-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse.py
306 lines (266 loc) · 11.7 KB
/
analyse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import psycopg2
import matplotlib.pyplot as plt
import pymorphy2
from gensim.models.ldamodel import LdaModel
from gensim import corpora
import gc
def top5tags():
SQL = 'SELECT tag_name FROM \
(\
SELECT tag_id, COUNT(tag_id) as numb FROM tag_to_article_table GROUP BY tag_id\
) AS t\
JOIN tag_table ON t.tag_id=tag_table.tag_id ORDER BY numb DESC\
LIMIT 5'
cur.execute(SQL)
tag = ['', '', '', '', '']
for i in range(5):
tag[i] = cur.fetchone()[0]
SQL = 'SELECT tag_id, COUNT(tag_id) as numb FROM tag_to_article_table\
GROUP BY tag_id ORDER BY numb DESC'
cur.execute(SQL)
tagid = [0, 0, 0, 0, 0]
for i in range(5):
tagid[i] = cur.fetchone()[0]
tag_population = [[0 for j in range(10)] for i in range(5)]
SQL = 'SELECT numb AS numb4tag FROM\
(\
SELECT tag_id, COUNT(tag_id) AS numb FROM\
(\
SELECT tag_id FROM\
(\
SELECT article_id FROM article_table\
WHERE Extract(YEAR from article_date)={0}\
) AS a\
JOIN tag_to_article_table AS tat ON (tat.article_id=a.article_id)\
) AS t\
GROUP BY t.tag_id ORDER BY numb DESC\
) as ct\
WHERE tag_id={1}'
for j in range(10):
for i in range(5):
cur.execute(SQL.format(str(2006+j), str(tagid[i])))
a = cur.fetchone()
if a is not None:
tag_population[i][j] = a[0]
else:
tag_population[i][j] = 0
plt.title('Population of the 5 most popular tags by year.')
plt.xlabel('Year 2006+')
plt.ylabel('Number of articles')
for i in range(5):
plt.plot(tag_population[i], label=tag[i])
plt.legend()
plt.show()
def articlesbydow():
SQL = '''SELECT COUNT(article_id) FROM article_table WHERE date_part('dow', article_date)={0}'''
dow = [0 for i in range(7)]
for i in range(7):
cur.execute(SQL.format(i))
dow[i] = cur.fetchone()[0]
# Sunday - Saturday => Monday - Sunday
temp = dow[0]
dow[:6:] = dow[1::]
dow[6] = temp
plt.title('Number of articles by Day of Week.')
plt.xlabel('Monday - Sunday')
plt.ylabel('Number of articles')
plt.plot(dow)
plt.show()
def getarticles():
# TODO: Make getiing thread-safe (get number of articles and articles in single request)
articles = []
SQL = 'SELECT COUNT(article_id) FROM article_table'
cur.execute(SQL)
number = cur.fetchone()[0]
SQL = 'SELECT article_topic FROM article_table'
cur.execute(SQL)
# number = 100
for i in range(number):
article = cur.fetchone()
articles.append(article[0])
return articles, number
def normalaisestr(str):
parsedstring = []
l = str.split()
for i in l:
parsedstring.append(morph.parse(i)[0].normal_form)
return parsedstring
def ldaforhabr():
numberofarticles = 0
articles, numberofarticles = getarticles()
print("Got articles")
# Normalaize texts
i = 0
for article in articles:
article = replacesymbols(article)
articles[i] = normalaisestr(article.lower())
i += 1
print('Normalaised')
# Remove unnecessary words
texts = [[word for word in article if word not in stoplist]
for article in articles]
print('Deleted stopwords')
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
print('Starting training')
f = open('lda.log', 'w')
for i in range(i // numberofarticles):
begin = 100 * i
end = 100 * (i + 1)
if end > numberofarticles:
end = numberofarticles
lda = LdaModel(corpus[begin:end:], id2word=dictionary, num_topics=end - begin)
for j in range(lda.num_topics):
topics = lda.get_topic_terms(j, 15)
f.write(str(begin + j) + ": ")
# print(topics)
for topic in topics[0]:
top = dictionary.get(topic)
if top is not None:
f.write(top + '\n')
f.write('-----------\n')
# i += 1
del lda
f.close()
def getarticlesbyyear(year):
# TODO: Make getiing thread-safe (get number of articles and articles in single request)
SQL = 'SELECT COUNT(article_id) FROM article_table WHERE Extract(YEAR from article_date)={0}'
cur.execute(SQL.format(year))
number = cur.fetchone()[0]
articles = []
SQL = 'SELECT article_topic FROM article_table WHERE Extract(YEAR from article_date)={0}'
cur.execute(SQL.format(year))
for i in range(number):
article = cur.fetchone()
articles.append(article[0])
return articles, number
def replacesymbols(article):
article = article.replace('.', '')
article = article.replace(',', '')
article = article.replace('!', '')
article = article.replace('?', '')
article = article.replace('—', '')
article = article.replace('=', '')
article = article.replace('+', '')
article = article.replace('-', '')
article = article.replace('/', '')
article = article.replace('\\', '')
article = article.replace(';', '')
