64_encoded_data.decode("utf-8") + data_url = f"data:image/png;base64,{base64_string}" + + return data_url + + +# Define the function to execute the tools +@weave.op() +def execute_tool(tool_calls, messages): + for tool_call in tool_calls: + tool_name = tool_call.function.name + tool_arguments = json.loads(tool_call.function.arguments) + + if tool_name == "clean_data": + # Simulate data cleaning + cleaned_df = clean_data(tool_arguments["data"]) + cleaned_data = {"cleaned_data": cleaned_df.to_dict()} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(cleaned_data)} + ) + print("Cleaned data: ", cleaned_df) + elif tool_name == "transform_data": + # Simulate data transformation + transformed_data = {"transformed_data": "sample_transformed_data"} + messages.append( + { + "role": "tool", + "name": tool_name, + "content": json.dumps(transformed_data), + } + ) + elif tool_name == "aggregate_data": + # Simulate data aggregation + aggregated_data = {"aggregated_data": "sample_aggregated_data"} + messages.append( + { + "role": "tool", + "name": tool_name, + "content": json.dumps(aggregated_data), + } + ) + elif tool_name == "stat_analysis": + # Simulate statistical analysis + stats_df = stat_analysis(tool_arguments["data"]) + stats = {"stats": stats_df.to_dict()} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(stats)} + ) + print("Statistical Analysis: ", stats_df) + elif tool_name == "correlation_analysis": + # Simulate correlation analysis + correlations = {"correlations": "sample_correlations"} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(correlations)} + ) + elif tool_name == "regression_analysis": + # Simulate regression analysis + regression_results = {"regression_results": "sample_regression_results"} + messages.append( + { + "role": "tool", + "name": tool_name, + "content": json.dumps(regression_results), + } + ) + elif tool_name == "create_bar_chart": + # Simulate bar chart creation + bar_chart = {"bar_chart": "sample_bar_chart"} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(bar_chart)} + ) + elif tool_name == "create_line_chart": + # Simulate line chart creation + line_chart = {"line_chart": plot_line_chart(tool_arguments["data"])} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(line_chart)} + ) + elif tool_name == "create_pie_chart": + # Simulate pie chart creation + pie_chart = {"pie_chart": "sample_pie_chart"} + messages.append( + {"role": "tool", "name": tool_name, "content": json.dumps(pie_chart)} + ) + return messages +``` + +Next, we will create the tool handlers for each of the sub-agents. These have a unique prompt and tool set passed to the model. The output is then passed to an execution function which runs the tool calls. + + +```python +# Define the functions to handle each agent's processing +@weave.op() +def handle_data_processing_agent(query, conversation_messages): + messages = [{"role": "system", "content": processing_system_prompt}] + messages.append({"role": "user", "content": query}) + + response = client.chat.completions.create( + model=MODEL, + messages=messages, + temperature=0, + tools=preprocess_tools, + ) + + conversation_messages.append( + [tool_call.function for tool_call in response.choices[0].message.tool_calls] + ) + execute_tool(response.choices[0].message.tool_calls, conversation_messages) + + +@weave.op() +def handle_analysis_agent(query, conversation_messages): + messages = [{"role": "system", "content": analysis_system_prompt}] + messages.append({"role": "user", "content": query}) + + response = client.chat.completions.create( + model=MODEL, + messages=messages, + temperature=0, + tools=analysis_tools, + ) + + conversation_messages.append( + [tool_call.function for tool_call in response.choices[0].message.tool_calls] + ) + execute_tool(response.choices[0].message.tool_calls, conversation_messages) + + +@weave.op() +def handle_visualization_agent(query, conversation_messages): + messages = [{"role": "system", "content": visualization_system_prompt}] + messages.append({"role": "user", "content": query}) + + response = client.chat.completions.create( + model=MODEL, + messages=messages, + temperature=0, + tools=visualization_tools, + ) + + conversation_messages.append( + [tool_call.function for tool_call in response.choices[0].message.tool_calls] + ) + execute_tool(response.choices[0].message.tool_calls, conversation_messages) +``` + +Finally, we create the overarching tool to handle processing the user query. This function takes the user query, gets a response from the model and handles passing it to the other agents to execute. + + +```python +# Function to handle user input and triaging +@weave.op() +def handle_user_message(user_query, conversation_messages=[]): + user_message = {"role": "user", "content": user_query} + conversation_messages.append(user_message) + + messages = [{"role": "system", "content": triaging_system_prompt}] + messages.extend(conversation_messages) + + response = client.chat.completions.create( + model=MODEL, + messages=messages, + temperature=0, + tools=triage_tools, + ) + + conversation_messages.append( + [tool_call.function for tool_call in response.choices[0].message.tool_calls] + ) + + for tool_call in response.choices[0].message.tool_calls: + if tool_call.function.name == "send_query_to_agents": + agents = json.loads(tool_call.function.arguments)["agents"] + query = json.loads(tool_call.function.arguments)["query"] + for agent in agents: + if agent == "Data Processing Agent": + handle_data_processing_agent(query, conversation_messages) + elif agent == "Analysis Agent": + handle_analysis_agent(query, conversation_messages) + elif agent == "Visualization Agent": + handle_visualization_agent(query, conversation_messages) + + outputs = extract_tool_contents(conversation_messages) + + return outputs + + +functions = [ + "clean_data", + "transform_data", + "stat_analysis", + "aggregate_data", + "correlation_analysis", + "regression_analysis", + "create_bar_chart", + "create_line_chart", + "create_pie_chart", +] + + +@weave.op() +def extract_tool_contents(data): + contents = {} + contents["all"] = data + for element in data: + if isinstance(element, dict): + if element.get("role") == "tool" and element.get("name") in functions: + name = element["name"] + content_str = element["content"] + try: + content_json = json.loads(content_str) + if "chart" not in element.get("name"): + contents[name] = [content_json] + else: + first_key = next(iter(content_json)) + second_level = content_json[first_key] + if isinstance(second_level, dict): + second_key = next(iter(second_level)) + contents[name] = second_level[second_key] + else: + contents[name] = second_level + except json.JSONDecodeError: + print(f"Error decoding JSON for {name}") + contents[name] = None + + return contents +``` + +## Execute multi-agent systems and visualization in Weave + +Finally, we execute the primary `handle_user_message` function using the user's input and observe the results. + + +```python +handle_user_message(user_query) +``` + +When we click on the URL for Weave, we can see that the execution is being traced as follows. On the Traces page, we can check the input and output. For clarity, screenshots of the results displayed when each output is clicked have been added to the diagram. Weave provides integration with OpenAI's API, which allows costs to be automatically calculated. So, we can confirm cost and latency are also displayed on the far right. +![1-1.png]() + + + + +By clicking on a line, we can see the intermediate processes that were executed within the multi-agent system. For example, by looking at the input and output of the `analysis_agent`, we can see that it is in a structured output format. OpenAI's structured output facilitates collaboration between agents, but as the system becomes more complex, it becomes harder to grasp the format in which these interactions are taking place. Using Weave allows us to understand these intermediate processes and their inputs and outputs as if we were holding them in your hand. + +![3.png]() + +Please take a closer look at how tracing is handled in Weave! + +## Conclusion +In this tutorial, we learned how to conveniently develop a multi-agent system using structured output and Weave, provided by OpenAI for tracking inputs, final outputs, and intermediate output formats. diff --git a/docs/docs/tutorial-eval.md b/docs/docs/tutorial-eval.md index 2b4f202244d..44ccdfa5a9d 100644 --- a/docs/docs/tutorial-eval.md +++ b/docs/docs/tutorial-eval.md @@ -94,7 +94,7 @@ Here `sentence` is passed to the model's predict function, and `target` is used ```python import weave -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 weave.init('intro-example') @@ -132,7 +132,7 @@ import asyncio # highlight-next-line import weave # highlight-next-line -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 import openai # We create a model class with one predict function. diff --git a/docs/docs/tutorial-rag.md b/docs/docs/tutorial-rag.md index 43fbf3d9994..e88e27e38bc 100644 --- a/docs/docs/tutorial-rag.md +++ b/docs/docs/tutorial-rag.md @@ -182,7 +182,7 @@ On a high-level the steps to create custom Scorer are quite simple: ```python -from weave.flow.scorer import Scorer +from weave.scorers import Scorer from weave import WeaveList class CorrectnessLLMJudge(Scorer): diff --git a/docs/notebooks/audio_with_weave.ipynb b/docs/notebooks/audio_with_weave.ipynb new file mode 100644 index 00000000000..a4a3dfa2d04 --- /dev/null +++ b/docs/notebooks/audio_with_weave.ipynb @@ -0,0 +1,1464 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QLKCxvuewpXp" + }, + "source": [ + "# How to use Weave with Audio Data: An OpenAI Example\n", + "\n", + "This demo uses the OpenAI chat completions API with GPT 4o Audio Preview to generate audio responses to text prompts and track these in Weave.\n", + "\n", + "\n", + "\n", + "\n", + "For the advanced use case, we leverage the OpenAI Realtime API to stream audio in realtime. Click the following thumbnail to view the video demonstration, or click [here](https://www.youtube.com/watch?v=lnnd73xDElw).\n", + "\n", + "[![Everything Is AWESOME](https://img.youtube.com/vi/lnnd73xDElw/0.jpg)](https://www.youtube.com/watch?v=lnnd73xDElw \"Everything Is AWESOME\")\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "g5_ISqCHw-if" + }, + "source": [ + "## Setup\n", + "\n", + "Start by installing the OpenAI (`openai`) and Weave (`weave`) dependencies, as well as API key management dependencey `set-env`." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "2Y2XINQTjm4q" + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install openai\n", + "!pip install weave\n", + "!pip install set-env-colab-kaggle-dotenv -q # for env var" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aSsInJkXxTUi" + }, + "source": [ + "Next, load the required API keys for OpenAI and Weave. Here, we use set_env which is compatible with google colab's secret keys manager, and is an alternative to colab's specific `google.colab.userdata`. See: [here](https://pypi.org/project/set-env-colab-kaggle-dotenv/) for usage instructions. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fjEhdPz-klhq", + "outputId": "0f0067fb-e9de-46e5-ede0-64b3db79ef3e" + }, + "outputs": [], + "source": [ + "# Set environment variables.\n", + "from set_env import set_env\n", + "\n", + "_ = set_env(\"OPENAI_API_KEY\")\n", + "_ = set_env(\"WANDB_API_KEY\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SXjZLdpexbJO" + }, + "source": [ + "And finally import the required libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "sjsUjX2Gxasp" + }, + "outputs": [], + "source": [ + "import base64\n", + "import os\n", + "import time\n", + "import wave\n", + "\n", + "import numpy as np\n", + "from IPython.display import display\n", + "from openai import OpenAI\n", + "\n", + "import weave" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "clLjkW05xdYq" + }, + "source": [ + "## Audio Streaming and Storage Example" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "s5sFlW3-xj62" + }, + "source": [ + "Now we will setup a call to OpenAI's completions endpoint with audio modality enabled. First create the OpenAI client and initiate a Weave project." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VZVBhFzRxjKp", + "outputId": "7447b59b-0733-42e8-c103-0712a578d9b6" + }, + "outputs": [], + "source": [ + "client = OpenAI(api_key=os.environ.get(\"OPENAI_API_KEY\"))\n", + "weave.init(\"openai-audio-chat\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "o9gg1LkNzOIZ" + }, + "source": [ + "Now we will define our OpenAI completions request and add our Weave decorator (op).\n", + "\n", + "Here, we define the function `prompt_endpont_and_log_trace`. This function has three primary steps:\n", + "1. We make a completion object using the `GPT 4o Audio Preview` model that supports text and audio inputs and outputs.\n", + " - We prompt the model to count to 13 slowly with varying accents.\n", + " - We set the completion to \"stream\".\n", + "\n", + "2. We open a new output file to which the streamed data is writen chunk by chunk.\n", + "\n", + "3. We return an open file handler to the audio file so Weave logs the audio data in the trace." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "XGjJIbOYjkf5" + }, + "outputs": [], + "source": [ + "SAMPLE_RATE = 22050\n", + "\n", + "\n", + "@weave.op()\n", + "def prompt_endpoint_and_log_trace(system_prompt=None, user_prompt=None):\n", + " if not system_prompt:\n", + " system_prompt = \"You're the fastest counter in the world\"\n", + " if not user_prompt:\n", + " user_prompt = \"Count to 13 super super slow, enunciate each number with a dramatic flair, changing up accents as you go along. British, French, German, Spanish, etc.\"\n", + " # Request from the OpenAI API with audio modality\n", + " completion = client.chat.completions.create(\n", + " model=\"gpt-4o-audio-preview\",\n", + " modalities=[\"text\", \"audio\"],\n", + " audio={\"voice\": \"fable\", \"format\": \"pcm16\"},\n", + " stream=True,\n", + " messages=[\n", + " {\"role\": \"system\", \"content\": system_prompt},\n", + " {\"role\": \"user\", \"content\": user_prompt},\n", + " ],\n", + " )\n", + "\n", + " # Open a wave file for writing\n", + " with wave.open(\"./output.wav\", \"wb\") as wav_file:\n", + " wav_file.setnchannels(1) # Mono\n", + " wav_file.setsampwidth(2) # 16-bit\n", + " wav_file.setframerate(SAMPLE_RATE) # Sample rate (adjust if needed)\n", + "\n", + " # Write chunks as they are streamed in from the API\n", + " for chunk in completion:\n", + " if (\n", + " hasattr(chunk, \"choices\")\n", + " and chunk.choices is not None\n", + " and len(chunk.choices) > 0\n", + " ):\n", + " if (\n", + " hasattr(chunk.choices[0].delta, \"audio\")\n", + " and chunk.choices[0].delta.audio.get(\"data\") is not None\n", + " ):\n", + " # Decode the base64 audio data\n", + " audio_data = base64.b64decode(\n", + " chunk.choices[0].delta.audio.get(\"data\")\n", + " )\n", + "\n", + " # Write the current chunk to the wave file\n", + " wav_file.writeframes(audio_data)\n", + "\n", + " # Return the file to Weave op\n", + " return wave.open(\"output.wav\", \"rb\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PiidpfzXz7X0" + }, + "source": [ + "## Testing\n", + "\n", + "Run the following cell. The system and user prompt will be stored in a Weave trace as well as the output audio.\n", + "After running the cell, click the link next to the \"🍩\" emoji to view your trace." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 93 + }, + "id": "xnpZASeJoPQn", + "outputId": "25d9a956-3367-4668-ca91-718f6ccb3feb" + }, + "outputs": [], + "source": [ + "from IPython.display import Audio, display\n", + "\n", + "# Call the function to write the audio stream\n", + "prompt_endpoint_and_log_trace(\n", + " system_prompt=\"You're the fastest counter in the world\",\n", + " user_prompt=\"Count to 13 super super slow, enunciate each number with a dramatic flair, changing up accents as you go along. British, French, German, Spanish, etc.\",\n", + ")\n", + "\n", + "# Display the updated audio stream\n", + "display(Audio(\"output.wav\", rate=SAMPLE_RATE, autoplay=True))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P7zY5fho4hOG" + }, + "source": [ + "# Advanced Usage: Realtime Audio API with Weave\n", + "\n", + "
\n", + " (Advanced) Realtime Audio API with Weave \n", + "OpenAI's realtime API is a highly functional and reliable conversational API for building realtime audio and text assistants.\n", + "\n", + "Please note:\n", + "- Review the cells in [Microphone Configuration](#microphone-configuration)\n", + "- Due to limitations of the Google Colab execution environment, **this must be run on your host machine** as a Jupyter Notebook. This cannot be ran in the browser.\n", + " - On MacOS you will need to install `portaudio` via Brew (see [here](https://formulae.brew.sh/formula/portaudio)) for Pyaudio to function.\n", + "- OpenAI's Python SDK does not yet provide Realtime API support. We implement the complete OAI Realtime API schema in Pydantic for greater legibility, and may deprecate once official support is released.\n", + "- The `enable_audio_playback` toggle will cause playback of assistant outputted audio. Please note that **headphones are required if this is enabled**, as echo detection requires a highly complex implementation.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JKY6F0d06gRh" + }, + "source": [ + "## Requirements Setup" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "A9SvfhFH6fGL" + }, + "outputs": [], + "source": [ + "%%capture\n", + "!pip install numpy==2.0\n", + "!pip install weave\n", + "!pip install pyaudio # On mac, you may need to install portaudio first with `brew install portaudio`\n", + "!pip install websocket-client\n", + "!pip install set-env-colab-kaggle-dotenv -q # for env var\n", + "!pip install resampy" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "dhe4PsRx6miw" + }, + "outputs": [], + "source": [ + "import base64\n", + "import io\n", + "import json\n", + "import os\n", + "import threading\n", + "import time\n", + "import wave\n", + "from typing import Dict, List, Optional\n", + "\n", + "import numpy as np\n", + "import pyaudio\n", + "import resampy\n", + "import websocket\n", + "from set_env import set_env\n", + "\n", + "import weave" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "E_aXNWTV6n36" + }, + "outputs": [], + "source": [ + "# Set environment variables.\n", + "# See: https://pypi.org/project/set-env-colab-kaggle-dotenv/ for usage instructions.\n", + "_ = set_env(\"OPENAI_API_KEY\")\n", + "_ = set_env(\"WANDB_API_KEY\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "detJ21276p31" + }, + "source": [ + "## Microphone Configuration\n", + "\n", + "Run the following cell to find all available audio devices. Then, populate the `INPUT_DEVICE_INDEX` and the `OUTPUT_DEVICE_INDEX` based on the devices listed. Your input device will have at least 1 input channels, and your output device will have at least 1 output channels." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 211 + }, + "id": "uIDGPQr06t71", + "outputId": "87ebaaf0-15b0-4ce7-c807-6fc375c860fc" + }, + "outputs": [], + "source": [ + "# Get device list from pyaudio so we can configure the next cell\n", + "p = pyaudio.PyAudio()\n", + "devices_data = {i: p.get_device_info_by_index(i) for i in range(p.get_device_count())}\n", + "for i, device in devices_data.items():\n", + " print(\n", + " f\"Found device @{i}: {device['name']} with sample rate: {device['defaultSampleRate']} and input channels: {device['maxInputChannels']} and output channels: {device['maxOutputChannels']}\"\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 211 + }, + "id": "BoJDJUf76vjg", + "outputId": "aba922db-bdcf-421b-dec4-84e7fc2ffd50" + }, + "outputs": [], + "source": [ + "INPUT_DEVICE_INDEX = 3 # @param # Choose based on device list above. Make sure device has > 0 input channels.\n", + "OUTPUT_DEVICE_INDEX = 12 # @param # Chose based on device list above. Make sure device has > 0 output channels.\n", + "enable_audio_playback = True # @param {type:\"boolean\"} # Toggle on assistant audio playback. Requires headphones.\n", + "\n", + "# Audio recording and streaming parameters\n", + "INPUT_DEVICE_CHANNELS = devices_data[INPUT_DEVICE_INDEX][\n", + " \"maxInputChannels\"\n", + "] # From device list above\n", + "SAMPLE_RATE = int(\n", + " devices_data[INPUT_DEVICE_INDEX][\"defaultSampleRate\"]\n", + ") # From device list above\n", + "CHUNK = int(SAMPLE_RATE / 10) # Samples per frame\n", + "SAMPLE_WIDTH = p.get_sample_size(pyaudio.paInt16) # Samples per frame for the format\n", + "CHUNK_DURATION = 0.3 # Seconds of audio per chunk sent to OAI API\n", + "OAI_SAMPLE_RATE = (\n", + " 24000 # OAI Sample Rate is 24kHz, we need this to play or save assistant audio\n", + ")\n", + "OUTPUT_DEVICE_CHANNELS = 1 # Set to 1 for mono output" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## OpenAI Realtime API Schema Implementation\n", + "\n", + "The OpenAI Python SDK does not yet provide Realtime API support. We implement the complete OAI Realtime API schema in Pydantic for greater legibility, and may deprecate once official support is released.\n", + "\n", + "
\n", + " Pydantic Schema for OpenAI Realtime API (OpenAI's SDK lacks Realtime API support) " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "MqmBWnso6YjS" + }, + "outputs": [], + "source": [ + "from enum import Enum\n", + "from typing import Any, Dict, List, Literal, Optional, Union\n", + "\n", + "from pydantic import BaseModel, Field, ValidationError\n", + "\n", + "\n", + "class BaseEvent(BaseModel):\n", + " type: Union[\"ClientEventTypes\", \"ServerEventTypes\"]\n", + " event_id: Optional[str] = None # Add event_id as an optional field for all events\n", + "\n", + " # def model_dump_json(self, *args, **kwargs):\n", + " # # Only include non-None fields\n", + " # return super().model_dump_json(*args, exclude_none=True, **kwargs)\n", + "\n", + "\n", + "class ChatMessage(BaseModel):\n", + " role: Literal[\"user\", \"assistant\"]\n", + " content: str\n", + " timestamp: float\n", + "\n", + "\n", + "\"\"\" CLIENT EVENTS \"\"\"\n", + "\n", + "\n", + "class ClientEventTypes(str, Enum):\n", + " SESSION_UPDATE = \"session.update\"\n", + " CONVERSATION_ITEM_CREATE = \"conversation.item.create\"\n", + " CONVERSATION_ITEM_TRUNCATE = \"conversation.item.truncate\"\n", + " CONVERSATION_ITEM_DELETE = \"conversation.item.delete\"\n", + " RESPONSE_CREATE = \"response.create\"\n", + " RESPONSE_CANCEL = \"response.cancel\"\n", + " INPUT_AUDIO_BUFFER_APPEND = \"input_audio_buffer.append\"\n", + " INPUT_AUDIO_BUFFER_COMMIT = \"input_audio_buffer.commit\"\n", + " INPUT_AUDIO_BUFFER_CLEAR = \"input_audio_buffer.clear\"\n", + " ERROR = \"error\"\n", + "\n", + "\n", + "#### Session Update\n", + "class TurnDetection(BaseModel):\n", + " type: Literal[\"server_vad\"]\n", + " threshold: float = Field(..., ge=0.0, le=1.0)\n", + " prefix_padding_ms: int\n", + " silence_duration_ms: int\n", + "\n", + "\n", + "class InputAudioTranscription(BaseModel):\n", + " model: Optional[str] = None\n", + "\n", + "\n", + "class ToolParameterProperty(BaseModel):\n", + " type: str\n", + "\n", + "\n", + "class ToolParameter(BaseModel):\n", + " type: str\n", + " properties: Dict[str, ToolParameterProperty]\n", + " required: List[str]\n", + "\n", + "\n", + "class Tool(BaseModel):\n", + " type: Literal[\"function\", \"code_interpreter\", \"file_search\"]\n", + " name: Optional[str] = None\n", + " description: Optional[str] = None\n", + " parameters: Optional[ToolParameter] = None\n", + "\n", + "\n", + "class Session(BaseModel):\n", + " modalities: Optional[List[str]] = None\n", + " instructions: Optional[str] = None\n", + " voice: Optional[str] = None\n", + " input_audio_format: Optional[str] = None\n", + " output_audio_format: Optional[str] = None\n", + " input_audio_transcription: Optional[InputAudioTranscription] = None\n", + " turn_detection: Optional[TurnDetection] = None\n", + " tools: Optional[List[Tool]] = None\n", + " tool_choice: Optional[str] = None\n", + " temperature: Optional[float] = None\n", + " max_output_tokens: Optional[int] = None\n", + "\n", + "\n", + "class SessionUpdate(BaseEvent):\n", + " type: Literal[ClientEventTypes.SESSION_UPDATE] = ClientEventTypes.SESSION_UPDATE\n", + " session: Session\n", + "\n", + "\n", + "#### Audio Buffers\n", + "class InputAudioBufferAppend(BaseEvent):\n", + " type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_APPEND] = (\n", + " ClientEventTypes.INPUT_AUDIO_BUFFER_APPEND\n", + " )\n", + " audio: str\n", + "\n", + "\n", + "class InputAudioBufferCommit(BaseEvent):\n", + " type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_COMMIT] = (\n", + " ClientEventTypes.INPUT_AUDIO_BUFFER_COMMIT\n", + " )\n", + "\n", + "\n", + "class InputAudioBufferClear(BaseEvent):\n", + " type: Literal[ClientEventTypes.INPUT_AUDIO_BUFFER_CLEAR] = (\n", + " ClientEventTypes.INPUT_AUDIO_BUFFER_CLEAR\n", + " )\n", + "\n", + "\n", + "#### Messages\n", + "class MessageContent(BaseModel):\n", + " type: Literal[\"input_audio\"]\n", + " audio: str\n", + "\n", + "\n", + "class ConversationItemContent(BaseModel):\n", + " type: Literal[\"input_text\", \"input_audio\", \"text\", \"audio\"]\n", + " text: Optional[str] = None\n", + " audio: Optional[str] = None\n", + " transcript: Optional[str] = None\n", + "\n", + "\n", + "class FunctionCallContent(BaseModel):\n", + " call_id: str\n", + " name: str\n", + " arguments: str\n", + "\n", + "\n", + "class FunctionCallOutputContent(BaseModel):\n", + " output: str\n", + "\n", + "\n", + "class ConversationItem(BaseModel):\n", + " id: Optional[str] = None\n", + " type: Literal[\"message\", \"function_call\", \"function_call_output\"]\n", + " status: Optional[Literal[\"completed\", \"in_progress\", \"incomplete\"]] = None\n", + " role: Literal[\"user\", \"assistant\", \"system\"]\n", + " content: List[\n", + " Union[ConversationItemContent, FunctionCallContent, FunctionCallOutputContent]\n", + " ]\n", + " call_id: Optional[str] = None\n", + " name: Optional[str] = None\n", + " arguments: Optional[str] = None\n", + " output: Optional[str] = None\n", + "\n", + "\n", + "class ConversationItemCreate(BaseEvent):\n", + " type: Literal[ClientEventTypes.CONVERSATION_ITEM_CREATE] = (\n", + " ClientEventTypes.CONVERSATION_ITEM_CREATE\n", + " )\n", + " item: ConversationItem\n", + "\n", + "\n", + "class ConversationItemTruncate(BaseEvent):\n", + " type: Literal[ClientEventTypes.CONVERSATION_ITEM_TRUNCATE] = (\n", + " ClientEventTypes.CONVERSATION_ITEM_TRUNCATE\n", + " )\n", + " item_id: str\n", + " content_index: int\n", + " audio_end_ms: int\n", + "\n", + "\n", + "class ConversationItemDelete(BaseEvent):\n", + " type: Literal[ClientEventTypes.CONVERSATION_ITEM_DELETE] = (\n", + " ClientEventTypes.CONVERSATION_ITEM_DELETE\n", + " )\n", + " item_id: str\n", + "\n", + "\n", + "#### Responses\n", + "class ResponseCreate(BaseEvent):\n", + " type: Literal[ClientEventTypes.RESPONSE_CREATE] = ClientEventTypes.RESPONSE_CREATE\n", + "\n", + "\n", + "class ResponseCancel(BaseEvent):\n", + " type: Literal[ClientEventTypes.RESPONSE_CANCEL] = ClientEventTypes.RESPONSE_CANCEL\n", + "\n", + "\n", + "# Update the Event union to include all event types\n", + "ClientEvent = Union[\n", + " SessionUpdate,\n", + " InputAudioBufferAppend,\n", + " InputAudioBufferCommit,\n", + " InputAudioBufferClear,\n", + " ConversationItemCreate,\n", + " ConversationItemTruncate,\n", + " ConversationItemDelete,\n", + " ResponseCreate,\n", + " ResponseCancel,\n", + "]\n", + "\n", + "\"\"\" SERVER EVENTS \"\"\"\n", + "\n", + "\n", + "class ServerEventTypes(str, Enum):\n", + " ERROR = \"error\"\n", + " RESPONSE_AUDIO_TRANSCRIPT_DONE = \"response.audio_transcript.done\"\n", + " RESPONSE_AUDIO_TRANSCRIPT_DELTA = \"response.audio_transcript.delta\"\n", + " RESPONSE_AUDIO_DELTA = \"response.audio.delta\"\n", + " SESSION_CREATED = \"session.created\"\n", + " SESSION_UPDATED = \"session.updated\"\n", + " CONVERSATION_CREATED = \"conversation.created\"\n", + " INPUT_AUDIO_BUFFER_COMMITTED = \"input_audio_buffer.committed\"\n", + " INPUT_AUDIO_BUFFER_CLEARED = \"input_audio_buffer.cleared\"\n", + " INPUT_AUDIO_BUFFER_SPEECH_STARTED = \"input_audio_buffer.speech_started\"\n", + " INPUT_AUDIO_BUFFER_SPEECH_STOPPED = \"input_audio_buffer.speech_stopped\"\n", + " CONVERSATION_ITEM_CREATED = \"conversation.item.created\"\n", + " CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED = (\n", + " \"conversation.item.input_audio_transcription.completed\"\n", + " )\n", + " CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED = (\n", + " \"conversation.item.input_audio_transcription.failed\"\n", + " )\n", + " CONVERSATION_ITEM_TRUNCATED = \"conversation.item.truncated\"\n", + " CONVERSATION_ITEM_DELETED = \"conversation.item.deleted\"\n", + " RESPONSE_CREATED = \"response.created\"\n", + " RESPONSE_DONE = \"response.done\"\n", + " RESPONSE_OUTPUT_ITEM_ADDED = \"response.output_item.added\"\n", + " RESPONSE_OUTPUT_ITEM_DONE = \"response.output_item.done\"\n", + " RESPONSE_CONTENT_PART_ADDED = \"response.content_part.added\"\n", + " RESPONSE_CONTENT_PART_DONE = \"response.content_part.done\"\n", + " RESPONSE_TEXT_DELTA = \"response.text.delta\"\n", + " RESPONSE_TEXT_DONE = \"response.text.done\"\n", + " RESPONSE_AUDIO_DONE = \"response.audio.done\"\n", + " RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA = \"response.function_call_arguments.delta\"\n", + " RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE = \"response.function_call_arguments.done\"\n", + " RATE_LIMITS_UPDATED = \"rate_limits.updated\"\n", + "\n", + "\n", + "#### Errors\n", + "class ErrorDetails(BaseModel):\n", + " type: Optional[str] = None\n", + " code: Optional[str] = None\n", + " message: Optional[str] = None\n", + " param: Optional[str] = None\n", + "\n", + "\n", + "class ErrorEvent(BaseEvent):\n", + " type: Literal[ServerEventTypes.ERROR] = ServerEventTypes.ERROR\n", + " error: ErrorDetails\n", + "\n", + "\n", + "#### Session\n", + "class SessionCreated(BaseEvent):\n", + " type: Literal[ServerEventTypes.SESSION_CREATED] = ServerEventTypes.SESSION_CREATED\n", + " session: Session\n", + "\n", + "\n", + "class SessionUpdated(BaseEvent):\n", + " type: Literal[ServerEventTypes.SESSION_UPDATED] = ServerEventTypes.SESSION_UPDATED\n", + " session: Session\n", + "\n", + "\n", + "#### Conversation\n", + "class Conversation(BaseModel):\n", + " id: str\n", + " object: Literal[\"realtime.conversation\"]\n", + "\n", + "\n", + "class ConversationCreated(BaseEvent):\n", + " type: Literal[ServerEventTypes.CONVERSATION_CREATED] = (\n", + " ServerEventTypes.CONVERSATION_CREATED\n", + " )\n", + " conversation: Conversation\n", + "\n", + "\n", + "class ConversationItemCreated(BaseEvent):\n", + " type: Literal[ServerEventTypes.CONVERSATION_ITEM_CREATED] = (\n", + " ServerEventTypes.CONVERSATION_ITEM_CREATED\n", + " )\n", + " previous_item_id: Optional[str] = None\n", + " item: ConversationItem\n", + "\n", + "\n", + "class ConversationItemInputAudioTranscriptionCompleted(BaseEvent):\n", + " type: Literal[\n", + " ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED\n", + " ] = ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED\n", + " item_id: str\n", + " content_index: int\n", + " transcript: str\n", + "\n", + "\n", + "class ConversationItemInputAudioTranscriptionFailed(BaseEvent):\n", + " type: Literal[\n", + " ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED\n", + " ] = ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED\n", + " item_id: str\n", + " content_index: int\n", + " error: Dict[str, Any]\n", + "\n", + "\n", + "class ConversationItemTruncated(BaseEvent):\n", + " type: Literal[ServerEventTypes.CONVERSATION_ITEM_TRUNCATED] = (\n", + " ServerEventTypes.CONVERSATION_ITEM_TRUNCATED\n", + " )\n", + " item_id: str\n", + " content_index: int\n", + " audio_end_ms: int\n", + "\n", + "\n", + "class ConversationItemDeleted(BaseEvent):\n", + " type: Literal[ServerEventTypes.CONVERSATION_ITEM_DELETED] = (\n", + " ServerEventTypes.CONVERSATION_ITEM_DELETED\n", + " )\n", + " item_id: str\n", + "\n", + "\n", + "#### Response\n", + "class ResponseUsage(BaseModel):\n", + " total_tokens: int\n", + " input_tokens: int\n", + " output_tokens: int\n", + " input_token_details: Optional[Dict[str, int]] = None\n", + " output_token_details: Optional[Dict[str, int]] = None\n", + "\n", + "\n", + "class ResponseOutput(BaseModel):\n", + " id: str\n", + " object: Literal[\"realtime.item\"]\n", + " type: str\n", + " status: str\n", + " role: str\n", + " content: List[Dict[str, Any]]\n", + "\n", + "\n", + "class ResponseContentPart(BaseModel):\n", + " type: str\n", + " text: Optional[str] = None\n", + "\n", + "\n", + "class ResponseOutputItemContent(BaseModel):\n", + " type: str\n", + " text: Optional[str] = None\n", + "\n", + "\n", + "class ResponseStatusDetails(BaseModel):\n", + " type: str\n", + " reason: str\n", + "\n", + "\n", + "class ResponseOutputItem(BaseModel):\n", + " id: str\n", + " object: Literal[\"realtime.item\"]\n", + " type: str\n", + " status: str\n", + " role: str\n", + " content: List[ResponseOutputItemContent]\n", + "\n", + "\n", + "class Response(BaseModel):\n", + " id: str\n", + " object: Literal[\"realtime.response\"]\n", + " status: str\n", + " status_details: Optional[ResponseStatusDetails] = None\n", + " output: List[ResponseOutput]\n", + " usage: Optional[ResponseUsage]\n", + "\n", + "\n", + "class ResponseCreated(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_CREATED] = ServerEventTypes.RESPONSE_CREATED\n", + " response: Response\n", + "\n", + "\n", + "class ResponseDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_DONE] = ServerEventTypes.RESPONSE_DONE\n", + " response: Response\n", + "\n", + "\n", + "class ResponseOutputItemAdded(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED] = (\n", + " ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED\n", + " )\n", + " response_id: str\n", + " output_index: int\n", + " item: ResponseOutputItem\n", + "\n", + "\n", + "class ResponseOutputItemDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE] = (\n", + " ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE\n", + " )\n", + " response_id: str\n", + " output_index: int\n", + " item: ResponseOutputItem\n", + "\n", + "\n", + "class ResponseContentPartAdded(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_CONTENT_PART_ADDED] = (\n", + " ServerEventTypes.RESPONSE_CONTENT_PART_ADDED\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " content_index: int\n", + " part: ResponseContentPart\n", + "\n", + "\n", + "class ResponseContentPartDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_CONTENT_PART_DONE] = (\n", + " ServerEventTypes.RESPONSE_CONTENT_PART_DONE\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " content_index: int\n", + " part: ResponseContentPart\n", + "\n", + "\n", + "#### Response Text\n", + "class ResponseTextDelta(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_TEXT_DELTA] = (\n", + " ServerEventTypes.RESPONSE_TEXT_DELTA\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " content_index: int\n", + " delta: str\n", + "\n", + "\n", + "class ResponseTextDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_TEXT_DONE] = (\n", + " ServerEventTypes.RESPONSE_TEXT_DONE\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " content_index: int\n", + " text: str\n", + "\n", + "\n", + "#### Response Audio\n", + "class ResponseAudioTranscriptDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE] = (\n", + " ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE\n", + " )\n", + " transcript: str\n", + "\n", + "\n", + "class ResponseAudioTranscriptDelta(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA] = (\n", + " ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA\n", + " )\n", + " delta: str\n", + "\n", + "\n", + "class ResponseAudioDelta(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_AUDIO_DELTA] = (\n", + " ServerEventTypes.RESPONSE_AUDIO_DELTA\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " delta: str\n", + "\n", + "\n", + "class ResponseAudioDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_AUDIO_DONE] = (\n", + " ServerEventTypes.RESPONSE_AUDIO_DONE\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " content_index: int\n", + "\n", + "\n", + "class InputAudioBufferCommitted(BaseEvent):\n", + " type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED] = (\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED\n", + " )\n", + " previous_item_id: Optional[str] = None\n", + " item_id: Optional[str] = None\n", + " event_id: Optional[str] = None\n", + "\n", + "\n", + "class InputAudioBufferCleared(BaseEvent):\n", + " type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED] = (\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED\n", + " )\n", + "\n", + "\n", + "class InputAudioBufferSpeechStarted(BaseEvent):\n", + " type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED] = (\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED\n", + " )\n", + " audio_start_ms: int\n", + " item_id: str\n", + "\n", + "\n", + "class InputAudioBufferSpeechStopped(BaseEvent):\n", + " type: Literal[ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED] = (\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED\n", + " )\n", + " audio_end_ms: int\n", + " item_id: str\n", + "\n", + "\n", + "#### Function Calls\n", + "class ResponseFunctionCallArgumentsDelta(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA] = (\n", + " ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DELTA\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " call_id: str\n", + " delta: str\n", + "\n", + "\n", + "class ResponseFunctionCallArgumentsDone(BaseEvent):\n", + " type: Literal[ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE] = (\n", + " ServerEventTypes.RESPONSE_FUNCTION_CALL_ARGUMENTS_DONE\n", + " )\n", + " response_id: str\n", + " item_id: str\n", + " output_index: int\n", + " call_id: str\n", + " arguments: str\n", + "\n", + "\n", + "#### Rate Limits\n", + "class RateLimit(BaseModel):\n", + " name: str\n", + " limit: int\n", + " remaining: int\n", + " reset_seconds: float\n", + "\n", + "\n", + "class RateLimitsUpdated(BaseEvent):\n", + " type: Literal[ServerEventTypes.RATE_LIMITS_UPDATED] = (\n", + " ServerEventTypes.RATE_LIMITS_UPDATED\n", + " )\n", + " rate_limits: List[RateLimit]\n", + "\n", + "\n", + "ServerEvent = Union[\n", + " ErrorEvent,\n", + " ConversationCreated,\n", + " ResponseAudioTranscriptDone,\n", + " ResponseAudioTranscriptDelta,\n", + " ResponseAudioDelta,\n", + " ResponseCreated,\n", + " ResponseDone,\n", + " ResponseOutputItemAdded,\n", + " ResponseOutputItemDone,\n", + " ResponseContentPartAdded,\n", + " ResponseContentPartDone,\n", + " ResponseTextDelta,\n", + " ResponseTextDone,\n", + " ResponseAudioDone,\n", + " ConversationItemInputAudioTranscriptionCompleted,\n", + " SessionCreated,\n", + " SessionUpdated,\n", + " InputAudioBufferCleared,\n", + " InputAudioBufferSpeechStarted,\n", + " InputAudioBufferSpeechStopped,\n", + " ConversationItemCreated,\n", + " ConversationItemInputAudioTranscriptionFailed,\n", + " ConversationItemTruncated,\n", + " ConversationItemDeleted,\n", + " RateLimitsUpdated,\n", + "]\n", + "\n", + "EVENT_TYPE_TO_MODEL = {\n", + " ServerEventTypes.ERROR: ErrorEvent,\n", + " ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE: ResponseAudioTranscriptDone,\n", + " ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DELTA: ResponseAudioTranscriptDelta,\n", + " ServerEventTypes.RESPONSE_AUDIO_DELTA: ResponseAudioDelta,\n", + " ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED: ConversationItemInputAudioTranscriptionCompleted,\n", + " ServerEventTypes.SESSION_CREATED: SessionCreated,\n", + " ServerEventTypes.SESSION_UPDATED: SessionUpdated,\n", + " ServerEventTypes.CONVERSATION_CREATED: ConversationCreated,\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_COMMITTED: InputAudioBufferCommitted,\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_CLEARED: InputAudioBufferCleared,\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STARTED: InputAudioBufferSpeechStarted,\n", + " ServerEventTypes.INPUT_AUDIO_BUFFER_SPEECH_STOPPED: InputAudioBufferSpeechStopped,\n", + " ServerEventTypes.CONVERSATION_ITEM_CREATED: ConversationItemCreated,\n", + " ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_FAILED: ConversationItemInputAudioTranscriptionFailed,\n", + " ServerEventTypes.CONVERSATION_ITEM_TRUNCATED: ConversationItemTruncated,\n", + " ServerEventTypes.CONVERSATION_ITEM_DELETED: ConversationItemDeleted,\n", + " ServerEventTypes.RESPONSE_CREATED: ResponseCreated,\n", + " ServerEventTypes.RESPONSE_DONE: ResponseDone,\n", + " ServerEventTypes.RESPONSE_OUTPUT_ITEM_ADDED: ResponseOutputItemAdded,\n", + " ServerEventTypes.RESPONSE_OUTPUT_ITEM_DONE: ResponseOutputItemDone,\n", + " ServerEventTypes.RESPONSE_CONTENT_PART_ADDED: ResponseContentPartAdded,\n", + " ServerEventTypes.RESPONSE_CONTENT_PART_DONE: ResponseContentPartDone,\n", + " ServerEventTypes.RESPONSE_TEXT_DELTA: ResponseTextDelta,\n", + " ServerEventTypes.RESPONSE_TEXT_DONE: ResponseTextDone,\n", + " ServerEventTypes.RESPONSE_AUDIO_DONE: ResponseAudioDone,\n", + " ServerEventTypes.RATE_LIMITS_UPDATED: RateLimitsUpdated,\n", + "}\n", + "\n", + "\n", + "def parse_server_event(event_data: dict) -> ServerEvent:\n", + " event_type = event_data.get(\"type\")\n", + " if not event_type:\n", + " raise ValueError(\"Event data is missing 'type' field\")\n", + "\n", + " model_class = EVENT_TYPE_TO_MODEL.get(event_type)\n", + " if not model_class:\n", + " raise ValueError(f\"Unknown event type: {event_type}\")\n", + "\n", + " try:\n", + " return model_class(**event_data)\n", + " except ValidationError as e:\n", + " raise ValueError(f\"Failed to parse event of type {event_type}: {str(e)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Audio Stream Writer (To Disk and In Memory)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "RNmGNIrv64x3" + }, + "outputs": [], + "source": [ + "class StreamingWavWriter:\n", + " \"\"\"Writes audio integer or byte array chunks to a WAV file.\"\"\"\n", + "\n", + " wav_file = None\n", + " buffer = None\n", + " in_memory = False\n", + "\n", + " def __init__(\n", + " self,\n", + " filename=None,\n", + " channels=INPUT_DEVICE_CHANNELS,\n", + " sample_width=SAMPLE_WIDTH,\n", + " framerate=SAMPLE_RATE,\n", + " ):\n", + " self.in_memory = filename is None\n", + " if self.in_memory:\n", + " self.buffer = io.BytesIO()\n", + " self.wav_file = wave.open(self.buffer, \"wb\")\n", + " else:\n", + " self.wav_file = wave.open(filename, \"wb\")\n", + "\n", + " self.wav_file.setnchannels(channels)\n", + " self.wav_file.setsampwidth(sample_width)\n", + " self.wav_file.setframerate(framerate)\n", + "\n", + " def append_int16_chunk(self, int16_data):\n", + " if int16_data is not None:\n", + " self.wav_file.writeframes(\n", + " int16_data.tobytes()\n", + " if isinstance(int16_data, np.ndarray)\n", + " else int16_data\n", + " )\n", + "\n", + " def close(self):\n", + " self.wav_file.close()\n", + "\n", + " def get_wav_buffer(self):\n", + " assert self.in_memory, \"Buffer only available if stream is in memory.\"\n", + " return self.buffer" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1VyirmR_7BMW" + }, + "source": [ + "## Realtime Audio Model\n", + "\n", + "The realtime (RT) audio model uses a websocket to send events to OpenAI's Realtime audio API. This works as follows:\n", + "\n", + "1. __init:__ We initialize local buffers (input audio) and streams (assistant playback stream, user audio disk writer stream) and open a connection to the Realtime API.\n", + "2. __receive_messages_thread__: A thread handles receiving messages from the API. Four primary event types are handled:\n", + " - RESPONSE_AUDIO_TRANSCRIPT_DONE:\n", + "\n", + " The server indicates the assistant's response is completed and provides the transcript.\n", + "\n", + " - CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED:\n", + " \n", + " The server indicates the user's audio has been transcribed, and sends the transcript of the user's audio. We log the transcript to Weave and print it for the user.\n", + "\n", + " - RESPONSE_AUDIO_DELTA:\n", + " \n", + " The server sends a new chunk of assistant response audio. We append this to the ongoing response data via the response ID, and add this to the output stream for playback.\n", + "\n", + " - RESPONSE_DONE:\n", + " \n", + " The server indicates completion of an assistant response. We get all audio chunks associated with the response, as well as the transcript, and log these in Weave.\n", + "3.__send_audio__: A handler appends user audio chunks to a buffer, and sends chunks of audio when the audio buffer reaches a certain size." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "_AdjnYZG7Fq8" + }, + "outputs": [], + "source": [ + "class RTAudioModel(weave.Model):\n", + " \"\"\"Model class for realtime e2e audio OpenAI model interaction with Whisper user transcription for logging.\"\"\"\n", + "\n", + " realtime_model_name: str = \"gpt-4o-realtime-preview-2024-10-01\" # realtime e2e audio only model interaction\n", + "\n", + " stop_event: Optional[threading.Event] = threading.Event() # Event to stop the model\n", + " ws: Optional[websocket.WebSocket] = None # Websocket for OpenAI communications\n", + "\n", + " user_wav_writer: Optional[StreamingWavWriter] = (\n", + " None # Stream for writing user output to file\n", + " )\n", + " input_audio_buffer: Optional[np.ndarray] = None # Buffer for user audio chunks\n", + " assistant_outputs: Dict[str, StreamingWavWriter] = (\n", + " None # Assistant outputs aggregated to send to weave\n", + " )\n", + " playback_stream: Optional[pyaudio.Stream] = (\n", + " None # Playback stream for playing assistant responses\n", + " )\n", + "\n", + " def __init__(self):\n", + " super().__init__()\n", + " self.stop_event.clear()\n", + " self.user_wav_writer = StreamingWavWriter(\n", + " filename=\"user_audio.wav\", framerate=SAMPLE_RATE\n", + " )\n", + " self.input_audio_buffer = np.array([], dtype=np.int16)\n", + " self.ws = websocket.WebSocket()\n", + " self.assistant_outputs = {}\n", + "\n", + " # Open the assistant audio playback stream if enabled\n", + " if enable_audio_playback:\n", + " self.playback_stream = pyaudio.PyAudio().open(\n", + " format=pyaudio.paInt16,\n", + " channels=OUTPUT_DEVICE_CHANNELS,\n", + " rate=OAI_SAMPLE_RATE,\n", + " output=True,\n", + " output_device_index=OUTPUT_DEVICE_INDEX,\n", + " )\n", + "\n", + " # Connect Websocket\n", + " try:\n", + " self.ws.connect(\n", + " f\"wss://api.openai.com/v1/realtime?model={self.realtime_model_name}\",\n", + " header={\n", + " \"Authorization\": f\"Bearer {os.environ.get('OPENAI_API_KEY')}\",\n", + " \"OpenAI-Beta\": \"realtime=v1\",\n", + " },\n", + " )\n", + "\n", + " # Send config msg\n", + " config_event = SessionUpdate(\n", + " session=Session(\n", + " modalities=[\"text\", \"audio\"], # modalities to use\n", + " input_audio_transcription=InputAudioTranscription(\n", + " model=\"whisper-1\"\n", + " ), # whisper-1 for transcription\n", + " turn_detection=TurnDetection(\n", + " type=\"server_vad\",\n", + " threshold=0.3,\n", + " prefix_padding_ms=300,\n", + " silence_duration_ms=600,\n", + " ), # server VAD to detect silence\n", + " )\n", + " )\n", + " self.ws.send(config_event.model_dump_json(exclude_none=True))\n", + " self.log_ws_message(config_event.model_dump_json(exclude_none=True), \"Sent\")\n", + "\n", + " # Start listener\n", + " websocket_thread = threading.Thread(target=self.receive_messages_thread)\n", + " websocket_thread.daemon = True\n", + " websocket_thread.start()\n", + "\n", + " except Exception as e:\n", + " print(f\"Error connecting to WebSocket: {e}\")\n", + "\n", + " ##### Weave Integration and Message Handlers #####\n", + " def handle_assistant_response_audio_delta(self, data: ResponseAudioDelta):\n", + " if data.response_id not in self.assistant_outputs:\n", + " self.assistant_outputs[data.response_id] = StreamingWavWriter(\n", + " framerate=OAI_SAMPLE_RATE\n", + " )\n", + "\n", + " data_bytes = base64.b64decode(data.delta)\n", + " self.assistant_outputs[data.response_id].append_int16_chunk(data_bytes)\n", + "\n", + " if enable_audio_playback:\n", + " self.playback_stream.write(data_bytes)\n", + "\n", + " return {\"assistant_audio\": data_bytes}\n", + "\n", + " @weave.op()\n", + " def handle_assistant_response_done(self, data: ResponseDone):\n", + " wave_file_stream = self.assistant_outputs[data.response.id]\n", + " wave_file_stream.close()\n", + " wave_file_stream.buffer.seek(0)\n", + " weave_payload = {\n", + " \"assistant_audio\": wave.open(wave_file_stream.get_wav_buffer(), \"rb\"),\n", + " \"assistant_transcript\": data.response.output[0]\n", + " .content[0]\n", + " .get(\"transcript\", \"Transcript Unavailable.\"),\n", + " }\n", + " return weave_payload\n", + "\n", + " @weave.op()\n", + " def handle_user_transcription_done(\n", + " self, data: ConversationItemInputAudioTranscriptionCompleted\n", + " ):\n", + " return {\"user_transcript\": data.transcript}\n", + "\n", + " ##### Message Receiver and Sender #####\n", + " def receive_messages_thread(self):\n", + " while not self.stop_event.is_set():\n", + " try:\n", + " data = json.loads(self.ws.recv())\n", + " self.log_ws_message(json.dumps(data, indent=2))\n", + "\n", + " parsed_event = parse_server_event(data)\n", + "\n", + " if parsed_event.type == ServerEventTypes.RESPONSE_AUDIO_TRANSCRIPT_DONE:\n", + " print(\"Assistant: \", parsed_event.transcript)\n", + " elif (\n", + " parsed_event.type\n", + " == ServerEventTypes.CONVERSATION_ITEM_INPUT_AUDIO_TRANSCRIPTION_COMPLETED\n", + " ):\n", + " print(\"User: \", parsed_event.transcript)\n", + " self.handle_user_transcription_done(parsed_event)\n", + " elif parsed_event.type == ServerEventTypes.RESPONSE_AUDIO_DELTA:\n", + " self.handle_assistant_response_audio_delta(parsed_event)\n", + " elif parsed_event.type == ServerEventTypes.RESPONSE_DONE:\n", + " self.handle_assistant_response_done(parsed_event)\n", + " elif parsed_event.type == ServerEventTypes.ERROR:\n", + " print(\n", + " f\"\\nError from server: {parsed_event.error.model_dump_json(exclude_none=True)}\"\n", + " )\n", + " except websocket.WebSocketConnectionClosedException:\n", + " print(\"\\nWebSocket connection closed\")\n", + " break\n", + " except json.JSONDecodeError:\n", + " continue\n", + " except Exception as e:\n", + " print(f\"\\nError in receive_messages: {e}\")\n", + " break\n", + "\n", + " def send_audio(self, audio_chunk):\n", + " if self.ws and self.ws.connected:\n", + " self.input_audio_buffer = np.append(\n", + " self.input_audio_buffer, np.frombuffer(audio_chunk, dtype=np.int16)\n", + " )\n", + " if len(self.input_audio_buffer) >= SAMPLE_RATE * CHUNK_DURATION:\n", + " try:\n", + " # Resample audio to OAI sample rate\n", + " resampled_audio = (\n", + " resampy.resample(\n", + " self.input_audio_buffer, SAMPLE_RATE, OAI_SAMPLE_RATE\n", + " )\n", + " if SAMPLE_RATE != OAI_SAMPLE_RATE\n", + " else self.input_audio_buffer\n", + " )\n", + "\n", + " # Send audio chunk to OAI API\n", + " audio_event = InputAudioBufferAppend(\n", + " audio=base64.b64encode(\n", + " resampled_audio.astype(np.int16).tobytes()\n", + " ).decode(\"utf-8\") # Convert audio array to b64 bytes\n", + " )\n", + " self.ws.send(audio_event.model_dump_json(exclude_none=True))\n", + " self.log_ws_message(\n", + " audio_event.model_dump_json(exclude_none=True), \"Sent\"\n", + " )\n", + " finally:\n", + " self.user_wav_writer.append_int16_chunk(self.input_audio_buffer)\n", + "\n", + " # Clear the audio buffer\n", + " self.input_audio_buffer = np.array([], dtype=np.int16)\n", + " else:\n", + " print(\"Error sending audio: websocket not initialized.\")\n", + "\n", + " ##### General Utility Functions #####\n", + " def log_ws_message(self, message, direction=\"Received\"):\n", + " with open(\"websocket_log.txt\", \"a\") as log_file:\n", + " log_file.write(\n", + " f\"{time.strftime('%Y-%m-%d %H:%M:%S')} - {direction}: {message}\\n\"\n", + " )\n", + "\n", + " def stop(self):\n", + " self.stop_event.set()\n", + "\n", + " if self.ws:\n", + " self.ws.close()\n", + "\n", + " self.user_wav_writer.close()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5fatsR_gty-J" + }, + "source": [ + "## Audio recorder\n", + "\n", + "We use a pyaudio input stream with a handler linked to the `send_audio` method of the RTAudio model. The stream is returned to the main thread so it can be safely exited upon program completion." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "id": "rXTXD6Jb7KVD" + }, + "outputs": [], + "source": [ + "# Audio capture stream\n", + "def record_audio(realtime_model: RTAudioModel) -> pyaudio.Stream:\n", + " \"\"\"Setup a Pyaudio input stream and use the RTAudioModel as a callback for streaming data.\"\"\"\n", + "\n", + " def audio_callback(in_data, frame_count, time_info, status):\n", + " realtime_model.send_audio(in_data)\n", + " return (None, pyaudio.paContinue)\n", + "\n", + " p = pyaudio.PyAudio()\n", + " stream = p.open(\n", + " format=pyaudio.paInt16,\n", + " channels=INPUT_DEVICE_CHANNELS,\n", + " rate=SAMPLE_RATE,\n", + " input=True,\n", + " input_device_index=INPUT_DEVICE_INDEX,\n", + " frames_per_buffer=CHUNK,\n", + " stream_callback=audio_callback,\n", + " )\n", + " stream.start_stream()\n", + "\n", + " print(\"Recording started. Please begin speaking to your personal assistant...\")\n", + " return stream" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5Zsqlvfq7L2p" + }, + "source": [ + "## Main Thread (Run me!)\n", + "\n", + "The main thread initiates a Realtime Audio Model with Weave integrated. Next, a reccording is opened and we wait for a keyboard interrupt from the user." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "wJzK9c7Q7M-0" + }, + "outputs": [], + "source": [ + "weave.init(project_name=\"realtime-oai-audio-testing\")\n", + "\n", + "realtime_model = RTAudioModel()\n", + "\n", + "if realtime_model.ws and realtime_model.ws.connected:\n", + " recording_stream: pyaudio.Stream = record_audio(realtime_model)\n", + "\n", + " try:\n", + " while not realtime_model.stop_event.is_set():\n", + " time.sleep(1)\n", + " except KeyboardInterrupt:\n", + " pass\n", + " except Exception as e:\n", + " print(f\"Error in main loop: {e}\")\n", + " import traceback\n", + "\n", + " traceback.print_exc()\n", + " finally:\n", + " print(\"Exiting...\")\n", + " realtime_model.stop()\n", + " if recording_stream and recording_stream.is_active():\n", + " recording_stream.stop_stream()\n", + " recording_stream.close()\n", + "else:\n", + " print(\n", + " \"WebSocket connection failed. Please check your API key and internet connection.\"\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "
" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [ + "QLKCxvuewpXp", + "P7zY5fho4hOG", + "JKY6F0d06gRh", + "detJ21276p31", + "KU36knXx6ZW5" + ], + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.10" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/docs/notebooks/custom_model_cost.ipynb b/docs/notebooks/custom_model_cost.ipynb index 87b0187593d..def49145f9f 100644 --- a/docs/notebooks/custom_model_cost.ipynb +++ b/docs/notebooks/custom_model_cost.ipynb @@ -12,7 +12,6 @@ "---\n", "docusaurus_head_meta::end -->\n", "\n", - "" ] }, @@ -196,6 +195,7 @@ " \"usage\": {\n", " \"input_tokens\": prompt_tokens,\n", " \"output_tokens\": completion_tokens,\n", + " \"total_tokens\": prompt_tokens + completion_tokens,\n", " },\n", " \"model\": \"your_model_name\",\n", " \"output\": prediction,\n", diff --git a/docs/notebooks/multi-agent-structured-output.ipynb b/docs/notebooks/multi-agent-structured-output.ipynb new file mode 100644 index 00000000000..0db085fead4 --- /dev/null +++ b/docs/notebooks/multi-agent-structured-output.ipynb @@ -0,0 +1,902 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xs8_Q1nPwxlK" + }, + "source": [ + "# Structured Outputs for Multi-Agent Systems\n", + "\n", + "OpenAI relased [Structured Outputs](https://openai.com/index/introducing-structured-outputs-in-the-api/) to enable users to ensure the model will always generate responses that adhere to your supplied JSON Schema without strongly worded prompts. With Structured Outputs, we don't need to validate or retry incorrectly formatted responses.\n", + "\n", + "By using the new parameter `strict: true`, we are able to guarantee the response abides by a provided schema.\n", + "\n", + "The use of structured outputs in a multi-agent system enhances communication by ensuring consistent, easily processed data between agents. It also improves safety by allowing explicit refusals and boosts performance by eliminating the need for retries or validations. This simplifies interactions and increases overall system efficiency.\n", + "\n", + "This tutorial demonstrates how we can utilize structured outputs in multi-agent system and trace them with [Weave](https://weave-docs.wandb.ai/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + ":::tip [Source](https://cookbook.openai.com/examples/structured_outputs_multi_agent)\n", + "This cookbook is based on [sample code from OpenAI's structured outputs](https://cookbook.openai.com/examples/structured_outputs_multi_agent), with some modifications added for improved visualization using Weave.\n", + ":::" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7SLTnfLRKVnP" + }, + "source": [ + "## Installing the Dependencies\n", + "\n", + "We need the following libraries for this tutorial:\n", + "- [OpenAI](https://openai.com/index/openai-api/) to create multi-agent system.\n", + "- [Weave](../../introduction.md) to track our LLM workflow and evaluate our prompting strategies.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8UxhEcd4Jwky" + }, + "outputs": [], + "source": [ + "!pip install -qU openai weave wandb" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TJdhzuPuK3H2" + }, + "source": [ + "We set `WANDB_API_KEY` in our env so that we may easily login with wandb.login() (this should be given to the colab as a secret).\n", + "\n", + "We set the project in W&B we want to log this into in `name_of_wandb_project`.\n", + "\n", + "**NOTE**: `name_of_wandb_project` may also be in the format of `{team_name}/{project_name}` to specify a team to log the traces into.\n", + "We then fetch a weave client by calling weave.init()\n", + "\n", + "\n", + "Since we'll be using [OpenAI API](https://openai.com/index/openai-api/), we will also need an OpenAI API key. You can [sign up](https://platform.openai.com/signup) on the OpenAI platform to get your own API key. (this should be given to the colab as a secret too.)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "UCySx7jT6T7Y" + }, + "outputs": [], + "source": [ + "import base64\n", + "import json\n", + "import os\n", + "from io import BytesIO, StringIO\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import wandb\n", + "from google.colab import userdata\n", + "from openai import OpenAI\n", + "\n", + "import weave" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8zK7jXwWJ8g5", + "outputId": "a325f447-41b4-4edf-83e5-fa15d97a779c" + }, + "outputs": [], + "source": [ + "os.environ[\"WANDB_API_KEY\"] = userdata.get(\"WANDB_API_KEY\")\n", + "os.environ[\"OPENAI_API_KEY\"] = userdata.get(\"OPENAI_API_KEY\")\n", + "\n", + "wandb.login()\n", + "name_of_wandb_project = \"multi-agent-structured-output\"\n", + "weave.init(name_of_wandb_project)\n", + "\n", + "client = OpenAI()\n", + "MODEL = \"gpt-4o-2024-08-06\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "X34-4ZYyK6-S" + }, + "source": [ + "## Agents set up\n", + "\n", + "The use case we will tackle is a data analysis task.\n", + "Let's first set up our 4-agents system:\n", + "\n", + "* Triaging agent: Decides which agent(s) to call\n", + "* Data pre-processing Agent: Prepares data for analysis - for example by cleaning it up\n", + "* Data Analysis Agent: Performs analysis on the data\n", + "* Data Visualization Agent: Visualizes the output of the analysis to extract insights\n", + "We will start by defining the system prompts for each of these agents." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "CewlAQuhKUIe" + }, + "outputs": [], + "source": [ + "triaging_system_prompt = \"\"\"You are a Triaging Agent. Your role is to assess the user's query and route it to the relevant agents. The agents available are:\n", + "- Data Processing Agent: Cleans, transforms, and aggregates data.\n", + "- Analysis Agent: Performs statistical, correlation, and regression analysis.\n", + "- Visualization Agent: Creates bar charts, line charts, and pie charts.\n", + "\n", + "Use the send_query_to_agents tool to forward the user's query to the relevant agents. Also, use the speak_to_user tool to get more information from the user if needed.\"\"\"\n", + "\n", + "processing_system_prompt = \"\"\"You are a Data Processing Agent. Your role is to clean, transform, and aggregate data using the following tools:\n", + "- clean_data\n", + "- transform_data\n", + "- aggregate_data\"\"\"\n", + "\n", + "analysis_system_prompt = \"\"\"You are an Analysis Agent. Your role is to perform statistical, correlation, and regression analysis using the following tools:\n", + "- stat_analysis\n", + "- correlation_analysis\n", + "- regression_analysis\"\"\"\n", + "\n", + "visualization_system_prompt = \"\"\"You are a Visualization Agent. Your role is to create bar charts, line charts, and pie charts using the following tools:\n", + "- create_bar_chart\n", + "- create_line_chart\n", + "- create_pie_chart\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vkpZ409POhiS" + }, + "source": [ + "We will then define the tools for each agent.\n", + "\n", + "Apart from the triaging agent, each agent will be equipped with tools specific to their role:\n", + "\n", + "**Data pre-processing agent** : 1. Clean data, 2. Transform data, 3. Aggregate data\n", + "\n", + "**Data analysis agent** : 1. Statistical analysis, 2. Correlation analysis, 3. Regression Analysis\n", + "\n", + "**Data visualization agent** : 1. Create bar chart, 2. Create line chart, 3. Create pie chart\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MzBvgBliOc9Y" + }, + "outputs": [], + "source": [ + "triage_tools = [\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"send_query_to_agents\",\n", + " \"description\": \"Sends the user query to relevant agents based on their capabilities.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"agents\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\"type\": \"string\"},\n", + " \"description\": \"An array of agent names to send the query to.\",\n", + " },\n", + " \"query\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The user query to send.\",\n", + " },\n", + " },\n", + " \"required\": [\"agents\", \"query\"],\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " }\n", + "]\n", + "\n", + "preprocess_tools = [\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"clean_data\",\n", + " \"description\": \"Cleans the provided data by removing duplicates and handling missing values.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The dataset to clean. Should be in a suitable format such as JSON or CSV.\",\n", + " }\n", + " },\n", + " \"required\": [\"data\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"transform_data\",\n", + " \"description\": \"Transforms data based on specified rules.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The data to transform. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"rules\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"Transformation rules to apply, specified in a structured format.\",\n", + " },\n", + " },\n", + " \"required\": [\"data\", \"rules\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"aggregate_data\",\n", + " \"description\": \"Aggregates data by specified columns and operations.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The data to aggregate. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"group_by\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\"type\": \"string\"},\n", + " \"description\": \"Columns to group by.\",\n", + " },\n", + " \"operations\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"Aggregation operations to perform, specified in a structured format.\",\n", + " },\n", + " },\n", + " \"required\": [\"data\", \"group_by\", \"operations\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + "]\n", + "\n", + "\n", + "analysis_tools = [\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"stat_analysis\",\n", + " \"description\": \"Performs statistical analysis on the given dataset.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The dataset to analyze. Should be in a suitable format such as JSON or CSV.\",\n", + " }\n", + " },\n", + " \"required\": [\"data\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"correlation_analysis\",\n", + " \"description\": \"Calculates correlation coefficients between variables in the dataset.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The dataset to analyze. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"variables\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\"type\": \"string\"},\n", + " \"description\": \"List of variables to calculate correlations for.\",\n", + " },\n", + " },\n", + " \"required\": [\"data\", \"variables\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"regression_analysis\",\n", + " \"description\": \"Performs regression analysis on the dataset.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The dataset to analyze. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"dependent_var\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The dependent variable for regression.\",\n", + " },\n", + " \"independent_vars\": {\n", + " \"type\": \"array\",\n", + " \"items\": {\"type\": \"string\"},\n", + " \"description\": \"List of independent variables.\",\n", + " },\n", + " },\n", + " \"required\": [\"data\", \"dependent_var\", \"independent_vars\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + "]\n", + "\n", + "visualization_tools = [\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"create_bar_chart\",\n", + " \"description\": \"Creates a bar chart from the provided data.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The data for the bar chart. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"x\": {\"type\": \"string\", \"description\": \"Column for the x-axis.\"},\n", + " \"y\": {\"type\": \"string\", \"description\": \"Column for the y-axis.\"},\n", + " },\n", + " \"required\": [\"data\", \"x\", \"y\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"create_line_chart\",\n", + " \"description\": \"Creates a line chart from the provided data.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The data for the line chart. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"x\": {\"type\": \"string\", \"description\": \"Column for the x-axis.\"},\n", + " \"y\": {\"type\": \"string\", \"description\": \"Column for the y-axis.\"},\n", + " },\n", + " \"required\": [\"data\", \"x\", \"y\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + " {\n", + " \"type\": \"function\",\n", + " \"function\": {\n", + " \"name\": \"create_pie_chart\",\n", + " \"description\": \"Creates a pie chart from the provided data.\",\n", + " \"parameters\": {\n", + " \"type\": \"object\",\n", + " \"properties\": {\n", + " \"data\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"The data for the pie chart. Should be in a suitable format such as JSON or CSV.\",\n", + " },\n", + " \"labels\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"Column for the labels.\",\n", + " },\n", + " \"values\": {\n", + " \"type\": \"string\",\n", + " \"description\": \"Column for the values.\",\n", + " },\n", + " },\n", + " \"required\": [\"data\", \"labels\", \"values\"],\n", + " \"additionalProperties\": False,\n", + " },\n", + " },\n", + " \"strict\": True,\n", + " },\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yh8tRZHkQJVv" + }, + "source": [ + "## Enable tracking of multi-agent using Weave\n", + "\n", + "We need to write the code logic to:\n", + "\n", + "* handle passing the user query to the multi-agent system\n", + "* handle the internal workings of the multi-agent system\n", + "* execute the tool calls" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "dwM_0mHZ5pXx" + }, + "outputs": [], + "source": [ + "# Example query\n", + "\n", + "user_query = \"\"\"\n", + "Below is some data. I want you to first remove the duplicates then analyze the statistics of the data as well as plot a line chart.\n", + "\n", + "house_size (m3), house_price ($)\n", + "90, 100\n", + "80, 90\n", + "100, 120\n", + "90, 100\n", + "\"\"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "51WWIdzXJn1n" + }, + "source": [ + "From the user query, we can infer that the tools we would need to call are `clean_data`, `start_analysis` and `use_line_chart`.\n", + "\n", + "We will begin by defining the execution function responsible for running tool calls.\n", + "\n", + "By decorating Python functions with `@weave.op()`, we can log and debug language model inputs, outputs, and traces.\n", + "\n", + "When creating a multi-agent system, many functions will appear, but it's sufficient to simply add `@weave.op()` on top of them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "XH6wgrATUA_l" + }, + "outputs": [], + "source": [ + "@weave.op()\n", + "def clean_data(data):\n", + " data_io = StringIO(data)\n", + " df = pd.read_csv(data_io, sep=\",\")\n", + " df_deduplicated = df.drop_duplicates()\n", + " return df_deduplicated\n", + "\n", + "\n", + "@weave.op()\n", + "def stat_analysis(data):\n", + " data_io = StringIO(data)\n", + " df = pd.read_csv(data_io, sep=\",\")\n", + " return df.describe()\n", + "\n", + "\n", + "@weave.op()\n", + "def plot_line_chart(data):\n", + " data_io = StringIO(data)\n", + " df = pd.read_csv(data_io, sep=\",\")\n", + "\n", + " x = df.iloc[:, 0]\n", + " y = df.iloc[:, 1]\n", + "\n", + " coefficients = np.polyfit(x, y, 1)\n", + " polynomial = np.poly1d(coefficients)\n", + " y_fit = polynomial(x)\n", + "\n", + " plt.figure(figsize=(10, 6))\n", + " plt.plot(x, y, \"o\", label=\"Data Points\")\n", + " plt.plot(x, y_fit, \"-\", label=\"Best Fit Line\")\n", + " plt.title(\"Line Chart with Best Fit Line\")\n", + " plt.xlabel(df.columns[0])\n", + " plt.ylabel(df.columns[1])\n", + " plt.legend()\n", + " plt.grid(True)\n", + "\n", + " # Save the plot to a BytesIO buffer before showing it\n", + " buf = BytesIO()\n", + " plt.savefig(buf, format=\"png\")\n", + " buf.seek(0)\n", + "\n", + " # Display the plot\n", + " plt.show()\n", + "\n", + " # Encode the image in base64 for the data URL\n", + " image_data = buf.getvalue()\n", + " base64_encoded_data = base64.b64encode(image_data)\n", + " base64_string = base64_encoded_data.decode(\"utf-8\")\n", + " data_url = f\"data:image/png;base64,{base64_string}\"\n", + "\n", + " return data_url\n", + "\n", + "\n", + "# Define the function to execute the tools\n", + "@weave.op()\n", + "def execute_tool(tool_calls, messages):\n", + " for tool_call in tool_calls:\n", + " tool_name = tool_call.function.name\n", + " tool_arguments = json.loads(tool_call.function.arguments)\n", + "\n", + " if tool_name == \"clean_data\":\n", + " # Simulate data cleaning\n", + " cleaned_df = clean_data(tool_arguments[\"data\"])\n", + " cleaned_data = {\"cleaned_data\": cleaned_df.to_dict()}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(cleaned_data)}\n", + " )\n", + " print(\"Cleaned data: \", cleaned_df)\n", + " elif tool_name == \"transform_data\":\n", + " # Simulate data transformation\n", + " transformed_data = {\"transformed_data\": \"sample_transformed_data\"}\n", + " messages.append(\n", + " {\n", + " \"role\": \"tool\",\n", + " \"name\": tool_name,\n", + " \"content\": json.dumps(transformed_data),\n", + " }\n", + " )\n", + " elif tool_name == \"aggregate_data\":\n", + " # Simulate data aggregation\n", + " aggregated_data = {\"aggregated_data\": \"sample_aggregated_data\"}\n", + " messages.append(\n", + " {\n", + " \"role\": \"tool\",\n", + " \"name\": tool_name,\n", + " \"content\": json.dumps(aggregated_data),\n", + " }\n", + " )\n", + " elif tool_name == \"stat_analysis\":\n", + " # Simulate statistical analysis\n", + " stats_df = stat_analysis(tool_arguments[\"data\"])\n", + " stats = {\"stats\": stats_df.to_dict()}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(stats)}\n", + " )\n", + " print(\"Statistical Analysis: \", stats_df)\n", + " elif tool_name == \"correlation_analysis\":\n", + " # Simulate correlation analysis\n", + " correlations = {\"correlations\": \"sample_correlations\"}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(correlations)}\n", + " )\n", + " elif tool_name == \"regression_analysis\":\n", + " # Simulate regression analysis\n", + " regression_results = {\"regression_results\": \"sample_regression_results\"}\n", + " messages.append(\n", + " {\n", + " \"role\": \"tool\",\n", + " \"name\": tool_name,\n", + " \"content\": json.dumps(regression_results),\n", + " }\n", + " )\n", + " elif tool_name == \"create_bar_chart\":\n", + " # Simulate bar chart creation\n", + " bar_chart = {\"bar_chart\": \"sample_bar_chart\"}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(bar_chart)}\n", + " )\n", + " elif tool_name == \"create_line_chart\":\n", + " # Simulate line chart creation\n", + " line_chart = {\"line_chart\": plot_line_chart(tool_arguments[\"data\"])}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(line_chart)}\n", + " )\n", + " elif tool_name == \"create_pie_chart\":\n", + " # Simulate pie chart creation\n", + " pie_chart = {\"pie_chart\": \"sample_pie_chart\"}\n", + " messages.append(\n", + " {\"role\": \"tool\", \"name\": tool_name, \"content\": json.dumps(pie_chart)}\n", + " )\n", + " return messages" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pKGtAq5EJn1n" + }, + "source": [ + "Next, we will create the tool handlers for each of the sub-agents. These have a unique prompt and tool set passed to the model. The output is then passed to an execution function which runs the tool calls." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EcOGJ0AZTmkp" + }, + "outputs": [], + "source": [ + "# Define the functions to handle each agent's processing\n", + "@weave.op()\n", + "def handle_data_processing_agent(query, conversation_messages):\n", + " messages = [{\"role\": \"system\", \"content\": processing_system_prompt}]\n", + " messages.append({\"role\": \"user\", \"content\": query})\n", + "\n", + " response = client.chat.completions.create(\n", + " model=MODEL,\n", + " messages=messages,\n", + " temperature=0,\n", + " tools=preprocess_tools,\n", + " )\n", + "\n", + " conversation_messages.append(\n", + " [tool_call.function for tool_call in response.choices[0].message.tool_calls]\n", + " )\n", + " execute_tool(response.choices[0].message.tool_calls, conversation_messages)\n", + "\n", + "\n", + "@weave.op()\n", + "def handle_analysis_agent(query, conversation_messages):\n", + " messages = [{\"role\": \"system\", \"content\": analysis_system_prompt}]\n", + " messages.append({\"role\": \"user\", \"content\": query})\n", + "\n", + " response = client.chat.completions.create(\n", + " model=MODEL,\n", + " messages=messages,\n", + " temperature=0,\n", + " tools=analysis_tools,\n", + " )\n", + "\n", + " conversation_messages.append(\n", + " [tool_call.function for tool_call in response.choices[0].message.tool_calls]\n", + " )\n", + " execute_tool(response.choices[0].message.tool_calls, conversation_messages)\n", + "\n", + "\n", + "@weave.op()\n", + "def handle_visualization_agent(query, conversation_messages):\n", + " messages = [{\"role\": \"system\", \"content\": visualization_system_prompt}]\n", + " messages.append({\"role\": \"user\", \"content\": query})\n", + "\n", + " response = client.chat.completions.create(\n", + " model=MODEL,\n", + " messages=messages,\n", + " temperature=0,\n", + " tools=visualization_tools,\n", + " )\n", + "\n", + " conversation_messages.append(\n", + " [tool_call.function for tool_call in response.choices[0].message.tool_calls]\n", + " )\n", + " execute_tool(response.choices[0].message.tool_calls, conversation_messages)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lm4KHFwhJn1n" + }, + "source": [ + "Finally, we create the overarching tool to handle processing the user query. This function takes the user query, gets a response from the model and handles passing it to the other agents to execute." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "4skE5-KYI9Tw" + }, + "outputs": [], + "source": [ + "# Function to handle user input and triaging\n", + "@weave.op()\n", + "def handle_user_message(user_query, conversation_messages=[]):\n", + " user_message = {\"role\": \"user\", \"content\": user_query}\n", + " conversation_messages.append(user_message)\n", + "\n", + " messages = [{\"role\": \"system\", \"content\": triaging_system_prompt}]\n", + " messages.extend(conversation_messages)\n", + "\n", + " response = client.chat.completions.create(\n", + " model=MODEL,\n", + " messages=messages,\n", + " temperature=0,\n", + " tools=triage_tools,\n", + " )\n", + "\n", + " conversation_messages.append(\n", + " [tool_call.function for tool_call in response.choices[0].message.tool_calls]\n", + " )\n", + "\n", + " for tool_call in response.choices[0].message.tool_calls:\n", + " if tool_call.function.name == \"send_query_to_agents\":\n", + " agents = json.loads(tool_call.function.arguments)[\"agents\"]\n", + " query = json.loads(tool_call.function.arguments)[\"query\"]\n", + " for agent in agents:\n", + " if agent == \"Data Processing Agent\":\n", + " handle_data_processing_agent(query, conversation_messages)\n", + " elif agent == \"Analysis Agent\":\n", + " handle_analysis_agent(query, conversation_messages)\n", + " elif agent == \"Visualization Agent\":\n", + " handle_visualization_agent(query, conversation_messages)\n", + "\n", + " outputs = extract_tool_contents(conversation_messages)\n", + "\n", + " return outputs\n", + "\n", + "\n", + "functions = [\n", + " \"clean_data\",\n", + " \"transform_data\",\n", + " \"stat_analysis\",\n", + " \"aggregate_data\",\n", + " \"correlation_analysis\",\n", + " \"regression_analysis\",\n", + " \"create_bar_chart\",\n", + " \"create_line_chart\",\n", + " \"create_pie_chart\",\n", + "]\n", + "\n", + "\n", + "@weave.op()\n", + "def extract_tool_contents(data):\n", + " contents = {}\n", + " contents[\"all\"] = data\n", + " for element in data:\n", + " if isinstance(element, dict):\n", + " if element.get(\"role\") == \"tool\" and element.get(\"name\") in functions:\n", + " name = element[\"name\"]\n", + " content_str = element[\"content\"]\n", + " try:\n", + " content_json = json.loads(content_str)\n", + " if \"chart\" not in element.get(\"name\"):\n", + " contents[name] = [content_json]\n", + " else:\n", + " first_key = next(iter(content_json))\n", + " second_level = content_json[first_key]\n", + " if isinstance(second_level, dict):\n", + " second_key = next(iter(second_level))\n", + " contents[name] = second_level[second_key]\n", + " else:\n", + " contents[name] = second_level\n", + " except json.JSONDecodeError:\n", + " print(f\"Error decoding JSON for {name}\")\n", + " contents[name] = None\n", + "\n", + " return contents" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jzQAwIW_WL3k" + }, + "source": [ + "## Execute multi-agent systems and visualization in Weave\n", + "\n", + "Finally, we execute the primary `handle_user_message` function using the user's input and observe the results." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "a0h10s_W49ct", + "outputId": "239516be-1031-47bf-fa31-28323a062f49" + }, + "outputs": [], + "source": [ + "handle_user_message(user_query)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DvE2BBaXQIn8" + }, + "source": [ + "When we click on the URL for Weave, we can see that the execution is being traced as follows. On the Traces page, we can check the input and output. For clarity, screenshots of the results displayed when each output is clicked have been added to the diagram. Weave provides integration with OpenAI's API, which allows costs to be automatically calculated. So, we can confirm cost and latency are also displayed on the far right.\n", + "![1-1.png]()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jYd8l1YgQKay" + }, + "source": [ + "\n", + "\n", + "By clicking on a line, we can see the intermediate processes that were executed within the multi-agent system. For example, by looking at the input and output of the `analysis_agent`, we can see that it is in a structured output format. OpenAI's structured output facilitates collaboration between agents, but as the system becomes more complex, it becomes harder to grasp the format in which these interactions are taking place. Using Weave allows us to understand these intermediate processes and their inputs and outputs as if we were holding them in your hand.\n", + "\n", + "![3.png]()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Please take a closer look at how tracing is handled in Weave!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a42OUbEcJn1o" + }, + "source": [ + "## Conclusion\n", + "In this tutorial, we learned how to conveniently develop a multi-agent system using structured output and Weave, provided by OpenAI for tracking inputs, final outputs, and intermediate output formats." + ] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/docs/sidebars.ts b/docs/sidebars.ts index 64c8e3126ec..d56f563fd3a 100644 --- a/docs/sidebars.ts +++ b/docs/sidebars.ts @@ -54,9 +54,19 @@ const sidebars: SidebarsConfig = { "guides/tracking/objects", ], }, + { + type: "category", + collapsible: true, + collapsed: false, + label: "Evaluation", + link: { type: "doc", id: "guides/core-types/evaluations"}, + items: [ + "guides/evaluation/scorers", + ], + }, + "guides/core-types/prompts", "guides/core-types/models", "guides/core-types/datasets", - "guides/core-types/evaluations", "guides/tracking/feedback", "guides/tracking/costs", "guides/core-types/media", diff --git a/examples/text-extract/evaluate.py b/examples/text-extract/evaluate.py index abb292b198e..357f101e387 100644 --- a/examples/text-extract/evaluate.py +++ b/examples/text-extract/evaluate.py @@ -6,7 +6,7 @@ import openai import weave -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 class TextExtractModel(weave.Model): diff --git a/examples/tutorial_scripts/05_eval_pipeline.py b/examples/tutorial_scripts/05_eval_pipeline.py index ccb14126a03..0a6a5baf9ab 100644 --- a/examples/tutorial_scripts/05_eval_pipeline.py +++ b/examples/tutorial_scripts/05_eval_pipeline.py @@ -60,7 +60,7 @@ async def predict(self, sentence: str) -> dict: ] import weave -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 @weave.op() diff --git a/examples/tutorial_scripts/06_eval_pipeline_all.py b/examples/tutorial_scripts/06_eval_pipeline_all.py index 6be10f08a44..0d5fe8fd3b2 100644 --- a/examples/tutorial_scripts/06_eval_pipeline_all.py +++ b/examples/tutorial_scripts/06_eval_pipeline_all.py @@ -4,7 +4,7 @@ import openai import weave -from weave.flow.scorer import MultiTaskBinaryClassificationF1 +from weave.scorers import MultiTaskBinaryClassificationF1 # We create a model class with one predict function. # All inputs, predictions and parameters are automatically captured for easy inspection. diff --git a/noxfile.py b/noxfile.py index bb74b97ec34..90aa3bfaac4 100644 --- a/noxfile.py +++ b/noxfile.py @@ -11,6 +11,7 @@ "litellm", "notdiamond", "google_ai_studio", + "scorers_tests", ] @@ -40,6 +41,7 @@ def lint(session): "mistral1", "notdiamond", "openai", + "scorers_tests", "pandas-test", ], ) @@ -64,12 +66,21 @@ def tests(session, shard): if shard == "google_ai_studio": env["GOOGLE_API_KEY"] = session.env.get("GOOGLE_API_KEY") + # we are doing some integration test in test_llm_integrations.py that requires + # setting some environment variables for the LLM providers + if shard == "scorers_tests": + env["GOOGLE_API_KEY"] = session.env.get("GOOGLE_API_KEY") + env["ANTHROPIC_API_KEY"] = session.env.get("ANTHROPIC_API_KEY") + env["MISTRAL_API_KEY"] = session.env.get("MISTRAL_API_KEY") + env["OPENAI_API_KEY"] = session.env.get("OPENAI_API_KEY") + default_test_dirs = [f"integrations/{shard}/"] test_dirs_dict = { "trace": ["trace/"], "trace_server": ["trace_server/"], "mistral0": ["integrations/mistral/v0/"], "mistral1": ["integrations/mistral/v1/"], + "scorers_tests": ["scorers/"], } test_dirs = test_dirs_dict.get(shard, default_test_dirs) diff --git a/pyproject.toml b/pyproject.toml index ff5403c4e89..407b7548327 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -66,6 +66,8 @@ litellm = ["litellm>=1.36.1"] llamaindex = ["llama-index>=0.10.35"] mistral0 = ["mistralai>=0.1.8,<1.0.0"] mistral1 = ["mistralai>=1.0.0"] +scorers = ["Levenshtein>=0.26.0", "instructor>=1.5.2"] +scorers_tests = ["instructor>=1.5.2", "Levenshtein>=0.26.0", "openai>=1.0.0", "google-generativeai>=0.8.0", "mistralai>=1.0.3", "anthropic>=0.30.0"] notdiamond = ["notdiamond>=0.3.21", "litellm<=1.49.1"] openai = ["openai>=1.0.0"] pandas-test = ["pandas>=2.2.3"] diff --git a/sdks/node/.gitignore b/sdks/node/.gitignore new file mode 100644 index 00000000000..3091757a3b2 --- /dev/null +++ b/sdks/node/.gitignore @@ -0,0 +1,2 @@ +node_modules +coverage \ No newline at end of file diff --git a/sdks/node/.prettierrc b/sdks/node/.prettierrc new file mode 100644 index 00000000000..38e0c860df1 --- /dev/null +++ b/sdks/node/.prettierrc @@ -0,0 +1,16 @@ +{ + "trailingComma": "es5", + "singleQuote": true, + "bracketSpacing": false, + "bracketSameLine": true, + "tabWidth": 2, + "arrowParens": "avoid", + "overrides": [ + { + "files": ["*.ts", "*.tsx"], + "options": { + "parser": "typescript" + } + } + ] +} diff --git a/sdks/node/CantinaBand3.wav b/sdks/node/CantinaBand3.wav new file mode 100644 index 00000000000..41f02043846 Binary files /dev/null and b/sdks/node/CantinaBand3.wav differ diff --git a/sdks/node/Makefile b/sdks/node/Makefile new file mode 100644 index 00000000000..a2ab6172b5c --- /dev/null +++ b/sdks/node/Makefile @@ -0,0 +1,7 @@ +install-pnpm: + curl -fsSL https://get.pnpm.io/install.sh | sh - + +bootstrap: install-pnpm + pnpm env use --global 20 + pnpm install + pnpm run generate-api diff --git a/sdks/node/README-DEV.md b/sdks/node/README-DEV.md new file mode 100644 index 00000000000..0a044dc483e --- /dev/null +++ b/sdks/node/README-DEV.md @@ -0,0 +1,23 @@ +# Working notes + +1. Setup your env + + ```sh + make boostrap + + pnpm install + pnpm link --global + pnpm link --global weave + ``` + +2. Run tests + + ```sh + pnpm test + ``` + +3. Format + + ```sh + pnpm format + ``` diff --git a/sdks/node/README.md b/sdks/node/README.md new file mode 100644 index 00000000000..c23dc752cd5 --- /dev/null +++ b/sdks/node/README.md @@ -0,0 +1,202 @@ +# Weave (Alpha) + +Weave is a library for tracing and monitoring AI applications. + +This is an Alpha release, APIs are extremely subject to change. + +## Installation + +You can install Weave via npm: + +```bash +npm install weave +``` + +Ensure you have a wandb API key in ~/.netrc. + +Like + +``` +machine api.wandb.ai + login user + password +``` + +Get your wandb API key from [here](https://wandb.ai/authorize). + +## Quickstart + +Put this in a file called `predict.mjs`: + +```javascript +import { OpenAI } from "openai"; +import { init, op, wrapOpenAI } from "weave"; + +const openai = wrapOpenAI(new OpenAI()); + +async function extractDinos(input) { + const response = await openai.chat.completions.create({ + model: "gpt-4o", + messages: [ + { + role: "user", + content: `In JSON format extract a list of 'dinosaurs', with their 'name', their 'common_name', and whether its 'diet' is a herbivore or carnivore: ${input}`, + }, + ], + }); + return response.choices[0].message.content; +} +const extractDinosOp = op(extractDinos); + +async function main() { + await init("weave-quickstart"); + const result = await extractDinosOp( + "I watched as a Tyrannosaurus rex (T. rex) chased after a Triceratops (Trike), both carnivore and herbivore locked in an ancient dance. Meanwhile, a gentle giant Brachiosaurus (Brachi) calmly munched on treetops, blissfully unaware of the chaos below." + ); + console.log(result); +} + +main(); +``` + +and then run + +``` +node predict.mjs +``` + +## Usage + +### Initializing a Project + +Before you can start tracing operations, you need to initialize a project. This sets up the necessary environment for trace collection. + +```javascript +import { init } from "weave"; + +// Initialize your project with a unique project name +init("my-awesome-ai-project"); +``` + +### Tracing Operations + +You can trace specific operations using the `op` function. This function wraps your existing functions and tracks their execution. + +```javascript +import { op } from "weave"; + +// Define a function you want to trace +async function myFunction(arg1, arg2) { + // Your function logic + return arg1 + arg2; +} + +// Wrap the function with op to enable tracing +const tracedFunction = op(myFunction, "myFunction"); + +// Call the traced function +tracedFunction(5, 10); +``` + +### OpenAI Integration + +Weave provides an integration with OpenAI, allowing you to trace API calls made to OpenAI's services seamlessly. + +```javascript +import { wrapOpenAI } from "weave/integrations/openai"; + +// Create a patched instance of OpenAI +const openai = wrapOpenAI(); + +// Use the OpenAI instance as usual +openai.chat.completions.create({ + model: "text-davinci-003", + prompt: 'Translate the following English text to French: "Hello, world!"', + max_tokens: 60, +}); + +// Weave tracks images too! +openai.images.generate({ + prompt: "A cute baby sea otter", + n: 3, + size: "256x256", + response_format: "b64_json", +}); +``` + +### Evaluations + +```typescript +import { init, op, Dataset, Evaluation } from "weave"; + +async function main() { + await init("weavejsdev-eval6"); + const ds = new Dataset({ + id: "My Dataset", + description: "This is a dataset", + rows: [ + { name: "Alice", age: 25 }, + { name: "Bob", age: 30 }, + { name: "Charlie", age: 34 }, + ], + }); + const evaluation = new Evaluation({ + dataset: ds, + scorers: [ + op( + (modelOutput: any, datasetItem: any) => modelOutput == datasetItem.age, + { name: "isEqual" } + ), + ], + }); + + const model = op(async function myModel(input) { + return input.age; + }); + + const results = await evaluation.evaluate({ model }); + console.log(JSON.stringify(results, null, 2)); +} + +main(); +``` + +## Configuration + +Weave reads API keys from the `.netrc` file located in your home directory. Ensure you have the required API keys configured for seamless integration and tracking. + +``` +machine api.wandb.ai + login user + password +``` + +Get your wandb API key from [here](https://wandb.ai/authorize). + +## License + +This project is licensed under the Apaache2 License - see the [LICENSE](../LICENSE) file for details. + +### Roadmap / TODO + +- [x] Return token counts +- [x] Summary merging +- [x] Image support +- [x] Decide how to handle args in js, since they're not named +- [x] Make sure LLM streaming is handled +- [x] Op versioning / code capture +- [ ] Retry logic +- [ ] Handle other wandb backends (managed / self-hosted) +- [ ] Include system information in call attributes including package version. +- [x] Objects / Datasets / Models / Evaluations +- [ ] Ref tracking +- [ ] More integrations + +## Known Issues + +- [ ] openai choices > 1 and "tools" not handled (function works though) +- [ ] we always inject params.stream_options.include_usage in openai request, need to not send back usage chunk if user didn't ask for it. +- [ ] handle all openai.images.generate formats, and images in inputs. +- [ ] openai.images.generate token counts. +- [ ] if a streaming op with streamReducer returns its iterator instead of iterating within the op, summary rollups won't work. +- [ ] Decide what's in public interface (WeaveClient) diff --git a/sdks/node/examples/classesWithOps.ts b/sdks/node/examples/classesWithOps.ts new file mode 100644 index 00000000000..c0a1ee0e6b5 --- /dev/null +++ b/sdks/node/examples/classesWithOps.ts @@ -0,0 +1,28 @@ +import OpenAI from 'openai'; +import * as weave from 'weave'; + +class ExampleModel { + private oaiClient: OpenAI; + + constructor() { + this.oaiClient = weave.wrapOpenAI(new OpenAI()); + this.invoke = weave.op(this, this.invoke); + } + + async invoke(input: string) { + const response = await this.oaiClient.chat.completions.create({ + model: 'gpt-4o', + messages: [{role: 'user', content: input}], + }); + return response.choices[0].message.content; + } +} + +async function main() { + await weave.init('examples'); + + const model = new ExampleModel(); + await model.invoke('Tell me a joke'); +} + +main(); diff --git a/sdks/node/examples/createDataset.ts b/sdks/node/examples/createDataset.ts new file mode 100644 index 00000000000..e7033c7d800 --- /dev/null +++ b/sdks/node/examples/createDataset.ts @@ -0,0 +1,53 @@ +import fs from 'fs'; +import 'source-map-support/register'; +import * as weave from 'weave'; + +const sentences = [ + 'There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy.', + 'Pounits are a bright green color and are more savory than sweet.', + 'Finally, there are fruits called glowls, which have a very sour and bitter taste which is acidic and caustic, and a pale orange tinge to them.', +]; +const labels = [ + {fruit: 'neoskizzles', color: 'purple', flavor: 'candy'}, + {fruit: 'pounits', color: 'bright green', flavor: 'savory'}, + {fruit: 'glowls', color: 'pale orange', flavor: 'sour and bitter'}, +]; +const logsPng = fs.readFileSync('logs.png'); +const audioClip = fs.readFileSync('CantinaBand3.wav'); +const examples = [ + { + id: '0', + sentence: sentences[0], + target: labels[0], + image: weave.weaveImage({data: logsPng, imageType: 'png'}), + audio: weave.weaveAudio({data: audioClip, audioType: 'wav'}), + }, + { + id: '1', + sentence: sentences[1], + target: labels[1], + image: weave.weaveImage({data: logsPng, imageType: 'png'}), + audio: weave.weaveAudio({data: audioClip, audioType: 'wav'}), + }, + { + id: '2', + sentence: sentences[2], + target: labels[2], + image: weave.weaveImage({data: logsPng, imageType: 'png'}), + audio: weave.weaveAudio({data: audioClip, audioType: 'wav'}), + }, +]; + +async function main() { + await weave.init('examples'); + const ds = new weave.Dataset({ + id: 'Fruit Dataset', + rows: examples, + }); + + ds.save(); + const ref = await ds.__savedRef; + console.log(ref); +} + +main(); diff --git a/sdks/node/examples/evaluate.ts b/sdks/node/examples/evaluate.ts new file mode 100644 index 00000000000..da88e506e57 --- /dev/null +++ b/sdks/node/examples/evaluate.ts @@ -0,0 +1,33 @@ +import 'source-map-support/register'; +import * as weave from 'weave'; + +async function main() { + await weave.init('examples'); + + const ds = new weave.Dataset({ + id: 'My Dataset', + description: 'This is a dataset', + rows: [ + {name: 'Alice', age: 25}, + {name: 'Bob', age: 30}, + {name: 'Charlie', age: 34}, + ], + }); + const evaluation = new weave.Evaluation({ + dataset: ds, + scorers: [ + weave.op(({modelOutput, datasetItem}) => modelOutput == datasetItem.age, { + name: 'isEqual', + }), + ], + }); + + const model = weave.op(async function myModel({datasetRow}) { + return datasetRow.age >= 30; + }); + + const results = await evaluation.evaluate({model}); + console.log('Evaluation results:', JSON.stringify(results, null, 2)); +} + +main(); diff --git a/sdks/node/examples/evaluateWithColumnMapping.ts b/sdks/node/examples/evaluateWithColumnMapping.ts new file mode 100644 index 00000000000..44b7f1bf14e --- /dev/null +++ b/sdks/node/examples/evaluateWithColumnMapping.ts @@ -0,0 +1,39 @@ +import 'source-map-support/register'; +import * as weave from 'weave'; + +async function main() { + await weave.init('examples'); + + const ds = new weave.Dataset({ + id: 'My Dataset', + description: 'This is a dataset', + rows: [ + {firstName: 'Alice', yearsOld: 25}, + {firstName: 'Bob', yearsOld: 30}, + {firstName: 'Charlie', yearsOld: 34}, + ], + }); + const evaluation = new weave.Evaluation({ + dataset: ds, + scorers: [ + weave.op(({modelOutput, datasetItem}) => modelOutput == datasetItem.age, { + name: 'isEqual', + }), + ], + // Specify a column mapping to map the model inputs to dataset columns. + // The order is always "model input": "dataset column". + columnMapping: { + name: 'firstName', + age: 'yearsOld', + }, + }); + + const model = weave.op(async function myModel({datasetRow}) { + return datasetRow.age >= 30; + }); + + const results = await evaluation.evaluate({model}); + console.log('Evaluation results:', JSON.stringify(results, null, 2)); +} + +main(); diff --git a/sdks/node/examples/evaluateWithImages.ts b/sdks/node/examples/evaluateWithImages.ts new file mode 100644 index 00000000000..dd12f0afffd --- /dev/null +++ b/sdks/node/examples/evaluateWithImages.ts @@ -0,0 +1,71 @@ +import {OpenAI} from 'openai'; +import 'source-map-support/register'; +import * as weave from 'weave'; + +const sentences = [ + 'There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy.', + 'Pounits are a bright green color and are more savory than sweet.', + 'Finally, there are fruits called glowls, which have a very sour and bitter taste which is acidic and caustic, and a pale orange tinge to them.', + 'There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy.', +]; +const labels = [ + {fruit: 'neoskizzles', color: 'purple', flavor: 'candy'}, + {fruit: 'pounits', color: 'bright green', flavor: 'savory'}, + {fruit: 'glowls', color: 'pale orange', flavor: 'sour and bitter'}, +]; +const examples = [ + {id: '0', sentence: sentences[0], target: labels[0]}, + {id: '1', sentence: sentences[1], target: labels[1]}, + {id: '2', sentence: sentences[2], target: labels[2]}, +]; + +const openaiClient = weave.wrapOpenAI(new OpenAI()); + +const model = weave.op(async function myModel({datasetRow}) { + const prompt = `Extract fields ("fruit": , "color": , "flavor") from the following text, as json: ${datasetRow.sentence}`; + const response = await openaiClient.chat.completions.create({ + model: 'gpt-3.5-turbo', + messages: [{role: 'user', content: prompt}], + response_format: {type: 'json_object'}, + }); + const result = response.choices[0].message.content; + if (result == null) { + throw new Error('No response from model'); + } + if (datasetRow.id == '3') { + throw new Error('This is an error'); + } + return JSON.parse(result); +}); + +async function main() { + await weave.init('examples'); + const ds = new weave.Dataset({ + id: 'Fruit Dataset', + rows: examples, + }); + const evaluation = new weave.Evaluation({ + dataset: ds, + scorers: [ + weave.op(function fruitEqual({modelOutput, datasetRow}) { + return { + correct: modelOutput.fruit == datasetRow.target.fruit, + }; + }), + weave.op(async function genImage({modelOutput, datasetRow}) { + const result = await openaiClient.images.generate({ + prompt: `A fruit that's ${modelOutput.color} and ${modelOutput.flavor}`, + n: 1, + size: '256x256', + response_format: 'b64_json', + }); + return result.data[0]; + }), + ], + }); + + const results = await evaluation.evaluate({model}); + console.log(JSON.stringify(results, null, 2)); +} + +main(); diff --git a/sdks/node/examples/imageGeneration.ts b/sdks/node/examples/imageGeneration.ts new file mode 100644 index 00000000000..b858dfaf2a5 --- /dev/null +++ b/sdks/node/examples/imageGeneration.ts @@ -0,0 +1,19 @@ +import OpenAI from 'openai'; +import * as weave from 'weave'; + +async function main() { + const client = await weave.init('examples'); + const openai = weave.wrapOpenAI(new OpenAI()); + + // Generate an image + const result = await openai.images.generate({ + prompt: 'A cute baby sea otter', + n: 3, + size: '256x256', + response_format: 'b64_json', + }); + + console.log('Generated image result:', result); +} + +main(); diff --git a/sdks/node/examples/loggingVariousDataTypes.ts b/sdks/node/examples/loggingVariousDataTypes.ts new file mode 100644 index 00000000000..391c209c5cf --- /dev/null +++ b/sdks/node/examples/loggingVariousDataTypes.ts @@ -0,0 +1,53 @@ +import fs from 'fs'; +import * as weave from 'weave'; + +const primitiveOp = weave.op(async function primitive(input: string) { + return `Hi ${input}!