-
-
Notifications
You must be signed in to change notification settings - Fork 431
Models
Vladimir Mandic edited this page Oct 15, 2024
·
10 revisions
List of popular text-to-image generative models with their respective parameters and architecture overview
Original URL: https://github.com/vladmandic/automatic/wiki/Models
Vendor | Model | Variant | Size | Architecture | Model Params | Text Encoder(s) | TE Params | VAE | Other |
---|---|---|---|---|---|---|---|---|---|
StabilityAI | Stable Diffusion | 1.5 | 2.28GB | UNet | 0.86B | CLiP ViT-L | 0.12B | VAE | |
StabilityAI | Stable Diffusion | 2.1 | 2.58GB | UNet | 0.86B | CLiP ViT | 0.34B | VAE | |
StabilityAI | Stable Diffusion | XL | 6.94GB | UNet | 2.56B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
StabilityAI | Stable Diffusion | 3 Medium | 15.14GB | MMDiT | 2.0B | CLiP ViT-L + ViT+G + T5-XXL | 0.12B + 0.69B + 4.76B | 16ch VAE | |
StabilityAI | Stable Cascade | Medium | 11.82GB | Multi-stage UNet | 1.56B + 3.6B | CLiP ViT-G | 0.69B | 42x VQE | |
StabilityAI | Stable Cascade | Lite | 4.97GB | Multi-stage UNet | 0.7B + 1.0B | CLiP ViT-G | 0.69B | 42x VQE | |
Black Forest Labs | Flux | 1 Dev | 32.93GB | MMDiT | 11.9B | CLiP ViT-L + T5-XXL | 0.12B + 4.769B | 16ch VAE | |
Black Forest Labs | Flux | 1 Schnell | 32.93GB | MMDiT | 11.9B | CLiP ViT-L + T5-XXL | 0.12B + 4.769B | 16ch VAE | |
FAL | AuraFlow | 0.3 | 31.90GB | MMDiT | 6.8B | UMT5 | 12.1B | VAE | |
AlphaVLLM | Lumina | Next SFT | 8.67GB | DiT | 1.7B | Gemma | 2.5B | LM | |
PixArt | Alpha | XL 2 | 21.3GB | DiT | 0.61B | T5-XXL | 4.76B | VAE | |
PixArt | Sigma | XL 2 | 21.3GB | DiT | 0.61B | T5-XXL | 4.76B | VAE | |
Segmind | SSD-1B | N/A | 8.72GB | UNet | 1.33B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Segmind | Vega | N/A | 6.43GB | UNet | 0.75B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Segmind | Tiny | N/A | 1.03GB | UNet | 0.32B | CLiP ViT-L | 0.12B | VAE | |
Kwai | Kolors | N/A | 17.40GB | UNnet | 2.58B | ChatGLM | 6.24B | VAE | LM |
PlaygroundAI | Playground | 1.0 | 4.95GB | UNet | 0.86B | CLiP ViT-L | 0.12B | VAE | |
PlaygroundAI | Playground | 2.x | 13.35GB | UNet | 2.57B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VAE | |
Tencent | HunyuanDiT | 1.2 | 14.09GB | DiT | 1.5B | BERT + T5-XL | 3.52B + 1.67B | VAE | LM |
Warp AI | Wuerstchen | N/A | 12.16GB | Multi-stage UNet | 1.0B + 1.05B | CLiP ViT-L + ViT+G | 0.12B + 0.69B | VQE | |
Kandinsky | Kandinsky | 2.2 | 5.15GB | Unet | 1.25B | CLiP ViT-G | 0.69B | VQ | |
Kandinsky | Kandinsky | 3.0 | 27.72GB | Unet | 3.05B | T5-XXXL | 8.72B | VQ | |
Thudm | CogView | 3 Plus | 24.96GB | DiT | 2.85B | T5-XXL | 4.76B | VAE |
Notes:
- Created using SD.Next built-in model analyzer
- Number of parameters is proportional to model complexity and ability to learn
Quality of generated images is also influenced by training data and duration of training - Size refers to original model variant in 16bit precision where available
Quantized variations may be smaller
© SD.Next