-
Notifications
You must be signed in to change notification settings - Fork 7
/
sid_main.m
674 lines (597 loc) · 26.4 KB
/
sid_main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
function exit_code = sid_main(config_in)
%% SID main function.
% See github wiki for documentation. See sid_config_manage.m for summary of parameters and defaults.
% config_in has to be struct with fields according to sid_config_manage.m,
% in the future it will also be possible to use varargin arguments instead, as well as correct parsing of system command line arguments
%% Verify input config and set defaults
[valid_config, Input] = sid_config_manage(config_in);
if ~valid_config
exit_code = -1;
return;
end
%% Create output folder
mkdir(Input.outdir);
%% Cache and open PSF
if ~strcmp(Input.psf_cache_dir, '')
[~, rand_string] = fileparts(tempname());
Input.psf_cache_dir_unique = fullfile(Input.psf_cache_dir, ['sid_nnmf_recon_psf_' rand_string]);
disp(['Creating tmp dir for psf caching: ' Input.psf_cache_dir_unique]);
mkdir(Input.psf_cache_dir_unique);
disp('Copying psf file to tmp dir for caching...');
copyfile(Input.psffile, Input.psf_cache_dir_unique);
[~, psf_fname, psf_ext] = fileparts(Input.psffile);
Input.psffile_in = Input.psffile;
Input.psffile = fullfile(Input.psf_cache_dir_unique, [psf_fname psf_ext]);
clear psf_fname;
end
psf_ballistic = matfile(Input.psffile);
if ~isfield(Input.segmentation, 'bottom_cutoff') || isempty(Input.segmentation.bottom_cutoff)
Input.segmentation.bottom_cutoff = size(psf_ballistic.H,5);
end
%% Prepare cluster object
pctconfig('portrange', [27400 27500] + randi(100)*100);
cluster = parcluster('local');
if ~isfield(Input, 'job_storage_location')
Input.job_storage_location = tempdir();
end
[~, rand_string] = fileparts(tempname());
Input.job_storage_location_unique = fullfile(Input.job_storage_location, ['nnmf_sid_' rand_string]);
if ~exist(Input.job_storage_location_unique, 'dir')
mkdir(Input.job_storage_location_unique);
end
cluster.JobStorageLocation = Input.job_storage_location_unique;
disp(cluster);
delete(gcp('nocreate'));
%% Load mask image
if isfield(Input, 'mask_file') && ~isempty(Input.mask_file)
Input.mask = logical(imread(Input.mask_file));
figure; imagesc(double(Input.mask), [0 1]); axis image; title('Mask image'); colorbar;
print(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_mask.pdf']), '-dpdf', '-r300');
else
Input.mask = true;
end
%% load sensor movie
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Loading LFM movie']);
if ~isempty(Input.gpu_ids')
gpu_device = gpuDevice(Input.gpu_ids(1));
end
tic;
[sensor_movie, SID_output.movie_size] = read_sensor_movie(Input.indir, Input.x_offset, Input.y_offset, Input.dx, psf_ballistic.Nnum, Input.rectify, Input.frames, Input.mask, Input.crop_border_microlenses, gpu_device);
toc
%% Fit trend
tic
if Input.detrend
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Detrending LFM movie']);
SID_output.baseline_raw = squeeze(mean(sensor_movie,1))';
if Input.delta <= 0
smooth_window_span = numel(SID_output.baseline_raw) / max(1, abs(Input.delta));
else
smooth_window_span = 2 * Input.delta / Input.frames.step;
end
SID_output.baseline = smooth(SID_output.baseline_raw, smooth_window_span, 'sgolay', 3);
figure; hold on; plot(SID_output.baseline_raw); plot(SID_output.baseline); title('Frame means (post bg subtract), raw + trend fit'); hold off;
print(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_trend_fit.pdf']), '-dpdf', '-r300');
end
%% De-trend and normalize
if Input.detrend
sensor_movie = sensor_movie./SID_output.baseline';
%TODO: check if trend fit worked, i.e. residuals are mostly gaussian
end
sensor_movie_max = max(sensor_movie(:));
sensor_movie = sensor_movie/sensor_movie_max;
toc
%% Compute background and std-image
if Input.bg_sub
[SID_output.bg_spatial,SID_output.bg_temporal]=rank_1_factorization(sensor_movie,Input.bg_iter);
else
SID_output.bg_spatial = zeros(size(sensor_movie,1),1);
SID_output.bg_temporal = zeros(1,size(sensor_movie,2));
end
SID_output.std_image=compute_std_image(sensor_movie,SID_output.bg_spatial,SID_output.bg_temporal);
SID_output.bg_spatial = reshape(SID_output.bg_spatial,SID_output.movie_size(1:2));
SID_output.std_image = reshape(SID_output.std_image,SID_output.movie_size(1:2));
figure; imagesc(SID_output.bg_spatial); axis image; colorbar; title('Spatial background');
print(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_bg_spatial.png']), '-dpng', '-r300');
figure; plot(SID_output.bg_temporal); title('Temporal background');
print(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_bg_temporal.png']), '-dpng', '-r300');
figure; imagesc(SID_output.std_image, [prctile(SID_output.std_image(:), 0) prctile(SID_output.std_image(:), 100.0)]); title('Stddev image'); axis image; axis ij; colorbar;
print(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_stddev_img.png']), '-dpng', '-r600');
%% Find cropping mask, leaving out areas with stddev as in background-only area
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Finding crop space']);
if ~isfield(Input,'crop_params') || isempty(Input.crop_params)
disp('Find appropriate crop_params!')