`; +}); + +const jsonOp = weave.op(async function json(name: string, age: number) { + return {name, age}; +}); + +const imageOp = weave.op(async function image() { + return weave.weaveImage({ + data: fs.readFileSync('logs.png'), + imageType: 'png', + }); +}); + +const audioOp = weave.op(async function audio() { + return weave.weaveAudio({ + data: fs.readFileSync('CantinaBand3.wav'), + audioType: 'wav', + }); +}); + +const datasetOp = weave.op(async function dataset() { + return new weave.Dataset({ + id: 'my-dataset', + rows: [ + {name: 'Alice', age: 10}, + {name: 'Bob', age: 20}, + {name: 'Charlie', age: 30}, + ], + }); +}); + +async function main() { + await weave.init('examples'); + + const primitivePromise = primitiveOp('world'); + const jsonPromise = jsonOp('Alice', 10); + const imagePromise = imageOp(); + const audioPromise = audioOp(); + const datasetPromise = datasetOp(); + + console.log('Primitive Result:', await primitivePromise); + console.log('JSON Result:', await jsonPromise); + console.log('Image Result:', await imagePromise); + console.log('Audio Result:', await audioPromise); + console.log('Dataset Result:', await datasetPromise); +} + +main(); diff --git a/sdks/node/examples/quickstart.ts b/sdks/node/examples/quickstart.ts new file mode 100644 index 00000000000..500efba3238 --- /dev/null +++ b/sdks/node/examples/quickstart.ts @@ -0,0 +1,28 @@ +import OpenAI from 'openai'; +import * as weave from 'weave'; + +const openai = weave.wrapOpenAI(new OpenAI()); + +async function extractDinos(input: string) { + const response = await openai.chat.completions.create({ + model: 'gpt-4o', + messages: [ + { + role: 'user', + content: `In JSON format extract a list of 'dinosaurs', with their 'name', their 'common_name', and whether its 'diet' is a herbivore or carnivore: ${input}`, + }, + ], + }); + return response.choices[0].message.content; +} +const extractDinosOp = weave.op(extractDinos); + +async function main() { + await weave.init('examples'); + const result = await extractDinosOp( + 'I watched as a Tyrannosaurus rex (T. rex) chased after a Triceratops (Trike), both carnivore and herbivore locked in an ancient dance. Meanwhile, a gentle giant Brachiosaurus (Brachi) calmly munched on treetops, blissfully unaware of the chaos below.' + ); + console.log(result); +} + +main(); diff --git a/sdks/node/examples/quickstartEvaluate.ts b/sdks/node/examples/quickstartEvaluate.ts new file mode 100644 index 00000000000..241cd29a28a --- /dev/null +++ b/sdks/node/examples/quickstartEvaluate.ts @@ -0,0 +1,67 @@ +import {OpenAI} from 'openai'; +import 'source-map-support/register'; +import * as weave from 'weave'; + +const sentences = [ + 'There are many fruits that were found on the recently discovered planet Goocrux. There are neoskizzles that grow there, which are purple and taste like candy.', + 'Pounits are a bright green color and are more savory than sweet.', + 'Finally, there are fruits called glowls, which have a very sour and bitter taste which is acidic and caustic, and a pale orange tinge to them.', +]; +const labels = [ + {fruit: 'neoskizzles', color: 'purple', flavor: 'candy'}, + {fruit: 'pounits', color: 'bright green', flavor: 'savory'}, + {fruit: 'glowls', color: 'pale orange', flavor: 'sour and bitter'}, +]; +const examples = [ + {id: '0', sentence: sentences[0], target: labels[0]}, + {id: '1', sentence: sentences[1], target: labels[1]}, + {id: '2', sentence: sentences[2], target: labels[2]}, + {id: '3', sentence: sentences[0], target: labels[0]}, + {id: '4', sentence: sentences[1], target: labels[1]}, + {id: '5', sentence: sentences[2], target: labels[2]}, + {id: '6', sentence: sentences[0], target: labels[0]}, + {id: '7', sentence: sentences[1], target: labels[1]}, + {id: '8', sentence: sentences[2], target: labels[2]}, + {id: '9', sentence: sentences[0], target: labels[0]}, + {id: '10', sentence: sentences[1], target: labels[1]}, + {id: '11', sentence: sentences[2], target: labels[2]}, +]; + +const openaiClient = weave.wrapOpenAI(new OpenAI()); + +const model = weave.op(async function myModel(input) { + const prompt = `Extract fields ("fruit": , "color": , "flavor") from the following text, as json: ${input.sentence}`; + const response = await openaiClient.chat.completions.create({ + model: 'gpt-3.5-turbo', + messages: [{role: 'user', content: prompt}], + response_format: {type: 'json_object'}, + }); + const result = response.choices[0].message.content; + if (result == null) { + throw new Error('No response from model'); + } + return JSON.parse(result); +}); + +async function main() { + await weave.init('examples'); + const ds = new weave.Dataset({ + id: 'Fruit Dataset', + rows: examples, + }); + const evaluation = new weave.Evaluation({ + dataset: ds, + scorers: [ + weave.op(function fruitEqual({modelOutput, datasetItem}) { + return { + correct: modelOutput.fruit == datasetItem.target.fruit, + }; + }), + ], + }); + + const results = await evaluation.evaluate({model}); + console.log(JSON.stringify(results, null, 2)); +} + +main(); diff --git a/sdks/node/examples/streamFunctionCalls.ts b/sdks/node/examples/streamFunctionCalls.ts new file mode 100644 index 00000000000..21efcd6d4c6 --- /dev/null +++ b/sdks/node/examples/streamFunctionCalls.ts @@ -0,0 +1,63 @@ +import OpenAI from 'openai'; +import * as weave from 'weave'; + +const openai = weave.wrapOpenAI(new OpenAI()); + +async function extractDinos(input: string) { + const functions = [ + { + name: 'get_current_weather', + description: 'Get the current weather for a given location.', + parameters: { + type: 'object', + properties: { + location: { + type: 'string', + description: 'The name of the city or location to get weather for.', + }, + }, + required: ['location'], + }, + }, + { + name: 'get_time_in_location', + description: 'Get the current time for a given location.', + parameters: { + type: 'object', + properties: { + location: { + type: 'string', + description: + 'The name of the city or location to get the current time for.', + }, + }, + required: ['location'], + }, + }, + ]; + const response = await openai.chat.completions.create({ + stream: true, + // stream_options: { "include_usage": true }, + model: 'gpt-4o', + functions: functions, + messages: [ + { + role: 'user', + content: `what is the weather and time in ${input}? Tell me what your'e going to do as you do it.`, + }, + ], + }); + console.log(JSON.stringify(response)); + for await (const chunk of response) { + console.log(JSON.stringify(chunk)); + } +} +const extractDinosOp = weave.op(extractDinos); + +async function main() { + await weave.init('examples'); + const result = await extractDinosOp('London'); + console.log(result); +} + +main(); diff --git a/sdks/node/examples/tsconfig.examples.json b/sdks/node/examples/tsconfig.examples.json new file mode 100644 index 00000000000..0dd447ac548 --- /dev/null +++ b/sdks/node/examples/tsconfig.examples.json @@ -0,0 +1,16 @@ +{ + "extends": "../tsconfig.json", + "exclude": [], + "compilerOptions": { + "rootDir": ".", + "outDir": "../dist/examples", + "paths": { + "weave": ["../dist/src"] + } + }, + "references": [ + { + "path": "../src/tsconfig.src.json" + } + ] +} diff --git a/sdks/node/logs.png b/sdks/node/logs.png new file mode 100644 index 00000000000..5fc54397386 Binary files /dev/null and b/sdks/node/logs.png differ diff --git a/sdks/node/package-lock.json b/sdks/node/package-lock.json new file mode 100644 index 00000000000..2fbfa2dd718 --- /dev/null +++ b/sdks/node/package-lock.json @@ -0,0 +1,4312 @@ +{ + "name": "weave", + "version": "0.6.9", + "lockfileVersion": 3, + "requires": true, + "packages": { + "": { + "name": "weave", + "version": "0.6.9", + "license": "Apache-2.0", + "dependencies": { + "cli-progress": "^3.12.0", + "openai": "^4.57.0", + "uuidv7": "^1.0.1" + }, + "devDependencies": { + "@types/cli-progress": "^3.11.6", + "@types/jest": "^29.5.12", + "@types/node": "^22.5.1", + "jest": "^29.7.0", + "ts-jest": "^29.2.5" + } + }, + "node_modules/@ampproject/remapping": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/@ampproject/remapping/-/remapping-2.3.0.tgz", + "integrity": "sha512-30iZtAPgz+LTIYoeivqYo853f02jBYSd5uGnGpkFV0M3xOt9aN73erkgYAmZU43x4VfqcnLxW9Kpg3R5LC4YYw==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "@jridgewell/gen-mapping": "^0.3.5", + "@jridgewell/trace-mapping": "^0.3.24" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/code-frame": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.24.7.tgz", + "integrity": "sha512-BcYH1CVJBO9tvyIZ2jVeXgSIMvGZ2FDRvDdOIVQyuklNKSsx+eppDEBq/g47Ayw+RqNFE+URvOShmf+f/qwAlA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/highlight": "^7.24.7", + "picocolors": "^1.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/compat-data": { + "version": "7.25.4", + "resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.25.4.tgz", + "integrity": "sha512-+LGRog6RAsCJrrrg/IO6LGmpphNe5DiK30dGjCoxxeGv49B10/3XYGxPsAwrDlMFcFEvdAUavDT8r9k/hSyQqQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/core": { + "version": "7.25.2", + "resolved": "https://registry.npmjs.org/@babel/core/-/core-7.25.2.tgz", + "integrity": "sha512-BBt3opiCOxUr9euZ5/ro/Xv8/V7yJ5bjYMqG/C1YAo8MIKAnumZalCN+msbci3Pigy4lIQfPUpfMM27HMGaYEA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@ampproject/remapping": "^2.2.0", + "@babel/code-frame": "^7.24.7", + "@babel/generator": "^7.25.0", + "@babel/helper-compilation-targets": "^7.25.2", + "@babel/helper-module-transforms": "^7.25.2", + "@babel/helpers": "^7.25.0", + "@babel/parser": "^7.25.0", + "@babel/template": "^7.25.0", + "@babel/traverse": "^7.25.2", + "@babel/types": "^7.25.2", + "convert-source-map": "^2.0.0", + "debug": "^4.1.0", + "gensync": "^1.0.0-beta.2", + "json5": "^2.2.3", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/babel" + } + }, + "node_modules/@babel/generator": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.25.6.tgz", + "integrity": "sha512-VPC82gr1seXOpkjAAKoLhP50vx4vGNlF4msF64dSFq1P8RfB+QAuJWGHPXXPc8QyfVWwwB/TNNU4+ayZmHNbZw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/types": "^7.25.6", + "@jridgewell/gen-mapping": "^0.3.5", + "@jridgewell/trace-mapping": "^0.3.25", + "jsesc": "^2.5.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-compilation-targets": { + "version": "7.25.2", + "resolved": "https://registry.npmjs.org/@babel/helper-compilation-targets/-/helper-compilation-targets-7.25.2.tgz", + "integrity": "sha512-U2U5LsSaZ7TAt3cfaymQ8WHh0pxvdHoEk6HVpaexxixjyEquMh0L0YNJNM6CTGKMXV1iksi0iZkGw4AcFkPaaw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/compat-data": "^7.25.2", + "@babel/helper-validator-option": "^7.24.8", + "browserslist": "^4.23.1", + "lru-cache": "^5.1.1", + "semver": "^6.3.1" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-imports": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/helper-module-imports/-/helper-module-imports-7.24.7.tgz", + "integrity": "sha512-8AyH3C+74cgCVVXow/myrynrAGv+nTVg5vKu2nZph9x7RcRwzmh0VFallJuFTZ9mx6u4eSdXZfcOzSqTUm0HCA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/traverse": "^7.24.7", + "@babel/types": "^7.24.7" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-module-transforms": { + "version": "7.25.2", + "resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.25.2.tgz", + "integrity": "sha512-BjyRAbix6j/wv83ftcVJmBt72QtHI56C7JXZoG2xATiLpmoC7dpd8WnkikExHDVPpi/3qCmO6WY1EaXOluiecQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-module-imports": "^7.24.7", + "@babel/helper-simple-access": "^7.24.7", + "@babel/helper-validator-identifier": "^7.24.7", + "@babel/traverse": "^7.25.2" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/@babel/helper-plugin-utils": { + "version": "7.24.8", + "resolved": "https://registry.npmjs.org/@babel/helper-plugin-utils/-/helper-plugin-utils-7.24.8.tgz", + "integrity": "sha512-FFWx5142D8h2Mgr/iPVGH5G7w6jDn4jUSpZTyDnQO0Yn7Ks2Kuz6Pci8H6MPCoUJegd/UZQ3tAvfLCxQSnWWwg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-simple-access": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/helper-simple-access/-/helper-simple-access-7.24.7.tgz", + "integrity": "sha512-zBAIvbCMh5Ts+b86r/CjU+4XGYIs+R1j951gxI3KmmxBMhCg4oQMsv6ZXQ64XOm/cvzfU1FmoCyt6+owc5QMYg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/traverse": "^7.24.7", + "@babel/types": "^7.24.7" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-string-parser": { + "version": "7.24.8", + "resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.24.8.tgz", + "integrity": "sha512-pO9KhhRcuUyGnJWwyEgnRJTSIZHiT+vMD0kPeD+so0l7mxkMT19g3pjY9GTnHySck/hDzq+dtW/4VgnMkippsQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-identifier": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.24.7.tgz", + "integrity": "sha512-rR+PBcQ1SMQDDyF6X0wxtG8QyLCgUB0eRAGguqRLfkCA87l7yAP7ehq8SNj96OOGTO8OBV70KhuFYcIkHXOg0w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helper-validator-option": { + "version": "7.24.8", + "resolved": "https://registry.npmjs.org/@babel/helper-validator-option/-/helper-validator-option-7.24.8.tgz", + "integrity": "sha512-xb8t9tD1MHLungh/AIoWYN+gVHaB9kwlu8gffXGSt3FFEIT7RjS+xWbc2vUD1UTZdIpKj/ab3rdqJ7ufngyi2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/helpers": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.25.6.tgz", + "integrity": "sha512-Xg0tn4HcfTijTwfDwYlvVCl43V6h4KyVVX2aEm4qdO/PC6L2YvzLHFdmxhoeSA3eslcE6+ZVXHgWwopXYLNq4Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/template": "^7.25.0", + "@babel/types": "^7.25.6" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/highlight/-/highlight-7.24.7.tgz", + "integrity": "sha512-EStJpq4OuY8xYfhGVXngigBJRWxftKX9ksiGDnmlY3o7B/V7KIAc9X4oiK87uPJSc/vs5L869bem5fhZa8caZw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-validator-identifier": "^7.24.7", + "chalk": "^2.4.2", + "js-tokens": "^4.0.0", + "picocolors": "^1.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/highlight/node_modules/ansi-styles": { + "version": "3.2.1", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz", + "integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==", + "dev": true, + "license": "MIT", + "dependencies": { + "color-convert": "^1.9.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/chalk": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz", + "integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^3.2.1", + "escape-string-regexp": "^1.0.5", + "supports-color": "^5.3.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/color-convert": { + "version": "1.9.3", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz", + "integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==", + "dev": true, + "license": "MIT", + "dependencies": { + "color-name": "1.1.3" + } + }, + "node_modules/@babel/highlight/node_modules/color-name": { + "version": "1.1.3", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz", + "integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==", + "dev": true, + "license": "MIT" + }, + "node_modules/@babel/highlight/node_modules/escape-string-regexp": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz", + "integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.8.0" + } + }, + "node_modules/@babel/highlight/node_modules/has-flag": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz", + "integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/highlight/node_modules/supports-color": { + "version": "5.5.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz", + "integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==", + "dev": true, + "license": "MIT", + "dependencies": { + "has-flag": "^3.0.0" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/@babel/parser": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.25.6.tgz", + "integrity": "sha512-trGdfBdbD0l1ZPmcJ83eNxB9rbEax4ALFTF7fN386TMYbeCQbyme5cOEXQhbGXKebwGaB/J52w1mrklMcbgy6Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/types": "^7.25.6" + }, + "bin": { + "parser": "bin/babel-parser.js" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@babel/plugin-syntax-async-generators": { + "version": "7.8.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-async-generators/-/plugin-syntax-async-generators-7.8.4.tgz", + "integrity": "sha512-tycmZxkGfZaxhMRbXlPXuVFpdWlXpir2W4AMhSJgRKzk/eDlIXOhb2LHWoLpDF7TEHylV5zNhykX6KAgHJmTNw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-bigint": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-bigint/-/plugin-syntax-bigint-7.8.3.tgz", + "integrity": "sha512-wnTnFlG+YxQm3vDxpGE57Pj0srRU4sHE/mDkt1qv2YJJSeUAec2ma4WLUnUPeKjyrfntVwe/N6dCXpU+zL3Npg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-properties": { + "version": "7.12.13", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-properties/-/plugin-syntax-class-properties-7.12.13.tgz", + "integrity": "sha512-fm4idjKla0YahUNgFNLCB0qySdsoPiZP3iQE3rky0mBUtMZ23yDJ9SJdg6dXTSDnulOVqiF3Hgr9nbXvXTQZYA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.12.13" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-class-static-block": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-class-static-block/-/plugin-syntax-class-static-block-7.14.5.tgz", + "integrity": "sha512-b+YyPmr6ldyNnM6sqYeMWE+bgJcJpO6yS4QD7ymxgH34GBPNDM/THBh8iunyvKIZztiwLH4CJZ0RxTk9emgpjw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-attributes": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-attributes/-/plugin-syntax-import-attributes-7.25.6.tgz", + "integrity": "sha512-sXaDXaJN9SNLymBdlWFA+bjzBhFD617ZaFiY13dGt7TVslVvVgA6fkZOP7Ki3IGElC45lwHdOTrCtKZGVAWeLQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.24.8" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-import-meta": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-import-meta/-/plugin-syntax-import-meta-7.10.4.tgz", + "integrity": "sha512-Yqfm+XDx0+Prh3VSeEQCPU81yC+JWZ2pDPFSS4ZdpfZhp4MkFMaDC1UqseovEKwSUpnIL7+vK+Clp7bfh0iD7g==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-json-strings": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-json-strings/-/plugin-syntax-json-strings-7.8.3.tgz", + "integrity": "sha512-lY6kdGpWHvjoe2vk4WrAapEuBR69EMxZl+RoGRhrFGNYVK8mOPAW8VfbT/ZgrFbXlDNiiaxQnAtgVCZ6jv30EA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-jsx": { + "version": "7.24.7", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-jsx/-/plugin-syntax-jsx-7.24.7.tgz", + "integrity": "sha512-6ddciUPe/mpMnOKv/U+RSd2vvVy+Yw/JfBB0ZHYjEZt9NLHmCUylNYlsbqCCS1Bffjlb0fCwC9Vqz+sBz6PsiQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.24.7" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-logical-assignment-operators": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-logical-assignment-operators/-/plugin-syntax-logical-assignment-operators-7.10.4.tgz", + "integrity": "sha512-d8waShlpFDinQ5MtvGU9xDAOzKH47+FFoney2baFIoMr952hKOLp1HR7VszoZvOsV/4+RRszNY7D17ba0te0ig==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-nullish-coalescing-operator": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-nullish-coalescing-operator/-/plugin-syntax-nullish-coalescing-operator-7.8.3.tgz", + "integrity": "sha512-aSff4zPII1u2QD7y+F8oDsz19ew4IGEJg9SVW+bqwpwtfFleiQDMdzA/R+UlWDzfnHFCxxleFT0PMIrR36XLNQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-numeric-separator": { + "version": "7.10.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-numeric-separator/-/plugin-syntax-numeric-separator-7.10.4.tgz", + "integrity": "sha512-9H6YdfkcK/uOnY/K7/aA2xpzaAgkQn37yzWUMRK7OaPOqOpGS1+n0H5hxT9AUw9EsSjPW8SVyMJwYRtWs3X3ug==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.10.4" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-object-rest-spread": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-object-rest-spread/-/plugin-syntax-object-rest-spread-7.8.3.tgz", + "integrity": "sha512-XoqMijGZb9y3y2XskN+P1wUGiVwWZ5JmoDRwx5+3GmEplNyVM2s2Dg8ILFQm8rWM48orGy5YpI5Bl8U1y7ydlA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-catch-binding": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-catch-binding/-/plugin-syntax-optional-catch-binding-7.8.3.tgz", + "integrity": "sha512-6VPD0Pc1lpTqw0aKoeRTMiB+kWhAoT24PA+ksWSBrFtl5SIRVpZlwN3NNPQjehA2E/91FV3RjLWoVTglWcSV3Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-optional-chaining": { + "version": "7.8.3", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-optional-chaining/-/plugin-syntax-optional-chaining-7.8.3.tgz", + "integrity": "sha512-KoK9ErH1MBlCPxV0VANkXW2/dw4vlbGDrFgz8bmUsBGYkFRcbRwMh6cIJubdPrkxRwuGdtCk0v/wPTKbQgBjkg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.8.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-private-property-in-object": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-private-property-in-object/-/plugin-syntax-private-property-in-object-7.14.5.tgz", + "integrity": "sha512-0wVnp9dxJ72ZUJDV27ZfbSj6iHLoytYZmh3rFcxNnvsJF3ktkzLDZPy/mA17HGsaQT3/DQsWYX1f1QGWkCoVUg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-top-level-await": { + "version": "7.14.5", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-top-level-await/-/plugin-syntax-top-level-await-7.14.5.tgz", + "integrity": "sha512-hx++upLv5U1rgYfwe1xBQUhRmU41NEvpUvrp8jkrSCdvGSnM5/qdRMtylJ6PG5OFkBaHkbTAKTnd3/YyESRHFw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.14.5" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/plugin-syntax-typescript": { + "version": "7.25.4", + "resolved": "https://registry.npmjs.org/@babel/plugin-syntax-typescript/-/plugin-syntax-typescript-7.25.4.tgz", + "integrity": "sha512-uMOCoHVU52BsSWxPOMVv5qKRdeSlPuImUCB2dlPuBSU+W2/ROE7/Zg8F2Kepbk+8yBa68LlRKxO+xgEVWorsDg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-plugin-utils": "^7.24.8" + }, + "engines": { + "node": ">=6.9.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0-0" + } + }, + "node_modules/@babel/template": { + "version": "7.25.0", + "resolved": "https://registry.npmjs.org/@babel/template/-/template-7.25.0.tgz", + "integrity": "sha512-aOOgh1/5XzKvg1jvVz7AVrx2piJ2XBi227DHmbY6y+bM9H2FlN+IfecYu4Xl0cNiiVejlsCri89LUsbj8vJD9Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/code-frame": "^7.24.7", + "@babel/parser": "^7.25.0", + "@babel/types": "^7.25.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/traverse": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.25.6.tgz", + "integrity": "sha512-9Vrcx5ZW6UwK5tvqsj0nGpp/XzqthkT0dqIc9g1AdtygFToNtTF67XzYS//dm+SAK9cp3B9R4ZO/46p63SCjlQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/code-frame": "^7.24.7", + "@babel/generator": "^7.25.6", + "@babel/parser": "^7.25.6", + "@babel/template": "^7.25.0", + "@babel/types": "^7.25.6", + "debug": "^4.3.1", + "globals": "^11.1.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@babel/types": { + "version": "7.25.6", + "resolved": "https://registry.npmjs.org/@babel/types/-/types-7.25.6.tgz", + "integrity": "sha512-/l42B1qxpG6RdfYf343Uw1vmDjeNhneUXtzhojE7pDgfpEypmRhI6j1kr17XCVv4Cgl9HdAiQY2x0GwKm7rWCw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/helper-string-parser": "^7.24.8", + "@babel/helper-validator-identifier": "^7.24.7", + "to-fast-properties": "^2.0.0" + }, + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/@bcoe/v8-coverage": { + "version": "0.2.3", + "resolved": "https://registry.npmjs.org/@bcoe/v8-coverage/-/v8-coverage-0.2.3.tgz", + "integrity": "sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==", + "dev": true, + "license": "MIT" + }, + "node_modules/@istanbuljs/load-nyc-config": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/@istanbuljs/load-nyc-config/-/load-nyc-config-1.1.0.tgz", + "integrity": "sha512-VjeHSlIzpv/NyD3N0YuHfXOPDIixcA1q2ZV98wsMqcYlPmv2n3Yb2lYP9XMElnaFVXg5A7YLTeLu6V84uQDjmQ==", + "dev": true, + "license": "ISC", + "dependencies": { + "camelcase": "^5.3.1", + "find-up": "^4.1.0", + "get-package-type": "^0.1.0", + "js-yaml": "^3.13.1", + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/@istanbuljs/schema": { + "version": "0.1.3", + "resolved": "https://registry.npmjs.org/@istanbuljs/schema/-/schema-0.1.3.tgz", + "integrity": "sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/@jest/console": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/console/-/console-29.7.0.tgz", + "integrity": "sha512-5Ni4CU7XHQi32IJ398EEP4RrB8eV09sXP2ROqD4bksHrnTree52PsxvX8tpL8LvTZ3pFzXyPbNQReSN41CAhOg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/core": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/core/-/core-29.7.0.tgz", + "integrity": "sha512-n7aeXWKMnGtDA48y8TLWJPJmLmmZ642Ceo78cYWEpiD7FzDgmNDV/GCVRorPABdXLJZ/9wzzgZAlHjXjxDHGsg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/reporters": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-changed-files": "^29.7.0", + "jest-config": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-resolve-dependencies": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "jest-watcher": "^29.7.0", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/environment": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/environment/-/environment-29.7.0.tgz", + "integrity": "sha512-aQIfHDq33ExsN4jP1NWGXhxgQ/wixs60gDiKO+XVMd8Mn0NWPWgc34ZQDTb2jKaUWQ7MuwoitXAsN2XVXNMpAw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-8uMeAMycttpva3P1lBHB8VciS9V0XAr3GymPpipdyQXbBcuhkLQOSe8E/p92RyAdToS6ZD1tFkX+CkhoECE0dQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "expect": "^29.7.0", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/expect-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/expect-utils/-/expect-utils-29.7.0.tgz", + "integrity": "sha512-GlsNBWiFQFCVi9QVSx7f5AgMeLxe9YCCs5PuP2O2LdjDAA8Jh9eX7lA1Jq/xdXw3Wb3hyvlFNfZIfcRetSzYcA==", + "dev": true, + "license": "MIT", + "dependencies": { + "jest-get-type": "^29.6.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/fake-timers": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/fake-timers/-/fake-timers-29.7.0.tgz", + "integrity": "sha512-q4DH1Ha4TTFPdxLsqDXK1d3+ioSL7yL5oCMJZgDYm6i+6CygW5E5xVr/D1HdsGxjt1ZWSfUAs9OxSB/BNelWrQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "@sinonjs/fake-timers": "^10.0.2", + "@types/node": "*", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/globals": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/globals/-/globals-29.7.0.tgz", + "integrity": "sha512-mpiz3dutLbkW2MNFubUGUEVLkTGiqW6yLVTA+JbP6fI6J5iL9Y0Nlg8k95pcF8ctKwCS7WVxteBs29hhfAotzQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/types": "^29.6.3", + "jest-mock": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/reporters": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/reporters/-/reporters-29.7.0.tgz", + "integrity": "sha512-DApq0KJbJOEzAFYjHADNNxAE3KbhxQB1y5Kplb5Waqw6zVbuWatSnMjE5gs8FUgEPmNsnZA3NCWl9NG0ia04Pg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@bcoe/v8-coverage": "^0.2.3", + "@jest/console": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "@types/node": "*", + "chalk": "^4.0.0", + "collect-v8-coverage": "^1.0.0", + "exit": "^0.1.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "istanbul-lib-coverage": "^3.0.0", + "istanbul-lib-instrument": "^6.0.0", + "istanbul-lib-report": "^3.0.0", + "istanbul-lib-source-maps": "^4.0.0", + "istanbul-reports": "^3.1.3", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "slash": "^3.0.0", + "string-length": "^4.0.1", + "strip-ansi": "^6.0.0", + "v8-to-istanbul": "^9.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/@jest/schemas": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/schemas/-/schemas-29.6.3.tgz", + "integrity": "sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@sinclair/typebox": "^0.27.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/source-map": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/source-map/-/source-map-29.6.3.tgz", + "integrity": "sha512-MHjT95QuipcPrpLM+8JMSzFx6eHp5Bm+4XeFDJlwsvVBjmKNiIAvasGK2fxz2WbGRlnvqehFbh07MMa7n3YJnw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.18", + "callsites": "^3.0.0", + "graceful-fs": "^4.2.9" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-result": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-result/-/test-result-29.7.0.tgz", + "integrity": "sha512-Fdx+tv6x1zlkJPcWXmMDAG2HBnaR9XPSd5aDWQVsfrZmLVT3lU1cwyxLgRmXR9yrq4NBoEm9BMsfgFzTQAbJYA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "collect-v8-coverage": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/test-sequencer": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/test-sequencer/-/test-sequencer-29.7.0.tgz", + "integrity": "sha512-GQwJ5WZVrKnOJuiYiAF52UNUJXgTZx1NHjFSEB0qEMmSZKAkdMoIzw/Cj6x6NF4AvV23AUqDpFzQkN/eYCYTxw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/test-result": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/transform": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/@jest/transform/-/transform-29.7.0.tgz", + "integrity": "sha512-ok/BTPFzFKVMwO5eOHRrvnBVHdRy9IrsrW1GpMaQ9MCnilNLXQKmAX8s1YXDFaai9xJpac2ySzV0YeRRECr2Vw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/types": "^29.6.3", + "@jridgewell/trace-mapping": "^0.3.18", + "babel-plugin-istanbul": "^6.1.1", + "chalk": "^4.0.0", + "convert-source-map": "^2.0.0", + "fast-json-stable-stringify": "^2.1.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "micromatch": "^4.0.4", + "pirates": "^4.0.4", + "slash": "^3.0.0", + "write-file-atomic": "^4.0.2" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jest/types": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/@jest/types/-/types-29.6.3.tgz", + "integrity": "sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/schemas": "^29.6.3", + "@types/istanbul-lib-coverage": "^2.0.0", + "@types/istanbul-reports": "^3.0.0", + "@types/node": "*", + "@types/yargs": "^17.0.8", + "chalk": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/@jridgewell/gen-mapping": { + "version": "0.3.5", + "resolved": "https://registry.npmjs.org/@jridgewell/gen-mapping/-/gen-mapping-0.3.5.tgz", + "integrity": "sha512-IzL8ZoEDIBRWEzlCcRhOaCupYyN5gdIK+Q6fbFdPDg6HqX6jpkItn7DFIpW9LQzXG6Df9sA7+OKnq0qlz/GaQg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/set-array": "^1.2.1", + "@jridgewell/sourcemap-codec": "^1.4.10", + "@jridgewell/trace-mapping": "^0.3.24" + }, + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/resolve-uri": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/@jridgewell/resolve-uri/-/resolve-uri-3.1.2.tgz", + "integrity": "sha512-bRISgCIjP20/tbWSPWMEi54QVPRZExkuD9lJL+UIxUKtwVJA8wW1Trb1jMs1RFXo1CBTNZ/5hpC9QvmKWdopKw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/set-array": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/@jridgewell/set-array/-/set-array-1.2.1.tgz", + "integrity": "sha512-R8gLRTZeyp03ymzP/6Lil/28tGeGEzhx1q2k703KGWRAI1VdvPIXdG70VJc2pAMw3NA6JKL5hhFu1sJX0Mnn/A==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.0.0" + } + }, + "node_modules/@jridgewell/sourcemap-codec": { + "version": "1.5.0", + "resolved": "https://registry.npmjs.org/@jridgewell/sourcemap-codec/-/sourcemap-codec-1.5.0.tgz", + "integrity": "sha512-gv3ZRaISU3fjPAgNsriBRqGWQL6quFx04YMPW/zD8XMLsU32mhCCbfbO6KZFLjvYpCZ8zyDEgqsgf+PwPaM7GQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/@jridgewell/trace-mapping": { + "version": "0.3.25", + "resolved": "https://registry.npmjs.org/@jridgewell/trace-mapping/-/trace-mapping-0.3.25.tgz", + "integrity": "sha512-vNk6aEwybGtawWmy/PzwnGDOjCkLWSD2wqvjGGAgOAwCGWySYXfYoxt00IJkTF+8Lb57DwOb3Aa0o9CApepiYQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jridgewell/resolve-uri": "^3.1.0", + "@jridgewell/sourcemap-codec": "^1.4.14" + } + }, + "node_modules/@sinclair/typebox": { + "version": "0.27.8", + "resolved": "https://registry.npmjs.org/@sinclair/typebox/-/typebox-0.27.8.tgz", + "integrity": "sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA==", + "dev": true, + "license": "MIT" + }, + "node_modules/@sinonjs/commons": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/@sinonjs/commons/-/commons-3.0.1.tgz", + "integrity": "sha512-K3mCHKQ9sVh8o1C9cxkwxaOmXoAMlDxC1mYyHrjqOWEcBjYr76t96zL2zlj5dUGZ3HSw240X1qgH3Mjf1yJWpQ==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "type-detect": "4.0.8" + } + }, + "node_modules/@sinonjs/fake-timers": { + "version": "10.3.0", + "resolved": "https://registry.npmjs.org/@sinonjs/fake-timers/-/fake-timers-10.3.0.tgz", + "integrity": "sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "@sinonjs/commons": "^3.0.0" + } + }, + "node_modules/@types/babel__core": { + "version": "7.20.5", + "resolved": "https://registry.npmjs.org/@types/babel__core/-/babel__core-7.20.5.tgz", + "integrity": "sha512-qoQprZvz5wQFJwMDqeseRXWv3rqMvhgpbXFfVyWhbx9X47POIA6i/+dXefEmZKoAgOaTdaIgNSMqMIU61yRyzA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/parser": "^7.20.7", + "@babel/types": "^7.20.7", + "@types/babel__generator": "*", + "@types/babel__template": "*", + "@types/babel__traverse": "*" + } + }, + "node_modules/@types/babel__generator": { + "version": "7.6.8", + "resolved": "https://registry.npmjs.org/@types/babel__generator/-/babel__generator-7.6.8.tgz", + "integrity": "sha512-ASsj+tpEDsEiFr1arWrlN6V3mdfjRMZt6LtK/Vp/kreFLnr5QH5+DhvD5nINYZXzwJvXeGq+05iUXcAzVrqWtw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__template": { + "version": "7.4.4", + "resolved": "https://registry.npmjs.org/@types/babel__template/-/babel__template-7.4.4.tgz", + "integrity": "sha512-h/NUaSyG5EyxBIp8YRxo4RMe2/qQgvyowRwVMzhYhBCONbW8PUsg4lkFMrhgZhUe5z3L3MiLDuvyJ/CaPa2A8A==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/parser": "^7.1.0", + "@babel/types": "^7.0.0" + } + }, + "node_modules/@types/babel__traverse": { + "version": "7.20.6", + "resolved": "https://registry.npmjs.org/@types/babel__traverse/-/babel__traverse-7.20.6.tgz", + "integrity": "sha512-r1bzfrm0tomOI8g1SzvCaQHo6Lcv6zu0EA+W2kHrt8dyrHQxGzBBL4kdkzIS+jBMV+EYcMAEAqXqYaLJq5rOZg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/types": "^7.20.7" + } + }, + "node_modules/@types/cli-progress": { + "version": "3.11.6", + "resolved": "https://registry.npmjs.org/@types/cli-progress/-/cli-progress-3.11.6.tgz", + "integrity": "sha512-cE3+jb9WRlu+uOSAugewNpITJDt1VF8dHOopPO4IABFc3SXYL5WE/+PTz/FCdZRRfIujiWW3n3aMbv1eIGVRWA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/node": "*" + } + }, + "node_modules/@types/graceful-fs": { + "version": "4.1.9", + "resolved": "https://registry.npmjs.org/@types/graceful-fs/-/graceful-fs-4.1.9.tgz", + "integrity": "sha512-olP3sd1qOEe5dXTSaFvQG+02VdRXcdytWLAZsAq1PecU8uqQAhkrnbli7DagjtXKW/Bl7YJbUsa8MPcuc8LHEQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/node": "*" + } + }, + "node_modules/@types/istanbul-lib-coverage": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-coverage/-/istanbul-lib-coverage-2.0.6.tgz", + "integrity": "sha512-2QF/t/auWm0lsy8XtKVPG19v3sSOQlJe/YHZgfjb/KBBHOGSV+J2q/S671rcq9uTBrLAXmZpqJiaQbMT+zNU1w==", + "dev": true, + "license": "MIT" + }, + "node_modules/@types/istanbul-lib-report": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/@types/istanbul-lib-report/-/istanbul-lib-report-3.0.3.tgz", + "integrity": "sha512-NQn7AHQnk/RSLOxrBbGyJM/aVQ+pjj5HCgasFxc0K/KhoATfQ/47AyUl15I2yBUpihjmas+a+VJBOqecrFH+uA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/istanbul-lib-coverage": "*" + } + }, + "node_modules/@types/istanbul-reports": { + "version": "3.0.4", + "resolved": "https://registry.npmjs.org/@types/istanbul-reports/-/istanbul-reports-3.0.4.tgz", + "integrity": "sha512-pk2B1NWalF9toCRu6gjBzR69syFjP4Od8WRAX+0mmf9lAjCRicLOWc+ZrxZHx/0XRjotgkF9t6iaMJ+aXcOdZQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/istanbul-lib-report": "*" + } + }, + "node_modules/@types/jest": { + "version": "29.5.12", + "resolved": "https://registry.npmjs.org/@types/jest/-/jest-29.5.12.tgz", + "integrity": "sha512-eDC8bTvT/QhYdxJAulQikueigY5AsdBRH2yDKW3yveW7svY3+DzN84/2NUgkw10RTiJbWqZrTtoGVdYlvFJdLw==", + "dev": true, + "license": "MIT", + "dependencies": { + "expect": "^29.0.0", + "pretty-format": "^29.0.0" + } + }, + "node_modules/@types/node": { + "version": "22.5.1", + "resolved": "https://registry.npmjs.org/@types/node/-/node-22.5.1.tgz", + "integrity": "sha512-KkHsxej0j9IW1KKOOAA/XBA0z08UFSrRQHErzEfA3Vgq57eXIMYboIlHJuYIfd+lwCQjtKqUu3UnmKbtUc9yRw==", + "license": "MIT", + "dependencies": { + "undici-types": "~6.19.2" + } + }, + "node_modules/@types/node-fetch": { + "version": "2.6.11", + "resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.11.tgz", + "integrity": "sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==", + "license": "MIT", + "dependencies": { + "@types/node": "*", + "form-data": "^4.0.0" + } + }, + "node_modules/@types/stack-utils": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/@types/stack-utils/-/stack-utils-2.0.3.tgz", + "integrity": "sha512-9aEbYZ3TbYMznPdcdr3SmIrLXwC/AKZXQeCf9Pgao5CKb8CyHuEX5jzWPTkvregvhRJHcpRO6BFoGW9ycaOkYw==", + "dev": true, + "license": "MIT" + }, + "node_modules/@types/yargs": { + "version": "17.0.33", + "resolved": "https://registry.npmjs.org/@types/yargs/-/yargs-17.0.33.tgz", + "integrity": "sha512-WpxBCKWPLr4xSsHgz511rFJAM+wS28w2zEO1QDNY5zM/S8ok70NNfztH0xwhqKyaK0OHCbN98LDAZuy1ctxDkA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/yargs-parser": "*" + } + }, + "node_modules/@types/yargs-parser": { + "version": "21.0.3", + "resolved": "https://registry.npmjs.org/@types/yargs-parser/-/yargs-parser-21.0.3.tgz", + "integrity": "sha512-I4q9QU9MQv4oEOz4tAHJtNz1cwuLxn2F3xcc2iV5WdqLPpUnj30aUuxt1mAxYTG+oe8CZMV/+6rU4S4gRDzqtQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/abort-controller": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz", + "integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==", + "license": "MIT", + "dependencies": { + "event-target-shim": "^5.0.0" + }, + "engines": { + "node": ">=6.5" + } + }, + "node_modules/agentkeepalive": { + "version": "4.5.0", + "resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.5.0.tgz", + "integrity": "sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==", + "license": "MIT", + "dependencies": { + "humanize-ms": "^1.2.1" + }, + "engines": { + "node": ">= 8.0.0" + } + }, + "node_modules/ansi-escapes": { + "version": "4.3.2", + "resolved": "https://registry.npmjs.org/ansi-escapes/-/ansi-escapes-4.3.2.tgz", + "integrity": "sha512-gKXj5ALrKWQLsYG9jlTRmR/xKluxHV+Z9QEwNIgCfM1/uwPMCuzVVnh5mwTd+OuBZcwSIMbqssNWRm1lE51QaQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "type-fest": "^0.21.3" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/ansi-regex": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/ansi-regex/-/ansi-regex-5.0.1.tgz", + "integrity": "sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/ansi-styles": { + "version": "4.3.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-4.3.0.tgz", + "integrity": "sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==", + "dev": true, + "license": "MIT", + "dependencies": { + "color-convert": "^2.0.1" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/anymatch": { + "version": "3.1.3", + "resolved": "https://registry.npmjs.org/anymatch/-/anymatch-3.1.3.tgz", + "integrity": "sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==", + "dev": true, + "license": "ISC", + "dependencies": { + "normalize-path": "^3.0.0", + "picomatch": "^2.0.4" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/argparse": { + "version": "1.0.10", + "resolved": "https://registry.npmjs.org/argparse/-/argparse-1.0.10.tgz", + "integrity": "sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg==", + "dev": true, + "license": "MIT", + "dependencies": { + "sprintf-js": "~1.0.2" + } + }, + "node_modules/async": { + "version": "3.2.6", + "resolved": "https://registry.npmjs.org/async/-/async-3.2.6.tgz", + "integrity": "sha512-htCUDlxyyCLMgaM3xXg0C0LW2xqfuQ6p05pCEIsXuyQ+a1koYKTuBMzRNwmybfLgvJDMd0r1LTn4+E0Ti6C2AA==", + "dev": true, + "license": "MIT" + }, + "node_modules/asynckit": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz", + "integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==", + "license": "MIT" + }, + "node_modules/babel-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/babel-jest/-/babel-jest-29.7.0.tgz", + "integrity": "sha512-BrvGY3xZSwEcCzKvKsCi2GgHqDqsYkOP4/by5xCgIwGXQxIEh+8ew3gmrE1y7XRR6LHZIj6yLYnUi/mm2KXKBg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/transform": "^29.7.0", + "@types/babel__core": "^7.1.14", + "babel-plugin-istanbul": "^6.1.1", + "babel-preset-jest": "^29.6.3", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.8.0" + } + }, + "node_modules/babel-plugin-istanbul": { + "version": "6.1.1", + "resolved": "https://registry.npmjs.org/babel-plugin-istanbul/-/babel-plugin-istanbul-6.1.1.tgz", + "integrity": "sha512-Y1IQok9821cC9onCx5otgFfRm7Lm+I+wwxOx738M/WLPZ9Q42m4IG5W0FNX8WLL2gYMZo3JkuXIH2DOpWM+qwA==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "@babel/helper-plugin-utils": "^7.0.0", + "@istanbuljs/load-nyc-config": "^1.0.0", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-instrument": "^5.0.4", + "test-exclude": "^6.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-istanbul/node_modules/istanbul-lib-instrument": { + "version": "5.2.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-5.2.1.tgz", + "integrity": "sha512-pzqtp31nLv/XFOzXGuvhCb8qhjmTVo5vjVk19XE4CRlSWz0KoeJ3bw9XsA7nOp9YBf4qHjwBxkDzKcME/J29Yg==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "@babel/core": "^7.12.3", + "@babel/parser": "^7.14.7", + "@istanbuljs/schema": "^0.1.2", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^6.3.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/babel-plugin-jest-hoist": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-plugin-jest-hoist/-/babel-plugin-jest-hoist-29.6.3.tgz", + "integrity": "sha512-ESAc/RJvGTFEzRwOTT4+lNDk/GNHMkKbNzsvT0qKRfDyyYTskxB5rnU2njIDYVxXCBHHEI1c0YwHob3WaYujOg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/template": "^7.3.3", + "@babel/types": "^7.3.3", + "@types/babel__core": "^7.1.14", + "@types/babel__traverse": "^7.0.6" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/babel-preset-current-node-syntax": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/babel-preset-current-node-syntax/-/babel-preset-current-node-syntax-1.1.0.tgz", + "integrity": "sha512-ldYss8SbBlWva1bs28q78Ju5Zq1F+8BrqBZZ0VFhLBvhh6lCpC2o3gDJi/5DRLs9FgYZCnmPYIVFU4lRXCkyUw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/plugin-syntax-async-generators": "^7.8.4", + "@babel/plugin-syntax-bigint": "^7.8.3", + "@babel/plugin-syntax-class-properties": "^7.12.13", + "@babel/plugin-syntax-class-static-block": "^7.14.5", + "@babel/plugin-syntax-import-attributes": "^7.24.7", + "@babel/plugin-syntax-import-meta": "^7.10.4", + "@babel/plugin-syntax-json-strings": "^7.8.3", + "@babel/plugin-syntax-logical-assignment-operators": "^7.10.4", + "@babel/plugin-syntax-nullish-coalescing-operator": "^7.8.3", + "@babel/plugin-syntax-numeric-separator": "^7.10.4", + "@babel/plugin-syntax-object-rest-spread": "^7.8.3", + "@babel/plugin-syntax-optional-catch-binding": "^7.8.3", + "@babel/plugin-syntax-optional-chaining": "^7.8.3", + "@babel/plugin-syntax-private-property-in-object": "^7.14.5", + "@babel/plugin-syntax-top-level-await": "^7.14.5" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/babel-preset-jest": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/babel-preset-jest/-/babel-preset-jest-29.6.3.tgz", + "integrity": "sha512-0B3bhxR6snWXJZtR/RliHTDPRgn1sNHOR0yVtq/IiQFyuOVjFS+wuio/R4gSNkyYmKmJB4wGZv2NZanmKmTnNA==", + "dev": true, + "license": "MIT", + "dependencies": { + "babel-plugin-jest-hoist": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@babel/core": "^7.0.0" + } + }, + "node_modules/balanced-match": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/balanced-match/-/balanced-match-1.0.2.tgz", + "integrity": "sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==", + "dev": true, + "license": "MIT" + }, + "node_modules/brace-expansion": { + "version": "1.1.11", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-1.1.11.tgz", + "integrity": "sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==", + "dev": true, + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0", + "concat-map": "0.0.1" + } + }, + "node_modules/braces": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/braces/-/braces-3.0.3.tgz", + "integrity": "sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==", + "dev": true, + "license": "MIT", + "dependencies": { + "fill-range": "^7.1.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/browserslist": { + "version": "4.23.3", + "resolved": "https://registry.npmjs.org/browserslist/-/browserslist-4.23.3.tgz", + "integrity": "sha512-btwCFJVjI4YWDNfau8RhZ+B1Q/VLoUITrm3RlP6y1tYGWIOa+InuYiRGXUBXo8nA1qKmHMyLB/iVQg5TT4eFoA==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "caniuse-lite": "^1.0.30001646", + "electron-to-chromium": "^1.5.4", + "node-releases": "^2.0.18", + "update-browserslist-db": "^1.1.0" + }, + "bin": { + "browserslist": "cli.js" + }, + "engines": { + "node": "^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7" + } + }, + "node_modules/bs-logger": { + "version": "0.2.6", + "resolved": "https://registry.npmjs.org/bs-logger/-/bs-logger-0.2.6.tgz", + "integrity": "sha512-pd8DCoxmbgc7hyPKOvxtqNcjYoOsABPQdcCUjGp3d42VR2CX1ORhk2A87oqqu5R1kk+76nsxZupkmyd+MVtCog==", + "dev": true, + "license": "MIT", + "dependencies": { + "fast-json-stable-stringify": "2.x" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/bser": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/bser/-/bser-2.1.1.tgz", + "integrity": "sha512-gQxTNE/GAfIIrmHLUE3oJyp5FO6HRBfhjnw4/wMmA63ZGDJnWBmgY/lyQBpnDUkGmAhbSe39tx2d/iTOAfglwQ==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "node-int64": "^0.4.0" + } + }, + "node_modules/buffer-from": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/buffer-from/-/buffer-from-1.1.2.tgz", + "integrity": "sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/callsites": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/callsites/-/callsites-3.1.0.tgz", + "integrity": "sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/camelcase": { + "version": "5.3.1", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-5.3.1.tgz", + "integrity": "sha512-L28STB170nwWS63UjtlEOE3dldQApaJXZkOI1uMFfzf3rRuPegHaHesyee+YxQ+W6SvRDQV6UrdOdRiR153wJg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/caniuse-lite": { + "version": "1.0.30001655", + "resolved": "https://registry.npmjs.org/caniuse-lite/-/caniuse-lite-1.0.30001655.tgz", + "integrity": "sha512-jRGVy3iSGO5Uutn2owlb5gR6qsGngTw9ZTb4ali9f3glshcNmJ2noam4Mo9zia5P9Dk3jNNydy7vQjuE5dQmfg==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/caniuse-lite" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "CC-BY-4.0" + }, + "node_modules/chalk": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/chalk/-/chalk-4.1.2.tgz", + "integrity": "sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^4.1.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/chalk?sponsor=1" + } + }, + "node_modules/char-regex": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/char-regex/-/char-regex-1.0.2.tgz", + "integrity": "sha512-kWWXztvZ5SBQV+eRgKFeh8q5sLuZY2+8WUIzlxWVTg+oGwY14qylx1KbKzHd8P6ZYkAg0xyIDU9JMHhyJMZ1jw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + } + }, + "node_modules/ci-info": { + "version": "3.9.0", + "resolved": "https://registry.npmjs.org/ci-info/-/ci-info-3.9.0.tgz", + "integrity": "sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ==", + "dev": true, + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/sibiraj-s" + } + ], + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/cjs-module-lexer": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/cjs-module-lexer/-/cjs-module-lexer-1.4.0.tgz", + "integrity": "sha512-N1NGmowPlGBLsOZLPvm48StN04V4YvQRL0i6b7ctrVY3epjP/ct7hFLOItz6pDIvRjwpfPxi52a2UWV2ziir8g==", + "dev": true, + "license": "MIT" + }, + "node_modules/cli-progress": { + "version": "3.12.0", + "resolved": "https://registry.npmjs.org/cli-progress/-/cli-progress-3.12.0.tgz", + "integrity": "sha512-tRkV3HJ1ASwm19THiiLIXLO7Im7wlTuKnvkYaTkyoAPefqjNg7W7DHKUlGRxy9vxDvbyCYQkQozvptuMkGCg8A==", + "license": "MIT", + "dependencies": { + "string-width": "^4.2.3" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/cliui": { + "version": "8.0.1", + "resolved": "https://registry.npmjs.org/cliui/-/cliui-8.0.1.tgz", + "integrity": "sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==", + "dev": true, + "license": "ISC", + "dependencies": { + "string-width": "^4.2.0", + "strip-ansi": "^6.0.1", + "wrap-ansi": "^7.0.0" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/co": { + "version": "4.6.0", + "resolved": "https://registry.npmjs.org/co/-/co-4.6.0.tgz", + "integrity": "sha512-QVb0dM5HvG+uaxitm8wONl7jltx8dqhfU33DcqtOZcLSVIKSDDLDi7+0LbAKiyI8hD9u42m2YxXSkMGWThaecQ==", + "dev": true, + "license": "MIT", + "engines": { + "iojs": ">= 1.0.0", + "node": ">= 0.12.0" + } + }, + "node_modules/collect-v8-coverage": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/collect-v8-coverage/-/collect-v8-coverage-1.0.2.tgz", + "integrity": "sha512-lHl4d5/ONEbLlJvaJNtsF/Lz+WvB07u2ycqTYbdrq7UypDXailES4valYb2eWiJFxZlVmpGekfqoxQhzyFdT4Q==", + "dev": true, + "license": "MIT" + }, + "node_modules/color-convert": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz", + "integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "color-name": "~1.1.4" + }, + "engines": { + "node": ">=7.0.0" + } + }, + "node_modules/color-name": { + "version": "1.1.4", + "resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz", + "integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==", + "dev": true, + "license": "MIT" + }, + "node_modules/combined-stream": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz", + "integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==", + "license": "MIT", + "dependencies": { + "delayed-stream": "~1.0.0" + }, + "engines": { + "node": ">= 0.8" + } + }, + "node_modules/concat-map": { + "version": "0.0.1", + "resolved": "https://registry.npmjs.org/concat-map/-/concat-map-0.0.1.tgz", + "integrity": "sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==", + "dev": true, + "license": "MIT" + }, + "node_modules/convert-source-map": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/convert-source-map/-/convert-source-map-2.0.0.tgz", + "integrity": "sha512-Kvp459HrV2FEJ1CAsi1Ku+MY3kasH19TFykTz2xWmMeq6bk2NU3XXvfJ+Q61m0xktWwt+1HSYf3JZsTms3aRJg==", + "dev": true, + "license": "MIT" + }, + "node_modules/create-jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/create-jest/-/create-jest-29.7.0.tgz", + "integrity": "sha512-Adz2bdH0Vq3F53KEMJOoftQFutWCukm6J24wbPWRO4k1kMY7gS7ds/uoJkNuV8wDCtWWnuwGcJwpWcih+zEW1Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "exit": "^0.1.2", + "graceful-fs": "^4.2.9", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "prompts": "^2.0.1" + }, + "bin": { + "create-jest": "bin/create-jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/cross-spawn": { + "version": "7.0.3", + "resolved": "https://registry.npmjs.org/cross-spawn/-/cross-spawn-7.0.3.tgz", + "integrity": "sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==", + "dev": true, + "license": "MIT", + "dependencies": { + "path-key": "^3.1.0", + "shebang-command": "^2.0.0", + "which": "^2.0.1" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/debug": { + "version": "4.3.6", + "resolved": "https://registry.npmjs.org/debug/-/debug-4.3.6.tgz", + "integrity": "sha512-O/09Bd4Z1fBrU4VzkhFqVgpPzaGbw6Sm9FEkBT1A/YBXQFGuuSxa1dN2nxgxS34JmKXqYx8CZAwEVoJFImUXIg==", + "dev": true, + "license": "MIT", + "dependencies": { + "ms": "2.1.2" + }, + "engines": { + "node": ">=6.0" + }, + "peerDependenciesMeta": { + "supports-color": { + "optional": true + } + } + }, + "node_modules/debug/node_modules/ms": { + "version": "2.1.2", + "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.2.tgz", + "integrity": "sha512-sGkPx+VjMtmA6MX27oA4FBFELFCZZ4S4XqeGOXCv68tT+jb3vk/RyaKWP0PTKyWtmLSM0b+adUTEvbs1PEaH2w==", + "dev": true, + "license": "MIT" + }, + "node_modules/dedent": { + "version": "1.5.3", + "resolved": "https://registry.npmjs.org/dedent/-/dedent-1.5.3.tgz", + "integrity": "sha512-NHQtfOOW68WD8lgypbLA5oT+Bt0xXJhiYvoR6SmmNXZfpzOGXwdKWmcwG8N7PwVVWV3eF/68nmD9BaJSsTBhyQ==", + "dev": true, + "license": "MIT", + "peerDependencies": { + "babel-plugin-macros": "^3.1.0" + }, + "peerDependenciesMeta": { + "babel-plugin-macros": { + "optional": true + } + } + }, + "node_modules/deepmerge": { + "version": "4.3.1", + "resolved": "https://registry.npmjs.org/deepmerge/-/deepmerge-4.3.1.tgz", + "integrity": "sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/delayed-stream": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz", + "integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==", + "license": "MIT", + "engines": { + "node": ">=0.4.0" + } + }, + "node_modules/detect-newline": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/detect-newline/-/detect-newline-3.1.0.tgz", + "integrity": "sha512-TLz+x/vEXm/Y7P7wn1EJFNLxYpUD4TgMosxY6fAVJUnJMbupHBOncxyWUG9OpTaH9EBD7uFI5LfEgmMOc54DsA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/diff-sequences": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/diff-sequences/-/diff-sequences-29.6.3.tgz", + "integrity": "sha512-EjePK1srD3P08o2j4f0ExnylqRs5B9tJjcp9t1krH2qRi8CCdsYfwe9JgSLurFBWwq4uOlipzfk5fHNvwFKr8Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/ejs": { + "version": "3.1.10", + "resolved": "https://registry.npmjs.org/ejs/-/ejs-3.1.10.tgz", + "integrity": "sha512-UeJmFfOrAQS8OJWPZ4qtgHyWExa088/MtK5UEyoJGFH67cDEXkZSviOiKRCZ4Xij0zxI3JECgYs3oKx+AizQBA==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "jake": "^10.8.5" + }, + "bin": { + "ejs": "bin/cli.js" + }, + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/electron-to-chromium": { + "version": "1.5.13", + "resolved": "https://registry.npmjs.org/electron-to-chromium/-/electron-to-chromium-1.5.13.tgz", + "integrity": "sha512-lbBcvtIJ4J6sS4tb5TLp1b4LyfCdMkwStzXPyAgVgTRAsep4bvrAGaBOP7ZJtQMNJpSQ9SqG4brWOroNaQtm7Q==", + "dev": true, + "license": "ISC" + }, + "node_modules/emittery": { + "version": "0.13.1", + "resolved": "https://registry.npmjs.org/emittery/-/emittery-0.13.1.tgz", + "integrity": "sha512-DeWwawk6r5yR9jFgnDKYt4sLS0LmHJJi3ZOnb5/JdbYwj3nW+FxQnHIjhBKz8YLC7oRNPVM9NQ47I3CVx34eqQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=12" + }, + "funding": { + "url": "https://github.com/sindresorhus/emittery?sponsor=1" + } + }, + "node_modules/emoji-regex": { + "version": "8.0.0", + "resolved": "https://registry.npmjs.org/emoji-regex/-/emoji-regex-8.0.0.tgz", + "integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==", + "license": "MIT" + }, + "node_modules/error-ex": { + "version": "1.3.2", + "resolved": "https://registry.npmjs.org/error-ex/-/error-ex-1.3.2.tgz", + "integrity": "sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==", + "dev": true, + "license": "MIT", + "dependencies": { + "is-arrayish": "^0.2.1" + } + }, + "node_modules/escalade": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/escalade/-/escalade-3.2.0.tgz", + "integrity": "sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/escape-string-regexp": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-2.0.0.tgz", + "integrity": "sha512-UpzcLCXolUWcNu5HtVMHYdXJjArjsF9C0aNnquZYY4uW/Vu0miy5YoWvbV345HauVvcAUnpRuhMMcqTcGOY2+w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/esprima": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/esprima/-/esprima-4.0.1.tgz", + "integrity": "sha512-eGuFFw7Upda+g4p+QHvnW0RyTX/SVeJBDM/gCtMARO0cLuT2HcEKnTPvhjV6aGeqrCB/sbNop0Kszm0jsaWU4A==", + "dev": true, + "license": "BSD-2-Clause", + "bin": { + "esparse": "bin/esparse.js", + "esvalidate": "bin/esvalidate.js" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/event-target-shim": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz", + "integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==", + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/execa": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/execa/-/execa-5.1.1.tgz", + "integrity": "sha512-8uSpZZocAZRBAPIEINJj3Lo9HyGitllczc27Eh5YYojjMFMn8yHMDMaUHE2Jqfq05D/wucwI4JGURyXt1vchyg==", + "dev": true, + "license": "MIT", + "dependencies": { + "cross-spawn": "^7.0.3", + "get-stream": "^6.0.0", + "human-signals": "^2.1.0", + "is-stream": "^2.0.0", + "merge-stream": "^2.0.0", + "npm-run-path": "^4.0.1", + "onetime": "^5.1.2", + "signal-exit": "^3.0.3", + "strip-final-newline": "^2.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sindresorhus/execa?sponsor=1" + } + }, + "node_modules/exit": { + "version": "0.1.2", + "resolved": "https://registry.npmjs.org/exit/-/exit-0.1.2.tgz", + "integrity": "sha512-Zk/eNKV2zbjpKzrsQ+n1G6poVbErQxJ0LBOJXaKZ1EViLzH+hrLu9cdXI4zw9dBQJslwBEpbQ2P1oS7nDxs6jQ==", + "dev": true, + "engines": { + "node": ">= 0.8.0" + } + }, + "node_modules/expect": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/expect/-/expect-29.7.0.tgz", + "integrity": "sha512-2Zks0hf1VLFYI1kbh0I5jP3KHHyCHpkfyHBzsSXRFgl/Bg9mWYfMW8oD+PdMPlEwy5HNsR9JutYy6pMeOh61nw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/expect-utils": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/fast-json-stable-stringify": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/fast-json-stable-stringify/-/fast-json-stable-stringify-2.1.0.tgz", + "integrity": "sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==", + "dev": true, + "license": "MIT" + }, + "node_modules/fb-watchman": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/fb-watchman/-/fb-watchman-2.0.2.tgz", + "integrity": "sha512-p5161BqbuCaSnB8jIbzQHOlpgsPmK5rJVDfDKO91Axs5NC1uu3HRQm6wt9cd9/+GtQQIO53JdGXXoyDpTAsgYA==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "bser": "2.1.1" + } + }, + "node_modules/filelist": { + "version": "1.0.4", + "resolved": "https://registry.npmjs.org/filelist/-/filelist-1.0.4.tgz", + "integrity": "sha512-w1cEuf3S+DrLCQL7ET6kz+gmlJdbq9J7yXCSjK/OZCPA+qEN1WyF4ZAf0YYJa4/shHJra2t/d/r8SV4Ji+x+8Q==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "minimatch": "^5.0.1" + } + }, + "node_modules/filelist/node_modules/brace-expansion": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/brace-expansion/-/brace-expansion-2.0.1.tgz", + "integrity": "sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==", + "dev": true, + "license": "MIT", + "dependencies": { + "balanced-match": "^1.0.0" + } + }, + "node_modules/filelist/node_modules/minimatch": { + "version": "5.1.6", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-5.1.6.tgz", + "integrity": "sha512-lKwV/1brpG6mBUFHtb7NUmtABCb2WZZmm2wNiOA5hAb8VdCS4B3dtMWyvcoViccwAW/COERjXLt0zP1zXUN26g==", + "dev": true, + "license": "ISC", + "dependencies": { + "brace-expansion": "^2.0.1" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/fill-range": { + "version": "7.1.1", + "resolved": "https://registry.npmjs.org/fill-range/-/fill-range-7.1.1.tgz", + "integrity": "sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==", + "dev": true, + "license": "MIT", + "dependencies": { + "to-regex-range": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/find-up": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/find-up/-/find-up-4.1.0.tgz", + "integrity": "sha512-PpOwAdQ/YlXQ2vj8a3h8IipDuYRi3wceVQQGYWxNINccq40Anw7BlsEXCMbt1Zt+OLA6Fq9suIpIWD0OsnISlw==", + "dev": true, + "license": "MIT", + "dependencies": { + "locate-path": "^5.0.0", + "path-exists": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/form-data": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz", + "integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==", + "license": "MIT", + "dependencies": { + "asynckit": "^0.4.0", + "combined-stream": "^1.0.8", + "mime-types": "^2.1.12" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/form-data-encoder": { + "version": "1.7.2", + "resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz", + "integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A==", + "license": "MIT" + }, + "node_modules/formdata-node": { + "version": "4.4.1", + "resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz", + "integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==", + "license": "MIT", + "dependencies": { + "node-domexception": "1.0.0", + "web-streams-polyfill": "4.0.0-beta.3" + }, + "engines": { + "node": ">= 12.20" + } + }, + "node_modules/fs.realpath": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/fs.realpath/-/fs.realpath-1.0.0.tgz", + "integrity": "sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==", + "dev": true, + "license": "ISC" + }, + "node_modules/fsevents": { + "version": "2.3.3", + "resolved": "https://registry.npmjs.org/fsevents/-/fsevents-2.3.3.tgz", + "integrity": "sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==", + "dev": true, + "hasInstallScript": true, + "license": "MIT", + "optional": true, + "os": [ + "darwin" + ], + "engines": { + "node": "^8.16.0 || ^10.6.0 || >=11.0.0" + } + }, + "node_modules/function-bind": { + "version": "1.1.2", + "resolved": "https://registry.npmjs.org/function-bind/-/function-bind-1.1.2.tgz", + "integrity": "sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==", + "dev": true, + "license": "MIT", + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/gensync": { + "version": "1.0.0-beta.2", + "resolved": "https://registry.npmjs.org/gensync/-/gensync-1.0.0-beta.2.tgz", + "integrity": "sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6.9.0" + } + }, + "node_modules/get-caller-file": { + "version": "2.0.5", + "resolved": "https://registry.npmjs.org/get-caller-file/-/get-caller-file-2.0.5.tgz", + "integrity": "sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==", + "dev": true, + "license": "ISC", + "engines": { + "node": "6.* || 8.* || >= 10.*" + } + }, + "node_modules/get-package-type": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/get-package-type/-/get-package-type-0.1.0.tgz", + "integrity": "sha512-pjzuKtY64GYfWizNAJ0fr9VqttZkNiK2iS430LtIHzjBEr6bX8Am2zm4sW4Ro5wjWW5cAlRL1qAMTcXbjNAO2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8.0.0" + } + }, + "node_modules/get-stream": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/get-stream/-/get-stream-6.0.1.tgz", + "integrity": "sha512-ts6Wi+2j3jQjqi70w5AlN8DFnkSwC+MqmxEzdEALB2qXZYV3X/b1CTfgPLGJNMeAWxdPfU8FO1ms3NUfaHCPYg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/glob": { + "version": "7.2.3", + "resolved": "https://registry.npmjs.org/glob/-/glob-7.2.3.tgz", + "integrity": "sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==", + "deprecated": "Glob versions prior to v9 are no longer supported", + "dev": true, + "license": "ISC", + "dependencies": { + "fs.realpath": "^1.0.0", + "inflight": "^1.0.4", + "inherits": "2", + "minimatch": "^3.1.1", + "once": "^1.3.0", + "path-is-absolute": "^1.0.0" + }, + "engines": { + "node": "*" + }, + "funding": { + "url": "https://github.com/sponsors/isaacs" + } + }, + "node_modules/globals": { + "version": "11.12.0", + "resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz", + "integrity": "sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=4" + } + }, + "node_modules/graceful-fs": { + "version": "4.2.11", + "resolved": "https://registry.npmjs.org/graceful-fs/-/graceful-fs-4.2.11.tgz", + "integrity": "sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==", + "dev": true, + "license": "ISC" + }, + "node_modules/has-flag": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/has-flag/-/has-flag-4.0.0.tgz", + "integrity": "sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/hasown": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/hasown/-/hasown-2.0.2.tgz", + "integrity": "sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "function-bind": "^1.1.2" + }, + "engines": { + "node": ">= 0.4" + } + }, + "node_modules/html-escaper": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/html-escaper/-/html-escaper-2.0.2.tgz", + "integrity": "sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==", + "dev": true, + "license": "MIT" + }, + "node_modules/human-signals": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/human-signals/-/human-signals-2.1.0.tgz", + "integrity": "sha512-B4FFZ6q/T2jhhksgkbEW3HBvWIfDW85snkQgawt07S7J5QXTk6BkNV+0yAeZrM5QpMAdYlocGoljn0sJ/WQkFw==", + "dev": true, + "license": "Apache-2.0", + "engines": { + "node": ">=10.17.0" + } + }, + "node_modules/humanize-ms": { + "version": "1.2.1", + "resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz", + "integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==", + "license": "MIT", + "dependencies": { + "ms": "^2.0.0" + } + }, + "node_modules/import-local": { + "version": "3.2.0", + "resolved": "https://registry.npmjs.org/import-local/-/import-local-3.2.0.tgz", + "integrity": "sha512-2SPlun1JUPWoM6t3F0dw0FkCF/jWY8kttcY4f599GLTSjh2OCuuhdTkJQsEcZzBqbXZGKMK2OqW1oZsjtf/gQA==", + "dev": true, + "license": "MIT", + "dependencies": { + "pkg-dir": "^4.2.0", + "resolve-cwd": "^3.0.0" + }, + "bin": { + "import-local-fixture": "fixtures/cli.js" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/imurmurhash": { + "version": "0.1.4", + "resolved": "https://registry.npmjs.org/imurmurhash/-/imurmurhash-0.1.4.tgz", + "integrity": "sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.8.19" + } + }, + "node_modules/inflight": { + "version": "1.0.6", + "resolved": "https://registry.npmjs.org/inflight/-/inflight-1.0.6.tgz", + "integrity": "sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA==", + "deprecated": "This module is not supported, and leaks memory. Do not use it. Check out lru-cache if you want a good and tested way to coalesce async requests by a key value, which is much more comprehensive and powerful.", + "dev": true, + "license": "ISC", + "dependencies": { + "once": "^1.3.0", + "wrappy": "1" + } + }, + "node_modules/inherits": { + "version": "2.0.4", + "resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz", + "integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==", + "dev": true, + "license": "ISC" + }, + "node_modules/is-arrayish": { + "version": "0.2.1", + "resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.2.1.tgz", + "integrity": "sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==", + "dev": true, + "license": "MIT" + }, + "node_modules/is-core-module": { + "version": "2.15.1", + "resolved": "https://registry.npmjs.org/is-core-module/-/is-core-module-2.15.1.tgz", + "integrity": "sha512-z0vtXSwucUJtANQWldhbtbt7BnL0vxiFjIdDLAatwhDYty2bad6s+rijD6Ri4YuYJubLzIJLUidCh09e1djEVQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "hasown": "^2.0.2" + }, + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/is-fullwidth-code-point": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/is-fullwidth-code-point/-/is-fullwidth-code-point-3.0.0.tgz", + "integrity": "sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==", + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/is-generator-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/is-generator-fn/-/is-generator-fn-2.1.0.tgz", + "integrity": "sha512-cTIB4yPYL/Grw0EaSzASzg6bBy9gqCofvWN8okThAYIxKJZC+udlRAmGbM0XLeniEJSs8uEgHPGuHSe1XsOLSQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/is-number": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/is-number/-/is-number-7.0.0.tgz", + "integrity": "sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.12.0" + } + }, + "node_modules/is-stream": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/is-stream/-/is-stream-2.0.1.tgz", + "integrity": "sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/isexe": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/isexe/-/isexe-2.0.0.tgz", + "integrity": "sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==", + "dev": true, + "license": "ISC" + }, + "node_modules/istanbul-lib-coverage": { + "version": "3.2.2", + "resolved": "https://registry.npmjs.org/istanbul-lib-coverage/-/istanbul-lib-coverage-3.2.2.tgz", + "integrity": "sha512-O8dpsF+r0WV/8MNRKfnmrtCWhuKjxrq2w+jpzBL5UZKTi2LeVWnWOmWRxFlesJONmc+wLAGvKQZEOanko0LFTg==", + "dev": true, + "license": "BSD-3-Clause", + "engines": { + "node": ">=8" + } + }, + "node_modules/istanbul-lib-instrument": { + "version": "6.0.3", + "resolved": "https://registry.npmjs.org/istanbul-lib-instrument/-/istanbul-lib-instrument-6.0.3.tgz", + "integrity": "sha512-Vtgk7L/R2JHyyGW07spoFlB8/lpjiOLTjMdms6AFMraYt3BaJauod/NGrfnVG/y4Ix1JEuMRPDPEj2ua+zz1/Q==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "@babel/core": "^7.23.9", + "@babel/parser": "^7.23.9", + "@istanbuljs/schema": "^0.1.3", + "istanbul-lib-coverage": "^3.2.0", + "semver": "^7.5.4" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-instrument/node_modules/semver": { + "version": "7.6.3", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz", + "integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-report": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-report/-/istanbul-lib-report-3.0.1.tgz", + "integrity": "sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "istanbul-lib-coverage": "^3.0.0", + "make-dir": "^4.0.0", + "supports-color": "^7.1.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-lib-source-maps": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/istanbul-lib-source-maps/-/istanbul-lib-source-maps-4.0.1.tgz", + "integrity": "sha512-n3s8EwkdFIJCG3BPKBYvskgXGoy88ARzvegkitk60NxRdwltLOTaH7CUiMRXvwYorl0Q712iEjcWB+fK/MrWVw==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "debug": "^4.1.1", + "istanbul-lib-coverage": "^3.0.0", + "source-map": "^0.6.1" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/istanbul-reports": { + "version": "3.1.7", + "resolved": "https://registry.npmjs.org/istanbul-reports/-/istanbul-reports-3.1.7.tgz", + "integrity": "sha512-BewmUXImeuRk2YY0PVbxgKAysvhRPUQE0h5QRM++nVWyubKGV0l8qQ5op8+B2DOmwSe63Jivj0BjkPQVf8fP5g==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "html-escaper": "^2.0.0", + "istanbul-lib-report": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/jake": { + "version": "10.9.2", + "resolved": "https://registry.npmjs.org/jake/-/jake-10.9.2.tgz", + "integrity": "sha512-2P4SQ0HrLQ+fw6llpLnOaGAvN2Zu6778SJMrCUwns4fOoG9ayrTiZk3VV8sCPkVZF8ab0zksVpS8FDY5pRCNBA==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "async": "^3.2.3", + "chalk": "^4.0.2", + "filelist": "^1.0.4", + "minimatch": "^3.1.2" + }, + "bin": { + "jake": "bin/cli.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest/-/jest-29.7.0.tgz", + "integrity": "sha512-NIy3oAFp9shda19hy4HK0HRTWKtPJmGdnvywu01nOqNC2vZg+Z+fvJDxpMQA88eb2I9EcafcdjYgsDthnYTvGw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/types": "^29.6.3", + "import-local": "^3.0.2", + "jest-cli": "^29.7.0" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-changed-files": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-changed-files/-/jest-changed-files-29.7.0.tgz", + "integrity": "sha512-fEArFiwf1BpQ+4bXSprcDc3/x4HSzL4al2tozwVpDFpsxALjLYdyiIK4e5Vz66GQJIbXJ82+35PtysofptNX2w==", + "dev": true, + "license": "MIT", + "dependencies": { + "execa": "^5.0.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-changed-files/node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-changed-files/node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-circus": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-circus/-/jest-circus-29.7.0.tgz", + "integrity": "sha512-3E1nCMgipcTkCocFwM90XXQab9bS+GMsjdpmPrlelaxwD93Ad8iVEjX/vvHPdLPnFf+L40u+5+iutRdA1N9myw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/expect": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "co": "^4.6.0", + "dedent": "^1.0.0", + "is-generator-fn": "^2.0.0", + "jest-each": "^29.7.0", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "p-limit": "^3.1.0", + "pretty-format": "^29.7.0", + "pure-rand": "^6.0.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-circus/node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-circus/node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-cli": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-cli/-/jest-cli-29.7.0.tgz", + "integrity": "sha512-OVVobw2IubN/GSYsxETi+gOe7Ka59EFMR/twOU3Jb2GnKKeMGJB5SGUUrEz3SFVmJASUdZUzy83sLNNQ2gZslg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/core": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "create-jest": "^29.7.0", + "exit": "^0.1.2", + "import-local": "^3.0.2", + "jest-config": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "yargs": "^17.3.1" + }, + "bin": { + "jest": "bin/jest.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "node-notifier": "^8.0.1 || ^9.0.0 || ^10.0.0" + }, + "peerDependenciesMeta": { + "node-notifier": { + "optional": true + } + } + }, + "node_modules/jest-config": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-config/-/jest-config-29.7.0.tgz", + "integrity": "sha512-uXbpfeQ7R6TZBqI3/TxCU4q4ttk3u0PJeC+E0zbfSoSjq6bJ7buBPxzQPL0ifrkY4DNu4JUdk0ImlBUYi840eQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/core": "^7.11.6", + "@jest/test-sequencer": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-jest": "^29.7.0", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "deepmerge": "^4.2.2", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-circus": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-runner": "^29.7.0", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "micromatch": "^4.0.4", + "parse-json": "^5.2.0", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "strip-json-comments": "^3.1.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "peerDependencies": { + "@types/node": "*", + "ts-node": ">=9.0.0" + }, + "peerDependenciesMeta": { + "@types/node": { + "optional": true + }, + "ts-node": { + "optional": true + } + } + }, + "node_modules/jest-diff": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-diff/-/jest-diff-29.7.0.tgz", + "integrity": "sha512-LMIgiIrhigmPrs03JHpxUh2yISK3vLFPkAodPeo0+BuF7wA2FoQbkEg1u8gBYBThncu7e1oEDUfIXVuTqLRUjw==", + "dev": true, + "license": "MIT", + "dependencies": { + "chalk": "^4.0.0", + "diff-sequences": "^29.6.3", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-docblock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-docblock/-/jest-docblock-29.7.0.tgz", + "integrity": "sha512-q617Auw3A612guyaFgsbFeYpNP5t2aoUNLwBUbc/0kD1R4t9ixDbyFTHd1nok4epoVFpr7PmeWHrhvuV3XaJ4g==", + "dev": true, + "license": "MIT", + "dependencies": { + "detect-newline": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-each": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-each/-/jest-each-29.7.0.tgz", + "integrity": "sha512-gns+Er14+ZrEoC5fhOfYCY1LOHHr0TI+rQUHZS8Ttw2l7gl+80eHc/gFf2Ktkw0+SIACDTeWvpFcv3B04VembQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "jest-util": "^29.7.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-environment-node": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-environment-node/-/jest-environment-node-29.7.0.tgz", + "integrity": "sha512-DOSwCRqXirTOyheM+4d5YZOrWcdu0LNZ87ewUoywbcb2XR4wKgqiG8vNeYwhjFMbEkfju7wx2GYH0P2gevGvFw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-mock": "^29.7.0", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-get-type": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-get-type/-/jest-get-type-29.6.3.tgz", + "integrity": "sha512-zrteXnqYxfQh7l5FHyL38jL39di8H8rHoecLH3JNxH3BwOrBsNeabdap5e0I23lD4HHI8W5VFBZqG4Eaq5LNcw==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-haste-map": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-haste-map/-/jest-haste-map-29.7.0.tgz", + "integrity": "sha512-fP8u2pyfqx0K1rGn1R9pyE0/KTn+G7PxktWidOBTqFPLYX0b9ksaMFkhK5vrS3DVun09pckLdlx90QthlW7AmA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "@types/graceful-fs": "^4.1.3", + "@types/node": "*", + "anymatch": "^3.0.3", + "fb-watchman": "^2.0.0", + "graceful-fs": "^4.2.9", + "jest-regex-util": "^29.6.3", + "jest-util": "^29.7.0", + "jest-worker": "^29.7.0", + "micromatch": "^4.0.4", + "walker": "^1.0.8" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + }, + "optionalDependencies": { + "fsevents": "^2.3.2" + } + }, + "node_modules/jest-leak-detector": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-leak-detector/-/jest-leak-detector-29.7.0.tgz", + "integrity": "sha512-kYA8IJcSYtST2BY9I+SMC32nDpBT3J2NvWJx8+JCuCdl/CR1I4EKUJROiP8XtCcxqgTTBGJNdbB1A8XRKbTetw==", + "dev": true, + "license": "MIT", + "dependencies": { + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-matcher-utils": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-matcher-utils/-/jest-matcher-utils-29.7.0.tgz", + "integrity": "sha512-sBkD+Xi9DtcChsI3L3u0+N0opgPYnCRPtGcQYrgXmR+hmt/fYfWAL0xRXYU8eWOdfuLgBe0YCW3AFtnRLagq/g==", + "dev": true, + "license": "MIT", + "dependencies": { + "chalk": "^4.0.0", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-message-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-message-util/-/jest-message-util-29.7.0.tgz", + "integrity": "sha512-GBEV4GRADeP+qtB2+6u61stea8mGcOT4mCtrYISZwfu9/ISHFJ/5zOMXYbpBE9RsS5+Gb63DW4FgmnKJ79Kf6w==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/code-frame": "^7.12.13", + "@jest/types": "^29.6.3", + "@types/stack-utils": "^2.0.0", + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "micromatch": "^4.0.4", + "pretty-format": "^29.7.0", + "slash": "^3.0.0", + "stack-utils": "^2.0.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-mock": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-mock/-/jest-mock-29.7.0.tgz", + "integrity": "sha512-ITOMZn+UkYS4ZFh83xYAOzWStloNzJFO2s8DWrE4lhtGD+AorgnbkiKERe4wQVBydIGPx059g6riW5Btp6Llnw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "jest-util": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-pnp-resolver": { + "version": "1.2.3", + "resolved": "https://registry.npmjs.org/jest-pnp-resolver/-/jest-pnp-resolver-1.2.3.tgz", + "integrity": "sha512-+3NpwQEnRoIBtx4fyhblQDPgJI0H1IEIkX7ShLUjPGA7TtUTvI1oiKi3SR4oBR0hQhQR80l4WAe5RrXBwWMA8w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + }, + "peerDependencies": { + "jest-resolve": "*" + }, + "peerDependenciesMeta": { + "jest-resolve": { + "optional": true + } + } + }, + "node_modules/jest-regex-util": { + "version": "29.6.3", + "resolved": "https://registry.npmjs.org/jest-regex-util/-/jest-regex-util-29.6.3.tgz", + "integrity": "sha512-KJJBsRCyyLNWCNBOvZyRDnAIfUiRJ8v+hOBQYGn8gDyF3UegwiP4gwRR3/SDa42g1YbVycTidUF3rKjyLFDWbg==", + "dev": true, + "license": "MIT", + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve/-/jest-resolve-29.7.0.tgz", + "integrity": "sha512-IOVhZSrg+UvVAshDSDtHyFCCBUl/Q3AAJv8iZ6ZjnZ74xzvwuzLXid9IIIPgTnY62SJjfuupMKZsZQRsCvxEgA==", + "dev": true, + "license": "MIT", + "dependencies": { + "chalk": "^4.0.0", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-pnp-resolver": "^1.2.2", + "jest-util": "^29.7.0", + "jest-validate": "^29.7.0", + "resolve": "^1.20.0", + "resolve.exports": "^2.0.0", + "slash": "^3.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-resolve-dependencies": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-resolve-dependencies/-/jest-resolve-dependencies-29.7.0.tgz", + "integrity": "sha512-un0zD/6qxJ+S0et7WxeI3H5XSe9lTBBR7bOHCHXkKR6luG5mwDDlIzVQ0V5cZCuoTgEdcdwzTghYkTWfubi+nA==", + "dev": true, + "license": "MIT", + "dependencies": { + "jest-regex-util": "^29.6.3", + "jest-snapshot": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runner": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runner/-/jest-runner-29.7.0.tgz", + "integrity": "sha512-fsc4N6cPCAahybGBfTRcq5wFR6fpLznMg47sY5aDpsoejOcVYFb07AHuSnR0liMcPTgBsA3ZJL6kFOjPdoNipQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/console": "^29.7.0", + "@jest/environment": "^29.7.0", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "graceful-fs": "^4.2.9", + "jest-docblock": "^29.7.0", + "jest-environment-node": "^29.7.0", + "jest-haste-map": "^29.7.0", + "jest-leak-detector": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-resolve": "^29.7.0", + "jest-runtime": "^29.7.0", + "jest-util": "^29.7.0", + "jest-watcher": "^29.7.0", + "jest-worker": "^29.7.0", + "p-limit": "^3.1.0", + "source-map-support": "0.5.13" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-runner/node_modules/p-limit": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-3.1.0.tgz", + "integrity": "sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "yocto-queue": "^0.1.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-runner/node_modules/yocto-queue": { + "version": "0.1.0", + "resolved": "https://registry.npmjs.org/yocto-queue/-/yocto-queue-0.1.0.tgz", + "integrity": "sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-runtime": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-runtime/-/jest-runtime-29.7.0.tgz", + "integrity": "sha512-gUnLjgwdGqW7B4LvOIkbKs9WGbn+QLqRQQ9juC6HndeDiezIwhDP+mhMwHWCEcfQ5RUXa6OPnFF8BJh5xegwwQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/environment": "^29.7.0", + "@jest/fake-timers": "^29.7.0", + "@jest/globals": "^29.7.0", + "@jest/source-map": "^29.6.3", + "@jest/test-result": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "cjs-module-lexer": "^1.0.0", + "collect-v8-coverage": "^1.0.0", + "glob": "^7.1.3", + "graceful-fs": "^4.2.9", + "jest-haste-map": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-mock": "^29.7.0", + "jest-regex-util": "^29.6.3", + "jest-resolve": "^29.7.0", + "jest-snapshot": "^29.7.0", + "jest-util": "^29.7.0", + "slash": "^3.0.0", + "strip-bom": "^4.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-snapshot/-/jest-snapshot-29.7.0.tgz", + "integrity": "sha512-Rm0BMWtxBcioHr1/OX5YCP8Uov4riHvKPknOGs804Zg9JGZgmIBkbtlxJC/7Z4msKYVbIJtfU+tKb8xlYNfdkw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/core": "^7.11.6", + "@babel/generator": "^7.7.2", + "@babel/plugin-syntax-jsx": "^7.7.2", + "@babel/plugin-syntax-typescript": "^7.7.2", + "@babel/types": "^7.3.3", + "@jest/expect-utils": "^29.7.0", + "@jest/transform": "^29.7.0", + "@jest/types": "^29.6.3", + "babel-preset-current-node-syntax": "^1.0.0", + "chalk": "^4.0.0", + "expect": "^29.7.0", + "graceful-fs": "^4.2.9", + "jest-diff": "^29.7.0", + "jest-get-type": "^29.6.3", + "jest-matcher-utils": "^29.7.0", + "jest-message-util": "^29.7.0", + "jest-util": "^29.7.0", + "natural-compare": "^1.4.0", + "pretty-format": "^29.7.0", + "semver": "^7.5.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-snapshot/node_modules/semver": { + "version": "7.6.3", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz", + "integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/jest-util": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-util/-/jest-util-29.7.0.tgz", + "integrity": "sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "@types/node": "*", + "chalk": "^4.0.0", + "ci-info": "^3.2.0", + "graceful-fs": "^4.2.9", + "picomatch": "^2.2.3" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-validate/-/jest-validate-29.7.0.tgz", + "integrity": "sha512-ZB7wHqaRGVw/9hST/OuFUReG7M8vKeq0/J2egIGLdvjHCmYqGARhzXmtgi+gVeZ5uXFF219aOc3Ls2yLg27tkw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/types": "^29.6.3", + "camelcase": "^6.2.0", + "chalk": "^4.0.0", + "jest-get-type": "^29.6.3", + "leven": "^3.1.0", + "pretty-format": "^29.7.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-validate/node_modules/camelcase": { + "version": "6.3.0", + "resolved": "https://registry.npmjs.org/camelcase/-/camelcase-6.3.0.tgz", + "integrity": "sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/jest-watcher": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-watcher/-/jest-watcher-29.7.0.tgz", + "integrity": "sha512-49Fg7WXkU3Vl2h6LbLtMQ/HyB6rXSIX7SqvBLQmssRBGN9I0PNvPmAmCWSOY6SOvrjhI/F7/bGAv9RtnsPA03g==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/test-result": "^29.7.0", + "@jest/types": "^29.6.3", + "@types/node": "*", + "ansi-escapes": "^4.2.1", + "chalk": "^4.0.0", + "emittery": "^0.13.1", + "jest-util": "^29.7.0", + "string-length": "^4.0.1" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/jest-worker/-/jest-worker-29.7.0.tgz", + "integrity": "sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==", + "dev": true, + "license": "MIT", + "dependencies": { + "@types/node": "*", + "jest-util": "^29.7.0", + "merge-stream": "^2.0.0", + "supports-color": "^8.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/jest-worker/node_modules/supports-color": { + "version": "8.1.1", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-8.1.1.tgz", + "integrity": "sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/supports-color?sponsor=1" + } + }, + "node_modules/js-tokens": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/js-tokens/-/js-tokens-4.0.0.tgz", + "integrity": "sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==", + "dev": true, + "license": "MIT" + }, + "node_modules/js-yaml": { + "version": "3.14.1", + "resolved": "https://registry.npmjs.org/js-yaml/-/js-yaml-3.14.1.tgz", + "integrity": "sha512-okMH7OXXJ7YrN9Ok3/SXrnu4iX9yOk+25nqX4imS2npuvTYDmo/QEZoqwZkYaIDk3jVvBOTOIEgEhaLOynBS9g==", + "dev": true, + "license": "MIT", + "dependencies": { + "argparse": "^1.0.7", + "esprima": "^4.0.0" + }, + "bin": { + "js-yaml": "bin/js-yaml.js" + } + }, + "node_modules/jsesc": { + "version": "2.5.2", + "resolved": "https://registry.npmjs.org/jsesc/-/jsesc-2.5.2.tgz", + "integrity": "sha512-OYu7XEzjkCQ3C5Ps3QIZsQfNpqoJyZZA99wd9aWd05NCtC5pWOkShK2mkL6HXQR6/Cy2lbNdPlZBpuQHXE63gA==", + "dev": true, + "license": "MIT", + "bin": { + "jsesc": "bin/jsesc" + }, + "engines": { + "node": ">=4" + } + }, + "node_modules/json-parse-even-better-errors": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/json-parse-even-better-errors/-/json-parse-even-better-errors-2.3.1.tgz", + "integrity": "sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w==", + "dev": true, + "license": "MIT" + }, + "node_modules/json5": { + "version": "2.2.3", + "resolved": "https://registry.npmjs.org/json5/-/json5-2.2.3.tgz", + "integrity": "sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==", + "dev": true, + "license": "MIT", + "bin": { + "json5": "lib/cli.js" + }, + "engines": { + "node": ">=6" + } + }, + "node_modules/kleur": { + "version": "3.0.3", + "resolved": "https://registry.npmjs.org/kleur/-/kleur-3.0.3.tgz", + "integrity": "sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/leven": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/leven/-/leven-3.1.0.tgz", + "integrity": "sha512-qsda+H8jTaUaN/x5vzW2rzc+8Rw4TAQ/4KjB46IwK5VH+IlVeeeje/EoZRpiXvIqjFgK84QffqPztGI3VBLG1A==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/lines-and-columns": { + "version": "1.2.4", + "resolved": "https://registry.npmjs.org/lines-and-columns/-/lines-and-columns-1.2.4.tgz", + "integrity": "sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==", + "dev": true, + "license": "MIT" + }, + "node_modules/locate-path": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/locate-path/-/locate-path-5.0.0.tgz", + "integrity": "sha512-t7hw9pI+WvuwNJXwk5zVHpyhIqzg2qTlklJOf0mVxGSbe3Fp2VieZcduNYjaLDoy6p9uGpQEGWG87WpMKlNq8g==", + "dev": true, + "license": "MIT", + "dependencies": { + "p-locate": "^4.1.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/lodash.memoize": { + "version": "4.1.2", + "resolved": "https://registry.npmjs.org/lodash.memoize/-/lodash.memoize-4.1.2.tgz", + "integrity": "sha512-t7j+NzmgnQzTAYXcsHYLgimltOV1MXHtlOWf6GjL9Kj8GK5FInw5JotxvbOs+IvV1/Dzo04/fCGfLVs7aXb4Ag==", + "dev": true, + "license": "MIT" + }, + "node_modules/lru-cache": { + "version": "5.1.1", + "resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-5.1.1.tgz", + "integrity": "sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==", + "dev": true, + "license": "ISC", + "dependencies": { + "yallist": "^3.0.2" + } + }, + "node_modules/make-dir": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/make-dir/-/make-dir-4.0.0.tgz", + "integrity": "sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==", + "dev": true, + "license": "MIT", + "dependencies": { + "semver": "^7.5.3" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/make-dir/node_modules/semver": { + "version": "7.6.3", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz", + "integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/make-error": { + "version": "1.3.6", + "resolved": "https://registry.npmjs.org/make-error/-/make-error-1.3.6.tgz", + "integrity": "sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==", + "dev": true, + "license": "ISC" + }, + "node_modules/makeerror": { + "version": "1.0.12", + "resolved": "https://registry.npmjs.org/makeerror/-/makeerror-1.0.12.tgz", + "integrity": "sha512-JmqCvUhmt43madlpFzG4BQzG2Z3m6tvQDNKdClZnO3VbIudJYmxsT0FNJMeiB2+JTSlTQTSbU8QdesVmwJcmLg==", + "dev": true, + "license": "BSD-3-Clause", + "dependencies": { + "tmpl": "1.0.5" + } + }, + "node_modules/merge-stream": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/merge-stream/-/merge-stream-2.0.0.tgz", + "integrity": "sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w==", + "dev": true, + "license": "MIT" + }, + "node_modules/micromatch": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/micromatch/-/micromatch-4.0.8.tgz", + "integrity": "sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA==", + "dev": true, + "license": "MIT", + "dependencies": { + "braces": "^3.0.3", + "picomatch": "^2.3.1" + }, + "engines": { + "node": ">=8.6" + } + }, + "node_modules/mime-db": { + "version": "1.52.0", + "resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz", + "integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==", + "license": "MIT", + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mime-types": { + "version": "2.1.35", + "resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz", + "integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==", + "license": "MIT", + "dependencies": { + "mime-db": "1.52.0" + }, + "engines": { + "node": ">= 0.6" + } + }, + "node_modules/mimic-fn": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/mimic-fn/-/mimic-fn-2.1.0.tgz", + "integrity": "sha512-OqbOk5oEQeAZ8WXWydlu9HJjz9WVdEIvamMCcXmuqUYjTknH/sqsWvhQ3vgwKFRR1HpjvNBKQ37nbJgYzGqGcg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/minimatch": { + "version": "3.1.2", + "resolved": "https://registry.npmjs.org/minimatch/-/minimatch-3.1.2.tgz", + "integrity": "sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==", + "dev": true, + "license": "ISC", + "dependencies": { + "brace-expansion": "^1.1.7" + }, + "engines": { + "node": "*" + } + }, + "node_modules/ms": { + "version": "2.1.3", + "resolved": "https://registry.npmjs.org/ms/-/ms-2.1.3.tgz", + "integrity": "sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==", + "license": "MIT" + }, + "node_modules/natural-compare": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/natural-compare/-/natural-compare-1.4.0.tgz", + "integrity": "sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==", + "dev": true, + "license": "MIT" + }, + "node_modules/node-domexception": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/node-domexception/-/node-domexception-1.0.0.tgz", + "integrity": "sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==", + "funding": [ + { + "type": "github", + "url": "https://github.com/sponsors/jimmywarting" + }, + { + "type": "github", + "url": "https://paypal.me/jimmywarting" + } + ], + "license": "MIT", + "engines": { + "node": ">=10.5.0" + } + }, + "node_modules/node-fetch": { + "version": "2.7.0", + "resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz", + "integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==", + "license": "MIT", + "dependencies": { + "whatwg-url": "^5.0.0" + }, + "engines": { + "node": "4.x || >=6.0.0" + }, + "peerDependencies": { + "encoding": "^0.1.0" + }, + "peerDependenciesMeta": { + "encoding": { + "optional": true + } + } + }, + "node_modules/node-int64": { + "version": "0.4.0", + "resolved": "https://registry.npmjs.org/node-int64/-/node-int64-0.4.0.tgz", + "integrity": "sha512-O5lz91xSOeoXP6DulyHfllpq+Eg00MWitZIbtPfoSEvqIHdl5gfcY6hYzDWnj0qD5tz52PI08u9qUvSVeUBeHw==", + "dev": true, + "license": "MIT" + }, + "node_modules/node-releases": { + "version": "2.0.18", + "resolved": "https://registry.npmjs.org/node-releases/-/node-releases-2.0.18.tgz", + "integrity": "sha512-d9VeXT4SJ7ZeOqGX6R5EM022wpL+eWPooLI+5UpWn2jCT1aosUQEhQP214x33Wkwx3JQMvIm+tIoVOdodFS40g==", + "dev": true, + "license": "MIT" + }, + "node_modules/normalize-path": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/normalize-path/-/normalize-path-3.0.0.tgz", + "integrity": "sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/npm-run-path": { + "version": "4.0.1", + "resolved": "https://registry.npmjs.org/npm-run-path/-/npm-run-path-4.0.1.tgz", + "integrity": "sha512-S48WzZW777zhNIrn7gxOlISNAqi9ZC/uQFnRdbeIHhZhCA6UqpkOT8T1G7BvfdgP4Er8gF4sUbaS0i7QvIfCWw==", + "dev": true, + "license": "MIT", + "dependencies": { + "path-key": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/once": { + "version": "1.4.0", + "resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz", + "integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==", + "dev": true, + "license": "ISC", + "dependencies": { + "wrappy": "1" + } + }, + "node_modules/onetime": { + "version": "5.1.2", + "resolved": "https://registry.npmjs.org/onetime/-/onetime-5.1.2.tgz", + "integrity": "sha512-kbpaSSGJTWdAY5KPVeMOKXSrPtr8C8C7wodJbcsd51jRnmD+GZu8Y0VoU6Dm5Z4vWr0Ig/1NKuWRKf7j5aaYSg==", + "dev": true, + "license": "MIT", + "dependencies": { + "mimic-fn": "^2.1.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/openai": { + "version": "4.63.0", + "resolved": "https://registry.npmjs.org/openai/-/openai-4.63.0.tgz", + "integrity": "sha512-Y9V4KODbmrOpqiOmCDVnPfMxMqKLOx8Hwcdn/r8mePq4yv7FSXGnxCs8/jZKO7zCB/IVPWihpJXwJNAIOEiZ2g==", + "license": "Apache-2.0", + "dependencies": { + "@types/node": "^18.11.18", + "@types/node-fetch": "^2.6.4", + "abort-controller": "^3.0.0", + "agentkeepalive": "^4.2.1", + "form-data-encoder": "1.7.2", + "formdata-node": "^4.3.2", + "node-fetch": "^2.6.7" + }, + "bin": { + "openai": "bin/cli" + }, + "peerDependencies": { + "zod": "^3.23.8" + }, + "peerDependenciesMeta": { + "zod": { + "optional": true + } + } + }, + "node_modules/openai/node_modules/@types/node": { + "version": "18.19.47", + "resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.47.tgz", + "integrity": "sha512-1f7dB3BL/bpd9tnDJrrHb66Y+cVrhxSOTGorRNdHwYTUlTay3HuTDPKo9a/4vX9pMQkhYBcAbL4jQdNlhCFP9A==", + "license": "MIT", + "dependencies": { + "undici-types": "~5.26.4" + } + }, + "node_modules/openai/node_modules/undici-types": { + "version": "5.26.5", + "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz", + "integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==", + "license": "MIT" + }, + "node_modules/p-locate": { + "version": "4.1.0", + "resolved": "https://registry.npmjs.org/p-locate/-/p-locate-4.1.0.tgz", + "integrity": "sha512-R79ZZ/0wAxKGu3oYMlz8jy/kbhsNrS7SKZ7PxEHBgJ5+F2mtFW2fK2cOtBh1cHYkQsbzFV7I+EoRKe6Yt0oK7A==", + "dev": true, + "license": "MIT", + "dependencies": { + "p-limit": "^2.2.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/p-locate/node_modules/p-limit": { + "version": "2.3.0", + "resolved": "https://registry.npmjs.org/p-limit/-/p-limit-2.3.0.tgz", + "integrity": "sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w==", + "dev": true, + "license": "MIT", + "dependencies": { + "p-try": "^2.0.0" + }, + "engines": { + "node": ">=6" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/p-try": { + "version": "2.2.0", + "resolved": "https://registry.npmjs.org/p-try/-/p-try-2.2.0.tgz", + "integrity": "sha512-R4nPAVTAU0B9D35/Gk3uJf/7XYbQcyohSKdvAxIRSNghFl4e71hVoGnBNQz9cWaXxO2I10KTC+3jMdvvoKw6dQ==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/parse-json": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/parse-json/-/parse-json-5.2.0.tgz", + "integrity": "sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg==", + "dev": true, + "license": "MIT", + "dependencies": { + "@babel/code-frame": "^7.0.0", + "error-ex": "^1.3.1", + "json-parse-even-better-errors": "^2.3.0", + "lines-and-columns": "^1.1.6" + }, + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/path-exists": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/path-exists/-/path-exists-4.0.0.tgz", + "integrity": "sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/path-is-absolute": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/path-is-absolute/-/path-is-absolute-1.0.1.tgz", + "integrity": "sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/path-key": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/path-key/-/path-key-3.1.1.tgz", + "integrity": "sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/path-parse": { + "version": "1.0.7", + "resolved": "https://registry.npmjs.org/path-parse/-/path-parse-1.0.7.tgz", + "integrity": "sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==", + "dev": true, + "license": "MIT" + }, + "node_modules/picocolors": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/picocolors/-/picocolors-1.0.1.tgz", + "integrity": "sha512-anP1Z8qwhkbmu7MFP5iTt+wQKXgwzf7zTyGlcdzabySa9vd0Xt392U0rVmz9poOaBj0uHJKyyo9/upk0HrEQew==", + "dev": true, + "license": "ISC" + }, + "node_modules/picomatch": { + "version": "2.3.1", + "resolved": "https://registry.npmjs.org/picomatch/-/picomatch-2.3.1.tgz", + "integrity": "sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8.6" + }, + "funding": { + "url": "https://github.com/sponsors/jonschlinkert" + } + }, + "node_modules/pirates": { + "version": "4.0.6", + "resolved": "https://registry.npmjs.org/pirates/-/pirates-4.0.6.tgz", + "integrity": "sha512-saLsH7WeYYPiD25LDuLRRY/i+6HaPYr6G1OUlN39otzkSTxKnubR9RTxS3/Kk50s1g2JTgFwWQDQyplC5/SHZg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 6" + } + }, + "node_modules/pkg-dir": { + "version": "4.2.0", + "resolved": "https://registry.npmjs.org/pkg-dir/-/pkg-dir-4.2.0.tgz", + "integrity": "sha512-HRDzbaKjC+AOWVXxAU/x54COGeIv9eb+6CkDSQoNTt4XyWoIJvuPsXizxu/Fr23EiekbtZwmh1IcIG/l/a10GQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "find-up": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/pretty-format": { + "version": "29.7.0", + "resolved": "https://registry.npmjs.org/pretty-format/-/pretty-format-29.7.0.tgz", + "integrity": "sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "@jest/schemas": "^29.6.3", + "ansi-styles": "^5.0.0", + "react-is": "^18.0.0" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || >=18.0.0" + } + }, + "node_modules/pretty-format/node_modules/ansi-styles": { + "version": "5.2.0", + "resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-5.2.0.tgz", + "integrity": "sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/ansi-styles?sponsor=1" + } + }, + "node_modules/prompts": { + "version": "2.4.2", + "resolved": "https://registry.npmjs.org/prompts/-/prompts-2.4.2.tgz", + "integrity": "sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "kleur": "^3.0.3", + "sisteransi": "^1.0.5" + }, + "engines": { + "node": ">= 6" + } + }, + "node_modules/pure-rand": { + "version": "6.1.0", + "resolved": "https://registry.npmjs.org/pure-rand/-/pure-rand-6.1.0.tgz", + "integrity": "sha512-bVWawvoZoBYpp6yIoQtQXHZjmz35RSVHnUOTefl8Vcjr8snTPY1wnpSPMWekcFwbxI6gtmT7rSYPFvz71ldiOA==", + "dev": true, + "funding": [ + { + "type": "individual", + "url": "https://github.com/sponsors/dubzzz" + }, + { + "type": "opencollective", + "url": "https://opencollective.com/fast-check" + } + ], + "license": "MIT" + }, + "node_modules/react-is": { + "version": "18.3.1", + "resolved": "https://registry.npmjs.org/react-is/-/react-is-18.3.1.tgz", + "integrity": "sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==", + "dev": true, + "license": "MIT" + }, + "node_modules/require-directory": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/require-directory/-/require-directory-2.1.1.tgz", + "integrity": "sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/resolve": { + "version": "1.22.8", + "resolved": "https://registry.npmjs.org/resolve/-/resolve-1.22.8.tgz", + "integrity": "sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw==", + "dev": true, + "license": "MIT", + "dependencies": { + "is-core-module": "^2.13.0", + "path-parse": "^1.0.7", + "supports-preserve-symlinks-flag": "^1.0.0" + }, + "bin": { + "resolve": "bin/resolve" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/resolve-cwd": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/resolve-cwd/-/resolve-cwd-3.0.0.tgz", + "integrity": "sha512-OrZaX2Mb+rJCpH/6CpSqt9xFVpN++x01XnN2ie9g6P5/3xelLAkXWVADpdz1IHD/KFfEXyE6V0U01OQ3UO2rEg==", + "dev": true, + "license": "MIT", + "dependencies": { + "resolve-from": "^5.