Skip to content

Latest commit

 

History

History
299 lines (239 loc) · 6.92 KB

File metadata and controls

299 lines (239 loc) · 6.92 KB

English Version

题目描述

n 个城市,其中一些彼此相连,另一些没有相连。如果城市 a 与城市 b 直接相连,且城市 b 与城市 c 直接相连,那么城市 a 与城市 c 间接相连。

省份 是一组直接或间接相连的城市,组内不含其他没有相连的城市。

给你一个 n x n 的矩阵 isConnected ,其中 isConnected[i][j] = 1 表示第 i 个城市和第 j 个城市直接相连,而 isConnected[i][j] = 0 表示二者不直接相连。

返回矩阵中 省份 的数量。

 

示例 1:

输入:isConnected = [[1,1,0],[1,1,0],[0,0,1]]
输出:2

示例 2:

输入:isConnected = [[1,0,0],[0,1,0],[0,0,1]]
输出:3

 

提示:

  • 1 <= n <= 200
  • n == isConnected.length
  • n == isConnected[i].length
  • isConnected[i][j]10
  • isConnected[i][i] == 1
  • isConnected[i][j] == isConnected[j][i]

解法

方法一:深度优先搜索

判断城市之间是否属于同一个连通分量,最后连通分量的总数即为结果。

方法二:并查集

模板 1——朴素并查集:

# 初始化,p存储每个点的父节点
p = list(range(n))

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)

模板 2——维护 size 的并查集:

# 初始化,p存储每个点的父节点,size只有当节点是祖宗节点时才有意义,表示祖宗节点所在集合中,点的数量
p = list(range(n))
size = [1] * n
# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        # 路径压缩
        p[x] = find(p[x])
    return p[x]

# 合并a和b所在的两个集合
if find(a) != find(b):
    size[find(b)] += size[find(a)]
    p[find(a)] = find(b)

模板 3——维护到祖宗节点距离的并查集:

# 初始化,p存储每个点的父节点,d[x]存储x到p[x]的距离
p = list(range(n))
d = [0] * n

# 返回x的祖宗节点
def find(x):
    if p[x] != x:
        t = find(p[x])
        d[x] += d[p[x]]
        p[x] = t
    return p[x]

# 合并a和b所在的两个集合
p[find(a)] = find(b)
d[find(a)] = distance

Python3

深度优先搜索:

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        def dfs(i):
            for j in range(n):
                if not visited[j] and isConnected[i][j] == 1:
                    visited[j] = True
                    dfs(j)

        n = len(isConnected)
        visited = [False] * n
        num = 0
        for i in range(n):
            if not visited[i]:
                dfs(i)
                num += 1
        return num

并查集:

class Solution:
    def findCircleNum(self, isConnected: List[List[int]]) -> int:
        n = size = len(isConnected)
        p = list(range(n))

        def find(x):
            if p[x] != x:
                p[x] = find(p[x])
            return p[x]
        
        for i in range(n):
            for j in range(i + 1, n):
                if isConnected[i][j] == 1 and find(i) != find(j):
                    p[find(i)] = find(j)
                    size -= 1
        return size

Java

深度优先搜索:

class Solution {
    public int findCircleNum(int[][] isConnected) {
        int n = isConnected.length;
        boolean[] visited = new boolean[n];
        int num = 0;
        for (int i = 0; i < n; ++i) {
            if (!visited[i]) {
                dfs(isConnected, visited, i, n);
                ++num;
            }
        }
        return num;
    }

    private void dfs(int[][] isConnected, boolean[] visited, int i, int n) {
        for (int j = 0; j < n; ++j) {
            if (!visited[j] && isConnected[i][j] == 1) {
                visited[j] = true;
                dfs(isConnected, visited, j, n);
            }
        }
    }
}

并查集:

class Solution {
    private int[] p;

    public int findCircleNum(int[][] isConnected) {
        int n = isConnected.length;
        p = new int[n];
        for (int i = 0; i < n; ++i) {
            p[i] = i;
        }
        int size =  n;
        for (int i = 0; i < n; ++i) {
            for (int j = i + 1; j < n; ++j) {
                if (isConnected[i][j] == 1 && find(i) != find(j)) {
                    p[find(i)] = find(j);
                    --size;
                }
            }
        }
        return size;
    }

    private int find(int x) {
        if (p[x] != x) {
            p[x] = find(p[x]);
        }
        return p[x];
    }
}

C++

class Solution {
public:
    vector<int> p;

    int findCircleNum(vector<vector<int>>& isConnected) {
        int n = isConnected.size();
        p.resize(n);
        for (int i = 0; i < n; ++i) p[i] = i;
        int size = n;
        for (int i = 0; i < n; ++i)
        {
            for (int j = i + 1; j < n; ++j)
            {
                if (isConnected[i][j] && find(i) != find(j))
                {
                    p[find(i)] = find(j);
                    --size;
                }
            }
        }
        return size;
    }

    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }
};

Go

var p []int

func findCircleNum(isConnected [][]int) int {
	n := len(isConnected)
	p = make([]int, n)
	for i := 0; i < n; i++ {
		p[i] = i
	}
	size := n
	for i := 0; i < n; i++ {
		for j := i + 1; j < n; j++ {
			if isConnected[i][j] == 1 && find(i) != find(j) {
				p[find(i)] = find(j)
				size--
			}
		}
	}
	return size
}

func find(x int) int {
	if p[x] != x {
		p[x] = find(p[x])
	}
	return p[x]
}

...