Documentation |
---|
TensorFlow is an open source software library for numerical computation using data flow graphs. The graph nodes represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture enables you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code. TensorFlow also includes TensorBoard, a data visualization toolkit.
TensorFlow was originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization for the purposes of conducting machine learning and deep neural networks research. The system is general enough to be applicable in a wide variety of other domains, as well.
TensorFlow provides stable Python and C APIs as well as non-guaranteed backwards compatible API's for C++, Go, Java, JavaScript and Swift.
Keep up to date with release announcements and security updates by subscribing to [email protected].
Tensorflow ROCm port This project is based on TensorFlow 1.13.1. It has been verified to work with the latest ROCm2.2 release. Please follow the instructions here to set up your ROCm stack. A docker container: rocm/tensorflow:latest(https://hub.docker.com/r/rocm/tensorflow/) is readily available to be used:
alias drun='sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $HOME/dockerx:/dockerx'
drun rocm/tensorflow
We maintain tensorflow-rocm
whl packages on PyPI here, to install tensorflow-rocm package using pip:
# Install some ROCm dependencies
sudo apt install rocm-libs miopen-hip cxlactivitylogger
# Pip3 install the whl package from PyPI
pip3 install --user tensorflow-rocm
For details on Tensorflow ROCm port, please take a look at the ROCm-specific README file.
To install the current release for CPU-only:
pip install tensorflow
Use the GPU package for CUDA-enabled GPU cards:
pip install tensorflow-gpu
See Installing TensorFlow for detailed instructions, and how to build from source.
People who are a little more adventurous can also try our nightly binaries:
Nightly pip packages
- We are pleased to announce that TensorFlow now offers nightly pip packages
under the tf-nightly and
tf-nightly-gpu project on pypi.
Simply run
pip install tf-nightly
orpip install tf-nightly-gpu
in a clean environment to install the nightly TensorFlow build. We support CPU and GPU packages on Linux, Mac, and Windows.
$ python
>>> import tensorflow as tf
>>> tf.enable_eager_execution()
>>> tf.add(1, 2).numpy()
3
>>> hello = tf.constant('Hello, TensorFlow!')
>>> hello.numpy()
'Hello, TensorFlow!'
Learn more examples about how to do specific tasks in TensorFlow at the tutorials page of tensorflow.org.
If you want to contribute to TensorFlow, be sure to review the contribution guidelines. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.
We use GitHub issues for tracking requests and bugs, so please see TensorFlow Discuss for general questions and discussion, and please direct specific questions to Stack Overflow.
The TensorFlow project strives to abide by generally accepted best practices in open-source software development:
Build Type | Status | Artifacts |
---|---|---|
Linux CPU | pypi | |
Linux GPU | pypi | |
Linux XLA | TBA | |
MacOS | pypi | |
Windows CPU | pypi | |
Windows GPU | pypi | |
Android | ||
Raspberry Pi 0 and 1 | Py2 Py3 | |
Raspberry Pi 2 and 3 | Py2 Py3 |
Build Type | Status | Artifacts |
---|---|---|
IBM s390x | TBA | |
Linux ppc64le CPU Nightly | Nightly | |
Linux ppc64le CPU Stable Release | Release | |
Linux ppc64le GPU Nightly | Nightly | |
Linux ppc64le GPU Stable Release | Release | |
Linux CPU with Intel® MKL-DNN Nightly | Nightly | |
Linux CPU with Intel® MKL-DNN Python 2.7 Linux CPU with Intel® MKL-DNN Python 3.4 Linux CPU with Intel® MKL-DNN Python 3.5 Linux CPU with Intel® MKL-DNN Python 3.6 |
1.12.0 py2.7 1.12.0 py3.4 1.12.0 py3.5 1.12.0 py3.6 |
- TensorFlow Website
- TensorFlow Tutorials
- TensorFlow Model Zoo
- TensorFlow Twitter
- TensorFlow Blog
- TensorFlow Course at Stanford
- TensorFlow Roadmap
- TensorFlow White Papers
- TensorFlow YouTube Channel
- TensorFlow Visualization Toolkit
Learn more about the TensorFlow community at the community page of tensorflow.org for a few ways to participate.