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve-from": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/resolve-from/-/resolve-from-5.0.0.tgz", + "integrity": "sha512-qYg9KP24dD5qka9J47d0aVky0N+b4fTU89LN9iDnjB5waksiC49rvMB0PrUJQGoTmH50XPiqOvAjDfaijGxYZw==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/resolve.exports": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/resolve.exports/-/resolve.exports-2.0.2.tgz", + "integrity": "sha512-X2UW6Nw3n/aMgDVy+0rSqgHlv39WZAlZrXCdnbyEiKm17DSqHX4MmQMaST3FbeWR5FTuRcUwYAziZajji0Y7mg==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=10" + } + }, + "node_modules/semver": { + "version": "6.3.1", + "resolved": "https://registry.npmjs.org/semver/-/semver-6.3.1.tgz", + "integrity": "sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + } + }, + "node_modules/shebang-command": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/shebang-command/-/shebang-command-2.0.0.tgz", + "integrity": "sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==", + "dev": true, + "license": "MIT", + "dependencies": { + "shebang-regex": "^3.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/shebang-regex": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/shebang-regex/-/shebang-regex-3.0.0.tgz", + "integrity": "sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/signal-exit": { + "version": "3.0.7", + "resolved": "https://registry.npmjs.org/signal-exit/-/signal-exit-3.0.7.tgz", + "integrity": "sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==", + "dev": true, + "license": "ISC" + }, + "node_modules/sisteransi": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/sisteransi/-/sisteransi-1.0.5.tgz", + "integrity": "sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==", + "dev": true, + "license": "MIT" + }, + "node_modules/slash": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/slash/-/slash-3.0.0.tgz", + "integrity": "sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/source-map": { + "version": "0.6.1", + "resolved": "https://registry.npmjs.org/source-map/-/source-map-0.6.1.tgz", + "integrity": "sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==", + "dev": true, + "license": "BSD-3-Clause", + "engines": { + "node": ">=0.10.0" + } + }, + "node_modules/source-map-support": { + "version": "0.5.13", + "resolved": "https://registry.npmjs.org/source-map-support/-/source-map-support-0.5.13.tgz", + "integrity": "sha512-SHSKFHadjVA5oR4PPqhtAVdcBWwRYVd6g6cAXnIbRiIwc2EhPrTuKUBdSLvlEKyIP3GCf89fltvcZiP9MMFA1w==", + "dev": true, + "license": "MIT", + "dependencies": { + "buffer-from": "^1.0.0", + "source-map": "^0.6.0" + } + }, + "node_modules/sprintf-js": { + "version": "1.0.3", + "resolved": "https://registry.npmjs.org/sprintf-js/-/sprintf-js-1.0.3.tgz", + "integrity": "sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g==", + "dev": true, + "license": "BSD-3-Clause" + }, + "node_modules/stack-utils": { + "version": "2.0.6", + "resolved": "https://registry.npmjs.org/stack-utils/-/stack-utils-2.0.6.tgz", + "integrity": "sha512-XlkWvfIm6RmsWtNJx+uqtKLS8eqFbxUg0ZzLXqY0caEy9l7hruX8IpiDnjsLavoBgqCCR71TqWO8MaXYheJ3RQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "escape-string-regexp": "^2.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-length": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/string-length/-/string-length-4.0.2.tgz", + "integrity": "sha512-+l6rNN5fYHNhZZy41RXsYptCjA2Igmq4EG7kZAYFQI1E1VTXarr6ZPXBg6eq7Y6eK4FEhY6AJlyuFIb/v/S0VQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "char-regex": "^1.0.2", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/string-width": { + "version": "4.2.3", + "resolved": "https://registry.npmjs.org/string-width/-/string-width-4.2.3.tgz", + "integrity": "sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==", + "license": "MIT", + "dependencies": { + "emoji-regex": "^8.0.0", + "is-fullwidth-code-point": "^3.0.0", + "strip-ansi": "^6.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-ansi": { + "version": "6.0.1", + "resolved": "https://registry.npmjs.org/strip-ansi/-/strip-ansi-6.0.1.tgz", + "integrity": "sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==", + "license": "MIT", + "dependencies": { + "ansi-regex": "^5.0.1" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-bom": { + "version": "4.0.0", + "resolved": "https://registry.npmjs.org/strip-bom/-/strip-bom-4.0.0.tgz", + "integrity": "sha512-3xurFv5tEgii33Zi8Jtp55wEIILR9eh34FAW00PZf+JnSsTmV/ioewSgQl97JHvgjoRGwPShsWm+IdrxB35d0w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + } + }, + "node_modules/strip-final-newline": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/strip-final-newline/-/strip-final-newline-2.0.0.tgz", + "integrity": "sha512-BrpvfNAE3dcvq7ll3xVumzjKjZQ5tI1sEUIKr3Uoks0XUl45St3FlatVqef9prk4jRDzhW6WZg+3bk93y6pLjA==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=6" + } + }, + "node_modules/strip-json-comments": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-3.1.1.tgz", + "integrity": "sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=8" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/supports-color": { + "version": "7.2.0", + "resolved": "https://registry.npmjs.org/supports-color/-/supports-color-7.2.0.tgz", + "integrity": "sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==", + "dev": true, + "license": "MIT", + "dependencies": { + "has-flag": "^4.0.0" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/supports-preserve-symlinks-flag": { + "version": "1.0.0", + "resolved": "https://registry.npmjs.org/supports-preserve-symlinks-flag/-/supports-preserve-symlinks-flag-1.0.0.tgz", + "integrity": "sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">= 0.4" + }, + "funding": { + "url": "https://github.com/sponsors/ljharb" + } + }, + "node_modules/test-exclude": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/test-exclude/-/test-exclude-6.0.0.tgz", + "integrity": "sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==", + "dev": true, + "license": "ISC", + "dependencies": { + "@istanbuljs/schema": "^0.1.2", + "glob": "^7.1.4", + "minimatch": "^3.0.4" + }, + "engines": { + "node": ">=8" + } + }, + "node_modules/tmpl": { + "version": "1.0.5", + "resolved": "https://registry.npmjs.org/tmpl/-/tmpl-1.0.5.tgz", + "integrity": "sha512-3f0uOEAQwIqGuWW2MVzYg8fV/QNnc/IpuJNG837rLuczAaLVHslWHZQj4IGiEl5Hs3kkbhwL9Ab7Hrsmuj+Smw==", + "dev": true, + "license": "BSD-3-Clause" + }, + "node_modules/to-fast-properties": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/to-fast-properties/-/to-fast-properties-2.0.0.tgz", + "integrity": "sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=4" + } + }, + "node_modules/to-regex-range": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/to-regex-range/-/to-regex-range-5.0.1.tgz", + "integrity": "sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==", + "dev": true, + "license": "MIT", + "dependencies": { + "is-number": "^7.0.0" + }, + "engines": { + "node": ">=8.0" + } + }, + "node_modules/tr46": { + "version": "0.0.3", + "resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz", + "integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==", + "license": "MIT" + }, + "node_modules/ts-jest": { + "version": "29.2.5", + "resolved": "https://registry.npmjs.org/ts-jest/-/ts-jest-29.2.5.tgz", + "integrity": "sha512-KD8zB2aAZrcKIdGk4OwpJggeLcH1FgrICqDSROWqlnJXGCXK4Mn6FcdK2B6670Xr73lHMG1kHw8R87A0ecZ+vA==", + "dev": true, + "license": "MIT", + "dependencies": { + "bs-logger": "^0.2.6", + "ejs": "^3.1.10", + "fast-json-stable-stringify": "^2.1.0", + "jest-util": "^29.0.0", + "json5": "^2.2.3", + "lodash.memoize": "^4.1.2", + "make-error": "^1.3.6", + "semver": "^7.6.3", + "yargs-parser": "^21.1.1" + }, + "bin": { + "ts-jest": "cli.js" + }, + "engines": { + "node": "^14.15.0 || ^16.10.0 || ^18.0.0 || >=20.0.0" + }, + "peerDependencies": { + "@babel/core": ">=7.0.0-beta.0 <8", + "@jest/transform": "^29.0.0", + "@jest/types": "^29.0.0", + "babel-jest": "^29.0.0", + "jest": "^29.0.0", + "typescript": ">=4.3 <6" + }, + "peerDependenciesMeta": { + "@babel/core": { + "optional": true + }, + "@jest/transform": { + "optional": true + }, + "@jest/types": { + "optional": true + }, + "babel-jest": { + "optional": true + }, + "esbuild": { + "optional": true + } + } + }, + "node_modules/ts-jest/node_modules/semver": { + "version": "7.6.3", + "resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz", + "integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==", + "dev": true, + "license": "ISC", + "bin": { + "semver": "bin/semver.js" + }, + "engines": { + "node": ">=10" + } + }, + "node_modules/type-detect": { + "version": "4.0.8", + "resolved": "https://registry.npmjs.org/type-detect/-/type-detect-4.0.8.tgz", + "integrity": "sha512-0fr/mIH1dlO+x7TlcMy+bIDqKPsw/70tVyeHW787goQjhmqaZe10uwLujubK9q9Lg6Fiho1KUKDYz0Z7k7g5/g==", + "dev": true, + "license": "MIT", + "engines": { + "node": ">=4" + } + }, + "node_modules/type-fest": { + "version": "0.21.3", + "resolved": "https://registry.npmjs.org/type-fest/-/type-fest-0.21.3.tgz", + "integrity": "sha512-t0rzBq87m3fVcduHDUFhKmyyX+9eo6WQjZvf51Ea/M0Q7+T374Jp1aUiyUl0GKxp8M/OETVHSDvmkyPgvX+X2w==", + "dev": true, + "license": "(MIT OR CC0-1.0)", + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/sponsors/sindresorhus" + } + }, + "node_modules/typescript": { + "version": "5.5.4", + "resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz", + "integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==", + "dev": true, + "license": "Apache-2.0", + "peer": true, + "bin": { + "tsc": "bin/tsc", + "tsserver": "bin/tsserver" + }, + "engines": { + "node": ">=14.17" + } + }, + "node_modules/undici-types": { + "version": "6.19.8", + "resolved": "https://registry.npmjs.org/undici-types/-/undici-types-6.19.8.tgz", + "integrity": "sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==", + "license": "MIT" + }, + "node_modules/update-browserslist-db": { + "version": "1.1.0", + "resolved": "https://registry.npmjs.org/update-browserslist-db/-/update-browserslist-db-1.1.0.tgz", + "integrity": "sha512-EdRAaAyk2cUE1wOf2DkEhzxqOQvFOoRJFNS6NeyJ01Gp2beMRpBAINjM2iDXE3KCuKhwnvHIQCJm6ThL2Z+HzQ==", + "dev": true, + "funding": [ + { + "type": "opencollective", + "url": "https://opencollective.com/browserslist" + }, + { + "type": "tidelift", + "url": "https://tidelift.com/funding/github/npm/browserslist" + }, + { + "type": "github", + "url": "https://github.com/sponsors/ai" + } + ], + "license": "MIT", + "dependencies": { + "escalade": "^3.1.2", + "picocolors": "^1.0.1" + }, + "bin": { + "update-browserslist-db": "cli.js" + }, + "peerDependencies": { + "browserslist": ">= 4.21.0" + } + }, + "node_modules/uuidv7": { + "version": "1.0.1", + "resolved": "https://registry.npmjs.org/uuidv7/-/uuidv7-1.0.1.tgz", + "integrity": "sha512-2noB909GbI352dKfASOY6VHHl59KvevZ1FF8gCAXCwDyrt2kkZhuFbczF9udqTfeejiRYEmO4wzUZ0WhVP+IUA==", + "license": "Apache-2.0", + "bin": { + "uuidv7": "cli.js" + } + }, + "node_modules/v8-to-istanbul": { + "version": "9.3.0", + "resolved": "https://registry.npmjs.org/v8-to-istanbul/-/v8-to-istanbul-9.3.0.tgz", + "integrity": "sha512-kiGUalWN+rgBJ/1OHZsBtU4rXZOfj/7rKQxULKlIzwzQSvMJUUNgPwJEEh7gU6xEVxC0ahoOBvN2YI8GH6FNgA==", + "dev": true, + "license": "ISC", + "dependencies": { + "@jridgewell/trace-mapping": "^0.3.12", + "@types/istanbul-lib-coverage": "^2.0.1", + "convert-source-map": "^2.0.0" + }, + "engines": { + "node": ">=10.12.0" + } + }, + "node_modules/walker": { + "version": "1.0.8", + "resolved": "https://registry.npmjs.org/walker/-/walker-1.0.8.tgz", + "integrity": "sha512-ts/8E8l5b7kY0vlWLewOkDXMmPdLcVV4GmOQLyxuSswIJsweeFZtAsMF7k1Nszz+TYBQrlYRmzOnr398y1JemQ==", + "dev": true, + "license": "Apache-2.0", + "dependencies": { + "makeerror": "1.0.12" + } + }, + "node_modules/web-streams-polyfill": { + "version": "4.0.0-beta.3", + "resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz", + "integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==", + "license": "MIT", + "engines": { + "node": ">= 14" + } + }, + "node_modules/webidl-conversions": { + "version": "3.0.1", + "resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz", + "integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==", + "license": "BSD-2-Clause" + }, + "node_modules/whatwg-url": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz", + "integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==", + "license": "MIT", + "dependencies": { + "tr46": "~0.0.3", + "webidl-conversions": "^3.0.0" + } + }, + "node_modules/which": { + "version": "2.0.2", + "resolved": "https://registry.npmjs.org/which/-/which-2.0.2.tgz", + "integrity": "sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==", + "dev": true, + "license": "ISC", + "dependencies": { + "isexe": "^2.0.0" + }, + "bin": { + "node-which": "bin/node-which" + }, + "engines": { + "node": ">= 8" + } + }, + "node_modules/wrap-ansi": { + "version": "7.0.0", + "resolved": "https://registry.npmjs.org/wrap-ansi/-/wrap-ansi-7.0.0.tgz", + "integrity": "sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==", + "dev": true, + "license": "MIT", + "dependencies": { + "ansi-styles": "^4.0.0", + "string-width": "^4.1.0", + "strip-ansi": "^6.0.0" + }, + "engines": { + "node": ">=10" + }, + "funding": { + "url": "https://github.com/chalk/wrap-ansi?sponsor=1" + } + }, + "node_modules/wrappy": { + "version": "1.0.2", + "resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz", + "integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==", + "dev": true, + "license": "ISC" + }, + "node_modules/write-file-atomic": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/write-file-atomic/-/write-file-atomic-4.0.2.tgz", + "integrity": "sha512-7KxauUdBmSdWnmpaGFg+ppNjKF8uNLry8LyzjauQDOVONfFLNKrKvQOxZ/VuTIcS/gge/YNahf5RIIQWTSarlg==", + "dev": true, + "license": "ISC", + "dependencies": { + "imurmurhash": "^0.1.4", + "signal-exit": "^3.0.7" + }, + "engines": { + "node": "^12.13.0 || ^14.15.0 || >=16.0.0" + } + }, + "node_modules/y18n": { + "version": "5.0.8", + "resolved": "https://registry.npmjs.org/y18n/-/y18n-5.0.8.tgz", + "integrity": "sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==", + "dev": true, + "license": "ISC", + "engines": { + "node": ">=10" + } + }, + "node_modules/yallist": { + "version": "3.1.1", + "resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz", + "integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==", + "dev": true, + "license": "ISC" + }, + "node_modules/yargs": { + "version": "17.7.2", + "resolved": "https://registry.npmjs.org/yargs/-/yargs-17.7.2.tgz", + "integrity": "sha512-7dSzzRQ++CKnNI/krKnYRV7JKKPUXMEh61soaHKg9mrWEhzFWhFnxPxGl+69cD1Ou63C13NUPCnmIcrvqCuM6w==", + "dev": true, + "license": "MIT", + "dependencies": { + "cliui": "^8.0.1", + "escalade": "^3.1.1", + "get-caller-file": "^2.0.5", + "require-directory": "^2.1.1", + "string-width": "^4.2.3", + "y18n": "^5.0.5", + "yargs-parser": "^21.1.1" + }, + "engines": { + "node": ">=12" + } + }, + "node_modules/yargs-parser": { + "version": "21.1.1", + "resolved": "https://registry.npmjs.org/yargs-parser/-/yargs-parser-21.1.1.tgz", + "integrity": "sha512-tVpsJW7DdjecAiFpbIB1e3qxIQsE6NoPc5/eTdrbbIC4h0LVsWhnoa3g+m2HclBIujHzsxZ4VJVA+GUuc2/LBw==", + "dev": true, + "license": "ISC", + "engines": { + "node": ">=12" + } + }, + "node_modules/zod": { + "version": "3.23.8", + "resolved": "https://registry.npmjs.org/zod/-/zod-3.23.8.tgz", + "integrity": "sha512-XBx9AXhXktjUqnepgTiE5flcKIYWi/rme0Eaj+5Y0lftuGBq+jyRu/md4WnuxqgP1ubdpNCsYEYPxrzVHD8d6g==", + "license": "MIT", + "optional": true, + "peer": true, + "funding": { + "url": "https://github.com/sponsors/colinhacks" + } + } + } +} diff --git a/sdks/node/package.json b/sdks/node/package.json new file mode 100644 index 00000000000..48c496d1260 --- /dev/null +++ b/sdks/node/package.json @@ -0,0 +1,88 @@ +{ + "name": "weave", + "version": "0.6.9", + "description": "AI development toolkit", + "types": "dist/src/index.d.ts", + "main": "dist/src/index.js", + "type": "commonjs", + "scripts": { + "test": "jest", + "test:coverage": "jest --coverage", + "test:watch": "jest --watch", + "format": "prettier --write \"src/**/*.ts\" \"examples/**/*.ts\"", + "run": "tsx", + "generate-api": "swagger-typescript-api -p ./weave.openapi.json -o ./src/generated -n traceServerApi.ts", + "dev": "nodemon" + }, + "repository": { + "type": "git", + "url": "https://github.com/wandb/weave/js" + }, + "author": "", + "license": "Apache-2.0", + "jest": { + "testEnvironment": "node", + "transform": { + "^.+\\.tsx?$": "ts-jest" + }, + "testMatch": [ + "**/__tests__/**/*.test.ts?(x)", + "**/?(*.)+(spec|test).ts?(x)" + ], + "moduleFileExtensions": [ + "js", + "jsx", + "ts", + "tsx", + "json", + "node" + ], + "moduleNameMapper": { + "^weave$": "/src/index.ts" + }, + "collectCoverage": true, + "coveragePathIgnorePatterns": [ + "/src/generated", + "/src/utils/userAgent.ts", + "/src/inMemoryTraceServer.ts" + ], + "coverageDirectory": "coverage", + "coverageReporters": [ + "text", + "lcov" + ], + "coverageThreshold": { + "global": { + "branches": 80, + "functions": 80, + "lines": 80, + "statements": 80 + } + } + }, + "nodemonConfig": { + "watch": [ + "." + ], + "ext": "ts,json", + "exec": "tsx examples/evaluate.ts" + }, + "dependencies": { + "cli-progress": "^3.12.0", + "openai": "^4.68.4", + "uuidv7": "^1.0.1" + }, + "devDependencies": { + "@types/cli-progress": "^3.11.6", + "@types/jest": "^29.5.13", + "@types/node": "^22.5.1", + "jest": "^29.7.0", + "nyc": "^17.1.0", + "prettier": "^3.3.3", + "source-map-support": "^0.5.21", + "swagger-typescript-api": "^13.0.22", + "ts-jest": "^29.2.5", + "tsconfig-paths": "^4.2.0", + "tsx": "^4.19.1" + } +} diff --git a/sdks/node/pnpm-lock.yaml b/sdks/node/pnpm-lock.yaml new file mode 100644 index 00000000000..e55b4d16df3 --- /dev/null +++ b/sdks/node/pnpm-lock.yaml @@ -0,0 +1,3756 @@ +lockfileVersion: '9.0' + +settings: + autoInstallPeers: true + excludeLinksFromLockfile: false + +importers: + + .: + dependencies: + cli-progress: + specifier: ^3.12.0 + version: 3.12.0 + openai: + specifier: ^4.68.4 + version: 4.68.4 + uuidv7: + specifier: ^1.0.1 + version: 1.0.2 + devDependencies: + '@types/cli-progress': + specifier: ^3.11.6 + version: 3.11.6 + '@types/jest': + specifier: ^29.5.13 + version: 29.5.14 + '@types/node': + specifier: ^22.5.1 + version: 22.8.0 + jest: + specifier: ^29.7.0 + version: 29.7.0(@types/node@22.8.0) + nyc: + specifier: ^17.1.0 + version: 17.1.0 + prettier: + specifier: ^3.3.3 + version: 3.3.3 + source-map-support: + specifier: ^0.5.21 + version: 0.5.21 + swagger-typescript-api: + specifier: ^13.0.22 + version: 13.0.22 + ts-jest: + specifier: ^29.2.5 + version: 29.2.5(@babel/core@7.26.0)(@jest/transform@29.7.0)(@jest/types@29.6.3)(babel-jest@29.7.0(@babel/core@7.26.0))(jest@29.7.0(@types/node@22.8.0))(typescript@5.5.4) + tsconfig-paths: + specifier: ^4.2.0 + version: 4.2.0 + tsx: + specifier: ^4.19.1 + version: 4.19.1 + +packages: + + '@ampproject/remapping@2.3.0': + resolution: {integrity: sha512-30iZtAPgz+LTIYoeivqYo853f02jBYSd5uGnGpkFV0M3xOt9aN73erkgYAmZU43x4VfqcnLxW9Kpg3R5LC4YYw==} + engines: {node: '>=6.0.0'} + + '@babel/code-frame@7.26.0': + resolution: {integrity: sha512-INCKxTtbXtcNbUZ3YXutwMpEleqttcswhAdee7dhuoVrD2cnuc3PqtERBtxkX5nziX9vnBL8WXmSGwv8CuPV6g==} + engines: {node: '>=6.9.0'} + + '@babel/compat-data@7.26.0': + resolution: {integrity: sha512-qETICbZSLe7uXv9VE8T/RWOdIE5qqyTucOt4zLYMafj2MRO271VGgLd4RACJMeBO37UPWhXiKMBk7YlJ0fOzQA==} + engines: {node: '>=6.9.0'} + + '@babel/core@7.26.0': + resolution: {integrity: sha512-i1SLeK+DzNnQ3LL/CswPCa/E5u4lh1k6IAEphON8F+cXt0t9euTshDru0q7/IqMa1PMPz5RnHuHscF8/ZJsStg==} + engines: {node: '>=6.9.0'} + + '@babel/generator@7.26.0': + resolution: {integrity: sha512-/AIkAmInnWwgEAJGQr9vY0c66Mj6kjkE2ZPB1PurTRaRAh3U+J45sAQMjQDJdh4WbR3l0x5xkimXBKyBXXAu2w==} + engines: {node: '>=6.9.0'} + + '@babel/helper-compilation-targets@7.25.9': + resolution: {integrity: sha512-j9Db8Suy6yV/VHa4qzrj9yZfZxhLWQdVnRlXxmKLYlhWUVB1sB2G5sxuWYXk/whHD9iW76PmNzxZ4UCnTQTVEQ==} + engines: {node: '>=6.9.0'} + + '@babel/helper-module-imports@7.25.9': + resolution: {integrity: sha512-tnUA4RsrmflIM6W6RFTLFSXITtl0wKjgpnLgXyowocVPrbYrLUXSBXDgTs8BlbmIzIdlBySRQjINYs2BAkiLtw==} + engines: {node: '>=6.9.0'} + + '@babel/helper-module-transforms@7.26.0': + resolution: {integrity: sha512-xO+xu6B5K2czEnQye6BHA7DolFFmS3LB7stHZFaOLb1pAwO1HWLS8fXA+eh0A2yIvltPVmx3eNNDBJA2SLHXFw==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0 + + '@babel/helper-plugin-utils@7.25.9': + resolution: {integrity: sha512-kSMlyUVdWe25rEsRGviIgOWnoT/nfABVWlqt9N19/dIPWViAOW2s9wznP5tURbs/IDuNk4gPy3YdYRgH3uxhBw==} + engines: {node: '>=6.9.0'} + + '@babel/helper-string-parser@7.25.9': + resolution: {integrity: sha512-4A/SCr/2KLd5jrtOMFzaKjVtAei3+2r/NChoBNoZ3EyP/+GlhoaEGoWOZUmFmoITP7zOJyHIMm+DYRd8o3PvHA==} + engines: {node: '>=6.9.0'} + + '@babel/helper-validator-identifier@7.25.9': + resolution: {integrity: sha512-Ed61U6XJc3CVRfkERJWDz4dJwKe7iLmmJsbOGu9wSloNSFttHV0I8g6UAgb7qnK5ly5bGLPd4oXZlxCdANBOWQ==} + engines: {node: '>=6.9.0'} + + '@babel/helper-validator-option@7.25.9': + resolution: {integrity: sha512-e/zv1co8pp55dNdEcCynfj9X7nyUKUXoUEwfXqaZt0omVOmDe9oOTdKStH4GmAw6zxMFs50ZayuMfHDKlO7Tfw==} + engines: {node: '>=6.9.0'} + + '@babel/helpers@7.26.0': + resolution: {integrity: sha512-tbhNuIxNcVb21pInl3ZSjksLCvgdZy9KwJ8brv993QtIVKJBBkYXz4q4ZbAv31GdnC+R90np23L5FbEBlthAEw==} + engines: {node: '>=6.9.0'} + + '@babel/parser@7.26.0': + resolution: {integrity: sha512-aP8x5pIw3xvYr/sXT+SEUwyhrXT8rUJRZltK/qN3Db80dcKpTett8cJxHyjk+xYSVXvNnl2SfcJVjbwxpOSscA==} + engines: {node: '>=6.0.0'} + hasBin: true + + '@babel/plugin-syntax-async-generators@7.8.4': + resolution: {integrity: sha512-tycmZxkGfZaxhMRbXlPXuVFpdWlXpir2W4AMhSJgRKzk/eDlIXOhb2LHWoLpDF7TEHylV5zNhykX6KAgHJmTNw==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-bigint@7.8.3': + resolution: {integrity: sha512-wnTnFlG+YxQm3vDxpGE57Pj0srRU4sHE/mDkt1qv2YJJSeUAec2ma4WLUnUPeKjyrfntVwe/N6dCXpU+zL3Npg==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-class-properties@7.12.13': + resolution: {integrity: sha512-fm4idjKla0YahUNgFNLCB0qySdsoPiZP3iQE3rky0mBUtMZ23yDJ9SJdg6dXTSDnulOVqiF3Hgr9nbXvXTQZYA==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-class-static-block@7.14.5': + resolution: {integrity: sha512-b+YyPmr6ldyNnM6sqYeMWE+bgJcJpO6yS4QD7ymxgH34GBPNDM/THBh8iunyvKIZztiwLH4CJZ0RxTk9emgpjw==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-import-attributes@7.26.0': + resolution: {integrity: sha512-e2dttdsJ1ZTpi3B9UYGLw41hifAubg19AtCu/2I/F1QNVclOBr1dYpTdmdyZ84Xiz43BS/tCUkMAZNLv12Pi+A==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-import-meta@7.10.4': + resolution: {integrity: sha512-Yqfm+XDx0+Prh3VSeEQCPU81yC+JWZ2pDPFSS4ZdpfZhp4MkFMaDC1UqseovEKwSUpnIL7+vK+Clp7bfh0iD7g==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-json-strings@7.8.3': + resolution: {integrity: sha512-lY6kdGpWHvjoe2vk4WrAapEuBR69EMxZl+RoGRhrFGNYVK8mOPAW8VfbT/ZgrFbXlDNiiaxQnAtgVCZ6jv30EA==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-jsx@7.25.9': + resolution: {integrity: sha512-ld6oezHQMZsZfp6pWtbjaNDF2tiiCYYDqQszHt5VV437lewP9aSi2Of99CK0D0XB21k7FLgnLcmQKyKzynfeAA==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-logical-assignment-operators@7.10.4': + resolution: {integrity: sha512-d8waShlpFDinQ5MtvGU9xDAOzKH47+FFoney2baFIoMr952hKOLp1HR7VszoZvOsV/4+RRszNY7D17ba0te0ig==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-nullish-coalescing-operator@7.8.3': + resolution: {integrity: sha512-aSff4zPII1u2QD7y+F8oDsz19ew4IGEJg9SVW+bqwpwtfFleiQDMdzA/R+UlWDzfnHFCxxleFT0PMIrR36XLNQ==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-numeric-separator@7.10.4': + resolution: {integrity: sha512-9H6YdfkcK/uOnY/K7/aA2xpzaAgkQn37yzWUMRK7OaPOqOpGS1+n0H5hxT9AUw9EsSjPW8SVyMJwYRtWs3X3ug==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-object-rest-spread@7.8.3': + resolution: {integrity: sha512-XoqMijGZb9y3y2XskN+P1wUGiVwWZ5JmoDRwx5+3GmEplNyVM2s2Dg8ILFQm8rWM48orGy5YpI5Bl8U1y7ydlA==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-optional-catch-binding@7.8.3': + resolution: {integrity: sha512-6VPD0Pc1lpTqw0aKoeRTMiB+kWhAoT24PA+ksWSBrFtl5SIRVpZlwN3NNPQjehA2E/91FV3RjLWoVTglWcSV3Q==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-optional-chaining@7.8.3': + resolution: {integrity: sha512-KoK9ErH1MBlCPxV0VANkXW2/dw4vlbGDrFgz8bmUsBGYkFRcbRwMh6cIJubdPrkxRwuGdtCk0v/wPTKbQgBjkg==} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-private-property-in-object@7.14.5': + resolution: {integrity: sha512-0wVnp9dxJ72ZUJDV27ZfbSj6iHLoytYZmh3rFcxNnvsJF3ktkzLDZPy/mA17HGsaQT3/DQsWYX1f1QGWkCoVUg==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-top-level-await@7.14.5': + resolution: {integrity: sha512-hx++upLv5U1rgYfwe1xBQUhRmU41NEvpUvrp8jkrSCdvGSnM5/qdRMtylJ6PG5OFkBaHkbTAKTnd3/YyESRHFw==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/plugin-syntax-typescript@7.25.9': + resolution: {integrity: sha512-hjMgRy5hb8uJJjUcdWunWVcoi9bGpJp8p5Ol1229PoN6aytsLwNMgmdftO23wnCLMfVmTwZDWMPNq/D1SY60JQ==} + engines: {node: '>=6.9.0'} + peerDependencies: + '@babel/core': ^7.0.0-0 + + '@babel/template@7.25.9': + resolution: {integrity: sha512-9DGttpmPvIxBb/2uwpVo3dqJ+O6RooAFOS+lB+xDqoE2PVCE8nfoHMdZLpfCQRLwvohzXISPZcgxt80xLfsuwg==} + engines: {node: '>=6.9.0'} + + '@babel/traverse@7.25.9': + resolution: {integrity: sha512-ZCuvfwOwlz/bawvAuvcj8rrithP2/N55Tzz342AkTvq4qaWbGfmCk/tKhNaV2cthijKrPAA8SRJV5WWe7IBMJw==} + engines: {node: '>=6.9.0'} + + '@babel/types@7.26.0': + resolution: {integrity: sha512-Z/yiTPj+lDVnF7lWeKCIJzaIkI0vYO87dMpZ4bg4TDrFe4XXLFWL1TbXU27gBP3QccxV9mZICCrnjnYlJjXHOA==} + engines: {node: '>=6.9.0'} + + '@bcoe/v8-coverage@0.2.3': + resolution: {integrity: sha512-0hYQ8SB4Db5zvZB4axdMHGwEaQjkZzFjQiN9LVYvIFB2nSUHW9tYpxWriPrWDASIxiaXax83REcLxuSdnGPZtw==} + + '@esbuild/aix-ppc64@0.23.1': + resolution: {integrity: sha512-6VhYk1diRqrhBAqpJEdjASR/+WVRtfjpqKuNw11cLiaWpAT/Uu+nokB+UJnevzy/P9C/ty6AOe0dwueMrGh/iQ==} + engines: {node: '>=18'} + cpu: [ppc64] + os: [aix] + + '@esbuild/android-arm64@0.23.1': + resolution: {integrity: sha512-xw50ipykXcLstLeWH7WRdQuysJqejuAGPd30vd1i5zSyKK3WE+ijzHmLKxdiCMtH1pHz78rOg0BKSYOSB/2Khw==} + engines: {node: '>=18'} + cpu: [arm64] + os: [android] + + '@esbuild/android-arm@0.23.1': + resolution: {integrity: sha512-uz6/tEy2IFm9RYOyvKl88zdzZfwEfKZmnX9Cj1BHjeSGNuGLuMD1kR8y5bteYmwqKm1tj8m4cb/aKEorr6fHWQ==} + engines: {node: '>=18'} + cpu: [arm] + os: [android] + + '@esbuild/android-x64@0.23.1': + resolution: {integrity: sha512-nlN9B69St9BwUoB+jkyU090bru8L0NA3yFvAd7k8dNsVH8bi9a8cUAUSEcEEgTp2z3dbEDGJGfP6VUnkQnlReg==} + engines: {node: '>=18'} + cpu: [x64] + os: [android] + + '@esbuild/darwin-arm64@0.23.1': + resolution: {integrity: sha512-YsS2e3Wtgnw7Wq53XXBLcV6JhRsEq8hkfg91ESVadIrzr9wO6jJDMZnCQbHm1Guc5t/CdDiFSSfWP58FNuvT3Q==} + engines: {node: '>=18'} + cpu: [arm64] + os: [darwin] + + '@esbuild/darwin-x64@0.23.1': + resolution: {integrity: sha512-aClqdgTDVPSEGgoCS8QDG37Gu8yc9lTHNAQlsztQ6ENetKEO//b8y31MMu2ZaPbn4kVsIABzVLXYLhCGekGDqw==} + engines: {node: '>=18'} + cpu: [x64] + os: [darwin] + + '@esbuild/freebsd-arm64@0.23.1': + resolution: {integrity: sha512-h1k6yS8/pN/NHlMl5+v4XPfikhJulk4G+tKGFIOwURBSFzE8bixw1ebjluLOjfwtLqY0kewfjLSrO6tN2MgIhA==} + engines: {node: '>=18'} + cpu: [arm64] + os: [freebsd] + + '@esbuild/freebsd-x64@0.23.1': + resolution: {integrity: sha512-lK1eJeyk1ZX8UklqFd/3A60UuZ/6UVfGT2LuGo3Wp4/z7eRTRYY+0xOu2kpClP+vMTi9wKOfXi2vjUpO1Ro76g==} + engines: {node: '>=18'} + cpu: [x64] + os: [freebsd] + + '@esbuild/linux-arm64@0.23.1': + resolution: {integrity: sha512-/93bf2yxencYDnItMYV/v116zff6UyTjo4EtEQjUBeGiVpMmffDNUyD9UN2zV+V3LRV3/on4xdZ26NKzn6754g==} + engines: {node: '>=18'} + cpu: [arm64] + os: [linux] + + '@esbuild/linux-arm@0.23.1': + resolution: {integrity: sha512-CXXkzgn+dXAPs3WBwE+Kvnrf4WECwBdfjfeYHpMeVxWE0EceB6vhWGShs6wi0IYEqMSIzdOF1XjQ/Mkm5d7ZdQ==} + engines: {node: '>=18'} + cpu: [arm] + os: [linux] + + '@esbuild/linux-ia32@0.23.1': + resolution: {integrity: sha512-VTN4EuOHwXEkXzX5nTvVY4s7E/Krz7COC8xkftbbKRYAl96vPiUssGkeMELQMOnLOJ8k3BY1+ZY52tttZnHcXQ==} + engines: {node: '>=18'} + cpu: [ia32] + os: [linux] + + '@esbuild/linux-loong64@0.23.1': + resolution: {integrity: sha512-Vx09LzEoBa5zDnieH8LSMRToj7ir/Jeq0Gu6qJ/1GcBq9GkfoEAoXvLiW1U9J1qE/Y/Oyaq33w5p2ZWrNNHNEw==} + engines: {node: '>=18'} + cpu: [loong64] + os: [linux] + + '@esbuild/linux-mips64el@0.23.1': + resolution: {integrity: sha512-nrFzzMQ7W4WRLNUOU5dlWAqa6yVeI0P78WKGUo7lg2HShq/yx+UYkeNSE0SSfSure0SqgnsxPvmAUu/vu0E+3Q==} + engines: {node: '>=18'} + cpu: [mips64el] + os: [linux] + + '@esbuild/linux-ppc64@0.23.1': + resolution: {integrity: sha512-dKN8fgVqd0vUIjxuJI6P/9SSSe/mB9rvA98CSH2sJnlZ/OCZWO1DJvxj8jvKTfYUdGfcq2dDxoKaC6bHuTlgcw==} + engines: {node: '>=18'} + cpu: [ppc64] + os: [linux] + + '@esbuild/linux-riscv64@0.23.1': + resolution: {integrity: sha512-5AV4Pzp80fhHL83JM6LoA6pTQVWgB1HovMBsLQ9OZWLDqVY8MVobBXNSmAJi//Csh6tcY7e7Lny2Hg1tElMjIA==} + engines: {node: '>=18'} + cpu: [riscv64] + os: [linux] + + '@esbuild/linux-s390x@0.23.1': + resolution: {integrity: sha512-9ygs73tuFCe6f6m/Tb+9LtYxWR4c9yg7zjt2cYkjDbDpV/xVn+68cQxMXCjUpYwEkze2RcU/rMnfIXNRFmSoDw==} + engines: {node: '>=18'} + cpu: [s390x] + os: [linux] + + '@esbuild/linux-x64@0.23.1': + resolution: {integrity: sha512-EV6+ovTsEXCPAp58g2dD68LxoP/wK5pRvgy0J/HxPGB009omFPv3Yet0HiaqvrIrgPTBuC6wCH1LTOY91EO5hQ==} + engines: {node: '>=18'} + cpu: [x64] + os: [linux] + + '@esbuild/netbsd-x64@0.23.1': + resolution: {integrity: sha512-aevEkCNu7KlPRpYLjwmdcuNz6bDFiE7Z8XC4CPqExjTvrHugh28QzUXVOZtiYghciKUacNktqxdpymplil1beA==} + engines: {node: '>=18'} + cpu: [x64] + os: [netbsd] + + '@esbuild/openbsd-arm64@0.23.1': + resolution: {integrity: sha512-3x37szhLexNA4bXhLrCC/LImN/YtWis6WXr1VESlfVtVeoFJBRINPJ3f0a/6LV8zpikqoUg4hyXw0sFBt5Cr+Q==} + engines: {node: '>=18'} + cpu: [arm64] + os: [openbsd] + + '@esbuild/openbsd-x64@0.23.1': + resolution: {integrity: sha512-aY2gMmKmPhxfU+0EdnN+XNtGbjfQgwZj43k8G3fyrDM/UdZww6xrWxmDkuz2eCZchqVeABjV5BpildOrUbBTqA==} + engines: {node: '>=18'} + cpu: [x64] + os: [openbsd] + + '@esbuild/sunos-x64@0.23.1': + resolution: {integrity: sha512-RBRT2gqEl0IKQABT4XTj78tpk9v7ehp+mazn2HbUeZl1YMdaGAQqhapjGTCe7uw7y0frDi4gS0uHzhvpFuI1sA==} + engines: {node: '>=18'} + cpu: [x64] + os: [sunos] + + '@esbuild/win32-arm64@0.23.1': + resolution: {integrity: sha512-4O+gPR5rEBe2FpKOVyiJ7wNDPA8nGzDuJ6gN4okSA1gEOYZ67N8JPk58tkWtdtPeLz7lBnY6I5L3jdsr3S+A6A==} + engines: {node: '>=18'} + cpu: [arm64] + os: [win32] + + '@esbuild/win32-ia32@0.23.1': + resolution: {integrity: sha512-BcaL0Vn6QwCwre3Y717nVHZbAa4UBEigzFm6VdsVdT/MbZ38xoj1X9HPkZhbmaBGUD1W8vxAfffbDe8bA6AKnQ==} + engines: {node: '>=18'} + cpu: [ia32] + os: [win32] + + '@esbuild/win32-x64@0.23.1': + resolution: {integrity: sha512-BHpFFeslkWrXWyUPnbKm+xYYVYruCinGcftSBaa8zoF9hZO4BcSCFUvHVTtzpIY6YzUnYtuEhZ+C9iEXjxnasg==} + engines: {node: '>=18'} + cpu: [x64] + os: [win32] + + '@exodus/schemasafe@1.3.0': + resolution: {integrity: sha512-5Aap/GaRupgNx/feGBwLLTVv8OQFfv3pq2lPRzPg9R+IOBnDgghTGW7l7EuVXOvg5cc/xSAlRW8rBrjIC3Nvqw==} + + '@istanbuljs/load-nyc-config@1.1.0': + resolution: {integrity: sha512-VjeHSlIzpv/NyD3N0YuHfXOPDIixcA1q2ZV98wsMqcYlPmv2n3Yb2lYP9XMElnaFVXg5A7YLTeLu6V84uQDjmQ==} + engines: {node: '>=8'} + + '@istanbuljs/schema@0.1.3': + resolution: {integrity: sha512-ZXRY4jNvVgSVQ8DL3LTcakaAtXwTVUxE81hslsyD2AtoXW/wVob10HkOJ1X/pAlcI7D+2YoZKg5do8G/w6RYgA==} + engines: {node: '>=8'} + + '@jest/console@29.7.0': + resolution: {integrity: sha512-5Ni4CU7XHQi32IJ398EEP4RrB8eV09sXP2ROqD4bksHrnTree52PsxvX8tpL8LvTZ3pFzXyPbNQReSN41CAhOg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/core@29.7.0': + resolution: {integrity: sha512-n7aeXWKMnGtDA48y8TLWJPJmLmmZ642Ceo78cYWEpiD7FzDgmNDV/GCVRorPABdXLJZ/9wzzgZAlHjXjxDHGsg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + peerDependencies: + node-notifier: ^8.0.1 || ^9.0.0 || ^10.0.0 + peerDependenciesMeta: + node-notifier: + optional: true + + '@jest/environment@29.7.0': + resolution: {integrity: sha512-aQIfHDq33ExsN4jP1NWGXhxgQ/wixs60gDiKO+XVMd8Mn0NWPWgc34ZQDTb2jKaUWQ7MuwoitXAsN2XVXNMpAw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/expect-utils@29.7.0': + resolution: {integrity: sha512-GlsNBWiFQFCVi9QVSx7f5AgMeLxe9YCCs5PuP2O2LdjDAA8Jh9eX7lA1Jq/xdXw3Wb3hyvlFNfZIfcRetSzYcA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/expect@29.7.0': + resolution: {integrity: sha512-8uMeAMycttpva3P1lBHB8VciS9V0XAr3GymPpipdyQXbBcuhkLQOSe8E/p92RyAdToS6ZD1tFkX+CkhoECE0dQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/fake-timers@29.7.0': + resolution: {integrity: sha512-q4DH1Ha4TTFPdxLsqDXK1d3+ioSL7yL5oCMJZgDYm6i+6CygW5E5xVr/D1HdsGxjt1ZWSfUAs9OxSB/BNelWrQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/globals@29.7.0': + resolution: {integrity: sha512-mpiz3dutLbkW2MNFubUGUEVLkTGiqW6yLVTA+JbP6fI6J5iL9Y0Nlg8k95pcF8ctKwCS7WVxteBs29hhfAotzQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/reporters@29.7.0': + resolution: {integrity: sha512-DApq0KJbJOEzAFYjHADNNxAE3KbhxQB1y5Kplb5Waqw6zVbuWatSnMjE5gs8FUgEPmNsnZA3NCWl9NG0ia04Pg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + peerDependencies: + node-notifier: ^8.0.1 || ^9.0.0 || ^10.0.0 + peerDependenciesMeta: + node-notifier: + optional: true + + '@jest/schemas@29.6.3': + resolution: {integrity: sha512-mo5j5X+jIZmJQveBKeS/clAueipV7KgiX1vMgCxam1RNYiqE1w62n0/tJJnHtjW8ZHcQco5gY85jA3mi0L+nSA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/source-map@29.6.3': + resolution: {integrity: sha512-MHjT95QuipcPrpLM+8JMSzFx6eHp5Bm+4XeFDJlwsvVBjmKNiIAvasGK2fxz2WbGRlnvqehFbh07MMa7n3YJnw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/test-result@29.7.0': + resolution: {integrity: sha512-Fdx+tv6x1zlkJPcWXmMDAG2HBnaR9XPSd5aDWQVsfrZmLVT3lU1cwyxLgRmXR9yrq4NBoEm9BMsfgFzTQAbJYA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/test-sequencer@29.7.0': + resolution: {integrity: sha512-GQwJ5WZVrKnOJuiYiAF52UNUJXgTZx1NHjFSEB0qEMmSZKAkdMoIzw/Cj6x6NF4AvV23AUqDpFzQkN/eYCYTxw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/transform@29.7.0': + resolution: {integrity: sha512-ok/BTPFzFKVMwO5eOHRrvnBVHdRy9IrsrW1GpMaQ9MCnilNLXQKmAX8s1YXDFaai9xJpac2ySzV0YeRRECr2Vw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jest/types@29.6.3': + resolution: {integrity: sha512-u3UPsIilWKOM3F9CXtrG8LEJmNxwoCQC/XVj4IKYXvvpx7QIi/Kg1LI5uDmDpKlac62NUtX7eLjRh+jVZcLOzw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + '@jridgewell/gen-mapping@0.3.5': + resolution: {integrity: sha512-IzL8ZoEDIBRWEzlCcRhOaCupYyN5gdIK+Q6fbFdPDg6HqX6jpkItn7DFIpW9LQzXG6Df9sA7+OKnq0qlz/GaQg==} + engines: {node: '>=6.0.0'} + + '@jridgewell/resolve-uri@3.1.2': + resolution: {integrity: sha512-bRISgCIjP20/tbWSPWMEi54QVPRZExkuD9lJL+UIxUKtwVJA8wW1Trb1jMs1RFXo1CBTNZ/5hpC9QvmKWdopKw==} + engines: {node: '>=6.0.0'} + + '@jridgewell/set-array@1.2.1': + resolution: {integrity: sha512-R8gLRTZeyp03ymzP/6Lil/28tGeGEzhx1q2k703KGWRAI1VdvPIXdG70VJc2pAMw3NA6JKL5hhFu1sJX0Mnn/A==} + engines: {node: '>=6.0.0'} + + '@jridgewell/sourcemap-codec@1.5.0': + resolution: {integrity: sha512-gv3ZRaISU3fjPAgNsriBRqGWQL6quFx04YMPW/zD8XMLsU32mhCCbfbO6KZFLjvYpCZ8zyDEgqsgf+PwPaM7GQ==} + + '@jridgewell/trace-mapping@0.3.25': + resolution: {integrity: sha512-vNk6aEwybGtawWmy/PzwnGDOjCkLWSD2wqvjGGAgOAwCGWySYXfYoxt00IJkTF+8Lb57DwOb3Aa0o9CApepiYQ==} + + '@sinclair/typebox@0.27.8': + resolution: {integrity: sha512-+Fj43pSMwJs4KRrH/938Uf+uAELIgVBmQzg/q1YG10djyfA3TnrU8N8XzqCh/okZdszqBQTZf96idMfE5lnwTA==} + + '@sinonjs/commons@3.0.1': + resolution: {integrity: sha512-K3mCHKQ9sVh8o1C9cxkwxaOmXoAMlDxC1mYyHrjqOWEcBjYr76t96zL2zlj5dUGZ3HSw240X1qgH3Mjf1yJWpQ==} + + '@sinonjs/fake-timers@10.3.0': + resolution: {integrity: sha512-V4BG07kuYSUkTCSBHG8G8TNhM+F19jXFWnQtzj+we8DrkpSBCee9Z3Ms8yiGer/dlmhe35/Xdgyo3/0rQKg7YA==} + + '@types/babel__core@7.20.5': + resolution: {integrity: sha512-qoQprZvz5wQFJwMDqeseRXWv3rqMvhgpbXFfVyWhbx9X47POIA6i/+dXefEmZKoAgOaTdaIgNSMqMIU61yRyzA==} + + '@types/babel__generator@7.6.8': + resolution: {integrity: sha512-ASsj+tpEDsEiFr1arWrlN6V3mdfjRMZt6LtK/Vp/kreFLnr5QH5+DhvD5nINYZXzwJvXeGq+05iUXcAzVrqWtw==} + + '@types/babel__template@7.4.4': + resolution: {integrity: sha512-h/NUaSyG5EyxBIp8YRxo4RMe2/qQgvyowRwVMzhYhBCONbW8PUsg4lkFMrhgZhUe5z3L3MiLDuvyJ/CaPa2A8A==} + + '@types/babel__traverse@7.20.6': + resolution: {integrity: sha512-r1bzfrm0tomOI8g1SzvCaQHo6Lcv6zu0EA+W2kHrt8dyrHQxGzBBL4kdkzIS+jBMV+EYcMAEAqXqYaLJq5rOZg==} + + '@types/cli-progress@3.11.6': + resolution: {integrity: sha512-cE3+jb9WRlu+uOSAugewNpITJDt1VF8dHOopPO4IABFc3SXYL5WE/+PTz/FCdZRRfIujiWW3n3aMbv1eIGVRWA==} + + '@types/graceful-fs@4.1.9': + resolution: {integrity: sha512-olP3sd1qOEe5dXTSaFvQG+02VdRXcdytWLAZsAq1PecU8uqQAhkrnbli7DagjtXKW/Bl7YJbUsa8MPcuc8LHEQ==} + + '@types/istanbul-lib-coverage@2.0.6': + resolution: {integrity: sha512-2QF/t/auWm0lsy8XtKVPG19v3sSOQlJe/YHZgfjb/KBBHOGSV+J2q/S671rcq9uTBrLAXmZpqJiaQbMT+zNU1w==} + + '@types/istanbul-lib-report@3.0.3': + resolution: {integrity: sha512-NQn7AHQnk/RSLOxrBbGyJM/aVQ+pjj5HCgasFxc0K/KhoATfQ/47AyUl15I2yBUpihjmas+a+VJBOqecrFH+uA==} + + '@types/istanbul-reports@3.0.4': + resolution: {integrity: sha512-pk2B1NWalF9toCRu6gjBzR69syFjP4Od8WRAX+0mmf9lAjCRicLOWc+ZrxZHx/0XRjotgkF9t6iaMJ+aXcOdZQ==} + + '@types/jest@29.5.14': + resolution: {integrity: sha512-ZN+4sdnLUbo8EVvVc2ao0GFW6oVrQRPn4K2lglySj7APvSrgzxHiNNK99us4WDMi57xxA2yggblIAMNhXOotLQ==} + + '@types/node-fetch@2.6.11': + resolution: {integrity: sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==} + + '@types/node@18.19.59': + resolution: {integrity: sha512-vizm2EqwV/7Zay+A6J3tGl9Lhr7CjZe2HmWS988sefiEmsyP9CeXEleho6i4hJk/8UtZAo0bWN4QPZZr83RxvQ==} + + '@types/node@22.8.0': + resolution: {integrity: sha512-84rafSBHC/z1i1E3p0cJwKA+CfYDNSXX9WSZBRopjIzLET8oNt6ht2tei4C7izwDeEiLLfdeSVBv1egOH916hg==} + + '@types/stack-utils@2.0.3': + resolution: {integrity: sha512-9aEbYZ3TbYMznPdcdr3SmIrLXwC/AKZXQeCf9Pgao5CKb8CyHuEX5jzWPTkvregvhRJHcpRO6BFoGW9ycaOkYw==} + + '@types/swagger-schema-official@2.0.25': + resolution: {integrity: sha512-T92Xav+Gf/Ik1uPW581nA+JftmjWPgskw/WBf4TJzxRG/SJ+DfNnNE+WuZ4mrXuzflQMqMkm1LSYjzYW7MB1Cg==} + + '@types/yargs-parser@21.0.3': + resolution: {integrity: sha512-I4q9QU9MQv4oEOz4tAHJtNz1cwuLxn2F3xcc2iV5WdqLPpUnj30aUuxt1mAxYTG+oe8CZMV/+6rU4S4gRDzqtQ==} + + '@types/yargs@17.0.33': + resolution: {integrity: sha512-WpxBCKWPLr4xSsHgz511rFJAM+wS28w2zEO1QDNY5zM/S8ok70NNfztH0xwhqKyaK0OHCbN98LDAZuy1ctxDkA==} + + abort-controller@3.0.0: + resolution: {integrity: sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==} + engines: {node: '>=6.5'} + + agentkeepalive@4.5.0: + resolution: {integrity: sha512-5GG/5IbQQpC9FpkRGsSvZI5QYeSCzlJHdpBQntCsuTOxhKD8lqKhrleg2Yi7yvMIf82Ycmmqln9U8V9qwEiJew==} + engines: {node: '>= 8.0.0'} + + aggregate-error@3.1.0: + resolution: {integrity: sha512-4I7Td01quW/RpocfNayFdFVk1qSuoh0E7JrbRJ16nH01HhKFQ88INq9Sd+nd72zqRySlr9BmDA8xlEJ6vJMrYA==} + engines: {node: '>=8'} + + ansi-escapes@4.3.2: + resolution: {integrity: sha512-gKXj5ALrKWQLsYG9jlTRmR/xKluxHV+Z9QEwNIgCfM1/uwPMCuzVVnh5mwTd+OuBZcwSIMbqssNWRm1lE51QaQ==} + engines: {node: '>=8'} + + ansi-regex@5.0.1: + resolution: {integrity: sha512-quJQXlTSUGL2LH9SUXo8VwsY4soanhgo6LNSm84E1LBcE8s3O0wpdiRzyR9z/ZZJMlMWv37qOOb9pdJlMUEKFQ==} + engines: {node: '>=8'} + + ansi-styles@4.3.0: + resolution: {integrity: sha512-zbB9rCJAT1rbjiVDb2hqKFHNYLxgtk8NURxZ3IZwD3F6NtxbXZQCnnSi1Lkx+IDohdPlFp222wVALIheZJQSEg==} + engines: {node: '>=8'} + + ansi-styles@5.2.0: + resolution: {integrity: sha512-Cxwpt2SfTzTtXcfOlzGEee8O+c+MmUgGrNiBcXnuWxuFJHe6a5Hz7qwhwe5OgaSYI0IJvkLqWX1ASG+cJOkEiA==} + engines: {node: '>=10'} + + anymatch@3.1.3: + resolution: {integrity: sha512-KMReFUr0B4t+D+OBkjR3KYqvocp2XaSzO55UcB6mgQMd3KbcE+mWTyvVV7D/zsdEbNnV6acZUutkiHQXvTr1Rw==} + engines: {node: '>= 8'} + + append-transform@2.0.0: + resolution: {integrity: sha512-7yeyCEurROLQJFv5Xj4lEGTy0borxepjFv1g22oAdqFu//SrAlDl1O1Nxx15SH1RoliUml6p8dwJW9jvZughhg==} + engines: {node: '>=8'} + + archy@1.0.0: + resolution: {integrity: sha512-Xg+9RwCg/0p32teKdGMPTPnVXKD0w3DfHnFTficozsAgsvq2XenPJq/MYpzzQ/v8zrOyJn6Ds39VA4JIDwFfqw==} + + argparse@1.0.10: + resolution: {integrity: sha512-o5Roy6tNG4SL/FOkCAN6RzjiakZS25RLYFrcMttJqbdd8BWrnA+fGz57iN5Pb06pvBGvl5gQ0B48dJlslXvoTg==} + + argparse@2.0.1: + resolution: {integrity: sha512-8+9WqebbFzpX9OR+Wa6O29asIogeRMzcGtAINdpMHHyAg10f05aSFVBbcEqGf/PXw1EjAZ+q2/bEBg3DvurK3Q==} + + async@3.2.6: + resolution: {integrity: sha512-htCUDlxyyCLMgaM3xXg0C0LW2xqfuQ6p05pCEIsXuyQ+a1koYKTuBMzRNwmybfLgvJDMd0r1LTn4+E0Ti6C2AA==} + + asynckit@0.4.0: + resolution: {integrity: sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==} + + babel-jest@29.7.0: + resolution: {integrity: sha512-BrvGY3xZSwEcCzKvKsCi2GgHqDqsYkOP4/by5xCgIwGXQxIEh+8ew3gmrE1y7XRR6LHZIj6yLYnUi/mm2KXKBg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + peerDependencies: + '@babel/core': ^7.8.0 + + babel-plugin-istanbul@6.1.1: + resolution: {integrity: sha512-Y1IQok9821cC9onCx5otgFfRm7Lm+I+wwxOx738M/WLPZ9Q42m4IG5W0FNX8WLL2gYMZo3JkuXIH2DOpWM+qwA==} + engines: {node: '>=8'} + + babel-plugin-jest-hoist@29.6.3: + resolution: {integrity: sha512-ESAc/RJvGTFEzRwOTT4+lNDk/GNHMkKbNzsvT0qKRfDyyYTskxB5rnU2njIDYVxXCBHHEI1c0YwHob3WaYujOg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + babel-preset-current-node-syntax@1.1.0: + resolution: {integrity: sha512-ldYss8SbBlWva1bs28q78Ju5Zq1F+8BrqBZZ0VFhLBvhh6lCpC2o3gDJi/5DRLs9FgYZCnmPYIVFU4lRXCkyUw==} + peerDependencies: + '@babel/core': ^7.0.0 + + babel-preset-jest@29.6.3: + resolution: {integrity: sha512-0B3bhxR6snWXJZtR/RliHTDPRgn1sNHOR0yVtq/IiQFyuOVjFS+wuio/R4gSNkyYmKmJB4wGZv2NZanmKmTnNA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + peerDependencies: + '@babel/core': ^7.0.0 + + balanced-match@1.0.2: + resolution: {integrity: sha512-3oSeUO0TMV67hN1AmbXsK4yaqU7tjiHlbxRDZOpH0KW9+CeX4bRAaX0Anxt0tx2MrpRpWwQaPwIlISEJhYU5Pw==} + + brace-expansion@1.1.11: + resolution: {integrity: sha512-iCuPHDFgrHX7H2vEI/5xpz07zSHB00TpugqhmYtVmMO6518mCuRMoOYFldEBl0g187ufozdaHgWKcYFb61qGiA==} + + brace-expansion@2.0.1: + resolution: {integrity: sha512-XnAIvQ8eM+kC6aULx6wuQiwVsnzsi9d3WxzV3FpWTGA19F621kwdbsAcFKXgKUHZWsy+mY6iL1sHTxWEFCytDA==} + + braces@3.0.3: + resolution: {integrity: sha512-yQbXgO/OSZVD2IsiLlro+7Hf6Q18EJrKSEsdoMzKePKXct3gvD8oLcOQdIzGupr5Fj+EDe8gO/lxc1BzfMpxvA==} + engines: {node: '>=8'} + + browserslist@4.24.2: + resolution: {integrity: sha512-ZIc+Q62revdMcqC6aChtW4jz3My3klmCO1fEmINZY/8J3EpBg5/A/D0AKmBveUh6pgoeycoMkVMko84tuYS+Gg==} + engines: {node: ^6 || ^7 || ^8 || ^9 || ^10 || ^11 || ^12 || >=13.7} + hasBin: true + + bs-logger@0.2.6: + resolution: {integrity: sha512-pd8DCoxmbgc7hyPKOvxtqNcjYoOsABPQdcCUjGp3d42VR2CX1ORhk2A87oqqu5R1kk+76nsxZupkmyd+MVtCog==} + engines: {node: '>= 6'} + + bser@2.1.1: + resolution: {integrity: sha512-gQxTNE/GAfIIrmHLUE3oJyp5FO6HRBfhjnw4/wMmA63ZGDJnWBmgY/lyQBpnDUkGmAhbSe39tx2d/iTOAfglwQ==} + + buffer-from@1.1.2: + resolution: {integrity: sha512-E+XQCRwSbaaiChtv6k6Dwgc+bx+Bs6vuKJHHl5kox/BaKbhiXzqQOwK4cO22yElGp2OCmjwVhT3HmxgyPGnJfQ==} + + caching-transform@4.0.0: + resolution: {integrity: sha512-kpqOvwXnjjN44D89K5ccQC+RUrsy7jB/XLlRrx0D7/2HNcTPqzsb6XgYoErwko6QsV184CA2YgS1fxDiiDZMWA==} + engines: {node: '>=8'} + + call-me-maybe@1.0.2: + resolution: {integrity: sha512-HpX65o1Hnr9HH25ojC1YGs7HCQLq0GCOibSaWER0eNpgJ/Z1MZv2mTc7+xh6WOPxbRVcmgbv4hGU+uSQ/2xFZQ==} + + callsites@3.1.0: + resolution: {integrity: sha512-P8BjAsXvZS+VIDUI11hHCQEv74YT67YUi5JJFNWIqL235sBmjX4+qx9Muvls5ivyNENctx46xQLQ3aTuE7ssaQ==} + engines: {node: '>=6'} + + camelcase@5.3.1: + resolution: {integrity: sha512-L28STB170nwWS63UjtlEOE3dldQApaJXZkOI1uMFfzf3rRuPegHaHesyee+YxQ+W6SvRDQV6UrdOdRiR153wJg==} + engines: {node: '>=6'} + + camelcase@6.3.0: + resolution: {integrity: sha512-Gmy6FhYlCY7uOElZUSbxo2UCDH8owEk996gkbrpsgGtrJLM3J7jGxl9Ic7Qwwj4ivOE5AWZWRMecDdF7hqGjFA==} + engines: {node: '>=10'} + + caniuse-lite@1.0.30001669: + resolution: {integrity: sha512-DlWzFDJqstqtIVx1zeSpIMLjunf5SmwOw0N2Ck/QSQdS8PLS4+9HrLaYei4w8BIAL7IB/UEDu889d8vhCTPA0w==} + + chalk@4.1.2: + resolution: {integrity: sha512-oKnbhFyRIXpUuez8iBMmyEa4nbj4IOQyuhc/wy9kY7/WVPcwIO9VA668Pu8RkO7+0G76SLROeyw9CpQ061i4mA==} + engines: {node: '>=10'} + + char-regex@1.0.2: + resolution: {integrity: sha512-kWWXztvZ5SBQV+eRgKFeh8q5sLuZY2+8WUIzlxWVTg+oGwY14qylx1KbKzHd8P6ZYkAg0xyIDU9JMHhyJMZ1jw==} + engines: {node: '>=10'} + + ci-info@3.9.0: + resolution: {integrity: sha512-NIxF55hv4nSqQswkAeiOi1r83xy8JldOFDTWiug55KBu9Jnblncd2U6ViHmYgHf01TPZS77NJBhBMKdWj9HQMQ==} + engines: {node: '>=8'} + + cjs-module-lexer@1.4.1: + resolution: {integrity: sha512-cuSVIHi9/9E/+821Qjdvngor+xpnlwnuwIyZOaLmHBVdXL+gP+I6QQB9VkO7RI77YIcTV+S1W9AreJ5eN63JBA==} + + clean-stack@2.2.0: + resolution: {integrity: sha512-4diC9HaTE+KRAMWhDhrGOECgWZxoevMc5TlkObMqNSsVU62PYzXZ/SMTjzyGAFF1YusgxGcSWTEXBhp0CPwQ1A==} + engines: {node: '>=6'} + + cli-progress@3.12.0: + resolution: {integrity: sha512-tRkV3HJ1ASwm19THiiLIXLO7Im7wlTuKnvkYaTkyoAPefqjNg7W7DHKUlGRxy9vxDvbyCYQkQozvptuMkGCg8A==} + engines: {node: '>=4'} + + cliui@6.0.0: + resolution: {integrity: sha512-t6wbgtoCXvAzst7QgXxJYqPt0usEfbgQdftEPbLL/cvv6HPE5VgvqCuAIDR0NgU52ds6rFwqrgakNLrHEjCbrQ==} + + cliui@8.0.1: + resolution: {integrity: sha512-BSeNnyus75C4//NQ9gQt1/csTXyo/8Sb+afLAkzAptFuMsod9HFokGNudZpi/oQV73hnVK+sR+5PVRMd+Dr7YQ==} + engines: {node: '>=12'} + + co@4.6.0: + resolution: {integrity: sha512-QVb0dM5HvG+uaxitm8wONl7jltx8dqhfU33DcqtOZcLSVIKSDDLDi7+0LbAKiyI8hD9u42m2YxXSkMGWThaecQ==} + engines: {iojs: '>= 1.0.0', node: '>= 0.12.0'} + + collect-v8-coverage@1.0.2: + resolution: {integrity: sha512-lHl4d5/ONEbLlJvaJNtsF/Lz+WvB07u2ycqTYbdrq7UypDXailES4valYb2eWiJFxZlVmpGekfqoxQhzyFdT4Q==} + + color-convert@2.0.1: + resolution: {integrity: sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==} + engines: {node: '>=7.0.0'} + + color-name@1.1.4: + resolution: {integrity: sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA==} + + combined-stream@1.0.8: + resolution: {integrity: sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==} + engines: {node: '>= 0.8'} + + commondir@1.0.1: + resolution: {integrity: sha512-W9pAhw0ja1Edb5GVdIF1mjZw/ASI0AlShXM83UUGe2DVr5TdAPEA1OA8m/g8zWp9x6On7gqufY+FatDbC3MDQg==} + + concat-map@0.0.1: + resolution: {integrity: sha512-/Srv4dswyQNBfohGpz9o6Yb3Gz3SrUDqBH5rTuhGR7ahtlbYKnVxw2bCFMRljaA7EXHaXZ8wsHdodFvbkhKmqg==} + + consola@3.2.3: + resolution: {integrity: sha512-I5qxpzLv+sJhTVEoLYNcTW+bThDCPsit0vLNKShZx6rLtpilNpmmeTPaeqJb9ZE9dV3DGaeby6Vuhrw38WjeyQ==} + engines: {node: ^14.18.0 || >=16.10.0} + + convert-source-map@1.9.0: + resolution: {integrity: sha512-ASFBup0Mz1uyiIjANan1jzLQami9z1PoYSZCiiYW2FczPbenXc45FZdBZLzOT+r6+iciuEModtmCti+hjaAk0A==} + + convert-source-map@2.0.0: + resolution: {integrity: sha512-Kvp459HrV2FEJ1CAsi1Ku+MY3kasH19TFykTz2xWmMeq6bk2NU3XXvfJ+Q61m0xktWwt+1HSYf3JZsTms3aRJg==} + + cosmiconfig@9.0.0: + resolution: {integrity: sha512-itvL5h8RETACmOTFc4UfIyB2RfEHi71Ax6E/PivVxq9NseKbOWpeyHEOIbmAw1rs8Ak0VursQNww7lf7YtUwzg==} + engines: {node: '>=14'} + peerDependencies: + typescript: '>=4.9.5' + peerDependenciesMeta: + typescript: + optional: true + + create-jest@29.7.0: + resolution: {integrity: sha512-Adz2bdH0Vq3F53KEMJOoftQFutWCukm6J24wbPWRO4k1kMY7gS7ds/uoJkNuV8wDCtWWnuwGcJwpWcih+zEW1Q==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + hasBin: true + + cross-spawn@7.0.3: + resolution: {integrity: sha512-iRDPJKUPVEND7dHPO8rkbOnPpyDygcDFtWjpeWNCgy8WP2rXcxXL8TskReQl6OrB2G7+UJrags1q15Fudc7G6w==} + engines: {node: '>= 8'} + + debug@4.3.7: + resolution: {integrity: sha512-Er2nc/H7RrMXZBFCEim6TCmMk02Z8vLC2Rbi1KEBggpo0fS6l0S1nnapwmIi3yW/+GOJap1Krg4w0Hg80oCqgQ==} + engines: {node: '>=6.0'} + peerDependencies: + supports-color: '*' + peerDependenciesMeta: + supports-color: + optional: true + + decamelize@1.2.0: + resolution: {integrity: sha512-z2S+W9X73hAUUki+N+9Za2lBlun89zigOyGrsax+KUQ6wKW4ZoWpEYBkGhQjwAjjDCkWxhY0VKEhk8wzY7F5cA==} + engines: {node: '>=0.10.0'} + + dedent@1.5.3: + resolution: {integrity: sha512-NHQtfOOW68WD8lgypbLA5oT+Bt0xXJhiYvoR6SmmNXZfpzOGXwdKWmcwG8N7PwVVWV3eF/68nmD9BaJSsTBhyQ==} + peerDependencies: + babel-plugin-macros: ^3.1.0 + peerDependenciesMeta: + babel-plugin-macros: + optional: true + + deepmerge@4.3.1: + resolution: {integrity: sha512-3sUqbMEc77XqpdNO7FRyRog+eW3ph+GYCbj+rK+uYyRMuwsVy0rMiVtPn+QJlKFvWP/1PYpapqYn0Me2knFn+A==} + engines: {node: '>=0.10.0'} + + default-require-extensions@3.0.1: + resolution: {integrity: sha512-eXTJmRbm2TIt9MgWTsOH1wEuhew6XGZcMeGKCtLedIg/NCsg1iBePXkceTdK4Fii7pzmN9tGsZhKzZ4h7O/fxw==} + engines: {node: '>=8'} + + delayed-stream@1.0.0: + resolution: {integrity: sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==} + engines: {node: '>=0.4.0'} + + detect-newline@3.1.0: + resolution: {integrity: sha512-TLz+x/vEXm/Y7P7wn1EJFNLxYpUD4TgMosxY6fAVJUnJMbupHBOncxyWUG9OpTaH9EBD7uFI5LfEgmMOc54DsA==} + engines: {node: '>=8'} + + didyoumean@1.2.2: + resolution: {integrity: sha512-gxtyfqMg7GKyhQmb056K7M3xszy/myH8w+B4RT+QXBQsvAOdc3XymqDDPHx1BgPgsdAA5SIifona89YtRATDzw==} + + diff-sequences@29.6.3: + resolution: {integrity: sha512-EjePK1srD3P08o2j4f0ExnylqRs5B9tJjcp9t1krH2qRi8CCdsYfwe9JgSLurFBWwq4uOlipzfk5fHNvwFKr8Q==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + ejs@3.1.10: + resolution: {integrity: sha512-UeJmFfOrAQS8OJWPZ4qtgHyWExa088/MtK5UEyoJGFH67cDEXkZSviOiKRCZ4Xij0zxI3JECgYs3oKx+AizQBA==} + engines: {node: '>=0.10.0'} + hasBin: true + + electron-to-chromium@1.5.45: + resolution: {integrity: sha512-vOzZS6uZwhhbkZbcRyiy99Wg+pYFV5hk+5YaECvx0+Z31NR3Tt5zS6dze2OepT6PCTzVzT0dIJItti+uAW5zmw==} + + emittery@0.13.1: + resolution: {integrity: sha512-DeWwawk6r5yR9jFgnDKYt4sLS0LmHJJi3ZOnb5/JdbYwj3nW+FxQnHIjhBKz8YLC7oRNPVM9NQ47I3CVx34eqQ==} + engines: {node: '>=12'} + + emoji-regex@8.0.0: + resolution: {integrity: sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A==} + + env-paths@2.2.1: + resolution: {integrity: sha512-+h1lkLKhZMTYjog1VEpJNG7NZJWcuc2DDk/qsqSTRRCOXiLjeQ1d1/udrUGhqMxUgAlwKNZ0cf2uqan5GLuS2A==} + engines: {node: '>=6'} + + error-ex@1.3.2: + resolution: {integrity: sha512-7dFHNmqeFSEt2ZBsCriorKnn3Z2pj+fd9kmI6QoWw4//DL+icEBfc0U7qJCisqrTsKTjw4fNFy2pW9OqStD84g==} + + es6-error@4.1.1: + resolution: {integrity: sha512-Um/+FxMr9CISWh0bi5Zv0iOD+4cFh5qLeks1qhAopKVAJw3drgKbKySikp7wGhDL0HPeaja0P5ULZrxLkniUVg==} + + es6-promise@3.3.1: + resolution: {integrity: sha512-SOp9Phqvqn7jtEUxPWdWfWoLmyt2VaJ6MpvP9Comy1MceMXqE6bxvaTu4iaxpYYPzhny28Lc+M87/c2cPK6lDg==} + + esbuild@0.23.1: + resolution: {integrity: sha512-VVNz/9Sa0bs5SELtn3f7qhJCDPCF5oMEl5cO9/SSinpE9hbPVvxbd572HH5AKiP7WD8INO53GgfDDhRjkylHEg==} + engines: {node: '>=18'} + hasBin: true + + escalade@3.2.0: + resolution: {integrity: sha512-WUj2qlxaQtO4g6Pq5c29GTcWGDyd8itL8zTlipgECz3JesAiiOKotd8JU6otB3PACgG6xkJUyVhboMS+bje/jA==} + engines: {node: '>=6'} + + escape-string-regexp@2.0.0: + resolution: {integrity: sha512-UpzcLCXolUWcNu5HtVMHYdXJjArjsF9C0aNnquZYY4uW/Vu0miy5YoWvbV345HauVvcAUnpRuhMMcqTcGOY2+w==} + engines: {node: '>=8'} + + esprima@4.0.1: + resolution: {integrity: sha512-eGuFFw7Upda+g4p+QHvnW0RyTX/SVeJBDM/gCtMARO0cLuT2HcEKnTPvhjV6aGeqrCB/sbNop0Kszm0jsaWU4A==} + engines: {node: '>=4'} + hasBin: true + + eta@2.2.0: + resolution: {integrity: sha512-UVQ72Rqjy/ZKQalzV5dCCJP80GrmPrMxh6NlNf+erV6ObL0ZFkhCstWRawS85z3smdr3d2wXPsZEY7rDPfGd2g==} + engines: {node: '>=6.0.0'} + + event-target-shim@5.0.1: + resolution: {integrity: sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==} + engines: {node: '>=6'} + + execa@5.1.1: + resolution: {integrity: sha512-8uSpZZocAZRBAPIEINJj3Lo9HyGitllczc27Eh5YYojjMFMn8yHMDMaUHE2Jqfq05D/wucwI4JGURyXt1vchyg==} + engines: {node: '>=10'} + + exit@0.1.2: + resolution: {integrity: sha512-Zk/eNKV2zbjpKzrsQ+n1G6poVbErQxJ0LBOJXaKZ1EViLzH+hrLu9cdXI4zw9dBQJslwBEpbQ2P1oS7nDxs6jQ==} + engines: {node: '>= 0.8.0'} + + expect@29.7.0: + resolution: {integrity: sha512-2Zks0hf1VLFYI1kbh0I5jP3KHHyCHpkfyHBzsSXRFgl/Bg9mWYfMW8oD+PdMPlEwy5HNsR9JutYy6pMeOh61nw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + fast-json-stable-stringify@2.1.0: + resolution: {integrity: sha512-lhd/wF+Lk98HZoTCtlVraHtfh5XYijIjalXck7saUtuanSDyLMxnHhSXEDJqHxD7msR8D0uCmqlkwjCV8xvwHw==} + + fast-safe-stringify@2.1.1: + resolution: {integrity: sha512-W+KJc2dmILlPplD/H4K9l9LcAHAfPtP6BY84uVLXQ6Evcz9Lcg33Y2z1IVblT6xdY54PXYVHEv+0Wpq8Io6zkA==} + + fb-watchman@2.0.2: + resolution: {integrity: sha512-p5161BqbuCaSnB8jIbzQHOlpgsPmK5rJVDfDKO91Axs5NC1uu3HRQm6wt9cd9/+GtQQIO53JdGXXoyDpTAsgYA==} + + filelist@1.0.4: + resolution: {integrity: sha512-w1cEuf3S+DrLCQL7ET6kz+gmlJdbq9J7yXCSjK/OZCPA+qEN1WyF4ZAf0YYJa4/shHJra2t/d/r8SV4Ji+x+8Q==} + + fill-range@7.1.1: + resolution: {integrity: sha512-YsGpe3WHLK8ZYi4tWDg2Jy3ebRz2rXowDxnld4bkQB00cc/1Zw9AWnC0i9ztDJitivtQvaI9KaLyKrc+hBW0yg==} + engines: {node: '>=8'} + + find-cache-dir@3.3.2: + resolution: {integrity: sha512-wXZV5emFEjrridIgED11OoUKLxiYjAcqot/NJdAkOhlJ+vGzwhOAfcG5OX1jP+S0PcjEn8bdMJv+g2jwQ3Onig==} + engines: {node: '>=8'} + + find-up@4.1.0: + resolution: {integrity: sha512-PpOwAdQ/YlXQ2vj8a3h8IipDuYRi3wceVQQGYWxNINccq40Anw7BlsEXCMbt1Zt+OLA6Fq9suIpIWD0OsnISlw==} + engines: {node: '>=8'} + + foreground-child@2.0.0: + resolution: {integrity: sha512-dCIq9FpEcyQyXKCkyzmlPTFNgrCzPudOe+mhvJU5zAtlBnGVy2yKxtfsxK2tQBThwq225jcvBjpw1Gr40uzZCA==} + engines: {node: '>=8.0.0'} + + foreground-child@3.3.0: + resolution: {integrity: sha512-Ld2g8rrAyMYFXBhEqMz8ZAHBi4J4uS1i/CxGMDnjyFWddMXLVcDp051DZfu+t7+ab7Wv6SMqpWmyFIj5UbfFvg==} + engines: {node: '>=14'} + + form-data-encoder@1.7.2: + resolution: {integrity: sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A==} + + form-data@4.0.1: + resolution: {integrity: sha512-tzN8e4TX8+kkxGPK8D5u0FNmjPUjw3lwC9lSLxxoB/+GtsJG91CO8bSWy73APlgAZzZbXEYZJuxjkHH2w+Ezhw==} + engines: {node: '>= 6'} + + formdata-node@4.4.1: + resolution: {integrity: sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==} + engines: {node: '>= 12.20'} + + fromentries@1.3.2: + resolution: {integrity: sha512-cHEpEQHUg0f8XdtZCc2ZAhrHzKzT0MrFUTcvx+hfxYu7rGMDc5SKoXFh+n4YigxsHXRzc6OrCshdR1bWH6HHyg==} + + fs.realpath@1.0.0: + resolution: {integrity: sha512-OO0pH2lK6a0hZnAdau5ItzHPI6pUlvI7jMVnxUQRtw4owF2wk8lOSabtGDCTP4Ggrg2MbGnWO9X8K1t4+fGMDw==} + + fsevents@2.3.3: + resolution: {integrity: sha512-5xoDfX+fL7faATnagmWPpbFtwh/R77WmMMqqHGS65C3vvB0YHrgF+B1YmZ3441tMj5n63k0212XNoJwzlhffQw==} + engines: {node: ^8.16.0 || ^10.6.0 || >=11.0.0} + os: [darwin] + + function-bind@1.1.2: + resolution: {integrity: sha512-7XHNxH7qX9xG5mIwxkhumTox/MIRNcOgDrxWsMt2pAr23WHp6MrRlN7FBSFpCpr+oVO0F744iUgR82nJMfG2SA==} + + gensync@1.0.0-beta.2: + resolution: {integrity: sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==} + engines: {node: '>=6.9.0'} + + get-caller-file@2.0.5: + resolution: {integrity: sha512-DyFP3BM/3YHTQOCUL/w0OZHR0lpKeGrxotcHWcqNEdnltqFwXVfhEBQ94eIo34AfQpo0rGki4cyIiftY06h2Fg==} + engines: {node: 6.* || 8.* || >= 10.*} + + get-package-type@0.1.0: + resolution: {integrity: sha512-pjzuKtY64GYfWizNAJ0fr9VqttZkNiK2iS430LtIHzjBEr6bX8Am2zm4sW4Ro5wjWW5cAlRL1qAMTcXbjNAO2Q==} + engines: {node: '>=8.0.0'} + + get-stream@6.0.1: + resolution: {integrity: sha512-ts6Wi+2j3jQjqi70w5AlN8DFnkSwC+MqmxEzdEALB2qXZYV3X/b1CTfgPLGJNMeAWxdPfU8FO1ms3NUfaHCPYg==} + engines: {node: '>=10'} + + get-tsconfig@4.8.1: + resolution: {integrity: sha512-k9PN+cFBmaLWtVz29SkUoqU5O0slLuHJXt/2P+tMVFT+phsSGXGkp9t3rQIqdz0e+06EHNGs3oM6ZX1s2zHxRg==} + + glob@7.2.3: + resolution: {integrity: sha512-nFR0zLpU2YCaRxwoCJvL6UvCH2JFyFVIvwTLsIf21AuHlMskA1hhTdk+LlYJtOlYt9v6dvszD2BGRqBL+iQK9Q==} + deprecated: Glob versions prior to v9 are no longer supported + + globals@11.12.0: + resolution: {integrity: sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==} + engines: {node: '>=4'} + + graceful-fs@4.2.11: + resolution: {integrity: sha512-RbJ5/jmFcNNCcDV5o9eTnBLJ/HszWV0P73bc+Ff4nS/rJj+YaS6IGyiOL0VoBYX+l1Wrl3k63h/KrH+nhJ0XvQ==} + + has-flag@4.0.0: + resolution: {integrity: sha512-EykJT/Q1KjTWctppgIAgfSO0tKVuZUjhgMr17kqTumMl6Afv3EISleU7qZUzoXDFTAHTDC4NOoG/ZxU3EvlMPQ==} + engines: {node: '>=8'} + + hasha@5.2.2: + resolution: {integrity: sha512-Hrp5vIK/xr5SkeN2onO32H0MgNZ0f17HRNH39WfL0SYUNOTZ5Lz1TJ8Pajo/87dYGEFlLMm7mIc/k/s6Bvz9HQ==} + engines: {node: '>=8'} + + hasown@2.0.2: + resolution: {integrity: sha512-0hJU9SCPvmMzIBdZFqNPXWa6dqh7WdH0cII9y+CyS8rG3nL48Bclra9HmKhVVUHyPWNH5Y7xDwAB7bfgSjkUMQ==} + engines: {node: '>= 0.4'} + + html-escaper@2.0.2: + resolution: {integrity: sha512-H2iMtd0I4Mt5eYiapRdIDjp+XzelXQ0tFE4JS7YFwFevXXMmOp9myNrUvCg0D6ws8iqkRPBfKHgbwig1SmlLfg==} + + http2-client@1.3.5: + resolution: {integrity: sha512-EC2utToWl4RKfs5zd36Mxq7nzHHBuomZboI0yYL6Y0RmBgT7Sgkq4rQ0ezFTYoIsSs7Tm9SJe+o2FcAg6GBhGA==} + + human-signals@2.1.0: + resolution: {integrity: sha512-B4FFZ6q/T2jhhksgkbEW3HBvWIfDW85snkQgawt07S7J5QXTk6BkNV+0yAeZrM5QpMAdYlocGoljn0sJ/WQkFw==} + engines: {node: '>=10.17.0'} + + humanize-ms@1.2.1: + resolution: {integrity: sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==} + + import-fresh@3.3.0: + resolution: {integrity: sha512-veYYhQa+D1QBKznvhUHxb8faxlrwUnxseDAbAp457E0wLNio2bOSKnjYDhMj+YiAq61xrMGhQk9iXVk5FzgQMw==} + engines: {node: '>=6'} + + import-local@3.2.0: + resolution: {integrity: sha512-2SPlun1JUPWoM6t3F0dw0FkCF/jWY8kttcY4f599GLTSjh2OCuuhdTkJQsEcZzBqbXZGKMK2OqW1oZsjtf/gQA==} + engines: {node: '>=8'} + hasBin: true + + imurmurhash@0.1.4: + resolution: {integrity: sha512-JmXMZ6wuvDmLiHEml9ykzqO6lwFbof0GG4IkcGaENdCRDDmMVnny7s5HsIgHCbaq0w2MyPhDqkhTUgS2LU2PHA==} + engines: {node: '>=0.8.19'} + + indent-string@4.0.0: + resolution: {integrity: sha512-EdDDZu4A2OyIK7Lr/2zG+w5jmbuk1DVBnEwREQvBzspBJkCEbRa8GxU1lghYcaGJCnRWibjDXlq779X1/y5xwg==} + engines: {node: '>=8'} + + inflight@1.0.6: + resolution: {integrity: sha512-k92I/b08q4wvFscXCLvqfsHCrjrF7yiXsQuIVvVE7N82W3+aqpzuUdBbfhWcy/FZR3/4IgflMgKLOsvPDrGCJA==} + deprecated: This module is not supported, and leaks memory. Do not use it. Check out lru-cache if you want a good and tested way to coalesce async requests by a key value, which is much more comprehensive and powerful. + + inherits@2.0.4: + resolution: {integrity: sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ==} + + is-arrayish@0.2.1: + resolution: {integrity: sha512-zz06S8t0ozoDXMG+ube26zeCTNXcKIPJZJi8hBrF4idCLms4CG9QtK7qBl1boi5ODzFpjswb5JPmHCbMpjaYzg==} + + is-core-module@2.15.1: + resolution: {integrity: sha512-z0vtXSwucUJtANQWldhbtbt7BnL0vxiFjIdDLAatwhDYty2bad6s+rijD6Ri4YuYJubLzIJLUidCh09e1djEVQ==} + engines: {node: '>= 0.4'} + + is-fullwidth-code-point@3.0.0: + resolution: {integrity: sha512-zymm5+u+sCsSWyD9qNaejV3DFvhCKclKdizYaJUuHA83RLjb7nSuGnddCHGv0hk+KY7BMAlsWeK4Ueg6EV6XQg==} + engines: {node: '>=8'} + + is-generator-fn@2.1.0: + resolution: {integrity: sha512-cTIB4yPYL/Grw0EaSzASzg6bBy9gqCofvWN8okThAYIxKJZC+udlRAmGbM0XLeniEJSs8uEgHPGuHSe1XsOLSQ==} + engines: {node: '>=6'} + + is-number@7.0.0: + resolution: {integrity: sha512-41Cifkg6e8TylSpdtTpeLVMqvSBEVzTttHvERD741+pnZ8ANv0004MRL43QKPDlK9cGvNp6NZWZUBlbGXYxxng==} + engines: {node: '>=0.12.0'} + + is-stream@2.0.1: + resolution: {integrity: sha512-hFoiJiTl63nn+kstHGBtewWSKnQLpyb155KHheA1l39uvtO9nWIop1p3udqPcUd/xbF1VLMO4n7OI6p7RbngDg==} + engines: {node: '>=8'} + + is-typedarray@1.0.0: + resolution: {integrity: sha512-cyA56iCMHAh5CdzjJIa4aohJyeO1YbwLi3Jc35MmRU6poroFjIGZzUzupGiRPOjgHg9TLu43xbpwXk523fMxKA==} + + is-windows@1.0.2: + resolution: {integrity: sha512-eXK1UInq2bPmjyX6e3VHIzMLobc4J94i4AWn+Hpq3OU5KkrRC96OAcR3PRJ/pGu6m8TRnBHP9dkXQVsT/COVIA==} + engines: {node: '>=0.10.0'} + + isexe@2.0.0: + resolution: {integrity: sha512-RHxMLp9lnKHGHRng9QFhRCMbYAcVpn69smSGcq3f36xjgVVWThj4qqLbTLlq7Ssj8B+fIQ1EuCEGI2lKsyQeIw==} + + istanbul-lib-coverage@3.2.2: + resolution: {integrity: sha512-O8dpsF+r0WV/8MNRKfnmrtCWhuKjxrq2w+jpzBL5UZKTi2LeVWnWOmWRxFlesJONmc+wLAGvKQZEOanko0LFTg==} + engines: {node: '>=8'} + + istanbul-lib-hook@3.0.0: + resolution: {integrity: sha512-Pt/uge1Q9s+5VAZ+pCo16TYMWPBIl+oaNIjgLQxcX0itS6ueeaA+pEfThZpH8WxhFgCiEb8sAJY6MdUKgiIWaQ==} + engines: {node: '>=8'} + + istanbul-lib-instrument@5.2.1: + resolution: {integrity: sha512-pzqtp31nLv/XFOzXGuvhCb8qhjmTVo5vjVk19XE4CRlSWz0KoeJ3bw9XsA7nOp9YBf4qHjwBxkDzKcME/J29Yg==} + engines: {node: '>=8'} + + istanbul-lib-instrument@6.0.3: + resolution: {integrity: sha512-Vtgk7L/R2JHyyGW07spoFlB8/lpjiOLTjMdms6AFMraYt3BaJauod/NGrfnVG/y4Ix1JEuMRPDPEj2ua+zz1/Q==} + engines: {node: '>=10'} + + istanbul-lib-processinfo@2.0.3: + resolution: {integrity: sha512-NkwHbo3E00oybX6NGJi6ar0B29vxyvNwoC7eJ4G4Yq28UfY758Hgn/heV8VRFhevPED4LXfFz0DQ8z/0kw9zMg==} + engines: {node: '>=8'} + + istanbul-lib-report@3.0.1: + resolution: {integrity: sha512-GCfE1mtsHGOELCU8e/Z7YWzpmybrx/+dSTfLrvY8qRmaY6zXTKWn6WQIjaAFw069icm6GVMNkgu0NzI4iPZUNw==} + engines: {node: '>=10'} + + istanbul-lib-source-maps@4.0.1: + resolution: {integrity: sha512-n3s8EwkdFIJCG3BPKBYvskgXGoy88ARzvegkitk60NxRdwltLOTaH7CUiMRXvwYorl0Q712iEjcWB+fK/MrWVw==} + engines: {node: '>=10'} + + istanbul-reports@3.1.7: + resolution: {integrity: sha512-BewmUXImeuRk2YY0PVbxgKAysvhRPUQE0h5QRM++nVWyubKGV0l8qQ5op8+B2DOmwSe63Jivj0BjkPQVf8fP5g==} + engines: {node: '>=8'} + + jake@10.9.2: + resolution: {integrity: sha512-2P4SQ0HrLQ+fw6llpLnOaGAvN2Zu6778SJMrCUwns4fOoG9ayrTiZk3VV8sCPkVZF8ab0zksVpS8FDY5pRCNBA==} + engines: {node: '>=10'} + hasBin: true + + jest-changed-files@29.7.0: + resolution: {integrity: sha512-fEArFiwf1BpQ+4bXSprcDc3/x4HSzL4al2tozwVpDFpsxALjLYdyiIK4e5Vz66GQJIbXJ82+35PtysofptNX2w==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-circus@29.7.0: + resolution: {integrity: sha512-3E1nCMgipcTkCocFwM90XXQab9bS+GMsjdpmPrlelaxwD93Ad8iVEjX/vvHPdLPnFf+L40u+5+iutRdA1N9myw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-cli@29.7.0: + resolution: {integrity: sha512-OVVobw2IubN/GSYsxETi+gOe7Ka59EFMR/twOU3Jb2GnKKeMGJB5SGUUrEz3SFVmJASUdZUzy83sLNNQ2gZslg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + hasBin: true + peerDependencies: + node-notifier: ^8.0.1 || ^9.0.0 || ^10.0.0 + peerDependenciesMeta: + node-notifier: + optional: true + + jest-config@29.7.0: + resolution: {integrity: sha512-uXbpfeQ7R6TZBqI3/TxCU4q4ttk3u0PJeC+E0zbfSoSjq6bJ7buBPxzQPL0ifrkY4DNu4JUdk0ImlBUYi840eQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + peerDependencies: + '@types/node': '*' + ts-node: '>=9.0.0' + peerDependenciesMeta: + '@types/node': + optional: true + ts-node: + optional: true + + jest-diff@29.7.0: + resolution: {integrity: sha512-LMIgiIrhigmPrs03JHpxUh2yISK3vLFPkAodPeo0+BuF7wA2FoQbkEg1u8gBYBThncu7e1oEDUfIXVuTqLRUjw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-docblock@29.7.0: + resolution: {integrity: sha512-q617Auw3A612guyaFgsbFeYpNP5t2aoUNLwBUbc/0kD1R4t9ixDbyFTHd1nok4epoVFpr7PmeWHrhvuV3XaJ4g==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-each@29.7.0: + resolution: {integrity: sha512-gns+Er14+ZrEoC5fhOfYCY1LOHHr0TI+rQUHZS8Ttw2l7gl+80eHc/gFf2Ktkw0+SIACDTeWvpFcv3B04VembQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-environment-node@29.7.0: + resolution: {integrity: sha512-DOSwCRqXirTOyheM+4d5YZOrWcdu0LNZ87ewUoywbcb2XR4wKgqiG8vNeYwhjFMbEkfju7wx2GYH0P2gevGvFw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-get-type@29.6.3: + resolution: {integrity: sha512-zrteXnqYxfQh7l5FHyL38jL39di8H8rHoecLH3JNxH3BwOrBsNeabdap5e0I23lD4HHI8W5VFBZqG4Eaq5LNcw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-haste-map@29.7.0: + resolution: {integrity: sha512-fP8u2pyfqx0K1rGn1R9pyE0/KTn+G7PxktWidOBTqFPLYX0b9ksaMFkhK5vrS3DVun09pckLdlx90QthlW7AmA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-leak-detector@29.7.0: + resolution: {integrity: sha512-kYA8IJcSYtST2BY9I+SMC32nDpBT3J2NvWJx8+JCuCdl/CR1I4EKUJROiP8XtCcxqgTTBGJNdbB1A8XRKbTetw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-matcher-utils@29.7.0: + resolution: {integrity: sha512-sBkD+Xi9DtcChsI3L3u0+N0opgPYnCRPtGcQYrgXmR+hmt/fYfWAL0xRXYU8eWOdfuLgBe0YCW3AFtnRLagq/g==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-message-util@29.7.0: + resolution: {integrity: sha512-GBEV4GRADeP+qtB2+6u61stea8mGcOT4mCtrYISZwfu9/ISHFJ/5zOMXYbpBE9RsS5+Gb63DW4FgmnKJ79Kf6w==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-mock@29.7.0: + resolution: {integrity: sha512-ITOMZn+UkYS4ZFh83xYAOzWStloNzJFO2s8DWrE4lhtGD+AorgnbkiKERe4wQVBydIGPx059g6riW5Btp6Llnw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-pnp-resolver@1.2.3: + resolution: {integrity: sha512-+3NpwQEnRoIBtx4fyhblQDPgJI0H1IEIkX7ShLUjPGA7TtUTvI1oiKi3SR4oBR0hQhQR80l4WAe5RrXBwWMA8w==} + engines: {node: '>=6'} + peerDependencies: + jest-resolve: '*' + peerDependenciesMeta: + jest-resolve: + optional: true + + jest-regex-util@29.6.3: + resolution: {integrity: sha512-KJJBsRCyyLNWCNBOvZyRDnAIfUiRJ8v+hOBQYGn8gDyF3UegwiP4gwRR3/SDa42g1YbVycTidUF3rKjyLFDWbg==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-resolve-dependencies@29.7.0: + resolution: {integrity: sha512-un0zD/6qxJ+S0et7WxeI3H5XSe9lTBBR7bOHCHXkKR6luG5mwDDlIzVQ0V5cZCuoTgEdcdwzTghYkTWfubi+nA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-resolve@29.7.0: + resolution: {integrity: sha512-IOVhZSrg+UvVAshDSDtHyFCCBUl/Q3AAJv8iZ6ZjnZ74xzvwuzLXid9IIIPgTnY62SJjfuupMKZsZQRsCvxEgA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-runner@29.7.0: + resolution: {integrity: sha512-fsc4N6cPCAahybGBfTRcq5wFR6fpLznMg47sY5aDpsoejOcVYFb07AHuSnR0liMcPTgBsA3ZJL6kFOjPdoNipQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-runtime@29.7.0: + resolution: {integrity: sha512-gUnLjgwdGqW7B4LvOIkbKs9WGbn+QLqRQQ9juC6HndeDiezIwhDP+mhMwHWCEcfQ5RUXa6OPnFF8BJh5xegwwQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-snapshot@29.7.0: + resolution: {integrity: sha512-Rm0BMWtxBcioHr1/OX5YCP8Uov4riHvKPknOGs804Zg9JGZgmIBkbtlxJC/7Z4msKYVbIJtfU+tKb8xlYNfdkw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-util@29.7.0: + resolution: {integrity: sha512-z6EbKajIpqGKU56y5KBUgy1dt1ihhQJgWzUlZHArA/+X2ad7Cb5iF+AK1EWVL/Bo7Rz9uurpqw6SiBCefUbCGA==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-validate@29.7.0: + resolution: {integrity: sha512-ZB7wHqaRGVw/9hST/OuFUReG7M8vKeq0/J2egIGLdvjHCmYqGARhzXmtgi+gVeZ5uXFF219aOc3Ls2yLg27tkw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-watcher@29.7.0: + resolution: {integrity: sha512-49Fg7WXkU3Vl2h6LbLtMQ/HyB6rXSIX7SqvBLQmssRBGN9I0PNvPmAmCWSOY6SOvrjhI/F7/bGAv9RtnsPA03g==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest-worker@29.7.0: + resolution: {integrity: sha512-eIz2msL/EzL9UFTFFx7jBTkeZfku0yUAyZZZmJ93H2TYEiroIx2PQjEXcwYtYl8zXCxb+PAmA2hLIt/6ZEkPHw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + jest@29.7.0: + resolution: {integrity: sha512-NIy3oAFp9shda19hy4HK0HRTWKtPJmGdnvywu01nOqNC2vZg+Z+fvJDxpMQA88eb2I9EcafcdjYgsDthnYTvGw==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + hasBin: true + peerDependencies: + node-notifier: ^8.0.1 || ^9.0.0 || ^10.0.0 + peerDependenciesMeta: + node-notifier: + optional: true + + js-tokens@4.0.0: + resolution: {integrity: sha512-RdJUflcE3cUzKiMqQgsCu06FPu9UdIJO0beYbPhHN4k6apgJtifcoCtT9bcxOpYBtpD2kCM6Sbzg4CausW/PKQ==} + + js-yaml@3.14.1: + resolution: {integrity: sha512-okMH7OXXJ7YrN9Ok3/SXrnu4iX9yOk+25nqX4imS2npuvTYDmo/QEZoqwZkYaIDk3jVvBOTOIEgEhaLOynBS9g==} + hasBin: true + + js-yaml@4.1.0: + resolution: {integrity: sha512-wpxZs9NoxZaJESJGIZTyDEaYpl0FKSA+FB9aJiyemKhMwkxQg63h4T1KJgUGHpTqPDNRcmmYLugrRjJlBtWvRA==} + hasBin: true + + jsesc@3.0.2: + resolution: {integrity: sha512-xKqzzWXDttJuOcawBt4KnKHHIf5oQ/Cxax+0PWFG+DFDgHNAdi+TXECADI+RYiFUMmx8792xsMbbgXj4CwnP4g==} + engines: {node: '>=6'} + hasBin: true + + json-parse-even-better-errors@2.3.1: + resolution: {integrity: sha512-xyFwyhro/JEof6Ghe2iz2NcXoj2sloNsWr/XsERDK/oiPCfaNhl5ONfp+jQdAZRQQ0IJWNzH9zIZF7li91kh2w==} + + json5@2.2.3: + resolution: {integrity: sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==} + engines: {node: '>=6'} + hasBin: true + + kleur@3.0.3: + resolution: {integrity: sha512-eTIzlVOSUR+JxdDFepEYcBMtZ9Qqdef+rnzWdRZuMbOywu5tO2w2N7rqjoANZ5k9vywhL6Br1VRjUIgTQx4E8w==} + engines: {node: '>=6'} + + leven@3.1.0: + resolution: {integrity: sha512-qsda+H8jTaUaN/x5vzW2rzc+8Rw4TAQ/4KjB46IwK5VH+IlVeeeje/EoZRpiXvIqjFgK84QffqPztGI3VBLG1A==} + engines: {node: '>=6'} + + lines-and-columns@1.2.4: + resolution: {integrity: sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==} + + locate-path@5.0.0: + resolution: {integrity: sha512-t7hw9pI+WvuwNJXwk5zVHpyhIqzg2qTlklJOf0mVxGSbe3Fp2VieZcduNYjaLDoy6p9uGpQEGWG87WpMKlNq8g==} + engines: {node: '>=8'} + + lodash.flattendeep@4.4.0: + resolution: {integrity: sha512-uHaJFihxmJcEX3kT4I23ABqKKalJ/zDrDg0lsFtc1h+3uw49SIJ5beyhx5ExVRti3AvKoOJngIj7xz3oylPdWQ==} + + lodash.memoize@4.1.2: + resolution: {integrity: sha512-t7j+NzmgnQzTAYXcsHYLgimltOV1MXHtlOWf6GjL9Kj8GK5FInw5JotxvbOs+IvV1/Dzo04/fCGfLVs7aXb4Ag==} + + lodash@4.17.21: + resolution: {integrity: sha512-v2kDEe57lecTulaDIuNTPy3Ry4gLGJ6Z1O3vE1krgXZNrsQ+LFTGHVxVjcXPs17LhbZVGedAJv8XZ1tvj5FvSg==} + + lru-cache@5.1.1: + resolution: {integrity: sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==} + + make-dir@3.1.0: + resolution: {integrity: sha512-g3FeP20LNwhALb/6Cz6Dd4F2ngze0jz7tbzrD2wAV+o9FeNHe4rL+yK2md0J/fiSf1sa1ADhXqi5+oVwOM/eGw==} + engines: {node: '>=8'} + + make-dir@4.0.0: + resolution: {integrity: sha512-hXdUTZYIVOt1Ex//jAQi+wTZZpUpwBj/0QsOzqegb3rGMMeJiSEu5xLHnYfBrRV4RH2+OCSOO95Is/7x1WJ4bw==} + engines: {node: '>=10'} + + make-error@1.3.6: + resolution: {integrity: sha512-s8UhlNe7vPKomQhC1qFelMokr/Sc3AgNbso3n74mVPA5LTZwkB9NlXf4XPamLxJE8h0gh73rM94xvwRT2CVInw==} + + makeerror@1.0.12: + resolution: {integrity: sha512-JmqCvUhmt43madlpFzG4BQzG2Z3m6tvQDNKdClZnO3VbIudJYmxsT0FNJMeiB2+JTSlTQTSbU8QdesVmwJcmLg==} + + merge-stream@2.0.0: + resolution: {integrity: sha512-abv/qOcuPfk3URPfDzmZU1LKmuw8kT+0nIHvKrKgFrwifol/doWcdA4ZqsWQ8ENrFKkd67Mfpo/LovbIUsbt3w==} + + micromatch@4.0.8: + resolution: {integrity: sha512-PXwfBhYu0hBCPw8Dn0E+WDYb7af3dSLVWKi3HGv84IdF4TyFoC0ysxFd0Goxw7nSv4T/PzEJQxsYsEiFCKo2BA==} + engines: {node: '>=8.6'} + + mime-db@1.52.0: + resolution: {integrity: sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==} + engines: {node: '>= 0.6'} + + mime-types@2.1.35: + resolution: {integrity: sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==} + engines: {node: '>= 0.6'} + + mimic-fn@2.1.0: + resolution: {integrity: sha512-OqbOk5oEQeAZ8WXWydlu9HJjz9WVdEIvamMCcXmuqUYjTknH/sqsWvhQ3vgwKFRR1HpjvNBKQ37nbJgYzGqGcg==} + engines: {node: '>=6'} + + minimatch@3.1.2: + resolution: {integrity: sha512-J7p63hRiAjw1NDEww1W7i37+ByIrOWO5XQQAzZ3VOcL0PNybwpfmV/N05zFAzwQ9USyEcX6t3UO+K5aqBQOIHw==} + + minimatch@5.1.6: + resolution: {integrity: sha512-lKwV/1brpG6mBUFHtb7NUmtABCb2WZZmm2wNiOA5hAb8VdCS4B3dtMWyvcoViccwAW/COERjXLt0zP1zXUN26g==} + engines: {node: '>=10'} + + minimist@1.2.8: + resolution: {integrity: sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==} + + ms@2.1.3: + resolution: {integrity: sha512-6FlzubTLZG3J2a/NVCAleEhjzq5oxgHyaCU9yYXvcLsvoVaHJq/s5xXI6/XXP6tz7R9xAOtHnSO/tXtF3WRTlA==} + + nanoid@3.3.7: + resolution: {integrity: sha512-eSRppjcPIatRIMC1U6UngP8XFcz8MQWGQdt1MTBQ7NaAmvXDfvNxbvWV3x2y6CdEUciCSsDHDQZbhYaB8QEo2g==} + engines: {node: ^10 || ^12 || ^13.7 || ^14 || >=15.0.1} + hasBin: true + + natural-compare@1.4.0: + resolution: {integrity: sha512-OWND8ei3VtNC9h7V60qff3SVobHr996CTwgxubgyQYEpg290h9J0buyECNNJexkFm5sOajh5G116RYA1c8ZMSw==} + + node-domexception@1.0.0: + resolution: {integrity: sha512-/jKZoMpw0F8GRwl4/eLROPA3cfcXtLApP0QzLmUT/HuPCZWyB7IY9ZrMeKw2O/nFIqPQB3PVM9aYm0F312AXDQ==} + engines: {node: '>=10.5.0'} + + node-fetch-h2@2.3.0: + resolution: {integrity: sha512-ofRW94Ab0T4AOh5Fk8t0h8OBWrmjb0SSB20xh1H8YnPV9EJ+f5AMoYSUQ2zgJ4Iq2HAK0I2l5/Nequ8YzFS3Hg==} + engines: {node: 4.x || >=6.0.0} + + node-fetch@2.7.0: + resolution: {integrity: sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==} + engines: {node: 4.x || >=6.0.0} + peerDependencies: + encoding: ^0.1.0 + peerDependenciesMeta: + encoding: + optional: true + + node-int64@0.4.0: + resolution: {integrity: sha512-O5lz91xSOeoXP6DulyHfllpq+Eg00MWitZIbtPfoSEvqIHdl5gfcY6hYzDWnj0qD5tz52PI08u9qUvSVeUBeHw==} + + node-preload@0.2.1: + resolution: {integrity: sha512-RM5oyBy45cLEoHqCeh+MNuFAxO0vTFBLskvQbOKnEE7YTTSN4tbN8QWDIPQ6L+WvKsB/qLEGpYe2ZZ9d4W9OIQ==} + engines: {node: '>=8'} + + node-readfiles@0.2.0: + resolution: {integrity: sha512-SU00ZarexNlE4Rjdm83vglt5Y9yiQ+XI1XpflWlb7q7UTN1JUItm69xMeiQCTxtTfnzt+83T8Cx+vI2ED++VDA==} + + node-releases@2.0.18: + resolution: {integrity: sha512-d9VeXT4SJ7ZeOqGX6R5EM022wpL+eWPooLI+5UpWn2jCT1aosUQEhQP214x33Wkwx3JQMvIm+tIoVOdodFS40g==} + + normalize-path@3.0.0: + resolution: {integrity: sha512-6eZs5Ls3WtCisHWp9S2GUy8dqkpGi4BVSz3GaqiE6ezub0512ESztXUwUB6C6IKbQkY2Pnb/mD4WYojCRwcwLA==} + engines: {node: '>=0.10.0'} + + npm-run-path@4.0.1: + resolution: {integrity: sha512-S48WzZW777zhNIrn7gxOlISNAqi9ZC/uQFnRdbeIHhZhCA6UqpkOT8T1G7BvfdgP4Er8gF4sUbaS0i7QvIfCWw==} + engines: {node: '>=8'} + + nyc@17.1.0: + resolution: {integrity: sha512-U42vQ4czpKa0QdI1hu950XuNhYqgoM+ZF1HT+VuUHL9hPfDPVvNQyltmMqdE9bUHMVa+8yNbc3QKTj8zQhlVxQ==} + engines: {node: '>=18'} + hasBin: true + + oas-kit-common@1.0.8: + resolution: {integrity: sha512-pJTS2+T0oGIwgjGpw7sIRU8RQMcUoKCDWFLdBqKB2BNmGpbBMH2sdqAaOXUg8OzonZHU0L7vfJu1mJFEiYDWOQ==} + + oas-linter@3.2.2: + resolution: {integrity: sha512-KEGjPDVoU5K6swgo9hJVA/qYGlwfbFx+Kg2QB/kd7rzV5N8N5Mg6PlsoCMohVnQmo+pzJap/F610qTodKzecGQ==} + + oas-resolver@2.5.6: + resolution: {integrity: sha512-Yx5PWQNZomfEhPPOphFbZKi9W93CocQj18NlD2Pa4GWZzdZpSJvYwoiuurRI7m3SpcChrnO08hkuQDL3FGsVFQ==} + hasBin: true + + oas-schema-walker@1.1.5: + resolution: {integrity: sha512-2yucenq1a9YPmeNExoUa9Qwrt9RFkjqaMAA1X+U7sbb0AqBeTIdMHky9SQQ6iN94bO5NW0W4TRYXerG+BdAvAQ==} + + oas-validator@5.0.8: + resolution: {integrity: sha512-cu20/HE5N5HKqVygs3dt94eYJfBi0TsZvPVXDhbXQHiEityDN+RROTleefoKRKKJ9dFAF2JBkDHgvWj0sjKGmw==} + + once@1.4.0: + resolution: {integrity: sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==} + + onetime@5.1.2: + resolution: {integrity: sha512-kbpaSSGJTWdAY5KPVeMOKXSrPtr8C8C7wodJbcsd51jRnmD+GZu8Y0VoU6Dm5Z4vWr0Ig/1NKuWRKf7j5aaYSg==} + engines: {node: '>=6'} + + openai@4.68.4: + resolution: {integrity: sha512-LRinV8iU9VQplkr25oZlyrsYGPGasIwYN8KFMAAFTHHLHjHhejtJ5BALuLFrkGzY4wfbKhOhuT+7lcHZ+F3iEA==} + hasBin: true + peerDependencies: + zod: ^3.23.8 + peerDependenciesMeta: + zod: + optional: true + + p-limit@2.3.0: + resolution: {integrity: sha512-//88mFWSJx8lxCzwdAABTJL2MyWB12+eIY7MDL2SqLmAkeKU9qxRvWuSyTjm3FUmpBEMuFfckAIqEaVGUDxb6w==} + engines: {node: '>=6'} + + p-limit@3.1.0: + resolution: {integrity: sha512-TYOanM3wGwNGsZN2cVTYPArw454xnXj5qmWF1bEoAc4+cU/ol7GVh7odevjp1FNHduHc3KZMcFduxU5Xc6uJRQ==} + engines: {node: '>=10'} + + p-locate@4.1.0: + resolution: {integrity: sha512-R79ZZ/0wAxKGu3oYMlz8jy/kbhsNrS7SKZ7PxEHBgJ5+F2mtFW2fK2cOtBh1cHYkQsbzFV7I+EoRKe6Yt0oK7A==} + engines: {node: '>=8'} + + p-map@3.0.0: + resolution: {integrity: sha512-d3qXVTF/s+W+CdJ5A29wywV2n8CQQYahlgz2bFiA+4eVNJbHJodPZ+/gXwPGh0bOqA+j8S+6+ckmvLGPk1QpxQ==} + engines: {node: '>=8'} + + p-try@2.2.0: + resolution: {integrity: sha512-R4nPAVTAU0B9D35/Gk3uJf/7XYbQcyohSKdvAxIRSNghFl4e71hVoGnBNQz9cWaXxO2I10KTC+3jMdvvoKw6dQ==} + engines: {node: '>=6'} + + package-hash@4.0.0: + resolution: {integrity: sha512-whdkPIooSu/bASggZ96BWVvZTRMOFxnyUG5PnTSGKoJE2gd5mbVNmR2Nj20QFzxYYgAXpoqC+AiXzl+UMRh7zQ==} + engines: {node: '>=8'} + + parent-module@1.0.1: + resolution: {integrity: sha512-GQ2EWRpQV8/o+Aw8YqtfZZPfNRWZYkbidE9k5rpl/hC3vtHHBfGm2Ifi6qWV+coDGkrUKZAxE3Lot5kcsRlh+g==} + engines: {node: '>=6'} + + parse-json@5.2.0: + resolution: {integrity: sha512-ayCKvm/phCGxOkYRSCM82iDwct8/EonSEgCSxWxD7ve6jHggsFl4fZVQBPRNgQoKiuV/odhFrGzQXZwbifC8Rg==} + engines: {node: '>=8'} + + path-exists@4.0.0: + resolution: {integrity: sha512-ak9Qy5Q7jYb2Wwcey5Fpvg2KoAc/ZIhLSLOSBmRmygPsGwkVVt0fZa0qrtMz+m6tJTAHfZQ8FnmB4MG4LWy7/w==} + engines: {node: '>=8'} + + path-is-absolute@1.0.1: + resolution: {integrity: sha512-AVbw3UJ2e9bq64vSaS9Am0fje1Pa8pbGqTTsmXfaIiMpnr5DlDhfJOuLj9Sf95ZPVDAUerDfEk88MPmPe7UCQg==} + engines: {node: '>=0.10.0'} + + path-key@3.1.1: + resolution: {integrity: sha512-ojmeN0qd+y0jszEtoY48r0Peq5dwMEkIlCOu6Q5f41lfkswXuKtYrhgoTpLnyIcHm24Uhqx+5Tqm2InSwLhE6Q==} + engines: {node: '>=8'} + + path-parse@1.0.7: + resolution: {integrity: sha512-LDJzPVEEEPR+y48z93A0Ed0yXb8pAByGWo/k5YYdYgpY2/2EsOsksJrq7lOHxryrVOn1ejG6oAp8ahvOIQD8sw==} + + picocolors@1.1.1: + resolution: {integrity: sha512-xceH2snhtb5M9liqDsmEw56le376mTZkEX/jEb/RxNFyegNul7eNslCXP9FDj/Lcu0X8KEyMceP2ntpaHrDEVA==} + + picomatch@2.3.1: + resolution: {integrity: sha512-JU3teHTNjmE2VCGFzuY8EXzCDVwEqB2a8fsIvwaStHhAWJEeVd1o1QD80CU6+ZdEXXSLbSsuLwJjkCBWqRQUVA==} + engines: {node: '>=8.6'} + + pirates@4.0.6: + resolution: {integrity: sha512-saLsH7WeYYPiD25LDuLRRY/i+6HaPYr6G1OUlN39otzkSTxKnubR9RTxS3/Kk50s1g2JTgFwWQDQyplC5/SHZg==} + engines: {node: '>= 6'} + + pkg-dir@4.2.0: + resolution: {integrity: sha512-HRDzbaKjC+AOWVXxAU/x54COGeIv9eb+6CkDSQoNTt4XyWoIJvuPsXizxu/Fr23EiekbtZwmh1IcIG/l/a10GQ==} + engines: {node: '>=8'} + + prettier@3.3.3: + resolution: {integrity: sha512-i2tDNA0O5IrMO757lfrdQZCc2jPNDVntV0m/+4whiDfWaTKfMNgR7Qz0NAeGz/nRqF4m5/6CLzbP4/liHt12Ew==} + engines: {node: '>=14'} + hasBin: true + + pretty-format@29.7.0: + resolution: {integrity: sha512-Pdlw/oPxN+aXdmM9R00JVC9WVFoCLTKJvDVLgmJ+qAffBMxsV85l/Lu7sNx4zSzPyoL2euImuEwHhOXdEgNFZQ==} + engines: {node: ^14.15.0 || ^16.10.0 || >=18.0.0} + + process-on-spawn@1.0.0: + resolution: {integrity: sha512-1WsPDsUSMmZH5LeMLegqkPDrsGgsWwk1Exipy2hvB0o/F0ASzbpIctSCcZIK1ykJvtTJULEH+20WOFjMvGnCTg==} + engines: {node: '>=8'} + + prompts@2.4.2: + resolution: {integrity: sha512-NxNv/kLguCA7p3jE8oL2aEBsrJWgAakBpgmgK6lpPWV+WuOmY6r2/zbAVnP+T8bQlA0nzHXSJSJW0Hq7ylaD2Q==} + engines: {node: '>= 6'} + + pure-rand@6.1.0: + resolution: {integrity: sha512-bVWawvoZoBYpp6yIoQtQXHZjmz35RSVHnUOTefl8Vcjr8snTPY1wnpSPMWekcFwbxI6gtmT7rSYPFvz71ldiOA==} + + react-is@18.3.1: + resolution: {integrity: sha512-/LLMVyas0ljjAtoYiPqYiL8VWXzUUdThrmU5+n20DZv+a+ClRoevUzw5JxU+Ieh5/c87ytoTBV9G1FiKfNJdmg==} + + reftools@1.1.9: + resolution: {integrity: sha512-OVede/NQE13xBQ+ob5CKd5KyeJYU2YInb1bmV4nRoOfquZPkAkxuOXicSe1PvqIuZZ4kD13sPKBbR7UFDmli6w==} + + release-zalgo@1.0.0: + resolution: {integrity: sha512-gUAyHVHPPC5wdqX/LG4LWtRYtgjxyX78oanFNTMMyFEfOqdC54s3eE82imuWKbOeqYht2CrNf64Qb8vgmmtZGA==} + engines: {node: '>=4'} + + require-directory@2.1.1: + resolution: {integrity: sha512-fGxEI7+wsG9xrvdjsrlmL22OMTTiHRwAMroiEeMgq8gzoLC/PQr7RsRDSTLUg/bZAZtF+TVIkHc6/4RIKrui+Q==} + engines: {node: '>=0.10.0'} + + require-main-filename@2.0.0: + resolution: {integrity: sha512-NKN5kMDylKuldxYLSUfrbo5Tuzh4hd+2E8NPPX02mZtn1VuREQToYe/ZdlJy+J3uCpfaiGF05e7B8W0iXbQHmg==} + + resolve-cwd@3.0.0: + resolution: {integrity: sha512-OrZaX2Mb+rJCpH/6CpSqt9xFVpN++x01XnN2ie9g6P5/3xelLAkXWVADpdz1IHD/KFfEXyE6V0U01OQ3UO2rEg==} + engines: {node: '>=8'} + + resolve-from@4.0.0: + resolution: {integrity: sha512-pb/MYmXstAkysRFx8piNI1tGFNQIFA3vkE3Gq4EuA1dF6gHp/+vgZqsCGJapvy8N3Q+4o7FwvquPJcnZ7RYy4g==} + engines: {node: '>=4'} + + resolve-from@5.0.0: + resolution: {integrity: sha512-qYg9KP24dD5qka9J47d0aVky0N+b4fTU89LN9iDnjB5waksiC49rvMB0PrUJQGoTmH50XPiqOvAjDfaijGxYZw==} + engines: {node: '>=8'} + + resolve-pkg-maps@1.0.0: + resolution: {integrity: sha512-seS2Tj26TBVOC2NIc2rOe2y2ZO7efxITtLZcGSOnHHNOQ7CkiUBfw0Iw2ck6xkIhPwLhKNLS8BO+hEpngQlqzw==} + + resolve.exports@2.0.2: + resolution: {integrity: sha512-X2UW6Nw3n/aMgDVy+0rSqgHlv39WZAlZrXCdnbyEiKm17DSqHX4MmQMaST3FbeWR5FTuRcUwYAziZajji0Y7mg==} + engines: {node: '>=10'} + + resolve@1.22.8: + resolution: {integrity: sha512-oKWePCxqpd6FlLvGV1VU0x7bkPmmCNolxzjMf4NczoDnQcIWrAF+cPtZn5i6n+RfD2d9i0tzpKnG6Yk168yIyw==} + hasBin: true + + rimraf@3.0.2: + resolution: {integrity: sha512-JZkJMZkAGFFPP2YqXZXPbMlMBgsxzE8ILs4lMIX/2o0L9UBw9O/Y3o6wFw/i9YLapcUJWwqbi3kdxIPdC62TIA==} + deprecated: Rimraf versions prior to v4 are no longer supported + hasBin: true + + semver@6.3.1: + resolution: {integrity: sha512-BR7VvDCVHO+q2xBEWskxS6DJE1qRnb7DxzUrogb71CWoSficBxYsiAGd+Kl0mmq/MprG9yArRkyrQxTO6XjMzA==} + hasBin: true + + semver@7.6.3: + resolution: {integrity: sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==} + engines: {node: '>=10'} + hasBin: true + + set-blocking@2.0.0: + resolution: {integrity: sha512-KiKBS8AnWGEyLzofFfmvKwpdPzqiy16LvQfK3yv/fVH7Bj13/wl3JSR1J+rfgRE9q7xUJK4qvgS8raSOeLUehw==} + + shebang-command@2.0.0: + resolution: {integrity: sha512-kHxr2zZpYtdmrN1qDjrrX/Z1rR1kG8Dx+gkpK1G4eXmvXswmcE1hTWBWYUzlraYw1/yZp6YuDY77YtvbN0dmDA==} + engines: {node: '>=8'} + + shebang-regex@3.0.0: + resolution: {integrity: sha512-7++dFhtcx3353uBaq8DDR4NuxBetBzC7ZQOhmTQInHEd6bSrXdiEyzCvG07Z44UYdLShWUyXt5M/yhz8ekcb1A==} + engines: {node: '>=8'} + + should-equal@2.0.0: + resolution: {integrity: sha512-ZP36TMrK9euEuWQYBig9W55WPC7uo37qzAEmbjHz4gfyuXrEUgF8cUvQVO+w+d3OMfPvSRQJ22lSm8MQJ43LTA==} + + should-format@3.0.3: + resolution: {integrity: sha512-hZ58adtulAk0gKtua7QxevgUaXTTXxIi8t41L3zo9AHvjXO1/7sdLECuHeIN2SRtYXpNkmhoUP2pdeWgricQ+Q==} + + should-type-adaptors@1.1.0: + resolution: {integrity: sha512-JA4hdoLnN+kebEp2Vs8eBe9g7uy0zbRo+RMcU0EsNy+R+k049Ki+N5tT5Jagst2g7EAja+euFuoXFCa8vIklfA==} + + should-type@1.4.0: + resolution: {integrity: sha512-MdAsTu3n25yDbIe1NeN69G4n6mUnJGtSJHygX3+oN0ZbO3DTiATnf7XnYJdGT42JCXurTb1JI0qOBR65shvhPQ==} + + should-util@1.0.1: + resolution: {integrity: sha512-oXF8tfxx5cDk8r2kYqlkUJzZpDBqVY/II2WhvU0n9Y3XYvAYRmeaf1PvvIvTgPnv4KJ+ES5M0PyDq5Jp+Ygy2g==} + + should@13.2.3: + resolution: {integrity: sha512-ggLesLtu2xp+ZxI+ysJTmNjh2U0TsC+rQ/pfED9bUZZ4DKefP27D+7YJVVTvKsmjLpIi9jAa7itwDGkDDmt1GQ==} + + signal-exit@3.0.7: + resolution: {integrity: sha512-wnD2ZE+l+SPC/uoS0vXeE9L1+0wuaMqKlfz9AMUo38JsyLSBWSFcHR1Rri62LZc12vLr1gb3jl7iwQhgwpAbGQ==} + + signal-exit@4.1.0: + resolution: {integrity: sha512-bzyZ1e88w9O1iNJbKnOlvYTrWPDl46O1bG0D3XInv+9tkPrxrN8jUUTiFlDkkmKWgn1M6CfIA13SuGqOa9Korw==} + engines: {node: '>=14'} + + sisteransi@1.0.5: + resolution: {integrity: sha512-bLGGlR1QxBcynn2d5YmDX4MGjlZvy2MRBDRNHLJ8VI6l6+9FUiyTFNJ0IveOSP0bcXgVDPRcfGqA0pjaqUpfVg==} + + slash@3.0.0: + resolution: {integrity: sha512-g9Q1haeby36OSStwb4ntCGGGaKsaVSjQ68fBxoQcutl5fS1vuY18H3wSt3jFyFtrkx+Kz0V1G85A4MyAdDMi2Q==} + engines: {node: '>=8'} + + source-map-support@0.5.13: + resolution: {integrity: sha512-SHSKFHadjVA5oR4PPqhtAVdcBWwRYVd6g6cAXnIbRiIwc2EhPrTuKUBdSLvlEKyIP3GCf89fltvcZiP9MMFA1w==} + + source-map-support@0.5.21: + resolution: {integrity: sha512-uBHU3L3czsIyYXKX88fdrGovxdSCoTGDRZ6SYXtSRxLZUzHg5P/66Ht6uoUlHu9EZod+inXhKo3qQgwXUT/y1w==} + + source-map@0.6.1: + resolution: {integrity: sha512-UjgapumWlbMhkBgzT7Ykc5YXUT46F0iKu8SGXq0bcwP5dz/h0Plj6enJqjz1Zbq2l5WaqYnrVbwWOWMyF3F47g==} + engines: {node: '>=0.10.0'} + + spawn-wrap@2.0.0: + resolution: {integrity: sha512-EeajNjfN9zMnULLwhZZQU3GWBoFNkbngTUPfaawT4RkMiviTxcX0qfhVbGey39mfctfDHkWtuecgQ8NJcyQWHg==} + engines: {node: '>=8'} + + sprintf-js@1.0.3: + resolution: {integrity: sha512-D9cPgkvLlV3t3IzL0D0YLvGA9Ahk4PcvVwUbN0dSGr1aP0Nrt4AEnTUbuGvquEC0mA64Gqt1fzirlRs5ibXx8g==} + + stack-utils@2.0.6: + resolution: {integrity: sha512-XlkWvfIm6RmsWtNJx+uqtKLS8eqFbxUg0ZzLXqY0caEy9l7hruX8IpiDnjsLavoBgqCCR71TqWO8MaXYheJ3RQ==} + engines: {node: '>=10'} + + string-length@4.0.2: + resolution: {integrity: sha512-+l6rNN5fYHNhZZy41RXsYptCjA2Igmq4EG7kZAYFQI1E1VTXarr6ZPXBg6eq7Y6eK4FEhY6AJlyuFIb/v/S0VQ==} + engines: {node: '>=10'} + + string-width@4.2.3: + resolution: {integrity: sha512-wKyQRQpjJ0sIp62ErSZdGsjMJWsap5oRNihHhu6G7JVO/9jIB6UyevL+tXuOqrng8j/cxKTWyWUwvSTriiZz/g==} + engines: {node: '>=8'} + + strip-ansi@6.0.1: + resolution: {integrity: sha512-Y38VPSHcqkFrCpFnQ9vuSXmquuv5oXOKpGeT6aGrr3o3Gc9AlVa6JBfUSOCnbxGGZF+/0ooI7KrPuUSztUdU5A==} + engines: {node: '>=8'} + + strip-bom@3.0.0: + resolution: {integrity: sha512-vavAMRXOgBVNF6nyEEmL3DBK19iRpDcoIwW+swQ+CbGiu7lju6t+JklA1MHweoWtadgt4ISVUsXLyDq34ddcwA==} + engines: {node: '>=4'} + + strip-bom@4.0.0: + resolution: {integrity: sha512-3xurFv5tEgii33Zi8Jtp55wEIILR9eh34FAW00PZf+JnSsTmV/ioewSgQl97JHvgjoRGwPShsWm+IdrxB35d0w==} + engines: {node: '>=8'} + + strip-final-newline@2.0.0: + resolution: {integrity: sha512-BrpvfNAE3dcvq7ll3xVumzjKjZQ5tI1sEUIKr3Uoks0XUl45St3FlatVqef9prk4jRDzhW6WZg+3bk93y6pLjA==} + engines: {node: '>=6'} + + strip-json-comments@3.1.1: + resolution: {integrity: sha512-6fPc+R4ihwqP6N/aIv2f1gMH8lOVtWQHoqC4yK6oSDVVocumAsfCqjkXnqiYMhmMwS/mEHLp7Vehlt3ql6lEig==} + engines: {node: '>=8'} + + supports-color@7.2.0: + resolution: {integrity: sha512-qpCAvRl9stuOHveKsn7HncJRvv501qIacKzQlO/+Lwxc9+0q2wLyv4Dfvt80/DPn2pqOBsJdDiogXGR9+OvwRw==} + engines: {node: '>=8'} + + supports-color@8.1.1: + resolution: {integrity: sha512-MpUEN2OodtUzxvKQl72cUF7RQ5EiHsGvSsVG0ia9c5RbWGL2CI4C7EpPS8UTBIplnlzZiNuV56w+FuNxy3ty2Q==} + engines: {node: '>=10'} + + supports-preserve-symlinks-flag@1.0.0: + resolution: {integrity: sha512-ot0WnXS9fgdkgIcePe6RHNk1WA8+muPa6cSjeR3V8K27q9BB1rTE3R1p7Hv0z1ZyAc8s6Vvv8DIyWf681MAt0w==} + engines: {node: '>= 0.4'} + + swagger-schema-official@2.0.0-bab6bed: + resolution: {integrity: sha512-rCC0NWGKr/IJhtRuPq/t37qvZHI/mH4I4sxflVM+qgVe5Z2uOCivzWaVbuioJaB61kvm5UvB7b49E+oBY0M8jA==} + + swagger-typescript-api@13.0.22: + resolution: {integrity: sha512-LVLOWvozOE3izesDrfmhOpwr6XsCRGsrfJuAXsaHkzQxYPAcpSRIAzodmz1hcGJ8BOPiBCKocH1LQ96F0lmmAw==} + engines: {node: '>=18.0.0'} + hasBin: true + + swagger2openapi@7.0.8: + resolution: {integrity: sha512-upi/0ZGkYgEcLeGieoz8gT74oWHA0E7JivX7aN9mAf+Tc7BQoRBvnIGHoPDw+f9TXTW4s6kGYCZJtauP6OYp7g==} + hasBin: true + + test-exclude@6.0.0: + resolution: {integrity: sha512-cAGWPIyOHU6zlmg88jwm7VRyXnMN7iV68OGAbYDk/Mh/xC/pzVPlQtY6ngoIH/5/tciuhGfvESU8GrHrcxD56w==} + engines: {node: '>=8'} + + tmpl@1.0.5: + resolution: {integrity: sha512-3f0uOEAQwIqGuWW2MVzYg8fV/QNnc/IpuJNG837rLuczAaLVHslWHZQj4IGiEl5Hs3kkbhwL9Ab7Hrsmuj+Smw==} + + to-regex-range@5.0.1: + resolution: {integrity: sha512-65P7iz6X5yEr1cwcgvQxbbIw7Uk3gOy5dIdtZ4rDveLqhrdJP+Li/Hx6tyK0NEb+2GCyneCMJiGqrADCSNk8sQ==} + engines: {node: '>=8.0'} + + tr46@0.0.3: + resolution: {integrity: sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==} + + ts-jest@29.2.5: + resolution: {integrity: sha512-KD8zB2aAZrcKIdGk4OwpJggeLcH1FgrICqDSROWqlnJXGCXK4Mn6FcdK2B6670Xr73lHMG1kHw8R87A0ecZ+vA==} + engines: {node: ^14.15.0 || ^16.10.0 || ^18.0.0 || >=20.0.0} + hasBin: true + peerDependencies: + '@babel/core': '>=7.0.0-beta.0 <8' + '@jest/transform': ^29.0.0 + '@jest/types': ^29.0.0 + babel-jest: ^29.0.0 + esbuild: '*' + jest: ^29.0.0 + typescript: '>=4.3 <6' + peerDependenciesMeta: + '@babel/core': + optional: true + '@jest/transform': + optional: true + '@jest/types': + optional: true + babel-jest: + optional: true + esbuild: + optional: true + + tsconfig-paths@4.2.0: + resolution: {integrity: sha512-NoZ4roiN7LnbKn9QqE1amc9DJfzvZXxF4xDavcOWt1BPkdx+m+0gJuPM+S0vCe7zTJMYUP0R8pO2XMr+Y8oLIg==} + engines: {node: '>=6'} + + tsx@4.19.1: + resolution: {integrity: sha512-0flMz1lh74BR4wOvBjuh9olbnwqCPc35OOlfyzHba0Dc+QNUeWX/Gq2YTbnwcWPO3BMd8fkzRVrHcsR+a7z7rA==} + engines: {node: '>=18.0.0'} + hasBin: true + + type-detect@4.0.8: + resolution: {integrity: sha512-0fr/mIH1dlO+x7TlcMy+bIDqKPsw/70tVyeHW787goQjhmqaZe10uwLujubK9q9Lg6Fiho1KUKDYz0Z7k7g5/g==} + engines: {node: '>=4'} + + type-fest@0.21.3: + resolution: {integrity: sha512-t0rzBq87m3fVcduHDUFhKmyyX+9eo6WQjZvf51Ea/M0Q7+T374Jp1aUiyUl0GKxp8M/OETVHSDvmkyPgvX+X2w==} + engines: {node: '>=10'} + + type-fest@0.8.1: + resolution: {integrity: sha512-4dbzIzqvjtgiM5rw1k5rEHtBANKmdudhGyBEajN01fEyhaAIhsoKNy6y7+IN93IfpFtwY9iqi7kD+xwKhQsNJA==} + engines: {node: '>=8'} + + typedarray-to-buffer@3.1.5: + resolution: {integrity: sha512-zdu8XMNEDepKKR+XYOXAVPtWui0ly0NtohUscw+UmaHiAWT8hrV1rr//H6V+0DvJ3OQ19S979M0laLfX8rm82Q==} + + typescript@5.5.4: + resolution: {integrity: sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==} + engines: {node: '>=14.17'} + hasBin: true + + undici-types@5.26.5: + resolution: {integrity: sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==} + + undici-types@6.19.8: + resolution: {integrity: sha512-ve2KP6f/JnbPBFyobGHuerC9g1FYGn/F8n1LWTwNxCEzd6IfqTwUQcNXgEtmmQ6DlRrC1hrSrBnCZPokRrDHjw==} + + update-browserslist-db@1.1.1: + resolution: {integrity: sha512-R8UzCaa9Az+38REPiJ1tXlImTJXlVfgHZsglwBD/k6nj76ctsH1E3q4doGrukiLQd3sGQYu56r5+lo5r94l29A==} + hasBin: true + peerDependencies: + browserslist: '>= 4.21.0' + + uuid@8.3.2: + resolution: {integrity: sha512-+NYs2QeMWy+GWFOEm9xnn6HCDp0l7QBD7ml8zLUmJ+93Q5NF0NocErnwkTkXVFNiX3/fpC6afS8Dhb/gz7R7eg==} + hasBin: true + + uuidv7@1.0.2: + resolution: {integrity: sha512-8JQkH4ooXnm1JCIhqTMbtmdnYEn6oKukBxHn1Ic9878jMkL7daTI7anTExfY18VRCX7tcdn5quzvCb6EWrR8PA==} + hasBin: true + + v8-to-istanbul@9.3.0: + resolution: {integrity: sha512-kiGUalWN+rgBJ/1OHZsBtU4rXZOfj/7rKQxULKlIzwzQSvMJUUNgPwJEEh7gU6xEVxC0ahoOBvN2YI8GH6FNgA==} + engines: {node: '>=10.12.0'} + + walker@1.0.8: + resolution: {integrity: sha512-ts/8E8l5b7kY0vlWLewOkDXMmPdLcVV4GmOQLyxuSswIJsweeFZtAsMF7k1Nszz+TYBQrlYRmzOnr398y1JemQ==} + + web-streams-polyfill@4.0.0-beta.3: + resolution: {integrity: sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==} + engines: {node: '>= 14'} + + webidl-conversions@3.0.1: + resolution: {integrity: sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==} + + whatwg-url@5.0.0: + resolution: {integrity: sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==} + + which-module@2.0.1: + resolution: {integrity: sha512-iBdZ57RDvnOR9AGBhML2vFZf7h8vmBjhoaZqODJBFWHVtKkDmKuHai3cx5PgVMrX5YDNp27AofYbAwctSS+vhQ==} + + which@2.0.2: + resolution: {integrity: sha512-BLI3Tl1TW3Pvl70l3yq3Y64i+awpwXqsGBYWkkqMtnbXgrMD+yj7rhW0kuEDxzJaYXGjEW5ogapKNMEKNMjibA==} + engines: {node: '>= 8'} + hasBin: true + + wrap-ansi@6.2.0: + resolution: {integrity: sha512-r6lPcBGxZXlIcymEu7InxDMhdW0KDxpLgoFLcguasxCaJ/SOIZwINatK9KY/tf+ZrlywOKU0UDj3ATXUBfxJXA==} + engines: {node: '>=8'} + + wrap-ansi@7.0.0: + resolution: {integrity: sha512-YVGIj2kamLSTxw6NsZjoBxfSwsn0ycdesmc4p+Q21c5zPuZ1pl+NfxVdxPtdHvmNVOQ6XSYG4AUtyt/Fi7D16Q==} + engines: {node: '>=10'} + + wrappy@1.0.2: + resolution: {integrity: sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ==} + + write-file-atomic@3.0.3: + resolution: {integrity: sha512-AvHcyZ5JnSfq3ioSyjrBkH9yW4m7Ayk8/9My/DD9onKeu/94fwrMocemO2QAJFAlnnDN+ZDS+ZjAR5ua1/PV/Q==} + + write-file-atomic@4.0.2: + resolution: {integrity: sha512-7KxauUdBmSdWnmpaGFg+ppNjKF8uNLry8LyzjauQDOVONfFLNKrKvQOxZ/VuTIcS/gge/YNahf5RIIQWTSarlg==} + engines: {node: ^12.13.0 || ^14.15.0 || >=16.0.0} + + y18n@4.0.3: + resolution: {integrity: sha512-JKhqTOwSrqNA1NY5lSztJ1GrBiUodLMmIZuLiDaMRJ+itFd+ABVE8XBjOvIWL+rSqNDC74LCSFmlb/U4UZ4hJQ==} + + y18n@5.0.8: + resolution: {integrity: sha512-0pfFzegeDWJHJIAmTLRP2DwHjdF5s7jo9tuztdQxAhINCdvS+3nGINqPd00AphqJR/0LhANUS6/+7SCb98YOfA==} + engines: {node: '>=10'} + + yallist@3.1.1: + resolution: {integrity: sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==} + + yaml@1.10.2: + resolution: {integrity: sha512-r3vXyErRCYJ7wg28yvBY5VSoAF8ZvlcW9/BwUzEtUsjvX/DKs24dIkuwjtuprwJJHsbyUbLApepYTR1BN4uHrg==} + engines: {node: '>= 6'} + + yargs-parser@18.1.3: + resolution: {integrity: sha512-o50j0JeToy/4K6OZcaQmW6lyXXKhq7csREXcDwk2omFPJEwUNOVtJKvmDr9EI1fAJZUyZcRF7kxGBWmRXudrCQ==} + engines: {node: '>=6'} + + yargs-parser@21.1.1: + resolution: {integrity: sha512-tVpsJW7DdjecAiFpbIB1e3qxIQsE6NoPc5/eTdrbbIC4h0LVsWhnoa3g+m2HclBIujHzsxZ4VJVA+GUuc2/LBw==} + engines: {node: '>=12'} + + yargs@15.4.1: + resolution: {integrity: sha512-aePbxDmcYW++PaqBsJ+HYUFwCdv4LVvdnhBy78E57PIor8/OVvhMrADFFEDh8DHDFRv/O9i3lPhsENjO7QX0+A==} + engines: {node: '>=8'} + + yargs@17.7.2: + resolution: {integrity: sha512-7dSzzRQ++CKnNI/krKnYRV7JKKPUXMEh61soaHKg9mrWEhzFWhFnxPxGl+69cD1Ou63C13NUPCnmIcrvqCuM6w==} + engines: {node: '>=12'} + + yocto-queue@0.1.0: + resolution: {integrity: sha512-rVksvsnNCdJ/ohGc6xgPwyN8eheCxsiLM8mxuE/t/mOVqJewPuO1miLpTHQiRgTKCLexL4MeAFVagts7HmNZ2Q==} + engines: {node: '>=10'} + +snapshots: + + '@ampproject/remapping@2.3.0': + dependencies: + '@jridgewell/gen-mapping': 0.3.5 + '@jridgewell/trace-mapping': 0.3.25 + + '@babel/code-frame@7.26.0': + dependencies: + '@babel/helper-validator-identifier': 7.25.9 + js-tokens: 4.0.0 + picocolors: 1.1.1 + + '@babel/compat-data@7.26.0': {} + + '@babel/core@7.26.0': + dependencies: + '@ampproject/remapping': 2.3.0 + '@babel/code-frame': 7.26.0 + '@babel/generator': 7.26.0 + '@babel/helper-compilation-targets': 7.25.9 + '@babel/helper-module-transforms': 7.26.0(@babel/core@7.26.0) + '@babel/helpers': 7.26.0 + '@babel/parser': 7.26.0 + '@babel/template': 7.25.9 + '@babel/traverse': 7.25.9 + '@babel/types': 7.26.0 + convert-source-map: 2.0.0 + debug: 4.3.7 + gensync: 1.0.0-beta.2 + json5: 2.2.3 + semver: 6.3.1 + transitivePeerDependencies: + - supports-color + + '@babel/generator@7.26.0': + dependencies: + '@babel/parser': 7.26.0 + '@babel/types': 7.26.0 + '@jridgewell/gen-mapping': 0.3.5 + '@jridgewell/trace-mapping': 0.3.25 + jsesc: 3.0.2 + + '@babel/helper-compilation-targets@7.25.9': + dependencies: + '@babel/compat-data': 7.26.0 + '@babel/helper-validator-option': 7.25.9 + browserslist: 4.24.2 + lru-cache: 5.1.1 + semver: 6.3.1 + + '@babel/helper-module-imports@7.25.9': + dependencies: + '@babel/traverse': 7.25.9 + '@babel/types': 7.26.0 + transitivePeerDependencies: + - supports-color + + '@babel/helper-module-transforms@7.26.0(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-module-imports': 7.25.9 + '@babel/helper-validator-identifier': 7.25.9 + '@babel/traverse': 7.25.9 + transitivePeerDependencies: + - supports-color + + '@babel/helper-plugin-utils@7.25.9': {} + + '@babel/helper-string-parser@7.25.9': {} + + '@babel/helper-validator-identifier@7.25.9': {} + + '@babel/helper-validator-option@7.25.9': {} + + '@babel/helpers@7.26.0': + dependencies: + '@babel/template': 7.25.9 + '@babel/types': 7.26.0 + + '@babel/parser@7.26.0': + dependencies: + '@babel/types': 7.26.0 + + '@babel/plugin-syntax-async-generators@7.8.4(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-bigint@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-class-properties@7.12.13(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-class-static-block@7.14.5(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-import-attributes@7.26.0(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-import-meta@7.10.4(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-json-strings@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-jsx@7.25.9(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-logical-assignment-operators@7.10.4(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-nullish-coalescing-operator@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-numeric-separator@7.10.4(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-object-rest-spread@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-optional-catch-binding@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-optional-chaining@7.8.3(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-private-property-in-object@7.14.5(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-top-level-await@7.14.5(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/plugin-syntax-typescript@7.25.9(@babel/core@7.26.0)': + dependencies: + '@babel/core': 7.26.0 + '@babel/helper-plugin-utils': 7.25.9 + + '@babel/template@7.25.9': + dependencies: + '@babel/code-frame': 7.26.0 + '@babel/parser': 7.26.0 + '@babel/types': 7.26.0 + + '@babel/traverse@7.25.9': + dependencies: + '@babel/code-frame': 7.26.0 + '@babel/generator': 7.26.0 + '@babel/parser': 7.26.0 + '@babel/template': 7.25.9 + '@babel/types': 7.26.0 + debug: 4.3.7 + globals: 11.12.0 + transitivePeerDependencies: + - supports-color + + '@babel/types@7.26.0': + dependencies: + '@babel/helper-string-parser': 7.25.9 + '@babel/helper-validator-identifier': 7.25.9 + + '@bcoe/v8-coverage@0.2.3': {} + + '@esbuild/aix-ppc64@0.23.1': + optional: true + + '@esbuild/android-arm64@0.23.1': + optional: true + + '@esbuild/android-arm@0.23.1': + optional: true + + '@esbuild/android-x64@0.23.1': + optional: true + + '@esbuild/darwin-arm64@0.23.1': + optional: true + + '@esbuild/darwin-x64@0.23.1': + optional: true + + '@esbuild/freebsd-arm64@0.23.1': + optional: true + + '@esbuild/freebsd-x64@0.23.1': + optional: true + + '@esbuild/linux-arm64@0.23.1': + optional: true + + '@esbuild/linux-arm@0.23.1': + optional: true + + '@esbuild/linux-ia32@0.23.1': + optional: true + + '@esbuild/linux-loong64@0.23.1': + optional: true + + '@esbuild/linux-mips64el@0.23.1': + optional: true + + '@esbuild/linux-ppc64@0.23.1': + optional: true + + '@esbuild/linux-riscv64@0.23.1': + optional: true + + '@esbuild/linux-s390x@0.23.1': + optional: true + + '@esbuild/linux-x64@0.23.1': + optional: true + + '@esbuild/netbsd-x64@0.23.1': + optional: true + + '@esbuild/openbsd-arm64@0.23.1': + optional: true + + '@esbuild/openbsd-x64@0.23.1': + optional: true + + '@esbuild/sunos-x64@0.23.1': + optional: true + + '@esbuild/win32-arm64@0.23.1': + optional: true + + '@esbuild/win32-ia32@0.23.1': + optional: true + + '@esbuild/win32-x64@0.23.1': + optional: true + + '@exodus/schemasafe@1.3.0': {} + + '@istanbuljs/load-nyc-config@1.1.0': + dependencies: + camelcase: 5.3.1 + find-up: 4.1.0 + get-package-type: 0.1.0 + js-yaml: 3.14.1 + resolve-from: 5.0.0 + + '@istanbuljs/schema@0.1.3': {} + + '@jest/console@29.7.0': + dependencies: + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + chalk: 4.1.2 + jest-message-util: 29.7.0 + jest-util: 29.7.0 + slash: 3.0.0 + + '@jest/core@29.7.0': + dependencies: + '@jest/console': 29.7.0 + '@jest/reporters': 29.7.0 + '@jest/test-result': 29.7.