Input.crop_params = [0.2 0.6];
flag1 = false;
flag2 = false;
flag = false;
else
flag1 = true;
flag2 = true;
flag = true;
end
while max(~flag1,max(~flag2,flag))
if Input.bg_sub
img = SID_output.bg_spatial;
else
img = SID_output.std_image;
end
bg = img/max(img(:));
Nnum = psf_ballistic.Nnum;
SID_output.microlenses=img;
for ix=1:size(SID_output.std_image,1)/Nnum
for iy=1:size(SID_output.std_image,2)/Nnum
SID_output.microlenses((ix-1)*Nnum+1:ix*Nnum, (iy-1)*Nnum+1:iy*Nnum) = ...
SID_output.microlenses((ix-1)*Nnum+1:ix*Nnum, (iy-1)*Nnum+1:iy*Nnum) / norm(reshape(SID_output.microlenses((ix-1)*Nnum+1:ix*Nnum,(iy-1)*Nnum+1:iy*Nnum),1,[]));
end
end
Inside = bg;
h = fspecial('average', 3*psf_ballistic.Nnum);
Inside=conv2(Inside,h,'same');
Inside=max(Inside-quantile(Inside(:),Input.crop_params(1)),0);
Inside=conv2(single(Inside>0),h,'same');
SID_output.microlenses=Inside.*SID_output.microlenses;
SID_output.microlenses=max(SID_output.microlenses-quantile(SID_output.microlenses(:),Input.crop_params(2)),0);
if ~flag1
figure(); imagesc(Inside); axis image; colorbar; title('Active pixels');
drawnow expose
flag1 = input('Does the figure entitled "Active pixels" give a good representation of the activity in the standard-deviation image (previous figure)? (yes=1,no=0)');
if ~flag1
disp(['The current value of Input.crop_params(1) is: ' num2str(Input.crop_params(1))]);
Input.crop_params(1) = input('Enter new Value for Input.crop_params(1): ');
end
end
if ~flag2
figure(); imagesc(SID_output.microlenses); axis image; colorbar; title('Microlenses');
drawnow expose
flag2 = input('Does the figure entitled "Microlenses" give a good representation of the microlens pattern? (yes=1,no=0)');
if ~flag2
disp(['The current value of Input.crop_params(2) is: ' num2str(Input.crop_params(2))]);
Input.crop_params(2) = input('Enter new Value for Input.crop_params(2): ');
end
end
flag = false;
end
if Input.do_crop
if ~isfield(Input,'crop_mask') || all(Input.crop_mask(:)) == true
Input.crop_mask=Inside;
SID_output.crop_mask=Inside;
end
[sensor_movie, SID_output] = crop(sensor_movie, SID_output,Inside,Input.crop_mask,Nnum);
else
Inside = SID_output.std_image * 0 + 1;
SID_output.idx=find(Inside>0);
end
timestr = datestr(now, 'YYmmddTHHMM');
figure;
hold on;
imagesc(Inside);
contour(Inside, [1e-10 1e-10], 'w');
axis ij;
colorbar();
axis image;
title('Crop mask');
hold off;
print(fullfile(Input.outdir, [timestr '_crop_mask.png']), '-dpng', '-r300');
%% NNMF
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': Generating rank-' num2str(Input.nnmf_opts.rank) '-factorization']);
movie_clip_quantile = 0.8;
opts = Input.nnmf_opts;
if opts.xval_enable % assemble sub-struct needed for cross-validation in xval.m
opts.xval.num_part = opts.xval_numpart;
opts.xval.xval_param = opts.xval_xval_param;
opts.xval.std_image = SID_output.std_image;
elseif isfield(opts, 'xval')
opts = rmfield(opts, 'xval');
end
opts.active = SID_output.microlenses > 0;
opts.use_std = Input.use_std;
opts.diagnostic = true; opts.display = true;
low_clip_val = quantile(reshape(gather(sensor_movie(SID_output.microlenses==0, 1:10:end)),1,[]), movie_clip_quantile);
[SID_output.S, SID_output.T] = fast_NMF(...
