forked from bfelbo/DeepMoji
-
Notifications
You must be signed in to change notification settings - Fork 1
/
analyze_all_results.py
42 lines (33 loc) · 1.19 KB
/
analyze_all_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from __future__ import print_function
# allow us to import the codebase/keras directory
import sys
import glob
import numpy as np
from os.path import dirname, abspath
sys.path.insert(0, dirname(dirname(abspath(__file__))))
DATASETS = ['SE0714', 'Olympic', 'PsychExp', 'SS-Twitter', 'SS-Youtube',
'SCv1', 'SV2-GEN'] # 'SE1604' excluded due to Twitter's ToS
def get_results(dset):
METHOD = 'last'
RESULTS_DIR = 'results/'
RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, dset, METHOD))
assert len(RESULT_PATHS)
scores = []
for path in RESULT_PATHS:
with open(path) as f:
score = f.readline().split(':')[1]
scores.append(float(score))
average = np.mean(scores)
maximum = max(scores)
minimum = min(scores)
std = np.std(scores)
print('Dataset: {}'.format(dset))
print('Method: {}'.format(METHOD))
print('Number of results: {}'.format(len(scores)))
print('--------------------------')
print('Average: {}'.format(average))
print('Maximum: {}'.format(maximum))
print('Minimum: {}'.format(minimum))
print('Standard deviaton: {}'.format(std))
for dset in DATASETS:
get_results(dset)