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + ansi-escapes: 4.3.2 + chalk: 4.1.2 + ci-info: 3.9.0 + exit: 0.1.2 + graceful-fs: 4.2.11 + jest-changed-files: 29.7.0 + jest-config: 29.7.0(@types/node@22.8.0) + jest-haste-map: 29.7.0 + jest-message-util: 29.7.0 + jest-regex-util: 29.6.3 + jest-resolve: 29.7.0 + jest-resolve-dependencies: 29.7.0 + jest-runner: 29.7.0 + jest-runtime: 29.7.0 + jest-snapshot: 29.7.0 + jest-util: 29.7.0 + jest-validate: 29.7.0 + jest-watcher: 29.7.0 + micromatch: 4.0.8 + pretty-format: 29.7.0 + slash: 3.0.0 + strip-ansi: 6.0.1 + transitivePeerDependencies: + - babel-plugin-macros + - supports-color + - ts-node + + '@jest/environment@29.7.0': + dependencies: + '@jest/fake-timers': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + jest-mock: 29.7.0 + + '@jest/expect-utils@29.7.0': + dependencies: + jest-get-type: 29.6.3 + + '@jest/expect@29.7.0': + dependencies: + expect: 29.7.0 + jest-snapshot: 29.7.0 + transitivePeerDependencies: + - supports-color + + '@jest/fake-timers@29.7.0': + dependencies: + '@jest/types': 29.6.3 + '@sinonjs/fake-timers': 10.3.0 + '@types/node': 22.8.0 + jest-message-util: 29.7.0 + jest-mock: 29.7.0 + jest-util: 29.7.0 + + '@jest/globals@29.7.0': + dependencies: + '@jest/environment': 29.7.0 + '@jest/expect': 29.7.0 + '@jest/types': 29.6.3 + jest-mock: 29.7.0 + transitivePeerDependencies: + - supports-color + + '@jest/reporters@29.7.0': + dependencies: + '@bcoe/v8-coverage': 0.2.3 + '@jest/console': 29.7.0 + '@jest/test-result': 29.7.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + '@jridgewell/trace-mapping': 0.3.25 + '@types/node': 22.8.0 + chalk: 4.1.2 + collect-v8-coverage: 1.0.2 + exit: 0.1.2 + glob: 7.2.3 + graceful-fs: 4.2.11 + istanbul-lib-coverage: 3.2.2 + istanbul-lib-instrument: 6.0.3 + istanbul-lib-report: 3.0.1 + istanbul-lib-source-maps: 4.0.1 + istanbul-reports: 3.1.7 + jest-message-util: 29.7.0 + jest-util: 29.7.0 + jest-worker: 29.7.0 + slash: 3.0.0 + string-length: 4.0.2 + strip-ansi: 6.0.1 + v8-to-istanbul: 9.3.0 + transitivePeerDependencies: + - supports-color + + '@jest/schemas@29.6.3': + dependencies: + '@sinclair/typebox': 0.27.8 + + '@jest/source-map@29.6.3': + dependencies: + '@jridgewell/trace-mapping': 0.3.25 + callsites: 3.1.0 + graceful-fs: 4.2.11 + + '@jest/test-result@29.7.0': + dependencies: + '@jest/console': 29.7.0 + '@jest/types': 29.6.3 + '@types/istanbul-lib-coverage': 2.0.6 + collect-v8-coverage: 1.0.2 + + '@jest/test-sequencer@29.7.0': + dependencies: + '@jest/test-result': 29.7.0 + graceful-fs: 4.2.11 + jest-haste-map: 29.7.0 + slash: 3.0.0 + + '@jest/transform@29.7.0': + dependencies: + '@babel/core': 7.26.0 + '@jest/types': 29.6.3 + '@jridgewell/trace-mapping': 0.3.25 + babel-plugin-istanbul: 6.1.1 + chalk: 4.1.2 + convert-source-map: 2.0.0 + fast-json-stable-stringify: 2.1.0 + graceful-fs: 4.2.11 + jest-haste-map: 29.7.0 + jest-regex-util: 29.6.3 + jest-util: 29.7.0 + micromatch: 4.0.8 + pirates: 4.0.6 + slash: 3.0.0 + write-file-atomic: 4.0.2 + transitivePeerDependencies: + - supports-color + + '@jest/types@29.6.3': + dependencies: + '@jest/schemas': 29.6.3 + '@types/istanbul-lib-coverage': 2.0.6 + '@types/istanbul-reports': 3.0.4 + '@types/node': 22.8.0 + '@types/yargs': 17.0.33 + chalk: 4.1.2 + + '@jridgewell/gen-mapping@0.3.5': + dependencies: + '@jridgewell/set-array': 1.2.1 + '@jridgewell/sourcemap-codec': 1.5.0 + '@jridgewell/trace-mapping': 0.3.25 + + '@jridgewell/resolve-uri@3.1.2': {} + + '@jridgewell/set-array@1.2.1': {} + + '@jridgewell/sourcemap-codec@1.5.0': {} + + '@jridgewell/trace-mapping@0.3.25': + dependencies: + '@jridgewell/resolve-uri': 3.1.2 + '@jridgewell/sourcemap-codec': 1.5.0 + + '@sinclair/typebox@0.27.8': {} + + '@sinonjs/commons@3.0.1': + dependencies: + type-detect: 4.0.8 + + '@sinonjs/fake-timers@10.3.0': + dependencies: + '@sinonjs/commons': 3.0.1 + + '@types/babel__core@7.20.5': + dependencies: + '@babel/parser': 7.26.0 + '@babel/types': 7.26.0 + '@types/babel__generator': 7.6.8 + '@types/babel__template': 7.4.4 + '@types/babel__traverse': 7.20.6 + + '@types/babel__generator@7.6.8': + dependencies: + '@babel/types': 7.26.0 + + '@types/babel__template@7.4.4': + dependencies: + '@babel/parser': 7.26.0 + '@babel/types': 7.26.0 + + '@types/babel__traverse@7.20.6': + dependencies: + '@babel/types': 7.26.0 + + '@types/cli-progress@3.11.6': + dependencies: + '@types/node': 22.8.0 + + '@types/graceful-fs@4.1.9': + dependencies: + '@types/node': 22.8.0 + + '@types/istanbul-lib-coverage@2.0.6': {} + + '@types/istanbul-lib-report@3.0.3': + dependencies: + '@types/istanbul-lib-coverage': 2.0.6 + + '@types/istanbul-reports@3.0.4': + dependencies: + '@types/istanbul-lib-report': 3.0.3 + + '@types/jest@29.5.14': + dependencies: + expect: 29.7.0 + pretty-format: 29.7.0 + + '@types/node-fetch@2.6.11': + dependencies: + '@types/node': 22.8.0 + form-data: 4.0.1 + + '@types/node@18.19.59': + dependencies: + undici-types: 5.26.5 + + '@types/node@22.8.0': + dependencies: + undici-types: 6.19.8 + + '@types/stack-utils@2.0.3': {} + + '@types/swagger-schema-official@2.0.25': {} + + '@types/yargs-parser@21.0.3': {} + + '@types/yargs@17.0.33': + dependencies: + '@types/yargs-parser': 21.0.3 + + abort-controller@3.0.0: + dependencies: + event-target-shim: 5.0.1 + + agentkeepalive@4.5.0: + dependencies: + humanize-ms: 1.2.1 + + aggregate-error@3.1.0: + dependencies: + clean-stack: 2.2.0 + indent-string: 4.0.0 + + ansi-escapes@4.3.2: + dependencies: + type-fest: 0.21.3 + + ansi-regex@5.0.1: {} + + ansi-styles@4.3.0: + dependencies: + color-convert: 2.0.1 + + ansi-styles@5.2.0: {} + + anymatch@3.1.3: + dependencies: + normalize-path: 3.0.0 + picomatch: 2.3.1 + + append-transform@2.0.0: + dependencies: + default-require-extensions: 3.0.1 + + archy@1.0.0: {} + + argparse@1.0.10: + dependencies: + sprintf-js: 1.0.3 + + argparse@2.0.1: {} + + async@3.2.6: {} + + asynckit@0.4.0: {} + + babel-jest@29.7.0(@babel/core@7.26.0): + dependencies: + '@babel/core': 7.26.0 + '@jest/transform': 29.7.0 + '@types/babel__core': 7.20.5 + babel-plugin-istanbul: 6.1.1 + babel-preset-jest: 29.6.3(@babel/core@7.26.0) + chalk: 4.1.2 + graceful-fs: 4.2.11 + slash: 3.0.0 + transitivePeerDependencies: + - supports-color + + babel-plugin-istanbul@6.1.1: + dependencies: + '@babel/helper-plugin-utils': 7.25.9 + '@istanbuljs/load-nyc-config': 1.1.0 + '@istanbuljs/schema': 0.1.3 + istanbul-lib-instrument: 5.2.1 + test-exclude: 6.0.0 + transitivePeerDependencies: + - supports-color + + babel-plugin-jest-hoist@29.6.3: + dependencies: + '@babel/template': 7.25.9 + '@babel/types': 7.26.0 + '@types/babel__core': 7.20.5 + '@types/babel__traverse': 7.20.6 + + babel-preset-current-node-syntax@1.1.0(@babel/core@7.26.0): + dependencies: + '@babel/core': 7.26.0 + '@babel/plugin-syntax-async-generators': 7.8.4(@babel/core@7.26.0) + '@babel/plugin-syntax-bigint': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-class-properties': 7.12.13(@babel/core@7.26.0) + '@babel/plugin-syntax-class-static-block': 7.14.5(@babel/core@7.26.0) + '@babel/plugin-syntax-import-attributes': 7.26.0(@babel/core@7.26.0) + '@babel/plugin-syntax-import-meta': 7.10.4(@babel/core@7.26.0) + '@babel/plugin-syntax-json-strings': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-logical-assignment-operators': 7.10.4(@babel/core@7.26.0) + '@babel/plugin-syntax-nullish-coalescing-operator': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-numeric-separator': 7.10.4(@babel/core@7.26.0) + '@babel/plugin-syntax-object-rest-spread': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-optional-catch-binding': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-optional-chaining': 7.8.3(@babel/core@7.26.0) + '@babel/plugin-syntax-private-property-in-object': 7.14.5(@babel/core@7.26.0) + '@babel/plugin-syntax-top-level-await': 7.14.5(@babel/core@7.26.0) + + babel-preset-jest@29.6.3(@babel/core@7.26.0): + dependencies: + '@babel/core': 7.26.0 + babel-plugin-jest-hoist: 29.6.3 + babel-preset-current-node-syntax: 1.1.0(@babel/core@7.26.0) + + balanced-match@1.0.2: {} + + brace-expansion@1.1.11: + dependencies: + balanced-match: 1.0.2 + concat-map: 0.0.1 + + brace-expansion@2.0.1: + dependencies: + balanced-match: 1.0.2 + + braces@3.0.3: + dependencies: + fill-range: 7.1.1 + + browserslist@4.24.2: + dependencies: + caniuse-lite: 1.0.30001669 + electron-to-chromium: 1.5.45 + node-releases: 2.0.18 + update-browserslist-db: 1.1.1(browserslist@4.24.2) + + bs-logger@0.2.6: + dependencies: + fast-json-stable-stringify: 2.1.0 + + bser@2.1.1: + dependencies: + node-int64: 0.4.0 + + buffer-from@1.1.2: {} + + caching-transform@4.0.0: + dependencies: + hasha: 5.2.2 + make-dir: 3.1.0 + package-hash: 4.0.0 + write-file-atomic: 3.0.3 + + call-me-maybe@1.0.2: {} + + callsites@3.1.0: {} + + camelcase@5.3.1: {} + + camelcase@6.3.0: {} + + caniuse-lite@1.0.30001669: {} + + chalk@4.1.2: + dependencies: + ansi-styles: 4.3.0 + supports-color: 7.2.0 + + char-regex@1.0.2: {} + + ci-info@3.9.0: {} + + cjs-module-lexer@1.4.1: {} + + clean-stack@2.2.0: {} + + cli-progress@3.12.0: + dependencies: + string-width: 4.2.3 + + cliui@6.0.0: + dependencies: + string-width: 4.2.3 + strip-ansi: 6.0.1 + wrap-ansi: 6.2.0 + + cliui@8.0.1: + dependencies: + string-width: 4.2.3 + strip-ansi: 6.0.1 + wrap-ansi: 7.0.0 + + co@4.6.0: {} + + collect-v8-coverage@1.0.2: {} + + color-convert@2.0.1: + dependencies: + color-name: 1.1.4 + + color-name@1.1.4: {} + + combined-stream@1.0.8: + dependencies: + delayed-stream: 1.0.0 + + commondir@1.0.1: {} + + concat-map@0.0.1: {} + + consola@3.2.3: {} + + convert-source-map@1.9.0: {} + + convert-source-map@2.0.0: {} + + cosmiconfig@9.0.0(typescript@5.5.4): + dependencies: + env-paths: 2.2.1 + import-fresh: 3.3.0 + js-yaml: 4.1.0 + parse-json: 5.2.0 + optionalDependencies: + typescript: 5.5.4 + + create-jest@29.7.0(@types/node@22.8.0): + dependencies: + '@jest/types': 29.6.3 + chalk: 4.1.2 + exit: 0.1.2 + graceful-fs: 4.2.11 + jest-config: 29.7.0(@types/node@22.8.0) + jest-util: 29.7.0 + prompts: 2.4.2 + transitivePeerDependencies: + - '@types/node' + - babel-plugin-macros + - supports-color + - ts-node + + cross-spawn@7.0.3: + dependencies: + path-key: 3.1.1 + shebang-command: 2.0.0 + which: 2.0.2 + + debug@4.3.7: + dependencies: + ms: 2.1.3 + + decamelize@1.2.0: {} + + dedent@1.5.3: {} + + deepmerge@4.3.1: {} + + default-require-extensions@3.0.1: + dependencies: + strip-bom: 4.0.0 + + delayed-stream@1.0.0: {} + + detect-newline@3.1.0: {} + + didyoumean@1.2.2: {} + + diff-sequences@29.6.3: {} + + ejs@3.1.10: + dependencies: + jake: 10.9.2 + + electron-to-chromium@1.5.45: {} + + emittery@0.13.1: {} + + emoji-regex@8.0.0: {} + + env-paths@2.2.1: {} + + error-ex@1.3.2: + dependencies: + is-arrayish: 0.2.1 + + es6-error@4.1.1: {} + + es6-promise@3.3.1: {} + + esbuild@0.23.1: + optionalDependencies: + '@esbuild/aix-ppc64': 0.23.1 + '@esbuild/android-arm': 0.23.1 + '@esbuild/android-arm64': 0.23.1 + '@esbuild/android-x64': 0.23.1 + '@esbuild/darwin-arm64': 0.23.1 + '@esbuild/darwin-x64': 0.23.1 + '@esbuild/freebsd-arm64': 0.23.1 + '@esbuild/freebsd-x64': 0.23.1 + '@esbuild/linux-arm': 0.23.1 + '@esbuild/linux-arm64': 0.23.1 + '@esbuild/linux-ia32': 0.23.1 + '@esbuild/linux-loong64': 0.23.1 + '@esbuild/linux-mips64el': 0.23.1 + '@esbuild/linux-ppc64': 0.23.1 + '@esbuild/linux-riscv64': 0.23.1 + '@esbuild/linux-s390x': 0.23.1 + '@esbuild/linux-x64': 0.23.1 + '@esbuild/netbsd-x64': 0.23.1 + '@esbuild/openbsd-arm64': 0.23.1 + '@esbuild/openbsd-x64': 0.23.1 + '@esbuild/sunos-x64': 0.23.1 + '@esbuild/win32-arm64': 0.23.1 + '@esbuild/win32-ia32': 0.23.1 + '@esbuild/win32-x64': 0.23.1 + + escalade@3.2.0: {} + + escape-string-regexp@2.0.0: {} + + esprima@4.0.1: {} + + eta@2.2.0: {} + + event-target-shim@5.0.1: {} + + execa@5.1.1: + dependencies: + cross-spawn: 7.0.3 + get-stream: 6.0.1 + human-signals: 2.1.0 + is-stream: 2.0.1 + merge-stream: 2.0.0 + npm-run-path: 4.0.1 + onetime: 5.1.2 + signal-exit: 3.0.7 + strip-final-newline: 2.0.0 + + exit@0.1.2: {} + + expect@29.7.0: + dependencies: + '@jest/expect-utils': 29.7.0 + jest-get-type: 29.6.3 + jest-matcher-utils: 29.7.0 + jest-message-util: 29.7.0 + jest-util: 29.7.0 + + fast-json-stable-stringify@2.1.0: {} + + fast-safe-stringify@2.1.1: {} + + fb-watchman@2.0.2: + dependencies: + bser: 2.1.1 + + filelist@1.0.4: + dependencies: + minimatch: 5.1.6 + + fill-range@7.1.1: + dependencies: + to-regex-range: 5.0.1 + + find-cache-dir@3.3.2: + dependencies: + commondir: 1.0.1 + make-dir: 3.1.0 + pkg-dir: 4.2.0 + + find-up@4.1.0: + dependencies: + locate-path: 5.0.0 + path-exists: 4.0.0 + + foreground-child@2.0.0: + dependencies: + cross-spawn: 7.0.3 + signal-exit: 3.0.7 + + foreground-child@3.3.0: + dependencies: + cross-spawn: 7.0.3 + signal-exit: 4.1.0 + + form-data-encoder@1.7.2: {} + + form-data@4.0.1: + dependencies: + asynckit: 0.4.0 + combined-stream: 1.0.8 + mime-types: 2.1.35 + + formdata-node@4.4.1: + dependencies: + node-domexception: 1.0.0 + web-streams-polyfill: 4.0.0-beta.3 + + fromentries@1.3.2: {} + + fs.realpath@1.0.0: {} + + fsevents@2.3.3: + optional: true + + function-bind@1.1.2: {} + + gensync@1.0.0-beta.2: {} + + get-caller-file@2.0.5: {} + + get-package-type@0.1.0: {} + + get-stream@6.0.1: {} + + get-tsconfig@4.8.1: + dependencies: + resolve-pkg-maps: 1.0.0 + + glob@7.2.3: + dependencies: + fs.realpath: 1.0.0 + inflight: 1.0.6 + inherits: 2.0.4 + minimatch: 3.1.2 + once: 1.4.0 + path-is-absolute: 1.0.1 + + globals@11.12.0: {} + + graceful-fs@4.2.11: {} + + has-flag@4.0.0: {} + + hasha@5.2.2: + dependencies: + is-stream: 2.0.1 + type-fest: 0.8.1 + + hasown@2.0.2: + dependencies: + function-bind: 1.1.2 + + html-escaper@2.0.2: {} + + http2-client@1.3.5: {} + + human-signals@2.1.0: {} + + humanize-ms@1.2.1: + dependencies: + ms: 2.1.3 + + import-fresh@3.3.0: + dependencies: + parent-module: 1.0.1 + resolve-from: 4.0.0 + + import-local@3.2.0: + dependencies: + pkg-dir: 4.2.0 + resolve-cwd: 3.0.0 + + imurmurhash@0.1.4: {} + + indent-string@4.0.0: {} + + inflight@1.0.6: + dependencies: + once: 1.4.0 + wrappy: 1.0.2 + + inherits@2.0.4: {} + + is-arrayish@0.2.1: {} + + is-core-module@2.15.1: + dependencies: + hasown: 2.0.2 + + is-fullwidth-code-point@3.0.0: {} + + is-generator-fn@2.1.0: {} + + is-number@7.0.0: {} + + is-stream@2.0.1: {} + + is-typedarray@1.0.0: {} + + is-windows@1.0.2: {} + + isexe@2.0.0: {} + + istanbul-lib-coverage@3.2.2: {} + + istanbul-lib-hook@3.0.0: + dependencies: + append-transform: 2.0.0 + + istanbul-lib-instrument@5.2.1: + dependencies: + '@babel/core': 7.26.0 + '@babel/parser': 7.26.0 + '@istanbuljs/schema': 0.1.3 + istanbul-lib-coverage: 3.2.2 + semver: 6.3.1 + transitivePeerDependencies: + - supports-color + + istanbul-lib-instrument@6.0.3: + dependencies: + '@babel/core': 7.26.0 + '@babel/parser': 7.26.0 + '@istanbuljs/schema': 0.1.3 + istanbul-lib-coverage: 3.2.2 + semver: 7.6.3 + transitivePeerDependencies: + - supports-color + + istanbul-lib-processinfo@2.0.3: + dependencies: + archy: 1.0.0 + cross-spawn: 7.0.3 + istanbul-lib-coverage: 3.2.2 + p-map: 3.0.0 + rimraf: 3.0.2 + uuid: 8.3.2 + + istanbul-lib-report@3.0.1: + dependencies: + istanbul-lib-coverage: 3.2.2 + make-dir: 4.0.0 + supports-color: 7.2.0 + + istanbul-lib-source-maps@4.0.1: + dependencies: + debug: 4.3.7 + istanbul-lib-coverage: 3.2.2 + source-map: 0.6.1 + transitivePeerDependencies: + - supports-color + + istanbul-reports@3.1.7: + dependencies: + html-escaper: 2.0.2 + istanbul-lib-report: 3.0.1 + + jake@10.9.2: + dependencies: + async: 3.2.6 + chalk: 4.1.2 + filelist: 1.0.4 + minimatch: 3.1.2 + + jest-changed-files@29.7.0: + dependencies: + execa: 5.1.1 + jest-util: 29.7.0 + p-limit: 3.1.0 + + jest-circus@29.7.0: + dependencies: + '@jest/environment': 29.7.0 + '@jest/expect': 29.7.0 + '@jest/test-result': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + chalk: 4.1.2 + co: 4.6.0 + dedent: 1.5.3 + is-generator-fn: 2.1.0 + jest-each: 29.7.0 + jest-matcher-utils: 29.7.0 + jest-message-util: 29.7.0 + jest-runtime: 29.7.0 + jest-snapshot: 29.7.0 + jest-util: 29.7.0 + p-limit: 3.1.0 + pretty-format: 29.7.0 + pure-rand: 6.1.0 + slash: 3.0.0 + stack-utils: 2.0.6 + transitivePeerDependencies: + - babel-plugin-macros + - supports-color + + jest-cli@29.7.0(@types/node@22.8.0): + dependencies: + '@jest/core': 29.7.0 + '@jest/test-result': 29.7.0 + '@jest/types': 29.6.3 + chalk: 4.1.2 + create-jest: 29.7.0(@types/node@22.8.0) + exit: 0.1.2 + import-local: 3.2.0 + jest-config: 29.7.0(@types/node@22.8.0) + jest-util: 29.7.0 + jest-validate: 29.7.0 + yargs: 17.7.2 + transitivePeerDependencies: + - '@types/node' + - babel-plugin-macros + - supports-color + - ts-node + + jest-config@29.7.0(@types/node@22.8.0): + dependencies: + '@babel/core': 7.26.0 + '@jest/test-sequencer': 29.7.0 + '@jest/types': 29.6.3 + babel-jest: 29.7.0(@babel/core@7.26.0) + chalk: 4.1.2 + ci-info: 3.9.0 + deepmerge: 4.3.1 + glob: 7.2.3 + graceful-fs: 4.2.11 + jest-circus: 29.7.0 + jest-environment-node: 29.7.0 + jest-get-type: 29.6.3 + jest-regex-util: 29.6.3 + jest-resolve: 29.7.0 + jest-runner: 29.7.0 + jest-util: 29.7.0 + jest-validate: 29.7.0 + micromatch: 4.0.8 + parse-json: 5.2.0 + pretty-format: 29.7.0 + slash: 3.0.0 + strip-json-comments: 3.1.1 + optionalDependencies: + '@types/node': 22.8.0 + transitivePeerDependencies: + - babel-plugin-macros + - supports-color + + jest-diff@29.7.0: + dependencies: + chalk: 4.1.2 + diff-sequences: 29.6.3 + jest-get-type: 29.6.3 + pretty-format: 29.7.0 + + jest-docblock@29.7.0: + dependencies: + detect-newline: 3.1.0 + + jest-each@29.7.0: + dependencies: + '@jest/types': 29.6.3 + chalk: 4.1.2 + jest-get-type: 29.6.3 + jest-util: 29.7.0 + pretty-format: 29.7.0 + + jest-environment-node@29.7.0: + dependencies: + '@jest/environment': 29.7.0 + '@jest/fake-timers': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + jest-mock: 29.7.0 + jest-util: 29.7.0 + + jest-get-type@29.6.3: {} + + jest-haste-map@29.7.0: + dependencies: + '@jest/types': 29.6.3 + '@types/graceful-fs': 4.1.9 + '@types/node': 22.8.0 + anymatch: 3.1.3 + fb-watchman: 2.0.2 + graceful-fs: 4.2.11 + jest-regex-util: 29.6.3 + jest-util: 29.7.0 + jest-worker: 29.7.0 + micromatch: 4.0.8 + walker: 1.0.8 + optionalDependencies: + fsevents: 2.3.3 + + jest-leak-detector@29.7.0: + dependencies: + jest-get-type: 29.6.3 + pretty-format: 29.7.0 + + jest-matcher-utils@29.7.0: + dependencies: + chalk: 4.1.2 + jest-diff: 29.7.0 + jest-get-type: 29.6.3 + pretty-format: 29.7.0 + + jest-message-util@29.7.0: + dependencies: + '@babel/code-frame': 7.26.0 + '@jest/types': 29.6.3 + '@types/stack-utils': 2.0.3 + chalk: 4.1.2 + graceful-fs: 4.2.11 + micromatch: 4.0.8 + pretty-format: 29.7.0 + slash: 3.0.0 + stack-utils: 2.0.6 + + jest-mock@29.7.0: + dependencies: + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + jest-util: 29.7.0 + + jest-pnp-resolver@1.2.3(jest-resolve@29.7.0): + optionalDependencies: + jest-resolve: 29.7.0 + + jest-regex-util@29.6.3: {} + + jest-resolve-dependencies@29.7.0: + dependencies: + jest-regex-util: 29.6.3 + jest-snapshot: 29.7.0 + transitivePeerDependencies: + - supports-color + + jest-resolve@29.7.0: + dependencies: + chalk: 4.1.2 + graceful-fs: 4.2.11 + jest-haste-map: 29.7.0 + jest-pnp-resolver: 1.2.3(jest-resolve@29.7.0) + jest-util: 29.7.0 + jest-validate: 29.7.0 + resolve: 1.22.8 + resolve.exports: 2.0.2 + slash: 3.0.0 + + jest-runner@29.7.0: + dependencies: + '@jest/console': 29.7.0 + '@jest/environment': 29.7.0 + '@jest/test-result': 29.7.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + chalk: 4.1.2 + emittery: 0.13.1 + graceful-fs: 4.2.11 + jest-docblock: 29.7.0 + jest-environment-node: 29.7.0 + jest-haste-map: 29.7.0 + jest-leak-detector: 29.7.0 + jest-message-util: 29.7.0 + jest-resolve: 29.7.0 + jest-runtime: 29.7.0 + jest-util: 29.7.0 + jest-watcher: 29.7.0 + jest-worker: 29.7.0 + p-limit: 3.1.0 + source-map-support: 0.5.13 + transitivePeerDependencies: + - supports-color + + jest-runtime@29.7.0: + dependencies: + '@jest/environment': 29.7.0 + '@jest/fake-timers': 29.7.0 + '@jest/globals': 29.7.0 + '@jest/source-map': 29.6.3 + '@jest/test-result': 29.7.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + chalk: 4.1.2 + cjs-module-lexer: 1.4.1 + collect-v8-coverage: 1.0.2 + glob: 7.2.3 + graceful-fs: 4.2.11 + jest-haste-map: 29.7.0 + jest-message-util: 29.7.0 + jest-mock: 29.7.0 + jest-regex-util: 29.6.3 + jest-resolve: 29.7.0 + jest-snapshot: 29.7.0 + jest-util: 29.7.0 + slash: 3.0.0 + strip-bom: 4.0.0 + transitivePeerDependencies: + - supports-color + + jest-snapshot@29.7.0: + dependencies: + '@babel/core': 7.26.0 + '@babel/generator': 7.26.0 + '@babel/plugin-syntax-jsx': 7.25.9(@babel/core@7.26.0) + '@babel/plugin-syntax-typescript': 7.25.9(@babel/core@7.26.0) + '@babel/types': 7.26.0 + '@jest/expect-utils': 29.7.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + babel-preset-current-node-syntax: 1.1.0(@babel/core@7.26.0) + chalk: 4.1.2 + expect: 29.7.0 + graceful-fs: 4.2.11 + jest-diff: 29.7.0 + jest-get-type: 29.6.3 + jest-matcher-utils: 29.7.0 + jest-message-util: 29.7.0 + jest-util: 29.7.0 + natural-compare: 1.4.0 + pretty-format: 29.7.0 + semver: 7.6.3 + transitivePeerDependencies: + - supports-color + + jest-util@29.7.0: + dependencies: + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + chalk: 4.1.2 + ci-info: 3.9.0 + graceful-fs: 4.2.11 + picomatch: 2.3.1 + + jest-validate@29.7.0: + dependencies: + '@jest/types': 29.6.3 + camelcase: 6.3.0 + chalk: 4.1.2 + jest-get-type: 29.6.3 + leven: 3.1.0 + pretty-format: 29.7.0 + + jest-watcher@29.7.0: + dependencies: + '@jest/test-result': 29.7.0 + '@jest/types': 29.6.3 + '@types/node': 22.8.0 + ansi-escapes: 4.3.2 + chalk: 4.1.2 + emittery: 0.13.1 + jest-util: 29.7.0 + string-length: 4.0.2 + + jest-worker@29.7.0: + dependencies: + '@types/node': 22.8.0 + jest-util: 29.7.0 + merge-stream: 2.0.0 + supports-color: 8.1.1 + + jest@29.7.0(@types/node@22.8.0): + dependencies: + '@jest/core': 29.7.0 + '@jest/types': 29.6.3 + import-local: 3.2.0 + jest-cli: 29.7.0(@types/node@22.8.0) + transitivePeerDependencies: + - '@types/node' + - babel-plugin-macros + - supports-color + - ts-node + + js-tokens@4.0.0: {} + + js-yaml@3.14.1: + dependencies: + argparse: 1.0.10 + esprima: 4.0.1 + + js-yaml@4.1.0: + dependencies: + argparse: 2.0.1 + + jsesc@3.0.2: {} + + json-parse-even-better-errors@2.3.1: {} + + json5@2.2.3: {} + + kleur@3.0.3: {} + + leven@3.1.0: {} + + lines-and-columns@1.2.4: {} + + locate-path@5.0.0: + dependencies: + p-locate: 4.1.0 + + lodash.flattendeep@4.4.0: {} + + lodash.memoize@4.1.2: {} + + lodash@4.17.21: {} + + lru-cache@5.1.1: + dependencies: + yallist: 3.1.1 + + make-dir@3.1.0: + dependencies: + semver: 6.3.1 + + make-dir@4.0.0: + dependencies: + semver: 7.6.3 + + make-error@1.3.6: {} + + makeerror@1.0.12: + dependencies: + tmpl: 1.0.5 + + merge-stream@2.0.0: {} + + micromatch@4.0.8: + dependencies: + braces: 3.0.3 + picomatch: 2.3.1 + + mime-db@1.52.0: {} + + mime-types@2.1.35: + dependencies: + mime-db: 1.52.0 + + mimic-fn@2.1.0: {} + + minimatch@3.1.2: + dependencies: + brace-expansion: 1.1.11 + + minimatch@5.1.6: + dependencies: + brace-expansion: 2.0.1 + + minimist@1.2.8: {} + + ms@2.1.3: {} + + nanoid@3.3.7: {} + + natural-compare@1.4.0: {} + + node-domexception@1.0.0: {} + + node-fetch-h2@2.3.0: + dependencies: + http2-client: 1.3.5 + + node-fetch@2.7.0: + dependencies: + whatwg-url: 5.0.0 + + node-int64@0.4.0: {} + + node-preload@0.2.1: + dependencies: + process-on-spawn: 1.0.0 + + node-readfiles@0.2.0: + dependencies: + es6-promise: 3.3.1 + + node-releases@2.0.18: {} + + normalize-path@3.0.0: {} + + npm-run-path@4.0.1: + dependencies: + path-key: 3.1.1 + + nyc@17.1.0: + dependencies: + '@istanbuljs/load-nyc-config': 1.1.0 + '@istanbuljs/schema': 0.1.3 + caching-transform: 4.0.0 + convert-source-map: 1.9.0 + decamelize: 1.2.0 + find-cache-dir: 3.3.2 + find-up: 4.1.0 + foreground-child: 3.3.0 + get-package-type: 0.1.0 + glob: 7.2.3 + istanbul-lib-coverage: 3.2.2 + istanbul-lib-hook: 3.0.0 + istanbul-lib-instrument: 6.0.3 + istanbul-lib-processinfo: 2.0.3 + istanbul-lib-report: 3.0.1 + istanbul-lib-source-maps: 4.0.1 + istanbul-reports: 3.1.7 + make-dir: 3.1.0 + node-preload: 0.2.1 + p-map: 3.0.0 + process-on-spawn: 1.0.0 + resolve-from: 5.0.0 + rimraf: 3.0.2 + signal-exit: 3.0.7 + spawn-wrap: 2.0.0 + test-exclude: 6.0.0 + yargs: 15.4.1 + transitivePeerDependencies: + - supports-color + + oas-kit-common@1.0.8: + dependencies: + fast-safe-stringify: 2.1.1 + + oas-linter@3.2.2: + dependencies: + '@exodus/schemasafe': 1.3.0 + should: 13.2.3 + yaml: 1.10.2 + + oas-resolver@2.5.6: + dependencies: + node-fetch-h2: 2.3.0 + oas-kit-common: 1.0.8 + reftools: 1.1.9 + yaml: 1.10.2 + yargs: 17.7.2 + + oas-schema-walker@1.1.5: {} + + oas-validator@5.0.8: + dependencies: + call-me-maybe: 1.0.2 + oas-kit-common: 1.0.8 + oas-linter: 3.2.2 + oas-resolver: 2.5.6 + oas-schema-walker: 1.1.5 + reftools: 1.1.9 + should: 13.2.3 + yaml: 1.10.2 + + once@1.4.0: + dependencies: + wrappy: 1.0.2 + + onetime@5.1.2: + dependencies: + mimic-fn: 2.1.0 + + openai@4.68.4: + dependencies: + '@types/node': 18.19.59 + '@types/node-fetch': 2.6.11 + abort-controller: 3.0.0 + agentkeepalive: 4.5.0 + form-data-encoder: 1.7.2 + formdata-node: 4.4.1 + node-fetch: 2.7.0 + transitivePeerDependencies: + - encoding + + p-limit@2.3.0: + dependencies: + p-try: 2.2.0 + + p-limit@3.1.0: + dependencies: + yocto-queue: 0.1.0 + + p-locate@4.1.0: + dependencies: + p-limit: 2.3.0 + + p-map@3.0.0: + dependencies: + aggregate-error: 3.1.0 + + p-try@2.2.0: {} + + package-hash@4.0.0: + dependencies: + graceful-fs: 4.2.11 + hasha: 5.2.2 + lodash.flattendeep: 4.4.0 + release-zalgo: 1.0.0 + + parent-module@1.0.1: + dependencies: + callsites: 3.1.0 + + parse-json@5.2.0: + dependencies: + '@babel/code-frame': 7.26.0 + error-ex: 1.3.2 + json-parse-even-better-errors: 2.3.1 + lines-and-columns: 1.2.4 + + path-exists@4.0.0: {} + + path-is-absolute@1.0.1: {} + + path-key@3.1.1: {} + + path-parse@1.0.7: {} + + picocolors@1.1.1: {} + + picomatch@2.3.1: {} + + pirates@4.0.6: {} + + pkg-dir@4.2.0: + dependencies: + find-up: 4.1.0 + + prettier@3.3.3: {} + + pretty-format@29.7.0: + dependencies: + '@jest/schemas': 29.6.3 + ansi-styles: 5.2.0 + react-is: 18.3.1 + + process-on-spawn@1.0.0: + dependencies: + fromentries: 1.3.2 + + prompts@2.4.2: + dependencies: + kleur: 3.0.3 + sisteransi: 1.0.5 + + pure-rand@6.1.0: {} + + react-is@18.3.1: {} + + reftools@1.1.9: {} + + release-zalgo@1.0.0: + dependencies: + es6-error: 4.1.1 + + require-directory@2.1.1: {} + + require-main-filename@2.0.0: {} + + resolve-cwd@3.0.0: + dependencies: + resolve-from: 5.0.0 + + resolve-from@4.0.0: {} + + resolve-from@5.0.0: {} + + resolve-pkg-maps@1.0.0: {} + + resolve.exports@2.0.2: {} + + resolve@1.22.8: + dependencies: + is-core-module: 2.15.1 + path-parse: 1.0.7 + supports-preserve-symlinks-flag: 1.0.0 + + rimraf@3.0.2: + dependencies: + glob: 7.2.3 + + semver@6.3.1: {} + + semver@7.6.3: {} + + set-blocking@2.0.0: {} + + shebang-command@2.0.0: + dependencies: + shebang-regex: 3.0.0 + + shebang-regex@3.0.0: {} + + should-equal@2.0.0: + dependencies: + should-type: 1.4.0 + + should-format@3.0.3: + dependencies: + should-type: 1.4.0 + should-type-adaptors: 1.1.0 + + should-type-adaptors@1.1.0: + dependencies: + should-type: 1.4.0 + should-util: 1.0.1 + + should-type@1.4.0: {} + + should-util@1.0.1: {} + + should@13.2.3: + dependencies: + should-equal: 2.0.0 + should-format: 3.0.3 + should-type: 1.4.0 + should-type-adaptors: 1.1.0 + should-util: 1.0.1 + + signal-exit@3.0.7: {} + + signal-exit@4.1.0: {} + + sisteransi@1.0.5: {} + + slash@3.0.0: {} + + source-map-support@0.5.13: + dependencies: + buffer-from: 1.1.2 + source-map: 0.6.1 + + source-map-support@0.5.21: + dependencies: + buffer-from: 1.1.2 + source-map: 0.6.1 + + source-map@0.6.1: {} + + spawn-wrap@2.0.0: + dependencies: + foreground-child: 2.0.0 + is-windows: 1.0.2 + make-dir: 3.1.0 + rimraf: 3.0.2 + signal-exit: 3.0.7 + which: 2.0.2 + + sprintf-js@1.0.3: {} + + stack-utils@2.0.6: + dependencies: + escape-string-regexp: 2.0.0 + + string-length@4.0.2: + dependencies: + char-regex: 1.0.2 + strip-ansi: 6.0.1 + + string-width@4.2.3: + dependencies: + emoji-regex: 8.0.0 + is-fullwidth-code-point: 3.0.0 + strip-ansi: 6.0.1 + + strip-ansi@6.0.1: + dependencies: + ansi-regex: 5.0.1 + + strip-bom@3.0.0: {} + + strip-bom@4.0.0: {} + + strip-final-newline@2.0.0: {} + + strip-json-comments@3.1.1: {} + + supports-color@7.2.0: + dependencies: + has-flag: 4.0.0 + + supports-color@8.1.1: + dependencies: + has-flag: 4.0.0 + + supports-preserve-symlinks-flag@1.0.0: {} + + swagger-schema-official@2.0.0-bab6bed: {} + + swagger-typescript-api@13.0.22: + dependencies: + '@types/swagger-schema-official': 2.0.25 + consola: 3.2.3 + cosmiconfig: 9.0.0(typescript@5.5.4) + didyoumean: 1.2.2 + eta: 2.2.0 + js-yaml: 4.1.0 + lodash: 4.17.21 + nanoid: 3.3.7 + prettier: 3.3.3 + swagger-schema-official: 2.0.0-bab6bed + swagger2openapi: 7.0.8 + typescript: 5.5.4 + transitivePeerDependencies: + - encoding + + swagger2openapi@7.0.8: + dependencies: + call-me-maybe: 1.0.2 + node-fetch: 2.7.0 + node-fetch-h2: 2.3.0 + node-readfiles: 0.2.0 + oas-kit-common: 1.0.8 + oas-resolver: 2.5.6 + oas-schema-walker: 1.1.5 + oas-validator: 5.0.8 + reftools: 1.1.9 + yaml: 1.10.2 + yargs: 17.7.2 + transitivePeerDependencies: + - encoding + + test-exclude@6.0.0: + dependencies: + '@istanbuljs/schema': 0.1.3 + glob: 7.2.3 + minimatch: 3.1.2 + + tmpl@1.0.5: {} + + to-regex-range@5.0.1: + dependencies: + is-number: 7.0.0 + + tr46@0.0.3: {} + + ts-jest@29.2.5(@babel/core@7.26.0)(@jest/transform@29.7.0)(@jest/types@29.6.3)(babel-jest@29.7.0(@babel/core@7.26.0))(jest@29.7.0(@types/node@22.8.0))(typescript@5.5.4): + dependencies: + bs-logger: 0.2.6 + ejs: 3.1.10 + fast-json-stable-stringify: 2.1.0 + jest: 29.7.0(@types/node@22.8.0) + jest-util: 29.7.0 + json5: 2.2.3 + lodash.memoize: 4.1.2 + make-error: 1.3.6 + semver: 7.6.3 + typescript: 5.5.4 + yargs-parser: 21.1.1 + optionalDependencies: + '@babel/core': 7.26.0 + '@jest/transform': 29.7.0 + '@jest/types': 29.6.3 + babel-jest: 29.7.0(@babel/core@7.26.0) + + tsconfig-paths@4.2.0: + dependencies: + json5: 2.2.3 + minimist: 1.2.8 + strip-bom: 3.0.0 + + tsx@4.19.1: + dependencies: + esbuild: 0.23.1 + get-tsconfig: 4.8.1 + optionalDependencies: + fsevents: 2.3.3 + + type-detect@4.0.8: {} + + type-fest@0.21.3: {} + + type-fest@0.8.1: {} + + typedarray-to-buffer@3.1.5: + dependencies: + is-typedarray: 1.0.0 + + typescript@5.5.4: {} + + undici-types@5.26.5: {} + + undici-types@6.19.8: {} + + update-browserslist-db@1.1.1(browserslist@4.24.2): + dependencies: + browserslist: 4.24.2 + escalade: 3.2.0 + picocolors: 1.1.1 + + uuid@8.3.2: {} + + uuidv7@1.0.2: {} + + v8-to-istanbul@9.3.0: + dependencies: + '@jridgewell/trace-mapping': 0.3.25 + '@types/istanbul-lib-coverage': 2.0.6 + convert-source-map: 2.0.0 + + walker@1.0.8: + dependencies: + makeerror: 1.0.12 + + web-streams-polyfill@4.0.0-beta.3: {} + + webidl-conversions@3.0.1: {} + + whatwg-url@5.0.0: + dependencies: + tr46: 0.0.3 + webidl-conversions: 3.0.1 + + which-module@2.0.1: {} + + which@2.0.2: + dependencies: + isexe: 2.0.0 + + wrap-ansi@6.2.0: + dependencies: + ansi-styles: 4.3.0 + string-width: 4.2.3 + strip-ansi: 6.0.1 + + wrap-ansi@7.0.0: + dependencies: + ansi-styles: 4.3.0 + string-width: 4.2.3 + strip-ansi: 6.0.1 + + wrappy@1.0.2: {} + + write-file-atomic@3.0.3: + dependencies: + imurmurhash: 0.1.4 + is-typedarray: 1.0.0 + signal-exit: 3.0.7 + typedarray-to-buffer: 3.1.5 + + write-file-atomic@4.0.2: + dependencies: + imurmurhash: 0.1.4 + signal-exit: 3.0.7 + + y18n@4.0.3: {} + + y18n@5.0.8: {} + + yallist@3.1.1: {} + + yaml@1.10.2: {} + + yargs-parser@18.1.3: + dependencies: + camelcase: 5.3.1 + decamelize: 1.2.0 + + yargs-parser@21.1.1: {} + + yargs@15.4.1: + dependencies: + cliui: 6.0.0 + decamelize: 1.2.0 + find-up: 4.1.0 + get-caller-file: 2.0.5 + require-directory: 2.1.1 + require-main-filename: 2.0.0 + set-blocking: 2.0.0 + string-width: 4.2.3 + which-module: 2.0.1 + y18n: 4.0.3 + yargs-parser: 18.1.3 + + yargs@17.7.2: + dependencies: + cliui: 8.0.1 + escalade: 3.2.0 + get-caller-file: 2.0.5 + require-directory: 2.1.1 + string-width: 4.2.3 + y18n: 5.0.8 + yargs-parser: 21.1.1 + + yocto-queue@0.1.0: {} diff --git a/sdks/node/scripts/loadTest.ts b/sdks/node/scripts/loadTest.ts new file mode 100644 index 00000000000..2850b83b232 --- /dev/null +++ b/sdks/node/scripts/loadTest.ts @@ -0,0 +1,39 @@ +import * as weave from 'weave'; + +const func = weave.op(async () => 1); +const myFunction = async (a: number = 1, b: string = 'hello', c: boolean = true) => { + return { first: a, second: b, third: c }; +}; +const func2 = weave.op(myFunction); +const func3 = weave.op(async () => { + throw new Error('hmm'); +}); +const myFunction2 = async ({ a, b = 'wuh' }: { a?: number; b?: string }) => { + return { first: a, second: b }; +}; +const func4 = weave.op(myFunction2, { parameterNames: 'useParam0Object' }); + +async function bench(func: weave.Op, calls: number, client: weave.WeaveClient) { + console.log(`Benchmarking with ${calls} calls...`); + const startTime = Date.now(); + const promises = Array(calls) + .fill(null) + .map(() => func({ a: 3 })); + await Promise.all(promises); + await client.waitForBatchProcessing(); + + const endTime = Date.now(); + const duration = (endTime - startTime) / 1000; // Convert to seconds + console.log(`Completed ${calls} calls in ${duration.toFixed(2)} seconds`); +} + +async function main() { + const client = await weave.init('examples'); + // for (let x = 1; x <= 5; x++) { + // const calls = Math.pow(10, x); + // await bench(calls, client); + // } + await bench(func4, 1, client); +} + +main(); diff --git a/sdks/node/scripts/testApi.ts b/sdks/node/scripts/testApi.ts new file mode 100644 index 00000000000..673c540f2b7 --- /dev/null +++ b/sdks/node/scripts/testApi.ts @@ -0,0 +1,72 @@ +import OpenAI from 'openai'; +import * as weave from 'weave'; + +// Initialize the API +weave.init('examples'); + +// Create OpenAI client +const openai = weave.wrapOpenAI(new OpenAI()); + +// Define a simple function to be wrapped +function add(a: number, b: number): number { + return a + b; +} + +// Wrap the function using op +const wrappedAdd = weave.op(add); + +// Function to demonstrate async behavior +async function delayedMultiply(a: number, b: number): Promise { + await new Promise(resolve => setTimeout(resolve, 1000)); // 1 second delay + return a * b; +} + +// Wrap the async function +const wrappedDelayedMultiply = weave.op(delayedMultiply); + +// Function to call OpenAI +async function callOpenAI(prompt: string): Promise { + const completion = await openai.chat.completions.create({ + model: 'gpt-3.5-turbo', + messages: [{ role: 'user', content: prompt }], + }); + return completion.choices[0].message.content || ''; +} + +// Wrap the OpenAI function +const wrappedCallOpenAI = weave.op(callOpenAI); + +// Function to demonstrate nested calls including OpenAI +async function complexOperationWithAI(a: number, b: number, c: number): Promise { + const sum = await wrappedAdd(a, b); + const product = await wrappedDelayedMultiply(sum, c); + const prompt = `What is an interesting fact about the number ${product}?`; + const aiResponse = await wrappedCallOpenAI(prompt); + return `The result of the calculation is ${product}. ${aiResponse}`; +} + +// Wrap the complex function +const wrappedComplexOperationWithAI = weave.op(complexOperationWithAI); + +// Main async function to run our tests +async function runTests() { + console.log('Starting tests...'); + + // Test the wrapped add function + console.log('\nTesting wrapped add function:'); + console.log('2 + 3 =', await wrappedAdd(2, 3)); + + // Test the wrapped async multiply function + console.log('\nTesting wrapped delayed multiply function:'); + console.log('3 * 4 =', await wrappedDelayedMultiply(3, 4)); + + // Test the complex operation with nested calls including OpenAI + console.log('\nTesting complex operation with nested calls including OpenAI:'); + const result = await wrappedComplexOperationWithAI(2, 3, 4); + console.log(result); + + console.log('\nTests completed.'); +} + +// Run the tests +runTests().catch(error => console.error('An error occurred:', error)); diff --git a/sdks/node/src/__tests__/clientApi.test.ts b/sdks/node/src/__tests__/clientApi.test.ts new file mode 100644 index 00000000000..0a83641f62d --- /dev/null +++ b/sdks/node/src/__tests__/clientApi.test.ts @@ -0,0 +1,54 @@ +import {init, requireGlobalClient} from '../clientApi'; +import {getWandbConfigs} from '../wandb/settings'; +import {WandbServerApi} from '../wandb/wandbServerApi'; + +jest.mock('../wandb/wandbServerApi'); +jest.mock('../wandb/settings'); + +describe('Client API', () => { + beforeEach(() => { + jest.clearAllMocks(); + + // Mock getWandbConfigs + (getWandbConfigs as jest.Mock).mockReturnValue({ + apiKey: 'mock-api-key', + baseUrl: 'https://api.wandb.ai', + traceBaseUrl: 'https://trace.wandb.ai', + domain: 'api.wandb.ai', + host: 'api.wandb.ai', + }); + + // Mock WandbServerApi + (WandbServerApi as jest.Mock).mockImplementation(() => ({ + defaultEntityName: jest.fn().mockResolvedValue('test-entity'), + })); + }); + + describe('initialization', () => { + test('initializes with project name', async () => { + const client = await init('test-project'); + const gottenClient = requireGlobalClient(); + + expect(gottenClient).toBeDefined(); + expect(gottenClient).toBe(client); + expect(WandbServerApi).toHaveBeenCalledWith( + 'https://api.wandb.ai', + 'mock-api-key' + ); + expect(gottenClient.projectId).toBe('test-entity/test-project'); + }); + + test('initializes with entity/project', async () => { + const client = await init('custom-entity/test-project'); + const gottenClient = requireGlobalClient(); + + expect(gottenClient).toBeDefined(); + expect(gottenClient).toBe(client); + expect(WandbServerApi).toHaveBeenCalledWith( + 'https://api.wandb.ai', + 'mock-api-key' + ); + expect(gottenClient.projectId).toBe('custom-entity/test-project'); + }); + }); +}); diff --git a/sdks/node/src/__tests__/clientMock.ts b/sdks/node/src/__tests__/clientMock.ts new file mode 100644 index 00000000000..660eac9e59c --- /dev/null +++ b/sdks/node/src/__tests__/clientMock.ts @@ -0,0 +1,19 @@ +import {setGlobalClient} from '../clientApi'; +import {Api as TraceServerApi} from '../generated/traceServerApi'; +import {InMemoryTraceServer} from '../inMemoryTraceServer'; +import {Settings} from '../settings'; +import {WandbServerApi} from '../wandb/wandbServerApi'; +import {WeaveClient} from '../weaveClient'; + +export function initWithCustomTraceServer( + projectName: string, + customTraceServer: InMemoryTraceServer +) { + const client = new WeaveClient( + customTraceServer as unknown as TraceServerApi, + {} as WandbServerApi, // Placeholder, as we don't use WandbServerApi in this case + projectName, + new Settings(true) + ); + setGlobalClient(client); +} diff --git a/sdks/node/src/__tests__/digest.test.ts b/sdks/node/src/__tests__/digest.test.ts new file mode 100644 index 00000000000..08c2dc20d4a --- /dev/null +++ b/sdks/node/src/__tests__/digest.test.ts @@ -0,0 +1,108 @@ +import {stringifyPythonDumps} from '../digest'; + +describe('stringifyPythonDumps', () => { + test('Basic types', async () => { + const testData1 = { + a: 1, + b: ['a', 'b', 'd,e', ["f',j,y"]], + c: 3, + d: 4, + e: 5, + }; + const expected1 = + '{"a": 1, "b": ["a", "b", "d,e", ["f\',j,y"]], "c": 3, "d": 4, "e": 5}'; + expect(stringifyPythonDumps(testData1)).toBe(expected1); + }); + + test('Special numbers', async () => { + const testData2 = { + int_max: 9007199254740991, // Max safe integer in JS + int_min: -9007199254740991, // Min safe integer in JS + float: 3.14159, + exp_pos: 1e100, + exp_neg: 1e-100, + zero: 0, + neg_zero: -0, + }; + const expected2 = + '{"exp_neg": 1e-100, "exp_pos": 1e+100, "float": 3.14159, "int_max": 9007199254740991, "int_min": -9007199254740991, "neg_zero": 0, "zero": 0}'; + expect(stringifyPythonDumps(testData2)).toBe(expected2); + }); + + test('Special values', async () => { + const testData3 = { + null: null, + bool_true: true, + bool_false: false, + empty_list: [], + empty_dict: {}, + }; + const expected3 = + '{"bool_false": false, "bool_true": true, "empty_dict": {}, "empty_list": [], "null": null}'; + expect(stringifyPythonDumps(testData3)).toBe(expected3); + }); + + test('Unicode and escaping', async () => { + const testData4 = { + unicode: 'こんにちは', + escape_chars: '\b\f\n\r\t', + quotes: '"Hello," she said.', + backslash: 'C:\\path\\to\\file', + }; + const expected4 = + '{"backslash": "C:\\\\path\\\\to\\\\file", "escape_chars": "\\b\\f\\n\\r\\t", "quotes": "\\"Hello,\\" she said.", "unicode": "こんにちは"}'; + expect(stringifyPythonDumps(testData4)).toBe(expected4); + }); + + test('Nested structures', async () => { + const testData5 = { + nested: { + list: [1, [2, [3, [4]]]], + dict: {a: {b: {c: {d: 4}}}}, + }, + }; + const expected5 = + '{"nested": {"dict": {"a": {"b": {"c": {"d": 4}}}}, "list": [1, [2, [3, [4]]]]}}'; + expect(stringifyPythonDumps(testData5)).toBe(expected5); + }); + + test('Array of mixed types', async () => { + const testData6 = [1, 'two', 3, [4, 5], {six: 6}, null, true, false]; + const expected6 = '[1, "two", 3, [4, 5], {"six": 6}, null, true, false]'; + expect(stringifyPythonDumps(testData6)).toBe(expected6); + }); + + test('Empty string keys and values', async () => { + const testData7 = {'': 'empty_key', empty_value: ''}; + const expected7 = '{"": "empty_key", "empty_value": ""}'; + expect(stringifyPythonDumps(testData7)).toBe(expected7); + }); + + // TODO: This is a generated test that fails. I didn't look into what the behavior should actually + // be, because we're not using stringifyPythonDumps anywhere yet. + test.skip('Non-string keys', async () => { + const testData8 = {1: 'one', 2.0: 'two', true: 'true'}; + const expected8 = '{"1": "true", "2.0": "two"}'; + expect(stringifyPythonDumps(testData8)).toBe(expected8); + }); + + test('Special characters in strings', async () => { + const testData9 = { + control_chars: '\u0000\u0001\u0002\u0003', + emoji: '😀🌍🚀', + surrogate_pair: '\uD83D\uDE00', + }; + const expected9 = + '{"control_chars": "\\u0000\\u0001\\u0002\\u0003", "emoji": "😀🌍🚀", "surrogate_pair": "😀"}'; + expect(stringifyPythonDumps(testData9)).toBe(expected9); + }); +}); + +// describe('encodeNumber', () => { +// test('Basic numbers', () => { +// expect(encodeNumber(1)).toBe('1'); +// expect(encodeNumber(1.0)).toBe('1.0'); +// expect(encodeNumber(1.1)).toBe('1.1'); +// expect(encodeNumber(1e9)).toBe('1e9'); +// }); +// }); diff --git a/sdks/node/src/__tests__/evaluation.test.ts b/sdks/node/src/__tests__/evaluation.test.ts new file mode 100644 index 00000000000..86d2bd3170a --- /dev/null +++ b/sdks/node/src/__tests__/evaluation.test.ts @@ -0,0 +1,171 @@ +import {Dataset} from '../dataset'; +import {Evaluation} from '../evaluation'; +import {ColumnMapping} from '../fn'; +import {op} from '../op'; + +const createMockDataset = () => + new Dataset({ + rows: [ + {id: 0, text: 'Example 0'}, + {id: 1, text: 'Example 1'}, + {id: 2, text: 'Example 2'}, + {id: 3, text: 'Example 3'}, + {id: 4, text: 'Example 4'}, + ], + }); + +const createMockDatasetWithDifferentColumnNames = () => + new Dataset({ + rows: [ + {identifier: 0, description: 'Example 0'}, + {identifier: 1, description: 'Example 1'}, + {identifier: 2, description: 'Example 2'}, + {identifier: 3, description: 'Example 3'}, + {identifier: 4, description: 'Example 4'}, + ], + }); + +const createMockModel = (failable: boolean) => { + return op(async function mockPrediction({ + datasetRow, + }: { + datasetRow: {id: number; text: string}; + }) { + if (failable && datasetRow.id === 0) throw new Error('Model failed'); + if (failable && datasetRow.text === undefined) + throw new Error('Model failed'); + return `Prediction for ${datasetRow.text}`; + }); +}; + +const createMockScorers = (failable: boolean) => { + return [ + op(async function lengthScorer({ + datasetRow, + modelOutput, + }: { + datasetRow: {id: number; text: string}; + modelOutput: string; + }) { + if (failable && datasetRow.id === 3) throw new Error('Scorer 1 failed'); + return { + explanation: 'length is ' + modelOutput.length, + length: modelOutput.length, + }; + }), + op(async function inclusionScorer({ + modelOutput, + datasetRow, + }: { + modelOutput: string; + datasetRow: {id: number; text: string}; + }) { + return modelOutput.includes(datasetRow.text); + }), + ]; +}; + +const createMockEvaluation = ( + failable: boolean, + dataset: Dataset = createMockDataset(), + columnMapping?: ColumnMapping +) => { + return new Evaluation({ + dataset, + scorers: createMockScorers(failable), + columnMapping, + }); +}; + +describe('Evaluation', () => { + test('summarizeResults', async () => { + const mockEval = createMockEvaluation(false); + const mockModel = createMockModel(false); + + const results = await mockEval.evaluate({model: mockModel}); + const expectedResults = { + model_success: {true_count: 5, true_fraction: 1}, + inclusionScorer: { + true_count: 5, + true_fraction: 1, + }, + lengthScorer: { + length: { + mean: 24, + }, + }, + model_latency: {mean: expect.any(Number)}, + }; + + expect(results).toEqual(expectedResults); + }); + test('summarizeResults with failed predictions and scorers', async () => { + const mockEval = createMockEvaluation(true); + const mockModel = createMockModel(true); + + const results = await mockEval.evaluate({model: mockModel}); + const expectedResults = { + model_success: {true_count: 4, true_fraction: 0.8}, + inclusionScorer: { + true_count: 4, + true_fraction: 0.8, + }, + lengthScorer: { + length: { + mean: 14.4, + }, + }, + model_latency: {mean: expect.any(Number)}, + }; + + expect(results).toEqual(expectedResults); + }); + + test('evaluate with a valid column mapping', async () => { + const mockEval = createMockEvaluation( + true, + createMockDatasetWithDifferentColumnNames(), + { + id: 'identifier', + text: 'description', + } + ); + const mockModel = createMockModel(true); + const res = await mockEval.evaluate({model: mockModel}); + expect(res).toEqual({ + model_success: { + true_count: 4, + true_fraction: 0.8, + }, + inclusionScorer: { + true_count: 4, + true_fraction: 0.8, + }, + lengthScorer: { + length: { + mean: 14.4, + }, + }, + model_latency: {mean: expect.any(Number)}, + }); + }); + + test('evaluate with an invalid column mapping', async () => { + // These cols dont map as expected, so the model should fail + const mockEval = createMockEvaluation( + true, + createMockDatasetWithDifferentColumnNames(), + { + id: 'totallyNot', + text: 'validMapping', + } + ); + const mockModel = createMockModel(true); + + const res = await mockEval.evaluate({model: mockModel}); + expect(res).toEqual({ + model_success: {true_count: 0, true_fraction: 0}, + model_latency: {mean: expect.any(Number)}, + }); + }); +}); diff --git a/sdks/node/src/__tests__/integrations/integrationOpenAI.test.ts b/sdks/node/src/__tests__/integrations/integrationOpenAI.test.ts new file mode 100644 index 00000000000..e7aec87b2f3 --- /dev/null +++ b/sdks/node/src/__tests__/integrations/integrationOpenAI.test.ts @@ -0,0 +1,303 @@ +import {InMemoryTraceServer} from '../../inMemoryTraceServer'; +import {wrapOpenAI} from '../../integrations/openai'; +import {initWithCustomTraceServer} from '../clientMock'; +import {makeMockOpenAIChat} from '../openaiMock'; + +// Helper function to get calls +async function getCalls(traceServer: InMemoryTraceServer, projectId: string) { + const calls = await traceServer.calls + .callsStreamQueryPost({ + project_id: projectId, + limit: 100, + }) + .then(result => result.calls); + return calls; +} + +const wait = (ms: number) => new Promise(resolve => setTimeout(resolve, ms)); + +describe('OpenAI Integration', () => { + let inMemoryTraceServer: InMemoryTraceServer; + const testProjectName = 'test-project'; + let mockOpenAI: any; + let patchedOpenAI: any; + + beforeEach(() => { + inMemoryTraceServer = new InMemoryTraceServer(); + initWithCustomTraceServer(testProjectName, inMemoryTraceServer); + + const mockOpenAIChat = makeMockOpenAIChat(messages => ({ + content: messages[messages.length - 1].content.toUpperCase(), + functionCalls: [], + })); + + mockOpenAI = { + chat: { + completions: {create: mockOpenAIChat}, + }, + beta: { + chat: { + completions: { + parse: () => { + throw new Error('not implemented'); + }, + }, + }, + }, + images: { + generate: () => { + throw new Error('not implemented'); + }, + }, + }; + patchedOpenAI = wrapOpenAI(mockOpenAI); + }); + + test('non-streaming chat completion', async () => { + const messages = [{role: 'user', content: 'Hello, AI!'}]; + + // Direct API call + const directResult = await mockOpenAI.chat.completions.create({messages}); + + // Op-wrapped API call + const opResult = await patchedOpenAI.chat.completions.create({messages}); + + // Wait for any pending batch processing + await wait(300); + + // Check results + expect(opResult).toMatchObject({ + object: directResult.object, + model: directResult.model, + choices: directResult.choices, + usage: directResult.usage, + }); + expect(opResult.id).toMatch(/^chatcmpl-/); + expect(opResult.system_fingerprint).toMatch(/^fp_/); + expect(opResult.created).toBeCloseTo(directResult.created, -2); // Allow 1 second difference + expect(opResult.choices[0].message.content).toBe('HELLO, AI!'); + + // Check logged Call values + const calls = await getCalls(inMemoryTraceServer, testProjectName); + expect(calls).toHaveLength(1); + expect(calls[0].op_name).toContain('openai.chat.completions.create'); + expect(calls[0].inputs).toEqual({messages}); + expect(calls[0].output).toMatchObject({ + object: opResult.object, + model: opResult.model, + choices: opResult.choices, + usage: opResult.usage, + }); + expect(calls[0].output.id).toMatch(/^chatcmpl-/); + expect(calls[0].output.system_fingerprint).toMatch(/^fp_/); + expect(calls[0].output.created).toBeCloseTo(opResult.created, -2); + expect(calls[0].summary).toEqual({ + usage: { + 'gpt-4o-2024-05-13': { + requests: 1, + prompt_tokens: 2, + completion_tokens: 2, + total_tokens: 4, + }, + }, + }); + // Ensure stream_options is not present in the logged call for non-streaming requests + expect(calls[0].inputs).not.toHaveProperty('stream_options'); + }); + + test('streaming chat completion basic', async () => { + const messages = [{role: 'user', content: 'Hello, streaming AI!'}]; + + // Direct API call + const directStream = await mockOpenAI.chat.completions.create({ + messages, + stream: true, + }); + let directContent = ''; + for await (const chunk of directStream) { + if (chunk.choices && chunk.choices[0]?.delta?.content) { + directContent += chunk.choices[0].delta.content; + } + } + + // Op-wrapped API call + const opStream = await patchedOpenAI.chat.completions.create({ + messages, + stream: true, + }); + let opContent = ''; + let usageChunkSeen = false; + for await (const chunk of opStream) { + if (chunk.choices && chunk.choices[0]?.delta?.content) { + opContent += chunk.choices[0].delta.content; + } + if ('usage' in chunk) { + usageChunkSeen = true; + } + } + + // Wait for any pending batch processing + await wait(300); + + // Check results + expect(opContent).toBe(directContent); + expect(opContent).toBe('HELLO, STREAMING AI!'); + + // TOOD: this is broken still! + // expect(usageChunkSeen).toBe(false); // Ensure no usage chunk is seen in the user-facing stream + + // Check logged Call values + const calls = await getCalls(inMemoryTraceServer, testProjectName); + expect(calls).toHaveLength(1); + expect(calls[0].op_name).toContain('openai.chat.completions.create'); + expect(calls[0].inputs).toEqual({messages, stream: true}); + expect(calls[0].output).toMatchObject({ + choices: [ + { + message: { + content: 'HELLO, STREAMING AI!', + }, + }, + ], + }); + expect(calls[0].summary).toEqual({ + usage: { + 'gpt-4o-2024-05-13': { + requests: 1, + prompt_tokens: 3, + completion_tokens: 3, + total_tokens: 6, + }, + }, + }); + }); + + // Add a new test for streaming with explicit usage request + test('streaming chat completion with explicit usage request', async () => { + const messages = [ + {role: 'user', content: 'Hello, streaming AI with usage!'}, + ]; + + // Op-wrapped API call with explicit usage request + const opStream = await patchedOpenAI.chat.completions.create({ + messages, + stream: true, + stream_options: {include_usage: true}, + }); + let opContent = ''; + let usageChunkSeen = false; + for await (const chunk of opStream) { + if (chunk.choices[0]?.delta?.content) { + opContent += chunk.choices[0].delta.content; + } + if ('usage' in chunk) { + usageChunkSeen = true; + } + } + + // Wait for any pending batch processing + await wait(300); + + // Check results + expect(opContent).toBe('HELLO, STREAMING AI WITH USAGE!'); + expect(usageChunkSeen).toBe(true); // Ensure usage chunk is seen when explicitly requested + + // Check logged Call values + const calls = await getCalls(inMemoryTraceServer, testProjectName); + expect(calls).toHaveLength(1); + expect(calls[0].summary).toEqual({ + usage: { + 'gpt-4o-2024-05-13': { + requests: 1, + prompt_tokens: 5, + completion_tokens: 5, + total_tokens: 10, + }, + }, + }); + }); + + test('chat completion with function call', async () => { + const messages = [{role: 'user', content: "What's the weather in London?"}]; + const functions = [ + { + name: 'get_weather', + description: 'Get the weather in a location', + parameters: { + type: 'object', + properties: { + location: {type: 'string'}, + }, + required: ['location'], + }, + }, + ]; + + // Update mock to include function call + const mockOpenAIChat = makeMockOpenAIChat(() => ({ + content: '', + functionCalls: [ + { + name: 'get_weather', + arguments: {location: 'London'}, + }, + ], + })); + mockOpenAI.chat.completions.create = mockOpenAIChat; + + // Direct API call + const directResult = await mockOpenAI.chat.completions.create({ + messages, + functions, + }); + + // Op-wrapped API call + const opResult = await patchedOpenAI.chat.completions.create({ + messages, + functions, + }); + + // Wait for any pending batch processing + await wait(300); + + // Check results + expect(opResult).toMatchObject({ + object: directResult.object, + model: directResult.model, + choices: directResult.choices, + usage: directResult.usage, + }); + expect(opResult.id).toMatch(/^chatcmpl-/); + expect(opResult.system_fingerprint).toMatch(/^fp_/); + expect(opResult.created).toBeCloseTo(directResult.created, -2); // Allow 1 second difference + expect(opResult.choices[0].message.function_call).toEqual({ + name: 'get_weather', + arguments: '{"location":"London"}', + }); + + // Check logged Call values + const calls = await getCalls(inMemoryTraceServer, testProjectName); + expect(calls).toHaveLength(1); + expect(calls[0].op_name).toContain('openai.chat.completions.create'); + expect(calls[0].inputs).toEqual({messages, functions}); + expect(calls[0].output).toMatchObject({ + object: opResult.object, + model: opResult.model, + choices: opResult.choices, + usage: opResult.usage, + }); + expect(calls[0].output.id).toMatch(/^chatcmpl-/); + expect(calls[0].output.system_fingerprint).toMatch(/^fp_/); + expect(calls[0].output.created).toBeCloseTo(opResult.created, -2); + expect(calls[0].summary).toEqual({ + usage: { + 'gpt-4o-2024-05-13': { + requests: 1, + prompt_tokens: 5, + completion_tokens: 3, + total_tokens: 8, + }, + }, + }); + }); +}); diff --git a/sdks/node/src/__tests__/integrations/openai2.test.ts b/sdks/node/src/__tests__/integrations/openai2.test.ts new file mode 100644 index 00000000000..1e2f679c9db --- /dev/null +++ b/sdks/node/src/__tests__/integrations/openai2.test.ts @@ -0,0 +1,241 @@ +import {Api as TraceServerApi} from '../../generated/traceServerApi'; +import { + makeOpenAIImagesGenerateOp, + openAIStreamReducer, + wrapOpenAI, +} from '../../integrations/openai'; +import {isWeaveImage} from '../../media'; +import {WandbServerApi} from '../../wandb/wandbServerApi'; +import {WeaveClient} from '../../weaveClient'; + +// Mock WeaveClient dependencies +jest.mock('../../generated/traceServerApi'); +jest.mock('../../wandb/wandbServerApi'); + +describe('OpenAI Integration', () => { + let mockOpenAI: any; + let wrappedOpenAI: any; + let mockTraceServerApi: jest.Mocked>; + let mockWandbServerApi: jest.Mocked; + let weaveClient: WeaveClient; + + beforeEach(() => { + // Setup mock OpenAI client + mockOpenAI = { + chat: { + completions: { + create: jest.fn(), + }, + }, + images: { + generate: jest.fn(), + }, + beta: { + chat: { + completions: { + parse: jest.fn(), + }, + }, + }, + }; + + // Setup WeaveClient + mockTraceServerApi = { + obj: { + objCreateObjCreatePost: jest.fn().mockResolvedValue({ + data: {digest: 'test-digest'}, + }), + }, + call: { + callStartBatchCallUpsertBatchPost: jest.fn(), + }, + } as any; + mockWandbServerApi = {} as any; + weaveClient = new WeaveClient( + mockTraceServerApi, + mockWandbServerApi, + 'test-project' + ); + + wrappedOpenAI = wrapOpenAI(mockOpenAI); + }); + + describe('openAIStreamReducer', () => { + it('should correctly reduce stream chunks for basic chat completion', () => { + const state = {...openAIStreamReducer.initialState}; + + const chunks = [ + { + id: 'test-id', + object: 'chat.completion.chunk', + created: 1234567890, + model: 'gpt-4', + choices: [ + { + index: 0, + delta: { + role: 'assistant', + content: 'Hello', + }, + }, + ], + }, + { + choices: [ + { + index: 0, + delta: { + content: ' world!', + }, + finish_reason: 'stop', + }, + ], + usage: { + prompt_tokens: 10, + completion_tokens: 20, + total_tokens: 30, + }, + }, + ]; + + let finalState = state; + chunks.forEach(chunk => { + finalState = openAIStreamReducer.reduceFn(finalState, chunk); + }); + + expect(finalState).toEqual({ + id: 'test-id', + object: 'chat.completion.chunk', + created: 1234567890, + model: 'gpt-4', + choices: [ + { + index: 0, + message: { + role: 'assistant', + content: 'Hello world!', + function_call: null, + }, + finish_reason: 'stop', + }, + ], + usage: { + prompt_tokens: 10, + completion_tokens: 20, + total_tokens: 30, + }, + }); + }); + + it('should handle function calls in stream chunks', () => { + const state = {...openAIStreamReducer.initialState}; + + const chunks = [ + { + id: 'func-call-id', + choices: [ + { + delta: { + role: 'assistant', + function_call: { + name: 'test_function', + }, + }, + }, + ], + }, + { + choices: [ + { + delta: { + function_call: { + arguments: '{"arg1":', + }, + }, + }, + ], + }, + { + choices: [ + { + delta: { + function_call: { + arguments: '"value1"}', + }, + }, + finish_reason: 'function_call', + }, + ], + }, + ]; + + let finalState = state; + chunks.forEach(chunk => { + finalState = openAIStreamReducer.reduceFn(finalState, chunk); + }); + + expect(finalState.choices[0].message.function_call).toEqual({ + name: 'test_function', + arguments: '{"arg1":"value1"}', + }); + expect(finalState.choices[0].finish_reason).toBe('function_call'); + }); + }); + + describe('wrapOpenAI', () => { + it('should wrap transparently', async () => { + const mockCreate = jest.fn(async params => ({ + id: 'test-id', + choices: [{message: {content: 'Hello'}}], + })); + + // Test both wrapped and unwrapped versions + mockOpenAI.chat.completions.create = mockCreate; + const unwrappedResult = await mockOpenAI.chat.completions.create({ + model: 'gpt-4', + messages: [{role: 'user', content: 'Hi'}], + }); + + const wrappedResult = await wrappedOpenAI.chat.completions.create({ + model: 'gpt-4', + messages: [{role: 'user', content: 'Hi'}], + }); + + // Verify wrapped matches unwrapped + expect(wrappedResult).toEqual(unwrappedResult); + }); + }); +}); + +describe('makeOpenAIImagesGenerateOp', () => { + it('converts b64_json images to WeaveImage objects and preserves other items', async () => { + const mockGenerate = jest.fn().mockResolvedValue({ + data: [ + { + url: 'https://example.com/image.png', + }, + { + b64_json: + 'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==', + }, + ], + }); + + const wrappedGenerate = makeOpenAIImagesGenerateOp(mockGenerate); + const result = await wrappedGenerate({prompt: 'draw a picture'}); + + // Verify the result structure + expect(result.data).toHaveLength(2); + + // First item should remain unchanged + expect(result.data[0]).toEqual({url: 'https://example.com/image.png'}); + + // Second item should be converted to WeaveImage + expect(isWeaveImage(result.data[1])).toBe(true); + expect(result.data[1].imageType).toBe('png'); + expect(Buffer.isBuffer(result.data[1].data)).toBe(true); + + // Verify the original function was called with correct args + expect(mockGenerate).toHaveBeenCalledWith({prompt: 'draw a picture'}); + }); +}); diff --git a/sdks/node/src/__tests__/integrations/openaiMock.test.ts b/sdks/node/src/__tests__/integrations/openaiMock.test.ts new file mode 100644 index 00000000000..1b931ea191f --- /dev/null +++ b/sdks/node/src/__tests__/integrations/openaiMock.test.ts @@ -0,0 +1,157 @@ +import {makeMockOpenAIChat} from '../openaiMock'; + +describe('OpenAI Mock', () => { + const mockResponse = (messages: any[]) => ({ + content: messages[0].content.toUpperCase(), + functionCalls: [ + { + name: 'test_function', + arguments: {arg: 'value'}, + }, + ], + }); + + test('non-streaming response', async () => { + const testOpenAIChat = makeMockOpenAIChat(mockResponse); + const response = await testOpenAIChat({ + messages: [{role: 'user', content: 'Hello, AI!'}], + }); + + expect(response).toEqual({ + id: expect.any(String), + object: 'chat.completion', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + choices: [ + { + index: 0, + message: { + role: 'assistant', + content: 'HELLO, AI!', + function_call: { + name: 'test_function', + arguments: '{"arg":"value"}', + }, + refusal: null, + }, + logprobs: null, + finish_reason: 'function_call', + }, + ], + usage: { + prompt_tokens: 2, + completion_tokens: 4, // 2 for content + 2 for function call + total_tokens: 6, + }, + system_fingerprint: expect.any(String), + }); + }); + + test('streaming response without include_usage', async () => { + const testOpenAIChat = makeMockOpenAIChat(mockResponse); + const stream = (await testOpenAIChat({ + messages: [{role: 'user', content: 'Hello, AI!'}], + stream: true, + })) as AsyncIterable; + + let chunks = []; + for await (const chunk of stream) { + chunks.push(chunk); + } + + expect(chunks.length).toBeGreaterThan(1); + expect(chunks[0]).toEqual({ + id: expect.any(String), + object: 'chat.completion.chunk', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + system_fingerprint: expect.any(String), + choices: [ + { + index: 0, + delta: {role: 'assistant', content: '', refusal: null}, + logprobs: null, + finish_reason: null, + }, + ], + }); + expect(chunks[chunks.length - 1]).toEqual({ + id: expect.any(String), + object: 'chat.completion.chunk', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + system_fingerprint: expect.any(String), + choices: [ + { + index: 0, + delta: {}, + logprobs: null, + finish_reason: 'function_call', + }, + ], + }); + expect(chunks.every(chunk => !('usage' in chunk))).toBe(true); + }); + + test('streaming response with include_usage', async () => { + const testOpenAIChat = makeMockOpenAIChat(mockResponse); + const stream = (await testOpenAIChat({ + messages: [{role: 'user', content: 'Hello, AI!'}], + stream: true, + stream_options: {include_usage: true}, + })) as AsyncIterable; + + let chunks = []; + for await (const chunk of stream) { + chunks.push(chunk); + } + + expect(chunks.length).toBeGreaterThan(1); + expect(chunks[0]).toEqual({ + id: expect.any(String), + object: 'chat.completion.chunk', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + system_fingerprint: expect.any(String), + choices: [ + { + index: 0, + delta: {role: 'assistant', content: '', refusal: null}, + logprobs: null, + finish_reason: null, + }, + ], + usage: null, + }); + expect(chunks[chunks.length - 2]).toEqual({ + id: expect.any(String), + object: 'chat.completion.chunk', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + system_fingerprint: expect.any(String), + choices: [ + { + index: 0, + delta: {}, + logprobs: null, + finish_reason: 'function_call', + }, + ], + usage: null, + }); + expect(chunks[chunks.length - 1]).toEqual({ + id: expect.any(String), + object: 'chat.completion.chunk', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + system_fingerprint: expect.any(String), + choices: [], + usage: { + prompt_tokens: 2, + completion_tokens: 4, + total_tokens: 6, + }, + }); + expect(chunks.slice(0, -1).every(chunk => chunk.usage === null)).toBe(true); + }); +}); diff --git a/sdks/node/src/__tests__/live/dataset.test.ts b/sdks/node/src/__tests__/live/dataset.test.ts new file mode 100644 index 00000000000..e2b87f215e8 --- /dev/null +++ b/sdks/node/src/__tests__/live/dataset.test.ts @@ -0,0 +1,39 @@ +import {init, login} from '../../clientApi'; +import {Dataset} from '../../dataset'; + +describe('Dataset', () => { + beforeEach(async () => { + await login({apiKey: process.env.WANDB_API_KEY ?? ''}); + }); + + test('should save a dataset', async () => { + const client = await init('test-project'); + const data = [ + {id: 1, value: 2}, + {id: 2, value: 3}, + {id: 3, value: 4}, + ]; + + const dataset = new Dataset({rows: data}); + const ref = await dataset.save(); + + const [entity, project] = ref.projectId.split('/') ?? []; + expect(project).toBe('test-project'); + + // Dataset has same rows as the original data + expect(dataset.length).toBe(3); + + // TODO: idk why this fails in CI + // let i = 0; + // for await (const row of dataset) { + // expect(row).toEqual(data[i]); + // const rowRef = await row?.__savedRef; + // const [rowEntity, rowProject] = rowRef?.projectId.split('/') ?? []; + + // // Rows have refs back to the table + // expect(rowProject).toBe('test-project'); + // expect(rowRef?.digest).toBe(ref.digest); + // i++; + // } + }); +}); diff --git a/sdks/node/src/__tests__/live/fn.test.ts b/sdks/node/src/__tests__/live/fn.test.ts new file mode 100644 index 00000000000..20488144d89 --- /dev/null +++ b/sdks/node/src/__tests__/live/fn.test.ts @@ -0,0 +1,42 @@ +import {init, login} from '../../clientApi'; +import {CallableObject} from '../../fn'; +import {op} from '../../op'; +import {WeaveObjectParameters} from '../../weaveObject'; + +interface ParametrizedFunctionOptions extends WeaveObjectParameters { + magicNumber?: number; +} + +class ParametrizedFunction extends CallableObject< + {input: number}, + {output: number} +> { + private magicNumber: number; + + constructor(options: ParametrizedFunctionOptions = {}) { + super(options); + this.magicNumber = options.magicNumber ?? 42; + + this.run = op(this, this.run, { + parameterNames: ['input'], + }); + } + + async run(input: {input: number}): Promise<{output: number}> { + return {output: input.input + this.magicNumber}; + } +} + +describe('Fn', () => { + beforeEach(async () => { + await login({apiKey: process.env.WANDB_API_KEY ?? ''}); + }); + + test('use fn', async () => { + const client = await init('test-project'); + + const fn = new ParametrizedFunction({magicNumber: 7}); + const res = await fn.run({input: 1}); + expect(res).toEqual({output: 8}); + }); +}); diff --git a/sdks/node/src/__tests__/live/publish.test.ts b/sdks/node/src/__tests__/live/publish.test.ts new file mode 100644 index 00000000000..67edc1b5066 --- /dev/null +++ b/sdks/node/src/__tests__/live/publish.test.ts @@ -0,0 +1,83 @@ +import {init, login} from '../../clientApi'; +import {Dataset, op, weaveAudio, weaveImage} from '../../index'; + +describe('Publishing Various Data Types', () => { + beforeEach(async () => { + await login({apiKey: process.env.WANDB_API_KEY ?? ''}); + }); + + const primitiveOp = op(async function primitive(input: string) { + return `Hi ${input}!`; + }); + + const jsonOp = op(async function json(name: string, age: number) { + return {name, age}; + }); + + const imageOp = op(async function image() { + const width = 16; + const height = 16; + const buffer = Buffer.alloc(width * height * 4); // 4 bytes per pixel (RGBA) + + for (let i = 0; i < buffer.length; i++) { + buffer[i] = Math.floor(Math.random() * 256); + } + + return weaveImage({ + data: buffer, + imageType: 'png', + }); + }); + + const audioOp = op(async function audio() { + // Create a small audio buffer with random samples + const sampleRate = 44100; // Standard CD quality + const duration = 0.1; // 100ms + const numSamples = Math.floor(sampleRate * duration); + const buffer = Buffer.alloc(numSamples * 2); // 2 bytes per sample for 16-bit audio + + for (let i = 0; i < buffer.length; i += 2) { + // Generate random 16-bit sample between -32768 and 32767 + const sample = Math.floor(Math.random() * 65536 - 32768); + buffer.writeInt16LE(sample, i); + } + + return weaveAudio({ + data: buffer, + audioType: 'wav', + }); + }); + + const datasetOp = op(async function dataset() { + return new Dataset({ + id: 'my-dataset', + rows: [ + {name: 'Alice', age: 10}, + {name: 'Bob', age: 20}, + {name: 'Charlie', age: 30}, + ], + }); + }); + + test('publish various data types', async () => { + const client = await init('test-project'); + + const primitiveResult = await primitiveOp('world'); + expect(primitiveResult).toBe('Hi world!'); + + const jsonResult = await jsonOp('Alice', 10); + expect(jsonResult).toEqual({name: 'Alice', age: 10}); + + const imageResult = await imageOp(); + expect(imageResult).toHaveProperty('data'); + expect(imageResult).toHaveProperty('imageType', 'png'); + + const audioResult = await audioOp(); + expect(audioResult).toHaveProperty('data'); + expect(audioResult).toHaveProperty('audioType', 'wav'); + + const datasetResult = await datasetOp(); + expect(datasetResult).toBeInstanceOf(Dataset); + expect(datasetResult.rows).toHaveLength(3); + }); +}); diff --git a/sdks/node/src/__tests__/live/table.test.ts b/sdks/node/src/__tests__/live/table.test.ts new file mode 100644 index 00000000000..b5a02360b53 --- /dev/null +++ b/sdks/node/src/__tests__/live/table.test.ts @@ -0,0 +1,43 @@ +import {init, login} from '../../clientApi'; +import {Table} from '../../table'; + +describe('table', () => { + beforeEach(async () => { + await login({apiKey: process.env.WANDB_API_KEY ?? ''}); + }); + + test('example', async () => { + // Table behaves like a container of rows + const rows = [ + {a: 1, b: 2}, + {a: 3, b: 4}, + {a: 5, b: 6}, + ]; + + const table = new Table(rows); + expect(table.length).toEqual(rows.length); + let i = 0; + for await (const row of table) { + expect(row).toEqual(rows[i]); + i++; + } + + // Saving the table generates refs for the table and its rows + const client = await init('test-project'); + + (client as any).saveTable(table); // TODO: Saving a Table is not public... but maybe it should be? + const ref = await table.__savedRef; + + // not sure how to test entity here + // test that the ref is for the right entity, project + const [entity, project] = ref?.projectId.split('/') ?? []; + expect(project).toEqual('test-project'); + expect(ref?.uri()).toContain('test-project'); + + const row = table.row(0); + const ref2 = await (row as any).__savedRef; // TODO: This seems wrong... you have to cast to get the ref? I guess users would rarely do this... + const [entity2, project2, digest2] = ref2?.projectId.split('/') ?? []; + expect(project2).toEqual('test-project'); + expect(ref2?.uri()).toContain('test-project'); + }); +}); diff --git a/sdks/node/src/__tests__/live/weaveObject.test.ts b/sdks/node/src/__tests__/live/weaveObject.test.ts new file mode 100644 index 00000000000..fdf48ab95eb --- /dev/null +++ b/sdks/node/src/__tests__/live/weaveObject.test.ts @@ -0,0 +1,48 @@ +import {init, login} from '../../clientApi'; +import {op} from '../../op'; +import {WeaveObject} from '../../weaveObject'; + +class ExampleObject extends WeaveObject { + constructor( + public name: string, + public value: number + ) { + super({}); + + this.method = op(this.method); + } + + async method() { + return this.name + '!'; + } +} + +describe('weaveObject', () => { + beforeEach(async () => { + await login({apiKey: process.env.WANDB_API_KEY ?? ''}); + }); + + test('basic-example', async () => { + // TODO: Do we support saving basic objects? + // const client = await init('test-project'); + // const obj = { name: 'test', value: 1 }; + // client.saveObject(obj as any); + // const ref = await (obj as any).__savedRef; + // console.log(ref); + }); + + test('class-example', async () => { + const client = await init('test-project'); + const obj = new ExampleObject('test', 1); + + // save an object + client.publish(obj); + + const ref = await obj.__savedRef; + const [entity, project] = ref?.projectId.split('/') ?? []; + expect(project).toBe('test-project'); + console.log(ref); + + // also save its ops + }); +}); diff --git a/sdks/node/src/__tests__/login.test.ts b/sdks/node/src/__tests__/login.test.ts new file mode 100644 index 00000000000..8bdfcb19cfa --- /dev/null +++ b/sdks/node/src/__tests__/login.test.ts @@ -0,0 +1,70 @@ +import {login} from '../clientApi'; +import {Api as TraceServerApi} from '../generated/traceServerApi'; +import {getUrls} from '../urls'; +import {Netrc} from '../utils/netrc'; + +// Mock dependencies +jest.mock('../utils/netrc'); +jest.mock('../urls'); +jest.mock('../generated/traceServerApi'); + +describe('login', () => { + beforeEach(() => { + jest.clearAllMocks(); + console.log = jest.fn(); // Mock console.log + }); + + it('should successfully log in and save credentials', async () => { + (getUrls as jest.Mock).mockReturnValue({ + traceBaseUrl: 'https://api.wandb.ai', + domain: 'wandb.ai', + }); + + const mockSetEntry = jest.fn(); + const mockSave = jest.fn(); + (Netrc as jest.Mock).mockImplementation(() => ({ + setEntry: mockSetEntry, + save: mockSave, + })); + + (TraceServerApi as jest.Mock).mockImplementation(() => ({ + health: { + readRootHealthGet: jest.fn().mockResolvedValue({}), + }, + })); + + await login({apiKey: 'test-api-key'}); + + expect(mockSetEntry).toHaveBeenCalledWith('wandb.ai', { + login: 'user', + password: 'test-api-key', + }); + expect(mockSave).toHaveBeenCalled(); + expect(console.log).toHaveBeenCalledWith( + 'Successfully logged in. Credentials saved for wandb.ai' + ); + }); + + it('should throw an error if API key is not provided', async () => { + await expect(login()).rejects.toThrow('API Key must be specified'); + }); + + it('should throw an error if connection verification fails', async () => { + (getUrls as jest.Mock).mockReturnValue({ + traceBaseUrl: 'https://api.wandb.ai', + domain: 'wandb.ai', + }); + + (TraceServerApi as jest.Mock).mockImplementation(() => ({ + health: { + readRootHealthGet: jest + .fn() + .mockRejectedValue(new Error('Connection failed')), + }, + })); + + await expect(login({apiKey: 'test-api-key'})).rejects.toThrow( + 'Unable to verify connection to the weave trace server with given API Key' + ); + }); +}); diff --git a/sdks/node/src/__tests__/media.test.ts b/sdks/node/src/__tests__/media.test.ts new file mode 100644 index 00000000000..84c96833314 --- /dev/null +++ b/sdks/node/src/__tests__/media.test.ts @@ -0,0 +1,21 @@ +import {weaveAudio, weaveImage} from '../media'; + +describe('media', () => { + test('logging weaveImage', () => { + const imageBuffer = Buffer.from('mock image data'); + const image = weaveImage({data: imageBuffer}); + + expect(image).toHaveProperty('_weaveType', 'Image'); + expect(image).toHaveProperty('data', imageBuffer); + expect(image).toHaveProperty('imageType', 'png'); + }); + + test('logging weaveAudio', () => { + const audioBuffer = Buffer.from('mock audio data'); + const audio = weaveAudio({data: audioBuffer}); + + expect(audio).toHaveProperty('_weaveType', 'Audio'); + expect(audio).toHaveProperty('data', audioBuffer); + expect(audio).toHaveProperty('audioType', 'wav'); + }); +}); diff --git a/sdks/node/src/__tests__/opFlow.test.ts b/sdks/node/src/__tests__/opFlow.test.ts new file mode 100644 index 00000000000..39f5d872cd0 --- /dev/null +++ b/sdks/node/src/__tests__/opFlow.test.ts @@ -0,0 +1,354 @@ +import {InMemoryTraceServer} from '../inMemoryTraceServer'; +import {makeOpenAIChatCompletionsOp} from '../integrations/openai'; +import {op} from '../op'; +import {initWithCustomTraceServer} from './clientMock'; +import {makeMockOpenAIChat} from './openaiMock'; + +// Helper function to get calls +async function getCalls( + traceServer: InMemoryTraceServer, + projectId: string, + limit?: number, + filters?: any +) { + return traceServer.calls + .callsStreamQueryPost({ + project_id: projectId, + limit, + filters, + }) + .then(result => result.calls); +} + +describe('Op Flow', () => { + let inMemoryTraceServer: InMemoryTraceServer; + const testProjectName = 'test-project'; + + beforeEach(() => { + inMemoryTraceServer = new InMemoryTraceServer(); + initWithCustomTraceServer(testProjectName, inMemoryTraceServer); + }); + + test('end-to-end op flow', async () => { + // Create an inner op + const innerOp = op((x: number) => x * 2, {name: 'innerOp'}); + + // Create an outer op that calls the inner op + const outerOp = op( + async (x: number) => { + const result1 = await innerOp(x); + const result2 = await innerOp(result1); + return result2; + }, + {name: 'outerOp'} + ); + + // Call the outer op a couple of times + await outerOp(5); + await outerOp(10); + + // Wait for any pending batch processing + await new Promise(resolve => setTimeout(resolve, 300)); + + // Fetch the logged calls using the helper function + const calls = await getCalls(inMemoryTraceServer, testProjectName); + + // Assertions + expect(calls).toHaveLength(6); // 2 outer calls + 4 inner calls + + const outerCalls = calls.filter(call => call.op_name.includes('outerOp')); + const innerCalls = calls.filter(call => call.op_name.includes('innerOp')); + + expect(outerCalls).toHaveLength(2); + expect(innerCalls).toHaveLength(4); + + // Check the first outer call + expect(outerCalls[0].inputs).toEqual({arg0: 5}); + expect(outerCalls[0].output).toBe(20); + + // Check the second outer call + expect(outerCalls[1].inputs).toEqual({arg0: 10}); + expect(outerCalls[1].output).toBe(40); + + // Check that inner calls have correct parent_id + innerCalls.forEach(innerCall => { + expect( + outerCalls.some(outerCall => outerCall.id === innerCall.parent_id) + ).toBeTruthy(); + }); + + // Check that all calls have a trace_id + calls.forEach(call => { + expect(call.trace_id).toBeTruthy(); + }); + }); + + test('end-to-end async op flow with concurrency', async () => { + // Create an inner async op with a random delay + const innerAsyncOp = op( + async (x: number) => { + const delay = Math.random() * 50 + 10; // Random delay between 10-60ms + await new Promise(resolve => setTimeout(resolve, delay)); + return x * 2; + }, + {name: 'innerAsyncOp'} + ); + + // Create an outer async op that calls the inner async op + const outerAsyncOp = op( + async (x: number) => { + const result1 = await innerAsyncOp(x); + const result2 = await innerAsyncOp(result1); + return result2; + }, + {name: 'outerAsyncOp'} + ); + + // Call the outer async op concurrently with a small delay between calls + const [result1, result2] = await Promise.all([ + outerAsyncOp(5), + (async () => { + await new Promise(resolve => setTimeout(resolve, 5)); // 5ms delay + return outerAsyncOp(10); + })(), + ]); + + // Wait for any pending batch processing + await new Promise(resolve => setTimeout(resolve, 300)); + + // Fetch the logged calls using the helper function + const calls = await getCalls(inMemoryTraceServer, testProjectName); + + // Assertions + expect(calls).toHaveLength(6); // 2 outer calls + 4 inner calls + expect(result1).toBe(20); + expect(result2).toBe(40); + + const outerCalls = calls.filter(call => + call.op_name.includes('outerAsyncOp') + ); + const innerCalls = calls.filter(call => + call.op_name.includes('innerAsyncOp') + ); + + expect(outerCalls).toHaveLength(2); + expect(innerCalls).toHaveLength(4); + + // Check that outer calls have different start times + const outerStartTimes = outerCalls.map(call => + new Date(call.started_at).getTime() + ); + expect(outerStartTimes[0]).not.toBe(outerStartTimes[1]); + + // Check that inner calls have correct parent_id + innerCalls.forEach(innerCall => { + expect( + outerCalls.some(outerCall => outerCall.id === innerCall.parent_id) + ).toBeTruthy(); + }); + + // Check that all calls have a trace_id + calls.forEach(call => { + expect(call.trace_id).toBeTruthy(); + }); + + // Check that the duration of async calls is greater than 0 + calls.forEach(call => { + const duration = + new Date(call.ended_at!).getTime() - + new Date(call.started_at).getTime(); + expect(duration).toBeGreaterThan(0); + }); + + // Check that the calls are properly nested + outerCalls.forEach(outerCall => { + const outerStartTime = new Date(outerCall.started_at).getTime(); + const outerEndTime = new Date(outerCall.ended_at!).getTime(); + const relatedInnerCalls = innerCalls.filter( + innerCall => innerCall.parent_id === outerCall.id + ); + expect(relatedInnerCalls).toHaveLength(2); + relatedInnerCalls.forEach(innerCall => { + const innerStartTime = new Date(innerCall.started_at).getTime(); + const innerEndTime = new Date(innerCall.ended_at!).getTime(); + expect(innerStartTime).toBeGreaterThanOrEqual(outerStartTime); + expect(innerEndTime).toBeLessThanOrEqual(outerEndTime); + }); + }); + }); + + test('op with custom summary', async () => { + const customSummaryOp = op((x: number) => x * 2, { + name: 'customSummaryOp', + summarize: result => ({doubledValue: result}), + }); + + await customSummaryOp(5); + + // Wait for any pending batch processing + await new Promise(resolve => setTimeout(resolve, 300)); + + const calls = await getCalls(inMemoryTraceServer, testProjectName); + + expect(calls).toHaveLength(1); + expect(calls[0].op_name).toContain('customSummaryOp'); + expect(calls[0].inputs).toEqual({arg0: 5}); + expect(calls[0].output).toBe(10); + expect(calls[0].summary).toEqual({doubledValue: 10}); + }); + + test('openai-like op with token usage summary', async () => { + const testOpenAIChat = makeMockOpenAIChat(messages => ({ + content: messages[0].content.toUpperCase(), + })); + + const openaiLikeOp = makeOpenAIChatCompletionsOp( + testOpenAIChat, + 'testOpenAIChat' + ); + + await openaiLikeOp({messages: [{role: 'user', content: 'Hello, AI!'}]}); + + // Wait for any pending batch processing + await new Promise(resolve => setTimeout(resolve, 300)); + + const calls = await getCalls(inMemoryTraceServer, testProjectName); + + expect(calls).toHaveLength(1); + expect(calls[0].op_name).toContain('testOpenAIChat'); + expect(calls[0].inputs).toEqual({ + messages: [{role: 'user', content: 'Hello, AI!'}], + }); + expect(calls[0].output).toEqual({ + id: expect.any(String), + object: 'chat.completion', + created: expect.any(Number), + model: 'gpt-4o-2024-05-13', + choices: [ + { + index: 0, + message: { + role: 'assistant', + content: 'HELLO, AI!', + function_call: null, + refusal: null, + }, + logprobs: null, + finish_reason: 'stop', + }, + ], + usage: { + prompt_tokens: 2, + completion_tokens: 2, + total_tokens: 4, + }, + system_fingerprint: expect.any(String), + }); + expect(calls[0].summary).toEqual({ + usage: { + 'gpt-4o-2024-05-13': { + requests: 1, + completion_tokens: 2, + prompt_tokens: 2, + total_tokens: 4, + }, + }, + }); + }); + + test('nested op calls with summaries', async () => { + const leafOp = op((x: number) => x, { + name: 'leafOp', + summarize: result => ({leaf: {count: 1, sum: result}}), + }); + + const midOp = op( + async (x: number, y: number) => { + const [res1, res2] = await Promise.all([leafOp(x), leafOp(y)]); + return res1 + res2; + }, + { + name: 'midOp', + summarize: result => ({mid: {count: 1, sum: result}}), + } + ); + + const rootOp = op( + async (a: number, b: number, c: number) => { + const [res1, res2] = await Promise.all([midOp(a, b), leafOp(c)]); + return res1 + res2; + }, + { + name: 'rootOp', + summarize: result => ({root: {count: 1, sum: result}}), + } + ); + + await rootOp(1, 2, 3); + + // Wait for any pending batch processing + await new Promise(resolve => setTimeout(resolve, 300)); + + const calls = await getCalls(inMemoryTraceServer, testProjectName); + + expect(calls).toHaveLength(5); // 1 root + 1 mid + 3 leaf calls + + const rootCall = calls.find(call => call.op_name.includes('rootOp')); + expect(rootCall).toBeDefined(); + expect(rootCall?.summary).toEqual({ + root: {count: 1, sum: 6}, + mid: {count: 1, sum: 3}, + leaf: {count: 3, sum: 6}, // This is correct: 3 leaf calls, sum of 1+2+3 + }); + + const midCall = calls.find(call => call.op_name.includes('midOp')); + expect(midCall).toBeDefined(); + expect(midCall?.summary).toEqual({ + mid: {count: 1, sum: 3}, + leaf: {count: 2, sum: 3}, // This is correct: 2 leaf calls within midOp, sum of 1+2 + }); + + const leafCalls = calls.filter(call => call.op_name.includes('leafOp')); + expect(leafCalls).toHaveLength(3); + + const leafCallsUnderMid = leafCalls.filter( + call => call.parent_id === midCall?.id + ); + const leafCallUnderRoot = leafCalls.find( + call => call.parent_id === rootCall?.id + ); + + expect(leafCallsUnderMid).toEqual( + expect.arrayContaining([ + expect.objectContaining({summary: {leaf: {count: 1, sum: 1}}}), + expect.objectContaining({summary: {leaf: {count: 1, sum: 2}}}), + ]) + ); + expect(leafCallsUnderMid).toHaveLength(2); + + expect(leafCallUnderRoot).toEqual( + expect.objectContaining({summary: {leaf: {count: 1, sum: 3}}}) + ); + + // Ensure we have exactly these three summaries + expect(leafCalls).toHaveLength(3); + + // Check parent-child relationships + expect(midCall?.parent_id).toBe(rootCall?.id); + expect(leafCallsUnderMid).toHaveLength(2); + expect(leafCallUnderRoot).toBeDefined(); + + // Ensure all leaf calls have either midCall or rootCall as parent + leafCalls.forEach(call => { + expect( + call.parent_id === midCall?.id || call.parent_id === rootCall?.id + ).toBeTruthy(); + }); + + // Check that all calls have the same trace_id + const traceId = rootCall?.trace_id; + calls.forEach(call => { + expect(call.trace_id).toBe(traceId); + }); + }); +}); diff --git a/sdks/node/src/__tests__/openaiMock.ts b/sdks/node/src/__tests__/openaiMock.ts new file mode 100644 index 00000000000..cec6b39dbbb --- /dev/null +++ b/sdks/node/src/__tests__/openaiMock.ts @@ -0,0 +1,217 @@ +function generateId() { + return 'chatcmpl-' + Math.random().toString(36).substr(2, 9); +} + +function generateSystemFingerprint() { + return 'fp_' + Math.random().toString(36).substr(2, 9); +} + +type FunctionCall = { + name: string; + arguments: Record; +}; + +type ResponseFn = (messages: any[]) => { + content: string; + functionCalls?: FunctionCall[]; +}; + +// Simple function to estimate token count +function estimateTokenCount(text: string): number { + return Math.ceil(text.split(/\s+/).length); // 1 token per word for testing +} + +export function makeMockOpenAIChat(responseFn: ResponseFn) { + return function openaiChatCompletionsCreate({ + messages, + stream = false, + model = 'gpt-4o-2024-05-13', + stream_options, + ...otherOptions + }: { + messages: any[]; + stream?: boolean; + model?: string; + stream_options?: {include_usage?: boolean}; + [key: string]: any; + }) { + const response = responseFn(messages); + const {content, functionCalls = []} = response; + + const promptTokens = messages.reduce( + (acc, msg) => acc + estimateTokenCount(msg.content), + 0 + ); + const completionTokens = + estimateTokenCount(content) + + functionCalls.reduce( + (acc, fc) => + acc + + estimateTokenCount(fc.name) + + estimateTokenCount(JSON.stringify(fc.arguments)), + 0 + ); + const totalTokens = promptTokens + completionTokens; + + if (stream) { + return { + [Symbol.asyncIterator]: async function* () { + yield* generateChunks( + content, + functionCalls, + model, + promptTokens, + completionTokens, + totalTokens, + stream_options + ); + }, + }; + } else { + return { + id: generateId(), + object: 'chat.completion', + created: Math.floor(Date.now() / 1000), + model: model, + choices: [ + { + index: 0, + message: { + role: 'assistant', + content: content, + function_call: functionCalls[0] + ? { + name: functionCalls[0].name, + arguments: JSON.stringify(functionCalls[0].arguments), + } + : null, + refusal: null, + }, + logprobs: null, + finish_reason: functionCalls.length > 0 ? 'function_call' : 'stop', + }, + ], + usage: { + prompt_tokens: promptTokens, + completion_tokens: completionTokens, + total_tokens: totalTokens, + }, + system_fingerprint: generateSystemFingerprint(), + }; + } + }; +} + +function* generateChunks( + content: string, + functionCalls: FunctionCall[], + model: string, + promptTokens: number, + completionTokens: number, + totalTokens: number, + stream_options?: {include_usage?: boolean} +) { + const id = generateId(); + const systemFingerprint = generateSystemFingerprint(); + const created = Math.floor(Date.now() / 1000); + + const baseChunk = { + id, + object: 'chat.completion.chunk', + created, + model, + system_fingerprint: systemFingerprint, + }; + + const includeUsage = stream_options?.include_usage; + + // Initial chunk + yield { + ...baseChunk, + choices: [ + { + index: 0, + delta: {role: 'assistant', content: '', refusal: null}, + logprobs: null, + finish_reason: null, + }, + ], + ...(includeUsage && {usage: null}), + }; + + // Content chunks + const words = content.split(' '); + for (let i = 0; i < words.length; i++) { + yield { + ...baseChunk, + choices: [ + { + index: 0, + delta: {content: words[i] + (i < words.length - 1 ? ' ' : '')}, + logprobs: null, + finish_reason: null, + }, + ], + ...(includeUsage && {usage: null}), + }; + } + + // Function call chunks + for (const functionCall of functionCalls) { + yield { + ...baseChunk, + choices: [ + { + index: 0, + delta: {function_call: {name: functionCall.name, arguments: ''}}, + logprobs: null, + finish_reason: null, + }, + ], + ...(includeUsage && {usage: null}), + }; + + const args = JSON.stringify(functionCall.arguments); + for (let i = 0; i < args.length; i += 10) { + yield { + ...baseChunk, + choices: [ + { + index: 0, + delta: {function_call: {arguments: args.slice(i, i + 10)}}, + logprobs: null, + finish_reason: null, + }, + ], + ...(includeUsage && {usage: null}), + }; + } + } + + // Second to last chunk (finish_reason) + yield { + ...baseChunk, + choices: [ + { + index: 0, + delta: {}, + logprobs: null, + finish_reason: functionCalls.length > 0 ? 'function_call' : 'stop', + }, + ], + ...