-
Notifications
You must be signed in to change notification settings - Fork 4
/
simulation_functions.py
552 lines (477 loc) · 23.9 KB
/
simulation_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
######################################################
# Various functions for LMA simulations
#
# The black_box function is the main driver function
#
# Contact:
#
#
# This model and its results have been submitted to the Journal of Geophysical Research.
# Please cite:
# V. C. Chmielewski and E. C. Bruning (2016), Lightning Mapping Array flash detection
# performance with variable receiver thresholds, J. Geophys. Res. Atmos., 121, 8600-8614,
# doi:10.1002/2016JD025159
#
# If any results from this model are presented.
######################################################
import numpy as np
from scipy.linalg import lstsq
from scipy.optimize import leastsq
from coordinateSystems import GeographicSystem
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
def travel_time(X, X_ctr, c, t0=0.0, get_r=False):
""" Units are meters, seconds.
X is a (N,3) vector of source locations, and X_ctr is (N,3) receiver
locations.
t0 may be used to specify a fixed amount of additonal time to be
added to the travel time.
If get_r is True, return the travel time *and* calculated range.
Otherwise
just return the travel time.
"""
ranges = (np.sum((X[:, np.newaxis] - X_ctr)**2, axis=2)**0.5).T
time = t0+ranges/c
if get_r == True:
return time, ranges
if get_r == False:
return time
def received_power(power_emit, r, wavelength=4.762, recv_gain=1.0):
""" Calculate the free space loss. Defaults are for no receive gain and
a 63 MHz wave.
Units: watts, meters
"""
four_pi_r = 4.0 * np.pi * r
free_space_loss = (wavelength*wavelength) / (four_pi_r * four_pi_r)
return recv_gain * power_emit * free_space_loss
def precalc_station_terms(stations_ECEF):
""" Given a (N_stn, 3) array of station locations,
return dxvec and drsq which are (N, N, 3) and (N, N),
respectively, where the first dimension is the solution
for a different master station
"""
dxvec = stations_ECEF-stations_ECEF[:, np.newaxis]
r1 = (np.sum(stations_ECEF**2, axis=1))
drsq = r1-r1[:, np.newaxis]
return dxvec, drsq
def linear_first_guess(t_i, dxvec, drsq, c=3.0e8):
""" Given a vector of (N_stn) arrival times,
calcluate a first-guess solution for the source location.
Return f=(x, y, z, t), the source retrieval locations.
"""
g = 0.5*(drsq - (c**2)*(t_i**2))
K = np.vstack((dxvec.T, -c*t_i)).T
f, residuals, rank, singular = lstsq(K, g)
return f
def predict(p, stations_ECEF2, c=3.0e8):
""" Predict arrival times for a particular fit of x,y,z,t source
locations. p are the parameters to retrieve
"""
return (p[3] + ((np.sum((p[:3] - stations_ECEF2) *
(p[:3] - stations_ECEF2), axis=1))**0.5)) / c
def residuals(p, t_i, stations_ECEF2):
return t_i - predict(p, stations_ECEF2)
def dfunc(p, t_i, stations_ECEF2, c=3.0e8):
return -np.vstack(((p[:3] - stations_ECEF2).T / (c *
(np.sum((p[:3] - stations_ECEF2) *
(p[:3] - stations_ECEF2), axis=1))**0.5),
np.array([1./c]*np.shape(stations_ECEF2)[0])))
def gen_retrieval_math(i, selection, t_all, t_mins, dxvec, drsq, center_ECEF,
stations_ECEF, dt_rms, min_stations=5,
max_z_guess=25.0e3):
""" t_all is a N_stations x N_points masked array of arrival times at
each station.
t_min is an N-point array of the index of the first unmasked station
to receive a signal
center_ECEF for the altitude check
This streamlines the generator function, which emits a stream of
nonlinear least-squares solutions.