article = article.replace(':', '')
article = article.replace('^', '')
article = article.replace('&', '')
article = article.replace('*', '')
article = article.replace('[', '')
article = article.replace(']', '')
article = article.replace('{', '')
article = article.replace('}', '')
article = article.replace('(', '')
article = article.replace(')', '')
article = article.replace('<', '')
article = article.replace('>', '')
article = article.replace('"', '')
article = article.replace("'", '')
article = article.replace('~', '')
article = article.replace('$', '')
article = article.replace('|', '')
return article
def plottopicpop():
internet = [0 for i in range(10)]
developing = [0 for i in range(10)]
habr = [0 for i in range(10)]
n = 0
for year in range(2006, 2016):
articles, numberofarticles = getarticlesbyyear(year)
print("Got articles for", str(year))
# Normalaize texts
i = 0
for article in articles:
article = replacesymbols(article)
articles[i] = normalaisestr(article.lower())
i += 1
print('Normalaised')
# Remove unnecessary words
texts = [[word for word in article if word not in stoplist]
for article in articles]
print('Deleted stopwords')
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
print('Starting training')
# Щадящий режим для ОЗУ
for i in range(numberofarticles // 100):
begin = 100 * i
end = 100 * (i + 1)
if end > numberofarticles:
end = numberofarticles
lda = LdaModel(corpus[begin:end:], id2word=dictionary, num_topics=end - begin)
for j in range(lda.num_topics):
topics = lda.get_topic_terms(j, 15)
# print(topics)
for topic in topics[0]:
top = dictionary.get(topic)
# print(top)
if "интернет" == top:
internet[n] += 1
if "разработка" == top:
developing[n] += 1
if "хабра" == top:
habr[n] += 1
del lda
n += 1
print(internet,'\n', developing, '\n', habr)
plt.title('Population of 3 topics.')
plt.xlabel('Year 2006 - 2015')
plt.ylabel('Number of articles')
plt.plot(internet, label="Интернет")
plt.plot(developing, label="Разработка")
plt.plot(habr, label="Хабра")
plt.legend()
plt.show()
gc.enable()
db = psycopg2.connect(database='', user='', host='', port=)
cur = db.cursor()
morph = pymorphy2.MorphAnalyzer()
stoplist = ["из", "из", "1", "2", "3", "4", "5", "6", "7", "8", "9", "0", "a", "b",
"c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z",
"а", "б", "в", "г", "д", "е", "ё", "ж", "з", "и", "л", "м", "н", "о",
"п", "р", "с", "т", "у", "ф", "х", "ц", "ш", "щ", "ъ", "ь", "э", "ю", "я",
"большой", "бы", "быть", "весь", "вот", "все",
"всей", "вы", "говорить", "год", "да", "для", "до", "еще",
"же", "знать", "и", "из", "к", "как", "который", "мочь",
"мы", "на", "наш", "не", "него", "нее", "нет", "них", "но",
"о", "один", "она", "они", "оно", "оный", "от", "ото", "по",
"с", "свой", "себя", "сказать", "та", "такой", "только", "тот",
"ты", "у", "что", "это", "этот", "я", "без", "более", "больше",
"будет", "будто", "бы", "был", "была", "были", "было", "быть",
"вам", "вас", "ведь", "весь", "вдоль", "вдруг", "вместо",
"вне", "вниз", "внизу", "внутри", "во", "вокруг", "вот",
"впрочем", "все", "всегда", "всего", "всех", "всю", "вы",
"где", "да", "давай", "давать", "даже", "для", "до",
"достаточно", "другой", "его", "ему", "ее", "её", "ей", "если",
"есть", "ещё", "еще", "же", "за", "здесь",
"из", "изза", "из", "или", "им", "иметь", "иногда", "их",
"както", "кто", "когда", "кроме", "кто", "куда", "ли", "либо",
"между", "меня", "мне", "много", "может", "мое", "моё", "мои",
"мой", "мы", "на", "навсегда", "над", "надо", "наконец", "нас",
"наш", "не", "него", "неё", "нее", "ней", "нет", "ни",
"нибудь", "никогда", "ним", "них", "ничего", "но", "ну", "об",
"однако", "он", "она", "они", "оно", "опять", "от", "отчего",
"очень", "перед", "по", "под", "после", "потом", "потому",
"потому что", "почти", "при", "про", "раз", "разве", "свою",
"себя", "сказать", "снова", "с", "со", "совсем", "так", "также",
"такие", "такой", "там", "те", "тебя", "тем", "теперь",
"то", "тогда", "того", "тоже", "той", "только", "том", "тот",
"тут", "ты", "уже", "хоть", "хотя", "чего", "чегото", "чей",
"чем", "через", "что", "чтото", "чтоб", "чтобы", "чуть",
"чьё", "чья", "эта", "эти", "это", "эту", "этого", "этом",
"этот", "к", "около", "будут", "нас", "нам", "например",
"пока", "чаще", "to", "other", "you", "is", "was", "were",
"the", "того", "которые", "то", "свое", "сами", "можно",
"всем", "этому", "сколько"]
# TODO: Make everything work in different threads
# Uncomment necessary func
# top5tags()
# articlesbydow()
# ldaforhabr()
plottopicpop()