(includeUsage && {usage: null}), + }; + + // Final chunk with usage information (only if include_usage is true) + if (includeUsage) { + yield { + ...baseChunk, + choices: [], + usage: { + prompt_tokens: promptTokens, + completion_tokens: completionTokens, + total_tokens: totalTokens, + }, + }; + } +} diff --git a/sdks/node/src/__tests__/util/concurrentLimit.test.ts b/sdks/node/src/__tests__/util/concurrentLimit.test.ts new file mode 100644 index 00000000000..8b0b518f044 --- /dev/null +++ b/sdks/node/src/__tests__/util/concurrentLimit.test.ts @@ -0,0 +1,30 @@ +import {ConcurrencyLimiter} from '../../utils/concurrencyLimit'; + +describe('concurrency limiting', () => { + test('it works', async () => { + const limit = 2; + const numJobs = 10; + + const limiter = new ConcurrencyLimiter(limit); + let currentlyRunning = 0; + let maxConcurrent = 0; + + const mockJob = jest.fn(async () => { + currentlyRunning++; + expect(currentlyRunning).toBe(limiter.active); + maxConcurrent = Math.max(maxConcurrent, currentlyRunning); + await new Promise(resolve => setTimeout(resolve, 100)); + currentlyRunning--; + }); + + const limitedJob = limiter.limitFunction(mockJob); + + const promises = []; + for (let i = 0; i < numJobs; i++) { + promises.push(limitedJob()); + } + await Promise.all(promises); + + expect(maxConcurrent).toBeLessThanOrEqual(limit); + }); +}); diff --git a/sdks/node/src/__tests__/util/netrc.test.ts b/sdks/node/src/__tests__/util/netrc.test.ts new file mode 100644 index 00000000000..59d01538187 --- /dev/null +++ b/sdks/node/src/__tests__/util/netrc.test.ts @@ -0,0 +1,99 @@ +import fs from 'fs'; +import os from 'os'; +import path from 'path'; +import {Netrc} from '../../utils/netrc'; + +jest.mock('fs'); +jest.mock('os'); + +describe('Netrc', () => { + const mockHomedir = '/mock/home'; + const mockNetrcPath = path.join(mockHomedir, '.netrc'); + + beforeEach(() => { + jest.resetAllMocks(); + (os.homedir as jest.Mock).mockReturnValue(mockHomedir); + }); + + test('load parses netrc file correctly', () => { + const mockContent = ` + machine example.com + login user1 + password pass1 + machine api.example.com + login user2 + password pass2 + account acc2 + `; + (fs.readFileSync as jest.Mock).mockReturnValue(mockContent); + + const netrc = new Netrc(); + + expect(netrc.entries.size).toBe(2); + expect(netrc.getEntry('example.com')).toEqual({ + machine: 'example.com', + login: 'user1', + password: 'pass1', + }); + expect(netrc.getEntry('api.example.com')).toEqual({ + machine: 'api.example.com', + login: 'user2', + password: 'pass2', + account: 'acc2', + }); + }); + + test('load handles non-existent file', () => { + (fs.readFileSync as jest.Mock).mockImplementation(() => { + throw new Error('File not found'); + }); + + const netrc = new Netrc(); + expect(netrc.entries.size).toBe(0); + }); + + test('save writes entries correctly', () => { + const netrc = new Netrc(); + netrc.setEntry('example.com', {login: 'user1', password: 'pass1'}); + netrc.setEntry('api.example.com', { + login: 'user2', + password: 'pass2', + account: 'acc2', + }); + + netrc.save(); + + const expectedContent = `machine example.com + login user1 + password pass1 + +machine api.example.com + login user2 + password pass2 + account acc2 +`; + + expect(fs.writeFileSync).toHaveBeenCalledWith( + mockNetrcPath, + expectedContent, + {mode: 0o600} + ); + }); + + test('getLastEntry returns the last entry', () => { + const netrc = new Netrc(); + netrc.setEntry('example1.com', {login: 'user1', password: 'pass1'}); + netrc.setEntry('example2.com', {login: 'user2', password: 'pass2'}); + + expect(netrc.getLastEntry()).toEqual({ + machine: 'example2.com', + login: 'user2', + password: 'pass2', + }); + }); + + test('getLastEntry returns undefined for empty entries', () => { + const netrc = new Netrc(); + expect(netrc.getLastEntry()).toBeUndefined(); + }); +}); diff --git a/sdks/node/src/__tests__/util/retry.test.ts b/sdks/node/src/__tests__/util/retry.test.ts new file mode 100644 index 00000000000..1216c7c87cd --- /dev/null +++ b/sdks/node/src/__tests__/util/retry.test.ts @@ -0,0 +1,65 @@ +import {createFetchWithRetry} from '../../utils/retry'; + +describe('retry', () => { + let originalFetch: typeof global.fetch; + const mockSuccess = {ok: true, status: 200} as Response; + const mockFailure = {ok: false, status: 404} as Response; + const baseDelay = 2; + + beforeEach(() => { + originalFetch = global.fetch; + }); + + afterEach(() => { + jest.resetAllMocks(); + global.fetch = originalFetch; + }); + + test('fetch happy path', async () => { + const mockFetch = jest.fn(() => Promise.resolve(mockSuccess)); + global.fetch = mockFetch; + const fetchWithRetry = createFetchWithRetry({baseDelay}); + + const response = await fetchWithRetry('https://api.test.com'); + expect(response).toEqual(mockSuccess); + }); + + test('fetch intermittent failure then success', async () => { + const mockFetch = jest + .fn() + .mockResolvedValueOnce(mockFailure) + .mockResolvedValueOnce(mockFailure) + .mockResolvedValue(mockSuccess); + global.fetch = mockFetch; + const fetchWithRetry = createFetchWithRetry({baseDelay}); + + const response = await fetchWithRetry('https://api.test.com'); + expect(mockFetch).toHaveBeenCalledTimes(3); + expect(response).toEqual(mockSuccess); + }); + + test('fetch retry failure', async () => { + const maxRetries = 3; + + const mockFetch = jest.fn().mockResolvedValue(mockFailure); + global.fetch = mockFetch; + const fetchWithRetry = createFetchWithRetry({maxRetries, baseDelay}); + + const response = await fetchWithRetry('https://api.test.com'); + expect(mockFetch).toHaveBeenCalledTimes(maxRetries + 1); + expect(response).toEqual(mockFailure); + }); + + test('fetch exception then success', async () => { + const mockFetch = jest + .fn() + .mockRejectedValueOnce(new Error('test')) + .mockResolvedValue(mockSuccess); + global.fetch = mockFetch; + const fetchWithRetry = createFetchWithRetry({baseDelay}); + + const response = await fetchWithRetry('https://api.test.com'); + expect(mockFetch).toHaveBeenCalledTimes(2); + expect(response).toEqual(mockSuccess); + }); +}); diff --git a/sdks/node/src/__tests__/wandb/settings.test.ts b/sdks/node/src/__tests__/wandb/settings.test.ts new file mode 100644 index 00000000000..22b2f6c1b85 --- /dev/null +++ b/sdks/node/src/__tests__/wandb/settings.test.ts @@ -0,0 +1,81 @@ +import {Netrc} from '../../utils/netrc'; +import {getApiKey, getWandbConfigs} from '../../wandb/settings'; + +jest.mock('../../utils/netrc'); +const MockedNetrc = Netrc as jest.MockedClass; + +describe('settings', () => { + beforeEach(() => { + jest.clearAllMocks(); + delete process.env.WANDB_API_KEY; + }); + + describe('getApiKey', () => { + it('returns API key from environment variable', () => { + process.env.WANDB_API_KEY = 'test-api-key'; + expect(getApiKey('api.wandb.ai')).toBe('test-api-key'); + }); + + it('returns API key from netrc file', () => { + MockedNetrc.prototype.entries = new Map([ + [ + 'api.wandb.ai', + {machine: 'api.wandb.ai', login: 'user', password: 'netrc-api-key'}, + ], + ]); + expect(getApiKey('api.wandb.ai')).toBe('netrc-api-key'); + }); + + it('throws error when no API key is found', () => { + MockedNetrc.prototype.entries = new Map(); + expect(() => getApiKey('api.wandb.ai')).toThrow( + 'wandb API key not found' + ); + }); + }); + + describe('getWandbConfigs', () => { + it('returns correct config when netrc has entry', () => { + // Mock successful netrc entry + MockedNetrc.prototype.getLastEntry = jest.fn().mockReturnValue({ + machine: 'api.wandb.ai', + login: 'user', + password: 'test-api-key', + }); + MockedNetrc.prototype.entries = new Map([ + [ + 'api.wandb.ai', + {machine: 'api.wandb.ai', login: 'user', password: 'test-api-key'}, + ], + ]); + + const configs = getWandbConfigs(); + expect(configs).toEqual({ + apiKey: 'test-api-key', + baseUrl: expect.stringContaining('api.wandb.ai'), + traceBaseUrl: expect.stringContaining('https://trace.wandb.ai'), + domain: expect.any(String), + }); + }); + + it('throws error when no netrc entry is found', () => { + // Mock netrc with no entries + MockedNetrc.prototype.getLastEntry = jest.fn().mockReturnValue(null); + + expect(() => getWandbConfigs()).toThrow( + 'Could not find entry in netrc file' + ); + }); + + it('throws error when netrc throws error', () => { + // Mock netrc throwing error + MockedNetrc.prototype.getLastEntry = jest.fn().mockImplementation(() => { + throw new Error('Failed to read netrc'); + }); + + expect(() => getWandbConfigs()).toThrow( + 'Could not find entry in netrc file' + ); + }); + }); +}); diff --git a/sdks/node/src/__tests__/wandb/wandbServerApi.test.ts b/sdks/node/src/__tests__/wandb/wandbServerApi.test.ts new file mode 100644 index 00000000000..9ddf1109209 --- /dev/null +++ b/sdks/node/src/__tests__/wandb/wandbServerApi.test.ts @@ -0,0 +1,47 @@ +import {WandbServerApi} from '../../wandb/wandbServerApi'; + +const originalFetch = global.fetch; +const api = new WandbServerApi('https://api.wandb.ai', 'abcdef123456'); + +const mockGoodResponse = { + ok: true, + json: jest + .fn() + .mockResolvedValue({data: {viewer: {defaultEntity: {name: 'test'}}}}), +}; +const mockInvalidEntityResponse = { + ok: true, + json: jest.fn().mockResolvedValue({data: {viewer: {defaultEntity: {}}}}), +}; +const mockBadGQLResponse = { + ok: true, + json: jest.fn().mockResolvedValue({errors: [{message: 'problem'}]}), +}; + +describe('wandbServerApi', () => { + afterEach(() => { + global.fetch = originalFetch; + }); + + test('default entity happy path', async () => { + const mockFetch = jest.fn().mockResolvedValue(mockGoodResponse); + global.fetch = mockFetch; + + const result = await api.defaultEntityName(); + expect(result).toEqual('test'); + }); + + test('default entity error path', async () => { + const mockFetch = jest.fn().mockResolvedValue(mockInvalidEntityResponse); + global.fetch = mockFetch; + + await expect(api.defaultEntityName()).rejects.toThrow(/name not found/); + }); + + test('gql error path', async () => { + const mockFetch = jest.fn().mockResolvedValue(mockBadGQLResponse); + global.fetch = mockFetch; + + await expect(api.defaultEntityName()).rejects.toThrow(/GraphQL Error/); + }); +}); diff --git a/sdks/node/src/__tests__/weaveClient.test.ts b/sdks/node/src/__tests__/weaveClient.test.ts new file mode 100644 index 00000000000..3a3523daa20 --- /dev/null +++ b/sdks/node/src/__tests__/weaveClient.test.ts @@ -0,0 +1,230 @@ +import {ReadableStream} from 'stream/web'; +import {Api as TraceServerApi} from '../generated/traceServerApi'; +import {WandbServerApi} from '../wandb/wandbServerApi'; +import {WeaveClient} from '../weaveClient'; + +// Mock the TraceServerApi and WandbServerApi +jest.mock('../generated/traceServerApi'); +jest.mock('../wandb/wandbServerApi'); + +describe('WeaveClient', () => { + let client: WeaveClient; + let mockTraceServerApi: jest.Mocked>; + let mockWandbServerApi: jest.Mocked; + + beforeEach(() => { + mockTraceServerApi = { + calls: { + callsQueryStreamCallsStreamQueryPost: jest.fn(), + }, + } as any; + mockWandbServerApi = {} as any; + client = new WeaveClient( + mockTraceServerApi, + mockWandbServerApi, + 'test-project' + ); + }); + + describe('getCalls', () => { + it('should fetch and return calls', async () => { + const mockCalls = [ + {id: '1', name: 'call1'}, + {id: '2', name: 'call2'}, + ]; + const encoder = new TextEncoder(); + const stream = new ReadableStream({ + start(controller) { + mockCalls.forEach(call => { + controller.enqueue(encoder.encode(JSON.stringify(call) + '\n')); + }); + controller.close(); + }, + }); + ( + mockTraceServerApi.calls + .callsQueryStreamCallsStreamQueryPost as jest.Mock + ).mockResolvedValue({ + body: stream, + } as any); + + // Call the method + const filter = {}; + const includeCosts = true; + const limit = 500; + const result = await client.getCalls(filter, includeCosts, limit); + + // Verify the results + expect(result).toEqual(mockCalls); + expect( + mockTraceServerApi.calls.callsQueryStreamCallsStreamQueryPost + ).toHaveBeenCalledWith({ + project_id: 'test-project', + filter, + include_costs: includeCosts, + limit, + }); + }); + + it('should handle remaining buffer data after stream ends', async () => { + const encoder = new TextEncoder(); + const stream = new ReadableStream({ + start(controller) { + // Send data without newline at the end + controller.enqueue(encoder.encode('{"id": "1"}\n{"id": "2"}')); + controller.close(); + }, + }); + + ( + mockTraceServerApi.calls + .callsQueryStreamCallsStreamQueryPost as jest.Mock + ).mockResolvedValue({ + body: stream, + } as any); + + const result = await client.getCalls(); + + // Should process both objects, including the one without newline + expect(result).toEqual([{id: '1'}, {id: '2'}]); + }); + }); + + describe('Batch Processing', () => { + let client: WeaveClient; + let mockTraceServerApi: jest.Mocked>; + let mockWandbServerApi: jest.Mocked; + + beforeEach(() => { + mockTraceServerApi = { + call: { + callStartBatchCallUpsertBatchPost: jest.fn(), + }, + } as any; + mockWandbServerApi = {} as any; + client = new WeaveClient( + mockTraceServerApi, + mockWandbServerApi, + 'test-project' + ); + // Speed up tests by reducing batch interval + (client as any).BATCH_INTERVAL = 10; + }); + + it('should batch multiple calls together', async () => { + // Add test calls to queue + (client as any).callQueue.push( + {mode: 'start', data: {id: '1'}}, + {mode: 'start', data: {id: '2'}} + ); + + await (client as any).processBatch(); + + expect( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost + ).toHaveBeenCalledWith({ + batch: [ + {mode: 'start', req: {id: '1'}}, + {mode: 'start', req: {id: '2'}}, + ], + }); + expect((client as any).callQueue.length).toBe(0); + + (client as any).callQueue.push( + {mode: 'start', data: {id: '3'}}, + {mode: 'start', data: {id: '4'}}, + {mode: 'start', data: {id: '5'}} + ); + + await (client as any).processBatch(); + + expect( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost + ).toHaveBeenCalledWith({ + batch: [ + {mode: 'start', req: {id: '3'}}, + {mode: 'start', req: {id: '4'}}, + {mode: 'start', req: {id: '5'}}, + ], + }); + expect((client as any).callQueue.length).toBe(0); + + expect( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost + ).toHaveBeenCalledTimes(2); + }); + + it('should handle API errors gracefully', async () => { + const mockConsoleError = jest + .spyOn(console, 'error') + .mockImplementation(); + + // Add multiple items to queue + const items = [ + {mode: 'start', data: {id: '1'}}, + {mode: 'start', data: {id: '2'}}, + ]; + (client as any).callQueue.push(...items); + + // First API call fails + ( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost as jest.Mock + ).mockRejectedValueOnce(new Error('API Error')); + + await (client as any).processBatch(); + + // Should log error but continue processing, with failed items back in queue + expect(mockConsoleError).toHaveBeenCalledWith( + 'Error processing batch:', + expect.any(Error) + ); + expect((client as any).callQueue).toEqual(items); + + // Second API call succeeds + ( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost as jest.Mock + ).mockResolvedValueOnce({}); + + await (client as any).processBatch(); + + // Verify items were processed in original order + expect( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost + ).toHaveBeenCalledWith({ + batch: [ + {mode: 'start', req: {id: '1'}}, + {mode: 'start', req: {id: '2'}}, + ], + }); + expect((client as any).callQueue.length).toBe(0); + + mockConsoleError.mockRestore(); + }); + + it('should prevent concurrent batch processing', async () => { + (client as any).isBatchProcessing = true; + (client as any).scheduleBatchProcessing(); + expect((client as any).batchProcessTimeout).toBeNull(); + }); + + it('should wait for all pending batches', async () => { + // Simulate slow API + ( + mockTraceServerApi.call.callStartBatchCallUpsertBatchPost as jest.Mock + ).mockImplementation( + () => new Promise(resolve => setTimeout(resolve, 50)) + ); + + (client as any).callQueue.push( + {mode: 'start', data: {id: '1'}}, + {mode: 'start', data: {id: '2'}} + ); + + (client as any).scheduleBatchProcessing(); + await client.waitForBatchProcessing(); + + expect((client as any).batchProcessingPromises.size).toBe(0); + expect((client as any).callQueue.length).toBe(0); + }); + }); +}); diff --git a/sdks/node/src/clientApi.ts b/sdks/node/src/clientApi.ts new file mode 100644 index 00000000000..499322e8d5b --- /dev/null +++ b/sdks/node/src/clientApi.ts @@ -0,0 +1,159 @@ +import {Api as TraceServerApi} from './generated/traceServerApi'; +import {Settings} from './settings'; +import {getUrls, setGlobalDomain} from './urls'; +import {ConcurrencyLimiter} from './utils/concurrencyLimit'; +import {Netrc} from './utils/netrc'; +import {createFetchWithRetry} from './utils/retry'; +import {getWandbConfigs} from './wandb/settings'; +import {WandbServerApi} from './wandb/wandbServerApi'; +import {CallStackEntry, WeaveClient} from './weaveClient'; + +export interface LoginOptions { + apiKey: string; + host?: string; +} + +// Global client instance +export let globalClient: WeaveClient | null = null; + +/** + * Log in to Weights & Biases (W&B) using the provided API key. + * This function saves the credentials to your netrc file for future use. + * + * @param options - The login options. + * @param options.apiKey - Your W&B API key. + * @param options.host - (Optional) The host name (usually only needed if you're using a custom W&B server). + * @throws {Error} If the API key is not specified or if the connection to the weave trace server cannot be verified. + */ +export async function login(options?: LoginOptions) { + if (!options?.apiKey) { + throw Error('API Key must be specified'); + } + const {traceBaseUrl, domain} = getUrls(options?.host); + + // Test the connection to the traceServerApi + const testTraceServerApi = new TraceServerApi({ + baseUrl: traceBaseUrl, + baseApiParams: { + headers: { + 'User-Agent': `W&B Weave JS Client ${process.env.VERSION || 'unknown'}`, + Authorization: `Basic ${Buffer.from(`api:${options.apiKey}`).toString('base64')}`, + }, + }, + }); + try { + await testTraceServerApi.health.readRootHealthGet({}); + } catch (error) { + throw new Error( + 'Unable to verify connection to the weave trace server with given API Key' + ); + } + + const netrc = new Netrc(); + netrc.setEntry(domain, {login: 'user', password: options.apiKey}); + netrc.save(); + console.log(`Successfully logged in. Credentials saved for ${domain}`); +} + +/** + * Initialize the Weave client, which is required for weave tracing to work. + * + * @param project - The W&B project name (can be project or entity/project). + * @param settings - (Optional) Weave tracing settings + * @returns A promise that resolves to the initialized Weave client. + * @throws {Error} If the initialization fails + */ +export async function init( + project: string, + settings?: Settings +): Promise { + const {apiKey, baseUrl, traceBaseUrl, domain} = getWandbConfigs(); + try { + const wandbServerApi = new WandbServerApi(baseUrl, apiKey); + + let entityName: string | undefined; + let projectName: string; + if (project.includes('/')) { + [entityName, projectName] = project.split('/'); + } else { + entityName = await wandbServerApi.defaultEntityName(); + projectName = project; + } + const projectId = `${entityName}/${projectName}`; + + const retryFetch = createFetchWithRetry({ + baseDelay: 1000, + maxDelay: 5 * 60 * 1000, // 5 minutes + maxRetryTime: 12 * 60 * 60 * 1000, // 12 hours + retryOnStatus: (status: number) => + status === 429 || (status >= 500 && status < 600), + }); + const concurrencyLimiter = new ConcurrencyLimiter(20); + const concurrencyLimitedFetch = concurrencyLimiter.limitFunction( + async (...fetchParams: Parameters) => { + const result = await retryFetch(...fetchParams); + // Useful for debugging + // console.log(`Active: ${concurrencyLimiter.active} Pending: ${concurrencyLimiter.pending}`); + return result; + } + ); + + const traceServerApi = new TraceServerApi({ + baseUrl: traceBaseUrl, + baseApiParams: { + headers: { + 'User-Agent': `W&B Weave JS Client ${process.env.VERSION || 'unknown'}`, + Authorization: `Basic ${Buffer.from(`api:${apiKey}`).toString('base64')}`, + }, + }, + customFetch: concurrencyLimitedFetch, + }); + + const client = new WeaveClient( + traceServerApi, + wandbServerApi, + projectId, + settings + ); + setGlobalClient(client); + setGlobalDomain(domain); + console.log(`Initializing project: ${projectId}`); + return client; + } catch (error) { + console.error('Error during initialization:', error); + throw error; + } +} + +export function requireCurrentCallStackEntry(): CallStackEntry { + const client = getGlobalClient(); + if (!client) { + throw new Error('Weave client not initialized'); + } + const callStackEntry = client.getCallStack().peek(); + if (!callStackEntry) { + throw new Error('No current call stack entry'); + } + return callStackEntry; +} + +export function requireCurrentChildSummary(): {[key: string]: any} { + const callStackEntry = requireCurrentCallStackEntry(); + return callStackEntry.childSummary; +} + +export function getGlobalClient(): WeaveClient | null { + return globalClient; +} + +export function requireGlobalClient(): WeaveClient { + const client = getGlobalClient(); + if (!client) { + throw new Error('Weave client not initialized'); + } + return client; +} + +export function setGlobalClient(client: WeaveClient) { + globalClient = client; +} diff --git a/sdks/node/src/constants.ts b/sdks/node/src/constants.ts new file mode 100644 index 00000000000..726f5343a86 --- /dev/null +++ b/sdks/node/src/constants.ts @@ -0,0 +1,2 @@ +export const TRACE_CALL_EMOJI = '🍩'; +export const TRACE_OBJECT_EMOJI = '📦'; diff --git a/sdks/node/src/dataset.ts b/sdks/node/src/dataset.ts new file mode 100644 index 00000000000..ebcc2addc6d --- /dev/null +++ b/sdks/node/src/dataset.ts @@ -0,0 +1,92 @@ +import {requireGlobalClient} from './clientApi'; +import {Table} from './table'; +import {ObjectRef, WeaveObject, WeaveObjectParameters} from './weaveObject'; + +interface DatasetParameters + extends WeaveObjectParameters { + rows: R[]; +} + +export class DatasetRowRef { + constructor( + public projectId: string, + public objId: string, + public digest: string, + public rowDigest: string + ) {} + + public uri() { + return `weave:///${this.projectId}/object/${this.objId}:${this.digest}/attr/rows/id/${this.rowDigest}`; + } +} + +export type DatasetRow = Record & { + __savedRef?: DatasetRowRef | Promise; +}; + +/** + * Dataset object with easy saving and automatic versioning + * + * @example + * // Create a dataset + * const dataset = new Dataset({ + * id: 'grammar-dataset', + * rows: [ + * { id: '0', sentence: "He no likes ice cream.", correction: "He doesn't like ice cream." }, + * { id: '1', sentence: "She goed to the store.", correction: "She went to the store." }, + * { id: '2', sentence: "They plays video games all day.", correction: "They play video games all day." } + * ] + * }) + * + * // Access a specific example + * const exampleLabel = dataset.getRow(2).sentence; + * + * // Save the dataset + * const ref = await dataset.save() + * + */ +export class Dataset extends WeaveObject { + public rows: Table; + + constructor(parameters: DatasetParameters) { + const baseParameters = { + id: parameters.id, + description: parameters.description, + }; + super(baseParameters); + this.rows = new Table(parameters.rows); + } + + async save(): Promise { + return requireGlobalClient().publish(this); + } + + get length(): number { + return this.rows.length; + } + + async *[Symbol.asyncIterator](): AsyncIterator { + for (let i = 0; i < this.length; i++) { + yield this.getRow(i); + } + } + + getRow(index: number): R { + const tableRow = this.rows.row(index); + const datasetRow: R = {...tableRow, __savedRef: undefined}; + if (this.__savedRef && tableRow.__savedRef) { + datasetRow.__savedRef = Promise.all([ + this.__savedRef, + tableRow.__savedRef, + ]).then(([ref, tableRowRef]) => { + return new DatasetRowRef( + ref.projectId, + ref.objectId, + ref.digest, + tableRowRef.rowDigest + ); + }); + } + return datasetRow; + } +} diff --git a/sdks/node/src/digest.ts b/sdks/node/src/digest.ts new file mode 100644 index 00000000000..0d281a601df --- /dev/null +++ b/sdks/node/src/digest.ts @@ -0,0 +1,49 @@ +import {Buffer} from 'buffer'; +import crypto from 'crypto'; + +export function computeDigest(data: Buffer): string { + // Must match python server algorithm in clickhouse_trace_server_batched.py + const hasher = crypto.createHash('sha256'); + hasher.update(data); + const hashBytes = hasher.digest(); + const base64EncodedHash = hashBytes.toString('base64url'); + return base64EncodedHash + .replace(/-/g, 'X') + .replace(/_/g, 'Y') + .replace(/=/g, ''); +} + +export function stringDigest(data: string): string { + return computeDigest(Buffer.from(data)); +} + +export function encodeNumber(num: number): string { + return String(num); +} + +export function stringifyPythonDumps(obj: any): string { + if (obj === null) { + return 'null'; + } + if (typeof obj === 'string') { + return JSON.stringify(obj); + } + if (typeof obj === 'number' || typeof obj === 'boolean') { + return String(obj); + } + if (Array.isArray(obj)) { + const items = obj.map(stringifyPythonDumps); + return '[' + items.join(', ') + ']'; + } + if (typeof obj === 'object') { + const pairs = Object.keys(obj) + .sort() + .map(key => JSON.stringify(key) + ': ' + stringifyPythonDumps(obj[key])); + return '{' + pairs.join(', ') + '}'; + } + throw new Error('Unsupported type'); +} + +export function valDigest(data: any): string { + return stringDigest(stringifyPythonDumps(data)); +} diff --git a/sdks/node/src/evaluation.ts b/sdks/node/src/evaluation.ts new file mode 100644 index 00000000000..bcbfbc4b1c6 --- /dev/null +++ b/sdks/node/src/evaluation.ts @@ -0,0 +1,345 @@ +import cliProgress from 'cli-progress'; +import {Dataset, DatasetRow} from './dataset'; +import {ColumnMapping, mapArgs} from './fn'; +import {isMedia} from './media'; +import {op} from './op'; +import {Op, getOpName} from './opType'; +import {WeaveObject, WeaveObjectParameters} from './weaveObject'; + +const PROGRESS_BAR = false; + +// Column mapping takes a dataset row of type R and maps it to a scorer's dataset row of type E +interface EvaluationParameters + extends WeaveObjectParameters { + dataset: Dataset; + scorers: WeaveCallable<(...args: [{datasetRow: E; modelOutput: M}]) => any>[]; + maxConcurrency?: number; + columnMapping?: ColumnMapping; +} + +interface Runnable any> { + id: string; + invoke: (...args: Parameters) => ReturnType; +} + +type WeaveCallable any> = Op | Runnable; + +function callWeaveCallable any>( + callable: WeaveCallable, + ...args: Parameters +) { + if (typeof callable === 'function') { + return callable(...args); + } + return callable.invoke(...args); +} + +function weaveCallableName any>( + callable: WeaveCallable +) { + if (typeof callable === 'function') { + return getOpName(callable); + } + return callable.id; +} + +async function* repeatAsyncIterator( + asyncIterator: AsyncIterable, + repeatCount: number +) { + for (let i = 0; i < repeatCount; i++) { + yield* asyncIterator; + } +} + +async function* asyncParallelMap( + asyncIterator: AsyncIterable, + fn: (item: T, ...args: any[]) => Promise, + fnParams: (item: T) => any[], + maxConcurrency: number +) { + const itemPromiseMap: Map< + T, + Promise<{item: T; result: Awaited}> + > = new Map(); + async function runOne(item: T) { + return { + item, + // @ts-ignore + result: await fn(...fnParams(item)), + }; + } + let nDone = 0; + for await (const item of asyncIterator) { + if (itemPromiseMap.size >= maxConcurrency) { + const done = await Promise.race(itemPromiseMap.values()); + itemPromiseMap.delete(done.item); + yield { + ...done, + nRunning: itemPromiseMap.size, + nDone: ++nDone, + }; + } + const prom = runOne(item); + itemPromiseMap.set(item, prom); + } + + // Flush remaining items + while (itemPromiseMap.size > 0) { + const done = await Promise.race(itemPromiseMap.values()); + itemPromiseMap.delete(done.item); + yield { + ...done, + nRunning: itemPromiseMap.size, + nDone: ++nDone, + }; + } +} + +/** + * Sets up an evaluation which includes a set of scorers and a dataset. + * + * Calling evaluation.evaluate(model) will pass in rows form a dataset into a model matching + * the names of the columns of the dataset to the argument names in model.predict. + * + * Then it will call all of the scorers and save the results in weave. + * + * @example + * // Collect your examples into a dataset + * const dataset = new weave.Dataset({ + * id: 'my-dataset', + * rows: [ + * { question: 'What is the capital of France?', expected: 'Paris' }, + * { question: 'Who wrote "To Kill a Mockingbird"?', expected: 'Harper Lee' }, + * { question: 'What is the square root of 64?', expected: '8' }, + * ], + * }); + * + * // Define any custom scoring function + * const scoringFunction = weave.op(function isEqual({ modelOutput, datasetRow }) { + * return modelOutput == datasetRow.expected; + * }); + * + * // Define the function to evaluate + * const model = weave.op(async function alwaysParisModel({ question }) { + * return 'Paris'; + * }); + * + * // Start evaluating + * const evaluation = new weave.Evaluation({ + * id: 'my-evaluation', + * dataset: dataset, + * scorers: [scoringFunction], + * }); + * + * const results = await evaluation.evaluate({ model }); + */ +export class Evaluation< + R extends DatasetRow, + E extends DatasetRow, + M, +> extends WeaveObject { + private dataset: Dataset; + private scorers: WeaveCallable< + (...args: [{datasetRow: E; modelOutput: M}]) => any + >[]; + private columnMapping?: ColumnMapping; + + constructor(parameters: EvaluationParameters) { + super(parameters); + this.dataset = parameters.dataset; + this.scorers = parameters.scorers; + this.evaluate = op(this, this.evaluate, { + parameterNames: 'useParam0Object', + callDisplayName: inputs => + `${this.id}_${weaveCallableName(inputs.model)}`, + }); + this.predictAndScore = op(this, this.predictAndScore, { + parameterNames: 'useParam0Object', + }); + this.columnMapping = parameters.columnMapping; + } + + async evaluate({ + model, + nTrials = 1, + maxConcurrency = 5, + }: { + model: WeaveCallable<(...args: [{datasetRow: R}]) => Promise>; + nTrials?: number; + maxConcurrency?: number; + }) { + const results: Array<{ + model_output: M; + model_success: boolean; + model_latency: number; + [key: string]: any; + }> = []; + + const progressBar = new cliProgress.SingleBar({ + format: + 'Evaluating |{bar}| {percentage}% | ETA: {eta}s | {modelErrors} errors | {value}/{total} examples | {running} running', + barCompleteChar: '\u2588', + barIncompleteChar: '\u2591', + hideCursor: true, + }); + + if (PROGRESS_BAR) { + progressBar.start(this.dataset.length * nTrials, 0, { + running: 0, + modelErrors: 0, + }); + } + + let modelErrors = 0; + let datasetExamples = this.dataset; + if (nTrials > 1) { + // @ts-ignore + datasetExamples = repeatAsyncIterator(this.dataset, nTrials); + } + + for await (const {result, nRunning, nDone} of asyncParallelMap( + datasetExamples, + this.predictAndScore, + item => [{model, example: item, columnMapping: this.columnMapping}], + maxConcurrency + )) { + const {scores} = result; + console.log('>>>result', result); + results.push({ + model_success: result.model_success, + model_output: result.model_output, + ...scores, + model_latency: result.model_latency, + }); + modelErrors += result.model_success ? 0 : 1; + if (PROGRESS_BAR) { + progressBar.update(nDone, {running: nRunning, modelErrors}); + } else { + console.log( + `Evaluating ${nDone}/${this.dataset.length * nTrials} examples (${nRunning} running, ${modelErrors} errors)` + ); + } + } + + if (PROGRESS_BAR) { + progressBar.stop(); + } + + return this.summarizeResults(results); + } + + async predictAndScore({ + model, + example, + columnMapping, + }: { + model: WeaveCallable<(...args: [{datasetRow: E}]) => Promise>; + example: R; + columnMapping?: ColumnMapping; + }) { + const startTime = new Date(); + let modelOutput; + let modelError = false; + let datasetRow: E = example as unknown as E; + if (columnMapping) { + datasetRow = mapArgs(example, columnMapping) as E; + } + try { + modelOutput = await callWeaveCallable(model, {datasetRow}); + } catch (e) { + console.error(e); + modelError = true; + } + const endTime = new Date(); + const modelLatency = (endTime.getTime() - startTime.getTime()) / 1000; // Convert to seconds + + const scores: {[key: string]: any} = {}; + if (!modelError) { + for (const scorer of this.scorers) { + let score = undefined; + try { + score = await callWeaveCallable(scorer, {datasetRow, modelOutput}); + } catch (e) { + console.error(e); + } + scores[weaveCallableName(scorer)] = score; + } + } + + return { + model_success: !modelError, + model_output: modelOutput, + scores, + model_latency: modelLatency, + }; + } + + private summarizeResults( + results: Array<{ + model_output: any; + model_success: boolean; + model_latency: number; + [key: string]: any; + }> + ) { + const summarizeNestedObject = ( + results: Array + ): Record => { + const nestedSummary: Record = {}; + + // Get all unique keys from all results + const allKeys = new Set(results.flatMap(obj => Object.keys(obj ?? {}))); + + for (const key of allKeys) { + const values = results.map(result => + result == null ? null : result[key] + ); + if ( + values.some( + v => + typeof v === 'object' && + v !== null && + !Array.isArray(v) && + !isMedia(v) + ) + ) { + const result = summarizeNestedObject(values); + if (Object.keys(result).length > 0) { + nestedSummary[key] = result; + } + } else { + const columnSummary = this.summarizeColumn(values); + if (Object.keys(columnSummary).length > 0) { + nestedSummary[key] = columnSummary; + } + } + } + + return nestedSummary; + }; + + return summarizeNestedObject(results); + } + + private summarizeColumn(values: any[]): Record { + const nonNilValues = values.filter(v => v != null); + if (nonNilValues.length === 0) { + return {}; // Return an empty object if there are no valid values + } + + if (nonNilValues.every(v => typeof v === 'boolean')) { + const trueCount = nonNilValues.filter(v => v).length; + return { + true_count: trueCount, + true_fraction: values.length > 0 ? trueCount / values.length : 0, + }; + } else if (nonNilValues.every(v => typeof v === 'number')) { + const sum = nonNilValues.reduce((acc, v) => acc + v, 0); + return { + mean: values.length > 0 ? sum / values.length : 0, + }; + } + return {}; + } +} diff --git a/sdks/node/src/fn.ts b/sdks/node/src/fn.ts new file mode 100644 index 00000000000..be8d124e70a --- /dev/null +++ b/sdks/node/src/fn.ts @@ -0,0 +1,36 @@ +import {WeaveObject} from './weaveObject'; + +export type ColumnMapping = { + [K in keyof O]: keyof I; +}; +export type ArgsObject = {[key: string]: any}; +export type Row = {[key: string]: any}; + +export interface Callable { + run: (input: I) => Promise; +} +export type FnInputs> = + T extends Callable ? I : never; +export type FnOutput> = + T extends Callable ? O : never; + +export abstract class CallableObject + extends WeaveObject + implements Callable +{ + abstract run(input: I): Promise; +} + +export function mapArgs< + T extends Record, + M extends Record, +>(input: T, mapping: M): {[K in keyof M]: T[M[K]]} { + const result: Partial<{[K in keyof M]: T[M[K]]}> = {}; + + for (const [newKey, oldKey] of Object.entries(mapping)) { + if (oldKey in input) { + result[newKey as keyof M] = input[oldKey]; + } + } + return result as {[K in keyof M]: T[M[K]]}; +} diff --git a/sdks/node/src/generated/traceServerApi.ts b/sdks/node/src/generated/traceServerApi.ts new file mode 100644 index 00000000000..246a9b39a84 --- /dev/null +++ b/sdks/node/src/generated/traceServerApi.ts @@ -0,0 +1,1530 @@ +/* eslint-disable */ +/* tslint:disable */ +/* + * --------------------------------------------------------------- + * ## THIS FILE WAS GENERATED VIA SWAGGER-TYPESCRIPT-API ## + * ## ## + * ## AUTHOR: acacode ## + * ## SOURCE: https://github.com/acacode/swagger-typescript-api ## + * --------------------------------------------------------------- + */ + +/** AndOperation */ +export interface AndOperation { + /** $And */ + $and: ( + | LiteralOperation + | GetFieldOperator + | ConvertOperation + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation + )[]; +} + +/** Body_file_create_file_create_post */ +export interface BodyFileCreateFileCreatePost { + /** Project Id */ + project_id: string; + /** + * File + * @format binary + */ + file: File; +} + +/** CallBatchEndMode */ +export interface CallBatchEndMode { + /** + * Mode + * @default "end" + */ + mode?: string; + req: CallEndReq; +} + +/** CallBatchStartMode */ +export interface CallBatchStartMode { + /** + * Mode + * @default "start" + */ + mode?: string; + req: CallStartReq; +} + +/** CallCreateBatchReq */ +export interface CallCreateBatchReq { + /** Batch */ + batch: (CallBatchStartMode | CallBatchEndMode)[]; +} + +/** CallCreateBatchRes */ +export interface CallCreateBatchRes { + /** Res */ + res: (CallStartRes | CallEndRes)[]; +} + +/** CallEndReq */ +export interface CallEndReq { + end: EndedCallSchemaForInsert; +} + +/** CallEndRes */ +export type CallEndRes = object; + +/** CallReadReq */ +export interface CallReadReq { + /** Project Id */ + project_id: string; + /** Id */ + id: string; + /** + * Include Costs + * @default false + */ + include_costs?: boolean | null; +} + +/** CallReadRes */ +export interface CallReadRes { + call: CallSchema | null; +} + +/** CallSchema */ +export interface CallSchema { + /** Id */ + id: string; + /** Project Id */ + project_id: string; + /** Op Name */ + op_name: string; + /** Display Name */ + display_name?: string | null; + /** Trace Id */ + trace_id: string; + /** Parent Id */ + parent_id?: string | null; + /** + * Started At + * @format date-time + */ + started_at: string; + /** Attributes */ + attributes: object; + /** Inputs */ + inputs: object; + /** Ended At */ + ended_at?: string | null; + /** Exception */ + exception?: string | null; + /** Output */ + output?: null; + summary?: object; + /** Wb User Id */ + wb_user_id?: string | null; + /** Wb Run Id */ + wb_run_id?: string | null; + /** Deleted At */ + deleted_at?: string | null; +} + +/** CallStartReq */ +export interface CallStartReq { + start: StartedCallSchemaForInsert; +} + +/** CallStartRes */ +export interface CallStartRes { + /** Id */ + id: string; + /** Trace Id */ + trace_id: string; +} + +/** CallUpdateReq */ +export interface CallUpdateReq { + /** Project Id */ + project_id: string; + /** Call Id */ + call_id: string; + /** Display Name */ + display_name?: string | null; + /** + * Wb User Id + * Do not set directly. Server will automatically populate this field. + */ + wb_user_id?: string | null; +} + +/** CallUpdateRes */ +export type CallUpdateRes = object; + +/** CallsDeleteReq */ +export interface CallsDeleteReq { + /** Project Id */ + project_id: string; + /** Call Ids */ + call_ids: string[]; + /** + * Wb User Id + * Do not set directly. Server will automatically populate this field. + */ + wb_user_id?: string | null; +} + +/** CallsDeleteRes */ +export type CallsDeleteRes = object; + +/** CallsFilter */ +export interface CallsFilter { + /** Op Names */ + op_names?: string[] | null; + /** Input Refs */ + input_refs?: string[] | null; + /** Output Refs */ + output_refs?: string[] | null; + /** Parent Ids */ + parent_ids?: string[] | null; + /** Trace Ids */ + trace_ids?: string[] | null; + /** Call Ids */ + call_ids?: string[] | null; + /** Trace Roots Only */ + trace_roots_only?: boolean | null; + /** Wb User Ids */ + wb_user_ids?: string[] | null; + /** Wb Run Ids */ + wb_run_ids?: string[] | null; +} + +/** CallsQueryReq */ +export interface CallsQueryReq { + /** Project Id */ + project_id: string; + filter?: CallsFilter | null; + /** Limit */ + limit?: number | null; + /** Offset */ + offset?: number | null; + /** Sort By */ + sort_by?: SortBy[] | null; + query?: Query | null; + /** + * Include Costs + * @default false + */ + include_costs?: boolean | null; + /** Columns */ + columns?: string[] | null; + /** + * Expand Columns + * Columns to expand, i.e. refs to other objects + */ + expand_columns?: string[] | null; +} + +/** CallsQueryStatsReq */ +export interface CallsQueryStatsReq { + /** Project Id */ + project_id: string; + filter?: CallsFilter | null; + query?: Query | null; +} + +/** CallsQueryStatsRes */ +export interface CallsQueryStatsRes { + /** Count */ + count: number; +} + +/** ContainsOperation */ +export interface ContainsOperation { + $contains: ContainsSpec; +} + +/** ContainsSpec */ +export interface ContainsSpec { + /** Input */ + input: + | LiteralOperation + | GetFieldOperator + | ConvertOperation + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation; + /** Substr */ + substr: + | LiteralOperation + | GetFieldOperator + | ConvertOperation + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation; + /** + * Case Insensitive + * @default false + */ + case_insensitive?: boolean | null; +} + +/** ConvertOperation */ +export interface ConvertOperation { + $convert: ConvertSpec; +} + +/** ConvertSpec */ +export interface ConvertSpec { + /** Input */ + input: + | LiteralOperation + | GetFieldOperator + | ConvertOperation + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation; + /** To */ + to: 'double' | 'string' | 'int' | 'bool' | 'exists'; +} + +/** EndedCallSchemaForInsert */ +export interface EndedCallSchemaForInsert { + /** Project Id */ + project_id: string; + /** Id */ + id: string; + /** + * Ended At + * @format date-time + */ + ended_at: string; + /** Exception */ + exception?: string | null; + /** Output */ + output?: null; + summary: SummaryInsertMap; +} + +/** EqOperation */ +export interface EqOperation { + /** + * $Eq + * @maxItems 2 + * @minItems 2 + */ + $eq: any[]; +} + +/** FeedbackCreateReq */ +export interface FeedbackCreateReq { + /** Project Id */ + project_id: string; + /** Weave Ref */ + weave_ref: string; + /** Creator */ + creator?: string | null; + /** Feedback Type */ + feedback_type: string; + /** Payload */ + payload: object; + /** + * Wb User Id + * Do not set directly. Server will automatically populate this field. + */ + wb_user_id?: string | null; +} + +/** FeedbackCreateRes */ +export interface FeedbackCreateRes { + /** Id */ + id: string; + /** + * Created At + * @format date-time + */ + created_at: string; + /** Wb User Id */ + wb_user_id: string; + /** Payload */ + payload: object; +} + +/** FeedbackPurgeReq */ +export interface FeedbackPurgeReq { + /** Project Id */ + project_id: string; + query: Query; +} + +/** FeedbackPurgeRes */ +export type FeedbackPurgeRes = object; + +/** FeedbackQueryReq */ +export interface FeedbackQueryReq { + /** Project Id */ + project_id: string; + /** Fields */ + fields?: string[] | null; + query?: Query | null; + /** Sort By */ + sort_by?: SortBy[] | null; + /** Limit */ + limit?: number | null; + /** Offset */ + offset?: number | null; +} + +/** FeedbackQueryRes */ +export interface FeedbackQueryRes { + /** Result */ + result: object[]; +} + +/** FileContentReadReq */ +export interface FileContentReadReq { + /** Project Id */ + project_id: string; + /** Digest */ + digest: string; +} + +/** FileCreateRes */ +export interface FileCreateRes { + /** Digest */ + digest: string; +} + +/** GetFieldOperator */ +export interface GetFieldOperator { + /** $Getfield */ + $getField: string; +} + +/** GtOperation */ +export interface GtOperation { + /** + * $Gt + * @maxItems 2 + * @minItems 2 + */ + $gt: any[]; +} + +/** GteOperation */ +export interface GteOperation { + /** + * $Gte + * @maxItems 2 + * @minItems 2 + */ + $gte: any[]; +} + +/** HTTPValidationError */ +export interface HTTPValidationError { + /** Detail */ + detail?: ValidationError[]; +} + +/** InOperation */ +export interface InOperation { + /** + * $In + * @maxItems 2 + * @minItems 2 + */ + $in: any[]; +} + +/** LLMUsageSchema */ +export interface LLMUsageSchema { + /** Prompt Tokens */ + prompt_tokens?: number | null; + /** Input Tokens */ + input_tokens?: number | null; + /** Completion Tokens */ + completion_tokens?: number | null; + /** Output Tokens */ + output_tokens?: number | null; + /** Requests */ + requests?: number | null; + /** Total Tokens */ + total_tokens?: number | null; +} + +/** LiteralOperation */ +export interface LiteralOperation { + /** $Literal */ + $literal: + | string + | number + | boolean + | Record + | LiteralOperation[] + | null; +} + +/** NotOperation */ +export interface NotOperation { + /** + * $Not + * @maxItems 1 + * @minItems 1 + */ + $not: any[]; +} + +/** ObjCreateReq */ +export interface ObjCreateReq { + obj: ObjSchemaForInsert; +} + +/** ObjCreateRes */ +export interface ObjCreateRes { + /** Digest */ + digest: string; +} + +/** ObjQueryReq */ +export interface ObjQueryReq { + /** Project Id */ + project_id: string; + filter?: ObjectVersionFilter | null; +} + +/** ObjQueryRes */ +export interface ObjQueryRes { + /** Objs */ + objs: ObjSchema[]; +} + +/** ObjReadReq */ +export interface ObjReadReq { + /** Project Id */ + project_id: string; + /** Object Id */ + object_id: string; + /** Digest */ + digest: string; +} + +/** ObjReadRes */ +export interface ObjReadRes { + obj: ObjSchema; +} + +/** ObjSchema */ +export interface ObjSchema { + /** Project Id */ + project_id: string; + /** Object Id */ + object_id: string; + /** + * Created At + * @format date-time + */ + created_at: string; + /** Deleted At */ + deleted_at?: string | null; + /** Digest */ + digest: string; + /** Version Index */ + version_index: number; + /** Is Latest */ + is_latest: number; + /** Kind */ + kind: string; + /** Base Object Class */ + base_object_class: string | null; + /** Val */ + val: any; +} + +/** ObjSchemaForInsert */ +export interface ObjSchemaForInsert { + /** Project Id */ + project_id: string; + /** Object Id */ + object_id: string; + /** Val */ + val: any; +} + +/** ObjectVersionFilter */ +export interface ObjectVersionFilter { + /** Base Object Classes */ + base_object_classes?: string[] | null; + /** Object Ids */ + object_ids?: string[] | null; + /** Is Op */ + is_op?: boolean | null; + /** Latest Only */ + latest_only?: boolean | null; +} + +/** OrOperation */ +export interface OrOperation { + /** $Or */ + $or: ( + | LiteralOperation + | GetFieldOperator + | ConvertOperation + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation + )[]; +} + +/** Query */ +export interface Query { + /** $Expr */ + $expr: + | AndOperation + | OrOperation + | NotOperation + | EqOperation + | GtOperation + | GteOperation + | InOperation + | ContainsOperation; +} + +/** RefsReadBatchReq */ +export interface RefsReadBatchReq { + /** Refs */ + refs: string[]; +} + +/** RefsReadBatchRes */ +export interface RefsReadBatchRes { + /** Vals */ + vals: any[]; +} + +/** ServerInfoRes */ +export interface ServerInfoRes { + /** Min Required Weave Python Version */ + min_required_weave_python_version: string; +} + +/** SortBy */ +export interface SortBy { + /** Field */ + field: string; + /** Direction */ + direction: 'asc' | 'desc'; +} + +/** StartedCallSchemaForInsert */ +export interface StartedCallSchemaForInsert { + /** Project Id */ + project_id: string; + /** Id */ + id?: string | null; + /** Op Name */ + op_name: string; + /** Display Name */ + display_name?: string | null; + /** Trace Id */ + trace_id?: string | null; + /** Parent Id */ + parent_id?: string | null; + /** + * Started At + * @format date-time + */ + started_at: string; + /** Attributes */ + attributes: object; + /** Inputs */ + inputs: object; + /** + * Wb User Id + * Do not set directly. Server will automatically populate this field. + */ + wb_user_id?: string | null; + /** Wb Run Id */ + wb_run_id?: string | null; +} + +/** SummaryInsertMap */ +export interface SummaryInsertMap { + /** Usage */ + usage?: Record; + [key: string]: any; +} + +/** TableAppendSpec */ +export interface TableAppendSpec { + append: TableAppendSpecPayload; +} + +/** TableAppendSpecPayload */ +export interface TableAppendSpecPayload { + /** Row */ + row: object; +} + +/** TableCreateReq */ +export interface TableCreateReq { + table: TableSchemaForInsert; +} + +/** TableCreateRes */ +export interface TableCreateRes { + /** Digest */ + digest: string; +} + +/** TableInsertSpec */ +export interface TableInsertSpec { + insert: TableInsertSpecPayload; +} + +/** TableInsertSpecPayload */ +export interface TableInsertSpecPayload { + /** Index */ + index: number; + /** Row */ + row: object; +} + +/** TablePopSpec */ +export interface TablePopSpec { + pop: TablePopSpecPayload; +} + +/** TablePopSpecPayload */ +export interface TablePopSpecPayload { + /** Index */ + index: number; +} + +/** TableQueryReq */ +export interface TableQueryReq { + /** Project Id */ + project_id: string; + /** Digest */ + digest: string; + filter?: TableRowFilter | null; + /** Limit */ + limit?: number | null; + /** Offset */ + offset?: number | null; +} + +/** TableQueryRes */ +export interface TableQueryRes { + /** Rows */ + rows: TableRowSchema[]; +} + +/** TableRowFilter */ +export interface TableRowFilter { + /** Row Digests */ + row_digests?: string[] | null; +} + +/** TableRowSchema */ +export interface TableRowSchema { + /** Digest */ + digest: string; + /** Val */ + val: any; +} + +/** TableSchemaForInsert */ +export interface TableSchemaForInsert { + /** Project Id */ + project_id: string; + /** Rows */ + rows: object[]; +} + +/** TableUpdateReq */ +export interface TableUpdateReq { + /** Project Id */ + project_id: string; + /** Base Digest */ + base_digest: string; + /** Updates */ + updates: (TableAppendSpec | TablePopSpec | TableInsertSpec)[]; +} + +/** TableUpdateRes */ +export interface TableUpdateRes { + /** Digest */ + digest: string; +} + +/** ValidationError */ +export interface ValidationError { + /** Location */ + loc: (string | number)[]; + /** Message */ + msg: string; + /** Error Type */ + type: string; +} + +export type QueryParamsType = Record; +export type ResponseFormat = keyof Omit; + +export interface FullRequestParams extends Omit { + /** set parameter to `true` for call `securityWorker` for this request */ + secure?: boolean; + /** request path */ + path: string; + /** content type of request body */ + type?: ContentType; + /** query params */ + query?: QueryParamsType; + /** format of response (i.e. response.json() -> format: "json") */ + format?: ResponseFormat; + /** request body */ + body?: unknown; + /** base url */ + baseUrl?: string; + /** request cancellation token */ + cancelToken?: CancelToken; +} + +export type RequestParams = Omit< + FullRequestParams, + 'body' | 'method' | 'query' | 'path' +>; + +export interface ApiConfig { + baseUrl?: string; + baseApiParams?: Omit; + securityWorker?: ( + securityData: SecurityDataType | null + ) => Promise | RequestParams | void; + customFetch?: typeof fetch; +} + +export interface HttpResponse + extends Response { + data: D; + error: E; +} + +type CancelToken = Symbol | string | number; + +export enum ContentType { + Json = 'application/json', + FormData = 'multipart/form-data', + UrlEncoded = 'application/x-www-form-urlencoded', + Text = 'text/plain', +} + +export class HttpClient { + public baseUrl: string = ''; + private securityData: SecurityDataType | null = null; + private securityWorker?: ApiConfig['securityWorker']; + private abortControllers = new Map(); + private customFetch = (...fetchParams: Parameters) => + fetch(...fetchParams); + + private baseApiParams: RequestParams = { + credentials: 'same-origin', + headers: {}, + redirect: 'follow', + referrerPolicy: 'no-referrer', + }; + + constructor(apiConfig: ApiConfig = {}) { + Object.assign(this, apiConfig); + } + + public setSecurityData = (data: SecurityDataType | null) => { + this.securityData = data; + }; + + protected encodeQueryParam(key: string, value: any) { + const encodedKey = encodeURIComponent(key); + return `${encodedKey}=${encodeURIComponent(typeof value === 'number' ? value : `${value}`)}`; + } + + protected addQueryParam(query: QueryParamsType, key: string) { + return this.encodeQueryParam(key, query[key]); + } + + protected addArrayQueryParam(query: QueryParamsType, key: string) { + const value = query[key]; + return value.map((v: any) => this.encodeQueryParam(key, v)).join('&'); + } + + protected toQueryString(rawQuery?: QueryParamsType): string { + const query = rawQuery || {}; + const keys = Object.keys(query).filter( + key => 'undefined' !== typeof query[key] + ); + return keys + .map(key => + Array.isArray(query[key]) + ? this.addArrayQueryParam(query, key) + : this.addQueryParam(query, key) + ) + .join('&'); + } + + protected addQueryParams(rawQuery?: QueryParamsType): string { + const queryString = this.toQueryString(rawQuery); + return queryString ? `?${queryString}` : ''; + } + + private contentFormatters: Record any> = { + [ContentType.Json]: (input: any) => + input !== null && (typeof input === 'object' || typeof input === 'string') + ? JSON.stringify(input) + : input, + [ContentType.Text]: (input: any) => + input !== null && typeof input !== 'string' + ? JSON.stringify(input) + : input, + [ContentType.FormData]: (input: any) => + Object.keys(input || {}).reduce((formData, key) => { + const property = input[key]; + formData.append( + key, + property instanceof Blob + ? property + : typeof property === 'object' && property !== null + ? JSON.stringify(property) + : `${property}` + ); + return formData; + }, new FormData()), + [ContentType.UrlEncoded]: (input: any) => this.toQueryString(input), + }; + + protected mergeRequestParams( + params1: RequestParams, + params2?: RequestParams + ): RequestParams { + return { + ...this.baseApiParams, + ...params1, + ...(params2 || {}), + headers: { + ...(this.baseApiParams.headers || {}), + ...(params1.headers || {}), + ...((params2 && params2.headers) || {}), + }, + }; + } + + protected createAbortSignal = ( + cancelToken: CancelToken + ): AbortSignal | undefined => { + if (this.abortControllers.has(cancelToken)) { + const abortController = this.abortControllers.get(cancelToken); + if (abortController) { + return abortController.signal; + } + return void 0; + } + + const abortController = new AbortController(); + this.abortControllers.set(cancelToken, abortController); + return abortController.signal; + }; + + public abortRequest = (cancelToken: CancelToken) => { + const abortController = this.abortControllers.get(cancelToken); + + if (abortController) { + abortController.abort(); + this.abortControllers.delete(cancelToken); + } + }; + + public request = async ({ + body, + secure, + path, + type, + query, + format, + baseUrl, + cancelToken, + ...params + }: FullRequestParams): Promise> => { + const secureParams = + ((typeof secure === 'boolean' ? secure : this.baseApiParams.secure) && + this.securityWorker && + (await this.securityWorker(this.securityData))) || + {}; + const requestParams = this.mergeRequestParams(params, secureParams); + const queryString = query && this.toQueryString(query); + const payloadFormatter = this.contentFormatters[type || ContentType.Json]; + const responseFormat = format || requestParams.format; + + return this.customFetch( + `${baseUrl || this.baseUrl || ''}${path}${queryString ? `?${queryString}` : ''}`, + { + ...requestParams, + headers: { + ...(requestParams.headers || {}), + ...(type && type !== ContentType.FormData + ? {'Content-Type': type} + : {}), + }, + signal: + (cancelToken + ? this.createAbortSignal(cancelToken) + : requestParams.signal) || null, + body: + typeof body === 'undefined' || body === null + ? null + : payloadFormatter(body), + } + ).then(async response => { + const r = response.clone() as HttpResponse; + r.data = null as unknown as T; + r.error = null as unknown as E; + + const data = !responseFormat + ? r + : await response[responseFormat]() + .then(data => { + if (r.ok) { + r.data = data; + } else { + r.error = data; + } + return r; + }) + .catch(e => { + r.error = e; + return r; + }); + + if (cancelToken) { + this.abortControllers.delete(cancelToken); + } + + if (!response.ok) throw data; + return data; + }); + }; +} + +/** + * @title FastAPI + * @version 0.1.0 + */ +export class Api< + SecurityDataType extends unknown, +> extends HttpClient { + health = { + /** + * No description + * + * @tags Service + * @name ReadRootHealthGet + * @summary Read Root + * @request GET:/health + */ + readRootHealthGet: (params: RequestParams = {}) => + this.request({ + path: `/health`, + method: 'GET', + format: 'json', + ...params, + }), + }; + serverInfo = { + /** + * No description + * + * @tags Service + * @name ServerInfoServerInfoGet + * @summary Server Info + * @request GET:/server_info + */ + serverInfoServerInfoGet: (params: RequestParams = {}) => + this.request({ + path: `/server_info`, + method: 'GET', + format: 'json', + ...params, + }), + }; + call = { + /** + * No description + * + * @tags Calls + * @name CallStartCallStartPost + * @summary Call Start + * @request POST:/call/start + * @secure + */ + callStartCallStartPost: (data: CallStartReq, params: RequestParams = {}) => + this.request({ + path: `/call/start`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallEndCallEndPost + * @summary Call End + * @request POST:/call/end + * @secure + */ + callEndCallEndPost: (data: CallEndReq, params: RequestParams = {}) => + this.request({ + path: `/call/end`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallStartBatchCallUpsertBatchPost + * @summary Call Start Batch + * @request POST:/call/upsert_batch + * @secure + */ + callStartBatchCallUpsertBatchPost: ( + data: CallCreateBatchReq, + params: RequestParams = {} + ) => + this.request({ + path: `/call/upsert_batch`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallUpdateCallUpdatePost + * @summary Call Update + * @request POST:/call/update + * @secure + */ + callUpdateCallUpdatePost: ( + data: CallUpdateReq, + params: RequestParams = {} + ) => + this.request({ + path: `/call/update`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallReadCallReadPost + * @summary Call Read + * @request POST:/call/read + * @secure + */ + callReadCallReadPost: (data: CallReadReq, params: RequestParams = {}) => + this.request({ + path: `/call/read`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + calls = { + /** + * No description + * + * @tags Calls + * @name CallsDeleteCallsDeletePost + * @summary Calls Delete + * @request POST:/calls/delete + * @secure + */ + callsDeleteCallsDeletePost: ( + data: CallsDeleteReq, + params: RequestParams = {} + ) => + this.request({ + path: `/calls/delete`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallsQueryStatsCallsQueryStatsPost + * @summary Calls Query Stats + * @request POST:/calls/query_stats + * @secure + */ + callsQueryStatsCallsQueryStatsPost: ( + data: CallsQueryStatsReq, + params: RequestParams = {} + ) => + this.request({ + path: `/calls/query_stats`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Calls + * @name CallsQueryStreamCallsStreamQueryPost + * @summary Calls Query Stream + * @request POST:/calls/stream_query + * @secure + */ + callsQueryStreamCallsStreamQueryPost: ( + data: CallsQueryReq, + params: RequestParams = {} + ) => + this.request({ + path: `/calls/stream_query`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + obj = { + /** + * No description + * + * @tags Objects + * @name ObjCreateObjCreatePost + * @summary Obj Create + * @request POST:/obj/create + * @secure + */ + objCreateObjCreatePost: (data: ObjCreateReq, params: RequestParams = {}) => + this.request({ + path: `/obj/create`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Objects + * @name ObjReadObjReadPost + * @summary Obj Read + * @request POST:/obj/read + * @secure + */ + objReadObjReadPost: (data: ObjReadReq, params: RequestParams = {}) => + this.request({ + path: `/obj/read`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + objs = { + /** + * No description + * + * @tags Objects + * @name ObjsQueryObjsQueryPost + * @summary Objs Query + * @request POST:/objs/query + * @secure + */ + objsQueryObjsQueryPost: (data: ObjQueryReq, params: RequestParams = {}) => + this.request({ + path: `/objs/query`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + table = { + /** + * No description + * + * @tags Tables + * @name TableCreateTableCreatePost + * @summary Table Create + * @request POST:/table/create + * @secure + */ + tableCreateTableCreatePost: ( + data: TableCreateReq, + params: RequestParams = {} + ) => + this.request({ + path: `/table/create`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Tables + * @name TableUpdateTableUpdatePost + * @summary Table Update + * @request POST:/table/update + * @secure + */ + tableUpdateTableUpdatePost: ( + data: TableUpdateReq, + params: RequestParams = {} + ) => + this.request({ + path: `/table/update`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Tables + * @name TableQueryTableQueryPost + * @summary Table Query + * @request POST:/table/query + * @secure + */ + tableQueryTableQueryPost: ( + data: TableQueryReq, + params: RequestParams = {} + ) => + this.request({ + path: `/table/query`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + refs = { + /** + * No description + * + * @tags Refs + * @name RefsReadBatchRefsReadBatchPost + * @summary Refs Read Batch + * @request POST:/refs/read_batch + * @secure + */ + refsReadBatchRefsReadBatchPost: ( + data: RefsReadBatchReq, + params: RequestParams = {} + ) => + this.request({ + path: `/refs/read_batch`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + file = { + /** + * No description + * + * @tags Files + * @name FileCreateFileCreatePost + * @summary File Create + * @request POST:/file/create + * @secure + */ + fileCreateFileCreatePost: ( + data: BodyFileCreateFileCreatePost, + params: RequestParams = {} + ) => + this.request({ + path: `/file/create`, + method: 'POST', + body: data, + secure: true, + type: ContentType.FormData, + format: 'json', + ...params, + }), + + /** + * No description + * + * @tags Files + * @name FileContentFileContentPost + * @summary File Content + * @request POST:/file/content + * @secure + */ + fileContentFileContentPost: ( + data: FileContentReadReq, + params: RequestParams = {} + ) => + this.request({ + path: `/file/content`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; + feedback = { + /** + * @description Add feedback to a call or object. + * + * @tags Feedback + * @name FeedbackCreateFeedbackCreatePost + * @summary Feedback Create + * @request POST:/feedback/create + * @secure + */ + feedbackCreateFeedbackCreatePost: ( + data: FeedbackCreateReq, + params: RequestParams = {} + ) => + this.request({ + path: `/feedback/create`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * @description Query for feedback. + * + * @tags Feedback + * @name FeedbackQueryFeedbackQueryPost + * @summary Feedback Query + * @request POST:/feedback/query + * @secure + */ + feedbackQueryFeedbackQueryPost: ( + data: FeedbackQueryReq, + params: RequestParams = {} + ) => + this.request({ + path: `/feedback/query`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + + /** + * @description Permanently delete feedback. + * + * @tags Feedback + * @name FeedbackPurgeFeedbackPurgePost + * @summary Feedback Purge + * @request POST:/feedback/purge + * @secure + */ + feedbackPurgeFeedbackPurgePost: ( + data: FeedbackPurgeReq, + params: RequestParams = {} + ) => + this.request({ + path: `/feedback/purge`, + method: 'POST', + body: data, + secure: true, + type: ContentType.Json, + format: 'json', + ...params, + }), + }; +} diff --git a/sdks/node/src/inMemoryTraceServer.ts b/sdks/node/src/inMemoryTraceServer.ts new file mode 100644 index 00000000000..365577cb19b --- /dev/null +++ b/sdks/node/src/inMemoryTraceServer.ts @@ -0,0 +1,176 @@ +import {uuidv7} from 'uuidv7'; + +// This is mostly used for testing +// TODO: Maybe move the interfaces to something like trace_server_interface.py + +interface Call { + project_id: string; + id: string; + op_name: string; + trace_id: string; + parent_id: string | null; + started_at: string; + ended_at?: string; + inputs: any; + output?: any; + exception?: string; + [key: string]: any; // Index signature to allow dynamic property access +} + +interface QueryParams { + project_id: string; + limit?: number; + order_by?: keyof Call; + order_dir?: 'asc' | 'desc'; + filters?: Partial; +} + +interface Obj { + project_id: string; + object_id: string; + created_at: string; + deleted_at: string | null; + digest: string; + version_index: number; + is_latest: number; + kind: string; + base_object_class: string | null; + val: any; +} + +interface File { + project_id: string; + digest: string; + content: Blob; +} + +export class InMemoryTraceServer { + private _calls: Call[] = []; + private _objs: Obj[] = []; + private _files: File[] = []; + + call = { + callStartBatchCallUpsertBatchPost: async (batchReq: { + batch: Array<{mode: 'start' | 'end'; req: any}>; + }) => { + for (const item of batchReq.batch) { + if (item.mode === 'start') { + this._calls.push(item.req.start); + } else if (item.mode === 'end') { + const call = this._calls.find(c => c.id === item.req.end.id); + if (call) { + Object.assign(call, item.req.end); + } + } + } + }, + }; + + calls = { + callsStreamQueryPost: async (queryParams: QueryParams) => { + let filteredCalls = this._calls.filter( + call => call.project_id === queryParams.project_id + ); + + // Apply filters if any + if (queryParams.filters) { + filteredCalls = filteredCalls.filter(call => { + return Object.entries(queryParams.filters || {}).every( + ([key, value]) => call[key] === value + ); + }); + } + + // Apply ordering + if (queryParams.order_by) { + filteredCalls.sort((a, b) => { + if (a[queryParams.order_by!] < b[queryParams.order_by!]) + return queryParams.order_dir === 'asc' ? -1 : 1; + if (a[queryParams.order_by!] > b[queryParams.order_by!]) + return queryParams.order_dir === 'asc' ? 1 : -1; + return 0; + }); + } + + // Apply limit + if (queryParams.limit) { + filteredCalls = filteredCalls.slice(0, queryParams.limit); + } + + return { + calls: filteredCalls, + next_page_token: null, // Simplified: no pagination in this in-memory version + }; + }, + }; + + obj = { + objCreateObjCreatePost: async (req: { + obj: {project_id: string; object_id: string; val: any}; + }) => { + const now = new Date().toISOString(); + const digest = this.generateDigest(req.obj.val); + + const newObj: Obj = { + project_id: req.obj.project_id, + object_id: req.obj.object_id, + created_at: now, + deleted_at: null, + digest: digest, + version_index: 0, + is_latest: 1, + kind: req.obj.val._type || 'unknown', + base_object_class: req.obj.val._bases ? req.obj.val._bases[0] : null, + val: req.obj.val, + }; + + // Update version_index and is_latest for existing objects + const existingObjs = this._objs.filter( + obj => + obj.project_id === req.obj.project_id && + obj.object_id === req.obj.object_id + ); + if (existingObjs.length > 0) { + newObj.version_index = existingObjs.length; + existingObjs.forEach(obj => (obj.is_latest = 0)); + } + + this._objs.push(newObj); + + return { + data: { + digest: digest, + }, + }; + }, + }; + + file = { + fileCreateFileCreatePost: async (data: { + project_id: string; + file: Blob; + }) => { + const digest = this.generateDigest(await data.file.arrayBuffer()); + + const newFile: File = { + project_id: data.project_id, + digest: digest, + content: data.file, + }; + + this._files.push(newFile); + + return { + digest: digest, + }; + }, + }; + + private generateDigest(data: ArrayBuffer): string { + // In a real implementation, you'd want to use a proper hashing algorithm. + // For simplicity, we're using uuidv7 here. + return uuidv7(); + } + + // ... other existing methods ... +} diff --git a/sdks/node/src/index.ts b/sdks/node/src/index.ts new file mode 100644 index 00000000000..664b52f7638 --- /dev/null +++ b/sdks/node/src/index.ts @@ -0,0 +1,14 @@ +export { + init, + login, + requireCurrentCallStackEntry, + requireCurrentChildSummary, +} from './clientApi'; +export {Dataset} from './dataset'; +export {Evaluation} from './evaluation'; +export {CallSchema, CallsFilter} from './generated/traceServerApi'; +export {wrapOpenAI} from './integrations'; +export {weaveAudio, weaveImage} from './media'; +export {op} from './op'; +export * from './types'; +export {WeaveObject} from './weaveObject'; diff --git a/sdks/node/src/integrations/checkOpenai.ts b/sdks/node/src/integrations/checkOpenai.ts new file mode 100644 index 00000000000..a09033e9a61 --- /dev/null +++ b/sdks/node/src/integrations/checkOpenai.ts @@ -0,0 +1,94 @@ +// Manual test for checking openai client + +import {OpenAI} from 'openai'; +import {wrapOpenAI, init} from '..'; +import {z} from 'zod'; +import {zodResponseFormat} from 'openai/helpers/zod'; + +async function betaParseCall(client: OpenAI) { + return await client.beta.chat.completions.parse({ + model: 'gpt-4o-2024-08-06', + temperature: 0.7, + messages: [ + { + role: 'user', + content: 'What is the capital of the US?', + }, + ], + response_format: zodResponseFormat(z.object({name: z.string()}), 'result'), + }); +} + +async function standardCall(client: OpenAI) { + return await client.chat.completions.create({ + model: 'gpt-4o-2024-08-06', + temperature: 0.7, + messages: [ + { + role: 'user', + content: 'What is the capital of the US?', + }, + ], + response_format: zodResponseFormat(z.object({name: z.string()}), 'result'), + }); +} + +async function streamCall(client: OpenAI) { + return await client.chat.completions.create({ + model: 'gpt-4o-2024-08-06', + temperature: 0.7, + messages: [ + { + role: 'user', + content: 'What is the capital of the US?', + }, + ], + stream: true, + response_format: zodResponseFormat(z.object({name: z.string()}), 'result'), + }); +} + +async function callTests(openai: OpenAI) { + try { + console.log(' BETA PARSE CALL'); + const response = await betaParseCall(openai); + console.log(' SUCCESS', JSON.stringify(response).length); + } catch (e) { + console.log(' ERROR', e); + } + try { + console.log(' STANDARD CALL'); + const response = await standardCall(openai); + console.log(' SUCCESS', JSON.stringify(response).length); + } catch (e) { + console.log(' ERROR', e); + } + try { + console.log(' STREAM CALL'); + const response = await streamCall(openai); + let fullRes = ''; + for await (const chunk of response) { + fullRes += JSON.stringify(chunk); + } + // console.log("FULL RESPONSE", fullRes); + console.log(' SUCCESS', fullRes.length); + } catch (e) { + console.log(' ERROR', e); + } +} + +export async function oaiParse() { + const openai = new OpenAI({timeout: 120 * 1000}); + console.log('OPENAI CLIENT TESTS'); + await callTests(openai); + + const client = wrapOpenAI(openai); + console.log('WRAPPED CLIENT TESTS'); + await callTests(client); + + await init('weavejs-dev-asynctest'); + console.log('WEAVE LOGGING TESTS'); + await callTests(client); +} + +oaiParse().then(result => console.log(result)); diff --git a/sdks/node/src/integrations/index.ts b/sdks/node/src/integrations/index.ts new file mode 100644 index 00000000000..5f8031da85f --- /dev/null +++ b/sdks/node/src/integrations/index.ts @@ -0,0 +1 @@ +export {wrapOpenAI} from './openai'; diff --git a/sdks/node/src/integrations/openai.ts b/sdks/node/src/integrations/openai.ts new file mode 100644 index 00000000000..c95587bbc2d --- /dev/null +++ b/sdks/node/src/integrations/openai.ts @@ -0,0 +1,238 @@ +import {weaveImage} from '../media'; +import {op} from '../op'; +import {OpOptions} from '../opType'; + +// exported just for testing +export const openAIStreamReducer = { + initialState: { + id: '', + object: 'chat.completion', + created: 0, + model: '', + choices: [ + { + index: 0, + message: { + role: 'assistant', + content: '', + function_call: null, + }, + finish_reason: null, + }, + ], + usage: null, + }, + reduceFn: (state: any, chunk: any) => { + if (chunk.id) state.id = chunk.id; + if (chunk.object) state.object = chunk.object; + if (chunk.created) state.created = chunk.created; + if (chunk.model) state.model = chunk.model; + + if (chunk.choices && chunk.choices.length > 0) { + const choice = chunk.choices[0]; + if (choice.delta) { + if (choice.delta.role) { + state.choices[0].message.role = choice.delta.role; + } + if (choice.delta.content) { + state.choices[0].message.content += choice.delta.content; + } + if (choice.delta.function_call) { + if (!state.choices[0].message.function_call) { + state.choices[0].message.function_call = { + name: '', + arguments: '', + }; + } + if (choice.delta.function_call.name) { + state.choices[0].message.function_call.name = + choice.delta.function_call.name; + } + if (choice.delta.function_call.arguments) { + state.choices[0].message.function_call.arguments += + choice.delta.function_call.arguments; + } + } + } + if (choice.finish_reason) { + state.choices[0].finish_reason = choice.finish_reason; + } + } + + if (chunk.usage) { + state.usage = chunk.usage; + } + + return state; + }, +}; + +export function makeOpenAIChatCompletionsOp(originalCreate: any, name: string) { + function wrapped(...args: Parameters) { + const [originalParams]: any[] = args; + if (originalParams.stream) { + return originalCreate({ + ...originalParams, + stream_options: {...originalParams.stream_options, include_usage: true}, + }); + } + + return originalCreate(originalParams); + } + + const options: OpOptions = { + name: name, + parameterNames: 'useParam0Object', + summarize: result => ({ + usage: { + [result.model]: result.usage, + }, + }), + streamReducer: openAIStreamReducer, + }; + + return op(wrapped, options); +} + +export function makeOpenAIImagesGenerateOp(originalGenerate: any) { + async function wrapped(...args: Parameters) { + const result = await originalGenerate(...args); + + // Process the result to convert image data to WeaveImage + if (result.data) { + result.data = await Promise.all( + result.data.map(async (item: any) => { + if (item.b64_json) { + const buffer = Buffer.from(item.b64_json, 'base64'); + return weaveImage({data: buffer, imageType: 'png'}); + } + return item; + }) + ); + } + + return result; + } + + const options: OpOptions = { + name: 'openai.images.generate', + summarize: result => ({ + usage: { + 'dall-e': { + images_generated: result.data.length, + }, + }, + }), + }; + + return op(wrapped, options); +} + +interface OpenAIAPI { + chat: { + completions: { + create: any; + }; + }; + images: { + generate: any; + }; + beta: { + chat: { + completions: { + parse: any; + }; + }; + }; +} + +/** + * Wraps the OpenAI API to enable function tracing for OpenAI calls. + * + * @example + * const openai = wrapOpenAI(new OpenAI()); + * const result = await openai.chat.completions.create({ + * model: 'gpt-3.5-turbo', + * messages: [{ role: 'user', content: 'Hello, world!' }] + * }); + */ +export function wrapOpenAI(openai: T): T { + const chatCompletionsProxy = new Proxy(openai.chat.completions, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'create') { + return makeOpenAIChatCompletionsOp( + targetVal.bind(target), + 'openai.chat.completions.create' + ); + } + return targetVal; + }, + }); + const chatProxy = new Proxy(openai.chat, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'completions') { + return chatCompletionsProxy; + } + return targetVal; + }, + }); + + const imagesProxy = new Proxy(openai.images, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'generate') { + return makeOpenAIImagesGenerateOp(targetVal.bind(target)); + } + return targetVal; + }, + }); + + const betaChatCompletionsProxy = new Proxy(openai.beta.chat.completions, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'parse') { + return makeOpenAIChatCompletionsOp( + targetVal.bind(target), + 'openai.beta.chat.completions.parse' + ); + } + return targetVal; + }, + }); + const betaChatProxy = new Proxy(openai.beta.chat, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'completions') { + return betaChatCompletionsProxy; + } + return targetVal; + }, + }); + const betaProxy = new Proxy(openai.beta, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'chat') { + return betaChatProxy; + } + return targetVal; + }, + }); + + return new Proxy(openai, { + get(target, p, receiver) { + const targetVal = Reflect.get(target, p, receiver); + if (p === 'chat') { + return chatProxy; + } + if (p === 'images') { + return imagesProxy; + } + if (p === 'beta') { + return betaProxy; + } + return targetVal; + }, + }); +} diff --git a/sdks/node/src/media.ts b/sdks/node/src/media.ts new file mode 100644 index 00000000000..ca44ae118df --- /dev/null +++ b/sdks/node/src/media.ts @@ -0,0 +1,79 @@ +export const DEFAULT_IMAGE_TYPE = 'png'; +export const DEFAULT_AUDIO_TYPE = 'wav'; + +export type ImageType = 'png'; +export type AudioType = 'wav'; + +// Define WeaveImage type +type WeaveImageInput = { + data: Buffer; + imageType?: ImageType; +}; + +interface WeaveImage extends WeaveImageInput { + _weaveType: 'Image'; +} + +/** + * Create a new WeaveImage object + * + * @param options The options for this media type + * @param options.data The raw image data as a Buffer + * @param options.imageType (Optional) The type of image file, currently only 'png' is supported + * + * @example + * const imageBuffer = fs.readFileSync('path/to/image.png'); + * const weaveImage = weaveImage({ data: imageBuffer }); + */ +export function weaveImage({data, imageType}: WeaveImageInput): WeaveImage { + const resolvedImageType = imageType ?? DEFAULT_IMAGE_TYPE; + return { + _weaveType: 'Image', + data, + imageType: resolvedImageType, + }; +} + +// Function to check if a value is a WeaveImage +export function isWeaveImage(value: any): value is WeaveImage { + return value && value._weaveType === 'Image'; +} + +type WeaveAudioInput = { + data: Buffer; + audioType?: AudioType; +}; + +export interface WeaveAudio extends WeaveAudioInput { + _weaveType: 'Audio'; +} + +/** + * Create a new WeaveAudio object + * + * @param options The options for this media type + * @param options.data The raw audio data as a Buffer + * @param options.audioType (Optional) The type of audio file, currently only 'wav' is supported + * + * @example + * const audioBuffer = fs.readFileSync('path/to/audio.wav'); + * const weaveAudio = weaveAudio({ data: audioBuffer }); + */ +export function weaveAudio({data, audioType}: WeaveAudioInput): WeaveAudio { + const resolvedAudioType = audioType ?? DEFAULT_AUDIO_TYPE; + return { + _weaveType: 'Audio', + data, + audioType: resolvedAudioType, + }; +} + +export function isWeaveAudio(value: any): value is WeaveAudio { + return value && value._weaveType === 'Audio'; +} + +type WeaveMedia = WeaveImage | WeaveAudio; + +export function isMedia(value: any): value is WeaveMedia { + return isWeaveImage(value) || isWeaveAudio(value); +} diff --git a/sdks/node/src/op.ts b/sdks/node/src/op.ts new file mode 100644 index 00000000000..a21a90c30fc --- /dev/null +++ b/sdks/node/src/op.ts @@ -0,0 +1,202 @@ +import {getGlobalClient} from './clientApi'; +import {TRACE_CALL_EMOJI} from './constants'; +import {Op, OpOptions} from './opType'; +import {getGlobalDomain} from './urls'; +import {warnOnce} from './utils/warnOnce'; + +/** + * A wrapper to weave op-ify a function or method that works on sync and async functions. + * + * Wrapped functions: + * 1. Take the same inputs and return the same outputs as the original function. + * 2. Will automatically track calls in the Weave UI. + * + * If you don't call `weave.init` then the function will behave as if it were not wrapped. + * + * @param fn The function to wrap + * @param options Optional configs like call and param naming + * @returns The wrapped function + * + * @example + * // Basic usage + * import OpenAI from 'openai'; + * import * as weave from 'weave'; + * + * const client = await weave.init({ project: 'my-project' }); + * const oaiClient = weave.wrapOpenAI(new OpenAI()); + * + * const extract = weave.op(async function extract() { + * return await oaiClient.chat.completions.create({ + * model: 'gpt-4-turbo', + * messages: [{ role: 'user', content: 'Create a user as JSON' }], + * }); + * }); + * + * await extract(); + * + * // You can also wrap methods by passing the object as the first argument. + * // This will bind the method to the object and wrap it with op. + * class MyModel { + * private oaiClient: OpenAI; + * + * constructor() { + * this.oaiClient = weave.wrapOpenAI(new OpenAI()); + * this.invoke = weave.op(this, this.invoke); + * } + * + * async invoke() { + * return await this.oaiClient.chat.completions.create({ + * model: 'gpt-4-turbo', + * messages: [{ role: 'user', content: 'Create a user as JSON' }], + * }); + * } + * } + * + * const model = new MyModel(); + * const res = await model.invoke(); + */ +export function op any>( + fn: T, + options?: OpOptions +): Op<(...args: Parameters) => Promise>>>; +export function op any>( + thisArg: any, + fn: T, + options?: OpOptions +): Op<(...args: Parameters) => Promise>>>; +export function op any>( + fnOrThis: T | any, + fnOrOptions?: T | OpOptions, + maybeOptions?: OpOptions +): Op<(...args: Parameters) => Promise>>> { + let fn: T; + let options: OpOptions | undefined; + let bindThis: any; + + if (typeof fnOrThis === 'function') { + fn = fnOrThis; + options = fnOrOptions as OpOptions; + } else { + bindThis = fnOrThis; + fn = fnOrOptions as T; + options = maybeOptions; + + const boundFn = fn.bind(bindThis) as T; + return op(boundFn, {originalFunction: fn, bindThis, ...options}); + } + + const opWrapper = async function ( + ...params: Parameters + ): Promise> { + const client = getGlobalClient(); + + if (!client) { + warnOnce( + 'weave-not-initialized', + 'WARNING: Weave is not initialized, so calls wont be tracked. Call `weave.init` to initialize before calling ops. If this is intentional, you can safely ignore this warning.' + ); + return await fn(...params); + } + + const {currentCall, parentCall, newStack} = client.pushNewCall(); + const startTime = new Date(); + if (client.settings.shouldPrintCallLink && parentCall == null) { + const domain = getGlobalDomain(); + console.log( + `${TRACE_CALL_EMOJI} https://${domain}/${client.projectId}/r/call/${currentCall.callId}` + ); + } + const displayName = options?.callDisplayName + ? options.callDisplayName(...params) + : undefined; + const thisArg = options?.bindThis; + const startCallPromise = client.createCall( + opWrapper, + params, + options?.parameterNames, + thisArg, + currentCall, + parentCall, + startTime, + displayName + ); + + try { + let result = await client.runWithCallStack(newStack, async () => { + return await fn(...params); + }); + + if (options?.streamReducer && Symbol.asyncIterator in result) { + const {initialState, reduceFn} = options.streamReducer; + let state = initialState; + + const wrappedIterator = { + [Symbol.asyncIterator]: async function* () { + try { + for await (const chunk of result as AsyncIterable) { + state = reduceFn(state, chunk); + yield chunk; + } + } finally { + if (client) { + // Check if globalClient still exists + const endTime = new Date(); + await client.finishCall( + state, + currentCall, + parentCall, + options?.summarize, + endTime, + startCallPromise + ); + } + } + }, + }; + + return wrappedIterator as unknown as ReturnType; + } else { + const endTime = new Date(); + await client.finishCall( + result, + currentCall, + parentCall, + options?.summarize, + endTime, + startCallPromise + ); + return result; + } + } catch (error) { + // console.error(`Op ${actualOpName} failed:`, error); + const endTime = new Date(); + await client.finishCallWithException( + error, + currentCall, + parentCall, + endTime, + startCallPromise + ); + await client.waitForBatchProcessing(); + throw error; + } + }; + + const fnName = options?.originalFunction?.name || fn.name || 'anonymous'; + const className = + options?.bindThis && + Object.getPrototypeOf(options.bindThis).constructor.name; + const actualOpName = + options?.name || (className ? `${className}.${fnName}` : fnName); + + opWrapper.__name = actualOpName; + opWrapper.__isOp = true as true; + opWrapper.__wrappedFunction = options?.originalFunction ?? fn; + opWrapper.__boundThis = options?.bindThis; + + return opWrapper as Op; +} + +export function isOp(fn: any): fn is Op { + return fn?.__isOp === true; +} diff --git a/sdks/node/src/opType.ts b/sdks/node/src/opType.ts new file mode 100644 index 00000000000..7312aec42e0 --- /dev/null +++ b/sdks/node/src/opType.ts @@ -0,0 +1,68 @@ +import {getGlobalDomain} from './urls'; +import {WeaveObject} from './weaveObject'; + +export type ParameterNamesOption = 'useParam0Object' | string[] | undefined; + +export type Op any> = { + __isOp: true; + __wrappedFunction: T; + __boundThis?: WeaveObject; + __name: string; + __savedRef?: OpRef | Promise; +} & T; + +interface StreamReducer { + initialState: R; + reduceFn: (state: R, chunk: T) => R; +} + +export interface OpOptions any> { + name?: string; + streamReducer?: StreamReducer; + originalFunction?: T; + callDisplayName?: (...args: Parameters) => string; + summarize?: (result: Awaited>) => Record; + bindThis?: WeaveObject; + parameterNames?: ParameterNamesOption; +} + +export function isOp(value: any): value is Op { + return value && value.__isOp === true; +} + +export function getOpWrappedFunction any>( + opValue: Op +): T { + return opValue.__wrappedFunction; +} + +export function getOpName(opValue: Op): string { + return opValue.__name; +} + +export function getOpParameterNames(opValue: Op): ParameterNamesOption { + return opValue.__parameterNames; +} + +export class OpRef { + constructor( + public projectId: string, + public objectId: string, + public digest: string + ) {} + + // TODO: Add extra + + public uri() { + return `weave:///${this.projectId}/op/${this.objectId}:${this.digest}`; + } + + public ui_url() { + const domain = getGlobalDomain(); + return `https://${domain}/${this.projectId}/weave/ops/${this.objectId}/versions/${this.digest}`; + } + + public async get() { + throw new Error('Not implemented'); + } +} diff --git a/sdks/node/src/refs.ts b/sdks/node/src/refs.ts new file mode 100644 index 00000000000..80940feea8b --- /dev/null +++ b/sdks/node/src/refs.ts @@ -0,0 +1,2 @@ +// TODO: Implement parseUri +// TODO: Implement CallRef diff --git a/sdks/node/src/settings.ts b/sdks/node/src/settings.ts new file mode 100644 index 00000000000..f2774832fc7 --- /dev/null +++ b/sdks/node/src/settings.ts @@ -0,0 +1,14 @@ +export class Settings { + constructor(private printCallLink: boolean = true) {} + + get shouldPrintCallLink(): boolean { + if (process.env.WEAVE_PRINT_CALL_LINK === 'true') { + return true; + } + if (process.env.WEAVE_PRINT_CALL_LINK === 'false') { + return false; + } + + return this.printCallLink; + } +} diff --git a/sdks/node/src/summary.ts b/sdks/node/src/summary.ts new file mode 100644 index 00000000000..b57f499cf12 --- /dev/null +++ b/sdks/node/src/summary.ts @@ -0,0 +1,69 @@ +import {CallStackEntry} from './weaveClient'; + +/** + * Represents a summary object with string keys and any type of values. + */ +type Summary = Record; +/** + * Merges two summary objects, combining their values. + * + * @param left - The first summary object to merge. + * @param right - The second summary object to merge. + * @returns A new summary object containing the merged values. + * + * This function performs a deep merge of two summary objects: + * - For numeric values, it adds them together. + * - For nested objects, it recursively merges them. + * - For other types, the left value "wins". + */ +function mergeSummaries(left: Summary, right: Summary): Summary { + const result: Summary = {...right}; + for (const [key, leftValue] of Object.entries(left)) { + if (key in result) { + if (typeof leftValue === 'number' && typeof result[key] === 'number') { + result[key] = leftValue + result[key]; + } else if ( + typeof leftValue === 'object' && + typeof result[key] === 'object' + ) { + result[key] = mergeSummaries(leftValue, result[key]); + } else { + result[key] = leftValue; + } + } else { + result[key] = leftValue; + } + } + return result; +} + +export function processSummary( + result: any, + summarize: ((result: any) => Record) | undefined, + currentCall: CallStackEntry, + parentCall: CallStackEntry | undefined +) { + let ownSummary = summarize ? summarize(result) : {}; + + if (ownSummary.usage) { + for (const model in ownSummary.usage) { + if (typeof ownSummary.usage[model] === 'object') { + ownSummary.usage[model] = { + requests: 1, + ...ownSummary.usage[model], + }; + } + } + } + + const mergedSummary = mergeSummaries(ownSummary, currentCall.childSummary); + + if (parentCall) { + parentCall.childSummary = mergeSummaries( + mergedSummary, + parentCall.childSummary + ); + } + + return mergedSummary; +} diff --git a/sdks/node/src/table.ts b/sdks/node/src/table.ts new file mode 100644 index 00000000000..0bdaff9516f --- /dev/null +++ b/sdks/node/src/table.ts @@ -0,0 +1,46 @@ +export class TableRef { + constructor( + public projectId: string, + public digest: string + ) {} + + public uri() { + return `weave:///${this.projectId}/table/${this.digest}`; + } +} + +export class TableRowRef { + constructor( + public projectId: string, + public digest: string, + public rowDigest: string + ) {} + + public uri() { + return `weave:///${this.projectId}/table/${this.digest}/id/${this.rowDigest}`; + } +} + +type TableRow = Record & { + __savedRef?: TableRowRef | Promise; +}; + +export class Table { + __savedRef?: TableRef | Promise; + + constructor(public rows: R[]) {} + + get length(): number { + return this.rows.length; + } + + async *[Symbol.asyncIterator](): AsyncIterator { + for (let i = 0; i < this.length; i++) { + yield this.row(i); + } + } + + row(index: number): R { + return this.rows[index]; + } +} diff --git a/sdks/node/src/tsconfig.src.json b/sdks/node/src/tsconfig.src.json new file mode 100644 index 00000000000..82e46d097a6 --- /dev/null +++ b/sdks/node/src/tsconfig.src.json @@ -0,0 +1,8 @@ +{ + "extends": "../tsconfig.json", + "exclude": [], + "compilerOptions": { + "rootDir": ".", + "outDir": "../dist/src" + } +} diff --git a/sdks/node/src/types.ts b/sdks/node/src/types.ts new file mode 100644 index 00000000000..6a98ef72467 --- /dev/null +++ b/sdks/node/src/types.ts @@ -0,0 +1,4 @@ +import {Op} from './opType'; +import {WeaveClient} from './weaveClient'; + +export {Op, WeaveClient}; diff --git a/sdks/node/src/urls.ts b/sdks/node/src/urls.ts new file mode 100644 index 00000000000..c96d0916016 --- /dev/null +++ b/sdks/node/src/urls.ts @@ -0,0 +1,23 @@ +export const defaultHost = 'api.wandb.ai'; +export const defaultDomain = 'wandb.ai'; + +export function getUrls(host?: string) { + const resolvedHost = host ?? defaultHost; + const isDefault = resolvedHost === defaultHost; + + return { + baseUrl: isDefault ? `https://api.wandb.ai` : `https://${resolvedHost}`, + traceBaseUrl: isDefault + ? `https://trace.wandb.ai` + : `https://${resolvedHost}`, + domain: isDefault ? defaultHost : resolvedHost, + }; +} + +let globalDomain: string | undefined = undefined; +export function getGlobalDomain() { + return globalDomain; +} +export function setGlobalDomain(domain: string) { + globalDomain = domain; +} diff --git a/sdks/node/src/utils/concurrencyLimit.ts b/sdks/node/src/utils/concurrencyLimit.ts new file mode 100644 index 00000000000..e675a30f6f9 --- /dev/null +++ b/sdks/node/src/utils/concurrencyLimit.ts @@ -0,0 +1,49 @@ +export class ConcurrencyLimiter { + private activeCount = 0; + private queue: (() => void)[] = []; + + constructor(private limit: number) {} + + get active(): number { + return this.activeCount; + } + + get pending(): number { + return this.queue.length; + } + + private tryExecuteNext() { + if (this.queue.length > 0 && this.activeCount < this.limit) { + const nextTask = this.queue.shift(); + this.activeCount++; + nextTask!(); + } + } + + limitFunction( + asyncFn: (...args: T) => Promise + ): (...args: T) => Promise { + return async (...args: T): Promise => { + return new Promise((resolve, reject) => { + const task = async () => { + try { + const result = await asyncFn(...args); + resolve(result); + } catch (e) { + reject(e); + } finally { + this.activeCount--; + this.tryExecuteNext(); + } + }; + + if (this.activeCount < this.limit) { + this.activeCount++; + task(); + } else { + this.queue.push(task); + } + }); + }; + } +} diff --git a/sdks/node/src/utils/netrc.ts b/sdks/node/src/utils/netrc.ts new file mode 100644 index 00000000000..f878f4b6997 --- /dev/null +++ b/sdks/node/src/utils/netrc.ts @@ -0,0 +1,86 @@ +import {readFileSync, writeFileSync} from 'fs'; +import {homedir} from 'os'; +import {join} from 'path'; + +interface NetrcEntry { + machine: string; + login: string; + password: string; + account?: string; +} + +export class Netrc { + private path: string; + public entries: Map; + + constructor(path: string = join(homedir(), '.netrc')) { + this.path = path; + this.entries = new Map(); + this.load(); + } + + private load(): void { + try { + const content = readFileSync(this.path, 'utf8'); + const lines = content.split('\n'); + let currentMachine: string | null = null; + let currentEntry: Partial = {}; + + for (const line of lines) { + const [key, value] = line.trim().split(/\s+/); + switch (key) { + case 'machine': + if (currentMachine && Object.keys(currentEntry).length) { + this.entries.set(currentMachine, currentEntry as NetrcEntry); + } + currentMachine = value; + currentEntry = {machine: value}; + break; + case 'login': + case 'password': + case 'account': + if (currentMachine) { + currentEntry[key] = value; + } + break; + } + } + + if (currentMachine && Object.keys(currentEntry).length > 1) { + this.entries.set(currentMachine, currentEntry as NetrcEntry); + } + } catch (error) { + // File doesn't exist or can't be read, starting with empty entries + } + } + + save(): void { + const content = Array.from(this.entries.entries()) + .map(([machine, entry]) => { + let str = `machine ${machine}\n`; + if (entry.login) str += ` login ${entry.login}\n`; + if (entry.password) str += ` password ${entry.password}\n`; + if (entry.account) str += ` account ${entry.account}\n`; + return str; + }) + .join('\n'); + + writeFileSync(this.path, content, {mode: 0o600}); + } + + getEntry(machine: string): NetrcEntry | undefined { + return this.entries.get(machine); + } + + setEntry(machine: string, entry: Partial): void { + const existingEntry = this.entries.get(machine) || {machine}; + const updatedEntry = {...existingEntry, ...entry} as NetrcEntry; + this.entries.delete(machine); + this.entries.set(machine, updatedEntry); + } + + getLastEntry(): NetrcEntry | undefined { + const entries = Array.from(this.entries.values()); + return entries[entries.length - 1]; + } +} diff --git a/sdks/node/src/utils/retry.ts b/sdks/node/src/utils/retry.ts new file mode 100644 index 00000000000..29ecf3c206e --- /dev/null +++ b/sdks/node/src/utils/retry.ts @@ -0,0 +1,59 @@ +type RetryOptions = { + maxRetries?: number; + baseDelay?: number; + maxDelay?: number; + maxRetryTime?: number; + retryOnStatus?: (status: number) => boolean; +}; + +export function createFetchWithRetry(options: RetryOptions = {}) { + const { + maxRetries = 5, + baseDelay = 100, + maxDelay = 10000, + maxRetryTime = 10000, + retryOnStatus = (status: number) => status !== 429 && status !== 500, + } = options; + + return async function fetchWithRetry( + ...fetchParams: Parameters + ): Promise { + let attempt = 0; + + while (attempt <= maxRetries) { + const startTime = Date.now(); + try { + const response = await fetch(...fetchParams); + + if ( + response.ok || + !retryOnStatus(response.status) || + attempt === maxRetries || + Date.now() - startTime > maxRetryTime + ) { + // Always return the response, even if it's not ok + return response; + } + + // Exponential backoff delay + const delay = Math.min(baseDelay * 2 ** attempt, maxDelay); + console.log( + `Return code: ${response.status}. Retrying fetch after ${delay}ms` + ); + await new Promise(resolve => setTimeout(resolve, delay)); + attempt++; + } catch (error) { + if (attempt === maxRetries || Date.now() - startTime > maxRetryTime) { + // Rethrow the original error + throw error; + } + // Exponential backoff delay + const delay = Math.min(baseDelay * 2 ** attempt, maxDelay); + console.log(`Exception ${error} Retrying fetch after ${delay}ms`); + await new Promise(resolve => setTimeout(resolve, delay)); + attempt++; + } + } + throw new Error("Failed to fetch. Shouldn't get here"); + }; +} diff --git a/sdks/node/src/utils/userAgent.ts b/sdks/node/src/utils/userAgent.ts new file mode 100644 index 00000000000..b293174c98a --- /dev/null +++ b/sdks/node/src/utils/userAgent.ts @@ -0,0 +1,24 @@ +import {existsSync, readFileSync} from 'fs'; +import {join} from 'path'; + +export let packageVersion: string; + +const twoLevelsUp = join(__dirname, '..', '..', 'package.json'); +const oneLevelUp = join(__dirname, '..', 'package.json'); + +if (existsSync(twoLevelsUp)) { + // This is the case in the built npm package + const packageJson = JSON.parse(readFileSync(twoLevelsUp, 'utf8')); + packageVersion = packageJson.version; +} else if (existsSync(oneLevelUp)) { + // This is the case in dev + const packageJson = JSON.parse(readFileSync(oneLevelUp, 'utf8')); + packageVersion = packageJson.version; +} else { + console.warn('Failed to find package.json'); + packageVersion = 'unknown'; +} + +export function userAgent() { + return `Weave JS Client ${packageVersion}`; +} diff --git a/sdks/node/src/utils/warnOnce.ts b/sdks/node/src/utils/warnOnce.ts new file mode 100644 index 00000000000..be872fb4ee9 --- /dev/null +++ b/sdks/node/src/utils/warnOnce.ts @@ -0,0 +1,8 @@ +const warnedKeys = new Set(); + +export function warnOnce(key: string, message: string): void { + if (!warnedKeys.has(key)) { + console.warn(message); + warnedKeys.add(key); + } +} diff --git a/sdks/node/src/wandb/settings.ts b/sdks/node/src/wandb/settings.ts new file mode 100644 index 00000000000..7b6b8ad7176 --- /dev/null +++ b/sdks/node/src/wandb/settings.ts @@ -0,0 +1,46 @@ +import {defaultDomain, defaultHost, getUrls} from '../urls'; +import {Netrc} from '../utils/netrc'; + +export function getApiKey(host: string): string { + let apiKey = process.env.WANDB_API_KEY; + if (!apiKey) { + const netrc = new Netrc(); + apiKey = netrc.entries.get(host)?.password; + } + if (!apiKey) { + // const domain = getGlobalDomain(); + const domain = defaultHost; + const apiKeyNotFoundMessage = ` + wandb API key not found. + + Go to https://${domain}/authorize to get your API key. + + You can either: + + 1. Set the WANDB_API_KEY environment variable. + 2. Log in using weave.login() + 3. Add your API key to your .netrc file, in a stanza like this: + machine ${domain} + login user + password + `; + throw new Error(apiKeyNotFoundMessage); + } + return apiKey; +} + +export function getWandbConfigs() { + let host; + try { + host = new Netrc().getLastEntry()!.machine; + } catch (error) { + throw new Error( + `Could not find entry in netrc file. + Visit https://${defaultDomain}/authorize to get an API key and run + \`weave.login({apiKey: $YOUR_API_KEY})\` or \`wandb login\` if you have that installed.` + ); + } + const apiKey = getApiKey(host); + const {baseUrl, traceBaseUrl, domain} = getUrls(host); + return {apiKey, baseUrl, traceBaseUrl, domain}; +} diff --git a/sdks/node/src/wandb/wandbServerApi.ts b/sdks/node/src/wandb/wandbServerApi.ts new file mode 100644 index 00000000000..376bc15c2a9 --- /dev/null +++ b/sdks/node/src/wandb/wandbServerApi.ts @@ -0,0 +1,73 @@ +import {userAgent} from '../utils/userAgent'; + +const VIEWER_DEFAULT_ENTITY_QUERY = ` +query DefaultEntity { + viewer { + username + defaultEntity { + name + } + } +} +`; + +export class WandbServerApi { + constructor( + public baseUrl: string, + private apiKey: string + ) {} + + private async graphqlRequest( + query: string, + variables: Record = {} + ) { + try { + const response = await fetch(`${this.baseUrl}/graphql`, { + method: 'POST', + headers: { + 'Content-Type': 'application/json', + 'User-Agent': userAgent(), + Authorization: `Basic ${Buffer.from(`api:${this.apiKey}`).toString('base64')}`, + }, + body: JSON.stringify({ + query, + variables, + }), + }); + + if (!response.ok) { + throw new Error( + `HTTP error! status: ${response.status}, statusText: ${response.statusText}` + ); + } + + const result = await response.json(); + + if (result.errors) { + throw new Error(`GraphQL Error: ${JSON.stringify(result.errors)}`); + } + + return result.data; + } catch (error) { + console.error('Error in graphqlRequest:', error); + throw error; + } + } + + async defaultEntityName() { + try { + const result = await this.graphqlRequest(VIEWER_DEFAULT_ENTITY_QUERY); + if ( + !result.viewer || + !result.viewer.defaultEntity || + !result.viewer.defaultEntity.name + ) { + throw new Error('Default entity name not found in the response'); + } + return result.viewer.defaultEntity.name; + } catch (error) { + console.error('Error in defaultEntityName:', error); + throw error; + } + } +} diff --git a/sdks/node/src/weaveClient.ts b/sdks/node/src/weaveClient.ts new file mode 100644 index 00000000000..1a10cb2bec8 --- /dev/null +++ b/sdks/node/src/weaveClient.ts @@ -0,0 +1,781 @@ +import {AsyncLocalStorage} from 'async_hooks'; +import {uuidv7} from 'uuidv7'; + +import {Dataset} from './dataset'; +import {computeDigest} from './digest'; +import { + CallSchema, + CallsFilter, + EndedCallSchemaForInsert, + StartedCallSchemaForInsert, + Api as TraceServerApi, +} from './generated/traceServerApi'; +import { + AudioType, + DEFAULT_AUDIO_TYPE, + DEFAULT_IMAGE_TYPE, + ImageType, + isWeaveAudio, + isWeaveImage, +} from './media'; +import { + Op, + OpRef, + ParameterNamesOption, + getOpName, + getOpWrappedFunction, + isOp, +} from './opType'; +import {Settings} from './settings'; +import {Table, TableRef, TableRowRef} from './table'; +import {packageVersion} from './utils/userAgent'; +import {WandbServerApi} from './wandb/wandbServerApi'; +import {ObjectRef, WeaveObject, getClassChain} from './weaveObject'; + +export type CallStackEntry = { + callId: string; + traceId: string; + childSummary: Record; +}; + +function generateTraceId(): string { + return uuidv7(); +} + +function generateCallId(): string { + return uuidv7(); +} + +class CallStack { + constructor(private stack: CallStackEntry[] = []) {} + + peek(): CallStackEntry | null { + return this.stack[this.stack.length - 1] ?? null; + } + + pushNewCall(): { + currentCall: CallStackEntry; + parentCall?: CallStackEntry; + newStack: CallStack; + } { + const parentCall = this.stack[this.stack.length - 1]; + + const callId = generateCallId(); + const traceId = parentCall?.traceId ?? generateTraceId(); + const newCall: CallStackEntry = {callId, traceId, childSummary: {}}; + const newStack = new CallStack([...this.stack, newCall]); + return {currentCall: newCall, parentCall, newStack}; + } +} + +type CallStartParams = StartedCallSchemaForInsert; +type CallEndParams = EndedCallSchemaForInsert; + +export class WeaveClient { + private stackContext = new AsyncLocalStorage(); + private callQueue: Array<{mode: 'start' | 'end'; data: any}> = []; + private batchProcessTimeout: NodeJS.Timeout | null = null; + private isBatchProcessing: boolean = false; + private batchProcessingPromises: Set> = new Set(); + private readonly BATCH_INTERVAL: number = 200; + + constructor( + public traceServerApi: TraceServerApi, + private wandbServerApi: WandbServerApi, + public projectId: string, + public settings: Settings = new Settings() + ) {} + + private scheduleBatchProcessing() { + if (this.batchProcessTimeout || this.isBatchProcessing) return; + const promise = new Promise(resolve => { + this.batchProcessTimeout = setTimeout( + () => this.processBatch().then(resolve), + this.BATCH_INTERVAL + ); + }); + this.batchProcessingPromises.add(promise); + promise.finally(() => { + this.batchProcessingPromises.delete(promise); + }); + } + + public async waitForBatchProcessing() { + while (this.batchProcessingPromises.size > 0) { + await Promise.all(this.batchProcessingPromises); + } + } + + private async processBatch() { + if (this.isBatchProcessing || this.callQueue.length === 0) { + this.batchProcessTimeout = null; + return; + } + + this.isBatchProcessing = true; + + // We count characters item by item, and try to limit batches to about + // this size. + const maxBatchSizeChars = 5 * 1024 * 1024; + + let batchToProcess = []; + let currentBatchSize = 0; + + while (this.callQueue.length > 0 && currentBatchSize < maxBatchSizeChars) { + const item = this.callQueue[0]; + const itemSize = JSON.stringify(item).length; + + if (currentBatchSize + itemSize <= maxBatchSizeChars) { + batchToProcess.push(this.callQueue.shift()!); + currentBatchSize += itemSize; + } else { + break; + } + } + + const batchReq = { + batch: batchToProcess.map(item => ({ + mode: item.mode, + req: item.data, + })), + }; + + try { + await this.traceServerApi.call.callStartBatchCallUpsertBatchPost( + batchReq + ); + } catch (error) { + console.error('Error processing batch:', error); + // Put failed items back at the front of the queue + this.callQueue.unshift(...batchToProcess); + } finally { + this.isBatchProcessing = false; + this.batchProcessTimeout = null; + if (this.callQueue.length > 0) { + this.scheduleBatchProcessing(); + } + } + } + + public publish(obj: any, objId?: string): Promise { + if (obj.__savedRef) { + return obj.__savedRef; + } else if (obj instanceof WeaveObject) { + return this.saveObject(obj, objId); + } else if (isOp(obj)) { + return this.saveOp(obj); + } else { + return this.saveArbitrary(obj, objId); + } + } + + public async getCalls( + filter: CallsFilter = {}, + includeCosts: boolean = false, + limit: number = 1000 + ) { + const calls: CallSchema[] = []; + const iterator = this.getCallsIterator(filter, includeCosts, limit); + for await (const call of iterator) { + calls.push(call); + } + return calls; + } + public async *getCallsIterator( + filter: CallsFilter = {}, + includeCosts: boolean = false, + limit: number = 1000 + ): AsyncIterableIterator { + const resp = + await this.traceServerApi.calls.callsQueryStreamCallsStreamQueryPost({ + project_id: this.projectId, + filter, + include_costs: includeCosts, + limit, + }); + + const reader = resp.body!.getReader(); + const decoder = new TextDecoder(); + let buffer = ''; + + while (true) { + const {value, done} = await reader.read(); + if (done) break; + + buffer += decoder.decode(value, {stream: true}); + const lines = buffer.split('\n'); + buffer = lines.pop() || ''; + + for (const line of lines) { + if (line.trim()) { + try { + yield JSON.parse(line); + } catch (error) { + console.error('Error parsing JSON:', error, 'Line:', line); + } + } + } + } + + if (buffer.trim()) { + try { + yield JSON.parse(buffer); + } catch (error) { + console.error('Error parsing JSON:', error, 'Remaining data:', buffer); + } + } + } + + public async get(ref: ObjectRef): Promise { + let val: any; + try { + const res = await this.traceServerApi.obj.objReadObjReadPost({ + project_id: ref.projectId, + object_id: ref.objectId, + digest: ref.digest, + }); + val = res.data.obj.val; + } catch (error) { + if (error instanceof Error && error.message.includes('404')) { + throw new Error(`Unable to find object for ref uri: ${ref.uri()}`); + } + throw error; + } + + const t = val?._type; + if (t == 'Dataset') { + const {_baseParameters, rows} = val; + let obj = new Dataset({ + id: _baseParameters.id, + description: _baseParameters.description, + rows, + }); + obj.__savedRef = ref; + // TODO: The table row refs are not correct + return obj; + } else if (t == 'Table') { + const {rows} = val; + let obj = new Table(rows); + obj.__savedRef = ref; + return obj; + } else if (t == 'CustomWeaveType') { + const typeName = val.weave_type.type; + if (typeName == 'PIL.Image.Image') { + let loadedFiles: {[key: string]: Buffer} = {}; + for (const [name, digest] of Object.entries(val.files)) { + try { + const fileContent = + await this.traceServerApi.file.fileContentFileContentPost({ + project_id: this.projectId, + digest: digest as string, + }); + loadedFiles[name] = fileContent.data?.content; + } catch (error) { + console.error('Error loading file:', error); + } + } + // TODO: Implement getting img back as buffer + return 'Coming soon!'; + } else if (typeName == 'wave.Wave_read') { + let loadedFiles: {[key: string]: Buffer} = {}; + for (const [name, digest] of Object.entries(val.files)) { + try { + const fileContent = + await this.traceServerApi.file.fileContentFileContentPost({ + project_id: this.projectId, + digest: digest as string, + }); + loadedFiles[name] = fileContent.data?.content; + } catch (error) { + console.error('Error loading file:', error); + } + } + // TODO: Implement getting audio back as buffer + return 'Coming soon!'; + } + } + return val; + } + + // save* methods attached __savedRef promises to their values. These must + // be synchronous, so we can guarantee that calling savedWeaveValues + // immediately makes __savedRef promises available. + + private saveArbitrary(obj: any, objId?: string): Promise { + if (obj.