"""
m = t_mins[i]
stations_ECEF2=stations_ECEF[selection]
# Make a linear first guess
p0 = linear_first_guess(np.array(t_all[:,i][selection]-t_all[m,i]),
dxvec[m][selection],
drsq[m][selection])
t_i =t_all[:,i][selection]-t_all[m,i]
# Checking altitude in lat/lon/alt from local coordinates
latlon = np.array(GeographicSystem().fromECEF(p0[0], p0[1],p0[2]))
if (latlon[2]<0) | (latlon[2]>25000):
latlon[2] = 7000
new = GeographicSystem().toECEF(latlon[0], latlon[1], latlon[2])
p0[:3]=np.array(new)
plsq = np.array([np.nan]*5)
plsq[:4], cov, infodict, mesg,ier = leastsq(residuals, p0,
args=(t_i, stations_ECEF2),
Dfun=dfunc,col_deriv=1,full_output=True)
plsq[4] = np.sum(infodict['fvec']*infodict['fvec'])/(
dt_rms*dt_rms*(float(np.shape(stations_ECEF2)[0]-4)))
return plsq
def gen_retrieval(t_all, t_mins, dxvec, drsq, center_ECEF, stations_ECEF,
dt_rms, min_stations=5, max_z_guess=25.0e3):
""" t_all is a N_stations x N_points masked array of arrival times at
each station.
t_min is an N-point array of the index of the first unmasked station
to receive a signal
center_ECEF for the altitude check
This is a generator function, which emits a stream of nonlinear
least-squares solutions.
"""
for i in range(t_all.shape[1]):
selection=~np.ma.getmaskarray(t_all[:,i])
if np.all(selection == True):
selection = np.array([True]*len(t_all[:,i]))
yield gen_retrieval_math(i, selection, t_all, t_mins, dxvec, drsq,
center_ECEF, stations_ECEF, dt_rms,
min_stations, max_z_guess=25.0e3)
elif np.sum(selection)>=min_stations:
yield gen_retrieval_math(i, selection, t_all, t_mins, dxvec, drsq,
center_ECEF, stations_ECEF, dt_rms,
min_stations, max_z_guess=25.0e3)
else:
yield np.array([np.nan]*5)
def gen_retrieval_full(t_all, t_mins, dxvec, drsq, center_ECEF, stations_ECEF,
dt_rms, c0, min_stations=5, max_z_guess=25.0e3):
""" t_all is a N_stations x N_points masked array of arrival times at
each station.
t_min is an N-point array of the index of the first unmasked station
to receive a signal
center_ECEF for the altitude check
This is a generator function, which emits a stream of nonlinear
least-squares solutions.
Timing comes out of least-squares function as t*c from the initial
station
"""
for i in range(t_all.shape[1]):
selection=~np.ma.getmaskarray(t_all[:,i])
plsq = np.array([np.nan]*7)
if np.all(selection == True):
selection = np.array([True]*len(t_all[:,i]))
plsq[:5] = gen_retrieval_math(i, selection, t_all, t_mins, dxvec,
drsq, center_ECEF, stations_ECEF, dt_rms,
min_stations, max_z_guess=25.0e3)
plsq[5] = plsq[3]/c0 + t_all[t_mins[i],i]
plsq[6] = np.shape(stations_ECEF[selection])[0]
yield plsq
elif np.sum(selection)>=min_stations:
plsq[:5] = gen_retrieval_math(i, selection, t_all, t_mins, dxvec,
drsq, center_ECEF, stations_ECEF, dt_rms,
min_stations, max_z_guess=25.0e3)
plsq[5] = plsq[3]/c0 + t_all[t_mins[i],i]
plsq[6] = np.shape(stations_ECEF[selection])[0]
yield plsq
else:
plsq[6] = np.shape(stations_ECEF[selection])[0]
yield plsq
def array_from_generator2(generator, rows):
"""Creates a numpy array from a specified number
of values from the generator provided."""
data = []
for row in range(rows):
try:
data.append(next(generator))
except StopIteration:
break
return np.array(data)
def black_box(x,y,z,n,
stations_local,ordered_threshs,stations_ecef,center_ecef,
tanps,
c0,dt_rms,tanp,projl,chi2_filter,min_stations=5,just_rms=False):
""" This funtion incorporates most of the Monte Carlo functions and calls
into one big block of code.