max(sensor_movie - low_clip_val, 0), ...
opts);
SID_output.S = SID_output.S(:, ~isoutlier(sum(SID_output.S,1), 'ThresholdFactor', 10));
if ~Input.optimize_kernel && ~isfield(Input.recon_opts,'ker_shape')
SID_output.S = [SID_output.S SID_output.std_image(:)]';
else
SID_output.S = SID_output.S';
end
%% Plot NNMF results
close all;
timestr = datestr(now, 'YYmmddTHHMM');
for i=1:size(SID_output.S, 1)
figure( 'Position', [100 100 800 800]);%,'visible',false);
subplot(4,1,[1,2,3]);
imagesc(reshape(SID_output.S(i,:), size(SID_output.std_image)));
axis image; colormap('parula'); colorbar;
title(['NMF component ' num2str(i)]);
subplot(4,1,4);
plot(SID_output.T(i,:));
print(fullfile(Input.outdir, [timestr '_nnmf_component_' num2str(i, '%03d') '.png']), '-dpng', '-r600');
end
%close all;
%% Save checkpoint
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': Saving pre-nmf-recon checkpoint']);
save(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_checkpoint_pre-nmf-recon.mat']), 'Input', 'SID_output');
%% reconstruct spatial filters
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Reconstructing spatial filters']);
opts = Input.recon_opts;
opts.gpu_ids = Input.gpu_ids;
opts.microlenses = SID_output.microlenses;
SID_output.S = reshape(SID_output.S, [size(SID_output.S,1) SID_output.movie_size(1:2)]);
if Input.optimize_kernel
if isfield(opts,'ker_param')
opts=rmfield(opts,'ker_param');
end
kernel=0;
while max(kernel(:))==0
test_recon = reconstruct_S(...
SID_output.S(ceil(rand(1) * size(SID_output.S,1)), :,:), ...
psf_ballistic, opts);
[kernel, SID_output.neur_rad] = find_kernel(...
test_recon{1}, [1 1 4],...
Input.neur_rad, Input.native_focal_plane, ...
Input.axial, Input.gpu_ids(1));
end
opts.ker_shape = 'user';
opts.ker_param = kernel;
else
% no kernel optimization
SID_output.neur_rad = Input.neur_rad;
end
SID_output.recon = reconstruct_S(SID_output.S, psf_ballistic, opts);
SID_output.recon_opts = opts;
clear opts
%% Crop reconstructed image with eroded mask, to reduce border artefacts
if numel(Input.mask) > 1 && any(Input.mask ~= 0)
mask_dilated = imerode(Input.mask, strel('disk', 25));
mask_dilated = logical(ImageRect(double(mask_dilated), Input.x_offset, Input.y_offset, Input.dx, psf_ballistic.Nnum, ...