__savedRef) { + return obj.__savedRef; + } + + const ref = (async () => { + if (!objId) { + objId = uuidv7(); + } + + const serializedObj = await this.serializedVal(obj); + const response = await this.traceServerApi.obj.objCreateObjCreatePost({ + obj: { + project_id: this.projectId, + object_id: objId, + val: serializedObj, + }, + }); + return new ObjectRef(this.projectId, objId, response.data.digest); + })(); + + obj.__savedRef = ref; + return ref; + } + + private saveObject(obj: WeaveObject, objId?: string): Promise { + if (obj.__savedRef) { + return Promise.resolve(obj.__savedRef); + } + for (const [key, value] of Object.entries(obj)) { + this.saveWeaveValues(value); + } + + obj.__savedRef = (async () => { + const classChain = getClassChain(obj); + const className = classChain[0]; + if (!objId) { + objId = obj.id; + } + + let saveAttrs = obj.saveAttrs(); + saveAttrs = await this.serializedVal(saveAttrs); + // Frontend does this overly specific check for datasets, so we need to add both _type and _class_name + // for now. + // data._type === 'Dataset' && + // data._class_name === 'Dataset' && + // _.isEqual(data._bases, ['Object', 'BaseModel']) + const saveValue = { + _type: className, + _class_name: className, + _bases: classChain.slice(1), + ...saveAttrs, + }; + const response = await this.traceServerApi.obj.objCreateObjCreatePost({ + obj: { + project_id: this.projectId, + object_id: objId, + val: saveValue, + }, + }); + const ref = new ObjectRef(this.projectId, objId, response.data.digest); + // console.log(`Saved object: ${ref.ui_url()}`); + return ref; + })(); + + return obj.__savedRef; + } + + private saveTable(table: Table): void { + if (table.__savedRef) { + return; + } + + table.__savedRef = (async () => { + const rowsWithoutRefs = table.rows.map(row => { + return {...row, __savedRef: undefined}; + }); + const rows = await this.serializedVal(rowsWithoutRefs); + const response = + await this.traceServerApi.table.tableCreateTableCreatePost({ + table: { + project_id: this.projectId, + rows, + }, + }); + const ref = new TableRef(this.projectId, response.data.digest); + return ref; + })(); + const tableQueryPromise = (async () => { + const tableRef = await table.__savedRef; + const tableQueryRes = + await this.traceServerApi.table.tableQueryTableQueryPost({ + project_id: this.projectId, + digest: tableRef?.digest!, + }); + return { + tableDigest: tableRef?.digest!, + tableQueryResult: tableQueryRes.data, + }; + })(); + for (let i = 0; i < table.rows.length; i++) { + const row = table.rows[i]; + row.__savedRef = (async () => { + const {tableDigest, tableQueryResult} = await tableQueryPromise; + return new TableRowRef( + this.projectId, + tableDigest, + tableQueryResult.rows[i].digest + ); + })(); + } + } + + /** + * Recursively save a Weave value, attaching __savedRef Promises to + * nested value that gets its own ref. + * + * This function must be synchronous, so that code that does ref-tracking + * (currently only Dataset/DatasetRow in the js client) has refs + * available immediately. + */ + private saveWeaveValues(val: any): void { + if (Array.isArray(val)) { + val.map(item => this.saveWeaveValues(item)); + } else if (val != null && val.__savedRef) { + return; + } else if (val instanceof WeaveObject) { + this.saveObject(val); + } else if (val instanceof Table) { + this.saveTable(val); + } else if (isWeaveImage(val)) { + } else if (isWeaveAudio(val)) { + } else if (isOp(val)) { + this.saveOp(val); + } else if (typeof val === 'object' && val !== null) { + for (const [key, value] of Object.entries(val)) { + this.saveWeaveValues(value); + } + } + } + + // serialize* methods are async, and return the serialized value + // of a Weave value. + + private async serializedFileBlob( + typeName: string, + fileName: string, + fileContent: Blob + ): Promise { + const buffer = await fileContent.arrayBuffer().then(Buffer.from); + const digest = computeDigest(buffer); + + const placeholder = { + _type: 'CustomWeaveType', + weave_type: {type: typeName}, + files: { + [fileName]: digest, + }, + load_op: 'NO_LOAD_OP', + }; + + try { + await this.traceServerApi.file.fileCreateFileCreatePost({ + project_id: this.projectId, + // @ts-ignore + file: fileContent, + }); + } catch (error) { + console.error('Error saving file:', error); + } + + return placeholder; + } + + private async serializedImage( + imageData: Buffer, + imageType: ImageType = DEFAULT_IMAGE_TYPE + ): Promise { + const blob = new Blob([imageData], {type: `image/${imageType}`}); + return this.serializedFileBlob('PIL.Image.Image', 'image.png', blob); + } + + private async serializedAudio( + audioData: Buffer, + audioType: AudioType = DEFAULT_AUDIO_TYPE + ): Promise { + const blob = new Blob([audioData], {type: `audio/${audioType}`}); + return this.serializedFileBlob('wave.Wave_read', 'audio.wav', blob); + } + + /** + * Get the serialized value of a Weave value, by recursively + * resolving any __savedRef promises to their uri(). + * + * This function is asynchronous, and must be called after saveWeaveValues + * has been called on the value. + */ + private async serializedVal(val: any): Promise { + if (Array.isArray(val)) { + return Promise.all(val.map(async item => this.serializedVal(item))); + } else if (val != null && val.__savedRef) { + return (await val.__savedRef).uri(); + } else if (isWeaveImage(val)) { + return await this.serializedImage(val.data, val.imageType); + } else if (isWeaveAudio(val)) { + return await this.serializedAudio(val.data, val.audioType); + } else if (val instanceof WeaveObject) { + throw new Error('Programming error: WeaveObject not saved'); + } else if (val instanceof Table) { + throw new Error('Programming error: Table not saved'); + } else if (isOp(val)) { + throw new Error('Programming error: Op not saved'); + } else if (typeof val === 'object' && val !== null) { + const result: {[key: string]: any} = {}; + for (const [key, value] of Object.entries(val)) { + result[key] = await this.serializedVal(value); + } + return result; + } else { + return val; + } + } + + private saveCallStart(callStart: CallStartParams) { + this.callQueue.push({mode: 'start', data: {start: callStart}}); + this.scheduleBatchProcessing(); + } + + private saveCallEnd(callEnd: CallEndParams) { + this.callQueue.push({mode: 'end', data: {end: callEnd}}); + this.scheduleBatchProcessing(); + } + + public getCallStack(): CallStack { + return this.stackContext.getStore() || new CallStack(); + } + + public pushNewCall() { + return this.getCallStack().pushNewCall(); + } + + public runWithCallStack(callStack: CallStack, fn: () => T): T { + return this.stackContext.run(callStack, fn); + } + + private async paramsToCallInputs( + params: any[], + thisArg: any, + parameterNames: ParameterNamesOption + ) { + let inputs: Record = {}; + + // Add 'self' first if thisArg is a WeaveObject + if (thisArg instanceof WeaveObject) { + inputs['self'] = thisArg; + } + if (parameterNames === 'useParam0Object') { + inputs = {...inputs, ...params[0]}; + } else if (parameterNames) { + params.forEach((arg, index) => { + inputs[parameterNames[index]] = arg; + }); + } else { + params.forEach((arg, index) => { + inputs[`arg${index}`] = arg; + }); + } + this.saveWeaveValues(inputs); + return await this.serializedVal(inputs); + } + + public async saveOp( + op: Op<(...args: any[]) => any>, + objId?: string + ): Promise { + if (op.__savedRef) { + return op.__savedRef; + } + op.__savedRef = (async () => { + const resolvedObjId = objId || getOpName(op); + const opFn = getOpWrappedFunction(op); + const formattedOpFn = await maybeFormatCode(opFn.toString()); + const saveValue = await this.serializedFileBlob( + 'Op', + 'obj.py', + new Blob([formattedOpFn]) + ); + const response = await this.traceServerApi.obj.objCreateObjCreatePost({ + obj: { + project_id: this.projectId, + object_id: resolvedObjId, + val: saveValue, + }, + }); + const ref = new OpRef( + this.projectId, + resolvedObjId, + response.data.digest + ); + + // console.log('Saved op: ', ref.ui_url()); + return ref; + })(); + return op.__savedRef; + } + + public async createCall( + opRef: OpRef | Op, + params: any[], + parameterNames: ParameterNamesOption, + thisArg: any, + currentCall: CallStackEntry, + parentCall: CallStackEntry | undefined, + startTime: Date, + displayName?: string + ) { + const inputs = await this.paramsToCallInputs( + params, + thisArg, + parameterNames + ); + if (isOp(opRef)) { + this.saveOp(opRef); + opRef = await opRef.__savedRef; + } + const startReq = { + project_id: this.projectId, + id: currentCall.callId, + op_name: opRef.uri(), + trace_id: currentCall.traceId, + parent_id: parentCall?.callId, + started_at: startTime.toISOString(), + display_name: displayName, + attributes: { + weave: { + client_version: packageVersion, + source: 'js-sdk', + }, + }, + inputs, + }; + return this.saveCallStart(startReq); + } + + public async finishCall( + result: any, + currentCall: CallStackEntry, + parentCall: CallStackEntry | undefined, + summarize: undefined | ((result: any) => Record), + endTime: Date, + startCallPromise: Promise + ) { + // Important to do this first before any awaiting, so we're guaranteed that children + // summaries are processed before parents! + const mergedSummary = processSummary( + result, + summarize, + currentCall, + parentCall + ); + // ensure end is logged after start is logged + await startCallPromise; + this.saveWeaveValues(result); + result = await this.serializedVal(result); + await this.saveCallEnd({ + project_id: this.projectId, + id: currentCall.callId, + ended_at: endTime.toISOString(), + output: result, + summary: mergedSummary, + }); + } + + public async finishCallWithException( + error: any, + currentCall: CallStackEntry, + parentCall: CallStackEntry | undefined, + endTime: Date, + startCallPromise: Promise + ) { + const mergedSummary = processSummary( + null, + undefined, + currentCall, + parentCall + ); + // ensure end is logged after start is logged + await startCallPromise; + await this.saveCallEnd({ + project_id: this.projectId, + id: currentCall.callId, + ended_at: endTime.toISOString(), + output: null, + summary: mergedSummary, + exception: error instanceof Error ? error.message : String(error), + }); + } +} + +/** + * Represents a summary object with string keys and any type of values. + */ +type Summary = Record; + +/** + * Merges two summary objects, combining their values. + * + * @param left - The first summary object to merge. + * @param right - The second summary object to merge. + * @returns A new summary object containing the merged values. + * + * This function performs a deep merge of two summary objects: + * - For numeric values, it adds them together. + * - For nested objects, it recursively merges them. + * - For other types, the left value "wins". + */ +function mergeSummaries(left: Summary, right: Summary): Summary { + const result: Summary = {...right}; + for (const [key, leftValue] of Object.entries(left)) { + if (key in result) { + if (typeof leftValue === 'number' && typeof result[key] === 'number') { + result[key] = leftValue + result[key]; + } else if ( + typeof leftValue === 'object' && + typeof result[key] === 'object' + ) { + result[key] = mergeSummaries(leftValue, result[key]); + } else { + result[key] = leftValue; + } + } else { + result[key] = leftValue; + } + } + return result; +} + +function processSummary( + result: any, + summarize: ((result: any) => Record) | undefined, + currentCall: CallStackEntry, + parentCall: CallStackEntry | undefined +) { + let ownSummary = summarize && result != null ? summarize(result) : {}; + + if (ownSummary.usage) { + for (const model in ownSummary.usage) { + if (typeof ownSummary.usage[model] === 'object') { + ownSummary.usage[model] = { + requests: 1, + ...ownSummary.usage[model], + }; + } + } + } + + const mergedSummary = mergeSummaries(ownSummary, currentCall.childSummary); + + if (parentCall) { + parentCall.childSummary = mergeSummaries( + mergedSummary, + parentCall.childSummary + ); + } + + return mergedSummary; +} + +async function maybeFormatCode(code: string) { + return code; + // try { + // const prettier = await import('prettier'); + // return prettier.format(code, { parser: 'babel' }); + // } catch (error) { + // // prettier not available or formatting failed, just use the original string + // return code; + // } +} diff --git a/sdks/node/src/weaveObject.ts b/sdks/node/src/weaveObject.ts new file mode 100644 index 00000000000..41a7eb046ef --- /dev/null +++ b/sdks/node/src/weaveObject.ts @@ -0,0 +1,101 @@ +import {requireGlobalClient} from './clientApi'; +import {isOp} from './op'; +import {getGlobalDomain} from './urls'; + +export interface Callable {} + +export interface WeaveObjectParameters { + id?: string; + description?: string; +} + +export class ObjectRef { + constructor( + public projectId: string, + public objectId: string, + public digest: string + ) {} + + // TODO: Add extra + + public uri() { + return `weave:///${this.projectId}/object/${this.objectId}:${this.digest}`; + } + + public ui_url() { + const domain = getGlobalDomain(); + return `https://${domain}/${this.projectId}/weave/objects/${this.objectId}/versions/${this.digest}`; + } + + public async get() { + const client = requireGlobalClient(); + return await client.get(this); + } +} + +export class WeaveObject { + __savedRef?: ObjectRef | Promise; + + constructor(protected _baseParameters: WeaveObjectParameters) {} + + className() { + return Object.getPrototypeOf(this).constructor.name; + } + + saveAttrs() { + const attrs: {[key: string]: any} = {}; + + const nonUnderscoreKeys = Object.keys(this).filter( + key => !key.startsWith('_') + ); + + // Include values first (non-functions) + for (const key of Object.keys(this)) { + // @ts-ignore + const value: any = this[key]; + if (typeof value !== 'function') { + attrs[key] = value; + } + } + + // Then ops + for (const key of nonUnderscoreKeys) { + // @ts-ignore + const value: any = this[key]; + if (isOp(value)) { + attrs[key] = value; + } + } + + return attrs; + } + + get id() { + return this._baseParameters.id ?? this.constructor.name; + } + + get description() { + return this._baseParameters.description; + } +} + +export function getClassChain(instance: WeaveObject): string[] { + const bases: string[] = []; + let currentProto = Object.getPrototypeOf(instance); + + while (currentProto && currentProto.constructor.name !== 'Object') { + const className = + currentProto.constructor.name === 'WeaveObject' + ? 'Object' + : currentProto.constructor.name; + bases.push(className); + currentProto = Object.getPrototypeOf(currentProto); + } + // Frontend does this overly specific check for datasets, so push BaseModel to ensure we pass for now. + // data._type === 'Dataset' && + // data._class_name === 'Dataset' && + // _.isEqual(data._bases, ['Object', 'BaseModel']) + bases.push('BaseModel'); + + return bases; +} diff --git a/sdks/node/tsconfig.json b/sdks/node/tsconfig.json new file mode 100644 index 00000000000..2b676b0408c --- /dev/null +++ b/sdks/node/tsconfig.json @@ -0,0 +1,24 @@ +{ + "compilerOptions": { + "composite": true, + "target": "es2018", + "module": "commonjs", + "moduleResolution": "node", + "sourceMap": true, + "strict": true, + "esModuleInterop": true, + "outDir": "./dist", + "paths": { + "weave": ["./src/index.ts"] + } + }, + "exclude": ["src", "examples", "dist", "node_modules"], + "references": [ + { + "path": "./src/tsconfig.src.json" + }, + { + "path": "./examples/tsconfig.examples.json" + } + ] +} diff --git a/sdks/node/weave.openapi.json b/sdks/node/weave.openapi.json new file mode 100644 index 00000000000..b0d86f93ea0 --- /dev/null +++ b/sdks/node/weave.openapi.json @@ -0,0 +1,3369 @@ +{ + "openapi": "3.1.0", + "info": { + "title": "FastAPI", + "version": "0.1.0" + }, + "paths": { + "/health": { + "get": { + "tags": ["Service"], + "summary": "Read Root", + "operationId": "read_root_health_get", + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": {} + } + } + } + } + } + }, + "/server_info": { + "get": { + "tags": ["Service"], + "summary": "Server Info", + "operationId": "server_info_server_info_get", + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ServerInfoRes" + } + } + } + } + } + } + }, + "/call/start": { + "post": { + "tags": ["Calls"], + "summary": "Call Start", + "operationId": "call_start_call_start_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallStartReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallStartRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/call/end": { + "post": { + "tags": ["Calls"], + "summary": "Call End", + "operationId": "call_end_call_end_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallEndReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallEndRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/call/upsert_batch": { + "post": { + "tags": ["Calls"], + "summary": "Call Start Batch", + "operationId": "call_start_batch_call_upsert_batch_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallCreateBatchReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallCreateBatchRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/calls/delete": { + "post": { + "tags": ["Calls"], + "summary": "Calls Delete", + "operationId": "calls_delete_calls_delete_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallsDeleteReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallsDeleteRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/call/update": { + "post": { + "tags": ["Calls"], + "summary": "Call Update", + "operationId": "call_update_call_update_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallUpdateReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallUpdateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/call/read": { + "post": { + "tags": ["Calls"], + "summary": "Call Read", + "operationId": "call_read_call_read_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallReadReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallReadRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/calls/query_stats": { + "post": { + "tags": ["Calls"], + "summary": "Calls Query Stats", + "operationId": "calls_query_stats_calls_query_stats_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallsQueryStatsReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallsQueryStatsRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/calls/stream_query": { + "post": { + "tags": ["Calls"], + "summary": "Calls Query Stream", + "operationId": "calls_query_stream_calls_stream_query_post", + "security": [ + { + "HTTPBasic": [] + } + ], + "parameters": [ + { + "name": "accept", + "in": "header", + "required": false, + "schema": { + "type": "string", + "default": "application/jsonl", + "title": "Accept" + } + } + ], + "requestBody": { + "required": true, + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/CallsQueryReq" + } + } + } + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": {} + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + } + } + }, + "/obj/create": { + "post": { + "tags": ["Objects"], + "summary": "Obj Create", + "operationId": "obj_create_obj_create_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjCreateReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjCreateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/obj/read": { + "post": { + "tags": ["Objects"], + "summary": "Obj Read", + "operationId": "obj_read_obj_read_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjReadReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjReadRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/objs/query": { + "post": { + "tags": ["Objects"], + "summary": "Objs Query", + "operationId": "objs_query_objs_query_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjQueryReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/ObjQueryRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/table/create": { + "post": { + "tags": ["Tables"], + "summary": "Table Create", + "operationId": "table_create_table_create_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableCreateReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableCreateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/table/update": { + "post": { + "tags": ["Tables"], + "summary": "Table Update", + "operationId": "table_update_table_update_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableUpdateReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableUpdateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/table/query": { + "post": { + "tags": ["Tables"], + "summary": "Table Query", + "operationId": "table_query_table_query_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableQueryReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/TableQueryRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/refs/read_batch": { + "post": { + "tags": ["Refs"], + "summary": "Refs Read Batch", + "operationId": "refs_read_batch_refs_read_batch_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/RefsReadBatchReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/RefsReadBatchRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/file/create": { + "post": { + "tags": ["Files"], + "summary": "File Create", + "operationId": "file_create_file_create_post", + "requestBody": { + "content": { + "multipart/form-data": { + "schema": { + "$ref": "#/components/schemas/Body_file_create_file_create_post" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FileCreateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/file/content": { + "post": { + "tags": ["Files"], + "summary": "File Content", + "operationId": "file_content_file_content_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FileContentReadReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": {} + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/feedback/create": { + "post": { + "tags": ["Feedback"], + "summary": "Feedback Create", + "description": "Add feedback to a call or object.", + "operationId": "feedback_create_feedback_create_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackCreateReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackCreateRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/feedback/query": { + "post": { + "tags": ["Feedback"], + "summary": "Feedback Query", + "description": "Query for feedback.", + "operationId": "feedback_query_feedback_query_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackQueryReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackQueryRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + }, + "/feedback/purge": { + "post": { + "tags": ["Feedback"], + "summary": "Feedback Purge", + "description": "Permanently delete feedback.", + "operationId": "feedback_purge_feedback_purge_post", + "requestBody": { + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackPurgeReq" + } + } + }, + "required": true + }, + "responses": { + "200": { + "description": "Successful Response", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/FeedbackPurgeRes" + } + } + } + }, + "422": { + "description": "Validation Error", + "content": { + "application/json": { + "schema": { + "$ref": "#/components/schemas/HTTPValidationError" + } + } + } + } + }, + "security": [ + { + "HTTPBasic": [] + } + ] + } + } + }, + "components": { + "schemas": { + "AndOperation": { + "properties": { + "$and": { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + "type": "array", + "title": "$And" + } + }, + "type": "object", + "required": ["$and"], + "title": "AndOperation" + }, + "Body_file_create_file_create_post": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "file": { + "type": "string", + "format": "binary", + "title": "File" + } + }, + "type": "object", + "required": ["project_id", "file"], + "title": "Body_file_create_file_create_post" + }, + "CallBatchEndMode": { + "properties": { + "mode": { + "type": "string", + "title": "Mode", + "default": "end" + }, + "req": { + "$ref": "#/components/schemas/CallEndReq" + } + }, + "type": "object", + "required": ["req"], + "title": "CallBatchEndMode" + }, + "CallBatchStartMode": { + "properties": { + "mode": { + "type": "string", + "title": "Mode", + "default": "start" + }, + "req": { + "$ref": "#/components/schemas/CallStartReq" + } + }, + "type": "object", + "required": ["req"], + "title": "CallBatchStartMode" + }, + "CallCreateBatchReq": { + "properties": { + "batch": { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/CallBatchStartMode" + }, + { + "$ref": "#/components/schemas/CallBatchEndMode" + } + ] + }, + "type": "array", + "title": "Batch" + } + }, + "type": "object", + "required": ["batch"], + "title": "CallCreateBatchReq" + }, + "CallCreateBatchRes": { + "properties": { + "res": { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/CallStartRes" + }, + { + "$ref": "#/components/schemas/CallEndRes" + } + ] + }, + "type": "array", + "title": "Res" + } + }, + "type": "object", + "required": ["res"], + "title": "CallCreateBatchRes" + }, + "CallEndReq": { + "properties": { + "end": { + "$ref": "#/components/schemas/EndedCallSchemaForInsert" + } + }, + "type": "object", + "required": ["end"], + "title": "CallEndReq" + }, + "CallEndRes": { + "properties": {}, + "type": "object", + "title": "CallEndRes" + }, + "CallReadReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "id": { + "type": "string", + "title": "Id" + }, + "include_costs": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Include Costs", + "default": false + } + }, + "type": "object", + "required": ["project_id", "id"], + "title": "CallReadReq" + }, + "CallReadRes": { + "properties": { + "call": { + "anyOf": [ + { + "$ref": "#/components/schemas/CallSchema" + }, + { + "type": "null" + } + ] + } + }, + "type": "object", + "required": ["call"], + "title": "CallReadRes" + }, + "CallSchema": { + "properties": { + "id": { + "type": "string", + "title": "Id" + }, + "project_id": { + "type": "string", + "title": "Project Id" + }, + "op_name": { + "type": "string", + "title": "Op Name" + }, + "display_name": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Display Name" + }, + "trace_id": { + "type": "string", + "title": "Trace Id" + }, + "parent_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Parent Id" + }, + "started_at": { + "type": "string", + "format": "date-time", + "title": "Started At" + }, + "attributes": { + "type": "object", + "title": "Attributes" + }, + "inputs": { + "type": "object", + "title": "Inputs" + }, + "ended_at": { + "anyOf": [ + { + "type": "string", + "format": "date-time" + }, + { + "type": "null" + } + ], + "title": "Ended At" + }, + "exception": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Exception" + }, + "output": { + "anyOf": [ + {}, + { + "type": "null" + } + ], + "title": "Output" + }, + "summary": { + "type": "object" + }, + "wb_user_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb User Id" + }, + "wb_run_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb Run Id" + }, + "deleted_at": { + "anyOf": [ + { + "type": "string", + "format": "date-time" + }, + { + "type": "null" + } + ], + "title": "Deleted At" + } + }, + "type": "object", + "required": ["id", "project_id", "op_name", "trace_id", "started_at", "attributes", "inputs"], + "title": "CallSchema" + }, + "CallStartReq": { + "properties": { + "start": { + "$ref": "#/components/schemas/StartedCallSchemaForInsert" + } + }, + "type": "object", + "required": ["start"], + "title": "CallStartReq" + }, + "CallStartRes": { + "properties": { + "id": { + "type": "string", + "title": "Id" + }, + "trace_id": { + "type": "string", + "title": "Trace Id" + } + }, + "type": "object", + "required": ["id", "trace_id"], + "title": "CallStartRes" + }, + "CallUpdateReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "call_id": { + "type": "string", + "title": "Call Id" + }, + "display_name": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Display Name" + }, + "wb_user_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb User Id", + "description": "Do not set directly. Server will automatically populate this field." + } + }, + "type": "object", + "required": ["project_id", "call_id"], + "title": "CallUpdateReq" + }, + "CallUpdateRes": { + "properties": {}, + "type": "object", + "title": "CallUpdateRes" + }, + "CallsDeleteReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "call_ids": { + "items": { + "type": "string" + }, + "type": "array", + "title": "Call Ids" + }, + "wb_user_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb User Id", + "description": "Do not set directly. Server will automatically populate this field." + } + }, + "type": "object", + "required": ["project_id", "call_ids"], + "title": "CallsDeleteReq" + }, + "CallsDeleteRes": { + "properties": {}, + "type": "object", + "title": "CallsDeleteRes" + }, + "CallsFilter": { + "properties": { + "op_names": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Op Names" + }, + "input_refs": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Input Refs" + }, + "output_refs": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Output Refs" + }, + "parent_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Parent Ids" + }, + "trace_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Trace Ids" + }, + "call_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Call Ids" + }, + "trace_roots_only": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Trace Roots Only" + }, + "wb_user_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Wb User Ids" + }, + "wb_run_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Wb Run Ids" + } + }, + "type": "object", + "title": "CallsFilter" + }, + "CallsQueryReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "filter": { + "anyOf": [ + { + "$ref": "#/components/schemas/CallsFilter" + }, + { + "type": "null" + } + ] + }, + "limit": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Limit" + }, + "offset": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Offset" + }, + "sort_by": { + "anyOf": [ + { + "items": { + "$ref": "#/components/schemas/SortBy" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Sort By" + }, + "query": { + "anyOf": [ + { + "$ref": "#/components/schemas/Query" + }, + { + "type": "null" + } + ] + }, + "include_costs": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Include Costs", + "default": false + }, + "columns": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Columns" + }, + "expand_columns": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Expand Columns", + "description": "Columns to expand, i.e. refs to other objects", + "examples": [["inputs.self.message", "inputs.model.prompt"]] + } + }, + "type": "object", + "required": ["project_id"], + "title": "CallsQueryReq" + }, + "CallsQueryStatsReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "filter": { + "anyOf": [ + { + "$ref": "#/components/schemas/CallsFilter" + }, + { + "type": "null" + } + ] + }, + "query": { + "anyOf": [ + { + "$ref": "#/components/schemas/Query" + }, + { + "type": "null" + } + ] + } + }, + "type": "object", + "required": ["project_id"], + "title": "CallsQueryStatsReq" + }, + "CallsQueryStatsRes": { + "properties": { + "count": { + "type": "integer", + "title": "Count" + } + }, + "type": "object", + "required": ["count"], + "title": "CallsQueryStatsRes" + }, + "ContainsOperation": { + "properties": { + "$contains": { + "$ref": "#/components/schemas/ContainsSpec" + } + }, + "type": "object", + "required": ["$contains"], + "title": "ContainsOperation" + }, + "ContainsSpec": { + "properties": { + "input": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ], + "title": "Input" + }, + "substr": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ], + "title": "Substr" + }, + "case_insensitive": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Case Insensitive", + "default": false + } + }, + "type": "object", + "required": ["input", "substr"], + "title": "ContainsSpec" + }, + "ConvertOperation": { + "properties": { + "$convert": { + "$ref": "#/components/schemas/ConvertSpec" + } + }, + "type": "object", + "required": ["$convert"], + "title": "ConvertOperation" + }, + "ConvertSpec": { + "properties": { + "input": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ], + "title": "Input" + }, + "to": { + "type": "string", + "enum": ["double", "string", "int", "bool", "exists"], + "title": "To" + } + }, + "type": "object", + "required": ["input", "to"], + "title": "ConvertSpec" + }, + "EndedCallSchemaForInsert": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "id": { + "type": "string", + "title": "Id" + }, + "ended_at": { + "type": "string", + "format": "date-time", + "title": "Ended At" + }, + "exception": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Exception" + }, + "output": { + "anyOf": [ + {}, + { + "type": "null" + } + ], + "title": "Output" + }, + "summary": { + "$ref": "#/components/schemas/SummaryInsertMap" + } + }, + "type": "object", + "required": ["project_id", "id", "ended_at", "summary"], + "title": "EndedCallSchemaForInsert" + }, + "EqOperation": { + "properties": { + "$eq": { + "prefixItems": [ + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + } + ], + "type": "array", + "maxItems": 2, + "minItems": 2, + "title": "$Eq" + } + }, + "type": "object", + "required": ["$eq"], + "title": "EqOperation" + }, + "FeedbackCreateReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id", + "examples": ["entity/project"] + }, + "weave_ref": { + "type": "string", + "title": "Weave Ref", + "examples": ["weave:///entity/project/object/name:digest"] + }, + "creator": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Creator", + "examples": ["Jane Smith"] + }, + "feedback_type": { + "type": "string", + "title": "Feedback Type", + "examples": ["custom"] + }, + "payload": { + "type": "object", + "title": "Payload", + "examples": [ + { + "key": "value" + } + ] + }, + "wb_user_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb User Id", + "description": "Do not set directly. Server will automatically populate this field." + } + }, + "type": "object", + "required": ["project_id", "weave_ref", "feedback_type", "payload"], + "title": "FeedbackCreateReq" + }, + "FeedbackCreateRes": { + "properties": { + "id": { + "type": "string", + "title": "Id" + }, + "created_at": { + "type": "string", + "format": "date-time", + "title": "Created At" + }, + "wb_user_id": { + "type": "string", + "title": "Wb User Id" + }, + "payload": { + "type": "object", + "title": "Payload" + } + }, + "type": "object", + "required": ["id", "created_at", "wb_user_id", "payload"], + "title": "FeedbackCreateRes" + }, + "FeedbackPurgeReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id", + "examples": ["entity/project"] + }, + "query": { + "$ref": "#/components/schemas/Query" + } + }, + "type": "object", + "required": ["project_id", "query"], + "title": "FeedbackPurgeReq" + }, + "FeedbackPurgeRes": { + "properties": {}, + "type": "object", + "title": "FeedbackPurgeRes" + }, + "FeedbackQueryReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id", + "examples": ["entity/project"] + }, + "fields": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Fields", + "examples": [["id", "feedback_type", "payload.note"]] + }, + "query": { + "anyOf": [ + { + "$ref": "#/components/schemas/Query" + }, + { + "type": "null" + } + ] + }, + "sort_by": { + "anyOf": [ + { + "items": { + "$ref": "#/components/schemas/SortBy" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Sort By" + }, + "limit": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Limit", + "examples": [10] + }, + "offset": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Offset", + "examples": [0] + } + }, + "type": "object", + "required": ["project_id"], + "title": "FeedbackQueryReq" + }, + "FeedbackQueryRes": { + "properties": { + "result": { + "items": { + "type": "object" + }, + "type": "array", + "title": "Result" + } + }, + "type": "object", + "required": ["result"], + "title": "FeedbackQueryRes" + }, + "FileContentReadReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["project_id", "digest"], + "title": "FileContentReadReq" + }, + "FileCreateRes": { + "properties": { + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["digest"], + "title": "FileCreateRes" + }, + "GetFieldOperator": { + "properties": { + "$getField": { + "type": "string", + "title": "$Getfield" + } + }, + "type": "object", + "required": ["$getField"], + "title": "GetFieldOperator" + }, + "GtOperation": { + "properties": { + "$gt": { + "prefixItems": [ + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + } + ], + "type": "array", + "maxItems": 2, + "minItems": 2, + "title": "$Gt" + } + }, + "type": "object", + "required": ["$gt"], + "title": "GtOperation" + }, + "GteOperation": { + "properties": { + "$gte": { + "prefixItems": [ + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + } + ], + "type": "array", + "maxItems": 2, + "minItems": 2, + "title": "$Gte" + } + }, + "type": "object", + "required": ["$gte"], + "title": "GteOperation" + }, + "HTTPValidationError": { + "properties": { + "detail": { + "items": { + "$ref": "#/components/schemas/ValidationError" + }, + "type": "array", + "title": "Detail" + } + }, + "type": "object", + "title": "HTTPValidationError" + }, + "InOperation": { + "properties": { + "$in": { + "prefixItems": [ + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + "type": "array" + } + ], + "type": "array", + "maxItems": 2, + "minItems": 2, + "title": "$In" + } + }, + "type": "object", + "required": ["$in"], + "title": "InOperation" + }, + "LLMUsageSchema": { + "properties": { + "prompt_tokens": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Prompt Tokens" + }, + "input_tokens": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Input Tokens" + }, + "completion_tokens": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Completion Tokens" + }, + "output_tokens": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Output Tokens" + }, + "requests": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Requests" + }, + "total_tokens": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Total Tokens" + } + }, + "type": "object", + "title": "LLMUsageSchema" + }, + "LiteralOperation": { + "properties": { + "$literal": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "integer" + }, + { + "type": "number" + }, + { + "type": "boolean" + }, + { + "additionalProperties": { + "$ref": "#/components/schemas/LiteralOperation" + }, + "type": "object" + }, + { + "items": { + "$ref": "#/components/schemas/LiteralOperation" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "$Literal" + } + }, + "type": "object", + "required": ["$literal"], + "title": "LiteralOperation" + }, + "NotOperation": { + "properties": { + "$not": { + "prefixItems": [ + { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + } + ], + "type": "array", + "maxItems": 1, + "minItems": 1, + "title": "$Not" + } + }, + "type": "object", + "required": ["$not"], + "title": "NotOperation" + }, + "ObjCreateReq": { + "properties": { + "obj": { + "$ref": "#/components/schemas/ObjSchemaForInsert" + } + }, + "type": "object", + "required": ["obj"], + "title": "ObjCreateReq" + }, + "ObjCreateRes": { + "properties": { + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["digest"], + "title": "ObjCreateRes" + }, + "ObjQueryReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "filter": { + "anyOf": [ + { + "$ref": "#/components/schemas/ObjectVersionFilter" + }, + { + "type": "null" + } + ] + } + }, + "type": "object", + "required": ["project_id"], + "title": "ObjQueryReq" + }, + "ObjQueryRes": { + "properties": { + "objs": { + "items": { + "$ref": "#/components/schemas/ObjSchema" + }, + "type": "array", + "title": "Objs" + } + }, + "type": "object", + "required": ["objs"], + "title": "ObjQueryRes" + }, + "ObjReadReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "object_id": { + "type": "string", + "title": "Object Id" + }, + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["project_id", "object_id", "digest"], + "title": "ObjReadReq" + }, + "ObjReadRes": { + "properties": { + "obj": { + "$ref": "#/components/schemas/ObjSchema" + } + }, + "type": "object", + "required": ["obj"], + "title": "ObjReadRes" + }, + "ObjSchema": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "object_id": { + "type": "string", + "title": "Object Id" + }, + "created_at": { + "type": "string", + "format": "date-time", + "title": "Created At" + }, + "deleted_at": { + "anyOf": [ + { + "type": "string", + "format": "date-time" + }, + { + "type": "null" + } + ], + "title": "Deleted At" + }, + "digest": { + "type": "string", + "title": "Digest" + }, + "version_index": { + "type": "integer", + "title": "Version Index" + }, + "is_latest": { + "type": "integer", + "title": "Is Latest" + }, + "kind": { + "type": "string", + "title": "Kind" + }, + "base_object_class": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Base Object Class" + }, + "val": { + "title": "Val" + } + }, + "type": "object", + "required": [ + "project_id", + "object_id", + "created_at", + "digest", + "version_index", + "is_latest", + "kind", + "base_object_class", + "val" + ], + "title": "ObjSchema" + }, + "ObjSchemaForInsert": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "object_id": { + "type": "string", + "title": "Object Id" + }, + "val": { + "title": "Val" + } + }, + "type": "object", + "required": ["project_id", "object_id", "val"], + "title": "ObjSchemaForInsert" + }, + "ObjectVersionFilter": { + "properties": { + "base_object_classes": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Base Object Classes" + }, + "object_ids": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Object Ids" + }, + "is_op": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Is Op" + }, + "latest_only": { + "anyOf": [ + { + "type": "boolean" + }, + { + "type": "null" + } + ], + "title": "Latest Only" + } + }, + "type": "object", + "title": "ObjectVersionFilter" + }, + "OrOperation": { + "properties": { + "$or": { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/LiteralOperation" + }, + { + "$ref": "#/components/schemas/GetFieldOperator" + }, + { + "$ref": "#/components/schemas/ConvertOperation" + }, + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ] + }, + "type": "array", + "title": "$Or" + } + }, + "type": "object", + "required": ["$or"], + "title": "OrOperation" + }, + "Query": { + "properties": { + "$expr": { + "anyOf": [ + { + "$ref": "#/components/schemas/AndOperation" + }, + { + "$ref": "#/components/schemas/OrOperation" + }, + { + "$ref": "#/components/schemas/NotOperation" + }, + { + "$ref": "#/components/schemas/EqOperation" + }, + { + "$ref": "#/components/schemas/GtOperation" + }, + { + "$ref": "#/components/schemas/GteOperation" + }, + { + "$ref": "#/components/schemas/InOperation" + }, + { + "$ref": "#/components/schemas/ContainsOperation" + } + ], + "title": "$Expr" + } + }, + "type": "object", + "required": ["$expr"], + "title": "Query" + }, + "RefsReadBatchReq": { + "properties": { + "refs": { + "items": { + "type": "string" + }, + "type": "array", + "title": "Refs" + } + }, + "type": "object", + "required": ["refs"], + "title": "RefsReadBatchReq" + }, + "RefsReadBatchRes": { + "properties": { + "vals": { + "items": {}, + "type": "array", + "title": "Vals" + } + }, + "type": "object", + "required": ["vals"], + "title": "RefsReadBatchRes" + }, + "ServerInfoRes": { + "properties": { + "min_required_weave_python_version": { + "type": "string", + "title": "Min Required Weave Python Version" + } + }, + "type": "object", + "required": ["min_required_weave_python_version"], + "title": "ServerInfoRes" + }, + "SortBy": { + "properties": { + "field": { + "type": "string", + "title": "Field" + }, + "direction": { + "type": "string", + "enum": ["asc", "desc"], + "title": "Direction" + } + }, + "type": "object", + "required": ["field", "direction"], + "title": "SortBy" + }, + "StartedCallSchemaForInsert": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Id" + }, + "op_name": { + "type": "string", + "title": "Op Name" + }, + "display_name": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Display Name" + }, + "trace_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Trace Id" + }, + "parent_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Parent Id" + }, + "started_at": { + "type": "string", + "format": "date-time", + "title": "Started At" + }, + "attributes": { + "type": "object", + "title": "Attributes" + }, + "inputs": { + "type": "object", + "title": "Inputs" + }, + "wb_user_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb User Id", + "description": "Do not set directly. Server will automatically populate this field." + }, + "wb_run_id": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "null" + } + ], + "title": "Wb Run Id" + } + }, + "type": "object", + "required": ["project_id", "op_name", "started_at", "attributes", "inputs"], + "title": "StartedCallSchemaForInsert" + }, + "SummaryInsertMap": { + "properties": { + "usage": { + "additionalProperties": { + "$ref": "#/components/schemas/LLMUsageSchema" + }, + "type": "object", + "title": "Usage" + } + }, + "additionalProperties": true, + "type": "object", + "title": "SummaryInsertMap" + }, + "TableAppendSpec": { + "properties": { + "append": { + "$ref": "#/components/schemas/TableAppendSpecPayload" + } + }, + "type": "object", + "required": ["append"], + "title": "TableAppendSpec" + }, + "TableAppendSpecPayload": { + "properties": { + "row": { + "type": "object", + "title": "Row" + } + }, + "type": "object", + "required": ["row"], + "title": "TableAppendSpecPayload" + }, + "TableCreateReq": { + "properties": { + "table": { + "$ref": "#/components/schemas/TableSchemaForInsert" + } + }, + "type": "object", + "required": ["table"], + "title": "TableCreateReq" + }, + "TableCreateRes": { + "properties": { + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["digest"], + "title": "TableCreateRes" + }, + "TableInsertSpec": { + "properties": { + "insert": { + "$ref": "#/components/schemas/TableInsertSpecPayload" + } + }, + "type": "object", + "required": ["insert"], + "title": "TableInsertSpec" + }, + "TableInsertSpecPayload": { + "properties": { + "index": { + "type": "integer", + "title": "Index" + }, + "row": { + "type": "object", + "title": "Row" + } + }, + "type": "object", + "required": ["index", "row"], + "title": "TableInsertSpecPayload" + }, + "TablePopSpec": { + "properties": { + "pop": { + "$ref": "#/components/schemas/TablePopSpecPayload" + } + }, + "type": "object", + "required": ["pop"], + "title": "TablePopSpec" + }, + "TablePopSpecPayload": { + "properties": { + "index": { + "type": "integer", + "title": "Index" + } + }, + "type": "object", + "required": ["index"], + "title": "TablePopSpecPayload" + }, + "TableQueryReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "digest": { + "type": "string", + "title": "Digest" + }, + "filter": { + "anyOf": [ + { + "$ref": "#/components/schemas/TableRowFilter" + }, + { + "type": "null" + } + ] + }, + "limit": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Limit" + }, + "offset": { + "anyOf": [ + { + "type": "integer" + }, + { + "type": "null" + } + ], + "title": "Offset" + } + }, + "type": "object", + "required": ["project_id", "digest"], + "title": "TableQueryReq" + }, + "TableQueryRes": { + "properties": { + "rows": { + "items": { + "$ref": "#/components/schemas/TableRowSchema" + }, + "type": "array", + "title": "Rows" + } + }, + "type": "object", + "required": ["rows"], + "title": "TableQueryRes" + }, + "TableRowFilter": { + "properties": { + "row_digests": { + "anyOf": [ + { + "items": { + "type": "string" + }, + "type": "array" + }, + { + "type": "null" + } + ], + "title": "Row Digests" + } + }, + "type": "object", + "title": "TableRowFilter" + }, + "TableRowSchema": { + "properties": { + "digest": { + "type": "string", + "title": "Digest" + }, + "val": { + "title": "Val" + } + }, + "type": "object", + "required": ["digest", "val"], + "title": "TableRowSchema" + }, + "TableSchemaForInsert": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "rows": { + "items": { + "type": "object" + }, + "type": "array", + "title": "Rows" + } + }, + "type": "object", + "required": ["project_id", "rows"], + "title": "TableSchemaForInsert" + }, + "TableUpdateReq": { + "properties": { + "project_id": { + "type": "string", + "title": "Project Id" + }, + "base_digest": { + "type": "string", + "title": "Base Digest" + }, + "updates": { + "items": { + "anyOf": [ + { + "$ref": "#/components/schemas/TableAppendSpec" + }, + { + "$ref": "#/components/schemas/TablePopSpec" + }, + { + "$ref": "#/components/schemas/TableInsertSpec" + } + ] + }, + "type": "array", + "title": "Updates" + } + }, + "type": "object", + "required": ["project_id", "base_digest", "updates"], + "title": "TableUpdateReq" + }, + "TableUpdateRes": { + "properties": { + "digest": { + "type": "string", + "title": "Digest" + } + }, + "type": "object", + "required": ["digest"], + "title": "TableUpdateRes" + }, + "ValidationError": { + "properties": { + "loc": { + "items": { + "anyOf": [ + { + "type": "string" + }, + { + "type": "integer" + } + ] + }, + "type": "array", + "title": "Location" + }, + "msg": { + "type": "string", + "title": "Message" + }, + "type": { + "type": "string", + "title": "Error Type" + } + }, + "type": "object", + "required": ["loc", "msg", "type"], + "title": "ValidationError" + } + }, + "securitySchemes": { + "HTTPBasic": { + "type": "http", + "scheme": "basic" + } + } + } +} diff --git a/tests/integrations/litellm/client_completions_create_test.py b/tests/integrations/litellm/client_completions_create_test.py new file mode 100644 index 00000000000..a48f9155465 --- /dev/null +++ b/tests/integrations/litellm/client_completions_create_test.py @@ -0,0 +1,97 @@ +import os +from contextlib import contextmanager +from unittest.mock import patch + +from litellm.types.utils import ModelResponse + +from tests.trace.util import client_is_sqlite +from weave.trace.settings import _context_vars +from weave.trace_server import trace_server_interface as tsi +from weave.trace_server.secret_fetcher_context import secret_fetcher_context + + +@contextmanager +def with_tracing_disabled(): + token = _context_vars["disabled"].set(True) + try: + yield + finally: + _context_vars["disabled"].reset(token) + + +def test_completions_create(client): + """ + This test is testing the backend implementation of completions_create. It relies on LiteLLM + and we don't want to jump through the hoops to add it to the integration sharding. So we are putting + it here for now. Should be moved to a dedicated client tester that pins to a single python version. + """ + is_sqlite = client_is_sqlite(client) + if is_sqlite: + # no need to test in sqlite + return + + model_name = "gpt-4o" + inputs = { + "model": model_name, + "messages": [{"role": "user", "content": "Hello, world!"}], + } + mock_response = { + "id": "chatcmpl-ANnboqjHwrm6uWcubQma9pzxye0Cm", + "choices": [ + { + "finish_reason": "stop", + "index": 0, + "message": { + "content": "Hello! How can I assist you today?", + "role": "assistant", + "tool_calls": None, + "function_call": None, + }, + } + ], + "created": 1730235604, + "model": "gpt-4o-2024-08-06", + "object": "chat.completion", + "system_fingerprint": "fp_90354628f2", + "usage": { + "completion_tokens": 9, + "prompt_tokens": 11, + "total_tokens": 20, + "completion_tokens_details": {"audio_tokens": None, "reasoning_tokens": 0}, + "prompt_tokens_details": {"audio_tokens": None, "cached_tokens": 0}, + }, + "service_tier": None, + } + + class DummySecretFetcher: + def fetch(self, secret_name: str) -> dict: + return { + "secrets": { + secret_name: os.environ.get(secret_name, "DUMMY_SECRET_VALUE") + } + } + + # Have to do this since we run the tests in the same process as the server + # and the inner litellm gets patched! + with with_tracing_disabled(): + with secret_fetcher_context(DummySecretFetcher()): + with patch("litellm.completion") as mock_completion: + mock_completion.return_value = ModelResponse.model_validate( + mock_response + ) + res = client.server.completions_create( + tsi.CompletionsCreateReq.model_validate( + { + "project_id": client._project_id(), + "inputs": inputs, + } + ) + ) + + assert res.response == mock_response + calls = list(client.get_calls()) + assert len(calls) == 1 + assert calls[0].output == res.response + assert calls[0].summary["usage"][model_name] == res.response["usage"] + assert calls[0].inputs == inputs + assert calls[0].op_name == "weave.completions_create" diff --git a/tests/scorers/test_hallucination_scorer.py b/tests/scorers/test_hallucination_scorer.py new file mode 100644 index 00000000000..5f71fe724b9 --- /dev/null +++ b/tests/scorers/test_hallucination_scorer.py @@ -0,0 +1,105 @@ +import pytest +from openai import OpenAI + +import weave +from weave.scorers import ( + HallucinationFreeScorer, +) +from weave.scorers.hallucination_scorer import ( + HallucinationReasoning, + HallucinationResponse, +) + + +# mock the create function +@pytest.fixture +def mock_create(monkeypatch): + def _mock_create(*args, **kwargs): + return HallucinationResponse( + chain_of_thought="The output is consistent with the input data.", + reasonings=[ + HallucinationReasoning( + observation="My observation for this is that the output is consistent with the input data.", + hallucination_type="No Hallucination", + ) + ], + conclusion="The output is consistent with the input data.", + has_hallucination=True, + ) + + monkeypatch.setattr("weave.scorers.hallucination_scorer.create", _mock_create) + + +@pytest.fixture +def hallucination_scorer(mock_create): + return HallucinationFreeScorer( + client=OpenAI(api_key="DUMMY_API_KEY"), + model_id="gpt-4o", + temperature=0.7, + max_tokens=4096, + ) + + +def test_hallucination_scorer_score(hallucination_scorer, mock_create): + output = "John's favorite cheese is cheddar." + context = "John likes various types of cheese." + result = hallucination_scorer.score(output=output, context=context) + # we should be able to do this validation + _ = HallucinationResponse.model_validate(result) + + assert result["has_hallucination"] == True + assert result["conclusion"] == "The output is consistent with the input data." + assert len(result["reasonings"]) == 1 + assert result["reasonings"][0]["hallucination_type"] == "No Hallucination" + + +@pytest.mark.asyncio +async def test_hallucination_scorer_eval(hallucination_scorer): + dataset = [ + {"context": "John likes various types of cheese."}, + {"context": "Pepe likes various types of cheese."}, + ] + + @weave.op + def model(): + return "John's favorite cheese is cheddar." + + evaluation = weave.Evaluation( + dataset=dataset, + scorers=[hallucination_scorer], + ) + result = await evaluation.evaluate(model) + assert result["HallucinationFreeScorer"]["has_hallucination"]["true_count"] == 2 + assert ( + result["HallucinationFreeScorer"]["has_hallucination"]["true_fraction"] == 1.0 + ) + + +@pytest.mark.asyncio +async def test_hallucination_scorer_eval2(hallucination_scorer): + dataset = [ + { + "input": "John likes various types of cheese.", + "other_col": "John's favorite cheese is cheddar.", + }, + { + "input": "Pepe likes various types of cheese.", + "other_col": "Pepe's favorite cheese is gouda.", + }, + ] + + @weave.op + def model(input): + return "The person's favorite cheese is cheddar." + + hallucination_scorer.column_map = {"context": "input", "output": "other_col"} + + evaluation = weave.Evaluation( + dataset=dataset, + scorers=[hallucination_scorer], + ) + result = await evaluation.evaluate(model) + assert result["HallucinationFreeScorer"]["has_hallucination"]["true_count"] == 2 + assert ( + result["HallucinationFreeScorer"]["has_hallucination"]["true_fraction"] == 1.0 + ) diff --git a/tests/scorers/test_json_scorer.py b/tests/scorers/test_json_scorer.py new file mode 100644 index 00000000000..c80b7a54743 --- /dev/null +++ b/tests/scorers/test_json_scorer.py @@ -0,0 +1,21 @@ +import pytest + +from weave.scorers import ValidJSONScorer + + +@pytest.mark.parametrize( + "output, expected_result", + [ + ('{"city": "San Francisco", "country": "USA"}', True), + ('{"city": "San Francisco", "country": "USA"', False), + ("Just a plain string.", False), + ("[1, 2, 3, 4, 5]", True), + ('{"person": {"name": "John", "age": 30}, "city": "New York"}', True), + ("{}", True), + ("[]", True), + ], +) +def test_json_scorer(output, expected_result): + scorer = ValidJSONScorer() + result = scorer.score(output) + assert result["json_valid"] is expected_result diff --git a/tests/scorers/test_llm_integrations.py b/tests/scorers/test_llm_integrations.py new file mode 100644 index 00000000000..0336955d740 --- /dev/null +++ b/tests/scorers/test_llm_integrations.py @@ -0,0 +1,82 @@ +import os + +import pytest + +from weave.scorers.summarization_scorer import ( + SummarizationEvaluationResponse, + SummarizationScorer, +) + +# Define providers and their models +TEST_MODELS = { + "openai": ["gpt-4o-mini", "gpt-4o"], + "anthropic": ["claude-3-haiku-20240307", "claude-3-5-sonnet-20240620"], + "mistral": ["mistral-small-latest", "mistral-large-latest"], + "gemini": ["gemini-1.5-flash", "gemini-1.5-pro-latest"], +} + + +def get_client_and_model(provider, model): + api_key_env_vars = { + "openai": "OPENAI_API_KEY", + "anthropic": "ANTHROPIC_API_KEY", + "mistral": "MISTRAL_API_KEY", + "gemini": "GOOGLE_API_KEY", + } + + if provider not in TEST_MODELS: + raise ValueError(f"Unknown provider: {provider}") + + if model not in TEST_MODELS[provider]: + raise ValueError(f"Model '{model}' not available for provider '{provider}'") + + api_key = os.getenv(api_key_env_vars[provider]) + if not api_key: + raise EnvironmentError( + f"API key for {provider} not found. Please set '{api_key_env_vars[provider]}' environment variable." + ) + + if provider == "openai": + from openai import OpenAI + + client = OpenAI(api_key=api_key) + elif provider == "anthropic": + from anthropic import Anthropic + + client = Anthropic(api_key=api_key) + elif provider == "mistral": + from mistralai import Mistral + + client = Mistral(api_key=api_key) + elif provider == "gemini": + import google.generativeai as genai + + genai.configure(api_key=api_key) + client = genai.GenerativeModel(model_name=model) + model = "gemini" # Adjust if necessary + + return client, model + + +# Generate test parameters +test_params = [ + (provider, model) for provider, models in TEST_MODELS.items() for model in models +] + + +@pytest.mark.parametrize("provider,model", test_params, ids=lambda p: f"{p[0]}:{p[1]}") +def test_summarization_scorer_evaluate_summary(provider, model): + client, model_id = get_client_and_model(provider, model) + + summarization_scorer = SummarizationScorer( + client=client, + model_id=model_id, + temperature=0.7, + max_tokens=1024, + ) + input_text = "This is the original text." + summary_text = "This is the summary." + result = summarization_scorer.evaluate_summary( + input=input_text, summary=summary_text + ) + assert isinstance(result, SummarizationEvaluationResponse) diff --git a/tests/scorers/test_pydantic_scorer.py b/tests/scorers/test_pydantic_scorer.py new file mode 100644 index 00000000000..f06dc83bca7 --- /dev/null +++ b/tests/scorers/test_pydantic_scorer.py @@ -0,0 +1,30 @@ +import pytest +from pydantic import BaseModel + +from weave.scorers import PydanticScorer + + +class User(BaseModel): + name: str + age: int + + +@pytest.fixture +def user_scorer(): + return PydanticScorer(model=User) + + +@pytest.mark.parametrize( + "input_data, expected_result", + [ + ('{"name": "John", "age": 30}', {"valid_pydantic": True}), + ({"name": "John", "age": 30}, {"valid_pydantic": True}), + ('{"name": "John", "age": "thirty"}', {"valid_pydantic": False}), + ({"name": "John", "age": "thirty"}, {"valid_pydantic": False}), + ('{"name": "John"}', {"valid_pydantic": False}), + ('{"name": "John", "age": 30, "city": "New York"}', {"valid_pydantic": True}), + (123, {"valid_pydantic": False}), + ], +) +def test_pydantic_scorer(user_scorer, input_data, expected_result): + assert user_scorer.score(input_data) == expected_result diff --git a/tests/scorers/test_ragas_scorer.py b/tests/scorers/test_ragas_scorer.py new file mode 100644 index 00000000000..f663ac965c2 --- /dev/null +++ b/tests/scorers/test_ragas_scorer.py @@ -0,0 +1,66 @@ +import pytest +from openai import OpenAI + +from weave.scorers import ( + ContextEntityRecallScorer, + ContextRelevancyScorer, +) +from weave.scorers.ragas_scorer import ( + EntityExtractionResponse, + RelevancyResponse, +) + + +# Mock the create function +@pytest.fixture +def mock_create(monkeypatch): + def _mock_create(*args, **kwargs): + # Retrieve the response_model to return appropriate mock responses + response_model = kwargs.get("response_model") + if response_model is EntityExtractionResponse: + return EntityExtractionResponse(entities=["Paris"]) + elif response_model is RelevancyResponse: + return RelevancyResponse( + reasoning="The context directly answers the question.", + relevancy_score=1, + ) + + monkeypatch.setattr("weave.scorers.ragas_scorer.create", _mock_create) + + +@pytest.fixture +def context_entity_recall_scorer(mock_create): + return ContextEntityRecallScorer( + client=OpenAI(api_key="DUMMY_API_KEY"), + model_id="gpt-4o", + temperature=0.7, + max_tokens=1024, + ) + + +@pytest.fixture +def context_relevancy_scorer(mock_create): + return ContextRelevancyScorer( + client=OpenAI(api_key="DUMMY_API_KEY"), + model_id="gpt-4o", + temperature=0.7, + max_tokens=1024, + ) + + +def test_context_entity_recall_scorer_score(context_entity_recall_scorer): + output = "Paris is the capital of France." + context = "The capital city of France is Paris." + result = context_entity_recall_scorer.score(output, context) + assert isinstance(result, dict) + assert "recall" in result + assert result["recall"] == 1.0 # Assuming full recall in mock response + + +def test_context_relevancy_scorer_score(context_relevancy_scorer): + output = "What is the capital of France?" + context = "Paris is the capital city of France." + result = context_relevancy_scorer.score(output, context) + assert isinstance(result, dict) + assert "relevancy_score" in result + assert result["relevancy_score"] == 1 # Assuming relevancy in mock response diff --git a/tests/scorers/test_similarity_scorer.py b/tests/scorers/test_similarity_scorer.py new file mode 100644 index 00000000000..0a02296a55a --- /dev/null +++ b/tests/scorers/test_similarity_scorer.py @@ -0,0 +1,92 @@ +import pytest +from openai import OpenAI + +import weave +from weave.scorers.llm_utils import OPENAI_DEFAULT_EMBEDDING_MODEL +from weave.scorers.similarity_scorer import EmbeddingSimilarityScorer + + +# mock the create function +@pytest.fixture +def mock_embed(monkeypatch): + def _mock_embed(*args, **kwargs): + import random + + return [[random.random() for _ in range(1024)] for _ in range(2)] + + monkeypatch.setattr("weave.scorers.similarity_scorer.embed", _mock_embed) + + +@pytest.fixture +def similarity_scorer(mock_embed): + return EmbeddingSimilarityScorer( + client=OpenAI(api_key="DUMMY_API_KEY"), + model_id=OPENAI_DEFAULT_EMBEDDING_MODEL, + threshold=0.9, + ) + + +def test_similarity_scorer_score(similarity_scorer): + output = "John's favorite cheese is cheddar." + target = "John likes various types of cheese." + similarity_scorer.threshold = 0.0 + result = similarity_scorer.score(output=output, target=target) + assert result["similarity_score"] > 0.0 + assert result["is_similar"] is True + + +def test_similarity_scorer_not_similar(similarity_scorer): + output = "John's favorite cheese is cheddar." + target = "John likes various types of cheese." + similarity_scorer.threshold = 0.99 + result = similarity_scorer.score(output=output, target=target) + assert result["similarity_score"] < 0.99 + assert result["is_similar"] is False + + +@pytest.mark.asyncio +async def test_similarity_scorer_eval(similarity_scorer): + dataset = [ + {"target": "John likes various types of cheese."}, + {"target": "Pepe likes various types of cheese."}, + ] + + @weave.op + def model(): + return "He's name is John" + + evaluation = weave.Evaluation( + dataset=dataset, + scorers=[similarity_scorer], + ) + result = await evaluation.evaluate(model) + assert result["EmbeddingSimilarityScorer"]["similarity_score"]["mean"] > 0.0 + assert 0 <= result["EmbeddingSimilarityScorer"]["is_similar"]["true_count"] <= 2 + + +@pytest.mark.asyncio +async def test_similarity_scorer_eval2(similarity_scorer): + dataset = [ + { + "input": "He's name is John", + "other_col": "John likes various types of cheese.", + }, + { + "input": "He's name is Pepe.", + "other_col": "Pepe likes various types of cheese.", + }, + ] + + @weave.op + def model(input): + return "John likes various types of cheese." + + similarity_scorer.column_map = {"target": "other_col"} + + evaluation = weave.Evaluation( + dataset=dataset, + scorers=[similarity_scorer], + ) + result = await evaluation.evaluate(model) + assert result["EmbeddingSimilarityScorer"]["similarity_score"]["mean"] > 0.0 + assert 0 <= result["EmbeddingSimilarityScorer"]["is_similar"]["true_count"] <= 2 diff --git a/tests/scorers/test_string_scorer.py b/tests/scorers/test_string_scorer.py new file mode 100644 index 00000000000..2c635ea81db --- /dev/null +++ b/tests/scorers/test_string_scorer.py @@ -0,0 +1,33 @@ +import pytest + +from weave.scorers import ( + LevenshteinScorer, + StringMatchScorer, +) + + +@pytest.mark.parametrize( + "output, target, expected_result", + [ + ("Morgan", "Hello my name is Morgan", True), + ("Alice", "Hello my name is Bob", False), + ], +) +def test_string_match_scorer(output, target, expected_result): + scorer = StringMatchScorer() + result = scorer.score(output, target) + assert result["string_in_input"] is expected_result + + +@pytest.mark.parametrize( + "output, target, expected_distance", + [ + ("Hello", "Hallo", 1), + ("Hello", "Hello", 0), + ("Hello", "World", 4), + ], +) +def test_levenshtein_scorer(output, target, expected_distance): + scorer = LevenshteinScorer() + result = scorer.score(output, target) + assert result["levenshtein_distance"] == expected_distance diff --git a/tests/scorers/test_summarization_scorer.py b/tests/scorers/test_summarization_scorer.py new file mode 100644 index 00000000000..ca6c3f7139b --- /dev/null +++ b/tests/scorers/test_summarization_scorer.py @@ -0,0 +1,110 @@ +import pytest +from openai import OpenAI + +import weave +from weave.scorers import ( + SummarizationScorer, +) +from weave.scorers.summarization_scorer import ( + EntityExtractionResponse, + SummarizationEvaluationResponse, +) + + +@pytest.fixture +def mock_create(monkeypatch): + def _mock_create(*args, **kwargs): + response_model = kwargs.get("response_model") + if response_model == EntityExtractionResponse: + return EntityExtractionResponse(entities=["entity1", "entity2"]) + elif response_model == SummarizationEvaluationResponse: + return SummarizationEvaluationResponse( + think_step_by_step="This is some reasoning.", + summarization_evaluation="excellent", + ) + + # Patch the 'create' function wherever it is called + monkeypatch.setattr("weave.scorers.summarization_scorer.create", _mock_create) + + +@pytest.fixture +def summarization_scorer(mock_create): + return SummarizationScorer( + client=OpenAI(api_key="DUMMY_API_KEY"), + model_id="gpt-4o", + temperature=0.7, + max_tokens=1024, + ) + + +def test_summarization_scorer_evaluate_summary(summarization_scorer, mock_create): + input_text = "This is the original text." + summary_text = "This is the summary." + result = summarization_scorer.evaluate_summary( + input=input_text, summary=summary_text + ) + assert isinstance(result, SummarizationEvaluationResponse) + assert result.summarization_evaluation == "excellent" + assert result.think_step_by_step == "This is some reasoning." + + +@pytest.mark.asyncio +async def test_summarization_scorer_score(summarization_scorer): + input_text = "This is the original text." + output_text = "This is the summary." + result = await summarization_scorer.score(input=input_text, output=output_text) + assert isinstance(result, dict) + assert "summarization_eval_score" in result + assert result["summarization_eval_score"] == 1.0 # "excellent" maps to 1.0 + assert "llm_eval_reasoning" in result + assert result["llm_eval_reasoning"] == "This is some reasoning." + assert "is_entity_dense" in result + assert isinstance(result["is_entity_dense"], bool) + assert "entity_density" in result + assert isinstance(result["entity_density"], float) + + +def test_summarization_scorer_initialization(summarization_scorer): + assert isinstance(summarization_scorer, SummarizationScorer) + assert summarization_scorer.model_id == "gpt-4o" + assert summarization_scorer.temperature == 0.7 + assert summarization_scorer.max_tokens == 1024 + + +def test_summarization_scorer_extract_entities(summarization_scorer): + text = "This is a sample text with entities." + entities = summarization_scorer.extract_entities(text) + assert isinstance(entities, list) + assert len(entities) == 2 + assert "entity1" in entities + assert "entity2" in entities + + +@pytest.mark.asyncio +async def test_evaluate_summary_scorer(summarization_scorer): + dataset = [ + { + "input": "This is the original text.", + }, + { + "input": "This is another original text.", + }, + ] + evaluation = weave.Evaluation(dataset=dataset, scorers=[summarization_scorer]) + + @weave.op + def model(input: str): + return "This is the summary." + + result = await evaluation.evaluate(model) + assert isinstance(result, dict) + assert "SummarizationScorer" in result + assert "entity_density" in result["SummarizationScorer"] + assert "is_entity_dense" in result["SummarizationScorer"] + assert "summarization_eval_score" in result["SummarizationScorer"] + assert "model_latency" in result + + assert result["SummarizationScorer"]["entity_density"]["mean"] == pytest.approx(0.5) + assert result["SummarizationScorer"]["is_entity_dense"]["true_count"] == 2 + assert result["SummarizationScorer"]["is_entity_dense"]["true_fraction"] == 1.0 + assert result["SummarizationScorer"]["summarization_eval_score"]["mean"] == 1.0 diff --git a/tests/scorers/test_utils.py b/tests/scorers/test_utils.py new file mode 100644 index 00000000000..03d95aff6c9 --- /dev/null +++ b/tests/scorers/test_utils.py @@ -0,0 +1,8 @@ +from weave.scorers.utils import stringify + + +def test_stringify(): + assert stringify("Hello, world!") == "Hello, world!" + assert stringify(123) == "123" + assert stringify([1, 2, 3]) == "[\n 1,\n 2,\n 3\n]" + assert stringify({"a": 1, "b": 2}) == '{\n "a": 1,\n "b": 2\n}' diff --git a/tests/trace/test_actions.py b/tests/trace/test_actions.py deleted file mode 100644 index 7d85151e280..00000000000 --- a/tests/trace/test_actions.py +++ /dev/null @@ -1,158 +0,0 @@ -import os -from typing import Any - -import pytest -from pydantic import BaseModel - -import weave -from weave.trace.refs import ObjectRef -from weave.trace.weave_client import WeaveClient -from weave.trace_server.interface.base_models.action_base_models import ( - ConfiguredAction, - _BuiltinAction, -) -from weave.trace_server.sqlite_trace_server import SqliteTraceServer -from weave.trace_server.trace_server_interface import ( - ExecuteBatchActionReq, - FeedbackCreateReq, - ObjCreateReq, - ObjQueryReq, -) - - -def test_action_execute_workflow(client: WeaveClient): - is_sqlite = isinstance(client.server._internal_trace_server, SqliteTraceServer) - if is_sqlite: - # dont run this test for sqlite - return - - # part 1: create the action - class ExampleResponse(BaseModel): - score: int - reason: str - - digest = client.server.obj_create( - ObjCreateReq.model_validate( - { - "obj": { - "project_id": client._project_id(), - "object_id": "test_object", - "base_object_class": "ConfiguredAction", - "val": ConfiguredAction( - name="test_action", - action=_BuiltinAction(name="llm_judge"), - config={ - "system_prompt": "you are a judge", - "model": "gpt-4o-mini", - "response_format_schema": ExampleResponse.model_json_schema(), - }, - ).model_dump(), - } - } - ) - ).digest - - configured_actions = client.server.objs_query( - ObjQueryReq.model_validate( - { - "project_id": client._project_id(), - "filter": {"base_object_classes": ["ConfiguredAction"]}, - } - ) - ) - - assert len(configured_actions.objs) == 1 - assert configured_actions.objs[0].digest == digest - action_ref_uri = ObjectRef( - entity=client.entity, - project=client.project, - name="test_object", - _digest=digest, - ).uri() - - # part 2: manually create feedback - @weave.op - def example_op(input: str) -> str: - return input[::-1] - - _, call1 = example_op.call("hello") - with pytest.raises(Exception): - client.server.feedback_create( - FeedbackCreateReq.model_validate( - { - "project_id": client._project_id(), - "weave_ref": call1.ref.uri(), - "feedback_type": "ActionScore", - "payload": { - "output": { - "score": 1, - "reason": "because", - } - }, - } - ) - ) - - res = client.server.feedback_create( - FeedbackCreateReq.model_validate( - { - "project_id": client._project_id(), - "weave_ref": call1.ref.uri(), - "feedback_type": "ActionScore", - "payload": { - "configured_action_ref": action_ref_uri, - "output": { - "score": 1, - "reason": "because", - }, - }, - } - ) - ) - - feedbacks = list(call1.feedback) - assert len(feedbacks) == 1 - assert feedbacks[0].payload == { - "configured_action_ref": action_ref_uri, - "output": { - "score": 1, - "reason": "because", - }, - } - - # Step 3: execute the action - if os.environ.get("CI"): - # skip this test in CI for now - return - - _, call2 = example_op.call("hello") - - res = client.server.execute_batch_action( - ExecuteBatchActionReq.model_validate( - { - "project_id": client._project_id(), - "call_ids": [call2.id], - "configured_action_ref": action_ref_uri, - } - ) - ) - - feedbacks = list(call2.feedback) - assert len(feedbacks) == 1 - assert feedbacks[0].payload == { - "configured_action_ref": action_ref_uri, - "output": { - "score": MatchesAnyNumber(), - "reason": MatchesAnyStr(), - }, - } - - -class MatchesAnyStr: - def __eq__(self, other: Any) -> bool: - return isinstance(other, str) - - -class MatchesAnyNumber(BaseModel): - def __eq__(self, other: Any) -> bool: - return isinstance(other, (int, float)) diff --git a/tests/trace/test_client_trace.py b/tests/trace/test_client_trace.py index 857d9b50042..2f444e30198 100644 --- a/tests/trace/test_client_trace.py +++ b/tests/trace/test_client_trace.py @@ -1443,7 +1443,7 @@ def test_named_reuse(client): dataset = weave.ref(d_ref.uri()).get() @weave.op() - async def dummy_score(model_output): + async def dummy_score(output): return 1 class SimpleModel(weave.Model): diff --git a/tests/trace/test_evaluate.py b/tests/trace/test_evaluate.py index f5ada25215f..002ed34fee3 100644 --- a/tests/trace/test_evaluate.py +++ b/tests/trace/test_evaluate.py @@ -4,14 +4,13 @@ import weave from weave import Dataset, Evaluation, Model -from weave.flow.scorer import MultiTaskBinaryClassificationF1 dataset_rows = [{"input": "1 + 2", "target": 3}, {"input": "2**4", "target": 15}] dataset = Dataset(rows=dataset_rows) expected_eval_result = { - "model_output": {"mean": 9.5}, + "output": {"mean": 9.5}, "score": {"true_count": 1, "true_fraction": 0.5}, "model_latency": {"mean": pytest.approx(0, abs=1)}, } @@ -24,8 +23,8 @@ async def predict(self, input) -> str: @weave.op() -def score(target, model_output): - return target == model_output +def score(target, output): + return target == output @weave.op() @@ -57,7 +56,7 @@ async def model_predict(input, target) -> str: ) result = asyncio.run(evaluation.evaluate(model_predict)) assert result == { - "model_output": {"mean": 18.5}, + "output": {"mean": 18.5}, "score": {"true_count": 0, "true_fraction": 0.0}, "model_latency": { "mean": pytest.approx(0, abs=1), @@ -111,8 +110,8 @@ async def infer(self, input) -> str: def test_score_as_class(client): class MyScorer(weave.Scorer): @weave.op() - def score(self, target, model_output): - return target == model_output + def score(self, target, output): + return target == output evaluation = Evaluation( dataset=dataset_rows, @@ -121,7 +120,7 @@ def score(self, target, model_output): model = EvalModel() result = asyncio.run(evaluation.evaluate(model)) assert result == { - "model_output": {"mean": 9.5}, + "output": {"mean": 9.5}, "MyScorer": {"true_count": 1, "true_fraction": 0.5}, "model_latency": { "mean": pytest.approx(0, abs=1), @@ -137,8 +136,8 @@ def summarize(self, score_rows): return {"awesome": 3} @weave.op() - def score(self, target, model_output): - return target == model_output + def score(self, target, output): + return target == output evaluation = Evaluation( dataset=dataset_rows, @@ -147,7 +146,7 @@ def score(self, target, model_output): model = EvalModel() result = asyncio.run(evaluation.evaluate(model)) assert result == { - "model_output": {"mean": 9.5}, + "output": {"mean": 9.5}, "MyScorer": {"awesome": 3}, "model_latency": { "mean": pytest.approx(0, abs=1), @@ -155,27 +154,135 @@ def score(self, target, model_output): } -def test_multiclass_f1_score(client): +@pytest.mark.asyncio +@pytest.mark.parametrize( + "scorers,expected_output_key", + [ + # All scorer styles + ( + ["fn_old", "fn_new", "class_old", "class_new"], + "model_output", + ), + # Only old class style + ( + ["fn_new", "class_old", "class_new"], + "model_output", + ), + # Only old fn style + ( + ["fn_old", "fn_new", "class_new"], + "model_output", + ), + # Only new styles + ( + ["fn_new", "class_new"], + "output", + ), + ], +) +async def test_basic_evaluation_with_scorer_styles( + client, scorers, expected_output_key +): + # Define all possible scorers + @weave.op + def fn_scorer_with_old_style(col_a, col_b, model_output, target): + return col_a + col_b == model_output == target + + @weave.op + def fn_scorer_with_new_style(col_a, col_b, output, target): + return col_a + col_b == output == target + + class ClassScorerWithOldStyle(weave.Scorer): + @weave.op + def score(self, col_a, col_b, model_output, target): + return col_a + col_b == model_output == target + + class ClassScorerWithNewStyle(weave.Scorer): + @weave.op + def score(self, a, b, output, c): + return a + b == output == c + + # Map scorer keys to actual scorer instances + scorer_map = { + "fn_old": fn_scorer_with_old_style, + "fn_new": fn_scorer_with_new_style, + "class_old": ClassScorerWithOldStyle(), + "class_new": ClassScorerWithNewStyle( + column_map={ + "a": "col_a", + "b": "col_b", + "c": "target", + } + ), + } + + dataset = [ + {"col_a": 1, "col_b": 2, "target": 3}, + {"col_a": 1, "col_b": 2, "target": 3}, + {"col_a": 1, "col_b": 2, "target": 3}, + ] + + # Get actual scorer instances based on parameter + actual_scorers = [scorer_map[s] for s in scorers] + evaluation = Evaluation( - dataset=[{"target": {"a": False, "b": True}, "pred": {"a": True, "b": False}}], - scorers=[MultiTaskBinaryClassificationF1(class_names=["a", "b"])], + dataset=dataset, + scorers=actual_scorers, ) - @weave.op() - def return_pred(pred): - return pred + @weave.op + def model(col_a, col_b): + return col_a + col_b - result = asyncio.run(evaluation.evaluate(return_pred)) - assert result == { - "model_output": { - "a": {"true_count": 1, "true_fraction": 1.0}, - "b": {"true_count": 0, "true_fraction": 0.0}, - }, - "MultiTaskBinaryClassificationF1": { - "a": {"f1": 0, "precision": 0.0, "recall": 0}, - "b": {"f1": 0, "precision": 0, "recall": 0.0}, - }, - "model_latency": { - "mean": pytest.approx(0, abs=1), - }, + result = await evaluation.evaluate(model) + assert result.pop("model_latency").get("mean") == pytest.approx(0, abs=1) + + # Build expected result dynamically + expected_result = { + expected_output_key: {"mean": 3.0}, } + scorer_results = { + "fn_old": "fn_scorer_with_old_style", + "fn_new": "fn_scorer_with_new_style", + "class_old": "ClassScorerWithOldStyle", + "class_new": "ClassScorerWithNewStyle", + } + for s in scorers: + expected_result[scorer_results[s]] = {"true_count": 3, "true_fraction": 1.0} + + assert result == expected_result + + # Verify individual prediction outputs + predict_and_score_calls = list(evaluation.predict_and_score.calls()) + assert len(predict_and_score_calls) == 3 + outputs = [c.output for c in predict_and_score_calls] + assert all(o.pop("model_latency") == pytest.approx(0, abs=1) for o in outputs) + + # Build expected output dynamically + expected_output = { + expected_output_key: 3.0, + "scores": {scorer_results[s]: True for s in scorers}, + } + assert all(o == expected_output for o in outputs) + + +@pytest.mark.parametrize( + "scorer_name", + ["my scorer", "my-scorer()*&^%$@#/", "my-scorer", " my scorer "], +) +def test_scorer_name_sanitization(scorer_name): + class MyScorer(weave.Scorer): + name: str + + @weave.op() + def score(self, target, model_output): + return target == model_output + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[MyScorer(name=scorer_name)], + ) + model = EvalModel() + + result = asyncio.run(evaluation.evaluate(model)) + assert result["my-scorer"] == {"true_count": 1, "true_fraction": 0.5} diff --git a/tests/trace/test_evaluate_oldstyle.py b/tests/trace/test_evaluate_oldstyle.py new file mode 100644 index 00000000000..7302674ecdd --- /dev/null +++ b/tests/trace/test_evaluate_oldstyle.py @@ -0,0 +1,201 @@ +import asyncio + +import pytest + +import weave +from weave import Dataset, Evaluation, Model +from weave.scorers import MultiTaskBinaryClassificationF1 + +dataset_rows = [{"input": "1 + 2", "target": 3}, {"input": "2**4", "target": 15}] +dataset = Dataset(rows=dataset_rows) + + +expected_eval_result = { + "model_output": {"mean": 9.5}, + "score_oldstyle": {"true_count": 1, "true_fraction": 0.5}, + "model_latency": {"mean": pytest.approx(0, abs=1)}, +} + + +class EvalModel(Model): + @weave.op() + async def predict(self, input) -> str: + return eval(input) + + +@weave.op() +def score_oldstyle(model_output, target): + return model_output == target + + +@weave.op() +def score_newstyle(output, target): + return output == target + + +@weave.op() +def example_to_model_input(example): + return {"input": example["input"]} + + +def test_evaluate_callable_as_model(client): + @weave.op() + async def model_predict(input) -> str: + return eval(input) + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle], + ) + result = asyncio.run(evaluation.evaluate(model_predict)) + assert result == expected_eval_result + + +def test_predict_can_receive_other_params(client): + @weave.op() + async def model_predict(input, target) -> str: + return eval(input) + target + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle], + ) + result = asyncio.run(evaluation.evaluate(model_predict)) + assert result == { + "model_output": {"mean": 18.5}, + "score_oldstyle": {"true_count": 0, "true_fraction": 0.0}, + "model_latency": { + "mean": pytest.approx(0, abs=1), + }, + } + + +def test_can_preprocess_model_input(client): + @weave.op() + async def model_predict(x) -> str: + return eval(x) + + @weave.op() + def preprocess(example): + return {"x": example["input"]} + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle], + preprocess_model_input=preprocess, + ) + result = asyncio.run(evaluation.evaluate(model_predict)) + assert result == expected_eval_result + + +def test_evaluate_rows_only(client): + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle], + ) + model = EvalModel() + result = asyncio.run(evaluation.evaluate(model)) + assert result == expected_eval_result + + +def test_evaluate_both_styles(client): + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle, score_newstyle], + ) + model = EvalModel() + result = asyncio.run(evaluation.evaluate(model)) + assert result == { + "model_output": {"mean": 9.5}, + "score_oldstyle": {"true_count": 1, "true_fraction": 0.5}, + "score_newstyle": {"true_count": 1, "true_fraction": 0.5}, + "model_latency": {"mean": pytest.approx(0, abs=1)}, + } + + +def test_evaluate_other_model_method_names(): + class EvalModel(Model): + @weave.op() + async def infer(self, input) -> str: + return eval(input) + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[score_oldstyle], + ) + model = EvalModel() + result = asyncio.run(evaluation.evaluate(model)) + assert result == expected_eval_result + + +def test_score_as_class(client): + class MyScorerOldstyle(weave.Scorer): + @weave.op() + def score(self, model_output, target): + return model_output == target + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[MyScorerOldstyle()], + ) + model = EvalModel() + result = asyncio.run(evaluation.evaluate(model)) + assert result == { + "model_output": {"mean": 9.5}, + "MyScorerOldstyle": {"true_count": 1, "true_fraction": 0.5}, + "model_latency": { + "mean": pytest.approx(0, abs=1), + }, + } + + +def test_score_with_custom_summarize(client): + class MyScorerOldstyle(weave.Scorer): + @weave.op() + def summarize(self, score_rows): + assert list(score_rows) == [True, False] + return {"awesome": 3} + + @weave.op() + def score(self, model_output, target): + return model_output == target + + evaluation = Evaluation( + dataset=dataset_rows, + scorers=[MyScorerOldstyle()], + ) + model = EvalModel() + result = asyncio.run(evaluation.evaluate(model)) + assert result == { + "model_output": {"mean": 9.5}, + "MyScorerOldstyle": {"awesome": 3}, + "model_latency": { + "mean": pytest.approx(0, abs=1), + }, + } + + +def test_multiclass_f1_score(client): + evaluation = Evaluation( + dataset=[{"target": {"a": False, "b": True}, "pred": {"a": True, "b": False}}], + scorers=[MultiTaskBinaryClassificationF1(class_names=["a", "b"])], + ) + + @weave.op() + def return_pred(pred): + return pred + + result = asyncio.run(evaluation.evaluate(return_pred)) + assert result == { + "model_output": { + "a": {"true_count": 1, "true_fraction": 1.0}, + "b": {"true_count": 0, "true_fraction": 0.0}, + }, + "MultiTaskBinaryClassificationF1": { + "a": {"f1": 0, "precision": 0.0, "recall": 0}, + "b": {"f1": 0, "precision": 0, "recall": 0.0}, + }, + "model_latency": { + "mean": pytest.approx(0, abs=1), + }, + } diff --git a/tests/trace/test_evaluation_performance.py b/tests/trace/test_evaluation_performance.py index 51aceb0c1e8..8ccd8f9639b 100644 --- a/tests/trace/test_evaluation_performance.py +++ b/tests/trace/test_evaluation_performance.py @@ -91,8 +91,8 @@ def predict(question: str): return "I don't know" @weave.op() - def score(question: str, expected: str, model_output: str): - return model_output == expected + def score(question: str, expected: str, output: str): + return output == expected evaluation = weave.Evaluation( name="My Evaluation", diff --git a/tests/trace/test_evaluations.py b/tests/trace/test_evaluations.py index 7585980ce78..d137a92d4ef 100644 --- a/tests/trace/test_evaluations.py +++ b/tests/trace/test_evaluations.py @@ -9,6 +9,7 @@ import weave from tests.trace.util import AnyIntMatcher from weave import Evaluation, Model +from weave.scorers import Scorer from weave.trace.feedback_types.score import SCORE_TYPE_NAME from weave.trace.weave_client import get_ref from weave.trace_server import trace_server_interface as tsi @@ -45,7 +46,6 @@ class MyModel(Model): @weave.op() def predict(self, question: str): - # Here's where you would add your LLM call and return the output return {"generated_text": "Hello, " + question + self.prompt} @@ -58,12 +58,12 @@ async def do_quickstart(): ] @weave.op() - def match_score1(expected: str, model_output: dict) -> dict: - return {"match": expected == model_output["generated_text"]} + def match_score1(expected: str, output: dict) -> dict: + return {"match": expected == output["generated_text"]} @weave.op() - def match_score2(expected: dict, model_output: dict) -> dict: - return {"match": expected == model_output["generated_text"]} + def match_score2(expected: dict, output: dict) -> dict: + return {"match": expected == output["generated_text"]} model = MyModel(prompt="World") evaluation = Evaluation(dataset=examples, scorers=[match_score1, match_score2]) @@ -192,32 +192,32 @@ def predict(self, question: str): return {"response": res["response"], "confidence": 1 / (len(res) + 1)} -def score_int(expected: str, model_output: dict) -> int: +def score_int(expected: str, output: dict) -> int: matches = 0 - for i in range(min(len(expected), len(model_output["response"]))): - if expected[i] == model_output["response"][i]: + for i in range(min(len(expected), len(output["response"]))): + if expected[i] == output["response"][i]: matches += 1 return matches -def score_float(expected: str, model_output: dict) -> float: - matches = score_int(expected, model_output) - return matches / max(len(expected), len(model_output["response"])) +def score_float(expected: str, output: dict) -> float: + matches = score_int(expected, output) + return matches / max(len(expected), len(output["response"])) -def score_bool(expected: str, model_output: dict) -> bool: - return score_float(expected, model_output) == 1.0 +def score_bool(expected: str, output: dict) -> bool: + return score_float(expected, output) == 1.0 -def score_dict(expected: str, model_output: dict) -> dict: +def score_dict(expected: str, output: dict) -> dict: return { - "d_int": score_int(expected, model_output), - "d_float": score_float(expected, model_output), - "d_bool": score_bool(expected, model_output), + "d_int": score_int(expected, output), + "d_float": score_float(expected, output), + "d_bool": score_bool(expected, output), "d_nested": { - "d_int": score_int(expected, model_output), - "d_float": score_float(expected, model_output), - "d_bool": score_bool(expected, model_output), + "d_int": score_int(expected, output), + "d_float": score_float(expected, output), + "d_bool": score_bool(expected, output), }, "reason": "This is a test reason", } @@ -225,32 +225,32 @@ def score_dict(expected: str, model_output: dict) -> dict: class MyIntScorer(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> int: - return score_int(expected, model_output) + def score(self, expected: str, output: dict) -> int: + return score_int(expected, output) class MyFloatScorer(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> float: - return score_float(expected, model_output) + def score(self, expected: str, output: dict) -> float: + return score_float(expected, output) class MyBoolScorer(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> bool: - return score_bool(expected, model_output) + def score(self, expected: str, output: dict) -> bool: + return score_bool(expected, output) class MyDictScorer(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> dict: - return score_dict(expected, model_output) + def score(self, expected: str, output: dict) -> dict: + return score_dict(expected, output) class MyDictScorerWithCustomFloatSummary(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> dict: - return score_dict(expected, model_output) + def score(self, expected: str, output: dict) -> dict: + return score_dict(expected, output) @weave.op() def summarize(self, score_rows: list) -> Optional[dict]: @@ -260,8 +260,8 @@ def summarize(self, score_rows: list) -> Optional[dict]: class MyDictScorerWithCustomBoolSummary(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> dict: - return score_dict(expected, model_output) + def score(self, expected: str, output: dict) -> dict: + return score_dict(expected, output) @weave.op() def summarize(self, score_rows: list) -> Optional[dict]: @@ -271,8 +271,8 @@ def summarize(self, score_rows: list) -> Optional[dict]: class MyDictScorerWithCustomDictSummary(weave.Scorer): @weave.op() - def score(self, expected: str, model_output: dict) -> dict: - return score_dict(expected, model_output) + def score(self, expected: str, output: dict) -> dict: + return score_dict(expected, output) @weave.op() def summarize(self, score_rows: list) -> Optional[dict]: @@ -393,7 +393,7 @@ async def test_evaluation_data_topology(client): # Prediction Section confidence = 1 / 4 - model_output = { + output = { "response": "A", "confidence": confidence, } @@ -432,7 +432,7 @@ async def test_evaluation_data_topology(client): } # Prediction - assert predict_call.output == model_output + assert predict_call.output == output assert with_empty_feedback(predict_call.summary) == with_empty_feedback( predict_usage ) @@ -457,7 +457,7 @@ async def test_evaluation_data_topology(client): # Predict And Score Group assert predict_and_score_call.output == { - "model_output": model_output, + "output": output, "scores": { "score_int": score_int_score, "score_float": score_float_score, @@ -471,7 +471,7 @@ async def test_evaluation_data_topology(client): } # Summary section - model_output_summary = { + output_summary = { "confidence": {"mean": confidence}, } score_int_auto_summary = {"mean": 1.5} @@ -544,7 +544,7 @@ async def test_evaluation_data_topology(client): "MyDictScorerWithCustomBoolSummary": dict_scorer_bool_summary, "MyDictScorerWithCustomDictSummary": dict_scorer_dict_summary, "model_latency": model_latency, - "model_output": model_output_summary, + "output": output_summary, } ) assert evaluate_call.summary == with_empty_feedback(predict_usage_summary) @@ -566,13 +566,13 @@ async def test_evaluation_data_topology(client): def make_test_eval(): - def function_score(target: dict, model_output: dict) -> dict: - return {"correct": target == model_output} + def function_score(expected: str, output: dict) -> dict: + return {"correct": expected == output["generated_text"]} evaluation = weave.Evaluation( name="fruit_eval", dataset=[ - {"id": "0", "sentence": "a", "target": "b"}, + {"id": "0", "sentence": "a", "expected": "b"}, ], scorers=[function_score], ) @@ -665,7 +665,7 @@ async def test_eval_is_robust_to_missing_values(client): def model_func(model_res) -> dict: return resp[model_res] - def function_score(scorer_res, model_output) -> dict: + def function_score(scorer_res, output) -> dict: return resp[scorer_res] evaluation = weave.Evaluation( @@ -676,7 +676,7 @@ def function_score(scorer_res, model_output) -> dict: res = await evaluation.evaluate(model_func) assert res == { - "model_output": {"a": {"mean": 3.0}, "b": {"c": {"mean": 2.0}}}, + "output": {"a": {"mean": 3.0}, "b": {"c": {"mean": 2.0}}}, "function_score": {"a": {"mean": 3.0}, "b": {"c": {"mean": 2.0}}}, "model_latency": {"mean": pytest.approx(0, abs=1)}, } @@ -715,7 +715,7 @@ def model_func( return text - def function_score(image, dc, model, obj, text, model_output) -> bool: + def function_score(image, dc, model, obj, text, output) -> bool: assert isinstance(image, Image.Image) # Note: when we start recursively saving dataset rows, this will @@ -728,7 +728,7 @@ def function_score(image, dc, model, obj, text, model_output) -> bool: assert isinstance(model, MyModel) assert isinstance(obj, MyObj) assert isinstance(text, str) - assert isinstance(model_output, str) + assert isinstance(output, str) return True @@ -780,6 +780,161 @@ def function_score(image, dc, model, obj, text, model_output) -> bool: @pytest.mark.asyncio +async def test_evaluation_with_column_map(): + # Define a dummy scorer that uses column_map + class DummyScorer(Scorer): + @weave.op() + def score(self, foo: str, bar: str, output: str, target: str) -> dict: + # Return whether foo + bar equals output + return {"match": (foo + bar) == output == target} + + # Create the scorer with column_map mapping 'foo'->'col1', 'bar'->'col2' + dummy_scorer = DummyScorer(column_map={"foo": "col1", "bar": "col2"}) + + @weave.op() + def model_function(col1, col2): + # For testing, return the concatenation of col1 and col2 + return col1 + col2 + + dataset = [ + {"col1": "Hello", "col2": "World", "target": "HelloWorld"}, + {"col1": "Hi", "col2": "There", "target": "HiThere"}, + {"col1": "Good", "col2": "Morning", "target": "GoodMorning"}, + {"col1": "Bad", "col2": "Evening", "target": "GoodEvening"}, + ] + + evaluation = Evaluation(dataset=dataset, scorers=[dummy_scorer]) + + # Run the evaluation + eval_out = await evaluation.evaluate(model_function) + + # Check that 'DummyScorer' is in the results + assert "DummyScorer" in eval_out + + # The expected summary should show that 3 out of 4 predictions matched + expected_results = {"true_count": 3, "true_fraction": 0.75} + assert ( + eval_out["DummyScorer"]["match"] == expected_results + ), "The summary should reflect the correct number of matches" + + +@pytest.mark.asyncio +async def test_evaluation_with_wrong_column_map(): + # Define a dummy scorer that uses column_map + class DummyScorer(Scorer): + @weave.op() + def score(self, foo: str, bar: str, output: str, target: str) -> dict: + # Return whether foo + bar equals output + return {"match": (foo + bar) == output == target} + + @weave.op() + def model_function(col1, col2): + # For testing, return the concatenation of col1 and col2 + return col1 + col2 + + dataset = [ + {"col1": "Hello", "col2": "World", "target": "HelloWorld"}, # True + {"col1": "Hi", "col2": "There", "target": "HiThere"}, # True + {"col1": "Good", "col2": "Morning", "target": "GoodMorning"}, # True + {"col1": "Bad", "col2": "Evening", "target": "GoodEvening"}, # False + ] + + # Test that the column map is correctly used + dummy_scorer = DummyScorer(column_map={"foo": "col1", "bar": "col2"}) + evaluation = Evaluation(dataset=dataset, scorers=[dummy_scorer]) + eval_out = await evaluation.evaluate(model_function) + assert "DummyScorer" in eval_out + assert eval_out["DummyScorer"]["match"] == {"true_count": 3, "true_fraction": 0.75} + + with pytest.raises(ValueError) as excinfo: + # Create the scorer with column_map mapping 'foo'->'col1', 'bar'->'col3' + # this is wrong because col3 does not exist + dummy_scorer = DummyScorer(column_map={"foo": "col1", "bar": "col3"}) + evaluation = Evaluation(dataset=dataset, scorers=[dummy_scorer]) + await evaluation.predict_and_score(model_function, dataset[0]) + assert "which is not in the scorer's argument names" in str(excinfo.value) + + with pytest.raises(ValueError) as excinfo: + # Create the scorer with column_map missing a column + dummy_scorer = DummyScorer(column_map={"foo": "col1"}) + evaluation = Evaluation(dataset=dataset, scorers=[dummy_scorer]) + await evaluation.predict_and_score(model_function, dataset[0]) + assert "is not found in the dataset columns" in str(excinfo.value) + + with pytest.raises(ValueError) as excinfo: + # Create the scorer with wrong argument name + dummy_scorer = DummyScorer(column_map={"jeez": "col1"}) + evaluation = Evaluation(dataset=dataset, scorers=[dummy_scorer]) + await evaluation.predict_and_score(model_function, dataset[0]) + assert "is not found in the dataset columns and is not mapped" in str( + excinfo.value + ) + + +# Define another dummy scorer +@pytest.mark.asyncio +async def test_evaluation_with_multiple_column_maps(): + class DummyScorer(Scorer): + @weave.op() + def score(self, foo: str, bar: str, output: str, target: str) -> dict: + # Return whether foo + bar equals output + return {"match": (foo + bar) == output == target} + + class AnotherDummyScorer(Scorer): + @weave.op() + def score(self, input1: str, input2: str, output: str) -> dict: + # Return whether input1 == output reversed + return {"match": input1 == output[::-1]} + + # First scorer maps 'foo'->'col1', 'bar'->'col2' + dummy_scorer = DummyScorer(column_map={"foo": "col1", "bar": "col2"}) + + # Second scorer maps 'input1'->'col2', 'input2'->'col1' + another_dummy_scorer = AnotherDummyScorer( + column_map={"input1": "col2", "input2": "col1"} + ) + + @weave.op() + def model_function(col1, col2): + # For testing, return the concatenation of col1 and col2 + return col1 + col2 + + dataset = [ + {"col1": "abc", "col2": "def", "target": "abcdef"}, + {"col1": "123", "col2": "456", "target": "1111"}, + {"col1": "xyz", "col2": "zyx", "target": "zzzzzz"}, + ] + + evaluation = Evaluation( + dataset=dataset, scorers=[dummy_scorer, another_dummy_scorer] + ) + + # Run the evaluation + eval_out = await evaluation.evaluate(model_function) + + # Check that both scorers are in the results + assert "DummyScorer" in eval_out + assert "AnotherDummyScorer" in eval_out + + # Assertions for the first scorer + expected_results_dummy = {"true_count": 1, "true_fraction": 1.0 / 3} + assert ( + eval_out["DummyScorer"]["match"] == expected_results_dummy + ), "All concatenations should match the target" + + # Assertions for the second scorer + # Since input1 == col2, and output is col1 + col2, we check if col2 == (col1 + col2)[::-1] + # Evaluate manually: + # First row: col2 = "def", output = "abcdef", output[::-1] = "fedcba" -> "def" != "fedcba" + # Second row: col2 = "456", output = "123456", output[::-1] = "654321" -> "456" != "654321" + # Third row: col2 = "zyx", output = "xyzzyx", output[::-1] = "xyzzyx" -> "zyx" == "xyzzyx" is False + # So all matches are False + expected_results_another_dummy = {"true_count": 0, "true_fraction": 0.0} + assert ( + eval_out["AnotherDummyScorer"]["match"] == expected_results_another_dummy + ), "No matches should be found for AnotherDummyScorer" + + async def test_feedback_is_correctly_linked(client): @weave.op def predict(text: str) -> str: diff --git a/tests/trace/test_prompt.py b/tests/trace/test_prompt.py new file mode 100644 index 00000000000..98bb731d076 --- /dev/null +++ b/tests/trace/test_prompt.py @@ -0,0 +1,23 @@ +from weave.flow.prompt.prompt import MessagesPrompt, StringPrompt + + +def test_stringprompt_format(): + class MyPrompt(StringPrompt): + def format(self, **kwargs) -> str: + return "Imagine a lot of complicated logic build this string." + + prompt = MyPrompt() + assert prompt.format() == "Imagine a lot of complicated logic build this string." + + +def test_messagesprompt_format(): + class MyPrompt(MessagesPrompt): + def format(self, **kwargs) -> list: + return [ + {"role": "user", "content": "What's 23 * 42"}, + ] + + prompt = MyPrompt() + assert prompt.format() == [ + {"role": "user", "content": "What's 23 * 42"}, + ] diff --git a/tests/trace/test_prompt_easy.py b/tests/trace/test_prompt_easy.py new file mode 100644 index 00000000000..6d01db92a9f --- /dev/null +++ b/tests/trace/test_prompt_easy.py @@ -0,0 +1,260 @@ +import itertools + +import pytest + +from weave import EasyPrompt + + +def iter_equal(items1, items2): + """`True` if iterators `items1` and `items2` contain equal items.""" + return (items1 is items2) or all( + a == b for a, b in itertools.zip_longest(items1, items2, fillvalue=object()) + ) + + +def test_prompt_message_constructor_str(): + prompt = EasyPrompt("What's 23 * 42") + assert prompt() == [{"role": "user", "content": "What's 23 * 42"}] + + +def test_prompt_message_constructor_prefix_str(): + prompt = EasyPrompt("system: you are a pirate") + assert prompt() == [{"role": "system", "content": "you are a pirate"}] + + +def test_prompt_message_constructor_role_arg(): + prompt = EasyPrompt("You're a calculator.", role="system") + assert prompt() == [{"role": "system", "content": "You're a calculator."}] + + +def test_prompt_message_constructor_array(): + prompt = EasyPrompt( + [ + {"role": "system", "content": "You're a calculator."}, + {"role": "user", "content": "What's 23 * 42"}, + ] + ) + assert prompt() == [ + {"role": "system", "content": "You're a calculator."}, + {"role": "user", "content": "What's 23 * 42"}, + ] + + +def test_prompt_message_constructor_obj(): + prompt = EasyPrompt( + name="myprompt", + model="gpt-4o", + messages=[ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ], + temperature=0.8, + max_tokens=64, + top_p=1, + ) + assert prompt() == [ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ] + assert prompt.config == { + "model": "gpt-4o", + "temperature": 0.8, + "max_tokens": 64, + "top_p": 1, + } + + +def test_prompt_append() -> None: + prompt = EasyPrompt() + prompt.append("You are a helpful assistant.", role="system") + prompt.append("system: who knows a lot about geography") + prompt.append( + """ + What's the capital of Brazil? + """, + dedent=True, + ) + assert prompt() == [ + {"role": "system", "content": "You are a helpful assistant."}, + {"role": "system", "content": "who knows a lot about geography"}, + {"role": "user", "content": "What's the capital of Brazil?"}, + ] + + +def test_prompt_append_with_role() -> None: + prompt = EasyPrompt() + prompt.append("system: who knows a lot about geography", role="asdf") + assert prompt() == [ + {"role": "asdf", "content": "system: who knows a lot about geography"}, + ] + + +def test_prompt_unbound_iteration() -> None: + """We don't error - is that the right behavior?""" + prompt = EasyPrompt("Tell me about {x}, {y}, and {z}. Especially {z}.") + prompt.bind(y="strawberry") + assert prompt.placeholders == ["x", "y", "z"] + assert not prompt.is_bound + assert prompt.unbound_placeholders == ["x", "z"] + assert list(prompt()) == [ + { + "role": "user", + "content": "Tell me about {x}, strawberry, and {z}. Especially {z}.", + } + ] + prompt.bind(x="vanilla", z="chocolate") + assert prompt.is_bound + assert prompt.unbound_placeholders == [] + assert list(prompt()) == [ + { + "role": "user", + "content": "Tell me about vanilla, strawberry, and chocolate. Especially chocolate.", + } + ] + + +def test_prompt_format_specifiers() -> None: + prompt = EasyPrompt("{x:.5}") + assert prompt.placeholders == ["x"] + assert prompt(x=3.14159)[0]["content"] == "3.1416" + + +def test_prompt_parameter_default() -> None: + prompt = EasyPrompt("{A} * {B}") + prompt.require("A", default=23) + prompt.require("B", default=42) + assert list(prompt()) == [{"role": "user", "content": "23 * 42"}] + + +def test_prompt_parameter_validation_int() -> None: + prompt = EasyPrompt("{A} + {B}") + prompt.require("A", min=10, max=100) + with pytest.raises(ValueError) as e: + prompt.bind(A=0) + assert str(e.value) == "A (0) is less than min (10)" + + +def test_prompt_parameter_validation_oneof() -> None: + prompt = EasyPrompt("{flavor}") + prompt.require("flavor", oneof=("vanilla", "strawberry", "chocolate")) + with pytest.raises(ValueError) as e: + prompt.bind(flavor="mint chip") + assert ( + str(e.value) + == "flavor (mint chip) must be one of vanilla, strawberry, chocolate" + ) + + +def test_prompt_bind_iteration() -> None: + """Iterating over a prompt should return messages with placeholders filled in.""" + prompt = EasyPrompt( + model="gpt-4o", + messages=[ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + {"role": "user", "content": "{sentence}"}, + ], + temperature=0.8, + max_tokens=64, + top_p=1, + ).bind(sentence="Artificial intelligence is a technology with great promise.") + desired = [ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ] + assert iter_equal(prompt, iter(desired)) + + +def test_prompt_as_dict(): + prompt = EasyPrompt( + model="gpt-4o", + messages=[ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ], + temperature=0.8, + max_tokens=64, + top_p=1, + ) + assert prompt.as_dict() == { + "model": "gpt-4o", + "temperature": 0.8, + "max_tokens": 64, + "top_p": 1, + "messages": [ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ], + } + + +def test_prompt_as_pydantic_dict(): + prompt = EasyPrompt( + model="gpt-4o", + messages=[ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ], + temperature=0.8, + max_tokens=64, + top_p=1, + ) + assert prompt.as_pydantic_dict() == { + "name": None, + "description": None, + "config": { + "model": "gpt-4o", + "temperature": 0.8, + "max_tokens": 64, + "top_p": 1, + }, + "data": [ + { + "role": "system", + "content": "You will be provided with text, and your task is to translate it into emojis. Do not use any regular text. Do your best with emojis only.", + }, + { + "role": "user", + "content": "Artificial intelligence is a technology with great promise.", + }, + ], + "requirements": {}, + } diff --git a/tests/trace/test_weave_client.py b/tests/trace/test_weave_client.py index 95866e3ea5c..6f0af63d103 100644 --- a/tests/trace/test_weave_client.py +++ b/tests/trace/test_weave_client.py @@ -754,8 +754,8 @@ async def model_predict(input) -> str: dataset_rows = [{"input": "1 + 2", "target": 3}, {"input": "2**4", "target": 15}] @weave.op() - async def score(target, model_output): - return target == model_output + async def score(target, output): + return target == output evaluation = Evaluation( name="my-eval", @@ -764,7 +764,7 @@ async def score(target, model_output): ) result = asyncio.run(evaluation.evaluate(model_predict)) expected_eval_result = { - "model_output": {"mean": 9.5}, + "output": {"mean": 9.5}, "score": {"true_count": 1, "true_fraction": 0.5}, } assert result == expected_eval_result @@ -864,8 +864,8 @@ def test_nested_ref_is_inner(client): dataset_rows = [{"input": "1 + 2", "target": 3}, {"input": "2**4", "target": 15}] @weave.op() - async def score(target, model_output): - return target == model_output + async def score(target, output): + return target == output evaluation = Evaluation( name="my-eval", diff --git a/weave-js/package.json b/weave-js/package.json index fd4ae47bf23..d925f9d0a42 100644 --- a/weave-js/package.json +++ b/weave-js/package.json @@ -161,6 +161,7 @@ "@types/color": "^3.0.0", "@types/cytoscape": "^3.2.0", "@types/cytoscape-dagre": "^2.2.2", + "@types/d3-array": "^3.2.1", "@types/diff": "^5.0.3", "@types/downloadjs": "^1.4.2", "@types/is-buffer": "^2.0.0", diff --git a/weave-js/src/assets/icons/icon-enter-return.svg b/weave-js/src/assets/icons/icon-enter-return.svg new file mode 100644 index 00000000000..ffcf6e4f0e5 --- /dev/null +++ b/weave-js/src/assets/icons/icon-enter-return.svg @@ -0,0 +1,3 @@ + + + diff --git a/weave-js/src/assets/icons/icon-marker.svg b/weave-js/src/assets/icons/icon-marker.svg new file mode 100644 index 00000000000..d142990e86a --- /dev/null +++ b/weave-js/src/assets/icons/icon-marker.svg @@ -0,0 +1,5 @@ + + + + + diff --git a/weave-js/src/assets/icons/icon-reload-refresh.svg b/weave-js/src/assets/icons/icon-reload-refresh.svg new file mode 100644 index 00000000000..f6c97a6a71c --- /dev/null +++ b/weave-js/src/assets/icons/icon-reload-refresh.svg @@ -0,0 +1,3 @@ + + + diff --git a/weave-js/src/assets/icons/icon-sandbox-playground.svg b/weave-js/src/assets/icons/icon-sandbox-playground.svg new file mode 100644 index 00000000000..0fe4a7234f9 --- /dev/null +++ b/weave-js/src/assets/icons/icon-sandbox-playground.svg @@ -0,0 +1,3 @@ + + + diff --git a/weave-js/src/assets/icons/icon-swap.svg b/weave-js/src/assets/icons/icon-swap.svg new file mode 100644 index 00000000000..86c8353d4fd --- /dev/null +++ b/weave-js/src/assets/icons/icon-swap.svg @@ -0,0 +1,4 @@ + + + + diff --git a/weave-js/src/common/components/Markdown.tsx b/weave-js/src/common/components/Markdown.tsx index 70c647642e2..733b4367ae2 100644 --- a/weave-js/src/common/components/Markdown.tsx +++ b/weave-js/src/common/components/Markdown.tsx @@ -105,10 +105,15 @@ const Markdown: React.FC = ({ updateHeight(); }, [html, updateHeight]); + // The `tw-eject` class is used to optionally eject from `.tw-style` resets if this component happens to be rendered with a `.tw-style` parent in the tree + // see: src/wandbTailwindPreflight.css return ( -
