-
Notifications
You must be signed in to change notification settings - Fork 125
/
face_feature.py
106 lines (92 loc) · 3.94 KB
/
face_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
'''
@Author: David Vu
Run the pretrained model to extract 128D face features
'''
import tensorflow as tf
from architecture import inception_resnet_v1 as resnet
from tensorflow.python.platform import gfile
import numpy as np
import os
class FaceFeature(object):
def __init__(self, face_rec_graph, model_path = 'models/20170512-110547.pb'):
'''
:param face_rec_sess: FaceRecSession object
:param model_path:
'''
print("Loading model...")
with face_rec_graph.graph.as_default():
self.sess = tf.Session()
with self.sess.as_default():
self.__load_model(model_path)
self.x = tf.get_default_graph() \
.get_tensor_by_name("input:0")
self.embeddings = tf.get_default_graph() \
.get_tensor_by_name("embeddings:0")
self.phase_train_placeholder = tf.get_default_graph() \
.get_tensor_by_name("phase_train:0")
print("Model loaded")
def get_features(self, input_imgs):
images = load_data_list(input_imgs,160)
feed_dict = {self.x: images, self.phase_train_placeholder: False}
return self.sess.run(self.embeddings, feed_dict = feed_dict)
def __load_model(self, model):
# Check if the model is a model directory (containing a metagraph and a checkpoint file)
# or if it is a protobuf file with a frozen graph
model_exp = os.path.expanduser(model)
if os.path.isfile(model_exp):
print('Model filename: %s' % model_exp)
with gfile.FastGFile(model_exp, 'rb') as file_:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file_.read())
tf.import_graph_def(graph_def, name='')
else:
print('Model directory: %s' % model_exp)
meta_file, ckpt_file = get_model_filenames(model_exp)
print('Metagraph file: %s' % meta_file)
print('Checkpoint file: %s' % ckpt_file)
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file))
saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file))
def get_model_filenames(model_dir):
files = os.listdir(model_dir)
meta_files = [s for s in files if s.endswith('.meta')]
if len(meta_files) == 0:
raise ValueError('No meta file found in the model directory (%s)' % model_dir)
elif len(meta_files) > 1:
raise ValueError('There should not be more than one meta file \
in the model directory (%s)' % model_dir)
meta_file = meta_files[0]
meta_files = [s for s in files if '.ckpt' in s]
max_step = -1
for file_ in files:
step_str = re.match(r'(^model-[\w\- ]+.ckpt-(\d+))', file_)
if step_str is not None and len(step_str.groups()) >= 2:
step = int(step_str.groups()[1])
if step > max_step:
max_step = step
ckpt_file = step_str.groups()[0]
return meta_file, ckpt_file
def tensorization(img):
'''
Prepare the imgs before input into model
:param img: Single face image
:return tensor: numpy array in shape(n, 160, 160, 3) ready for input to cnn
'''
tensor = img.reshape(-1, Config.Align.IMAGE_SIZE, Config.Align.IMAGE_SIZE, 3)
return tensor
#some image preprocess stuff
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1 / std_adj)
return y
def load_data_list(imgList, image_size, do_prewhiten=True):
images = np.zeros((len(imgList), image_size, image_size, 3))
i = 0
for img in imgList:
if img is not None:
if do_prewhiten:
img = prewhiten(img)
images[i, :, :, :] = img
i += 1
return images