true, Input.crop_border_microlenses(3), Input.crop_border_microlenses(4), Input.crop_border_microlenses(1), Input.crop_border_microlenses(2)));
for i = 1:length(SID_output.recon)
SID_output.recon{i} = SID_output.recon{i} .* mask_dilated;
end
end
%% Plot reconstructed spatial filters
timestr = datestr(now, 'YYmmddTHHMM');
for i = 1:size(SID_output.S, 1)
figure('Position', [50 50 1200 600]);
subplot(1, 4, 1:3);
hold on;
imagesc(squeeze(max(SID_output.recon{i}, [], 3)));
axis image;
axis ij;
colorbar;
hold off;
subplot(1,4,4)
imagesc(squeeze(max(SID_output.recon{i}, [], 2)));
axis ij;
colorbar;
print(fullfile(Input.outdir, [timestr '_nnmf_component_recon_' num2str(i, '%03d') '.png']), '-dpng', '-r600');
end
pause(2);
close all;
%% Save checkpoint
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': Saving post-nmf-recon checkpoint']);
save(fullfile(Input.outdir, [datestr(now, 'YYmmddTHHMM') '_checkpoint_post-nmf-recon.mat']), 'Input', 'SID_output','-v7.3');
%% filter reconstructed spatial filters
opts.border = [1,1,15];
opts.gpu_ids = Input.gpu_ids;
opts.axial = Input.axial;
if Input.optimize_kernel
opts.neur_rad = 6;
else
opts.neur_rad = Input.neur_rad;
end
opts.native_focal_plane = Input.native_focal_plane;
if Input.filter
disp('Filtering reconstructed spatial filters');
SID_output.segmm = filter_recon(SID_output.recon, opts);
else
SID_output.segmm = SID_output.recon;
end
%% Segment reconstructed components
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': generate initial brain model'])
dim = [1 1 Input.axial];
SID_output.neuron_centers_ini = [];
SID_output.neuron_centers_per_component = {};
[~,u] = max([size(SID_output.segmm,1),size(SID_output.segmm,2)]);
for ii=1:size(SID_output.segmm,u)
SID_output.neuron_centers_per_component{ii} = segment_component(SID_output.segmm{ii},Input.segmentation.threshold);
num(ii) = size(SID_output.neuron_centers_per_component{ii},1); %#ok<AGROW>
disp(['Component ' num2str(ii) ': Found ' num2str(num(ii)) ' neuron candidates']);
end
ids = isoutlier(num, 'ThresholdFactor', 10);
ids = (num > mean(num)) .* ids;
outlier_ixs = find(ids);
for i = 1 : numel(outlier_ixs)
ii = outlier_ixs(i);
threshold = 0.1;
SID_output.neuron_centers_per_component{ii} = segment_component(SID_output.segmm{ii}, threshold);
num(ii) = size(SID_output.neuron_centers_per_component{ii},1);
disp(['Re-segmenting component with overly many neurons with higher threshold: Component ' num2str(ii) ': Found ' num2str(num(ii)) ' neuron candidates']);
end
% Merge closely spaced neuron candidates from different NNMF components by finding clusters of candidates that have an extent smaller than Input.neuron_rad
[SID_output.neuron_centers_ini, SID_output.neur_id] = iterate_cluster(SID_output.neuron_centers_per_component, Input.cluster_iter, Input.neur_rad, dim);
figure; histogram(SID_output.neuron_centers_ini(:,3), -0.5 : 1 : size(SID_output.recon{1},3) + 0.5);
xlabel('Z plane index');
ylabel('Neuron frequency');
print(fullfile(Input.outdir, [timestr '_segmm_z-hist.png']), '-dpng', '-r300');
if ~isfield(Input.segmentation,'top_cutoff')
disp('Check the axial distribution and remove top/bottom artefacts');
Input.segmentation.top_cutoff = input('Input top cutoff \n');
end
if ~isfield(Input.segmentation,'bottom_cutoff')
Input.segmentation.bottom_cutoff = input('Input bottom cutoff \n');
end
id = logical((SID_output.neuron_centers_ini(:,3) >= Input.segmentation.top_cutoff) .* ...