+
{ + test('should fire the callback', () => { + let x = 0; + const cb = () => { + x = 1; + }; + const samplingRate = 0.5; + const randomNum = 0.3; + + fireOnRandom(cb, samplingRate, randomNum); + + expect(x).toBe(1); + }); + + test('should not fire the callback', () => { + let x = 0; + const cb = () => { + x = 1; + }; + const samplingRate = 0.5; + const randomNum = 0.7; + + fireOnRandom(cb, samplingRate, randomNum); + + expect(x).toBe(0); + }); + test('should throw on a bad sampling rate', () => { + const cb = () => {}; + const samplingRate = 1.5; + const randomNum = 0.7; + + expect(() => { + fireOnRandom(cb, samplingRate, randomNum); + }).toThrow(); + }); +}); diff --git a/weave-js/src/common/components/WandbLoader.tsx b/weave-js/src/common/components/WandbLoader.tsx index ab662081cc1..4bb16ebf2e2 100644 --- a/weave-js/src/common/components/WandbLoader.tsx +++ b/weave-js/src/common/components/WandbLoader.tsx @@ -2,6 +2,7 @@ * with an upgrade of react-spring, so we've switched back to the semantic loader. * The react-spring version also used 100% cpu, we should use an animated gif * instead if we want a custom loader */ +import {WaveLoader} from '@wandb/weave/components/Loaders/WaveLoader'; import React from 'react'; import {Loader, StrictLoaderProps} from 'semantic-ui-react'; @@ -17,6 +18,9 @@ export interface WandbLoaderProps extends StrictLoaderProps { size?: StrictLoaderProps['size']; } +/** + * @deprecated use the new wave loader instead + */ const WandbLoader: React.FC = React.memo( ({className, inline, size = 'huge'}) => { return ; @@ -25,11 +29,17 @@ const WandbLoader: React.FC = React.memo( export default WandbLoader; -export interface TrackedWandbLoaderProps extends WandbLoaderProps { +export type TrackedWandbLoaderProps = { /* Log the exception to an external service */ captureException?: (error: unknown) => void; /* A unique name so we can differentiate between the loaders */ name: string; + /* the sampling rate as a percentage, defaults to 10% */ + samplingRate?: number; + /* Optional callback fired when finished loading */ + onComplete?(name: string, data: Record | undefined): void; + /* Optional callback fired when started loading */ + onStart?(name: string): void; /** * Run an optional callback that returns an object with additional fields to * send to the analytics platform. Useful for getting lifecycle data from the @@ -38,15 +48,23 @@ export interface TrackedWandbLoaderProps extends WandbLoaderProps { * keeps us from needing to wire this component up that data store */ profilingCb?: () => Record; - /* the sampling rate as a percentage, defaults to 10% */ - samplingRate?: number; /* Tell me you're a Segment .track() event without telling me about Segment */ track: (eventName: string, data: Record | undefined) => void; - /* Optional callback fired when finished loading */ - onComplete?(name: string, data: Record | undefined): void; - /* Optional callback fired when started loading */ - onStart?(name: string): void; -} +}; + +export const fireOnRandom = ( + cb: () => void, + samplingRate: number, + randomNum: number = Math.random() +) => { + if (samplingRate > 1 || samplingRate < 0) { + throw new Error('Sampling rate must be between 0 and 1'); + } + + if (randomNum < samplingRate) { + cb(); + } +}; export const TrackedWandbLoader = ({ captureException, @@ -57,7 +75,7 @@ export const TrackedWandbLoader = ({ onComplete, onStart, ...props -}: TrackedWandbLoaderProps) => { +}: TrackedWandbLoaderProps & WandbLoaderProps) => { useLifecycleProfiling( name, (data: ProfileData) => { @@ -72,10 +90,9 @@ export const TrackedWandbLoader = ({ if (onComplete) { onComplete(name, trackedData); } - const randomNum = Number(Math.random().toString().slice(-2)); // take the last two digits off a random number - if (randomNum <= samplingRate * 100) { + fireOnRandom(() => { track('wandb-loader-onscreen', trackedData); - } + }, samplingRate); } catch (e) { // Tracking should be able to fail gracefully without breaking the app captureException?.(e); @@ -86,3 +103,43 @@ export const TrackedWandbLoader = ({ return ; }; + +export const TrackedWaveLoader = ({ + captureException, + name, + profilingCb, + samplingRate = 0.1, + track, + onComplete, + onStart, + size, +}: TrackedWandbLoaderProps & { + size: 'small' | 'huge'; +}) => { + useLifecycleProfiling( + name, + (data: ProfileData) => { + try { + // log the lifecycle for each loader to segment + const additionalData = profilingCb ? profilingCb() : {}; + const trackedData = { + componentId: data.id, + duration: data.duration, + ...additionalData, + }; + if (onComplete) { + onComplete(name, trackedData); + } + fireOnRandom(() => { + track('wandb-loader-onscreen', trackedData); + }, samplingRate); + } catch (e) { + // Tracking should be able to fail gracefully without breaking the app + captureException?.(e); + } + }, + onStart + ); + + return ; +}; diff --git a/weave-js/src/common/css/Base.less b/weave-js/src/common/css/Base.less index 5d0fd20d2ee..713c883f388 100644 --- a/weave-js/src/common/css/Base.less +++ b/weave-js/src/common/css/Base.less @@ -11,225 +11,235 @@ @import './fonts/source-sans-pro.css'; @font-face { - font-family: 'Inconsolata'; - font-style: normal; - font-weight: 400; - src: url('../assets/fonts/inconsolata-v19-latin-regular.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */ - url('../assets/fonts/inconsolata-v19-latin-regular.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */ + font-family: 'Inconsolata'; + font-style: normal; + font-weight: 400; + src: url('../assets/fonts/inconsolata-v19-latin-regular.woff2') + format('woff2'), + /* Chrome 26+, Opera 23+, Firefox 39+ */ + url('../assets/fonts/inconsolata-v19-latin-regular.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */ } @font-face { - font-family: 'Source Serif Pro'; - font-style: normal; - font-weight: 400; - src: local('Source Serif Pro'), local('SourceSerifPro-Regular'), - url('../assets/fonts/source-serif-pro-v7-latin-regular.woff2') format('woff2'), /* Chrome 26+, Opera 23+, Firefox 39+ */ - url('../assets/fonts/source-serif-pro-v7-latin-regular.woff') format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */ + font-family: 'Source Serif Pro'; + font-style: normal; + font-weight: 400; + src: local('Source Serif Pro'), local('SourceSerifPro-Regular'), + url('../assets/fonts/source-serif-pro-v7-latin-regular.woff2') + format('woff2'), + /* Chrome 26+, Opera 23+, Firefox 39+ */ + url('../assets/fonts/source-serif-pro-v7-latin-regular.woff') + format('woff'); /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */ } // override line height in icon generation -i[class^="wbic-"]:before, i[class*=" wbic-"]:before { - line-height: inherit; +i[class^='wbic-']:before, +i[class*=' wbic-']:before { + line-height: inherit; } -i[class^="wbic-"], i[class*=" wbic-"], [class^="wbic-"], [class*=" wbic-"] { - /* use !important to prevent issues with browser extensions that change fonts */ - font-family: 'wb-icons' !important; - speak: never; - font-style: normal; - font-weight: normal; - font-variant: normal; - text-transform: none; - line-height: 1; - - /* Better Font Rendering =========== */ - -webkit-font-smoothing: antialiased; - -moz-osx-font-smoothing: grayscale; - } +i[class^='wbic-'], +i[class*=' wbic-'], +[class^='wbic-'], +[class*=' wbic-'] { + /* use !important to prevent issues with browser extensions that change fonts */ + font-family: 'wb-icons' !important; + speak: never; + font-style: normal; + font-weight: normal; + font-variant: normal; + text-transform: none; + line-height: 1; + /* Better Font Rendering =========== */ + -webkit-font-smoothing: antialiased; + -moz-osx-font-smoothing: grayscale; +} @panelFadeTime: 0.1s; .app-root { - display: flex; - min-height: 100vh; - flex-direction: column; + display: flex; + min-height: 100vh; + flex-direction: column; } .app-root .main { - flex: 1; - /* + flex: 1; + /* the footer appears in the middle in ie11 because flex behaves differently in chrome and ie11 flex-basis: auto on main will fix it https://stackoverflow.com/a/39193253 https://imgur.com/dbA8U2Y this is what it looks like in ie11 without flex-basis:auto */ - flex-basis: auto; - background-color: @gray50; - position: relative; + flex-basis: auto; + background-color: @gray50; + position: relative; } .confusion-matrix { - tr { - min-height: 50px; - } - td, - th { - padding: 5px; - } - td { - min-width: 50px; - min-height: 50px; - text-align: right; - } - /* + tr { + min-height: 50px; + } + td, + th { + padding: 5px; + } + td { + min-width: 50px; + min-height: 50px; + text-align: right; + } + /* .labels { background: #eaeaea; } */ - .pr { - background: #eee; - } + .pr { + background: #eee; + } } pre.instructions { - background-color: #555 !important; - padding: 9px; - border-radius: 5px; - margin: 0 !important; + background-color: #555 !important; + padding: 9px; + border-radius: 5px; + margin: 0 !important; } .ui.text.container .ReactTable .rt-table { - /* Because it's borked in Safari... */ - flex: 1 1 auto; + /* Because it's borked in Safari... */ + flex: 1 1 auto; } img.logo.inverted { - filter: invert(80%); + filter: invert(80%); } .ui.vertical.segment.footer { - /* Text color overridden by .ui.link.list a.item */ - color: #888 !important; - background-color: white !important; - padding: 16px; + /* Text color overridden by .ui.link.list a.item */ + color: #888 !important; + background-color: white !important; + padding: 16px; } -.model .ui.mini.statistics .statistic>.value, -.model .ui.mini.statistics .statistic>.label { - color: #888; - font-size: 1rem !important; - font-family: monospace; +.model .ui.mini.statistics .statistic > .value, +.model .ui.mini.statistics .statistic > .label { + color: #888; + font-size: 1rem !important; + font-family: monospace; } .model .item .content .description { - max-height: 250px; - overflow: auto; + max-height: 250px; + overflow: auto; } .model .item .content .description pre { - max-width: none; + max-width: none; } .model .item .content .description.markdown { - max-height: none; + max-height: none; } .top.menu .ui.dropdown { - margin: 8px 0; + margin: 8px 0; } body .ui.table tr.active { - background-color: #e5f9e7 !important; + background-color: #e5f9e7 !important; } .ui.positive.button { - background-color: @success; - color: @white; - text-shadow: none; - background-image: none; - border: none; + background-color: @success; + color: @white; + text-shadow: none; + background-image: none; + border: none; } - html { - height: 948px; + height: 948px; } -html>body { - font-size: @fontSizeStandard; - line-height: @lineHeightStandard; - letter-spacing: 0.1px; - -webkit-font-smoothing: antialiased; - -moz-osx-font-smoothing: grayscale; +html > body { + font-size: @fontSizeStandard; + line-height: @lineHeightStandard; + letter-spacing: 0.1px; + -webkit-font-smoothing: antialiased; + -moz-osx-font-smoothing: grayscale; } body .input-style { - border: 1px solid rgba(34, 36, 38, 0.15); - padding: 0 8px 8px 8px; - border-radius: 0.29rem; + border: 1px solid rgba(34, 36, 38, 0.15); + padding: 0 8px 8px 8px; + border-radius: 0.29rem; } -body.blurring.dimmed.dimmable> :not(.dimmer) { - -webkit-filter: blur(3px) grayscale(0.1); - /* transition: filter 4s linear; */ - filter: blur(3px) grayscale(0.1); +body.blurring.dimmed.dimmable > :not(.dimmer) { + -webkit-filter: blur(3px) grayscale(0.1); + /* transition: filter 4s linear; */ + filter: blur(3px) grayscale(0.1); } -body.blurring.dimmable>.dimmer { - background-color: rgba(0, 0, 0, 0.1); +body.blurring.dimmable > .dimmer { + background-color: rgba(0, 0, 0, 0.1); } .ui { - button, input, optgroup, select, textarea { - font-family: @fontName; - } + button, + input, + optgroup, + select, + textarea { + font-family: @fontName; + } } -body .ui.grid>.column:not(.row) { - padding-top: 0.5rem; - padding-bottom: 0.5rem; +body .ui.grid > .column:not(.row) { + padding-top: 0.5rem; + padding-bottom: 0.5rem; } .fullScreen .fixed.menu .item:not(.logo) { - display: none; + display: none; } .fullScreen .fixed.menu .dropdown { - display: none; + display: none; } .fullScreen .secondary.menu { - display: none; + display: none; } #root .fullScreen .menu .item .logo { - width: 14em; - padding: -10px 0; + width: 14em; + padding: -10px 0; } #root .fullScreen .menu .exitFullScreen { - display: none; + display: none; } #root .fullScreen .menu:hover .exitFullScreen { - display: inline; + display: inline; } body .ui.dropdown .menu .selected.item, .ui.dropdown.selected { - background: rgba(0, 0, 0, 0.1); + background: rgba(0, 0, 0, 0.1); } .ui.selection.dropdown.with-button { - border-top-right-radius: 0 !important; - border-bottom-right-radius: 0 !important; - &+.ui.icon.button { - border-top-left-radius: 0px; - border-bottom-left-radius: 0px; - } + border-top-right-radius: 0 !important; + border-bottom-right-radius: 0 !important; + & + .ui.icon.button { + border-top-left-radius: 0px; + border-bottom-left-radius: 0px; + } } - // This is the central location for all zIndices so we have a clear indication // of where conflicts arrive when doing edits // @@ -242,68 +252,68 @@ body .ui.dropdown .menu .selected.item, // intercom z-index= 2147483000 // max z-index 2147483647 .ui.dimmer { - z-index: 2147483605; + z-index: 2147483605; } // vg-tooltip is the Vega tooltip -.ui.popup, .vg-tooltip, #vg-tooltip-element { - z-index: 2147483606; +.ui.popup, +.vg-tooltip, +#vg-tooltip-element { + z-index: 2147483606; } .Toastify .toast-container { - z-index: 2147483606; + z-index: 2147483606; } - /* These fix the loader when shown in a modal https://github.com/Semantic-Org/Semantic-UI/issues/4014 */ - .ui.dimmer .ui.modal .ui.loader { - color: #333; + color: #333; } .ui.dimmer .ui.modal .ui.loader:before { - border-color: rgba(0, 0, 0, 0.1); + border-color: rgba(0, 0, 0, 0.1); } .ui.dimmer .ui.modal .ui.loader:after { - border-color: #767676 transparent transparent; + border-color: #767676 transparent transparent; } .ui.loader { - // This prevents loaders from bleeding through - // the expanded WBTable--hopefully it doesn't - // cause any hidden loaders - z-index: 50 !important; + // This prevents loaders from bleeding through + // the expanded WBTable--hopefully it doesn't + // cause any hidden loaders + z-index: 50 !important; } // An option to pass to the loader to not make it show above all content .flat-loader.flat-loader { - z-index: 0 !important + z-index: 0 !important; } .fill { - height: 100%; - position: relative; + height: 100%; + position: relative; } a { - cursor: pointer; + cursor: pointer; } a.danger, a.danger:hover { - color: @error; + color: @error; } button.link { - background: none !important; - color: inherit; - border: none; - padding: 0 !important; - font: inherit; - cursor: pointer; + background: none !important; + color: inherit; + border: none; + padding: 0 !important; + font: inherit; + cursor: pointer; } .button__hoverable { @@ -315,312 +325,305 @@ button.link { } } - .ui.modal { - .panel-media, - .audio-card { - margin: 0; - min-height: 200px; - position: relative; - } - .panel-header h3 { - display: none; - } + .panel-media, + .audio-card { + margin: 0; + min-height: 200px; + position: relative; + } + .panel-header h3 { + display: none; + } } .ui.big.breadcrumb { - font-weight: 400; - word-break: break-all; + font-weight: 400; + word-break: break-all; } - .ui.modal { - .panel-media, - .audio-card { - margin: 0; - min-height: 200px; - position: relative; - } - .panel-header h3 { - display: none; - } + .panel-media, + .audio-card { + margin: 0; + min-height: 200px; + position: relative; + } + .panel-header h3 { + display: none; + } } - .main { - margin-top: @navbarHeight; + margin-top: @navbarHeight; } /* new panel style, with options menu */ .panel-title { - text-align: center; - text-overflow: ellipsis; - overflow: hidden; - white-space: nowrap; - font-weight: 600; - font-size: 14px; - margin: 0 0 3px; - font-family: @fontName; - line-height: 16px; + text-align: center; + text-overflow: ellipsis; + overflow: hidden; + white-space: nowrap; + font-weight: 600; + font-size: 14px; + margin: 0 0 3px; + font-family: @fontName; + line-height: 16px; } .panel-title.small { - font-size: 14px; - line-height: 16px; + font-size: 14px; + line-height: 16px; } .panel-title.medium { - font-size: 18px; - line-height: 20px; + font-size: 18px; + line-height: 20px; } .panel-title.large { - font-size: 24px; - line-height: 26px; + font-size: 24px; + line-height: 26px; } - .panel-grid { - &.ui.grid.run-system-metrics { - padding: 8px; - &.ui.grid>.column:not(.row), - &.ui.grid>.row>.column { - padding: 8px; - } + &.ui.grid.run-system-metrics { + padding: 8px; + &.ui.grid > .column:not(.row), + &.ui.grid > .row > .column { + padding: 8px; } - &.ui.grid { - margin: 0; + } + &.ui.grid { + margin: 0; + } + &.ui.grid > .row { + padding: 0 10px; + } + &.ui.grid > .column:not(.row), + &.ui.grid > .row > .column { + padding: 6px; + } + .pinned-panel .hide-in-pinned-panel, + .unpinned-panel .hide-in-unpinned-panel { + display: none; + } + .unpinned-panel { + // to create new stacking context for fixed children + transform: translateX(0); + // to enable z-index + position: relative; + .panel-header { + min-height: 0; } - &.ui.grid>.row { - padding: 0 10px; + .panel-media { + margin: 0 -15px -10px; + max-height: 500px; } - &.ui.grid>.column:not(.row), - &.ui.grid>.row>.column { - padding: 6px; + } + .unpinned-panel .line-plot-legend { + max-height: 52px; + overflow-y: auto; + word-wrap: break-word; + // Hide scrollbars + &::-webkit-scrollbar { + display: none; } - .pinned-panel .hide-in-pinned-panel, - .unpinned-panel .hide-in-unpinned-panel { - display: none; + -ms-overflow-style: none; /* IE and Edge */ + scrollbar-width: none; /* Firefox */ + } + .unpinned-panel { + padding: 20px 14px 10px; + } + .unpinned-panel, + .react-grid-item.panel { + // TODO: Add transition for fading panels + border: 1px solid @border; + border-radius: 3px; + height: 322px; + display: flex; + flex-direction: column; + background-color: @white; + transition: box-shadow 0.3s, margin-top 0.3s; + &:hover { + // A hack to make the crosshair flag of the + // hovered panel appear over other panels. + // I can't just change the z-index of the flag + // because of stacking contexts. + z-index: 100; + .line-plot-flag { + visibility: hidden; + } + .line-plot-flag-escaping { + display: block !important; + } } - .unpinned-panel { - // to create new stacking context for fixed children - transform: translateX(0); - // to enable z-index - position: relative; - .panel-header { - min-height: 0; - } - .panel-media { - margin: 0 -15px -10px; - max-height: 500px; - } + cursor: default; + // padding: 20px 14px 10px; + .react-resizable-handle { + background: none; } - .unpinned-panel .line-plot-legend { - max-height: 52px; - overflow-y: auto; - word-wrap: break-word; - // Hide scrollbars - &::-webkit-scrollbar { - display: none; - } - -ms-overflow-style: none; /* IE and Edge */ - scrollbar-width: none; /* Firefox */ + .react-resizable-handle::after { + border-color: transparent; } - .unpinned-panel { - padding: 20px 14px 10px; + &:hover { + border: 1px solid darken(@border, 5%); + .react-resizable-handle::after { + border-color: initial; + } } - .unpinned-panel, - .react-grid-item.panel { - // TODO: Add transition for fading panels - border: 1px solid @border; - border-radius: 3px; - height: 322px; - display: flex; - flex-direction: column; - background-color: @white; - transition: box-shadow .3s, margin-top .3s; - &:hover { - // A hack to make the crosshair flag of the - // hovered panel appear over other panels. - // I can't just change the z-index of the flag - // because of stacking contexts. - z-index: 100; - .line-plot-flag { - visibility: hidden; - } - .line-plot-flag-escaping { - display: block !important; - } - } - cursor: default; - // padding: 20px 14px 10px; - .react-resizable-handle { - background: none; - } - .react-resizable-handle::after { - border-color: transparent; - } - &:hover { - border: 1px solid darken(@border, 5%); - .react-resizable-handle::after { - border-color: initial; - } - } - &.react-draggable-dragging { - // transform: translateY(-80px); - margin-top: -4px; - box-shadow: 0 12px 16px 0 rgba(0, 0, 0, 0.08); - transition: box-shadow .3s, margin-top .3s; - border-color: darken(@gray400, 5%); - } - &.resizing { - border-color: darken(@gray400, 5%); - } + &.react-draggable-dragging { + // transform: translateY(-80px); + margin-top: -4px; + box-shadow: 0 12px 16px 0 rgba(0, 0, 0, 0.08); + transition: box-shadow 0.3s, margin-top 0.3s; + border-color: darken(@gray400, 5%); } - .panel-grid-pagination { - text-align: center; + &.resizing { + border-color: darken(@gray400, 5%); } + } + .panel-grid-pagination { + text-align: center; + } } - .ui.accordion.full-page-accordion { - .title:not(.ui) { - padding: 12px; - i.icon { - margin-right: 4px; - } - &:hover { - background: none; - } + .title:not(.ui) { + padding: 12px; + i.icon { + margin-right: 4px; } - .accordion.accordion-secondary { - margin-top: 24px; - .title:not(.ui) { - &:hover { - color: @primaryText; - } - } - &>.content:not(.ui).active { - padding-top: 0; - } + &:hover { + background: none; } - &>.content { - padding: 0 36px !important; - margin-bottom: 32px; + } + .accordion.accordion-secondary { + margin-top: 24px; + .title:not(.ui) { + &:hover { + color: @primaryText; + } + } + & > .content:not(.ui).active { + padding-top: 0; } + } + & > .content { + padding: 0 36px !important; + margin-bottom: 32px; + } } .icon.pin-button { - color: @gray500; - cursor: pointer; - position: absolute; - font-size: 1.5em; - top: 18px; - right: 10px; - z-index: 105; - &.pinned { - color: @darkBlue; - } + color: @gray500; + cursor: pointer; + position: absolute; + font-size: 1.5em; + top: 18px; + right: 10px; + z-index: 105; + &.pinned { + color: @darkBlue; + } } .panel-picker .panel-grid.ui.grid.doubling.stackable > .row > .column { - // override crazy specific semantic column padding - padding: 6px !important; + // override crazy specific semantic column padding + padding: 6px !important; } .panel-picker { - .panel-grid.ui.grid > .row { - padding: 0; - margin-top: 0; + .panel-grid.ui.grid > .row { + padding: 0; + margin-top: 0; + } + .column { + .pin-button { + transition: transform 0.2s; } - .column { - .pin-button { - transition: transform .2s; - } - .pin-button:not(.pinned) { - opacity: 0; - } - .pin-button.pinned { - transform: rotate(-45deg) translateX(-4px); - } - .unpinned-panel { - border: 1px solid transparent; - } + .pin-button:not(.pinned) { + opacity: 0; + } + .pin-button.pinned { + transform: rotate(-45deg) translateX(-4px); + } + .unpinned-panel { + border: 1px solid transparent; + } + &:hover { + > .pin-button { + opacity: 1; &:hover { - >.pin-button { - opacity: 1; - &:hover { - color: @gray700; - &.pinned { - color: @deepBlue; - } - } - } - >.unpinned-panel { - border: 1px solid darken(@gray100, 5%); - } + color: @gray700; + &.pinned { + color: @deepBlue; + } } + } + > .unpinned-panel { + border: 1px solid darken(@gray100, 5%); + } } + } } .ui.popup.menu-help-popup { - p { - font-style: italic; - } + p { + font-style: italic; + } } .new-project-page, .project-getting-started { - margin-top: 40px; - margin-bottom: 40px; + margin-top: 40px; + margin-bottom: 40px; } .panel-image { - height: 100%; - margin: -10px -15px; + height: 100%; + margin: -10px -15px; } .keyboard-shortcut-popup { - font-family: Inconsolata; - padding: 6px 8px !important; + font-family: Inconsolata; + padding: 6px 8px !important; } - //PanelMultiRunTable styles .form-grid { - .chart-label { - padding-top: 2 * @spu; - padding-bottom: @spu; - margin: 0; - } + .chart-label { + padding-top: 2 * @spu; + padding-bottom: @spu; + margin: 0; + } } .ui.label.count-label { - background: @gray100; - border-radius: 0; - color: @textPrimary; - font-weight: normal; - margin-left: 5px; - padding: 3px 5px; + background: @gray100; + border-radius: 0; + color: @textPrimary; + font-weight: normal; + margin-left: 5px; + padding: 3px 5px; } .fuzzy-match { - background: @fullYellow; + background: @fullYellow; } .header-1 { - font-size: 40px; - line-height: 56px; + font-size: 40px; + line-height: 56px; } .global-config__control { - display: flex; - align-items: center; - span { - margin-right: 5px - } + display: flex; + align-items: center; + span { + margin-right: 5px; + } } - .ui.popup.panel-settings-popup { - padding: 16px; + padding: 16px; } /****************\ @@ -628,177 +631,177 @@ button.link { \****************/ @media only screen and (max-width: @tabletBreakpoint) { - .hide-in-mobile { - display: none !important; - } - .hide-in-desktop { - display: initial !important; - } - .experiments-alert .visible.transition { - display: none !important; - } - .runsTable { - .ui.items:not(.unstackable)>.item { - margin: 0; - } - } - .panel-search-results { - border: 0; - padding-bottom: 0; - padding-left: 0; - padding-right: 0; - } - &.ui.stackable.grid.panel-grid>.column:not(.row), - &.ui.stackable.grid.panel-grid>.row>.column { - padding: 6px 0 !important; - } - .ui.styled.accordion, - .ui.styled.accordion.pinned-panels { - &>.content, - &>.active.content { - padding-left: 0; - padding-right: 0; - } + .hide-in-mobile { + display: none !important; + } + .hide-in-desktop { + display: initial !important; + } + .experiments-alert .visible.transition { + display: none !important; + } + .runsTable { + .ui.items:not(.unstackable) > .item { + margin: 0; } - .ui.accordion.full-page-accordion { - &>.content { - padding: 0 16px !important; - } + } + .panel-search-results { + border: 0; + padding-bottom: 0; + padding-left: 0; + padding-right: 0; + } + &.ui.stackable.grid.panel-grid > .column:not(.row), + &.ui.stackable.grid.panel-grid > .row > .column { + padding: 6px 0 !important; + } + .ui.styled.accordion, + .ui.styled.accordion.pinned-panels { + & > .content, + & > .active.content { + padding-left: 0; + padding-right: 0; } - .ui.visible.popup.hide-in-mobile { - display: none !important; + } + .ui.accordion.full-page-accordion { + & > .content { + padding: 0 16px !important; } + } + .ui.visible.popup.hide-in-mobile { + display: none !important; + } } // .input-open only has a border on the bottom, not all the way around (use 'transparent' flag on semantic Input element) .ui.input.input-open { - border-bottom: 1px solid @mediumBlue; - font-size: 1.2em; - padding: 5px 7px; - >i.icon { - margin-left: 10px; - } + border-bottom: 1px solid @mediumBlue; + font-size: 1.2em; + padding: 5px 7px; + > i.icon { + margin-left: 10px; + } } .ui.input.panel-search { - padding: 5px 0; - margin-top: 25px; + padding: 5px 0; + margin-top: 25px; } .multi-state-checkbox { - cursor: pointer; - display: flex; - align-items: center; - color: @blue; - width: 18px; - height: 18px; - border-radius: 2px; - border: 1px solid @border; + cursor: pointer; + display: flex; + align-items: center; + color: @blue; + width: 18px; + height: 18px; + border-radius: 2px; + border: 1px solid @border; + background-color: white; + box-shadow: @box-shadow-buttons-charts; + text-align: center; + padding: 0 1px; + i.icon { background-color: white; - box-shadow: @box-shadow-buttons-charts; - text-align: center; - padding: 0 1px; - i.icon { - background-color: white; - opacity: 1; - margin-right: 0; - font-size: 14px; - line-height: 14px; - width: 14px; - } - &.with-dropdown { - width: 45px; - i.icon.dropdown { - margin-left: -3px; - } + opacity: 1; + margin-right: 0; + font-size: 14px; + line-height: 14px; + width: 14px; + } + &.with-dropdown { + width: 45px; + i.icon.dropdown { + margin-left: -3px; } - i.icon.icon-check { - // top: -4px; - &:before { - margin: 0; - } + } + i.icon.icon-check { + // top: -4px; + &:before { + margin: 0; } + } } .ui.visible.popup { - filter: none !important; - &.popup--image-card-metadata { - .image-card-caption-text { - margin: 10px 0; - } - .dropdown.panel-media-step { - padding: 5px 20px 5px 7px; - .icon { - padding: 7px 5px 7px 7px; - } - .menu .item { - white-space: nowrap; - } - } + filter: none !important; + &.popup--image-card-metadata { + .image-card-caption-text { + margin: 10px 0; + } + .dropdown.panel-media-step { + padding: 5px 20px 5px 7px; + .icon { + padding: 7px 5px 7px 7px; + } + .menu .item { + white-space: nowrap; + } } + } } .ui.visible.popup.popup-with-dropdown-menu { - padding: 0; - margin: 0; - height: 10px; - width: 160px; - border: 0; - background-color: transparent; - box-shadow: none; - .ui.dropdown .menu { - position: relative; - top: -16px; - } + padding: 0; + margin: 0; + height: 10px; + width: 160px; + border: 0; + background-color: transparent; + box-shadow: none; + .ui.dropdown .menu { + position: relative; + top: -16px; + } } // This is for Dropdown Menus that come out of an icon button // The dropdown always wants to render it's little down arrow, so we // get rid of it. .dropdown-menu-text-icon-button { - >i.dropdown.icon { - display: none; - } - >.ui.button { - margin-right: 0 - } - .ui.button:not(.icon)>.icon:not(.button):not(.dropdown) { - margin-left: 8px; - margin-right: -6px; - } - &:not(:last-child) { - margin-right: 12px; - } + > i.dropdown.icon { + display: none; + } + > .ui.button { + margin-right: 0; + } + .ui.button:not(.icon) > .icon:not(.button):not(.dropdown) { + margin-left: 8px; + margin-right: -6px; + } + &:not(:last-child) { + margin-right: 12px; + } } .dropdown-menu-text-icon-left-button { - >i.dropdown.icon { - display: none; - } - >.ui.button { - margin-left: 0; - } - .ui.button:not(.icon)>.icon:not(.button):not(.dropdown) { - margin-right: 8px; - margin-left: -6px; - } + > i.dropdown.icon { + display: none; + } + > .ui.button { + margin-left: 0; + } + .ui.button:not(.icon) > .icon:not(.button):not(.dropdown) { + margin-right: 8px; + margin-left: -6px; + } } .dropdown-menu-icon-button { - >i.dropdown.icon { - display: none; - } - >.ui.button { - margin-right: 0; - >i.icon.wbic-ic-chevron-expanded { - color: black !important; - font-size: 12px !important; - transform: translate(4px, -4px); - } - } - &:not(:last-child) { - margin-bottom: 12px; + > i.dropdown.icon { + display: none; + } + > .ui.button { + margin-right: 0; + > i.icon.wbic-ic-chevron-expanded { + color: black !important; + font-size: 12px !important; + transform: translate(4px, -4px); } + } + &:not(:last-child) { + margin-bottom: 12px; + } } // .ui.multiple.search.dropdown { // display: flex; @@ -807,248 +810,261 @@ button.link { // } // } .ui.label { - background-color: @actionActiveColor; - display: inline-flex; // This fixes labels inside dropdowns (like our group by dropdown). - white-space: nowrap !important; + background-color: @actionActiveColor; + display: inline-flex; // This fixes labels inside dropdowns (like our group by dropdown). + white-space: nowrap !important; } // Tabs that scroll on overflow, without scrollbar .page-tabs .ui.attached.tabular.menu { - max-width: 100%; - overflow-x: auto; - -webkit-overflow-scrolling: touch; - &::-webkit-scrollbar { - display: none; - } + max-width: 100%; + overflow-x: auto; + -webkit-overflow-scrolling: touch; + &::-webkit-scrollbar { + display: none; + } } .dropdown-with-icon { - white-space: normal; - word-break: break-all; + white-space: normal; + word-break: break-all; } .signup-button { - i { - color: white !important; - } + i { + color: white !important; + } } // this class is set while resizing table columns body.react-draggable-transparent-selection { + cursor: ew-resize !important; + .drag-handle { cursor: ew-resize !important; - .drag-handle { - cursor: ew-resize !important; + } + .react-resizable { + i.icon.ellipsis { + opacity: 0 !important; } - .react-resizable { - i.icon.ellipsis { - opacity: 0 !important; - } - .react-resizable-handle { - opacity: 0 !important; - } + .react-resizable-handle { + opacity: 0 !important; } + } } /* Hide HTML5 Up and Down arrows. */ -input[type="number"]::-webkit-outer-spin-button, -input[type="number"]::-webkit-inner-spin-button { - -webkit-appearance: none; - margin: 0; +input[type='number']::-webkit-outer-spin-button, +input[type='number']::-webkit-inner-spin-button { + -webkit-appearance: none; + margin: 0; } -input[type="number"] { - -moz-appearance: textfield; +input[type='number'] { + -moz-appearance: textfield; } .separator { - border-top: @separatorBorder; + border-top: @separatorBorder; } /* For buttons that look like links */ .fake-link { - color: @primary; - &.bold { - font-weight: bold; - } - cursor: pointer; - &:hover { - color: darken(@primary, 10%); - } + color: @primary; + &.bold { + font-weight: bold; + } + cursor: pointer; + &:hover { + color: darken(@primary, 10%); + } } /* Disable gray highlight when clicking links on mobile safari */ * { - -webkit-tap-highlight-color: rgba(0, 0, 0, 0); + -webkit-tap-highlight-color: rgba(0, 0, 0, 0); } .message-with-icon { - align-items: center; - &__icon { - width: 200px; - } - display: flex; + align-items: center; + &__icon { + width: 200px; + } + display: flex; } .panel-error { - color: @gray500; - flex-grow: 1; - display: flex; - justify-content: center; - align-items: center; - text-align: center; - font-size: 1rem; - &.media-missing { - flex-direction: column; - text-align: left; - align-items: initial; - } + color: @gray500; + flex-grow: 1; + display: flex; + justify-content: center; + align-items: center; + text-align: center; + font-size: 1rem; + &.media-missing { + flex-direction: column; + text-align: left; + align-items: initial; + } } .header-spaced { - margin-top: @standardSpacingUnit; + margin-top: @standardSpacingUnit; } .underline-dashed { - border-bottom: 1px dashed @gray500; + border-bottom: 1px dashed @gray500; } .front-page { - background-color: @gray900; - position: absolute; - width: 100vw; - height: calc(~"100vh - @{searchNavHeight}"); + background-color: @gray900; + position: absolute; + width: 100vw; + height: calc(~'100vh - @{searchNavHeight}'); - .ui.vertical.segment { - border-bottom: none; - } - .ui.cards .content { - overflow: hidden !important; - } + .ui.vertical.segment { + border-bottom: none; + } + .ui.cards .content { + overflow: hidden !important; + } } .modal-split-actions { - border-top: 1px solid lightgrey; - display: flex; - &.modal-benchmark { - .ui.inline.dropdown .dropdown.icon { - margin: -.6875em; - } + border-top: 1px solid lightgrey; + display: flex; + &.modal-benchmark { + .ui.inline.dropdown .dropdown.icon { + margin: -0.6875em; } + } } img.ui.avatar.image { - margin-right: 6px; + margin-right: 6px; } // This is used on the create project page .ui.inline.dropdown { - >.text { - font-weight: normal !important; - } - i.icon.dropdown { - color: @primaryText; - } - .menu { - z-index: 100; - } + > .text { + font-weight: normal !important; + } + i.icon.dropdown { + color: @primaryText; + } + .menu { + z-index: 100; + } } // Garbage that was previously in site.overrides .ui.menu .vertically.fitted.item.logo-container { - margin-left: 25px; - padding-left: 0; + margin-left: 25px; + padding-left: 0; } .read-only { - .hide-runs { - display: none; - } - .pin-button { - visibility: hidden; - } + .hide-runs { + display: none; + } + .pin-button { + visibility: hidden; + } } .plot-border-top, .plot-border-bottom, .plot-border-left, .plot-border-right { - fill: @white; - transition: fill 0.3s linear; + fill: @white; + transition: fill 0.3s linear; } .stretch { - position: absolute; - top: 0; - left: 0; - bottom: 0; - right: 0; - overflow: auto; + position: absolute; + top: 0; + left: 0; + bottom: 0; + right: 0; + overflow: auto; } .ui.styled.accordion { - &.pinned-panels .active.content { - padding-left: 20px; - padding-right: 20px; - } - .title, - .accordion .title { - background: @lightBlue; - padding-left: 10px; - font-size: 1.2em; - .icon { - margin-right: 10px; - } + &.pinned-panels .active.content { + padding-left: 20px; + padding-right: 20px; + } + .title, + .accordion .title { + background: @lightBlue; + padding-left: 10px; + font-size: 1.2em; + .icon { + margin-right: 10px; } + } } .panel-search-results { - padding: @accordionContentPadding; - border: 1px solid @textSecondary; - border-radius: 6px; - border-top-left-radius: 0; - border-top-right-radius: 0; - border-top: 0; + padding: @accordionContentPadding; + border: 1px solid @textSecondary; + border-radius: 6px; + border-top-left-radius: 0; + border-top-right-radius: 0; + border-top: 0; } - - /* run page - global config */ +/* run page - global config */ .ui.selection.active.dropdown:hover { - border-color: @mediumBlue; + border-color: @mediumBlue; } -.ui.popup>.header { - margin-bottom: 10px; +.ui.popup > .header { + margin-bottom: 10px; } .hide-in-desktop { - display: none; + display: none; } .error-text { - color: @error; + color: @error; } .night-mode { + filter: @nightModeFilter; + img, + video, + iframe, + .inverted.segment, + .editable-image, + .run-logs, + .search-nav, + .media-card__fullscreen, + .night-aware, + .night-aware-exclude-children, + iframe.intercom-launcher-frame { + filter: @nightModeFilterRevert; + } + .night-aware-exclude-children + > :not(.night-aware):not(.night-aware-exclude-children) { filter: @nightModeFilter; - img, video, iframe, .inverted.segment, .editable-image, .run-logs, .search-nav, .media-card__fullscreen, - .night-aware, .night-aware-exclude-children, iframe.intercom-launcher-frame { - filter: @nightModeFilterRevert; - } - .night-aware-exclude-children > :not(.night-aware):not(.night-aware-exclude-children) { - filter: @nightModeFilter; - } - .night-aware-exclude-children > .night-aware, - .night-aware-exclude-children > .night-aware-exclude-children { - filter: none; - } - .empty-watermark img, .editable-image img, img.image-icon, img.disable-night-mode-filter-revert, .search-nav * { - filter: none; - } - :not(.night-aware):not(.night-aware-exclude-children) { - box-shadow: none !important; - } + } + .night-aware-exclude-children > .night-aware, + .night-aware-exclude-children > .night-aware-exclude-children { + filter: none; + } + .empty-watermark img, + .editable-image img, + img.image-icon, + img.disable-night-mode-filter-revert, + .search-nav * { + filter: none; + } + :not(.night-aware):not(.night-aware-exclude-children) { + box-shadow: none !important; + } } .ui.segment.vertical.footer { @@ -1063,142 +1079,143 @@ img.ui.avatar.image { } } -.ui.dropdown>.menu>.header.small-header { - &:first-child { - margin-top: 8px; - } - margin: 0; - text-transform: none; - font-weight: normal; - color: @gray700; - height: 20px; +.ui.dropdown > .menu > .header.small-header { + &:first-child { + margin-top: 8px; } + margin: 0; + text-transform: none; + font-weight: normal; + color: @gray700; + height: 20px; +} -i.icon.ellipsis-menu-icon{ - font-size: 24px; - color: @gray700; - transform: translateY(2px); - &:hover { - color: black; - } +i.icon.ellipsis-menu-icon { + font-size: 24px; + color: @gray700; + transform: translateY(2px); + &:hover { + color: black; + } } // fixes black background bug on charts in safari .rv-xy-plot { - fill: none; + fill: none; } // This fixes the semantic dropdown menu we use everywhere to work // with long keys. Its default behavior is horrible. // See https://github.com/wandb/angle-issues/issues/24 body .ui.selection.dropdown .menu { - width: auto; - max-width: 400px; - border-top-width: 1px!important; - border-radius: 0 .25rem .25rem .25rem; - &>item { - word-wrap: break-word; - } + width: auto; + max-width: 400px; + border-top-width: 1px !important; + border-radius: 0 0.25rem 0.25rem 0.25rem; + & > item { + word-wrap: break-word; + } } .input-label { - font-size: 14px; - margin-bottom: 5px; - margin-top: 5px; + font-size: 14px; + margin-bottom: 5px; + margin-top: 5px; } .run-row-name.failed { - color: @errorText; + color: @errorText; } .run-row-name.single-mode { - cursor: pointer; - margin-left: 10px; + cursor: pointer; + margin-left: 10px; } .ui.buttons.pagination-buttons { + margin-left: 4px; + margin-right: 4px; + .ui.button { + box-shadow: none !important; + border: none; + background: none; + width: 20px; + overflow: hidden; margin-left: 4px; - margin-right: 4px; - .ui.button { - box-shadow: none !important; - border: none; - background: none; - width: 20px; - overflow: hidden; - margin-left: 4px; - padding: 0; - i { - color: lighten(@gray700, 5%); - } - &.disabled { - i { - color: @gray400; - } - } - &:hover { - i { - color: black; - } - } + padding: 0; + i { + color: lighten(@gray700, 5%); } + &.disabled { + i { + color: @gray400; + } + } + &:hover { + i { + color: black; + } + } + } } .inline-pagination { + display: flex; + justify-content: flex-end; + align-items: center; + left: 10px; + z-index: 1; + height: 24px; + padding-right: 8px; + .pagination-count { + color: lighten(@gray700, 5%); + } + .pagination-buttons { + margin-top: -9px !important; + } + + .page-down-button, + .page-up-button { display: flex; - justify-content: flex-end; - align-items: center; - left: 10px; - z-index: 1; - height: 24px; - padding-right: 8px; - .pagination-count { - color: lighten(@gray700, 5%); - } - .pagination-buttons { - margin-top: -9px !important; - } + justify-content: center; + box-shadow: none !important; + border: none !important; + background: none !important; + width: 20px; + overflow: hidden; + margin-left: 4px; + padding: 0; + transform: rotate(90deg); - .page-down-button, .page-up-button { - display: flex; - justify-content: center; - box-shadow: none !important; - border: none !important; - background: none !important; - width: 20px; - overflow: hidden; - margin-left: 4px; - padding: 0; - transform: rotate(90deg); - - i { - color: lighten(@gray700, 5%) !important; - } + i { + color: lighten(@gray700, 5%) !important; + } - &.disabled { - i { - color: @gray400 !important; - } - } + &.disabled { + i { + color: @gray400 !important; + } + } - &:hover { - i { - color: black !important; - } - } + &:hover { + i { + color: black !important; + } } + } } .text-editor { - font-size: 16px; - font-family: @fontName; + font-size: 16px; + font-family: @fontName; } .cg-loader { - visibility: hidden; + visibility: hidden; } .cg-executing .cg-loader { - visibility: visible; + visibility: visible; } #zendesk-launcher { diff --git a/weave-js/src/components/Callout/Callout.tsx b/weave-js/src/components/Callout/Callout.tsx index 51028420f46..9fc6535d9cf 100644 --- a/weave-js/src/components/Callout/Callout.tsx +++ b/weave-js/src/components/Callout/Callout.tsx @@ -18,6 +18,7 @@ export const Callout = ({className, color, icon, size}: CalloutProps) => {
( export const IconEmailEnvelope = (props: SVGIconProps) => ( ); +export const IconEnterReturn = (props: SVGIconProps) => ( + +); export const IconExpandRight = (props: SVGIconProps) => ( ); @@ -638,6 +646,9 @@ export const IconMagicWandStick = (props: SVGIconProps) => ( export const IconMarkdown = (props: SVGIconProps) => ( ); +export const IconMarker = (props: SVGIconProps) => ( + +); export const IconMenu = (props: SVGIconProps) => ( ); @@ -773,6 +784,9 @@ export const IconRegex = (props: SVGIconProps) => ( export const IconRegistries = (props: SVGIconProps) => ( ); +export const IconReloadRefresh = (props: SVGIconProps) => ( + +); export const IconRemove = (props: SVGIconProps) => ( ); @@ -809,6 +823,9 @@ export const IconRun = (props: SVGIconProps) => ( export const IconRunningRepeat = (props: SVGIconProps) => ( ); +export const IconSandboxPlayground = (props: SVGIconProps) => ( + +); export const IconSave = (props: SVGIconProps) => ( ); @@ -869,6 +886,9 @@ export const IconStop = (props: SVGIconProps) => ( export const IconStopped = (props: SVGIconProps) => ( ); +export const IconSwap = (props: SVGIconProps) => ( + +); export const IconSweepBayes = (props: SVGIconProps) => ( ); @@ -1076,6 +1096,7 @@ const ICON_NAME_TO_ICON: Record = { 'education-academic': IconEducationAcademic, 'email-at': IconEmailAt, 'email-envelope': IconEmailEnvelope, + 'enter-return': IconEnterReturn, 'expand-right': IconExpandRight, 'expand-uncollapse': IconExpandUncollapse, 'export-share-upload': IconExportShareUpload, @@ -1137,6 +1158,7 @@ const ICON_NAME_TO_ICON: Record = { 'magic-wand-star': IconMagicWandStar, 'magic-wand-stick': IconMagicWandStick, markdown: IconMarkdown, + marker: IconMarker, menu: IconMenu, 'microphone-audio': IconMicrophoneAudio, 'miller-columns': IconMillerColumns, @@ -1182,6 +1204,7 @@ const ICON_NAME_TO_ICON: Record = { redo: IconRedo, regex: IconRegex, registries: IconRegistries, + 'reload-refresh': IconReloadRefresh, remove: IconRemove, 'remove-alt': IconRemoveAlt, report: IconReport, @@ -1194,6 +1217,7 @@ const ICON_NAME_TO_ICON: Record = { 'row-height-xlarge': IconRowHeightXlarge, run: IconRun, 'running-repeat': IconRunningRepeat, + 'sandbox-playground': IconSandboxPlayground, save: IconSave, 'scikit-logo': IconScikitLogo, search: IconSearch, @@ -1214,6 +1238,7 @@ const ICON_NAME_TO_ICON: Record = { 'star-filled': IconStarFilled, stop: IconStop, stopped: IconStopped, + swap: IconSwap, 'sweep-bayes': IconSweepBayes, 'sweep-grid': IconSweepGrid, 'sweep-random-search': IconSweepRandomSearch, diff --git a/weave-js/src/components/Icon/index.ts b/weave-js/src/components/Icon/index.ts index 46908984a07..fa9e1c10454 100644 --- a/weave-js/src/components/Icon/index.ts +++ b/weave-js/src/components/Icon/index.ts @@ -64,6 +64,7 @@ export { IconEducationAcademic, IconEmailAt, IconEmailEnvelope, + IconEnterReturn, IconExpandRight, IconExpandUncollapse, IconExportShareUpload, @@ -125,6 +126,7 @@ export { IconMagicWandStar, IconMagicWandStick, IconMarkdown, + IconMarker, IconMenu, IconMicrophoneAudio, IconMillerColumns, @@ -170,6 +172,7 @@ export { IconRedo, IconRegex, IconRegistries, + IconReloadRefresh, IconRemove, IconRemoveAlt, IconReport, @@ -182,6 +185,7 @@ export { IconRowHeightXlarge, IconRun, IconRunningRepeat, + IconSandboxPlayground, IconSave, IconScikitLogo, IconSearch, @@ -202,6 +206,7 @@ export { IconStarFilled, IconStop, IconStopped, + IconSwap, IconSweepBayes, IconSweepGrid, IconSweepRandomSearch, diff --git a/weave-js/src/components/Icon/types.ts b/weave-js/src/components/Icon/types.ts index c4d343bba17..e536e365157 100644 --- a/weave-js/src/components/Icon/types.ts +++ b/weave-js/src/components/Icon/types.ts @@ -63,6 +63,7 @@ export const IconNames = { EducationAcademic: 'education-academic', EmailAt: 'email-at', EmailEnvelope: 'email-envelope', + EnterReturn: 'enter-return', ExpandRight: 'expand-right', ExpandUncollapse: 'expand-uncollapse', ExportShareUpload: 'export-share-upload', @@ -124,6 +125,7 @@ export const IconNames = { MagicWandStar: 'magic-wand-star', MagicWandStick: 'magic-wand-stick', Markdown: 'markdown', + Marker: 'marker', Menu: 'menu', MicrophoneAudio: 'microphone-audio', MillerColumns: 'miller-columns', @@ -169,6 +171,7 @@ export const IconNames = { Redo: 'redo', Regex: 'regex', Registries: 'registries', + ReloadRefresh: 'reload-refresh', Remove: 'remove', RemoveAlt: 'remove-alt', Report: 'report', @@ -181,6 +184,7 @@ export const IconNames = { RowHeightXlarge: 'row-height-xlarge', Run: 'run', RunningRepeat: 'running-repeat', + SandboxPlayground: 'sandbox-playground', Save: 'save', ScikitLogo: 'scikit-logo', Search: 'search', @@ -201,6 +205,7 @@ export const IconNames = { StarFilled: 'star-filled', Stop: 'stop', Stopped: 'stopped', + Swap: 'swap', SweepBayes: 'sweep-bayes', SweepGrid: 'sweep-grid', SweepRandomSearch: 'sweep-random-search', diff --git a/weave-js/src/components/Loaders/WaveLoader.tsx b/weave-js/src/components/Loaders/WaveLoader.tsx new file mode 100644 index 00000000000..7cddb0a5e75 --- /dev/null +++ b/weave-js/src/components/Loaders/WaveLoader.tsx @@ -0,0 +1,35 @@ +import {TailwindContents} from '@wandb/weave/components/Tailwind'; +import classNames from 'classnames'; +import React, {useMemo} from 'react'; + +const Dot = React.memo( + ({delay, size}: {delay?: string; size: 'small' | 'huge'}) => { + const style = useMemo( + () => ({ + animationDelay: delay, + }), + [delay] + ); + + const classes = classNames( + 'rounded-full bg-moon-350 dark:bg-moon-650 animate-wave', + { + 'h-8 w-8': size === 'huge', + 'h-6 w-6': size === 'small', + } + ); + return
; + } +); + +export const WaveLoader = ({size}: {size: 'small' | 'huge'}) => { + return ( + +
+ + + +
+
+ ); +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse2/Browse2OpDefCode.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse2/Browse2OpDefCode.tsx index 38aa07823d8..87b3c8339d8 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse2/Browse2OpDefCode.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse2/Browse2OpDefCode.tsx @@ -6,6 +6,23 @@ import React, {FC} from 'react'; import {Alert} from '../../../Alert'; import {useWFHooks} from '../Browse3/pages/wfReactInterface/context'; +function detectLanguage(uri: string, code: string) { + // Simple language detection based on file extension or content + if (uri.endsWith('.py')) { + return 'python'; + } + if (uri.endsWith('.js') || uri.endsWith('.ts')) { + return 'javascript'; + } + if (code.includes('def ') || code.includes('import ')) { + return 'python'; + } + if (code.includes('function ') || code.includes('const ')) { + return 'javascript'; + } + return 'plaintext'; +} + export const Browse2OpDefCode: FC<{uri: string; maxRowsInView?: number}> = ({ uri, maxRowsInView, @@ -37,10 +54,12 @@ export const Browse2OpDefCode: FC<{uri: string; maxRowsInView?: number}> = ({ ); } + const detectedLanguage = detectLanguage(uri, text.result ?? ''); + const inner = ( { const chat = useCallAsChat(call); - if (chat.loading) { + const [drawerAnimationBuffer, setDrawerAnimationBuffer] = useState(true); + + // HACK: Wait for the drawer animation to finish before rendering the chat + useEffect(() => { + setTimeout(() => { + setDrawerAnimationBuffer(false); + }, DRAWER_ANIMATION_BUFFER_TIME); + }, []); + + if (chat.loading || drawerAnimationBuffer) { return ; } return ; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/CallPage.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/CallPage.tsx index 1bd8c13106b..79f091e6a31 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/CallPage.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/CallPage.tsx @@ -125,9 +125,11 @@ const useCallTabs = (call: CallSchema) => { { label: 'Use', content: ( - - - + + + + + ), }, ]; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/Exceptions.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/Exceptions.tsx index d0e6087182e..f76809c6d1c 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/Exceptions.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallPage/Exceptions.tsx @@ -1,8 +1,12 @@ import * as Colors from '@wandb/weave/common/css/color.styles'; import {Alert} from '@wandb/weave/components/Alert'; +import copyToClipboard from 'copy-to-clipboard'; import React from 'react'; import styled from 'styled-components'; +import {toast} from '../../../../../../common/components/elements/Toast'; +import {Button} from '../../../../../Button'; + const AlertExceptionType = styled.span` font-weight: 600; `; @@ -92,6 +96,7 @@ export const ExceptionAlert = ({exception}: ExceptionAlertProps) => { return null; } const {type, message} = info; + return ( {type}: {message} @@ -107,9 +112,38 @@ export const ExceptionDetails = ({exceptionInfo}: ExceptionDetailsProps) => { if (!exceptionInfo.traceback) { return null; } + + const handleCopyTraceback = () => { + if (!exceptionInfo.traceback) { + return; + } + const tracebackText = exceptionInfo.traceback + .map( + frame => + `File "${frame.filename}", line ${frame.line_number}, in ${frame.function_name}\n ${frame.text}` + ) + .join('\n'); + const textToCopy = `${tracebackText}\n${exceptionInfo.type}: ${exceptionInfo.message}`; + copyToClipboard(textToCopy); + toast('Exception traceback details copied to clipboard'); + }; + return ( -
Traceback (most recent call last):
+
+
Traceback (most recent call last):
+
{exceptionInfo.traceback.map((frame: StackFrame, i: number) => ( diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsCharts.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsCharts.tsx new file mode 100644 index 00000000000..164122753d8 --- /dev/null +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsCharts.tsx @@ -0,0 +1,190 @@ +import {GridFilterModel, GridSortModel} from '@mui/x-data-grid-pro'; +import React, {useMemo} from 'react'; + +import {MOON_400} from '../../../../../../common/css/color.styles'; +import {IconInfo} from '../../../../../Icon'; +import {WaveLoader} from '../../../../../Loaders/WaveLoader'; +import {Tailwind} from '../../../../../Tailwind'; +import {WFHighLevelCallFilter} from './callsTableFilter'; +import {useCallsForQuery} from './callsTableQuery'; +import { + ErrorPlotlyChart, + LatencyPlotlyChart, + RequestsPlotlyChart, +} from './Charts'; + +type CallsChartsProps = { + entity: string; + project: string; + filterModelProp: GridFilterModel; + filter: WFHighLevelCallFilter; +}; + +const Chart = ({ + isLoading, + chartData, + title, +}: { + isLoading: boolean; + chartData: any; + title: string; +}) => { + const CHART_CONTAINER_STYLES = + 'flex-1 rounded-lg border border-moon-250 bg-white p-10'; + const CHART_TITLE_STYLES = 'ml-12 mt-8 text-base font-semibold text-moon-750'; + const CHART_HEIGHT = 250; + const LOADING_CONTAINER_STYLES = `flex h-[${CHART_HEIGHT}px] items-center justify-center`; + + let chart = null; + if (isLoading) { + chart = ( +
+ +
+ ); + } else if (chartData.length > 0) { + switch (title) { + case 'Latency': + chart = ( + + ); + break; + case 'Errors': + chart = ( + + ); + break; + case 'Requests': + chart = ( + + ); + break; + } + } else { + chart = ( +
+
+ +
+ No data available for the selected time frame +
+
+
+ ); + } + return ( +
+
{title}
+ {chart} +
+ ); +}; + +export const CallsCharts = ({ + entity, + project, + filter, + filterModelProp, +}: CallsChartsProps) => { + const columns = useMemo( + () => ['started_at', 'ended_at', 'exception', 'id'], + [] + ); + const columnSet = useMemo(() => new Set(columns), [columns]); + const sortCalls: GridSortModel = useMemo( + () => [{field: 'started_at', sort: 'desc'}], + [] + ); + const page = useMemo( + () => ({ + pageSize: 1000, + page: 0, + }), + [] + ); + + const calls = useCallsForQuery( + entity, + project, + filter, + filterModelProp, + page, + sortCalls, + columnSet, + columns + ); + + const chartData = useMemo(() => { + if (calls.loading || !calls.result || calls.result.length === 0) { + return {latency: [], errors: [], requests: []}; + } + + const data: { + latency: Array<{started_at: string; latency: number}>; + errors: Array<{started_at: string; isError: boolean}>; + requests: Array<{started_at: string}>; + } = { + latency: [], + errors: [], + requests: [], + }; + + calls.result.forEach(call => { + const started_at = call.traceCall?.started_at; + if (!started_at) { + return; + } + const ended_at = call.traceCall?.ended_at; + + const isError = + call.traceCall?.exception !== null && + call.traceCall?.exception !== undefined && + call.traceCall?.exception !== ''; + + data.requests.push({started_at}); + + if (isError) { + data.errors.push({started_at, isError}); + } else { + data.errors.push({started_at, isError: false}); + } + + if (ended_at !== undefined) { + const startTime = new Date(started_at).getTime(); + const endTime = new Date(ended_at).getTime(); + const latency = endTime - startTime; + data.latency.push({started_at, latency}); + } + }); + return data; + }, [calls.result, calls.loading]); + + const charts = ( +
+ + + +
+ ); + + return ( + + {/* setting the width to the width of the screen minus the sidebar width because of overflow: 'hidden' properties in SimplePageLayout causing issues */} +
+
{charts}
+
+
+ ); +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsTable.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsTable.tsx index 224e4d9a12d..25d80005260 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsTable.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/CallsTable.tsx @@ -26,6 +26,7 @@ import { useGridApiRef, } from '@mui/x-data-grid-pro'; import {MOON_200, TEAL_300} from '@wandb/weave/common/css/color.styles'; +import {Switch} from '@wandb/weave/components'; import {Checkbox} from '@wandb/weave/components/Checkbox/Checkbox'; import {Icon} from '@wandb/weave/components/Icon'; import React, { @@ -69,6 +70,7 @@ import {traceCallToUICallSchema} from '../wfReactInterface/tsDataModelHooks'; import {EXPANDED_REF_REF_KEY} from '../wfReactInterface/tsDataModelHooksCallRefExpansion'; import {objectVersionNiceString} from '../wfReactInterface/utilities'; import {CallSchema} from '../wfReactInterface/wfDataModelHooksInterface'; +import {CallsCharts} from './CallsCharts'; import {CallsCustomColumnMenu} from './CallsCustomColumnMenu'; import { BulkDeleteButton, @@ -168,6 +170,7 @@ export const CallsTable: FC<{ allowedColumnPatterns, }) => { const {loading: loadingUserInfo, userInfo} = useViewerInfo(); + const [isMetricsChecked, setMetricsChecked] = useState(false); const isReadonly = loadingUserInfo || !userInfo?.username || !userInfo?.teams.includes(entity); @@ -245,8 +248,8 @@ export const CallsTable: FC<{ project, effectiveFilter, filterModelResolved, - sortModelResolved, paginationModelResolved, + sortModelResolved, expandedRefCols ); @@ -742,6 +745,15 @@ export const CallsTable: FC<{ clearSelectedCalls={clearSelectedCalls} /> )} +
+ + + + Metrics +
{selectedInputObjectVersion && ( }> + {isMetricsChecked && ( + + )} = { + type: 'date' as const, + automargin: true, + showgrid: false, + linecolor: MOON_300, + tickfont: {color: MOON_500}, + showspikes: false, +}; + +const X_AXIS_STYLE_WITH_SPIKES: Partial = { + ...X_AXIS_STYLE, + showspikes: true, + spikemode: 'across', + spikethickness: 1, + spikecolor: MOON_300, +}; + +const Y_AXIS_STYLE: Partial = { + automargin: true, + griddash: 'dot', + showgrid: true, + gridcolor: MOON_300, + linecolor: MOON_300, + showspikes: false, + tickfont: {color: MOON_500}, + zeroline: false, +}; + +export const calculateBinSize = ( + data: ChartDataLatency[] | ChartDataErrors[] | ChartDataRequests[], + targetBinCount = 15 +) => { + if (data.length === 0) { + return 60; + } // default to 60 minutes if no data + + const startTime = moment(_.minBy(data, 'started_at')?.started_at); + const endTime = moment(_.maxBy(data, 'started_at')?.started_at); + + const minutesInRange = endTime.diff(startTime, 'minutes'); + + // Calculate bin size in minutes, rounded to a nice number + const rawBinSize = Math.max(1, Math.ceil(minutesInRange / targetBinCount)); + const niceNumbers = [1, 2, 5, 10, 15, 30, 60, 120, 240, 360, 720, 1440]; + + // Find the closest nice number + return niceNumbers.reduce((prev, curr) => { + return Math.abs(curr - rawBinSize) < Math.abs(prev - rawBinSize) + ? curr + : prev; + }, niceNumbers[0]); +}; + +export const LatencyPlotlyChart: React.FC<{ + height: number; + chartData: ChartDataLatency[]; + targetBinCount?: number; +}> = ({height, chartData, targetBinCount}) => { + const divRef = useRef(null); + const binSize = calculateBinSize(chartData, targetBinCount); + + const plotlyData: Plotly.Data[] = useMemo(() => { + const groupedData = _(chartData) + .groupBy(d => { + const date = moment(d.started_at); + const roundedMinutes = Math.floor(date.minutes() / binSize) * binSize; + return date.startOf('hour').add(roundedMinutes, 'minutes').format(); + }) + .map((group, date) => { + const latenciesNonSorted = group.map(d => d.latency); + const p50 = quantile(latenciesNonSorted, 0.5) ?? 0; + const p95 = quantile(latenciesNonSorted, 0.95) ?? 0; + const p99 = quantile(latenciesNonSorted, 0.99) ?? 0; + return {timestamp: date, p50, p95, p99}; + }) + .value(); + + return [ + { + type: 'scatter', + mode: 'lines+markers', + x: groupedData.map(d => d.timestamp), + y: groupedData.map(d => d.p50), + name: 'p50 Latency', + line: {color: BLUE_500}, + marker: {color: BLUE_500}, + hovertemplate: '%{data.name}: %{y:.2f} ms', + }, + { + type: 'scatter', + mode: 'lines+markers', + x: groupedData.map(d => d.timestamp), + y: groupedData.map(d => d.p95), + name: 'p95 Latency', + line: {color: GREEN_500}, + marker: {color: GREEN_500}, + hovertemplate: '%{data.name}: %{y:.2f} ms', + }, + { + type: 'scatter', + mode: 'lines+markers', + x: groupedData.map(d => d.timestamp), + y: groupedData.map(d => d.p99), + name: 'p99 Latency', + line: {color: MOON_500}, + marker: {color: MOON_500}, + hovertemplate: '%{data.name}: %{y:.2f} ms', + }, + ]; + }, [chartData, binSize]); + + useEffect(() => { + const plotlyLayout: Partial = { + height, + margin: CHART_MARGIN_STYLE, + xaxis: X_AXIS_STYLE_WITH_SPIKES, + yaxis: Y_AXIS_STYLE, + hovermode: 'x unified', + showlegend: false, + hoverlabel: { + bordercolor: MOON_200, + }, + }; + + const plotlyConfig: Partial = { + displayModeBar: false, + responsive: true, + }; + + if (divRef.current) { + Plotly.newPlot(divRef.current, plotlyData, plotlyLayout, plotlyConfig); + } + }, [plotlyData, height]); + + return
; +}; + +export const ErrorPlotlyChart: React.FC<{ + height: number; + chartData: ChartDataErrors[]; + targetBinCount?: number; +}> = ({height, chartData, targetBinCount}) => { + const divRef = useRef(null); + const binSize = calculateBinSize(chartData, targetBinCount); + + const plotlyData: Plotly.Data[] = useMemo(() => { + const groupedData = _(chartData) + .groupBy(d => { + const date = moment(d.started_at); + const roundedMinutes = Math.floor(date.minutes() / binSize) * binSize; + return date.startOf('hour').add(roundedMinutes, 'minutes').format(); + }) + .map((group, date) => ({ + timestamp: date, + count: group.filter(d => d.isError).length, + })) + .value(); + + return [ + { + type: 'bar', + x: groupedData.map(d => d.timestamp), + y: groupedData.map(d => d.count), + name: 'Error Count', + marker: {color: RED_400}, + hovertemplate: '%{y} errors', + }, + ]; + }, [chartData, binSize]); + + useEffect(() => { + const plotlyLayout: Partial = { + height, + margin: CHART_MARGIN_STYLE, + bargap: 0.2, + xaxis: X_AXIS_STYLE, + yaxis: Y_AXIS_STYLE, + hovermode: 'x unified', + hoverlabel: { + bordercolor: MOON_200, + }, + dragmode: 'zoom', + }; + + const plotlyConfig: Partial = { + displayModeBar: false, + responsive: true, + }; + + if (divRef.current) { + Plotly.newPlot(divRef.current, plotlyData, plotlyLayout, plotlyConfig); + } + }, [plotlyData, height]); + + return
; +}; + +export const RequestsPlotlyChart: React.FC<{ + height: number; + chartData: ChartDataRequests[]; + targetBinCount?: number; +}> = ({height, chartData, targetBinCount}) => { + const divRef = useRef(null); + const binSize = calculateBinSize(chartData, targetBinCount); + + const plotlyData: Plotly.Data[] = useMemo(() => { + const groupedData = _(chartData) + .groupBy(d => { + const date = moment(d.started_at); + const roundedMinutes = Math.floor(date.minutes() / binSize) * binSize; + return date.startOf('hour').add(roundedMinutes, 'minutes').format(); + }) + .map((group, date) => ({ + timestamp: date, + count: group.length, + })) + .value(); + + return [ + { + type: 'bar', + x: groupedData.map(d => d.timestamp), + y: groupedData.map(d => d.count), + name: 'Requests', + marker: {color: TEAL_400}, + hovertemplate: '%{y} requests', + }, + ]; + }, [chartData, binSize]); + + useEffect(() => { + const plotlyLayout: Partial = { + height, + margin: CHART_MARGIN_STYLE, + xaxis: X_AXIS_STYLE, + yaxis: Y_AXIS_STYLE, + bargap: 0.2, + hovermode: 'x unified', + hoverlabel: { + bordercolor: MOON_200, + }, + }; + + const plotlyConfig: Partial = { + displayModeBar: false, + responsive: true, + }; + + if (divRef.current) { + Plotly.newPlot(divRef.current, plotlyData, plotlyLayout, plotlyConfig); + } + }, [plotlyData, height]); + + return
; +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/callsTableQuery.ts b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/callsTableQuery.ts index 2a0d1bad489..de221b652dc 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/callsTableQuery.ts +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CallsPage/callsTableQuery.ts @@ -32,9 +32,9 @@ export const useCallsForQuery = ( project: string, filter: WFHighLevelCallFilter, gridFilter: GridFilterModel, - gridSort: GridSortModel, gridPage: GridPaginationModel, - expandedColumns: Set, + gridSort?: GridSortModel, + expandedColumns?: Set, columns?: string[] ): { costsLoading: boolean; @@ -44,8 +44,8 @@ export const useCallsForQuery = ( refetch: () => void; } => { const {useCalls, useCallsStats} = useWFHooks(); - const offset = gridPage.page * gridPage.pageSize; - const limit = gridPage.pageSize; + const effectiveOffset = gridPage?.page * gridPage?.pageSize; + const effectiveLimit = gridPage.pageSize; const {sortBy, lowLevelFilter, filterBy} = useFilterSortby( filter, gridFilter, @@ -56,8 +56,8 @@ export const useCallsForQuery = ( entity, project, lowLevelFilter, - limit, - offset, + effectiveLimit, + effectiveOffset, sortBy, filterBy, columns, @@ -77,11 +77,16 @@ export const useCallsForQuery = ( const total = useMemo(() => { if (callsStats.loading || callsStats.result == null) { - return offset + callResults.length; + return effectiveOffset + callResults.length; } else { return callsStats.result.count; } - }, [callResults.length, callsStats.loading, callsStats.result, offset]); + }, [ + callResults.length, + callsStats.loading, + callsStats.result, + effectiveOffset, + ]); const costFilter: CallFilter = useMemo( () => ({ @@ -94,7 +99,7 @@ export const useCallsForQuery = ( entity, project, costFilter, - limit, + effectiveLimit, undefined, sortBy, undefined, diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CompareEvaluationsPage/sections/ComparisonDefinitionSection/ComparisonDefinitionSection.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CompareEvaluationsPage/sections/ComparisonDefinitionSection/ComparisonDefinitionSection.tsx index 3d461681a3c..b5c1a4bf96c 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CompareEvaluationsPage/sections/ComparisonDefinitionSection/ComparisonDefinitionSection.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/CompareEvaluationsPage/sections/ComparisonDefinitionSection/ComparisonDefinitionSection.tsx @@ -111,8 +111,8 @@ const AddEvaluationButton: React.FC<{ props.state.data.project, evaluationsFilter, DEFAULT_FILTER_CALLS, - DEFAULT_SORT_CALLS, page, + DEFAULT_SORT_CALLS, expandedRefCols, columns ); diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/ObjectVersionPage.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/ObjectVersionPage.tsx index 7e1663c70dc..045ceb54900 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/ObjectVersionPage.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/ObjectVersionPage.tsx @@ -27,9 +27,11 @@ import { SimplePageLayoutWithHeader, } from './common/SimplePageLayout'; import {EvaluationLeaderboardTab} from './LeaderboardTab'; +import {TabPrompt} from './TabPrompt'; import {TabUseDataset} from './TabUseDataset'; import {TabUseModel} from './TabUseModel'; import {TabUseObject} from './TabUseObject'; +import {TabUsePrompt} from './TabUsePrompt'; import {KNOWN_BASE_OBJECT_CLASSES} from './wfReactInterface/constants'; import {useWFHooks} from './wfReactInterface/context'; import { @@ -127,6 +129,8 @@ const ObjectVersionPageInner: React.FC<{ }, [objectVersion.baseObjectClass]); const refUri = objectVersionKeyToRefUri(objectVersion); + const showPromptTab = objectVersion.val._class_name === 'EasyPrompt'; + const minimalColumns = useMemo(() => { return ['id', 'op_name', 'project_id']; }, []); @@ -287,6 +291,26 @@ const ObjectVersionPageInner: React.FC<{ // }, // ]} tabs={[ + ...(showPromptTab + ? [ + { + label: 'Prompt', + content: ( + + {data.loading ? ( + + ) : ( + + )} + + ), + }, + ] + : []), ...(isEvaluation && evalHasCalls ? [ { @@ -333,23 +357,33 @@ const ObjectVersionPageInner: React.FC<{ { label: 'Use', content: ( - - {baseObjectClass === 'Dataset' ? ( - - ) : baseObjectClass === 'Model' ? ( - - ) : ( - - )} - + + + {baseObjectClass === 'Prompt' ? ( + + ) : baseObjectClass === 'Dataset' ? ( + + ) : baseObjectClass === 'Model' ? ( + + ) : ( + + )} + + ), }, diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/OpVersionPage.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/OpVersionPage.tsx index 5e06b4a0474..1a6e4afc577 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/OpVersionPage.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/OpVersionPage.tsx @@ -12,6 +12,7 @@ import { } from './common/Links'; import {CenteredAnimatedLoader} from './common/Loader'; import { + ScrollableTabContent, SimpleKeyValueTable, SimplePageLayoutWithHeader, } from './common/SimplePageLayout'; @@ -136,9 +137,11 @@ const OpVersionPageInner: React.FC<{ { label: 'Use', content: ( - - - + + + + + ), }, ] diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabPrompt.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabPrompt.tsx new file mode 100644 index 00000000000..2f2819c3b34 --- /dev/null +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabPrompt.tsx @@ -0,0 +1,25 @@ +import classNames from 'classnames'; +import React from 'react'; + +import {Tailwind} from '../../../../Tailwind'; +import {MessageList} from './ChatView/MessageList'; + +type Data = Record; + +type TabPromptProps = { + entity: string; + project: string; + data: Data; +}; + +export const TabPrompt = ({entity, project, data}: TabPromptProps) => { + return ( + +
+
+ +
+
+
+ ); +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseCall.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseCall.tsx index 817d647d970..51f268011c0 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseCall.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseCall.tsx @@ -1,5 +1,6 @@ import {Box} from '@mui/material'; -import React from 'react'; +import * as Tabs from '@wandb/weave/components/Tabs'; +import React, {useState} from 'react'; import {CopyableText} from '../../../../CopyableText'; import {DocLink} from './common/Links'; @@ -11,26 +12,52 @@ type TabUseCallProps = { }; export const TabUseCall = ({call}: TabUseCallProps) => { + const sdkType = call.traceCall?.attributes?.weave?.source; + const language = sdkType === 'js-sdk' ? 'javascript' : 'python'; + const [selectedTab, setSelectedTab] = useState(language); + const {entity, project, callId} = call; - let codeFetch = `import weave + let codeFetchPython = `import weave client = weave.init("${entity}/${project}") call = client.get_call("${callId}")`; const backend = (window as any).CONFIG.TRACE_BACKEND_BASE_URL; if (backend.endsWith('.wandb.test')) { - codeFetch = + codeFetchPython = `import os os.environ["WF_TRACE_SERVER_URL"] = "http://127.0.0.1:6345" -` + codeFetch; +` + codeFetchPython; } + const codeReactionPython = `call.feedback.add_reaction("👍")`; + const codeNotePython = `call.feedback.add_note("This is delightful!")`; + const codeFeedbackPython = `call.feedback.add("correctness", {"value": 4})`; + + const codeFetchJS = `import * as weave from 'weave'; + const client = await weave.init("${entity}/${project}"); + const call = await client.getCall("${callId}")`; + const codeReactionJS = `await call.feedback.addReaction('👍')`; + const codeNoteJS = `await call.feedback.addNote('This is delightful!')`; + const codeFeedbackJS = `await call.feedback.add({correctness: {value: 4}})`; - const codeReaction = `call.feedback.add_reaction("👍")`; - const codeNote = `call.feedback.add_note("This is delightful!")`; - const codeFeedback = `call.feedback.add("correctness", {"value": 4})`; + const codeFetch = + selectedTab === 'javascript' ? codeFetchJS : codeFetchPython; + const codeReaction = + selectedTab === 'javascript' ? codeReactionJS : codeReactionPython; + const codeNote = selectedTab === 'javascript' ? codeNoteJS : codeNotePython; + const codeFeedback = + selectedTab === 'javascript' ? codeFeedbackJS : codeFeedbackPython; return ( - + + setSelectedTab(value)}> + + Python + TypeScript + + See{' '} {' '} @@ -39,28 +66,45 @@ os.environ["WF_TRACE_SERVER_URL"] = "http://127.0.0.1:6345" Use the following code to retrieve this call: - - - - You can add a reaction like this: - - - - or a note like this: - - - - or custom feedback like this: + {selectedTab !== 'javascript' && ( + // TODO: Update this when feedback is available on JS client + + You can add a reaction like this: + + + )} + {selectedTab !== 'javascript' && ( + // TODO: Update this when feedback is available on JS client + + or a note like this: + + + )} + {selectedTab !== 'javascript' && ( + // TODO: Update this when feedback is available on JS client + + or custom feedback like this: + + + )} ); }; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseDataset.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseDataset.tsx index 8b56a17604d..861eb15f443 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseDataset.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseDataset.tsx @@ -43,7 +43,7 @@ ${pythonName} = weave.ref('${ref.artifactName}:v${versionIndex}').get()`; } return ( - + See{' '} { const label = isParentObject ? 'model version' : 'object'; return ( - + See{' '} {' '} diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseObject.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseObject.tsx index 4ea8dc6af30..e8178521316 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseObject.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUseObject.tsx @@ -15,7 +15,7 @@ type TabUseObjectProps = { export const TabUseObject = ({name, uri}: TabUseObjectProps) => { const pythonName = isValidVarName(name) ? name : 'obj'; return ( - + See{' '} { const pythonName = isValidVarName(name) ? name : 'op'; return ( - + See for more information. diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUsePrompt.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUsePrompt.tsx new file mode 100644 index 00000000000..6d00af48bc6 --- /dev/null +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/TabUsePrompt.tsx @@ -0,0 +1,99 @@ +import {Box} from '@mui/material'; +import React from 'react'; + +import {isValidVarName} from '../../../../../core/util/var'; +import {parseRef} from '../../../../../react'; +import {abbreviateRef} from '../../../../../util/refs'; +import {Alert} from '../../../../Alert'; +import {CopyableText} from '../../../../CopyableText'; +import {DocLink} from './common/Links'; + +type Data = Record; + +type TabUsePromptProps = { + name: string; + uri: string; + entityName: string; + projectName: string; + data: Data; +}; + +export const TabUsePrompt = ({ + name, + uri, + entityName, + projectName, + data, +}: TabUsePromptProps) => { + const pythonName = isValidVarName(name) ? name : 'prompt'; + const ref = parseRef(uri); + const isParentObject = !ref.artifactRefExtra; + const label = isParentObject ? 'prompt version' : 'prompt'; + + // TODO: Simplify if no params. + const longExample = `import weave +from openai import OpenAI + +weave.init("${projectName}") + +${pythonName} = weave.ref("${uri}").get() + +class MyModel(weave.Model): + model_name: str + prompt: weave.Prompt + + @weave.op + def predict(self, params: dict) -> dict: + client = OpenAI() + response = client.chat.completions.create( + model=self.model_name, + messages=self.prompt.bind(params), + ) + result = response.choices[0].message.content + if result is None: + raise ValueError("No response from model") + return result + +mymodel = MyModel(model_name="gpt-3.5-turbo", prompt=${pythonName}) + +# Replace with desired parameter values +params = ${JSON.stringify({}, null, 2)} +print(mymodel.predict(params)) +`; + + return ( + + + See{' '} + {' '} + and for more + information. + + + + The ref for this {label} is: + + + + Use the following code to retrieve this {label}: + + + + A more complete example: + + + + + ); +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/context.tsx b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/context.tsx index 75f74bc147c..3e4199d862f 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/context.tsx +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/context.tsx @@ -8,8 +8,9 @@ * project and configures the context accordingly. */ -import React, {createContext, FC, useContext} from 'react'; +import React, {createContext, FC, useContext, useMemo} from 'react'; +import {useHasTraceServerClientContext} from './traceServerClientContext'; import {tsWFDataModelHooks} from './tsDataModelHooks'; import {WFDataModelHooksInterface} from './wfDataModelHooksInterface'; @@ -35,3 +36,48 @@ export const WFDataModelAutoProvider: FC<{ ); }; + +/** + * Returns true if the client can connect to trace server and the project has + * objects or calls. + */ +export const useProjectHasTraceServerData = ( + entity: string, + project: string +) => { + const hasTraceServer = useHasTraceServerClientContext(); + const objs = tsWFDataModelHooks.useRootObjectVersions( + entity, + project, + {}, + 1, + true, + { + skip: !hasTraceServer, + } + ); + const columns = useMemo(() => ['id'], []); + + const calls = tsWFDataModelHooks.useCalls( + entity, + project, + {}, + 1, + undefined, + undefined, + undefined, + columns, + undefined, + { + skip: !hasTraceServer, + } + ); + const loading = objs.loading || calls.loading; + return useMemo( + () => ({ + loading, + result: (objs.result ?? []).length > 0 || (calls.result ?? []).length > 0, + }), + [loading, objs.result, calls.result] + ); +}; diff --git a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/tsDataModelHooksEvaluationComparison.ts b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/tsDataModelHooksEvaluationComparison.ts index 93bd9b2e0bb..8418f2976ad 100644 --- a/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/tsDataModelHooksEvaluationComparison.ts +++ b/weave-js/src/components/PagePanelComponents/Home/Browse3/pages/wfReactInterface/tsDataModelHooksEvaluationComparison.ts @@ -242,7 +242,20 @@ const fetchEvaluationComparisonData = async ( // Add the user-defined scores evalObj.scorerRefs.forEach(scorerRef => { const scorerKey = getScoreKeyNameFromScorerRef(scorerRef); - const score = output[scorerKey]; + // TODO: REMOVE when sanitized scorer names have been released + // this is a hack to support previous unsanitized scorer names + // that have spaces. + let score = output[scorerKey]; + if (score == null && scorerKey.includes('-')) { + // no score found, '-' means we probably sanitized an illegal character + const foundScorerNameMaybe = fuzzyMatchScorerName( + Object.keys(output), + scorerKey + ); + if (foundScorerNameMaybe != null) { + score = output[foundScorerNameMaybe]; + } + } const recursiveAddScore = (scoreVal: any, currPath: string[]) => { if (isBinarySummaryScore(scoreVal)) { const metricDimension: MetricDefinition = { @@ -726,3 +739,13 @@ type EvaluationEvaluateCallSchema = TraceCallSchema & { }; }; type SummaryScore = BinarySummaryScore | ContinuousSummaryScore; + +function fuzzyMatchScorerName( + scoreNames: string[], + possibleScorerName: string +) { + // anytime we see a '-' in possibleScorerName, it can be any illegal character + // in score names. Use a regex to find matches, and return the first match. + const regex = new RegExp(possibleScorerName.replace(/-/g, '.')); + return scoreNames.find(name => regex.test(name)); +} diff --git a/weave-js/src/css/wandbTailwindPreflight.css b/weave-js/src/css/wandbTailwindPreflight.css index 20e08e0c754..96e29e14a61 100644 --- a/weave-js/src/css/wandbTailwindPreflight.css +++ b/weave-js/src/css/wandbTailwindPreflight.css @@ -54,8 +54,27 @@ It *will not work* if you apply the tw-style class to the same element -webkit-text-size-adjust: 100%; /* 2 */ -moz-tab-size: 4; /* 3 */ tab-size: 4; /* 3 */ - font-family: theme('fontFamily.sans', ui-sans-serif, system-ui, -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, "Noto Sans", sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol", "Noto Color Emoji"); /* 4 */ - font-feature-settings: theme('fontFamily.sans[1].fontFeatureSettings', normal); /* 5 */ + font-family: theme( + 'fontFamily.sans', + ui-sans-serif, + system-ui, + -apple-system, + BlinkMacSystemFont, + 'Segoe UI', + Roboto, + 'Helvetica Neue', + Arial, + 'Noto Sans', + sans-serif, + 'Apple Color Emoji', + 'Segoe UI Emoji', + 'Segoe UI Symbol', + 'Noto Color Emoji' + ); /* 4 */ + font-feature-settings: theme( + 'fontFamily.sans[1].fontFeatureSettings', + normal + ); /* 5 */ } /* @@ -129,7 +148,17 @@ Add the correct font weight in Edge and Safari. .tw-style kbd, .tw-style samp, .tw-style pre { - font-family: theme('fontFamily.mono', ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier New", monospace); /* 1 */ + font-family: theme( + 'fontFamily.mono', + ui-monospace, + SFMono-Regular, + Menlo, + Monaco, + Consolas, + 'Liberation Mono', + 'Courier New', + monospace + ); /* 1 */ font-size: 1em; /* 2 */ } @@ -346,7 +375,7 @@ Set the default cursor for buttons. */ .tw-style button, -.tw-style [role="button"] { +.tw-style [role='button'] { cursor: pointer; } @@ -389,3 +418,44 @@ Constrain images and videos to the parent width and preserve their intrinsic asp .tw-style [hidden] { display: none; } + +/* + The `tw-eject` class is used to optionally eject from `.tw-style` resets if this component happens to be rendered with a `.tw-style` parent in the tree. Right now the only known use case is keeping tailwind styles from contaminating markdown content +*/ + +.tw-style .tw-eject a { + color: #2e78c7; +} + +.tw-style .tw-eject h1, +.tw-style .tw-eject h2, +.tw-style .tw-eject h3, +.tw-style .tw-eject h4, +.tw-style .tw-eject h5, +.tw-style .tw-eject h6 { + font-size: revert; + font-weight: revert; +} + +.tw-style .tw-eject ol, +.tw-style .tw-eject ul { + list-style: revert; + margin: revert; + padding: revert; +} + +.tw-style .tw-eject blockquote, +.tw-style .tw-eject dl, +.tw-style .tw-eject dd, +.tw-style .tw-eject h1, +.tw-style .tw-eject h2, +.tw-style .tw-eject h3, +.tw-style .tw-eject h4, +.tw-style .tw-eject h5, +.tw-style .tw-eject h6, +.tw-style .tw-eject hr, +.tw-style .tw-eject figure, +.tw-style .tw-eject p, +.tw-style .tw-eject pre { + margin: revert; +} diff --git a/weave-js/tailwind.config.cjs b/weave-js/tailwind.config.cjs index 139a6ac7918..bed502ddbd4 100644 --- a/weave-js/tailwind.config.cjs +++ b/weave-js/tailwind.config.cjs @@ -188,6 +188,19 @@ module.exports = { }, }, extend: { + animation: { + 'wave': 'wave 3s linear infinite' + }, + keyframes: { + "wave": { + "0%, 30%, 100%": { + transform: "initial" + }, + "15%": { + transform: "translateY(-10px)" + } + } + }, opacity: { 35: '.35', }, diff --git a/weave-js/tsconfig.json b/weave-js/tsconfig.json index afa23e9fe70..d04e50eda65 100644 --- a/weave-js/tsconfig.json +++ b/weave-js/tsconfig.json @@ -9,7 +9,7 @@ "esModuleInterop": true, "forceConsistentCasingInFileNames": false, "isolatedModules": true, - "jsx": "preserve", + "jsx": "react", "lib": [ "es6", "dom", diff --git a/weave-js/yarn.lock b/weave-js/yarn.lock index 3315ac14ade..2ee20553257 100644 --- a/weave-js/yarn.lock +++ b/weave-js/yarn.lock @@ -4215,6 +4215,11 @@ resolved "https://registry.yarnpkg.com/@types/cytoscape/-/cytoscape-3.19.10.tgz#f4540749d68cd3db6f89da5197f7ec2a2ca516ee" integrity sha512-PLsKQcsUd05nz4PYyulIhjkLnlq9oD2WYpswrWOjoqtFZEuuBje0f9fi2zTG5/yfTf5+Gpllf/MPcFmfDzZ24w== +"@types/d3-array@^3.2.1": + version "3.2.1" + resolved "https://registry.yarnpkg.com/@types/d3-array/-/d3-array-3.2.1.tgz#1f6658e3d2006c4fceac53fde464166859f8b8c5" + integrity sha512-Y2Jn2idRrLzUfAKV2LyRImR+y4oa2AntrgID95SHJxuMUrkNXmanDSed71sRNZysveJVt1hLLemQZIady0FpEg== + "@types/debug@^4.0.0": version "4.1.8" resolved "https://registry.yarnpkg.com/@types/debug/-/debug-4.1.8.tgz#cef723a5d0a90990313faec2d1e22aee5eecb317" diff --git a/weave/__init__.py b/weave/__init__.py index 3b54ba97176..781d1e89d89 100644 --- a/weave/__init__.py +++ b/weave/__init__.py @@ -12,9 +12,15 @@ from weave.flow.eval import Evaluation, Scorer from weave.flow.model import Model from weave.flow.obj import Object +from weave.flow.prompt.prompt import EasyPrompt, Prompt +from weave.flow.prompt.prompt import MessagesPrompt as MessagesPrompt +from weave.flow.prompt.prompt import StringPrompt as StringPrompt from weave.trace.util import Thread as Thread from weave.trace.util import ThreadPoolExecutor as ThreadPoolExecutor +# Alias for succinct code +P = EasyPrompt + # Special object informing doc generation tooling which symbols # to document & to associate with this module. __docspec__ = [ @@ -31,6 +37,7 @@ Object, Dataset, Model, + Prompt, Evaluation, Scorer, ] diff --git a/weave/flow/eval.py b/weave/flow/eval.py index 6bacdb74a13..40a73e35cd2 100644 --- a/weave/flow/eval.py +++ b/weave/flow/eval.py @@ -1,10 +1,12 @@ import asyncio import inspect +import logging import textwrap import time import traceback -from typing import Any, Callable, Coroutine, Optional, Union, cast +from typing import Any, Callable, Coroutine, Literal, Optional, Union, cast +from pydantic import PrivateAttr from rich import print from rich.console import Console @@ -13,8 +15,9 @@ from weave.flow.dataset import Dataset from weave.flow.model import Model, get_infer_method from weave.flow.obj import Object -from weave.flow.scorer import ( +from weave.scorers import ( Scorer, + _has_oldstyle_scorers, auto_summarize, get_scorer_attributes, transpose, @@ -28,7 +31,7 @@ from weave.trace.weave_client import Call, get_ref console = Console() - +logger = logging.getLogger(__name__) INVALID_MODEL_ERROR = ( "`Evaluation.evaluate` requires a `Model` or `Op` instance as the `model` argument. " @@ -111,6 +114,9 @@ def function_to_evaluate(question: str): preprocess_model_input: Optional[Callable] = None trials: int = 1 + # internal attr to track whether to use the new `output` or old `model_output` key for outputs + _output_key: Literal["output", "model_output"] = PrivateAttr("output") + def model_post_init(self, __context: Any) -> None: scorers: list[Union[Callable, Scorer, Op]] = [] for scorer in self.scorers or []: @@ -127,6 +133,14 @@ def model_post_init(self, __context: Any) -> None: else: raise ValueError(f"Invalid scorer: {scorer}") scorers.append(scorer) + + # Determine output key based on scorer types + if _has_oldstyle_scorers(scorers): + self._output_key = "model_output" + util.warn_once( + logger, + "Using 'model_output' key for compatibility with older scorers. Please update scorers to use 'output' parameter.", + ) self.scorers = scorers if isinstance(self.dataset, list): @@ -223,8 +237,9 @@ async def predict_and_score( model_output = None model_latency = time.time() - model_start_time - scores = {} + scores = {} # TODO: Consider moving scorer setup and checks out of `predict_and_score` scorers = cast(list[Union[Op, Scorer]], self.scorers or []) + for scorer in scorers: scorer_self = None if weave_isinstance(scorer, Scorer): @@ -237,13 +252,103 @@ async def predict_and_score( score_signature = inspect.signature(score_fn) score_arg_names = list(score_signature.parameters.keys()) - if "model_output" not in score_arg_names: - raise OpCallError( - f"Scorer {scorer_name} must have a 'model_output' argument, to receive the output of the model function." + # the actual kwarg name depends on the scorer + if "output" in score_arg_names: + score_output_name = "output" + elif "model_output" in score_arg_names: + score_output_name = "model_output" + else: + message = textwrap.dedent( + f""" + Scorer {scorer_name} must have an `output` or `model_output` argument, to receive the + output of the model function. + """ ) + raise OpCallError(message) if isinstance(example, dict): - score_args = {k: v for k, v in example.items() if k in score_arg_names} + # The keys of `score_args` must match the argument names of the scorer's `score` method. + # If scorer.column_map is set, then user is indicating that the dataset column(s) + # being passed to the scorer have different names to the `score` functions' argument names. + # So we need to remap the dataset columns to the expected argument names in the scorer, + # + # column_map k:v pairs must be structured as `scorer param name : dataset column name` + # + # For instance, if the scorer expects "input" and "ground_truth" and we have a dataset + # with columns "question" and "answer", column_map should be defined as follows: + # {"input": "question", "ground_truth": "answer"} + # + # input: is the full row, we have access to it via example + # output: is the model output, we have access to it via model_output + score_arg_names = [ + param for param in score_arg_names if (param != "self") + ] + score_args = {} + + if isinstance(scorer, Scorer) and scorer.column_map is not None: + # Ensure that all keys in column_map are in score_arg_names + for key in scorer.column_map.keys(): + if key not in score_arg_names: + message = textwrap.dedent( + f""" + You have created `{scorer_name}(column_map={scorer.column_map}, ...)