Skip to content

Latest commit

 

History

History
351 lines (289 loc) · 7.38 KB

File metadata and controls

351 lines (289 loc) · 7.38 KB

Tim Sort

TimSort is a sorting algorithm based on Insertion Sort and Merge Sort. It is used as the default sorting technique in python's sorted() and .sort() as well as Java's Arrays.sort()

Complexity

Best Average Worst Memory Stable
n n log(n) n log(n) n Yes

Algorithm

Step 1 - Divide the array into the number of blocks known as run.
Step 2 - Consider the size of run, either 32 or 64.
Step 3 - Sort the individual elements of every run one by one using insertion sort.
Step 4 - Merge the sorted runs one by one using the merge function of merge sort.
Step 5 - Double the size of merged sub-arrays after every iteration.

Implementation in Python

# Python program - timSort
MIN_MERGE = 32

def calcMinRun(n):
    r = 0
    while n >= MIN_MERGE:
        r |= n & 1
        n >>= 1
    return n + r

def insertionSort(arr, left, right):
    for i in range(left + 1, right + 1):
        j = i
        while j > left and arr[j] < arr[j - 1]:
            arr[j], arr[j - 1] = arr[j - 1], arr[j]
            j -= 1

def merge(arr, l, m, r):
    len1, len2 = m - l + 1, r - m
    left, right = [], []
    for i in range(0, len1):
        left.append(arr[l + i])
    for i in range(0, len2):
        right.append(arr[m + 1 + i])

    i, j, k = 0, 0, l

    while i < len1 and j < len2:
        if left[i] <= right[j]:
            arr[k] = left[i]
            i += 1

        else:
            arr[k] = right[j]
            j += 1

        k += 1

    while i < len1:
        arr[k] = left[i]
        k += 1
        i += 1

    while j < len2:
        arr[k] = right[j]
        k += 1
        j += 1


def timSort(arr):
    n = len(arr)
    minRun = calcMinRun(n)

    for start in range(0, n, minRun):
        end = min(start + minRun - 1, n - 1)
        insertionSort(arr, start, end)

    size = minRun
    while size < n:
        for left in range(0, n, 2 * size):
            mid = min(n - 1, left + size - 1)
            right = min((left + 2 * size - 1), (n - 1))

            if mid < right:
                merge(arr, left, mid, right)

        size = 2 * size


if __name__ == "__main__":

    arr = [-2, 7, 15, -14, 0, 15, 0,
           7, -7, -4, -13, 5, 8, -14, 12]

    print("Given Array is")
    print(arr)

    timSort(arr)

    print("After Sorting Array is")
    print(arr)

Implementation in CPP

// c++ program - timsort
#include<bits/stdc++.h>
using namespace std;
const int RUN = 32;

void insertionSort(int arr[], int left, int right)
{
    for (int i = left + 1; i <= right; i++)
    {
        int temp = arr[i];
        int j = i - 1;
        while (j >= left && arr[j] > temp)
        {
            arr[j+1] = arr[j];
            j--;
        }
        arr[j+1] = temp;
    }
}

void merge(int arr[], int l, int m, int r)
{
    int len1 = m - l + 1, len2 = r - m;
    int left[len1], right[len2];
    for (int i = 0; i < len1; i++)
        left[i] = arr[l + i];
    for (int i = 0; i < len2; i++)
        right[i] = arr[m + 1 + i];

    int i = 0;
    int j = 0;
    int k = l;
    while (i < len1 && j < len2)
    {
        if (left[i] <= right[j])
        {
            arr[k] = left[i];
            i++;
        }
        else
        {
            arr[k] = right[j];
            j++;
        }
        k++;
    }

    while (i < len1)
    {
        arr[k] = left[i];
        k++;
        i++;
    }

    while (j < len2)
    {
        arr[k] = right[j];
        k++;
        j++;
    }
}

void timSort(int arr[], int n)
{

    for (int i = 0; i < n; i+=RUN)
        insertionSort(arr, i, min((i+RUN-1),
                                    (n-1)));

    for (int size = RUN; size < n;
                             size = 2*size)
    {

        for (int left = 0; left < n;
                             left += 2*size)
        {
            int mid = left + size - 1;
            int right = min((left + 2*size - 1),
                                            (n-1));
              if(mid < right)
                merge(arr, left, mid, right);
        }
    }
}

void printArray(int arr[], int n)
{
    for (int i = 0; i < n; i++)
        printf("%d  ", arr[i]);
    printf("\n");
}

int main()
{
    int arr[] = {-2, 7, 15, -14, 0, 15, 0, 7, -7,
                       -4, -13, 5, 8, -14, 12};
    int n = sizeof(arr)/sizeof(arr[0]);
    printf("Given Array is\n");
    printArray(arr, n);

    timSort(arr, n);

    printf("After Sorting Array is\n");
    printArray(arr, n);
    return 0;
}

Implementation in Java

// Java program - TimSort.
class Main
{

    static int MIN_MERGE = 32;

    public static int minRunLength(int n)
    {
        assert n >= 0;
        int r = 0;
        while (n >= MIN_MERGE)
        {
            r |= (n & 1);
            n >>= 1;
        }
        return n + r;
    }

    public static void insertionSort(int[] arr, int left,
                                     int right)
    {
        for (int i = left + 1; i <= right; i++)
        {
            int temp = arr[i];
            int j = i - 1;
            while (j >= left && arr[j] > temp)
            {
                arr[j + 1] = arr[j];
                j--;
            }
            arr[j + 1] = temp;
        }
    }

    public static void merge(int[] arr, int l,
                                 int m, int r)
    {
        int len1 = m - l + 1, len2 = r - m;
        int[] left = new int[len1];
        int[] right = new int[len2];
        for (int x = 0; x < len1; x++)
        {
            left[x] = arr[l + x];
        }
        for (int x = 0; x < len2; x++)
        {
            right[x] = arr[m + 1 + x];
        }

        int i = 0;
        int j = 0;
        int k = l;

        while (i < len1 && j < len2)
        {
            if (left[i] <= right[j])
            {
                arr[k] = left[i];
                i++;
            }
            else {
                arr[k] = right[j];
                j++;
            }
            k++;
        }
        while (i < len1)
        {
            arr[k] = left[i];
            k++;
            i++;
        }

        while (j < len2)
        {
            arr[k] = right[j];
            k++;
            j++;
        }
    }

    public static void timSort(int[] arr, int n)
    {
        int minRun = minRunLength(MIN_MERGE);

        for (int i = 0; i < n; i += minRun)
        {
            insertionSort(arr, i,
                          Math.min((i + MIN_MERGE - 1), (n - 1)));
        }

        for (int size = minRun; size < n; size = 2 * size)
        {

            for (int left = 0; left < n;
                                 left += 2 * size)
            {

                int mid = left + size - 1;
                int right = Math.min((left + 2 * size - 1),
                                     (n - 1));

                  if(mid < right)
                    merge(arr, left, mid, right);
            }
        }
    }

    public static void printArray(int[] arr, int n)
    {
        for (int i = 0; i < n; i++) {
            System.out.print(arr[i] + " ");
        }
        System.out.print("\n");
    }

    public static void main(String[] args)
    {
        int[] arr = { -2, 7,  15,  -14, 0, 15,  0, 7,
                      -7, -4, -13, 5,   8, -14, 12 };
        int n = arr.length;
        System.out.println("Given Array is");
        printArray(arr, n);

        timSort(arr, n);

        System.out.println("After Sorting Array is");
        printArray(arr, n);
    }
}