(SID_output.neuron_centers_ini(:,3) <= Input.segmentation.bottom_cutoff));
SID_output.neuron_centers_ini = SID_output.neuron_centers_ini(id,:);
SID_output.neur_id = SID_output.neur_id(id,:);
%% Plot segmentation result
timestr = datestr(now, 'YYmmddTHHMM');
for i = 1:numel(SID_output.segmm)
figure('Position', [50 50 1200 600]);
colormap parula;
subplot(1, 4, 1:3);
title(['Segmentation result for NNMF component ' num2str(i)]);
hold on;
imagesc(squeeze(max(SID_output.segmm{i}, [], 3)));
scatter(SID_output.neuron_centers_per_component{i}(:,2), SID_output.neuron_centers_per_component{i}(:,1), 'r.');
axis image;
axis ij;
colorbar;
hold off;
subplot(1, 4, 4);
hold on;
imagesc(squeeze(max(SID_output.segmm{i}, [], 2)));
axis ij;
scatter(SID_output.neuron_centers_per_component{i}(:,3), SID_output.neuron_centers_per_component{i}(:,1), 'r.');
xlim([1 size(SID_output.segmm{i}, 3)]);
ylim([1 size(SID_output.segmm{i}, 1)]);
colorbar;
print(fullfile(Input.outdir, [timestr '_segmm_segmentation_' num2str(i, '%03d') '.png']), '-dpng', '-r300');
end
%%
clearvars -except sensor_movie Input SID_output mean_signal psf_ballistic Hsize m sensor_movie_max sensor_movie_min dim;
%% Crop sensor movie
sensor_movie = sensor_movie(SID_output.idx,:);
%% Initiate forward_model
if ~isfield(Input,'use_std_GLL')
Input.use_std_GLL = false;
end
if isempty(Input.gpu_ids)||Input.use_std_GLL
SID_output.forward_model_ini=generate_LFM_library_CPU(SID_output.neuron_centers_ini, psf_ballistic, round(SID_output.neur_rad), dim, size(SID_output.recon{1}));
else
opts = SID_output.recon_opts;
opts.NumWorkers = 10;
opts.image_size = SID_output.movie_size(1:2);
opts.axial = Input.axial;
opts.neur_rad = Input.neur_rad;
SID_output.forward_model_ini = generate_LFM_library_GPU(SID_output.recon, SID_output.neuron_centers_ini, ...
round(SID_output.neur_id), psf_ballistic, opts);
end
%% Generate template
SID_output.template = generate_template(SID_output.neuron_centers_ini, psf_ballistic.H, SID_output.std_image, Input.template_threshold);
%% Remove neuron templates that don't have positive weights inside of to the overall crop region determined further up (based on crop_mask and/or crop_params)
neur = find(squeeze(max(SID_output.forward_model_ini(:, SID_output.idx), [], 2) > 0));
SID_output.forward_model_iterated = SID_output.forward_model_ini(neur, SID_output.idx);
SID_output.neuron_centers_iterated = SID_output.neuron_centers_ini(neur, :);
SID_output.indices_in_orig = neur;
template_ = SID_output.template(neur, SID_output.idx);
Nnum = psf_ballistic.Nnum;
%% Alternating bi-convex search (SID main demixing)
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Start optimizing SID model'])
tic
opts_spat = struct;
opts_spat.lamb_L1 = Input.SID_optimization_args.spatial_lamb_L1;
opts_spat.lamb_L2 = Input.SID_optimization_args.spatial_lamb_L2;
opts_spat.lamb_orth_L1 = Input.SID_optimization_args.spatial_lamb_orth_L1;
opts_temp = struct;
opts_temp.idx = SID_output.idx;
opts.temp.lambda = Input.SID_optimization_args.temporal_lambda;
opts_temp.microlenses = SID_output.microlenses;
opts_temp.use_std = Input.use_std;
opts_spat.use_std = Input.use_std;
opts_spat.bg_sub = Input.bg_sub;
opts_temp.bg_sub = Input.bg_sub;
if ~isempty(Input.gpu_ids')
opts_temp.gpu_id = Input.gpu_ids(1);
end
if isfield(Input, 'bg_sub') && Input.bg_sub % && ~Input.use_std
SID_output.forward_model_iterated(end+1,:) = SID_output.bg_spatial(SID_output.idx);
SID_output.indices_in_orig = [SID_output.indices_in_orig' length(SID_output.indices_in_orig) + 1];
end
sensor_movie = double(sensor_movie);
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Starting temporal update']);
SID_output.forward_model_iterated = (1 ./ sqrt(sum(SID_output.forward_model_iterated .^ 2, 2))) ...
.* SID_output.forward_model_iterated;
SID_output.timeseries_ini = LS_nnls(SID_output.forward_model_iterated(:,SID_output.microlenses(SID_output.idx)>0)', double(sensor_movie(SID_output.microlenses(SID_output.idx)>0,:)), opts_temp);
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Temporal update completed']);
SID_output.timeseries_iterated=SID_output.timeseries_ini;
toc
for iter=1:Input.num_iter
disp([num2str(iter) '. iteration started']);
[SID_output.timeseries_iterated, ...
SID_output.forward_model_iterated, ...
template_, ...