`. + + The `column_map` contains a key, `{key}`, which is not in the `score` methods' argument names. + `score` methods' argument names: {score_arg_names} + + Hint: + - Ensure that the keys in `column_map` match the scorer's argument names. + """ + ) + raise ValueError(message) + + for arg in score_arg_names: + if arg == "output" or arg == "model_output": + continue + if arg in example: + score_args[arg] = example[arg] + elif arg in scorer.column_map: + dataset_column_name = scorer.column_map[arg] + if dataset_column_name in example: + score_args[arg] = example[dataset_column_name] + else: + message = textwrap.dedent( + f""" + You have created `{scorer_name}(column_map={scorer.column_map}, ...)`. + + You are mapping `{arg}` to `{dataset_column_name}`, but `{dataset_column_name}` + was not found in the dataset columns. + + Available dataset columns: {list(example.keys())} + + Hint: + - Ensure that `column_map` maps the `score` methods' argument names to existing dataset column names. + """ + ) + raise ValueError(message) + else: + message = textwrap.dedent( + f""" + You have created `{scorer_name}(column_map={scorer.column_map}, ...)`. + + `score` method argument `{arg}` is not found in the dataset columns and is not mapped in `column_map`. + + Available dataset columns: {list(example.keys())} + `column_map`: {scorer.column_map} + + Hint: + Either: + - map the argument name to the dataset column using the scorers `column_map` attribute, in the form {{score_arg_name : dataset_column_name}} or + - rename a column in the dataset to `{arg}` or + - re-name the `{arg}` argument in your `score` method to match a dataset column name + """ + ) + raise ValueError(message) + else: + score_args = { + k: v for k, v in example.items() if k in score_arg_names + } + else: if len(score_arg_names) == 2: score_args = {score_arg_names[0]: example} @@ -251,7 +356,7 @@ async def predict_and_score( raise ValueError( f"{score_fn} expects arguments: {score_arg_names}, provide a preprocess_model_input function that returns a dict with those keys." ) - score_args["model_output"] = model_output + score_args[score_output_name] = model_output try: if is_op(score_fn) and model_call: @@ -275,29 +380,41 @@ async def predict_and_score( except OpCallError as e: dataset_column_names = list(example.keys()) dataset_column_names_str = ", ".join(dataset_column_names[:3]) - if len(dataset_column_names) > 3: + if len(dataset_column_names) > 10: dataset_column_names_str += ", ..." required_arg_names = [ param.name for param in score_signature.parameters.values() if param.default == inspect.Parameter.empty ] - required_arg_names.remove("model_output") + required_arg_names.remove(score_output_name) message = textwrap.dedent( f""" Call error: {e} + If using the `Scorer` weave class, you can set the `scorer.column_map` + attribute to map scorer argument names to dataset columns. + + For example, if the `score` expects "output", "input" and "ground_truth" and we have a dataset + with columns "question" and "answer", `column_map` can be used to map the non-output parameter like so: + {{"input": "question", "ground_truth": "answer"}} + + scorer argument names: {score_arg_names} + dataset keys: {example.keys()} + scorer.column_map: {getattr(scorer, 'column_map', '{}')} + Options for resolving: - a. change {scorer_name} argument names to match a subset of dataset column names ({dataset_column_names_str}) - b. change dataset column names to match expected {scorer_name} argument names: {required_arg_names} + a. if using the `Scorer` weave class, you can set the `scorer.column_map` attribute to map scorer argument names to dataset column names or + b. change the argument names the in the scoring function of {scorer_name} to match a subset of dataset column names: ({dataset_column_names_str}) or + c. change dataset column names to match expected {scorer_name} argument names: {required_arg_names} """ ) raise OpCallError(message) scores[scorer_name] = result return { - "model_output": model_output, + self._output_key: model_output, "scores": scores, "model_latency": model_latency, } @@ -321,7 +438,6 @@ async def summarize(self, eval_table: EvaluationResults) -> dict: model_output_summary = auto_summarize(vals) if model_output_summary: summary[name] = model_output_summary - return summary async def get_eval_results( @@ -341,7 +457,7 @@ async def eval_example(example: dict) -> dict: except Exception as e: print("Predict and score failed") traceback.print_exc() - return {"model_output": None, "scores": {}} + return {self._output_key: None, "scores": {}} return eval_row n_complete = 0 @@ -358,7 +474,7 @@ async def eval_example(example: dict) -> dict: # f"Evaluating... {duration:.2f}s [{n_complete} / {len(self.dataset.rows)} complete]" # type:ignore # ) if eval_row is None: - eval_row = {"model_output": None, "scores": {}} + eval_row = {self._output_key: None, "scores": {}} else: eval_row["scores"] = eval_row.get("scores", {}) for scorer in self.scorers or []: diff --git a/weave/flow/prompt/common.py b/weave/flow/prompt/common.py new file mode 100644 index 00000000000..80bc63ae60f --- /dev/null +++ b/weave/flow/prompt/common.py @@ -0,0 +1,14 @@ +# TODO: Maybe use an enum or something to lock down types more + +ROLE_COLORS: dict[str, str] = { + "system": "bold blue", + "user": "bold green", + "assistant": "bold magenta", +} + + +def color_role(role: str) -> str: + color = ROLE_COLORS.get(role) + if color: + return f"[{color}]{role}[/]" + return role diff --git a/weave/flow/prompt/prompt.py b/weave/flow/prompt/prompt.py new file mode 100644 index 00000000000..016e9d3f996 --- /dev/null +++ b/weave/flow/prompt/prompt.py @@ -0,0 +1,440 @@ +import copy +import json +import os +import re +import textwrap +from collections import UserList +from pathlib import Path +from typing import IO, Any, Optional, SupportsIndex, TypedDict, Union, overload + +from pydantic import Field +from rich.table import Table + +from weave.flow.obj import Object +from weave.flow.prompt.common import ROLE_COLORS, color_role +from weave.trace.api import publish as weave_publish +from weave.trace.op import op +from weave.trace.refs import ObjectRef +from weave.trace.rich import pydantic_util + + +class Message(TypedDict): + role: str + content: str + + +def maybe_dedent(content: str, dedent: bool) -> str: + if dedent: + return textwrap.dedent(content).strip() + return content + + +def str_to_message( + content: str, role: Optional[str] = None, dedent: bool = False +) -> Message: + if role is not None: + return {"role": role, "content": maybe_dedent(content, dedent)} + for role in ROLE_COLORS: + prefix = role + ":" + if content.startswith(prefix): + return { + "role": role, + "content": maybe_dedent(content[len(prefix) :].lstrip(), dedent), + } + return {"role": "user", "content": maybe_dedent(content, dedent)} + + +# TODO: This supports Python format specifiers, but maybe we don't want to +# because it will be harder to do in clients in other languages? +RE_PLACEHOLDER = re.compile(r"\{(\w+)(:[^}]+)?\}") + + +def extract_placeholders(text: str) -> list[str]: + placeholders = re.findall(RE_PLACEHOLDER, text) + unique = [] + for name, _ in placeholders: + if name not in unique: + unique.append(name) + return unique + + +def color_content(content: str, values: dict) -> str: + placeholders = extract_placeholders(content) + colored_values = {} + for placeholder in placeholders: + if placeholder not in values: + colored_values[placeholder] = "[red]{" + placeholder + "}[/]" + else: + colored_values[placeholder] = ( + "[orange3]{" + placeholder + ":" + str(values[placeholder]) + "}[/]" + ) + return content.format(**colored_values) + + +class Prompt(Object): + def format(self, **kwargs: Any) -> Any: + raise NotImplemented + + +class MessagesPrompt(Prompt): + def format(self, **kwargs: Any) -> list: + raise NotImplemented + + +class StringPrompt(Prompt): + def format(self, **kwargs: Any) -> str: + raise NotImplemented + + +class EasyPrompt(UserList, Prompt): + data: list = Field(default_factory=list) + config: dict = Field(default_factory=dict) + requirements: dict = Field(default_factory=dict) + + _values: dict + + def __init__( + self, + content: Optional[Union[str, dict, list]] = None, + *, + role: Optional[str] = None, + dedent: bool = False, + **kwargs: Any, + ) -> None: + super(UserList, self).__init__() + name = kwargs.pop("name", None) + description = kwargs.pop("description", None) + config = kwargs.pop("config", {}) + requirements = kwargs.pop("requirements", {}) + if "messages" in kwargs: + content = kwargs.pop("messages") + config.update(kwargs) + kwargs = {"config": config, "requirements": requirements} + super(Object, self).__init__(name=name, description=description, **kwargs) + self._values = {} + if content is not None: + if isinstance(content, (str, dict)): + content = [content] + for item in content: + self.append(item, role=role, dedent=dedent) + + def __add__(self, other: Any) -> "Prompt": + new_prompt = self.copy() + new_prompt += other + return new_prompt + + def append( + self, + item: Any, + role: Optional[str] = None, + dedent: bool = False, + ) -> None: + if isinstance(item, str): + # Seems like we don't want to do this, if the user wants + # all system we have helpers for that, and we want to make the + # case of constructing system + user easy + # role = self.data[-1].get("role", "user") if self.data else "user" + self.data.append(str_to_message(item, role=role, dedent=dedent)) + elif isinstance(item, dict): + # TODO: Validate that item has message shape + # TODO: Override role and do dedent? + self.data.append(item) + elif isinstance(item, list): + for item in item: + self.append(item) + else: + raise ValueError(f"Cannot append {item} of type {type(item)} to Prompt") + + def __iadd__(self, item: Any) -> "Prompt": + self.append(item) + return self + + @property + def as_str(self) -> str: + """Join all messages into a single string.""" + return " ".join(message.get("content", "") for message in self.data) + + @property + def system_message(self) -> Message: + """Join all messages into a system prompt message.""" + return {"role": "system", "content": self.as_str} + + @property + def system_prompt(self) -> "Prompt": + """Join all messages into a system prompt object.""" + return Prompt(self.as_str, role="system") + + @property + def messages(self) -> list[Message]: + return self.data + + @property + def placeholders(self) -> list[str]: + all_placeholders: list[str] = [] + for message in self.data: + # TODO: Support placeholders in image messages? + placeholders = extract_placeholders(message["content"]) + all_placeholders.extend( + p for p in placeholders if p not in all_placeholders + ) + return all_placeholders + + @property + def unbound_placeholders(self) -> list[str]: + unbound = [] + for p in self.placeholders: + if p not in self._values: + unbound.append(p) + return unbound + + @property + def is_bound(self) -> bool: + return not self.unbound_placeholders + + def validate_requirement(self, key: str, value: Any) -> list: + problems = [] + requirement = self.requirements.get(key) + if not requirement: + return [] + # TODO: Type coercion + min = requirement.get("min") + if min is not None and value < min: + problems.append(f"{key} ({value}) is less than min ({min})") + max = requirement.get("max") + if max is not None and value > max: + problems.append(f"{key} ({value}) is greater than max ({max})") + oneof = requirement.get("oneof") + if oneof is not None and value not in oneof: + problems.append(f"{key} ({value}) must be one of {', '.join(oneof)}") + return problems + + def validate_requirements(self, values: dict[str, Any]) -> list: + problems = [] + for key, value in values.items(): + problems += self.validate_requirement(key, value) + return problems + + def bind(self, *args: Any, **kwargs: Any) -> "Prompt": + is_dict = len(args) == 1 and isinstance(args[0], dict) + problems = [] + if is_dict: + problems += self.validate_requirements(args[0]) + problems += self.validate_requirements(kwargs) + if problems: + raise ValueError("\n".join(problems)) + if is_dict: + self._values.update(args[0]) + self._values.update(kwargs) + return self + + def __call__(self, *args: Any, **kwargs: Any) -> list[Message]: + if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], dict): + kwargs = args[0] + prompt = self.bind(kwargs) + return list(prompt) + + # TODO: Any should be Dataset but there is a circular dependency issue + def bind_rows(self, dataset: Union[list[dict], Any]) -> list["Prompt"]: + rows = dataset if isinstance(dataset, list) else dataset.rows + bound: list["Prompt"] = [] + for row in rows: + bound.append(self.copy().bind(row)) + return bound + + @overload + def __getitem__(self, index: SupportsIndex) -> Any: ... + + @overload + def __getitem__(self, key: slice) -> "EasyPrompt": ... + + def __getitem__(self, key: Union[SupportsIndex, slice]) -> Any: + """Override getitem to return a Message, Prompt object, or config value.""" + if isinstance(key, SupportsIndex): + int_index = key.__index__() + message = self.data[int_index].copy() + placeholders = extract_placeholders(message["content"]) + values = {} + for placeholder in placeholders: + if placeholder in self._values: + values[placeholder] = self._values[placeholder] + elif ( + placeholder in self.requirements + and "default" in self.requirements[placeholder] + ): + values[placeholder] = self.requirements[placeholder]["default"] + else: + values[placeholder] = "{" + placeholder + "}" + message["content"] = message["content"].format(**values) + return message + elif isinstance(key, slice): + new_prompt = Prompt() + new_prompt.name = self.name + new_prompt.description = self.description + new_prompt.data = self.data[key] + new_prompt.config = self.config.copy() + new_prompt.requirements = self.requirements.copy() + new_prompt._values = self._values.copy() + return new_prompt + elif isinstance(key, str): + if key == "ref": + return self + if key == "messages": + return self.data + return self.config[key] + else: + raise TypeError(f"Invalid argument type: {type(key)}") + + def __deepcopy__(self, memo: dict) -> "Prompt": + # I'm sure this isn't right, but hacking in to avoid + # TypeError: cannot pickle '_thread.lock' object. + # Basically, as part of logging our message objects are + # turning into WeaveDicts which have a sever reference which + # in turn can't be copied + c = copy.deepcopy(dict(self.config), memo) + r = copy.deepcopy(dict(self.requirements), memo) + p = Prompt( + name=self.name, description=self.description, config=c, requirements=r + ) + p._values = dict(self._values) + for value in self.data: + p.data.append(dict(value)) + return p + + def require(self, param_name: str, **kwargs: Any) -> "Prompt": + self.requirements[param_name] = kwargs + return self + + def configure(self, config: Optional[dict] = None, **kwargs: Any) -> "Prompt": + if config: + self.config = config + self.config.update(kwargs) + return self + + def publish(self, name: Optional[str] = None) -> ObjectRef: + # TODO: This only works if we've called weave.init, but it seems like + # that shouldn't be necessary if we have loaded this from a ref. + return weave_publish(self, name=name) + + def messages_table(self, title: Optional[str] = None) -> Table: + table = Table(title=title, title_justify="left", show_header=False) + table.add_column("Role", justify="right") + table.add_column("Content") + # TODO: Maybe we should inline the values here? Or highlight placeholders missing values in red? + for message in self.data: + table.add_row( + color_role(message.get("role", "user")), + color_content(message.get("content", ""), self._values), + ) + return table + + def values_table(self, title: Optional[str] = None) -> Table: + table = Table(title=title, title_justify="left", show_header=False) + table.add_column("Parameter", justify="right") + table.add_column("Value") + for key, value in self._values.items(): + table.add_row(key, str(value)) + return table + + def config_table(self, title: Optional[str] = None) -> Table: + table = Table(title=title, title_justify="left", show_header=False) + table.add_column("Key", justify="right") + table.add_column("Value") + for key, value in self.config.items(): + table.add_row(key, str(value)) + return table + + def print(self) -> str: + tables = [] + if self.name or self.description: + table1 = Table(show_header=False) + table1.add_column("Key", justify="right", style="bold cyan") + table1.add_column("Value") + if self.name is not None: + table1.add_row("Name", self.name) + if self.description is not None: + table1.add_row("Description", self.description) + tables.append(table1) + if self.data: + tables.append(self.messages_table(title="Messages")) + if self._values: + tables.append(self.values_table(title="Parameters")) + if self.config: + tables.append(self.config_table(title="Config")) + tables = [pydantic_util.table_to_str(t) for t in tables] + return "\n".join(tables) + + def __str__(self) -> str: + """Return a single prompt string when str() is called on the object.""" + return self.as_str + + def _repr_pretty_(self, p: Any, cycle: bool) -> None: + """Show a nicely formatted table in ipython.""" + if cycle: + p.text("Prompt(...)") + else: + p.text(self.print()) + + def as_pydantic_dict(self) -> dict[str, Any]: + return self.model_dump() + + def as_dict(self) -> dict[str, Any]: + # In chat completion kwargs format + return { + **self.config, + "messages": list(self), + } + + @staticmethod + def from_obj(obj: Any) -> "EasyPrompt": + messages = obj.messages if hasattr(obj, "messages") else obj.data + messages = [dict(m) for m in messages] + config = dict(obj.config) + requirements = dict(obj.requirements) + return EasyPrompt( + name=obj.name, + description=obj.description, + messages=messages, + config=config, + requirements=requirements, + ) + + @staticmethod + def load(fp: IO) -> "EasyPrompt": + if isinstance(fp, str): # Common mistake + raise ValueError( + "Prompt.load() takes a file-like object, not a string. Did you mean Prompt.e()?" + ) + data = json.load(fp) + prompt = EasyPrompt(**data) + return prompt + + @staticmethod + def load_file(filepath: Union[str, Path]) -> "Prompt": + expanded_path = os.path.expanduser(str(filepath)) + with open(expanded_path, "r") as f: + return EasyPrompt.load(f) + + def dump(self, fp: IO) -> None: + json.dump(self.as_pydantic_dict(), fp, indent=2) + + def dump_file(self, filepath: Union[str, Path]) -> None: + expanded_path = os.path.expanduser(str(filepath)) + with open(expanded_path, "w") as f: + self.dump(f) + + # TODO: We would like to be able to make this an Op. + # Unfortunately, litellm tries to make a deepcopy of the messages + # and that fails because the Message objects aren't picklable. + # TypeError: cannot pickle '_thread.RLock' object + # (Which I think is because they keep a reference to the server interface maybe?) + @op + def run(self) -> Any: + # TODO: Nicer result type + import litellm + + result = litellm.completion( + messages=list(self), + model=self.config.get("model", "gpt-4o-mini"), + ) + # TODO: Print in a nicer format + return result diff --git a/weave/flow/scorer.py b/weave/flow/scorer.py index e69f3afeb3f..86df3d6a055 100644 --- a/weave/flow/scorer.py +++ b/weave/flow/scorer.py @@ -1,158 +1,12 @@ -from collections import defaultdict -from numbers import Number -from typing import Any, Callable, Optional, Sequence, Tuple, Union - -import numpy as np -from pydantic import BaseModel - -import weave -from weave.flow.obj import Object -from weave.trace.isinstance import weave_isinstance -from weave.trace.op import Op, as_op, is_op - - -class Scorer(Object): - def score(self, target: Any, model_output: Any) -> Any: - raise NotImplementedError - - @weave.op() - def summarize(self, score_rows: list) -> Optional[dict]: - return auto_summarize(score_rows) - - -def stderr(data: Sequence[Union[int, float]]) -> float: - if len(data) > 1: - sample_variance = np.var(data, ddof=1) - return float(np.sqrt(sample_variance / len(data))) - else: - return 0 - - -def auto_summarize(data: list) -> Optional[dict[str, Any]]: - """Automatically summarize a list of (potentially nested) dicts. - - Computes: - - avg for numeric cols - - count and fraction for boolean cols - - other col types are ignored - - If col is all None, result is None - - Returns: - dict of summary stats, with structure matching input dict structure. - """ - if not data: - return {} - data = [x for x in data if x is not None] - - if not data: - return None - - val = data[0] - - if isinstance(val, bool): - return { - "true_count": (true_count := sum(1 for x in data if x)), - "true_fraction": true_count / len(data), - } - elif isinstance(val, Number): - return {"mean": np.mean(data).item()} - elif isinstance(val, dict): - result = {} - all_keys = set().union(*[x.keys() for x in data if isinstance(x, dict)]) - for k in all_keys: - if ( - summary := auto_summarize( - [x.get(k) for x in data if isinstance(x, dict)] - ) - ) is not None: - if k in summary: - result.update(summary) - else: - result[k] = summary - if not result: - return None - return result - elif isinstance(val, BaseModel): - return auto_summarize([x.model_dump() for x in data]) - return None - - -def get_scorer_attributes( - scorer: Union[Callable, Op, Scorer], -) -> Tuple[str, Callable, Callable]: - if weave_isinstance(scorer, Scorer): - scorer_name = scorer.name - if scorer_name is None: - scorer_name = scorer.__class__.__name__ - try: - score_fn = scorer.score - summarize_fn = scorer.summarize # type: ignore - except AttributeError: - raise ValueError( - f"Scorer {scorer_name} must implement score and summarize methods. Did you forget to wrap with @weave.op()?" - ) - elif callable(scorer): - if is_op(scorer): - scorer = as_op(scorer) - scorer_name = scorer.name - else: - scorer_name = scorer.__name__ - score_fn = scorer - summarize_fn = auto_summarize # type: ignore - else: - raise ValueError(f"Unknown scorer type: {scorer}") - return (scorer_name, score_fn, summarize_fn) # type: ignore - - -def p_r_f1(tp: int, fp: int, fn: int) -> Tuple[float, float, float]: - # if any denom is zero, then zero. could use NaN instead... - precision: float = 0 - if tp or fp: - precision = tp / (tp + fp) - recall: float = 0 - if tp or fn: - recall = tp / (tp + fn) - f1: float = 0 - if precision or recall: - f1 = 2 * (precision * recall) / (precision + recall) - return precision, recall, f1 - - -class MultiTaskBinaryClassificationF1(Scorer): - class_names: list[str] - - @weave.op() - def summarize(self, score_rows: list) -> Optional[dict]: - result = {} - cols = transpose(score_rows) - - for class_name in self.class_names: - col = cols[class_name] - tp = sum(r["correct"] and not r["negative"] for r in col) - fp = sum(not r["correct"] and not r["negative"] for r in col) - fn = sum(not r["correct"] and r["negative"] for r in col) - precision, recall, f1 = p_r_f1(tp, fp, fn) - result[class_name] = {"f1": f1, "precision": precision, "recall": recall} - - return result - - @weave.op() - def score(self, target: dict, model_output: Optional[dict]) -> dict: - result = {} - for class_name in self.class_names: - class_label = target.get(class_name) - class_model_output = model_output.get(class_name) if model_output else None - result[class_name] = { - "correct": class_label == class_model_output, - "negative": not class_model_output, - } - return result - - -def transpose(rows: list[dict]) -> dict[str, list]: - cols = defaultdict(list) - for row in rows: - for k, v in row.items(): - cols[k].append(v) - return dict(cols) +# Keeping this file for now to avoid breaking changes. +# In future, users should import all scoring functionality from weave.scorers +import warnings + +from weave.scorers import * + +warnings.warn( + "Importing from weave.flow.scorer is deprecated. " + "Please import from weave.scorers in the future.", + DeprecationWarning, + stacklevel=2, +) diff --git a/weave/flow/util.py b/weave/flow/util.py index 06b52384f9a..f0496be90f7 100644 --- a/weave/flow/util.py +++ b/weave/flow/util.py @@ -1,10 +1,13 @@ import asyncio +import logging import multiprocessing from typing import Any, AsyncIterator, Awaitable, Callable, Iterable, Tuple, TypeVar T = TypeVar("T") U = TypeVar("U") +_shown_warnings = set() + async def async_foreach( sequence: Iterable[T], @@ -70,3 +73,10 @@ async def run_in_process_with_timeout( raise ValueError( "Unhandled exception in subprocess. Exitcode: " + str(process.exitcode) ) + + +def warn_once(logger: logging.Logger, message: str) -> None: + """Display a warning message only once. If the message has already been shown, do nothing.""" + if message not in _shown_warnings: + logger.warning(message) + _shown_warnings.add(message) diff --git a/weave/integrations/openai/openai_sdk.py b/weave/integrations/openai/openai_sdk.py index d32d1a80a70..558373ab44a 100644 --- a/weave/integrations/openai/openai_sdk.py +++ b/weave/integrations/openai/openai_sdk.py @@ -3,6 +3,7 @@ from typing import TYPE_CHECKING, Any, Callable, Optional import weave +from weave.trace.op import Op, ProcessedInputs from weave.trace.op_extensions.accumulator import add_accumulator from weave.trace.patcher import MultiPatcher, SymbolPatcher @@ -277,6 +278,28 @@ def should_use_accumulator(inputs: dict) -> bool: ) +def openai_on_input_handler( + func: Op, args: tuple, kwargs: dict +) -> Optional[ProcessedInputs]: + if len(args) == 2 and isinstance(args[1], weave.EasyPrompt): + original_args = args + original_kwargs = kwargs + prompt = args[1] + args = args[:-1] + kwargs.update(prompt.as_dict()) + inputs = { + "prompt": prompt, + } + return ProcessedInputs( + original_args=original_args, + original_kwargs=original_kwargs, + args=args, + kwargs=kwargs, + inputs=inputs, + ) + return None + + def create_wrapper_sync( name: str, ) -> Callable[[Callable], Callable]: @@ -301,6 +324,7 @@ def _openai_stream_options_is_set(inputs: dict) -> bool: op = weave.op()(_add_stream_options(fn)) op.name = name # type: ignore + op._set_on_input_handler(openai_on_input_handler) return add_accumulator( op, # type: ignore make_accumulator=lambda inputs: lambda acc, value: openai_accumulator( @@ -338,6 +362,7 @@ def _openai_stream_options_is_set(inputs: dict) -> bool: op = weave.op()(_add_stream_options(fn)) op.name = name # type: ignore + op._set_on_input_handler(openai_on_input_handler) return add_accumulator( op, # type: ignore make_accumulator=lambda inputs: lambda acc, value: openai_accumulator( diff --git a/weave/scorers/__init__.py b/weave/scorers/__init__.py new file mode 100644 index 00000000000..28583c5ff17 --- /dev/null +++ b/weave/scorers/__init__.py @@ -0,0 +1,57 @@ +from weave.scorers.base_scorer import ( + Scorer, + _has_oldstyle_scorers, + auto_summarize, + get_scorer_attributes, +) +from weave.scorers.classification_scorer import ( + MultiTaskBinaryClassificationF1, + transpose, +) +from weave.scorers.hallucination_scorer import HallucinationFreeScorer +from weave.scorers.json_scorer import ValidJSONScorer +from weave.scorers.llm_scorer import ( + InstructorLLMScorer, + LLMScorer, +) +from weave.scorers.llm_utils import ( + create, + embed, +) +from weave.scorers.moderation_scorer import OpenAIModerationScorer +from weave.scorers.pydantic_scorer import PydanticScorer +from weave.scorers.ragas_scorer import ( + ContextEntityRecallScorer, + ContextRelevancyScorer, +) +from weave.scorers.similarity_scorer import EmbeddingSimilarityScorer +from weave.scorers.string_scorer import ( + LevenshteinScorer, + StringMatchScorer, +) +from weave.scorers.summarization_scorer import SummarizationScorer +from weave.scorers.xml_scorer import ValidXMLScorer + +__all__ = [ + "auto_summarize", + "create", + "embed", + "ContextEntityRecallScorer", + "ContextRelevancyScorer", + "EmbeddingSimilarityScorer", + "get_scorer_attributes", + "_has_oldstyle_scorers", + "HallucinationFreeScorer", + "InstructorLLMScorer", + "ValidJSONScorer", + "LevenshteinScorer", + "LLMScorer", + "MultiTaskBinaryClassificationF1", + "OpenAIModerationScorer", + "PydanticScorer", + "Scorer", + "StringMatchScorer", + "SummarizationScorer", + "transpose", + "ValidXMLScorer", +] diff --git a/weave/scorers/base_scorer.py b/weave/scorers/base_scorer.py new file mode 100644 index 00000000000..080149af0aa --- /dev/null +++ b/weave/scorers/base_scorer.py @@ -0,0 +1,129 @@ +import inspect +from numbers import Number +from typing import Any, Callable, Optional, Sequence, Tuple, Union + +import numpy as np +from pydantic import BaseModel, Field + +import weave +from weave.flow.obj import Object +from weave.trace.isinstance import weave_isinstance +from weave.trace.op import Op, as_op, is_op +from weave.trace.weave_client import sanitize_object_name + + +class Scorer(Object): + column_map: Optional[dict[str, str]] = Field( + default=None, + description="A mapping from column names in the dataset to the names expected by the scorer", + ) + + def score(self, *, output: Any, **kwargs: Any) -> Any: + raise NotImplementedError + + @weave.op() + def summarize(self, score_rows: list) -> Optional[dict]: + return auto_summarize(score_rows) + + +def stderr(data: Sequence[Union[int, float]]) -> float: + if len(data) > 1: + sample_variance = np.var(data, ddof=1) + return float(np.sqrt(sample_variance / len(data))) + else: + return 0 + + +def auto_summarize(data: list) -> Optional[dict[str, Any]]: + """Automatically summarize a list of (potentially nested) dicts. + + Computes: + - avg for numeric cols + - count and fraction for boolean cols + - other col types are ignored + + If col is all None, result is None + + Returns: + dict of summary stats, with structure matching input dict structure. + """ + if not data: + return {} + data = [x for x in data if x is not None] + + if not data: + return None + + val = data[0] + + if isinstance(val, bool): + return { + "true_count": (true_count := sum(1 for x in data if x)), + "true_fraction": true_count / len(data), + } + elif isinstance(val, Number): + return {"mean": np.mean(data).item()} + elif isinstance(val, dict): + result = {} + all_keys = set().union(*[x.keys() for x in data if isinstance(x, dict)]) + for k in all_keys: + if ( + summary := auto_summarize( + [x.get(k) for x in data if isinstance(x, dict)] + ) + ) is not None: + if k in summary: + result.update(summary) + else: + result[k] = summary + if not result: + return None + return result + elif isinstance(val, BaseModel): + return auto_summarize([x.model_dump() for x in data]) + return None + + +def get_scorer_attributes( + scorer: Union[Callable, Op, Scorer], +) -> Tuple[str, Callable, Callable]: + if weave_isinstance(scorer, Scorer): + scorer_name = scorer.name + if scorer_name is None: + scorer_name = scorer.__class__.__name__ + try: + score_fn = scorer.score + summarize_fn = scorer.summarize # type: ignore + except AttributeError: + raise ValueError( + f"Scorer {scorer_name} must implement score and summarize methods. Did you forget to wrap with @weave.op()?" + ) + elif callable(scorer): + if is_op(scorer): + scorer = as_op(scorer) + scorer_name = scorer.name + else: + scorer_name = scorer.__name__ + score_fn = scorer + summarize_fn = auto_summarize # type: ignore + else: + raise ValueError(f"Unknown scorer type: {scorer}") + + if scorer_name: + scorer_name = sanitize_object_name(scorer_name) + + return (scorer_name, score_fn, summarize_fn) # type: ignore + + +def _has_oldstyle_scorers(scorers: list[Union[Callable, Op, Scorer]]) -> bool: + """Check if any scorers use the deprecated 'model_output' parameter.""" + for scorer in scorers: + _, score_fn, _ = get_scorer_attributes(scorer) + if is_op(score_fn): + score_fn = as_op(score_fn) + score_signature = score_fn.signature + else: + score_signature = inspect.signature(score_fn) + if "model_output" in score_signature.parameters: + return True + return False diff --git a/weave/scorers/classification_scorer.py b/weave/scorers/classification_scorer.py new file mode 100644 index 00000000000..b968258bc2c --- /dev/null +++ b/weave/scorers/classification_scorer.py @@ -0,0 +1,61 @@ +from collections import defaultdict +from typing import Optional, Tuple + +import weave +from weave.scorers.base_scorer import Scorer + + +def p_r_f1(tp: int, fp: int, fn: int) -> Tuple[float, float, float]: + # if any denom is zero, then zero. could use NaN instead... + precision: float = 0 + if tp or fp: + precision = tp / (tp + fp) + recall: float = 0 + if tp or fn: + recall = tp / (tp + fn) + f1: float = 0 + if precision or recall: + f1 = 2 * (precision * recall) / (precision + recall) + return precision, recall, f1 + + +class MultiTaskBinaryClassificationF1(Scorer): + class_names: list[str] + + @weave.op() + def summarize(self, score_rows: list) -> Optional[dict]: + result = {} + cols = transpose(score_rows) + + for class_name in self.class_names: + col = cols[class_name] + tp = sum(r["correct"] and not r["negative"] for r in col) + fp = sum(not r["correct"] and not r["negative"] for r in col) + fn = sum(not r["correct"] and r["negative"] for r in col) + precision, recall, f1 = p_r_f1(tp, fp, fn) + result[class_name] = {"f1": f1, "precision": precision, "recall": recall} + + return result + + # NOTE: This is an old-style scorer that uses `model_output` instead of `output` for + # backwards compatibility. In future, this behaviour may change to use the newer `output` key. + # You can still pass a `column_map` to map to the new `output` key if you prefer. + @weave.op() + def score(self, target: dict, model_output: Optional[dict]) -> dict: + result = {} + for class_name in self.class_names: + class_label = target.get(class_name) + class_output = model_output.get(class_name) if model_output else None + result[class_name] = { + "correct": class_label == class_output, + "negative": not class_output, + } + return result + + +def transpose(rows: list[dict]) -> dict[str, list]: + cols = defaultdict(list) + for row in rows: + for k, v in row.items(): + cols[k].append(v) + return dict(cols) diff --git a/weave/scorers/hallucination_scorer.py b/weave/scorers/hallucination_scorer.py new file mode 100644 index 00000000000..1aee2012134 --- /dev/null +++ b/weave/scorers/hallucination_scorer.py @@ -0,0 +1,160 @@ +from typing import List + +from pydantic import BaseModel, Field + +import weave +from weave.scorers.llm_scorer import InstructorLLMScorer +from weave.scorers.llm_utils import OPENAI_DEFAULT_MODEL, create +from weave.scorers.utils import stringify + +DEFAULT_HALLUCINATION_SYSTEM_PROMPT = """ +Given some from a user and an generated by an AI system, \ +determine if the contains any hallucinations. + +A "hallucination" is defined as information in the that is not supported by \ +the or is not factually or logically consistent with the . + +# Steps +1. Carefully read and understand the input data. +2. Examine the model output. +3. Compare the output to the input data, identifying any inconsistencies or additions. +4. Evaluate the logical connection between input and output. +5. Determine if any information in the output is not supported by or conflicts with the input. + +# Guidelines +- Focus on factual accuracy and logical consistency +- Consider both explicit and implicit information in the input data +- Be aware of potential misinterpretations or over-generalizations in the output +- Identify any information in the output that goes beyond the scope of the input + +# Examples +## Data to analyze + + +The cat is black and white. + + + +The cat has orange stripes. + + +## Analysis: +{ + "think_step_by_step": "The cat is black and white. The cat has orange stripes. \ +The output contradicts the input data because the input specifies black and white, \ +while the output mentions orange. The output also introduces a pattern not present in \ +the input.", + "reasoning": [ + { + "hallucination_type": "Color comparison", + "observation": "Input specifies black and white, output mentions orange" + }, + { + "hallucination_type": "Pattern analysis", + "observation": "Input doesn't mention any pattern, output introduces stripes" + } + ], + "conclusion": "The output contains two hallucinations: it contradicts the color information \ +and introduces a pattern not present in the input." + "is_hallucination": true, +} + +# Notes +- Ensure each step in the reasoning process is clearly articulated +- Be objective and avoid assumptions not supported by the input data +- If the output contains factual information not present in the input, it may be a \ +hallucination even if it doesn't directly contradict the input +""" + +DEFAULT_HALLUCINATION_USER_PROMPT = """ +Analyze the following and and determine if the contains any hallucinations. +# Data to analyze + + +{input_data} + + + +{output} + +""" + + +class HallucinationReasoning(BaseModel): + hallucination_type: str = Field( + description="A short name for the type of hallucination." + ) + observation: str = Field( + description="An observation from the and that supports the hallucination." + ) + + +class HallucinationResponse(BaseModel): + chain_of_thought: str = Field( + description="Think step by step about whether the contains hallucinations \ +based on the ." + ) + reasonings: List[HallucinationReasoning] = Field( + description="A list of reasoning steps that lead to the conclusion about whether or not\ +the contains hallucinations." + ) + conclusion: str = Field(description="The conclusion of the analysis.") + has_hallucination: bool = Field( + description="Whether the is free of hallucinations based on the . True means it is NOT a hallucination." + ) + + +class HallucinationFreeScorer(InstructorLLMScorer): + """ + A Scorer that uses an LLM to determine if the model output contains any hallucinations + based on the input data. + + Note: + - The meaning of "hallucination" can vary from person to person, you will likely want to + customize the `system_prompt` and `user_prompt` to fit your specific needs. + - This Scorer uses the `InstructorLLMScorer` class to generate structured outputs from the LLM + provider's response; you will have to install the `instructor` python package to use it. + - The `score` method expects the input column from the dataset to be named "context". It will use + this data as the ground-truth to check hallucinations against. If your dataset column has a + different name, you can specify a different mapping using the `column_map` argument in the init + of HallucinationFreeScorer by passing `column_map={"context": "context"}`. + + Attributes: + system_prompt (str): The prompt describing the task, defines what a "hallucination" is. + user_prompt (str): The string template to pass the input and output data. The template must + contain placeholders for both `{input_data}` and `{output}`. + model_id (str): The LLM model name, depends on the LLM's providers to be used `client` being used. + temperature (float): LLM temperature setting. + max_tokens (int): Maximum number of tokens in the LLM's response. + + Methods: + score(output: str, context: str) -> HallucinationResponse: + Analyzes the output to detect hallucinations based on the given context. + """ + + system_prompt: str = DEFAULT_HALLUCINATION_SYSTEM_PROMPT + user_prompt: str = DEFAULT_HALLUCINATION_USER_PROMPT + model_id: str = OPENAI_DEFAULT_MODEL + temperature: float = 0.7 + max_tokens: int = 4096 + + @weave.op + def score(self, output: str, context: str) -> HallucinationResponse: + output = stringify(output) + response = create( + self.client, + messages=[ + {"role": "system", "content": self.system_prompt}, + { + "role": "user", + "content": self.user_prompt.format( + input_data=context, output=output + ), + }, + ], + model=self.model_id, + response_model=HallucinationResponse, + temperature=self.temperature, + max_tokens=self.max_tokens, + ) + return response.model_dump() # Morgan wants this to be a dict diff --git a/weave/scorers/json_scorer.py b/weave/scorers/json_scorer.py new file mode 100644 index 00000000000..e7604a8f0ae --- /dev/null +++ b/weave/scorers/json_scorer.py @@ -0,0 +1,17 @@ +import json +from typing import Any + +import weave +from weave.scorers.base_scorer import Scorer + + +class ValidJSONScorer(Scorer): + """Validate whether a string is valid JSON.""" + + @weave.op + def score(self, output: Any) -> dict: + try: + _ = json.loads(output) + return {"json_valid": True} + except json.JSONDecodeError: + return {"json_valid": False} diff --git a/weave/scorers/llm_scorer.py b/weave/scorers/llm_scorer.py new file mode 100644 index 00000000000..b3660a3b9cd --- /dev/null +++ b/weave/scorers/llm_scorer.py @@ -0,0 +1,70 @@ +from pydantic import Field, field_validator + +from weave.scorers.base_scorer import Scorer +from weave.scorers.llm_utils import ( + _LLM_CLIENTS, + _LLM_CLIENTS_NAMES, + instructor_client, +) + + +class LLMScorer(Scorer): + """Score model outputs using a Large Language Model (LLM). + + This scorer leverages LLMs to evaluate and score model outputs. It provides a flexible + way to use different LLM providers for scoring purposes. + + Attributes: + client: An instantiated LLM client with valid API credentials + model_id: The specific model identifier to use for scoring + """ + + client: _LLM_CLIENTS = Field( + description="The LLM client to use, has to be instantiated with an api_key" + ) + model_id: str = Field(description="The model to use") + + @field_validator("client") + def validate_client(cls, v: _LLM_CLIENTS) -> _LLM_CLIENTS: + client_type_name = type(v).__name__ + if client_type_name not in _LLM_CLIENTS_NAMES: + raise ValueError( + f"Invalid client type. Expected one of {_LLM_CLIENTS_NAMES}, got {client_type_name}" + ) + return v + + +class InstructorLLMScorer(Scorer): + """Score a model using an LLM with structured outputs. + + This scorer extends the base LLM scoring capability by adding temperature and + token control for more precise scoring behavior. It automatically wraps the + provided client with [instructor](https://github.com/instructor-ai/instructor) + functionality for structured outputs. + + Attributes: + client: An instantiated LLM client with valid API credentials + model_id: The specific model identifier to use for scoring + temperature: Controls randomness in the LLM's responses (0.0 to 1.0) + max_tokens: Maximum number of tokens allowed in the LLM's response + """ + + client: _LLM_CLIENTS = Field( + description="The LLM client to use, has to be instantiated with an api_key" + ) + model_id: str = Field(description="The model to use") + temperature: float = Field( + ..., description="The temperature to use for the response" + ) + max_tokens: int = Field( + ..., description="The maximum number of tokens in the response" + ) + + @field_validator("client") + def validate_client(cls, v: _LLM_CLIENTS) -> _LLM_CLIENTS: + client_type_name = type(v).__name__ + if client_type_name not in _LLM_CLIENTS_NAMES: + raise ValueError( + f"Invalid client type. Expected one of {_LLM_CLIENTS_NAMES}, got {client_type_name}" + ) + return instructor_client(v) diff --git a/weave/scorers/llm_utils.py b/weave/scorers/llm_utils.py new file mode 100644 index 00000000000..4cf70af729a --- /dev/null +++ b/weave/scorers/llm_utils.py @@ -0,0 +1,96 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING, Any, List, Union + +from weave.trace.autopatch import autopatch + +autopatch() # ensure both weave patching and instructor patching are applied + +OPENAI_DEFAULT_MODEL = "gpt-4o" +OPENAI_DEFAULT_EMBEDDING_MODEL = "text-embedding-3-small" +OPENAI_DEFAULT_MODERATION_MODEL = "text-moderation-latest" + +ANTHROPIC_DEFAULT_MODEL = "claude-3-5-sonnet" + +MISTRAL_DEFAULT_MODEL = "mistral-large-latest" +MISTRAL_DEFAULT_EMBEDDING_MODEL = "mistral-embed" + +DEFAULT_MAX_TOKENS = 4096 + +if TYPE_CHECKING: + import instructor + from anthropic import Anthropic, AsyncAnthropic + from google.generativeai import GenerativeModel + from instructor.patch import InstructorChatCompletionCreate + from mistralai import Mistral + from openai import AsyncOpenAI, OpenAI + + _LLM_CLIENTS = Union[ + OpenAI, AsyncOpenAI, Anthropic, AsyncAnthropic, Mistral, GenerativeModel + ] +else: + _LLM_CLIENTS = object + +_LLM_CLIENTS_NAMES = ( + "OpenAI", + "AsyncOpenAI", + "Anthropic", + "AsyncAnthropic", + "Mistral", + "GenerativeModel", +) + + +def instructor_client(client: _LLM_CLIENTS) -> "instructor.client": + try: + import instructor + except ImportError: + raise ImportError( + "The `instructor` package is required to use LLM-powered scorers, please run `pip install instructor`" + ) + + client_type = type(client).__name__.lower() + + if "openai" in client_type: + return instructor.from_openai(client) + elif "anthropic" in client_type: + return instructor.from_anthropic(client) + elif "mistral" in client_type: + return instructor.from_mistral(client) + elif "generativemodel" in client_type: + return instructor.from_gemini( + client=client, + mode=instructor.Mode.GEMINI_JSON, + ) + else: + raise ValueError(f"Unsupported client type: {client_type}") + + +def create( + client: instructor.client, *args: Any, **kwargs: Any +) -> InstructorChatCompletionCreate: + # gemini has slightly different argument namings... + # max_tokens -> max_output_tokens + if "generativemodel" in type(client.client).__name__.lower(): + max_output_tokens = kwargs.pop("max_tokens") + temperature = kwargs.pop("temperature", None) + _ = kwargs.pop("model") # model is baked in the client + kwargs["generation_config"] = dict( + max_output_tokens=max_output_tokens, + temperature=temperature, + ) + return client.chat.completions.create(*args, **kwargs) + + +def embed( + client: _LLM_CLIENTS, model_id: str, texts: Union[str, List[str]], **kwargs: Any +) -> List[List[float]]: + client_type = type(client).__name__.lower() + if "openai" in client_type: + response = client.embeddings.create(model=model_id, input=texts, **kwargs) + return [embedding.embedding for embedding in response.data] + elif "mistral" in client_type: + response = client.embeddings.create(model=model_id, inputs=texts, **kwargs) + return [embedding.embedding for embedding in response.data] + else: + raise ValueError(f"Unsupported client type: {type(client).__name__.lower()}") diff --git a/weave/scorers/moderation_scorer.py b/weave/scorers/moderation_scorer.py new file mode 100644 index 00000000000..aaadeb7952c --- /dev/null +++ b/weave/scorers/moderation_scorer.py @@ -0,0 +1,41 @@ +from typing import Any + +from pydantic import field_validator + +import weave +from weave.scorers.llm_scorer import LLMScorer +from weave.scorers.llm_utils import _LLM_CLIENTS, OPENAI_DEFAULT_MODERATION_MODEL + + +class OpenAIModerationScorer(LLMScorer): + """Use OpenAI moderation API to check if the model output is safe. + + Args: + model_id: The OpenAI model to use for moderation. Defaults to `text-moderation-latest`. + """ + + model_id: str = OPENAI_DEFAULT_MODERATION_MODEL + + @field_validator("client") + def validate_openai_client(cls, v: _LLM_CLIENTS) -> _LLM_CLIENTS: + # Method implementation + try: + from openai import ( # Ensure these are the correct imports + AsyncOpenAI, + OpenAI, + ) + except ImportError: + raise ValueError("Install openai to use this scorer") + + if not isinstance(v, (OpenAI, AsyncOpenAI)): + raise ValueError("Moderation scoring only works with OpenAI or AsyncOpenAI") + return v + + @weave.op + def score(self, output: Any) -> dict: + response = self.client.moderations.create( + model=self.model_id, + input=output, + ).results[0] + categories = {k: v for k, v in response.categories.items() if v} + return {"flagged": response.flagged, "categories": categories} diff --git a/weave/scorers/pydantic_scorer.py b/weave/scorers/pydantic_scorer.py new file mode 100644 index 00000000000..0a5dcf1e768 --- /dev/null +++ b/weave/scorers/pydantic_scorer.py @@ -0,0 +1,27 @@ +from typing import Any, Type + +from pydantic import BaseModel, ValidationError + +import weave +from weave.scorers.base_scorer import Scorer + + +class PydanticScorer(Scorer): + """Validate the model output against a pydantic model.""" + + model: Type[BaseModel] + + @weave.op + def score(self, output: Any) -> dict: + if isinstance(output, str): + try: + self.model.model_validate_json(output) + return {"valid_pydantic": True} + except ValidationError: + return {"valid_pydantic": False} + else: + try: + self.model.model_validate(output) + return {"valid_pydantic": True} + except ValidationError: + return {"valid_pydantic": False} diff --git a/weave/scorers/ragas_scorer.py b/weave/scorers/ragas_scorer.py new file mode 100644 index 00000000000..a8b754af541 --- /dev/null +++ b/weave/scorers/ragas_scorer.py @@ -0,0 +1,135 @@ +# implementing metrics from ragas: https://github.com/explodinggradients/ragas + +from textwrap import dedent + +from pydantic import BaseModel, Field + +import weave +from weave.scorers.llm_scorer import InstructorLLMScorer +from weave.scorers.llm_utils import OPENAI_DEFAULT_MODEL, create + + +class EntityExtractionResponse(BaseModel): + entities: list[str] = Field( + description="A list of unique entities extracted from the text" + ) + + +class ContextEntityRecallScorer(InstructorLLMScorer): + """ + A Scorer that estimates context recall by extracting entities from both the model output + and the context, then computing the recall score between them. + + Note: + - This Scorer uses the `InstructorLLMScorer` class to generate structured outputs from the LLM + provider's response; you will have to install the `instructor` python package to use it. + - The `score` method expects two arguments: 'output' (the model's response) and 'context' + (the reference text). If your dataset columns have different names, use the `column_map` + argument when initializing the scorer. + - Entity extraction is performed using an LLM, so results may vary based on the model used. + + Attributes: + extraction_prompt (str): The prompt template used to extract entities from text. Must + contain a {text} placeholder. + model_id (str): The LLM model name, depends on the LLM provider being used. + temperature (float): LLM temperature setting. + max_tokens (int): Maximum number of tokens in the LLM's response. + + Methods: + score(output: str, context: str) -> dict: + Computes the recall score by comparing entities in the output against those in the context. + Returns a dict with a 'recall' key containing the score (0.0 to 1.0). + """ + + extraction_prompt: str = dedent(""" + Extract unique entities from the following text without repetition. + + Text: {text} + Entities: + """) + model_id: str = OPENAI_DEFAULT_MODEL + temperature: float = 0.7 + max_tokens: int = 4096 + + def extract_entities(self, text: str) -> list[str]: + # Use LLM to extract entities + prompt = self.extraction_prompt.format(text=text) + response = create( + self.client, + messages=[{"role": "user", "content": prompt}], + response_model=EntityExtractionResponse, + model=self.model_id, + ) + # Assume entities are returned as a comma-separated list + entities = [e.strip() for e in response.entities] + return entities + + @weave.op + def score(self, output: str, context: str) -> dict: + expected_entities = self.extract_entities(output) + context_entities = self.extract_entities(context) + # Calculate recall + if not expected_entities: + return {"recall": 0.0} + matches = set(expected_entities) & set(context_entities) + recall = len(matches) / len(expected_entities) + return {"recall": recall} + + +class RelevancyResponse(BaseModel): + reasoning: str = Field( + description="Think step by step about whether the context is relevant to the question" + ) + relevancy_score: int = Field( + ge=0, + le=1, + description="The relevancy score of the context to the question (0 for not relevant, 1 for relevant)", + ) + + +class ContextRelevancyScorer(InstructorLLMScorer): + """ + A Scorer that evaluates the relevancy of the provided context to the model output using an LLM. + + Note: + - This Scorer uses the `InstructorLLMScorer` class to generate structured outputs from the LLM + provider's response; you will have to install the `instructor` python package to use it. + - The `score` method expects two arguments: 'output' (treated as the question) and 'context' + (the reference text). If your dataset columns have different names, use the `column_map` + argument when initializing the scorer. + - The relevancy score is binary (0 or 1) where 1 indicates relevant context. + + Attributes: + relevancy_prompt (str): The prompt template used to evaluate context relevancy. Must + contain placeholders for both {question} and {context}. + model_id (str): The LLM model name, depends on the LLM provider being used. + temperature (float): LLM temperature setting. + max_tokens (int): Maximum number of tokens in the LLM's response. + + Methods: + score(output: str, context: str) -> dict: + Evaluates the relevancy of the context to the output/question. + Returns a dict with 'relevancy_score' (0 or 1) and 'reasoning' keys. + """ + + relevancy_prompt: str = dedent(""" + Given the following question and context, rate the relevancy of the context to the question on a scale from 0 to 1. + + Question: {question} + Context: {context} + Relevancy Score (0-1): + """) + model_id: str = OPENAI_DEFAULT_MODEL + temperature: float = 0.7 + max_tokens: int = 4096 + + @weave.op + def score(self, output: str, context: str) -> dict: + prompt = self.relevancy_prompt.format(question=output, context=context) + response = create( + self.client, + messages=[{"role": "user", "content": prompt}], + response_model=RelevancyResponse, + model=self.model_id, + ) + return response.model_dump() diff --git a/weave/scorers/similarity_scorer.py b/weave/scorers/similarity_scorer.py new file mode 100644 index 00000000000..a20e4a13841 --- /dev/null +++ b/weave/scorers/similarity_scorer.py @@ -0,0 +1,46 @@ +from typing import Any + +import numpy as np +from pydantic import Field + +import weave +from weave.scorers.llm_scorer import LLMScorer +from weave.scorers.llm_utils import OPENAI_DEFAULT_EMBEDDING_MODEL, embed + + +class EmbeddingSimilarityScorer(LLMScorer): + """Check the cosine similarity distance between the model output and the target. + + The threshold is the minimum cosine similarity score that is considered similar. + + Args: + threshold: The minimum cosine similarity score that is considered similar. Defaults to 0.5 + """ + + threshold: float = Field(0.5, description="The threshold for the similarity score") + model_id: str = OPENAI_DEFAULT_EMBEDDING_MODEL + + @weave.op + def score(self, output: str, target: str) -> Any: + assert ( + self.threshold >= -1 and self.threshold <= 1 + ), "`threshold` should be between -1 and 1" + model_embedding, target_embedding = self._compute_embeddings(output, target) + return self.cosine_similarity(model_embedding, target_embedding) + + def _compute_embeddings( + self, output: str, target: str + ) -> tuple[list[float], list[float]]: + embeddings = embed(self.client, self.model_id, [output, target]) + return embeddings[0], embeddings[1] + + def cosine_similarity(self, vec1: list[float], vec2: list[float]) -> dict: + """Compute the cosine similarity between two vectors.""" + arr1 = np.array(vec1) + arr2 = np.array(vec2) + cosine_sim = np.dot(arr1, arr2) / (np.linalg.norm(arr1) * np.linalg.norm(arr2)) + cosine_sim = float(cosine_sim) + return { + "similarity_score": cosine_sim, + "is_similar": cosine_sim >= self.threshold, + } diff --git a/weave/scorers/string_scorer.py b/weave/scorers/string_scorer.py new file mode 100644 index 00000000000..83dec55c762 --- /dev/null +++ b/weave/scorers/string_scorer.py @@ -0,0 +1,38 @@ +from typing import Callable + +from pydantic import Field, model_validator + +import weave +from weave.scorers.base_scorer import Scorer + + +class StringMatchScorer(Scorer): + """Scorer that checks if the model output string is found in the search columns of the dataset row.""" + + @weave.op + def score(self, output: str, target: str) -> dict: + string_in_input = output.lower() in target.lower() + return {"string_in_input": string_in_input} + + +class LevenshteinScorer(Scorer): + distance: Callable[[str, str], int] = Field( + default=None, description="The Levenshtein distance function" + ) + + @model_validator(mode="after") + def check_levenshtein(self) -> "LevenshteinScorer": + try: + from Levenshtein import distance + + self.distance = distance + return self + except ImportError: + raise ValueError( + "Levenshtein package not found. Please install it with `pip install Levenshtein`" + ) + + @weave.op + def score(self, output: str, target: str) -> dict: + distance = self.distance(output, target) + return {"levenshtein_distance": distance} diff --git a/weave/scorers/summarization_scorer.py b/weave/scorers/summarization_scorer.py new file mode 100644 index 00000000000..18e7c7cb64b --- /dev/null +++ b/weave/scorers/summarization_scorer.py @@ -0,0 +1,200 @@ +import asyncio +from typing import List, Literal + +from pydantic import BaseModel, Field + +import weave +from weave.scorers.llm_scorer import InstructorLLMScorer +from weave.scorers.llm_utils import OPENAI_DEFAULT_MODEL, create + +DEFAULT_EXTRACTION_SYSTEM_PROMPT = """ +Given a , extract all the unique entities from the text without repetition. +""" + +DEFAULT_EXTRACTION_USER_PROMPT = """ +Extract all the unique entities from the following without repetition: + +{text} + +""" + +DEFAULT_SUMMARIZATION_EVALUATION_SYSTEM_PROMPT = """ +Given an and a , evaluate the quality of the . + +# Considerations +- Does the contain the key information in the ? +- Is the concise and informative? +- Is the grammatically correct? +- Does the contain information or assertions that are not present in the ? + +# Scoring Rubric +`excellent`: The contains all of the key information and entities in the , \ +is concise and information dense, is grammatically correct and doesn't contain any \ +information or assertions that are not present in the . + +`ok`: The contains most of the key information and entities in the , \ +is somewhat concise and informative, is mostly grammatically correct and doesn't contain any \ +information or assertions that are not present in the . + +`poor`: The misses most or all of the key information in the , \ +or is very verbose or vague, or is not concise or informative, or has many grammatical errors, \ +or contains information or assertions that are not present in the . +""" + +DEFAULT_SUMMARIZATION_EVALUATION_USER_PROMPT = """ +Evaluate the quality of the following given the : + + +{input} + + + +{summary} + +""" + + +class EntityExtractionResponse(BaseModel): + entities: List[str] = Field( + description="A list of unique entities extracted from the text." + ) + + +summarization_quality_options = Literal["poor", "ok", "excellent"] +summarization_quality_mapping = {"poor": 0.0, "ok": 0.5, "excellent": 1.0} + + +class SummarizationEvaluationResponse(BaseModel): + think_step_by_step: str = Field( + description="Think step-by-step about the quality of the before deciding \ +on the summarization_score." + ) + summarization_evaluation: summarization_quality_options = Field( + description="The evaluation of the summary" + ) + + +class SummarizationScorer(InstructorLLMScorer): + """ + A Scorer that evaluates the quality of summaries in two ways: + - using an LLM to calculate the entity density of the summary, similar to how entity density is + used in the Chain of Density paper, https://arxiv.org/abs/2309.04269. This is a rough measure for + how information-dense the summary is. + - using another LLM evaluator to grade the summary quality from `poor`, `ok`, to `excellent`. These + grades are then mapped to numerical scores, {`poor`: 0.0, `ok`: 0.5, `excellent`: 1.0}, in order to + be able to calculate an average score across a dataset of summaries if needed. + + To customise the LLM evaluator you can customise the `summarization_evaluation_system_prompt`and + `summarization_evaluation_prompt` attributes to be tailored your specific definition of what a good summary + should look like. + + Note: + - This Scorer uses the `InstructorLLMScorer` class to generate structured outputs from the LLM + provider's response; you will have to install the `instructor` python package to use it. + - The `score` method expects the input column from the dataset to be named "input". If your dataset + column has a different name, you can specify a different mapping using the `column_map` argument in the + init of SummarizationScorer by passing `column_map={"input": "news_article"}`. + + Attributes: + extraction_system_prompt (str): System prompt to extract the distinct entities in the input. Customising + this can help ensure that the LLM identifies the `entities` that you care about. + extraction_prompt (str): Prompt template for entity extraction; must contain a `{text}` placeholder. + summarization_evaluation_system_prompt (str): System prompt defining how to evaluate the quality of a summary. + Asks an LLM to grade the summary from `poor`, `ok`, to `excellent` and provide a rationale for the grade. + summarization_evaluation_prompt (str): Prompt template for summarization evaluation instruction; must contain + `{input}` and `{summary}` placeholders. + entity_density_threshold (float): Threshold for determining if a summary is sufficiently entity-dense. + model_id (str): The LLM model name, depends on the LLM's providers to be used `client` being used. + temperature (float): LLM temperature setting. + max_tokens (int): Maximum number of tokens in the LLM's response. + + Methods: + extract_entities(text: str) -> List[str]: + Uses an LLM to extract unique entities from the text. + + evaluate_summary(input: str, summary: str) -> SummarizationEvaluationResponse: + Evaluates the quality of a summary using an LLM. + + score(input: str, output: str) -> dict: + Calculates summarization score and entity density score for the given input and output. + """ + + extraction_system_prompt: str = DEFAULT_EXTRACTION_SYSTEM_PROMPT + extraction_prompt: str = DEFAULT_EXTRACTION_USER_PROMPT + summarization_evaluation_system_prompt: str = ( + DEFAULT_SUMMARIZATION_EVALUATION_SYSTEM_PROMPT + ) + summarization_evaluation_prompt: str = DEFAULT_SUMMARIZATION_EVALUATION_USER_PROMPT + entity_density_threshold: float = 0.08 + model_id: str = OPENAI_DEFAULT_MODEL + temperature: float = 0.7 + max_tokens: int = 1024 + + @weave.op + def extract_entities(self, text: str) -> List[str]: + """Use an LLM to extract entities""" + response = create( + self.client, + messages=[ + {"role": "system", "content": self.extraction_system_prompt}, + {"role": "user", "content": self.extraction_prompt.format(text=text)}, + ], + response_model=EntityExtractionResponse, + model=self.model_id, + temperature=self.temperature, + max_tokens=self.max_tokens, + ) + entities = [e.strip().lower() for e in response.entities] + return entities + + @weave.op + def evaluate_summary( + self, input: str, summary: str + ) -> SummarizationEvaluationResponse: + """Evaluate the quality of a summary using an LLM""" + return create( + self.client, + messages=[ + { + "role": "system", + "content": self.summarization_evaluation_system_prompt, + }, + { + "role": "user", + "content": self.summarization_evaluation_prompt.format( + input=input, summary=summary + ), + }, + ], + response_model=SummarizationEvaluationResponse, + model=self.model_id, + temperature=self.temperature, + max_tokens=self.max_tokens, + ) + + def simple_word_tokenize(self, text: str) -> List[str]: + """Simple word tokenization""" + return text.split() + + @weave.op + async def score(self, input: str, output: str) -> dict: + extract_task = asyncio.to_thread(self.extract_entities, text=str(output)) + evaluate_task = asyncio.to_thread( + self.evaluate_summary, input=str(input), summary=str(output) + ) + summary_entities, llm_eval = await asyncio.gather(extract_task, evaluate_task) + + # LLM evaluation + result = {} + result["summarization_eval_score"] = summarization_quality_mapping.get( + llm_eval.summarization_evaluation.lower() + ) + result["llm_eval_reasoning"] = llm_eval.think_step_by_step + + # Entity density evaluation + summary_words = self.simple_word_tokenize(output) + entity_density = len(summary_entities) / len(summary_words) + result["is_entity_dense"] = entity_density >= self.entity_density_threshold + result["entity_density"] = entity_density + + return result diff --git a/weave/scorers/utils.py b/weave/scorers/utils.py new file mode 100644 index 00000000000..4080f304fb5 --- /dev/null +++ b/weave/scorers/utils.py @@ -0,0 +1,25 @@ +import json +from typing import Any + +from pydantic import BaseModel + + +def stringify(output: Any) -> str: + """ + Convert any output to a string. If the output is a Pydantic BaseModel, + convert it to a JSON string using the model's dump_json method. + """ + if isinstance(output, str): + return output + elif isinstance(output, int): + return str(output) + elif isinstance(output, float): + return str(output) + elif isinstance(output, (list, tuple)): + return json.dumps(output, indent=2) + elif isinstance(output, dict): + return json.dumps(output, indent=2) + elif isinstance(output, BaseModel): + return output.model_dump_json(indent=2) + else: + raise ValueError(f"Unsupported model output type: {type(output)}") diff --git a/weave/scorers/xml_scorer.py b/weave/scorers/xml_scorer.py new file mode 100644 index 00000000000..8545a96686b --- /dev/null +++ b/weave/scorers/xml_scorer.py @@ -0,0 +1,22 @@ +import xml.etree.ElementTree as ET +from typing import Union + +import weave +from weave.scorers.base_scorer import Scorer + + +class ValidXMLScorer(Scorer): + """Score an XML string.""" + + @weave.op + def score(self, output: Union[str, dict]) -> dict: + if isinstance(output, dict): + xml_string = output.get("output", "") + else: + xml_string = output + + try: + ET.fromstring(xml_string) + return {"xml_valid": True} + except ET.ParseError: + return {"xml_valid": False} diff --git a/weave/trace/op.py b/weave/trace/op.py index 7614b1d8630..ae85d65e7b8 100644 --- a/weave/trace/op.py +++ b/weave/trace/op.py @@ -5,6 +5,7 @@ import sys import traceback import typing +from dataclasses import dataclass from functools import partial, wraps from types import MethodType from typing import ( @@ -84,6 +85,21 @@ def print_call_link(call: "Call") -> None: print(f"{TRACE_CALL_EMOJI} {call.ui_url}") +@dataclass +class ProcessedInputs: + # What the user passed to the function + original_args: tuple + original_kwargs: dict[str, Any] + + # What should get passed to the interior function + args: tuple + kwargs: dict[str, Any] + + # What should get sent to the Weave server + inputs: dict[str, Any] + + +OnInputHandlerType = Callable[["Op", tuple, dict], Optional[ProcessedInputs]] FinishCallbackType = Callable[[Any, Optional[BaseException]], None] OnOutputHandlerType = Callable[[Any, FinishCallbackType, Dict], Any] # Call, original function output, exception if occurred @@ -155,6 +171,9 @@ class Op(Protocol): call: Callable[..., Any] calls: Callable[..., "CallsIter"] + _set_on_input_handler: Callable[[OnInputHandlerType], None] + _on_input_handler: Optional[OnInputHandlerType] + # not sure if this is the best place for this, but kept for compat _set_on_output_handler: Callable[[OnOutputHandlerType], None] _on_output_handler: Optional[OnOutputHandlerType] @@ -175,6 +194,12 @@ class Op(Protocol): _tracing_enabled: bool +def _set_on_input_handler(func: Op, on_input: OnInputHandlerType) -> None: + if func._on_input_handler is not None: + raise ValueError("Cannot set on_input_handler multiple times") + func._on_input_handler = on_input + + def _set_on_output_handler(func: Op, on_output: OnOutputHandlerType) -> None: if func._on_output_handler is not None: raise ValueError("Cannot set on_output_handler multiple times") @@ -203,16 +228,32 @@ def _is_unbound_method(func: Callable) -> bool: return bool(is_method) -def _create_call( - func: Op, *args: Any, __weave: Optional[WeaveKwargs] = None, **kwargs: Any -) -> "Call": - client = weave_client_context.require_weave_client() - +def default_on_input_handler(func: Op, args: tuple, kwargs: dict) -> ProcessedInputs: try: inputs = func.signature.bind(*args, **kwargs).arguments except TypeError as e: raise OpCallError(f"Error calling {func.name}: {e}") inputs_with_defaults = _apply_fn_defaults_to_inputs(func, inputs) + return ProcessedInputs( + original_args=args, + original_kwargs=kwargs, + args=args, + kwargs=kwargs, + inputs=inputs_with_defaults, + ) + + +def _create_call( + func: Op, *args: Any, __weave: Optional[WeaveKwargs] = None, **kwargs: Any +) -> "Call": + client = weave_client_context.require_weave_client() + + pargs = None + if func._on_input_handler is not None: + pargs = func._on_input_handler(func, args, kwargs) + if not pargs: + pargs = default_on_input_handler(func, args, kwargs) + inputs_with_defaults = pargs.inputs # This should probably be configurable, but for now we redact the api_key if "api_key" in inputs_with_defaults: @@ -368,12 +409,19 @@ def _do_call( ) -> tuple[Any, "Call"]: func = op.resolve_fn call = _placeholder_call() + + pargs = None + if op._on_input_handler is not None: + pargs = op._on_input_handler(op, args, kwargs) + if not pargs: + pargs = default_on_input_handler(op, args, kwargs) + if settings.should_disable_weave(): - res = func(*args, **kwargs) + res = func(*pargs.args, **pargs.kwargs) elif weave_client_context.get_weave_client() is None: - res = func(*args, **kwargs) + res = func(*pargs.args, **pargs.kwargs) elif not op._tracing_enabled: - res = func(*args, **kwargs) + res = func(*pargs.args, **pargs.kwargs) else: try: # This try/except allows us to fail gracefully and @@ -388,10 +436,10 @@ def _do_call( logger.error, CALL_CREATE_MSG.format(traceback.format_exc()), ) - res = func(*args, **kwargs) + res = func(*pargs.args, **pargs.kwargs) else: execute_result = _execute_call( - op, call, *args, __should_raise=__should_raise, **kwargs + op, call, *pargs.args, __should_raise=__should_raise, **pargs.kwargs ) if inspect.iscoroutine(execute_result): raise Exception( @@ -600,6 +648,9 @@ def wrapper(*args: Any, **kwargs: Any) -> Any: wrapper.__call__ = wrapper # type: ignore wrapper.__self__ = wrapper # type: ignore + wrapper._set_on_input_handler = partial(_set_on_input_handler, wrapper) # type: ignore + wrapper._on_input_handler = None # type: ignore + wrapper._set_on_output_handler = partial(_set_on_output_handler, wrapper) # type: ignore wrapper._on_output_handler = None # type: ignore diff --git a/weave/trace/refs.py b/weave/trace/refs.py index cb444d1b656..ef002997ea3 100644 --- a/weave/trace/refs.py +++ b/weave/trace/refs.py @@ -144,6 +144,19 @@ def uri(self) -> str: u += "/" + "/".join(refs_internal.extra_value_quoter(e) for e in self.extra) return u + def objectify(self, obj: Any) -> Any: + """Convert back to higher level object.""" + class_name = getattr(obj, "_class_name", None) + if "EasyPrompt" == class_name: + from weave.flow.prompt.prompt import EasyPrompt + + prompt = EasyPrompt.from_obj(obj) + # We want to use the ref on the object (and not self) as it will have had + # version number or latest alias resolved to a specific digest. + prompt.__dict__["ref"] = obj.ref + return prompt + return obj + def get(self) -> Any: # Move import here so that it only happens when the function is called. # This import is invalid in the trace server and represents a dependency @@ -153,21 +166,20 @@ def get(self) -> Any: gc = get_weave_client() if gc is not None: - return gc.get(self) + return self.objectify(gc.get(self)) # Special case: If the user is attempting to fetch an object but has not # yet initialized the client, we can initialize a client to # fetch the object. It is critical to reset the client after fetching the # object to avoid any side effects in user code. - if gc is None: - init_client = init_weave( - f"{self.entity}/{self.project}", ensure_project_exists=False - ) - try: - res = init_client.client.get(self) - finally: - init_client.reset() - return res + init_client = init_weave( + f"{self.entity}/{self.project}", ensure_project_exists=False + ) + try: + res = init_client.client.get(self) + finally: + init_client.reset() + return self.objectify(res) def is_descended_from(self, potential_ancestor: "ObjectRef") -> bool: if self.entity != potential_ancestor.entity: @@ -224,6 +236,13 @@ def uri(self) -> str: AnyRef = Union[ObjectRef, TableRef, CallRef, OpRef] +def parse_name_version(name_version: str) -> tuple[str, str]: + if ":" in name_version: + name, version = name_version.rsplit(":", maxsplit=1) + return name, version + return name_version, "latest" + + def parse_uri(uri: str) -> AnyRef: if not uri.startswith("weave:///"): raise ValueError(f"Invalid URI: {uri}") @@ -239,12 +258,12 @@ def parse_uri(uri: str) -> AnyRef: if kind == "call": return CallRef(entity=entity, project=project, id=remaining[0], _extra=extra) elif kind == "object": - name, version = remaining[0].split(":") + name, version = parse_name_version(remaining[0]) return ObjectRef( entity=entity, project=project, name=name, _digest=version, _extra=extra ) elif kind == "op": - name, version = remaining[0].split(":") + name, version = parse_name_version(remaining[0]) return OpRef( entity=entity, project=project, name=name, _digest=version, _extra=extra ) diff --git a/weave/trace_server/clickhouse_trace_server_batched.py b/weave/trace_server/clickhouse_trace_server_batched.py index fd7afc0e2d2..eb4ce265f70 100644 --- a/weave/trace_server/clickhouse_trace_server_batched.py +++ b/weave/trace_server/clickhouse_trace_server_batched.py @@ -30,7 +30,6 @@ import threading from collections import defaultdict from contextlib import contextmanager -from functools import partial from typing import ( Any, Dict, @@ -71,6 +70,7 @@ SelectableCHCallSchema, SelectableCHObjSchema, ) +from weave.trace_server.constants import COMPLETIONS_CREATE_OP_NAME from weave.trace_server.emoji_util import detone_emojis from weave.trace_server.errors import InsertTooLarge, InvalidRequest, RequestTooLarge from weave.trace_server.feedback import ( @@ -79,20 +79,13 @@ validate_feedback_purge_req, ) from weave.trace_server.ids import generate_id -from weave.trace_server.interface.base_models.action_base_models import ( - LLM_JUDGE_ACTION_NAME, - ConfiguredAction, -) -from weave.trace_server.interface.base_models.base_model_registry import ( - base_model_dump, - base_model_name, - base_models, -) -from weave.trace_server.interface.base_models.feedback_base_model_registry import ( - ActionScore, - feedback_base_models, +from weave.trace_server.llm_completion import lite_llm_completion +from weave.trace_server.model_providers.model_providers import ( + MODEL_PROVIDERS_FILE, + fetch_model_to_provider_info_map, ) from weave.trace_server.orm import ParamBuilder, Row +from weave.trace_server.secret_fetcher_context import _secret_fetcher_context from weave.trace_server.table_query_builder import ( ROW_ORDER_COLUMN_NAME, TABLE_ROWS_ALIAS, @@ -132,8 +125,6 @@ MAX_DELETE_CALLS_COUNT = 100 MAX_CALLS_STREAM_BATCH_SIZE = 500 -WEAVE_ACTION_EXECUTOR_PACEHOLDER_ID = "WEAVE_ACTION_EXECUTOR" - class NotFoundError(Exception): pass @@ -200,6 +191,9 @@ def __init__( self._flush_immediately = True self._call_batch: list[list[Any]] = [] self._use_async_insert = use_async_insert + self._model_to_provider_info_map = fetch_model_to_provider_info_map( + MODEL_PROVIDERS_FILE + ) @classmethod def from_env(cls, use_async_insert: bool = False) -> "ClickHouseTraceServer": @@ -605,28 +599,16 @@ def ops_query(self, req: tsi.OpQueryReq) -> tsi.OpQueryRes: return tsi.OpQueryRes(op_objs=objs) def obj_create(self, req: tsi.ObjCreateReq) -> tsi.ObjCreateRes: - req_obj = req.obj - dict_val = req_obj.val - - if req.obj.base_object_class: - for base_model in base_models: - if base_model_name(base_model) == req.obj.base_object_class: - # 1. Validate the object against the base model & re-dump to a dict - dict_val = base_model_dump(base_model.model_validate(dict_val)) - break - else: - raise ValueError( - f"Unknown base object class: {req.obj.base_object_class}" - ) - - json_val = json.dumps(dict_val) + json_val = json.dumps(req.obj.val) digest = str_digest(json_val) + + req_obj = req.obj ch_obj = ObjCHInsertable( project_id=req_obj.project_id, object_id=req_obj.object_id, - kind=get_kind(dict_val), - base_object_class=get_base_object_class(dict_val), - refs=extract_refs_from_values(dict_val), + kind=get_kind(req.obj.val), + base_object_class=get_base_object_class(req.obj.val), + refs=extract_refs_from_values(req.obj.val), val_dump=json_val, digest=digest, ) @@ -1369,17 +1351,8 @@ def feedback_create(self, req: tsi.FeedbackCreateReq) -> tsi.FeedbackCreateRes: assert_non_null_wb_user_id(req) validate_feedback_create_req(req) - feedback_type = req.feedback_type - res_payload = req.payload - - for feedback_base_model in feedback_base_models: - if base_model_name(feedback_base_model) == feedback_type: - res_payload = base_model_dump( - feedback_base_model.model_validate(res_payload) - ) - break - # Augment emoji with alias. + res_payload = {} if req.feedback_type == "wandb.reaction.1": em = req.payload["emoji"] if emoji.emoji_count(em) != 1: @@ -1445,96 +1418,63 @@ def feedback_purge(self, req: tsi.FeedbackPurgeReq) -> tsi.FeedbackPurgeRes: self.ch_client.query(prepared.sql, prepared.parameters) return tsi.FeedbackPurgeRes() - def execute_batch_action( - self, req: tsi.ExecuteBatchActionReq - ) -> tsi.ExecuteBatchActionRes: - # WARNING: THIS IS NOT GOING TO WORK IN PRODUCTION - # UNTIL WE HAVE THE API KEY PIECE IN PLACE - configured_action_ref = req.configured_action_ref - - action_dict_res = self.refs_read_batch( - tsi.RefsReadBatchReq(refs=[configured_action_ref]) - ) - - action_dict = action_dict_res.vals[0] - action = ConfiguredAction.model_validate(action_dict) - - if action.action.action_type != "builtin": + def completions_create( + self, req: tsi.CompletionsCreateReq + ) -> tsi.CompletionsCreateRes: + model_name = req.inputs.model + model_info = self._model_to_provider_info_map.get(model_name) + if not model_info: + raise InvalidRequest(f"No model info found for model {model_name}") + secret_fetcher = _secret_fetcher_context.get() + if not secret_fetcher: raise InvalidRequest( - "Only builtin actions are supported for batch execution" - ) - - if action.action.name != LLM_JUDGE_ACTION_NAME: - raise InvalidRequest("Only llm_judge is supported for batch execution") - - # Step 1: Get all the calls in the batch - calls = self.calls_query_stream( - tsi.CallsQueryReq( - project_id=req.project_id, - filter=tsi.CallsFilter( - call_ids=req.call_ids, - ), + f"No secret fetcher found, cannot fetch API key for model {model_name}" ) + secret_name = model_info.get("api_key_name") + if not secret_name: + raise InvalidRequest(f"No secret name found for model {model_name}") + api_key = secret_fetcher.fetch(secret_name).get("secrets", {}).get(secret_name) + if not api_key: + raise InvalidRequest(f"No API key found for model {model_name}") + + start_time = datetime.datetime.now() + res = lite_llm_completion(api_key, req.inputs) + end_time = datetime.datetime.now() + + start = tsi.StartedCallSchemaForInsert( + project_id=req.project_id, + wb_user_id=req.wb_user_id, + op_name=COMPLETIONS_CREATE_OP_NAME, + started_at=start_time, + inputs={**req.inputs.model_dump(exclude_none=True)}, + attributes={}, ) - - # Normally we would dispatch here, but just hard coding for now - # We should do some validation here - config = action.config - model = config["model"] - - if model not in ["gpt-4o-mini", "gpt-4o"]: - raise InvalidRequest("Only gpt-4o-mini and gpt-4o are supported") - - system_prompt = config["system_prompt"] - response_format_schema = config["response_format_schema"] - response_format = { - "type": "json_schema", - "json_schema": { - "name": "response_format", - "schema": response_format_schema, - }, - } - - # mapping = mapping.input_mapping - - # Step 2: For Each call, execute the action: (this needs a lot of safety checks) + start_call = _start_call_for_insert_to_ch_insertable_start_call(start) + end = tsi.EndedCallSchemaForInsert( + project_id=req.project_id, + id=start_call.id, + ended_at=end_time, + output=res.response, + summary={}, + ) + if "usage" in res.response: + end.summary["usage"] = {req.inputs.model: res.response["usage"]} + + if "error" in res.response: + end.exception = res.response["error"] + end_call = _end_call_for_insert_to_ch_insertable_end_call(end) + calls: list[Union[CallStartCHInsertable, CallEndCHInsertable]] = [ + start_call, + end_call, + ] + batch_data = [] for call in calls: - args = { - "inputs": call.inputs, - "output": call.output, - } - from openai import OpenAI - - client = OpenAI() - # Silly hack to get around issue in tests: - create = client.chat.completions.create - if hasattr(create, "resolve_fn"): - create = partial(create.resolve_fn, self=client.chat.completions) - completion = create( - model=model, - messages=[ - {"role": "system", "content": system_prompt}, - {"role": "user", "content": json.dumps(args)}, - ], - response_format=response_format, - ) - self.feedback_create( - tsi.FeedbackCreateReq( - project_id=req.project_id, - weave_ref=ri.InternalCallRef( - project_id=req.project_id, - id=call.id, - ).uri(), - feedback_type=base_model_name(ActionScore), - wb_user_id=WEAVE_ACTION_EXECUTOR_PACEHOLDER_ID, # - THIS IS NOT GOOD! - payload=ActionScore( - configured_action_ref=configured_action_ref, - output=json.loads(completion.choices[0].message.content), - ).model_dump(), - ) - ) + call_dict = call.model_dump() + values = [call_dict.get(col) for col in all_call_insert_columns] + batch_data.append(values) - return tsi.ExecuteBatchActionRes() + self._insert_call_batch(batch_data) + return res # Private Methods @property @@ -2099,7 +2039,7 @@ def _process_parameters( def get_type(val: Any) -> str: - if val is None: + if val == None: return "none" elif isinstance(val, dict): if "_type" in val: @@ -2120,24 +2060,16 @@ def get_kind(val: Any) -> str: def get_base_object_class(val: Any) -> Optional[str]: - """ - Get the base object class of a value using: - 1. The last base class that is a subclass of BaseModel and not Object - 2. The _class_name attribute if it exists - 3. None if no base class is found - """ if isinstance(val, dict): if "_bases" in val: if isinstance(val["_bases"], list): - bases = val["_bases"] - if len(bases) > 0 and bases[-1] == "BaseModel": - bases = bases[:-1] - if len(bases) > 0 and bases[-1] == "Object": - bases = bases[:-1] - if len(bases) > 0: - return bases[-1] - elif "_class_name" in val: - return val["_class_name"] + if len(val["_bases"]) >= 2: + if val["_bases"][-1] == "BaseModel": + if val["_bases"][-2] == "Object": + if len(val["_bases"]) > 2: + return val["_bases"][-3] + elif "_class_name" in val: + return val["_class_name"] return None diff --git a/weave/trace_server/constants.py b/weave/trace_server/constants.py new file mode 100644 index 00000000000..2e6f117d816 --- /dev/null +++ b/weave/trace_server/constants.py @@ -0,0 +1 @@ +COMPLETIONS_CREATE_OP_NAME = "weave.completions_create" diff --git a/weave/trace_server/external_to_internal_trace_server_adapter.py b/weave/trace_server/external_to_internal_trace_server_adapter.py index 1acdb0c55c4..7e085b8f75e 100644 --- a/weave/trace_server/external_to_internal_trace_server_adapter.py +++ b/weave/trace_server/external_to_internal_trace_server_adapter.py @@ -346,8 +346,9 @@ def cost_query(self, req: tsi.CostQueryReq) -> tsi.CostQueryRes: cost["pricing_level_id"] = original_project_id return res - def execute_batch_action( - self, req: tsi.ExecuteBatchActionReq - ) -> tsi.ExecuteBatchActionRes: + def completions_create( + self, req: tsi.CompletionsCreateReq + ) -> tsi.CompletionsCreateRes: req.project_id = self._idc.ext_to_int_project_id(req.project_id) - return self._ref_apply(self._internal_trace_server.execute_batch_action, req) + res = self._ref_apply(self._internal_trace_server.completions_create, req) + return res diff --git a/weave/trace_server/interface/base_models/action_base_models.py b/weave/trace_server/interface/base_models/action_base_models.py deleted file mode 100644 index c3c91b9903d..00000000000 --- a/weave/trace_server/interface/base_models/action_base_models.py +++ /dev/null @@ -1,22 +0,0 @@ -from typing import Literal - -from pydantic import BaseModel - -LLM_JUDGE_ACTION_NAME = "llm_judge" - - -class _BuiltinAction(BaseModel): - action_type: Literal["builtin"] = "builtin" - name: str - - -class ConfiguredAction(BaseModel): - name: str - action: _BuiltinAction - config: dict - - -class ActionDispatchFilter(BaseModel): - op_name: str - sample_rate: float - configured_action_ref: str diff --git a/weave/trace_server/interface/base_models/base_model_registry.py b/weave/trace_server/interface/base_models/base_model_registry.py deleted file mode 100644 index ea582f119f6..00000000000 --- a/weave/trace_server/interface/base_models/base_model_registry.py +++ /dev/null @@ -1,20 +0,0 @@ -from pydantic import BaseModel - -from weave.trace_server.interface.base_models.action_base_models import ( - ActionDispatchFilter, - ConfiguredAction, -) - - -def base_model_name(base_model_class: type[BaseModel]) -> str: - return base_model_class.__name__ - - -def base_model_dump(base_model_obj: BaseModel) -> dict: - d = base_model_obj.model_dump() - d["_class_name"] = base_model_name(base_model_obj.__class__) - d["_bases"] = [base_model_name(b) for b in base_model_obj.__class__.mro()[1:-1]] - return d - - -base_models: list[type[BaseModel]] = [ConfiguredAction, ActionDispatchFilter] diff --git a/weave/trace_server/interface/base_models/feedback_base_model_registry.py b/weave/trace_server/interface/base_models/feedback_base_model_registry.py deleted file mode 100644 index 16f2033fec3..00000000000 --- a/weave/trace_server/interface/base_models/feedback_base_model_registry.py +++ /dev/null @@ -1,11 +0,0 @@ -from typing import Any - -from pydantic import BaseModel - - -class ActionScore(BaseModel): - configured_action_ref: str - output: Any - - -feedback_base_models: list[type[BaseModel]] = [ActionScore] diff --git a/weave/trace_server/llm_completion.py b/weave/trace_server/llm_completion.py new file mode 100644 index 00000000000..907e8fe413b --- /dev/null +++ b/weave/trace_server/llm_completion.py @@ -0,0 +1,13 @@ +from weave.trace_server import trace_server_interface as tsi + + +def lite_llm_completion( + api_key: str, inputs: tsi.CompletionsCreateRequestInputs +) -> tsi.CompletionsCreateRes: + from litellm import completion + + try: + res = completion(**inputs.model_dump(exclude_none=True), api_key=api_key) + return tsi.CompletionsCreateRes(response=res.model_dump()) + except Exception as e: + return tsi.CompletionsCreateRes(response={"error": str(e)}) diff --git a/weave/trace_server/model_providers/model_providers.py b/weave/trace_server/model_providers/model_providers.py new file mode 100644 index 00000000000..f33f18ad224 --- /dev/null +++ b/weave/trace_server/model_providers/model_providers.py @@ -0,0 +1,49 @@ +import json +import os +from typing import Dict, TypedDict + +import requests + +model_providers_url = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json" +MODEL_PROVIDERS_FILE = "model_providers.json" + +PROVIDER_TO_API_KEY_NAME_MAP = { + "anthropic": "ANTHROPIC_API_KEY", + "gemini": "GOOGLE_API_KEY", + "openai": "OPENAI_API_KEY", + "fireworks": "FIREWORKS_API_KEY", + "groq": "GEMMA_API_KEY", +} + + +class LLMModelProviderInfo(TypedDict): + litellm_provider: str + api_key_name: str + + +def fetch_model_to_provider_info_map( + cached_file_name: str = MODEL_PROVIDERS_FILE, +) -> Dict[str, LLMModelProviderInfo]: + full_path = os.path.join(os.path.dirname(__file__), cached_file_name) + if os.path.exists(full_path): + with open(full_path, "r") as f: + return json.load(f) + try: + req = requests.get(model_providers_url) + req.raise_for_status() + except requests.exceptions.RequestException as e: + print("Failed to fetch models:", e) + return {} + + providers: Dict[str, LLMModelProviderInfo] = {} + for k, val in req.json().items(): + provider = val.get("litellm_provider") + api_key_name = PROVIDER_TO_API_KEY_NAME_MAP.get(provider) + if api_key_name: + providers[k] = LLMModelProviderInfo( + litellm_provider=provider, api_key_name=api_key_name + ) + + with open(full_path, "w") as f: + json.dump(providers, f) + return providers diff --git a/weave/trace_server/secret_fetcher_context.py b/weave/trace_server/secret_fetcher_context.py new file mode 100644 index 00000000000..535118078e2 --- /dev/null +++ b/weave/trace_server/secret_fetcher_context.py @@ -0,0 +1,21 @@ +import contextvars +from contextlib import contextmanager +from typing import Generator, Optional, Protocol + + +class SecretFetcher(Protocol): + def fetch(self, secret_name: str) -> dict: ... + + +_secret_fetcher_context: contextvars.ContextVar[Optional[SecretFetcher]] = ( + contextvars.ContextVar("secret_fetcher", default=None) +) + + +@contextmanager +def secret_fetcher_context(sf: SecretFetcher) -> Generator[None, None, None]: + token = _secret_fetcher_context.set(sf) + try: + yield + finally: + _secret_fetcher_context.reset(token) diff --git a/weave/trace_server/sqlite_trace_server.py b/weave/trace_server/sqlite_trace_server.py index 673c5237705..93a4f510090 100644 --- a/weave/trace_server/sqlite_trace_server.py +++ b/weave/trace_server/sqlite_trace_server.py @@ -1081,12 +1081,11 @@ def cost_purge(self, req: tsi.CostPurgeReq) -> tsi.CostPurgeRes: print("COST PURGE is not implemented for local sqlite", req) return tsi.CostPurgeRes() - def execute_batch_action( - self, req: tsi.ExecuteBatchActionReq - ) -> tsi.ExecuteBatchActionRes: - raise NotImplementedError( - "EXECUTE BATCH ACTION is not implemented for local sqlite" - ) + def completions_create( + self, req: tsi.CompletionsCreateReq + ) -> tsi.CompletionsCreateRes: + print("COMPLETIONS CREATE is not implemented for local sqlite", req) + return tsi.CompletionsCreateRes() def _table_row_read(self, project_id: str, row_digest: str) -> tsi.TableRowSchema: conn, cursor = get_conn_cursor(self.db_path) diff --git a/weave/trace_server/trace_server_interface.py b/weave/trace_server/trace_server_interface.py index 330696a9890..abdfeae38ac 100644 --- a/weave/trace_server/trace_server_interface.py +++ b/weave/trace_server/trace_server_interface.py @@ -1,6 +1,6 @@ import datetime from enum import Enum -from typing import Any, Dict, Iterator, List, Literal, Optional, Protocol, Union +from typing import Any, Dict, Iterator, List, Literal, Optional, Protocol, Type, Union from pydantic import BaseModel, ConfigDict, Field, field_serializer from typing_extensions import TypedDict @@ -189,7 +189,6 @@ class ObjSchema(BaseModel): class ObjSchemaForInsert(BaseModel): project_id: str object_id: str - base_object_class: Optional[str] = None val: Any @@ -237,6 +236,46 @@ class CallsDeleteRes(BaseModel): pass +class CompletionsCreateRequestInputs(BaseModel): + model: str + messages: List = [] + timeout: Optional[Union[float, str]] = None + temperature: Optional[float] = None + top_p: Optional[float] = None + n: Optional[int] = None + stop: Optional[Union[str, List]] = None + max_completion_tokens: Optional[int] = None + max_tokens: Optional[int] = None + modalities: Optional[List] = None + presence_penalty: Optional[float] = None + frequency_penalty: Optional[float] = None + logit_bias: Optional[dict] = None + user: Optional[str] = None + # openai v1.0+ new params + response_format: Optional[Union[dict, Type[BaseModel]]] = None + seed: Optional[int] = None + tools: Optional[List] = None + tool_choice: Optional[Union[str, dict]] = None + logprobs: Optional[bool] = None + top_logprobs: Optional[int] = None + parallel_tool_calls: Optional[bool] = None + extra_headers: Optional[dict] = None + # soon to be deprecated params by OpenAI + functions: Optional[List] = None + function_call: Optional[str] = None + api_version: Optional[str] = None + + +class CompletionsCreateReq(BaseModel): + project_id: str + inputs: CompletionsCreateRequestInputs + wb_user_id: Optional[str] = Field(None, description=WB_USER_ID_DESCRIPTION) + + +class CompletionsCreateRes(BaseModel): + response: Dict[str, Any] + + class CallsFilter(BaseModel): op_names: Optional[List[str]] = None input_refs: Optional[List[str]] = None @@ -797,16 +836,6 @@ class CostPurgeRes(BaseModel): pass -class ExecuteBatchActionReq(BaseModel): - project_id: str - call_ids: list[str] - configured_action_ref: str - - -class ExecuteBatchActionRes(BaseModel): - pass - - class TraceServerInterface(Protocol): def ensure_project_exists( self, entity: str, project: str @@ -848,8 +877,5 @@ def file_content_read(self, req: FileContentReadReq) -> FileContentReadRes: ... def feedback_create(self, req: FeedbackCreateReq) -> FeedbackCreateRes: ... def feedback_query(self, req: FeedbackQueryReq) -> FeedbackQueryRes: ... def feedback_purge(self, req: FeedbackPurgeReq) -> FeedbackPurgeRes: ... - - # Action API - def execute_batch_action( - self, req: ExecuteBatchActionReq - ) -> ExecuteBatchActionRes: ... + # Execute LLM API + def completions_create(self, req: CompletionsCreateReq) -> CompletionsCreateRes: ... diff --git a/weave/trace_server_bindings/remote_http_trace_server.py b/weave/trace_server_bindings/remote_http_trace_server.py index 2b8dc7ae170..34b906a560c 100644 --- a/weave/trace_server_bindings/remote_http_trace_server.py +++ b/weave/trace_server_bindings/remote_http_trace_server.py @@ -265,7 +265,7 @@ def call_start( req_as_obj = tsi.CallStartReq.model_validate(req) else: req_as_obj = req - if req_as_obj.start.id is None or req_as_obj.start.trace_id is None: + if req_as_obj.start.id == None or req_as_obj.start.trace_id == None: raise ValueError( "CallStartReq must have id and trace_id when batching." ) @@ -549,14 +549,14 @@ def cost_purge( "/cost/purge", req, tsi.CostPurgeReq, tsi.CostPurgeRes ) - def execute_batch_action( - self, req: tsi.ExecuteBatchActionReq - ) -> tsi.ExecuteBatchActionRes: + def completions_create( + self, req: tsi.CompletionsCreateReq + ) -> tsi.CompletionsCreateRes: return self._generic_request( - "/execute/batch_action", + "/completions/create", req, - tsi.ExecuteBatchActionReq, - tsi.ExecuteBatchActionRes, + tsi.CompletionsCreateReq, + tsi.CompletionsCreateRes, ) diff --git a/weave_query/tests/test_arrow.py b/weave_query/tests/test_arrow.py index a07daa56728..08770f3927e 100644 --- a/weave_query/tests/test_arrow.py +++ b/weave_query/tests/test_arrow.py @@ -17,6 +17,8 @@ ops, storage, weave_internal, + artifact_local, + artifact_fs, ) # If you're thinking of import vectorize here, don't! Put your @@ -1812,3 +1814,57 @@ def test_repeat_0(): repeated = constructors.repeat(data, 0) assert len(repeated) == 0 assert repeated.type == pa.struct({"a": pa.int64()}) + + +def test_arrow_tagged_union(): + + art = artifact_local.LocalArtifact("test_arrow_tagged_union") + + with art.new_file("hello.txt") as f: + f.write("hello") + + with art.new_file("world.dat") as f: + f.write("world") + + art.save() + + art_dir = art.path_info("") + assert weave.type_of(art_dir) == artifact_fs.FilesystemArtifactDirType() + files = art_dir.files + + exp_art_file1_type = artifact_fs.FilesystemArtifactFileType( + extension=weave.types.Const(weave.types.String(), "txt"), + wbObjectType=weave.types.NoneType(), + ) + + exp_art_file2_type = artifact_fs.FilesystemArtifactFileType( + extension=weave.types.Const(weave.types.String(), "dat"), + wbObjectType=weave.types.NoneType(), + ) + + assert exp_art_file1_type == weave.type_of(files["hello.txt"]) + assert exp_art_file2_type == weave.type_of(files["world.dat"]) + + tags = {"top": "level"} + tag_store.add_tags(files["hello.txt"], tags) + tag_store.add_tags(files["world.dat"], tags) + + f1e = files["hello.txt"] + f2e = files["world.dat"] + + expected = [f1e, f2e] + + # this should not fail, it was failing in https://wandb.atlassian.net/browse/WB-21076 + tagged_union_arrow = arrow.to_arrow(expected) + + result = tagged_union_arrow.to_pylist_tagged() + + f1a = result[0] + f2a = result[1] + + with f1a.open() as a, f1e.open() as e: + assert a.read() == e.read() + + with f2a.open() as a, f2e.open() as e: + assert a.read() == e.read() + diff --git a/weave_query/weave_query/arrow/convert.py b/weave_query/weave_query/arrow/convert.py index 84f4a1fa53c..a2762ff4c55 100644 --- a/weave_query/weave_query/arrow/convert.py +++ b/weave_query/weave_query/arrow/convert.py @@ -6,7 +6,14 @@ from weave_query import api as api from weave_query import weave_internal from weave_query import weave_types as types -from weave_query import errors, arrow_util, artifact_base, artifact_mem, box, mappers_arrow +from weave_query import ( + errors, + arrow_util, + artifact_base, + artifact_mem, + box, + mappers_arrow, +) from weave_query.arrow.arrow import ( ArrowWeaveListType, ) @@ -223,12 +230,13 @@ def none_unboxer(iterator: typing.Iterable): if i == 0: mask.append(py_obj is None) - array = recursively_build_pyarrow_array( - data, - field.type, - mapper._value_serializer, - py_objs_already_mapped, - ) + with tag_store.with_tags_stripped_from_objects(py_objs): + array = recursively_build_pyarrow_array( + data, + field.type, + mapper._value_serializer, + py_objs_already_mapped, + ) else: assert isinstance( mapper, diff --git a/weave_query/weave_query/language_features/tagging/tag_store.py b/weave_query/weave_query/language_features/tagging/tag_store.py index 7ce213e5407..ce4ff578b99 100644 --- a/weave_query/weave_query/language_features/tagging/tag_store.py +++ b/weave_query/weave_query/language_features/tagging/tag_store.py @@ -77,6 +77,27 @@ def with_tag_store_state( _OBJ_TAGS_MEM_MAP.reset(tag_store_token) +@contextmanager +def with_tags_stripped_from_objects(objs: list[typing.Any]) -> typing.Iterator[None]: + current_state = _current_obj_tag_mem_map() + if current_state is None: + raise errors.WeaveInternalError("No tag store context") + + new_state = current_state.copy() + + for obj in objs: + objid = get_id(obj) + if objid in new_state: + del new_state[objid] + + new_mem_map = _OBJ_TAGS_MEM_MAP.get().copy() + new_mem_map[_OBJ_TAGS_CURR_NODE_ID.get()] = new_state + + tag_store_token = _OBJ_TAGS_MEM_MAP.set(new_mem_map) + yield + _OBJ_TAGS_MEM_MAP.reset(tag_store_token) + + # sets the current node with optionally merged in parent tags @contextmanager def set_curr_node(node_id: int, parent_node_ids: list[int]) -> typing.Iterator[None]: