llm-compressor
supports quantizing weights and activations to int
for memory savings and inference acceleration with vLLM
int8
compuation is supported on Nvidia GPUs with compute capability > 7.5 (Turing, Ampere, Ada Lovelace, Hopper).
To get started, install:
pip install llmcompressor
The example includes an end-to-end script for applying the quantization algorithm.
python3 llama3_example.py
The resulting model Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token
is ready to be loaded into vLLM.
Now, we will step though the code in the example. There are four steps:
- Load model
- Prepare calibration data
- Apply quantization
- Evaluate accuracy in vLLM
Load the model using AutoModelForCausalLM
for handling quantized saving and loading.
from transformers import AutoTokenizer, AutoModelForCausalLM
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID, device_map="auto", torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
Prepare the calibration data. When quantizing activations of a model to int8
, we need some sample data to estimate the activation scales. As a result, it is very useful to use calibration data that closely matches the type of data used in deployment. If you have fine-tuned a model, using a sample of your training data is a good idea.
In our case, we are quantizing an Instruction tuned generic model, so we will use the ultrachat
dataset. Some best practices include:
- 512 samples is a good place to start (increase if accuracy drops)
- 2048 sequence length is a good place to start
- Use the chat template or instrucion template that the model is trained with
from datasets import load_dataset
NUM_CALIBRATION_SAMPLES=512
MAX_SEQUENCE_LENGTH=2048
# Load dataset.
ds = load_dataset("HuggingFaceH4/ultrachat_200k", split="train_sft")
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))
# Preprocess the data into the format the model is trained with.
def preprocess(example):
return {"text": tokenizer.apply_chat_template(example["messages"], tokenize=False,)}
ds = ds.map(preprocess)
# Tokenize the data (be careful with bos tokens - we need add_special_tokens=False since the chat_template already added it).
def tokenize(sample):
return tokenizer(sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
ds = ds.map(tokenize, remove_columns=ds.column_names)
With the dataset ready, we will now apply quantization.
We first select the quantization algorithm. For W8A8, we want to:
- Run SmoothQuant to make the activations easier to quantize
- Quantize the weights to 8 bits with channelwise scales using GPTQ
- Quantize the activations with dynamic per token strategy
See the
Recipes
documentation for more information on recipes
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
# Configure the quantization algorithms to run.
recipe = [
SmoothQuantModifier(smoothing_strength=0.8),
GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"]),
]
# Apply quantization.
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
We have successfully created an w8a8
model with weights and activations quantized to 8-bit integers!
With the model created, we can now load and run in vLLM (after installing).
from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token")
We can evaluate accuracy with lm_eval
(pip install lm_eval==v0.4.3
):
Note: quantized models can be sensitive to the presence of the
bos
token.lm_eval
does not add abos
token by default, so make sure to include theadd_bos_token=True
argument when running your evaluations.
Run the following to test accuracy on GSM-8K:
lm_eval --model vllm \
--model_args pretrained="./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token",add_bos_token=true \
--tasks gsm8k \
--num_fewshot 5 \
--limit 250 \
--batch_size 'auto'
We can see the resulting scores look good!
|Tasks|Version| Filter |n-shot| Metric | |Value| |Stderr|
|-----|------:|----------------|-----:|-----------|---|----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.752|± |0.0274|
| | |strict-match | 5|exact_match|↑ |0.756|± |0.0272|
Please open up an issue on vllm-project/llm-compressor