x,y,z are the source location in the local tangent plane (m)
n is the number of iterations
stations_local is the the (N-stations, 3) array of station locations
in the local tangent plane
ordered_threshs is the N-station array of thresholds in the same order
as the station arrays (in dBm).
stations_ecef is (N,3) array in ECEF coordinates
center_ecef is just the center location of the network, just easier
to pass into the fuction separately to save some calculation
c0 is th speed of light
dt_rms is the standard deviation of the timing error (Gaussian, in s)
tanp is the tangent plane object
projl is the map projection object
chi2_filter is the maximum allowed reduced chi2 filter for the
calculation (use at most 5)
min_stations is the minimum number of stations required to receive
a source. This must be at least 5, can be higher to filter out more
poor solutions
If just_rms is True then only the rms error will be returned in a
(x,y,z) array.
If false then mean error (r,z,theta), standard deviation (r,z,theta)
both in units of (m,m,degrees)
and the number of bad/missed solutions will be returned.
"""
points = np.array([np.zeros(n)+x, np.zeros(n)+y, np.zeros(n)+z]).T
powers = np.empty(n)
# # For the old 1/p distribution:
# powers = np.random.power(2, size=len(points[:,0]))**-2
# # For high powered sources (all stations contributing):
# powers[:] = 10000
# For the theoretical distribution:
for i in range(len(powers)):
powers[i] = np.max(1./np.random.uniform(0,1000,2000))
# Calculate distance and power retrieved at each station and mask
# the stations which have higher thresholds than the retrieved power
points_f_ecef = (tanp.fromLocal(points.T)).T
dt, ran = travel_time(points, stations_local, c0, get_r=True)
pwr = received_power(powers, ran)
masking = 10.*np.log10(pwr/1e-3) < ordered_threshs[:,np.newaxis]
masking2 = np.empty_like(masking)
for i in range(len(stations_ecef[:,0])):
masking2[i] = tanps[i].toLocal(points_f_ecef.T)[2]<0
masking = masking | masking2
pwr = np.ma.masked_where(masking, pwr)
dt = np.ma.masked_where(masking, dt)
ran = np.ma.masked_where(masking, ran)
# Add error to the retreived times
dt_e = dt + np.random.normal(scale=dt_rms, size=np.shape(dt))
dt_mins = np.argmin(dt_e, axis=0)
# Precalculate some terms in ecef (fastest calculation)
points_f_ecef = (tanp.fromLocal(points.T)).T
full_dxvec, full_drsq = precalc_station_terms(stations_ecef)
# Run the retrieved locations calculation
# gen_retrieval returns a tuple of four positions, x,y,z,t.
dtype=[('x', float), ('y', float), ('z', float), ('t', float),
('chi2', float)]
# Prime the generator function - pauses at the first yield statement.
point_gen = gen_retrieval(dt_e, dt_mins, full_dxvec, full_drsq,
center_ecef, stations_ecef, dt_rms,
min_stations)