SID_output.indices_in_orig] = spatial_SID_update(sensor_movie, ...
SID_output.timeseries_iterated, ...
SID_output.forward_model_iterated, ...
template_, ...
SID_output.indices_in_orig, ...
opts_spat);
if isfield(Input, 'update_template') && Input.update_template
if iter>=2
for neuron=1:size(template_,1)
cropp=zeros(size(SID_output.std_image));
cropp(SID_output.idx)=template_(neuron,:);
img=reshape(cropp,size(SID_output.std_image));
img=conv2(img,ones(2*Nnum),'same')>0;
img=img(:);
template_(neuron,:)=(img(SID_output.idx)>0.1);
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' num2str(neuron)])
end
end
end
[SID_output.forward_model_iterated, ...
SID_output.timeseries_iterated, template_, ...
SID_output.indices_in_orig] = temporal_SID_update(sensor_movie, ...
SID_output.forward_model_iterated, ...
SID_output.timeseries_iterated, ...
template_, SID_output.indices_in_orig, opts_temp);
[SID_output.forward_model_iterated, ...
SID_output.timeseries_iterated, template_, ...
SID_output.indices_in_orig] = merge_filters(SID_output.forward_model_iterated, ...
SID_output.timeseries_iterated, ...
template_, SID_output.indices_in_orig, opts_temp);
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Iteration ' num2str(iter) ' of ' num2str(Input.num_iter) ' completed']);
end
SID_output.neuron_centers_iterated = SID_output.neuron_centers_ini(SID_output.indices_in_orig(1:end-1), :);
SID_output.template_iterated = template_;
opts_temp.warm_start = [];
clear sensor_movie;
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'SID model optimization completed']);
%% Reconstruct final demixed NSFs
if Input.recon_final_spatial_filters
opts = Input.recon_opts;
opts.gpu_ids = Input.gpu_ids;
forward_model = zeros(size(SID_output.forward_model_iterated,1), length(SID_output.std_image(:)));
forward_model(:,SID_output.idx) = SID_output.forward_model_iterated;
SID_output.recon_NSF = reconstruct_S(forward_model, psf_ballistic, opts);
end
%% Extract time series at location indir
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Extracting timeseries']);
opts_temp.warm_start=[];
opts_temp.outfile = fullfile(Input.outdir, 'timeseries_debug_out.mat');
opts_temp.do_crop = Input.do_crop;
opts_temp.crop = SID_output.crop;
tic
SID_output.timeseries_total = incremental_temporal_update_gpu(SID_output.forward_model_iterated, Input.indir, [], Input.ts_extract_chunk_size, Input.x_offset,Input.y_offset,Input.dx,Nnum,opts_temp);
toc
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Timeseries extraction complete']);
%% Sort by SNR
opts.bg_sub = Input.bg_sub;
n=SNR_order(SID_output.timeseries_total, opts);
SID_output.neuron_centers_iterated = SID_output.neuron_centers_iterated(n(1:end-Input.bg_sub),:);
SID_output.forward_model_iterated = SID_output.forward_model_iterated(n,:);
SID_output.timeseries_iterated = SID_output.timeseries_iterated(n,:);
SID_output.timeseries_total = SID_output.timeseries_total(n,:);
SID_output.indices_in_orig = SID_output.indices_in_orig(n);
%% Save SID_output
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'Saving result'])
SID_output.Input = Input;
save(fullfile(Input.outdir, Input.SID_output_name), 'Input', 'SID_output', '-v7.3');
%% Summary figure: NNMF MIPs, with centers overlaid as red dots
timestr = datestr(now, 'YYmmddTHHMM');
nmf_mip = SID_output.recon{1};
for i=2:numel(SID_output.recon)
nmf_mip = max(nmf_mip, SID_output.recon{i});
end
figure('Position', [50 50 1200 600]);
colormap parula;
subplot(1, 4, 1:3);
hold on;
