-
Notifications
You must be signed in to change notification settings - Fork 436
/
reader.py
93 lines (81 loc) · 3.02 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
import utils
class Reader():
def __init__(self, tfrecords_file, image_size=256,
min_queue_examples=1000, batch_size=1, num_threads=8, name=''):
"""
Args:
tfrecords_file: string, tfrecords file path
min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples
batch_size: integer, number of images per batch
num_threads: integer, number of preprocess threads
"""
self.tfrecords_file = tfrecords_file
self.image_size = image_size
self.min_queue_examples = min_queue_examples
self.batch_size = batch_size
self.num_threads = num_threads
self.reader = tf.TFRecordReader()
self.name = name
def feed(self):
"""
Returns:
images: 4D tensor [batch_size, image_width, image_height, image_depth]
"""
with tf.name_scope(self.name):
filename_queue = tf.train.string_input_producer([self.tfrecords_file])
reader = tf.TFRecordReader()
_, serialized_example = self.reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image/file_name': tf.FixedLenFeature([], tf.string),
'image/encoded_image': tf.FixedLenFeature([], tf.string),
})
image_buffer = features['image/encoded_image']
image = tf.image.decode_jpeg(image_buffer, channels=3)
image = self._preprocess(image)
images = tf.train.shuffle_batch(
[image], batch_size=self.batch_size, num_threads=self.num_threads,
capacity=self.min_queue_examples + 3*self.batch_size,
min_after_dequeue=self.min_queue_examples
)
tf.summary.image('_input', images)
return images
def _preprocess(self, image):
image = tf.image.resize_images(image, size=(self.image_size, self.image_size))
image = utils.convert2float(image)
image.set_shape([self.image_size, self.image_size, 3])
return image
def test_reader():
TRAIN_FILE_1 = 'data/tfrecords/apple.tfrecords'
TRAIN_FILE_2 = 'data/tfrecords/orange.tfrecords'
with tf.Graph().as_default():
reader1 = Reader(TRAIN_FILE_1, batch_size=2)
reader2 = Reader(TRAIN_FILE_2, batch_size=2)
images_op1 = reader1.feed()
images_op2 = reader2.feed()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
step = 0
while not coord.should_stop():
batch_images1, batch_images2 = sess.run([images_op1, images_op2])
print("image shape: {}".format(batch_images1))
print("image shape: {}".format(batch_images2))
print("="*10)
step += 1
except KeyboardInterrupt:
print('Interrupted')
coord.request_stop()
except Exception as e:
coord.request_stop(e)
finally:
# When done, ask the threads to stop.
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
test_reader()