forked from samtools/bcftools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
em.c
259 lines (236 loc) · 8.65 KB
/
em.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/* em.c -- mathematical functions.
Copyright (C) 2010, 2011 Broad Institute.
Portions copyright (C) 2013-2014 Genome Research Ltd.
Author: Heng Li <[email protected]>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE. */
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <htslib/vcf.h>
#include "kmin.h"
#include "call.h"
#define ITER_MAX 50
#define ITER_TRY 10
#define EPS 1e-5
extern double kf_gammaq(double, double);
/*
Generic routines
*/
// estimate site allele frequency in a very naive and inaccurate way
static double est_freq(int n, const double *pdg)
{
int i, gcnt[3], tmp1;
// get a rough estimate of the genotype frequency
gcnt[0] = gcnt[1] = gcnt[2] = 0;
for (i = 0; i < n; ++i) {
const double *p = pdg + i * 3;
if (p[0] != 1. || p[1] != 1. || p[2] != 1.) {
int which = p[0] > p[1]? 0 : 1;
which = p[which] > p[2]? which : 2;
++gcnt[which];
}
}
tmp1 = gcnt[0] + gcnt[1] + gcnt[2];
return (tmp1 == 0)? -1.0 : (.5 * gcnt[1] + gcnt[2]) / tmp1;
}
/*
Single-locus EM
*/
typedef struct {
int beg, end;
const double *pdg;
} minaux1_t;
static double prob1(double f, void *data)
{
minaux1_t *a = (minaux1_t*)data;
double p = 1., l = 0., f3[3];
int i;
// printf("brent %lg\n", f);
if (f < 0 || f > 1) return 1e300;
f3[0] = (1.-f)*(1.-f); f3[1] = 2.*f*(1.-f); f3[2] = f*f;
for (i = a->beg; i < a->end; ++i) {
const double *pdg = a->pdg + i * 3;
p *= pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2];
if (p < 1e-200) l -= log(p), p = 1.;
}
return l - log(p);
}
// one EM iteration for allele frequency estimate
static double freq_iter(double *f, const double *_pdg, int beg, int end)
{
double f0 = *f, f3[3], err;
int i;
// printf("em %lg\n", *f);
f3[0] = (1.-f0)*(1.-f0); f3[1] = 2.*f0*(1.-f0); f3[2] = f0*f0;
for (i = beg, f0 = 0.; i < end; ++i) {
const double *pdg = _pdg + i * 3;
f0 += (pdg[1] * f3[1] + 2. * pdg[2] * f3[2])
/ (pdg[0] * f3[0] + pdg[1] * f3[1] + pdg[2] * f3[2]);
}
f0 /= (end - beg) * 2;
err = fabs(f0 - *f);
*f = f0;
return err;
}
/* The following function combines EM and Brent's method. When the signal from
* the data is strong, EM is faster but sometimes, EM may converge very slowly.
* When this happens, we switch to Brent's method. The idea is learned from
* Rasmus Nielsen.
*/
static double freqml(double f0, int beg, int end, const double *pdg)
{
int i;
double f;
for (i = 0, f = f0; i < ITER_TRY; ++i)
if (freq_iter(&f, pdg, beg, end) < EPS) break;
if (i == ITER_TRY) { // haven't converged yet; try Brent's method
minaux1_t a;
a.beg = beg; a.end = end; a.pdg = pdg;
kmin_brent(prob1, f0 == f? .5*f0 : f0, f, (void*)&a, EPS, &f);
}
return f;
}
// one EM iteration for genotype frequency estimate
static double g3_iter(double g[3], const double *_pdg, int beg, int end)
{
double err, gg[3];
int i;
gg[0] = gg[1] = gg[2] = 0.;
// printf("%lg,%lg,%lg\n", g[0], g[1], g[2]);
for (i = beg; i < end; ++i) {
double sum, tmp[3];
const double *pdg = _pdg + i * 3;
tmp[0] = pdg[0] * g[0]; tmp[1] = pdg[1] * g[1]; tmp[2] = pdg[2] * g[2];
sum = (tmp[0] + tmp[1] + tmp[2]) * (end - beg);
gg[0] += tmp[0] / sum; gg[1] += tmp[1] / sum; gg[2] += tmp[2] / sum;
}
err = fabs(gg[0] - g[0]) > fabs(gg[1] - g[1])? fabs(gg[0] - g[0]) : fabs(gg[1] - g[1]);
err = err > fabs(gg[2] - g[2])? err : fabs(gg[2] - g[2]);
g[0] = gg[0]; g[1] = gg[1]; g[2] = gg[2];
return err;
}
// perform likelihood ratio test