imagesc(squeeze(max(nmf_mip, [], 3)));
scatter(SID_output.neuron_centers_iterated(:,2), SID_output.neuron_centers_iterated(:,1), 'r.');
hold off;
axis image;
axis ij;
title([Input.SID_output_name ' - NNMF components MIPs, with segmentation centers'], 'Interpreter', 'none');
colorbar;
subplot(1,4,4)
hold on;
imagesc(squeeze(max(nmf_mip, [], 2)));
scatter(SID_output.neuron_centers_iterated(:,3), SID_output.neuron_centers_iterated(:,1), 'r.');
hold off;
axis ij;
xlim([1 size(SID_output.recon{i}, 3)]);
ylim([1 size(SID_output.recon{i}, 1)]);
colorbar;
print(fullfile(Input.outdir, [timestr '_nnmf_components_mip.png']), '-dpng', '-r300');
%% Plot timeseries heatmap, clustered
timestr = datestr(now, 'YYmmddTHHMM');
figure('Position', [50 50 1200 600]);
ts = zscore(SID_output.timeseries_iterated, 0, 2);
clustered_ixs = clusterdata(ts, 'criterion', 'distance', 'distance', 'correlation', 'maxclust', floor(size(ts,1)/10));
tsi = [clustered_ixs ts];
ts = sortrows(tsi);
ts = ts(2:end,:);
limits = [prctile(ts(:), 0.01), prctile(ts(:), 99.9)];
imagesc(ts, limits);
title([Input.SID_output_name ' - timeseries, z-scored, corr-clustered'], 'Interpreter', 'none');
colormap parula;
colorbar;
print(fullfile(Input.outdir, [timestr '_timeseries_zscore.png']), '-dpng', '-r300');
%% Plot timeseries, stacked (random subset if there are more than 100)
ts = zscore(SID_output.timeseries_iterated, 0, 2);
y_shift = 4;
clip = true;
if size(ts,1) > 100
sel = randperm(size(ts,1), 100);
else
sel = 1:size(ts,1);
end
nixs = 1:size(ts,1);
sel_nixs = nixs(sel);
figure('Position', [10 10 2000 2000]);
title([Input.SID_output_name ' - timeseries, z-scored'], 'Interpreter', 'none');
subplot(121);
hold on
for n_ix = 1:floor(numel(sel_nixs)/2)
ax = gca();
ax.ColorOrderIndex = 1;
loop_ts = ts(sel_nixs(n_ix),:);
if clip
loop_ts(loop_ts > 3*y_shift) = y_shift;
loop_ts(loop_ts < -3*y_shift) = -y_shift;
end
t = (0:size(ts,2)-1);
plot(t, squeeze(loop_ts) + y_shift*(n_ix-1));
text(30, y_shift*(n_ix-1), num2str(sel_nixs(n_ix)));
end
xlabel('Frame');
xlim([min(t) max(t)]);
hold off;
axis tight;
set(gca,'LooseInset',get(gca,'TightInset'))
subplot(122);
hold on;
for n_ix = ceil(numel(sel_nixs)/2):numel(sel_nixs)
ax = gca();
ax.ColorOrderIndex = 1;
loop_ts = ts(sel_nixs(n_ix),:);
if clip
loop_ts(loop_ts > y_shift) = y_shift;
loop_ts(loop_ts < -y_shift) = -y_shift;
end
t = (0:size(ts,2)-1);
plot(t, squeeze(loop_ts) + y_shift*(n_ix-1));
text(30, y_shift*(n_ix-1), num2str(sel_nixs(n_ix)));
end
xlabel('Frame');
xlim([min(t) max(t)]);
hold off;
axis tight;
set(gca,'LooseInset',get(gca,'TightInset'))
print(fullfile(Input.outdir, [timestr '_timeseries_zscore_stacked.png']), '-dpng', '-r300');
%% Inspect a random neuron footprint and associated timeseries
ix = randperm(size(SID_output.timeseries_iterated, 1), 1);
figure('Position', [20, 20, 2000, 2000]);
subplot(3,1,1:2);
forward_model_ix = zeros(size(SID_output.std_image));
forward_model_ix(SID_output.idx) = SID_output.forward_model_iterated(ix,:);
imagesc(forward_model_ix, [0 max(SID_output.forward_model_iterated(ix,:))]);
axis image;
colorbar();
subplot(3,1,3);
plot((1:size(SID_output.timeseries_iterated,2)), SID_output.timeseries_iterated(ix,:));
title(['Neuron candidate ' num2str(ix)]);
%% Delete cached psf file
if ~strcmp(Input.psf_cache_dir, '')
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': Deleting cached psf file']);
rmdir(Input.psf_cache_dir_unique, 's');
end
%%
disp([datestr(now, 'YYYY-mm-dd HH:MM:SS') ': ' 'main_nnmf_SID() returning'])
%%
end