-
Notifications
You must be signed in to change notification settings - Fork 2
/
cyclegan.py
460 lines (412 loc) · 20.7 KB
/
cyclegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import re
import torch
from torch import nn
import os
from ELMoForManyLangs import elmo
import numpy as np
from jexus import Clock, History
import math
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score
import argparse
import sys
import random, time
cwd = os.getcwd()
sys.path.append(os.path.join(os.path.dirname(__file__)))
sys.path.append(os.path.join(cwd, "../InverseELMo"))
sys.path.append(os.path.join(cwd, "../CycleGAN-sentiment-transfer"))
from invELMo import invELMo
def f2h(s):
s = list(s)
for i in range(len(s)):
num = ord(s[i])
if num == 0x3000:
num = 32
elif 0xFF01 <= num <= 0xFF5E:
num -= 0xfee0
s[i] = chr(num).translate(str.maketrans('﹕﹐﹑。﹔﹖﹗﹘ ', ':,、。;?!- '))
return re.sub(r"( | )+", " ", "".join(s)).strip()
def sort_list(li, piv=2,unsort_ind=None):
ind = []
if unsort_ind == None:
ind = sorted(range(len(li[piv])), key=(lambda k: li[piv][k]))
else:
ind = unsort_ind
for i in range(len(li)):
li[i] = [li[i][j] for j in ind]
return li, ind
def sort_numpy(li, piv=2,unsort=False):
ind = np.argsort(-li[piv] if not unsort else li[piv], axis=0)
for i in range(len(li)):
if type(li[i]).__module__ == np.__name__ or type(li[i]).__module__ == torch.__name__:
li[i] = li[i][ind]
else:
li[i] = [li[i][j] for j in ind]
return li, ind
def sort_torch(li, piv=2,unsort=False):
li[piv], ind = torch.sort(li[piv], dim=0, descending=(not unsort))
for i in range(len(li)):
if i == piv:
continue
else:
li[i] = li[i][ind]
return li, ind
def sort_by(li, piv=2, unsort=False):
if type(li[piv]).__module__ == np.__name__:
return sort_numpy(li, piv, unsort)
elif type(li[piv]).__module__ == torch.__name__:
return sort_torch(li, piv, unsort)
else:
return sort_list(li, piv, unsort)
class Embedder():
def __init__(self, seq_len=0, use_cuda=True, device=None):
self.embedder = elmo.Embedder(batch_size=512, use_cuda=use_cuda)
self.seq_len = seq_len
self.bos_vec, self.eos_vec = np.load("bos_eos.npy")
self.pad, self.oov = np.load("pad_oov.npy")
self.device = device
if self.device != None:
self.embedder.model.to(self.device)
def __call__(self, sents, max_len=0, with_bos_eos=True, layer=-1, pad_matters=False):
seq_lens = np.array([len(x) for x in sents], dtype=np.int64)
sents = [[self.sub_unk(x) for x in sent] for sent in sents]
if max_len != 0:
pass
elif self.seq_len != 0:
max_len = self.seq_len
else:
max_len = seq_lens.max()
emb_list = self.embedder.sents2elmo(sents, output_layer=layer)
if not with_bos_eos:
for i in range(len(emb_list)):
if max_len - seq_lens[i] > 0:
if pad_matters:
emb_list[i] = np.concatenate([emb_list[i], np.tile(self.pad,[max_len - seq_lens[i],1])], axis=0)
else:
emb_list[i] = np.concatenate([emb_list[i], np.zeros((max_len - seq_lens[i], emb_list[i].shape[1]))])
else:
emb_list[i] = emb_list[i][:max_len]
elif with_bos_eos:
for i in range(len(emb_list)):
if max_len - seq_lens[i] > 0:
if pad_matters:
emb_list[i] = np.concatenate([
self.bos_vec[np.newaxis],
emb_list[i],
self.eos_vec[np.newaxis],
np.tile(self.pad, [max_len - seq_lens[i], 1])], axis=0)
else:
emb_list[i] = np.concatenate([
self.bos_vec[np.newaxis],
emb_list[i],
self.eos_vec[np.newaxis],
np.zeros((max_len - seq_lens[i], emb_list[i].shape[1]))], axis=0)
else:
emb_list[i] = np.concatenate([self.bos_vec[np.newaxis], emb_list[i][:max_len],self.eos_vec[np.newaxis]], axis=0)
embedded = np.array(emb_list, dtype=np.float32)
seq_lens = seq_lens+2 if with_bos_eos else seq_lens
return embedded, seq_lens
def sub_unk(self, e):
e = e.replace(',',',')
e = e.replace(':',':')
e = e.replace(';',';')
e = e.replace('?','?')
e = e.replace('!', '!')
return e
class Utils():
def __init__(self,
training_data_path,
testing_data_path,
batch_size = 32, elmo_device=None):
self.training_data_path = training_data_path
self.training_line_num = int(os.popen("wc -l %s"%self.training_data_path).read().split(' ')[0])
self.testing_data_path = testing_data_path
self.testing_line_num = int(os.popen("wc -l %s"%self.testing_data_path).read().split(' ')[0])
self.elmo = Embedder(device=elmo_device, use_cuda=elmo_device!="cpu")
self.batch_size = batch_size
self.train_step_num = math.floor(self.training_line_num / batch_size)
self.test_step_num = math.floor(self.testing_line_num / batch_size)
self.device="cuda:0"
def process_sent(self, sent):
sent = f2h(sent)
word_list = re.split(r"[\s|\u3000]+", sent.strip())
char_list = list("".join(word_list))
label_list = []
for word in word_list:
label_list += [0] * (len(word) - 1) + [1]
return char_list, label_list
def sent2list(self, sent):
sent = f2h(sent)
word_list = re.split(r"[\s|\u3000]+", sent.strip())
return word_list
def data_generator(self, mode="train", write_actual_data=False):
if write_actual_data:
fw = open("actual_test_data.utf8", 'w')
path = eval("self.%sing_data_path" % mode)
file = open(path)
sents = []
for sent in file:
if len(sent.strip()) == 0:
continue
word_list = self.sent2list(sent)
if len(word_list) > 150:# process long sentences
continue
else:
if write_actual_data:
fw.write(' '.join(word_list) + '\n')
sents.append(word_list)
if len(sents) == self.batch_size:
yield sents
sents = []
fw.close()
if len(sents)!=0:
yield sents
def raw2elmo(self, batch, with_bos_eos=True):
embedded, seq_lens = self.elmo(batch, with_bos_eos=with_bos_eos)
return embedded, seq_lens
def elmo2mask(self, embedded, seq_lens, with_bos_eos=True, mask_rate=0.0):
# embedded, seq_lens = self.elmo(batch)
mask = np.full((embedded.shape[0], embedded.shape[1]), -1, dtype=np.int64)
if mask_rate:
(begin, end) = (1, -1) if with_bos_eos else(0, 0)
rand_mat = np.random.rand(embedded.shape[0], embedded.shape[1])
for row in range(embedded.shape[0]):
for col in range(begin, seq_lens[row] + end):
if rand_mat[row, col] < mask_rate:
embedded[row, col] = torch.zeros(embedded[row, col].shape)
mask[row, col] = 0
else:
mask[row, col] = 1
return embedded, seq_lens, mask
class Generator(nn.Module):
def __init__(self,
batch_size=32,
device="cuda:0",
hidden_size=300,
input_size=1024,
encode_size=30,
n_layers=3,
dropout=0.33):
super(Generator, self).__init__()
self.device = device if torch.cuda.is_available() else "cpu"
self.gru = nn.LSTM(input_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout),
bidirectional=True,
batch_first=True)
self.fc1 = nn.Linear(2*hidden_size, input_size)
self.hidden_expander_1 = nn.Linear(encode_size, hidden_size)
self.hidden_expander_2 = nn.Linear(encode_size, hidden_size)
self.optimizer = torch.optim.Adam(self.parameters())
def forward(self, input_seq, input_lengths, hidden=None, sort=True, unsort=False):
embedded = torch.from_numpy(input_seq).to(self.device)
if sort:
[embedded, input_lengths], ind = sort_by([embedded, input_lengths], piv=1)
hidden[0] = self.hidden_expander_1(hidden[0])
hidden[1] = self.hidden_expander_2(hidden[1])
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths, batch_first=True)
outputs, hidden = self.gru(packed, hidden) # output: (seq_len, batch, hidden*n_dir)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
pred_seq = self.fc1(outputs)#nn.Softmax(dim=-1)(self.fc1(outputs))
embedded.cpu()
if unsort:
[pred_seq, _], _ = sort_by([pred_seq, ind], piv=1, unsort=True)
return pred_seq
class Discriminator(nn.Module):
def __init__(self,
batch_size=32,
device="cuda:0",
hidden_size=300,
input_size=1024,
n_layers=3,
dropout=0.33):
super(Discriminator, self).__init__()
self.device = device if torch.cuda.is_available() else "cpu"
self.gru = nn.LSTM(input_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout),
bidirectional=True,
batch_first=True)
self.fc1 = nn.Linear(2*hidden_size, 2)
self.optimizer = torch.optim.Adam(self.parameters())
def forward(self, input_seq, input_lengths, hidden=None, numpy=True, sort=True, unsort=False):
if numpy:
embedded = torch.from_numpy(input_seq).to(self.device)
else:
embedded = input_seq.to(self.device)
if sort:
[embedded, input_lengths], ind = sort_by([embedded, input_lengths], piv=1)
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths, batch_first=True)
outputs, hidden = self.gru(packed, hidden) # output: (seq_len, batch, hidden*n_dir)
outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
pred_prob = self.fc1(outputs)#nn.Softmax(dim=-1)(self.fc1(outputs))
embedded.cpu()
if unsort:
[pred_prob, _], _ = sort_by([pred_prob, ind], piv=1, unsort=True)
return pred_prob
class Encoder(nn.Module):
def __init__(self,
batch_size=32,
device="cuda:0",
hidden_size=300,
encode_size=30,
input_size=1024,
n_layers=3,
dropout=0.33):
super(Encoder, self).__init__()
self.device = device if torch.cuda.is_available() else "cpu"
self.gru = nn.LSTM(input_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout),
bidirectional=True,
batch_first=True)
self.fc1 = nn.Linear(hidden_size, encode_size)
self.fc2 = nn.Linear(hidden_size, encode_size)
self.criterion = nn.CrossEntropyLoss(ignore_index=-1)
self.optimizer = torch.optim.Adam(self.parameters())
def forward(self, input_seq, input_lengths, hidden=None, sort=True, unsort=False):
embedded = torch.from_numpy(input_seq).to(self.device)
if sort:
[embedded, input_lengths], ind = sort_by([embedded, input_lengths], piv=1)
packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lengths, batch_first=True)
outputs, (h_n, c_n) = self.gru(packed, hidden) # output: (seq_len, batch, hidden*n_dir)
outputs = torch.nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
code1 = self.fc1(h_n) #nn.Softmax(dim=-1)(self.fc1(outputs))
code2 = self.fc2(c_n)
embedded.cpu()
if unsort:
[code1, code2, _], _ = sort_by([code1, code2, ind], piv=2, unsort=True)
return [code1, code2]
def load_cpu_invelmo():
elmo = invELMo()
elmo.device = "cpu"
elmo.load_model(device="cpu")
elmo.eval()
return elmo
class MaskGAN():
def __init__(self, embedder, discriminator, generator, encoder, utils):
self.embedder = embedder
self.D = discriminator
self.G = generator
self.encoder = encoder
self.utils = utils
self.criterion = nn.CrossEntropyLoss(ignore_index=-1)
self.invelmo = load_cpu_invelmo()
self.mse = nn.MSELoss()
def save_model(self, d_path="Dis_model.ckpt", g_path="Gen_model.ckpt"):
torch.save(self.D.state_dict(), d_path)
torch.save(self.G.state_dict(), g_path)
def load_model(self, path=""):
self.D.load_state_dict(torch.load(os.path.join(path,"Dis_model.ckpt")))
self.G.load_state_dict(torch.load(os.path.join(path,"Gen_model.ckpt")))
print("model loaded!")
def pretrain(self, num_epochs=1):
self.G.to(self.G.device)
self.encoder.to(self.encoder.device)
real_datagen = self.utils.data_generator("train")
test_datagen = self.utils.data_generator("test")
for epoch in range(num_epochs):
ct = Clock(self.utils.train_step_num, title="Pretrain(%d/%d)" % (epoch, num_epochs))
for real_data in real_datagen:
# 2. Train G on D's response (but DO NOT train D on these labels)
self.G.zero_grad()
g_org_data, g_data_seqlen = self.utils.raw2elmo(real_data)
gen_input = self.encoder(g_org_data, g_data_seqlen)
g_fake_data = self.G(g_org_data, g_data_seqlen, hidden=gen_input)
loss = self.mse(g_fake_data, torch.from_numpy(g_org_data).to(self.G.device))
loss.backward()
self.G.optimizer.step() # Only optimizes G's parameters
self.encoder.optimizer.step()
ct.flush(info={"G_loss": loss.item()})
with torch.no_grad():
for _, real_data in zip(range(2), test_datagen):
g_org_data, g_data_seqlen = self.utils.raw2elmo(real_data)
[g_org_data, g_data_seqlen], _ind = sort_by([g_org_data, g_data_seqlen], piv=1)
g_mask_data, g_data_seqlen, g_mask_label = \
self.utils.elmo2mask(g_org_data, g_data_seqlen, mask_rate=epoch/num_epochs)
gen_input = self.encoder(g_org_data, g_data_seqlen, sort=False)
g_fake_data = self.G(g_mask_data, g_data_seqlen, hidden=gen_input, sort=False)
gen_sents = self.invelmo.test(g_fake_data.cpu().numpy(), g_data_seqlen)
for i, j in zip(real_data, gen_sents):
print("="*50)
print(' '.join(i))
print("---")
print(' '.join(j))
print("=" * 50)
torch.save(self.G.state_dict(), "pretrain_model.ckpt")
def train_model(self, num_epochs=100, d_steps=10, g_steps=10):
self.D.to(self.D.device)
self.G.to(self.G.device)