# Suck up the values produced by the generator, produce named array.
# retrieved_locations = np.fromiter(point_gen, dtype=dtype)
# retrieved_locations = np.array([(a,b,c,e) for (a,b,c,d,e) in
# retrieved_locations])
retrieved_locations = array_from_generator2(point_gen,rows=n)
retrieved_locations = retrieved_locations[:,[0,1,2,-1]]
chi2 = retrieved_locations[:,3]
retrieved_locations = retrieved_locations[:,:3]
retrieved_locations = np.ma.masked_invalid(retrieved_locations)
if just_rms == False:
# Converts to projection
# soluts = tanp.toLocal(retrieved_locations.T)
# good = soluts[2] > 0
proj_soluts = projl.fromECEF(retrieved_locations[:,0],
retrieved_locations[:,1],
retrieved_locations[:,2])
good = proj_soluts[2] > 0
proj_soluts = (proj_soluts[0][good],proj_soluts[1][good],
proj_soluts[2][good])
proj_points = projl.fromECEF(points_f_ecef[good,0],
points_f_ecef[good,1],
points_f_ecef[good,2])
proj_soluts = np.ma.masked_invalid(proj_soluts)
# Converts to cylindrical coordinates since most errors
# are in r and z, not theta
proj_points_cyl = np.array([(proj_points[0]**2+proj_points[1]**2)**0.5,
np.degrees(np.arctan(proj_points[0]/proj_points[1])),
proj_points[2]])
proj_soluts_cyl = np.ma.masked_array([(proj_soluts[1]**2+proj_soluts[0]**2)**0.5,
np.degrees(np.arctan(proj_soluts[0]/proj_soluts[1])),
proj_soluts[2]])
difs = proj_soluts_cyl - proj_points_cyl
difs[1][difs[1]>150]=difs[1][difs[1]>150]-180
difs[1][difs[1]<-150]=difs[1][difs[1]<-150]+180
return np.mean(difs.T[chi2[good]<chi2_filter].T, axis=1
), np.std(difs.T[chi2[good]<chi2_filter].T, axis=1
), np.ma.count_masked(difs[0])+np.sum(chi2[good]>=chi2_filter
)+np.sum(~good)
else:
#Convert back to local tangent plane
soluts = tanp.toLocal(retrieved_locations.T)
proj_soluts = projl.fromECEF(retrieved_locations[:,0],
retrieved_locations[:,1],
retrieved_locations[:,2])
good = proj_soluts[2] > 0
# good = soluts[2] > 0
difs = soluts[:,good] - points[good].T
return np.mean((difs.T[chi2[good]<chi2_filter].T)**2, axis=1)**0.5
def black_box_full(x,y,z,n,
stations_local,ordered_threshs,stations_ecef,center_ecef,
c0,dt_rms,tanp,projl,chi2_filter,min_stations=5):
""" This funtion incorporates most of the Monte Carlo functions and calls
into one big block of code with other non-standard output. Otherwise
performs the same basic fuctions as black_box.
x,y,z are the source location in the local tangent plane (m)
n is the number of iterations
stations_local is the (N-stations, 3) array of station locations
in the local tangent plane
ordered_threshs is the N-station array of thresholds in the same order
as the station arrays (in dBm).
stations_ecef is (N,3) array in ECEF coordinates
center_ecef is just the center location of the network, just easier
to pass into the fuction separately to save some calculation
c0 is th speed of light
dt_rms is the standard deviation of the timing error (Gaussian, in s)
tanp is the tangent plane object
projl is the map projection object
chi2_filter is the maximum allowed reduced chi2 filter for the
calculation (use at most 5)
min_stations is the minimum number of stations required to receive
a source. This must be at least 5, can be higher to filter out more
poor solutions
If just_rms is True then only the rms error will be returned in a
(x,y,z) array (in m).
If false then mean error (r,z,theta), standard deviation (r,z,theta)
both in units of (m,m,degrees) and the number of bad/missed solutions
will be returned.
"""
# Creates an array of poins at x,y,z of n elements
points = np.array([np.zeros(n)+x, np.zeros(n)+y, np.zeros(n)+z]).T
powers = np.empty(n)
for i in range(len(powers)):
powers[i] = np.max(1./np.random.uniform(0,1000,2000))
# Calculates distance and powers retrieved at each station to threshold
dt, ran = travel_time(points, stations_local, c0, get_r=True)
pwr = received_power(powers, ran)
masking = 10.*np.log10(pwr/1e-3) < ordered_threshs[:,np.newaxis]
pwr = np.ma.masked_where(masking, pwr)
dt = np.ma.masked_where(masking, dt)
ran = np.ma.masked_where(masking, ran)
# Adds error to the retreived times
dt_e = dt + np.random.normal(scale=dt_rms, size=np.shape(dt))
dt_mins = np.argmin(dt_e, axis=0)
# Precalculate some terms
points_f_ecef = (tanp.fromLocal(points.T)).T
full_dxvec, full_drsq = precalc_station_terms(stations_ecef)