static double lk_ratio_test(int n, int n1, const double *pdg, double f3[3][3])
{
double r;
int i;
for (i = 0, r = 1.; i < n1; ++i) {
const double *p = pdg + i * 3;
r *= (p[0] * f3[1][0] + p[1] * f3[1][1] + p[2] * f3[1][2])
/ (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]);
}
for (; i < n; ++i) {
const double *p = pdg + i * 3;
r *= (p[0] * f3[2][0] + p[1] * f3[2][1] + p[2] * f3[2][2])
/ (p[0] * f3[0][0] + p[1] * f3[0][1] + p[2] * f3[0][2]);
}
return r;
}
// x[0]: ref frequency
// x[1..3]: alt-alt, alt-ref, ref-ref frequenc
// x[4]: HWE P-value
// x[5..6]: group1 freq, group2 freq
// x[7]: 1-degree P-value
// x[8]: 2-degree P-value
int bcf_em1(call_t *call, const bcf1_t *rec, int n1, int flag, double x[10])
{
double *pdg;
int i, n; //, n2;
if (rec->n_allele < 2) return -1; // one allele only
// initialization
if (n1 < 0 || n1 > rec->n_sample) n1 = 0;
if (flag & 1<<7) flag |= 7<<5; // compute group freq if LRT is required
if (flag & 0xf<<1) flag |= 0xf<<1;
n = rec->n_sample; //n2 = n - n1;
pdg = call->pdg;
if (pdg == 0) return -1;
for (i = 0; i < 10; ++i) x[i] = -1.; // set to negative
{
if ((x[0] = est_freq(n, pdg)) < 0.) return -1; // no data
x[0] = freqml(x[0], 0, n, pdg);
}
if (flag & (0xf<<1|3<<8)) { // estimate the genotype frequency and test HWE
double *g = x + 1, f3[3], r;
f3[0] = g[0] = (1 - x[0]) * (1 - x[0]);
f3[1] = g[1] = 2 * x[0] * (1 - x[0]);
f3[2] = g[2] = x[0] * x[0];
for (i = 0; i < ITER_MAX; ++i)
if (g3_iter(g, pdg, 0, n) < EPS) break;
// Hardy-Weinberg equilibrium (HWE)
for (i = 0, r = 1.; i < n; ++i) {
double *p = pdg + i * 3;
r *= (p[0] * g[0] + p[1] * g[1] + p[2] * g[2]) / (p[0] * f3[0] + p[1] * f3[1] + p[2] * f3[2]);
}
x[4] = kf_gammaq(.5, log(r));
}
if ((flag & 7<<5) && n1 > 0 && n1 < n) { // group frequency
x[5] = freqml(x[0], 0, n1, pdg);
x[6] = freqml(x[0], n1, n, pdg);
}
if ((flag & 1<<7) && n1 > 0 && n1 < n) { // 1-degree P-value
double f[3], f3[3][3], tmp;
f[0] = x[0]; f[1] = x[5]; f[2] = x[6];
for (i = 0; i < 3; ++i)
f3[i][0] = (1-f[i])*(1-f[i]), f3[i][1] = 2*f[i]*(1-f[i]), f3[i][2] = f[i]*f[i];
tmp = log(lk_ratio_test(n, n1, pdg, f3));
if (tmp < 0) tmp = 0;
x[7] = kf_gammaq(.5, tmp);
}
if ((flag & 3<<8) && n1 > 0 && n1 < n) { // 2-degree P-value
double g[3][3], tmp;
for (i = 0; i < 3; ++i) memcpy(g[i], x + 1, 3 * sizeof(double));
for (i = 0; i < ITER_MAX; ++i)
if (g3_iter(g[1], pdg, 0, n1) < EPS) break;
for (i = 0; i < ITER_MAX; ++i)
if (g3_iter(g[2], pdg, n1, n) < EPS) break;
tmp = log(lk_ratio_test(n, n1, pdg, g));
if (tmp < 0) tmp = 0;
x[8] = kf_gammaq(1., tmp);
}
return 0;
}
/*
Two-locus EM (LD)
*/
#define _G1(h, k) ((h>>1&1) + (k>>1&1))
#define _G2(h, k) ((h&1) + (k&1))
#if 0
// 0: the previous site; 1: the current site
static int pair_freq_iter(int n, double *pdg[2], double f[4])
{
double ff[4];
int i, k, h;
// printf("%lf,%lf,%lf,%lf\n", f[0], f[1], f[2], f[3]);
memset(ff, 0, 4 * sizeof(double));
for (i = 0; i < n; ++i) {
double *p[2], sum, tmp;
p[0] = pdg[0] + i * 3; p[1] = pdg[1] + i * 3;
for (k = 0, sum = 0.; k < 4; ++k)
for (h = 0; h < 4; ++h)
sum += f[k] * f[h] * p[0][_G1(k,h)] * p[1][_G2(k,h)];
for (k = 0; k < 4; ++k) {
tmp = f[0] * (p[0][_G1(0,k)] * p[1][_G2(0,k)] + p[0][_G1(k,0)] * p[1][_G2(k,0)])
+ f[1] * (p[0][_G1(1,k)] * p[1][_G2(1,k)] + p[0][_G1(k,1)] * p[1][_G2(k,1)])
+ f[2] * (p[0][_G1(2,k)] * p[1][_G2(2,k)] + p[0][_G1(k,2)] * p[1][_G2(k,2)])
+ f[3] * (p[0][_G1(3,k)] * p[1][_G2(3,k)] + p[0][_G1(k,3)] * p[1][_G2(k,3)]);
ff[k] += f[k] * tmp / sum;
}
}
for (k = 0; k < 4; ++k) f[k] = ff[k] / (2 * n);
return 0;
}
#endif