-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_data.py
52 lines (37 loc) · 1.75 KB
/
train_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D, Flatten, Dense
classifier = Sequential()
classifier.add(Convolution2D(32, (3, 3), input_shape=(64, 64, 1), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Convolution2D(32, (3, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Flatten())
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=6, activation='softmax'))
classifier.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255) #epoch
training_set = train_datagen.flow_from_directory('data/train',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
test_set = test_datagen.flow_from_directory('data/test',
target_size=(64, 64),
batch_size=5,
color_mode='grayscale',
class_mode='categorical')
classifier.fit_generator(
training_set,
epochs=10,
validation_data=test_set)
#Saving
model_json = classifier.to_json()
with open("model-bw.json", "w") as json_file:
json_file.write(model_json)
classifier.save_weights('model-bw.h5')