self.encoder.to(self.encoder.device)
real_datagen = self.utils.data_generator("train")
test_datagen = self.utils.data_generator("test")
for epoch in range(num_epochs):
d_ct = Clock(d_steps, title="Train Discriminator(%d/%d)"%(epoch, num_epochs))
for d_step, real_data in zip(range(d_steps), real_datagen):
# 1. Train D on real+fake
self.D.zero_grad()
# 1A: Train D on real
d_org_data, d_data_seqlen = self.utils.raw2elmo(real_data)
d_mask_data, d_data_seqlen, d_mask_label = \
self.utils.elmo2mask(d_org_data, d_data_seqlen, mask_rate=epoch/num_epochs)
d_real_pred = self.D(d_org_data, d_data_seqlen)
d_real_error = self.criterion(d_real_pred.transpose(1, 2), torch.ones(d_mask_label.shape, dtype=torch.int64).to(self.D.device)) # ones = true
d_real_error.backward() # compute/store gradients, but don't change params
self.D.optimizer.step()
# 1B: Train D on fake
d_gen_input = self.encoder(d_org_data, d_data_seqlen)
d_fake_data = self.G(d_mask_data, d_data_seqlen, hidden=d_gen_input).detach() # detach to avoid training G on these labels
d_fake_pred = self.D(d_fake_data, d_data_seqlen, numpy=False)
d_fake_error = self.criterion(d_fake_pred.transpose(1, 2), torch.from_numpy(d_mask_label).to(self.D.device)) # zeros = fake
d_fake_error.backward()
self.D.optimizer.step() # Only optimizes D's parameters; changes based on stored gradients from backward()
d_ct.flush(info={"D_loss":d_fake_error.item()})
g_ct = Clock(g_steps, title="Train Generator(%d/%d)"%(epoch, num_epochs))
for g_step, real_data in zip(range(g_steps), real_datagen):
# 2. Train G on D's response (but DO NOT train D on these labels)
self.G.zero_grad()
g_org_data, g_data_seqlen = self.utils.raw2elmo(real_data)
g_mask_data, g_data_seqlen, g_mask_label = \
self.utils.elmo2mask(g_org_data, g_data_seqlen, mask_rate=epoch/num_epochs)
gen_input = self.encoder(g_org_data, g_data_seqlen)
g_fake_data = self.G(g_mask_data, g_data_seqlen, hidden=gen_input)
dg_fake_pred = self.D(g_fake_data, g_data_seqlen, numpy=False)
g_error = self.criterion(dg_fake_pred.transpose(1, 2), torch.ones(g_mask_label.shape, dtype=torch.int64).to(self.D.device)) # we want to fool, so pretend it's all genuine
g_error.backward()
self.G.optimizer.step() # Only optimizes G's parameters
self.encoder.optimizer.step()
g_ct.flush(info={"G_loss": g_error.item()})
with torch.no_grad():
for _, real_data in zip(range(2), test_datagen):
g_org_data, g_data_seqlen = self.utils.raw2elmo(real_data)
[g_org_data, g_data_seqlen], _ind = sort_by([g_org_data, g_data_seqlen], piv=1)
g_mask_data, g_data_seqlen, g_mask_label = \
self.utils.elmo2mask(g_org_data, g_data_seqlen, mask_rate=epoch/num_epochs)
gen_input = self.encoder(g_org_data, g_data_seqlen, sort=False)
g_fake_data = self.G(g_mask_data, g_data_seqlen, hidden=gen_input, sort=False)
gen_sents = self.invelmo.test(g_fake_data.cpu().numpy(), g_data_seqlen)
for i, j in zip(real_data, gen_sents):
print("="*50)
print(' '.join(i))
print("---")
print(' '.join(j))
print("=" * 50)
self.save_model()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("mode", help="execute mode")
# parser.add_argument("-train_file", default=None, required=False, help="test filename")
# parser.add_argument("-test_file", default=None, required=True, help="test filename")
parser.add_argument("-load_model_path", default=None, required=False, help="test filename")
parser.add_argument("-epoch", default=1000, required=False, help="test filename")
parser.add_argument("-d_step", default=100, required=False, help="test filename")
parser.add_argument("-g_step", default=100, required=False, help="test filename")
args = parser.parse_args()
embedder, discriminator, generator, encoder, utils = \
Embedder(), Discriminator(), Generator(), Encoder(), \
Utils(training_data_path="data/train_as.txt",
testing_data_path="data/test_as.txt", elmo_device="cuda:0")
model = MaskGAN(embedder, discriminator, generator, encoder, utils)
if args.load_model_path != None:
model.load_model(args.load_model_path)
if args.mode == "train":
model.train_model(num_epochs=int(args.epoch), d_steps=int(args.d_step), g_steps=int(args.g_step))
if args.mode == "pretrain":
model.pretrain(num_epochs=int(args.epoch))