Given an integer array nums
, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7]
is a subsequence of the array [0,3,1,6,2,2,7]
.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18] Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3] Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7] Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up:
- Could you come up with the
O(n2)
solution? - Could you improve it to
O(n log(n))
time complexity?
Dynamic programming.
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
n = len(nums)
dp = [1] * n
for i in range(1, n):
for j in range(i):
if nums[j] < nums[i]:
dp[i] = max(dp[i], dp[j] + 1)
return max(dp)
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
int res = 1;
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
res = Math.max(res, dp[i]);
}
return res;
}
}
function lengthOfLIS(nums: number[]): number {
let n = nums.length;
let dp = new Array(n).fill(1);
for (let i = 0; i < n; i++) {
for (let j = 0; j < i; j++) {
if (nums[j] < nums[i]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
return Math.max(...dp);
};
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n, 1);
for (int i = 1; i < n; ++i)
{
for (int j = 0; j < i; ++j)
{
if (nums[j] < nums[i]) dp[i] = max(dp[i], dp[j] + 1);
}
}
return *max_element(dp.begin(), dp.end());
}
};
func lengthOfLIS(nums []int) int {
n := len(nums)
dp := make([]int, n)
dp[0] = 1
res := 1
for i := 1; i < n; i++ {
dp[i] = 1
for j := 0; j < i; j++ {
if nums[j] < nums[i] {
dp[i] = max(dp[i], dp[j]+1)
}
}
res = max(res, dp[i])
}
return res
}
func max(a, b int) int {
if a > b {
return a
}
return b
}