# Run the retrieved locations calculation
# gen_retrieval returns a tuple of four positions, x,y,z,t.
dtype=[('x', float), ('y', float), ('z', float),
('t', float), ('chi2', float), ('terror',float),
('stations', float)]
# Prime the generator function - it pauses at the first yield statement.
point_gen = gen_retrieval_full(dt_e, dt_mins, full_dxvec, full_drsq,
center_ecef, stations_ecef, dt_rms,
min_stations)
# Suck up all the values produced by the generator, produce named array.
# retrieved_locations = np.fromiter(point_gen, dtype=dtype)
# retrieved_locations = np.array([(a,b,c,e,f,g) for (a,b,c,d,e,f,g) in
# retrieved_locations])
retrieved_locations = array_from_generator2(point_gen,rows=n)
retrieved_locations = retrieved_locations[:,[0,1,2,4,5,6]]
station_count = retrieved_locations[:,5]
terror = retrieved_locations[:,4]
chi2 = retrieved_locations[:,3]
retrieved_locations = retrieved_locations[:,:3]
retrieved_locations = np.ma.masked_invalid(retrieved_locations)
# Converts to projection
soluts = tanp.toLocal(retrieved_locations.T)
good = soluts[2] > 0
station_count[~good] = np.nan
# proj_points = projl.fromECEF(points_f_ecef[good,0],
# points_f_ecef[good,1],
# points_f_ecef[good,2])
# proj_soluts = projl.fromECEF(retrieved_locations[good,0],
# retrieved_locations[good,1],
# retrieved_locations[good,2])
# proj_soluts = np.ma.masked_invalid(proj_soluts)
# ranges = (np.sum((retrieved_locations[good,:3][:,np.newaxis] -
# stations_ecef)**2, axis=2)**0.5).T
# cal_pwr = (np.mean(pwr*(4*np.pi*ranges/4.762)**2, axis=0))
# return proj_points, proj_soluts, chi2[good], terror[good], station_count[good]
# return powers[good], cal_pwr, pwr[0][good]
# return station_count
def curvature_matrix(points,stations_local,ordered_threshs,c0,power,
timing_error,min_stations=5):
""" Calculates the curvature matrix error solutions given stations and
grid points of sources. Returns array of (x,y,z,ct) errors (in m)
points is the n by 3 array of source points in x,y,z local tangent
plane coordinates (m)
stations_local is the (N-stations, 3) array of station locations
in the local tangent plane.
ordered_threshs is the N-station array of thresholds in the same order
as the station arrays (in dBm).
c0 is the speed of light
power is the source power for all of the points in Watts
timing_error is the Gaussian standard deviation of timing errors of
the stations in seconds
"""
# Find received powers to find which stations contibute for each source
dist = np.sum((points - stations_local)**2,axis=1)**0.5
test_power = received_power(power,dist)
masking = 10.*np.log10(test_power/1e-3) < ordered_threshs
# Precalculate some terms to simplify the calculations for each term
ut1 = -dist[~masking]
ut2 = stations_local[~masking] - points
dist_term = dist[~masking]*dist[~masking]
# Find each term of the curvature matrix
if np.sum(~masking)>=min_stations:
curvature_matrix = np.empty((4,4))
curvature_matrix[0,0] = np.sum((ut2[:,1]**2 + ut2[:,2]**2)*
dist_term**(-3./2.)*ut1+1)
curvature_matrix[1,1] = np.sum((ut2[:,2]**2 + ut2[:,0]**2)*
dist_term**(-3./2.)*ut1+1)
curvature_matrix[2,2] = np.sum((ut2[:,1]**2 + ut2[:,0]**2)*
dist_term**(-3./2.)*ut1+1)
curvature_matrix[3,3] = np.sum(~masking)
curvature_matrix[0,1] = np.sum(-ut1*ut2[:,0]*ut2[:,1]*
dist_term**(-3./2.))
curvature_matrix[0,2] = np.sum(-ut1*ut2[:,0]*ut2[:,2]*
dist_term**(-3./2.))
curvature_matrix[1,2] = np.sum(-ut1*ut2[:,1]*ut2[:,2]*
dist_term**(-3./2.))
curvature_matrix[3,0] = np.sum(-ut2[:,0]*dist_term**(-1./2.))
curvature_matrix[3,2] = np.sum(-ut2[:,2]*dist_term**(-1./2.))
curvature_matrix[3,1] = np.sum(-ut2[:,1]*dist_term**(-1./2.))
curvature_matrix[1,0] = curvature_matrix[0,1]
curvature_matrix[2,0] = curvature_matrix[0,2]
curvature_matrix[2,1] = curvature_matrix[1,2]
curvature_matrix[0,3] = curvature_matrix[3,0]
curvature_matrix[2,3] = curvature_matrix[3,2]
curvature_matrix[1,3] = curvature_matrix[3,1]
# Find the error terms from the matrix solution
errors = (np.linalg.inv(curvature_matrix/
(c0*c0*timing_error*timing_error)))**0.5
return np.array([errors[0,0],errors[1,1],errors[2,2],errors[3,3]])
else: return np.array([np.nan,np.nan,np.nan,np.nan])
def mapped_plot(plot_this,from_this,to_this,with_this,dont_forget,
xmin,xmax,xint,ymin,ymax,yint,location):
"""Make plots in map projection with km color scales, requires input
array, lower color scale limit, higher color scale limit, color scale,
station location overlay, and array x-,y- min, max and interval, the
location of the array center (in lat and lon). Output plot also
contains 100, 200 km range rings
"""
domain = (xmax-xint/2.)
maps = Basemap(projection='laea',lat_0=location[0],lon_0=location[1],
width=domain*2,height=domain*2)
s = plt.pcolormesh(np.arange(xmin-xint/2.,xmax+3*xint/2.,xint)+domain,
np.arange(ymin-yint/2.,ymax+3*yint/2.,yint)+domain,
plot_this, cmap = with_this)
s.set_clim(vmin=from_this,vmax=to_this)
plt.colorbar()
plt.scatter(dont_forget[:,0]+domain, dont_forget[:,1]+domain, color='k')
maps.drawstates()
circle=plt.Circle((domain,domain),100000,color='k',fill=False)
fig = plt.gcf()
fig.gca().add_artist(circle)
circle=plt.Circle((domain,domain),200000,color='k',fill=False)
fig = plt.gcf()
fig.gca().add_artist(circle)
def nice_plot(data,xmin,xmax,xint,centerlat,centerlon,stations,color,cmin,
cmax,levels_t):
"""Make plots in map projection, requires input array, x-min max and
interval (also used for y), center of data in lat, lon, station
locations, color scale, min and max limits and levels array for color
scale.
"""
domain = xmax-xint/2.
maps = Basemap(projection='laea',lat_0=centerlat,lon_0=centerlon,
width=domain*2,height=domain*2)
s = plt.pcolormesh(np.arange(xmin-xint/2.,xmax+3*xint/2.,xint)+domain,
np.arange(xmin-xint/2.,xmax+3*xint/2.,xint)+domain,
data, cmap = color)
s.set_clim(vmin=cmin,vmax=cmax)
CS = plt.contour(np.arange(xmin,xmax+xint,xint)+domain,
np.arange(xmin,xmax+xint,xint)+domain,
data, colors='k',levels=levels_t)
plt.clabel(CS, inline=1, fmt='%1.2f',fontsize=8)
plt.scatter(stations[:,0]+domain, stations[:,1]+domain, color='k',s=2)
maps.drawstates()
fig = plt.gcf()
circle=plt.Circle((domain,domain),100000,color='0.5',fill=False)
fig.gca().add_artist(circle)
circle=plt.Circle((domain,domain),200000,color='0.5',fill=False)
fig.gca().add_artist(circle)