-
Notifications
You must be signed in to change notification settings - Fork 128
/
train_distance_semantic_motion.py
179 lines (141 loc) · 7.57 KB
/
train_distance_semantic_motion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Distance estimation, Semantic segmentation and Motion segmentation training for OmniDet.
# author: Varun Ravi Kumar <[email protected]>
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; Authors provide no warranty with the software
and are not liable for anything.
"""
import time
import torch
from colorama import Fore, Style
from losses.mtl_losses import UncertaintyLoss
from models.motion_decoder import MotionDecoder
from train_distance_semantic import DistanceSemanticModelBase
from train_motion import MotionModel, MotionInit
from train_semantic import SemanticModel
class DistanceSemanticMotionModelBase(DistanceSemanticModelBase, MotionInit):
def __init__(self, args):
super().__init__(args)
self.models["motion"] = MotionDecoder(self.encoder_channels,
n_classes=2,
siamese_net=self.args.siamese_net).to(self.device)
self.parameters_to_train += list(self.models["motion"].parameters())
if args.use_multiple_gpu:
self.models["motion"] = torch.nn.DataParallel(self.models["motion"])
def distance_semantic_motion_train(self):
"""Trainer function for distance, semantic and motion prediction"""
for self.epoch in range(self.args.epochs):
# switch to train mode
self.set_train()
data_loading_time = 0
gpu_time = 0
before_op_time = time.time()
for batch_idx, inputs in enumerate(self.train_loader):
data_loading_time += (time.time() - before_op_time)
before_op_time = time.time()
self.inputs_to_device(inputs)
# -- DISTANCE, SEMANTIC AND MOTION SEGMENTATION MODEL PREDICTIONS AND LOSS CALCULATIONS --
_, outputs, losses = self.distance_semantic_motion_loss_predictions(inputs)
# -- MTL LOSS --
losses["mtl_loss"] = self.mtl_loss(losses)
# -- COMPUTE GRADIENT AND DO OPTIMIZER STEP --
self.optimizer.zero_grad()
losses["mtl_loss"].mean().backward()
self.optimizer.step()
duration = time.time() - before_op_time
gpu_time += duration
if batch_idx % self.args.log_frequency == 0:
self.log_time(batch_idx, duration, losses["mtl_loss"].mean().cpu().data,
data_loading_time, gpu_time)
self.distance_statistics("train", inputs, outputs, losses)
SemanticModel.semantic_statistics(self, "train", inputs, outputs, losses)
MotionModel.motion_statistics(self, "train", inputs, outputs, losses)
data_loading_time = 0
gpu_time = 0
if self.step % self.args.val_frequency == 0:
# -- SAVE SEMANTIC MODEL WITH BEST WEIGHTS BASED ON VALIDATION IoU --
self.save_best_semantic_weights()
# -- SAVE MOTION MODEL WITH BEST WEIGHTS BASED ON VALIDATION IoU --
self.save_best_motion_weights()
self.step += 1
before_op_time = time.time()
self.lr_scheduler.step()
if (self.epoch + 1) % self.args.save_frequency == 0:
self.save_model()
print("Training complete!")
def distance_semantic_motion_loss_predictions(self, inputs):
losses = dict()
# -- SEMANTIC SEGMENTATION --
outputs, features = self.predict_semantic_seg(inputs)
# -- MOTION SEGMENTATION --
motion_predictions = self.predict_motion_seg(inputs, features=features)
outputs.update(motion_predictions)
# -- DISTANCE ESTIMATION --
distance_outputs, features = self.predict_distances(inputs, features=features)
outputs.update(distance_outputs)
# -- POSE ESTIMATION --
outputs.update(self.predict_poses(inputs, features))
# -- PHOTOMETRIC LOSSES --
distance_losses, distance_outputs = self.photometric_losses(inputs, outputs)
losses.update(distance_losses)
outputs.update(distance_outputs)
# -- SEMANTIC SEGMENTATION LOSS --
losses["semantic_loss"] = self.semantic_criterion(outputs["semantic", 0], inputs["semantic_labels", 0, 0])
if self.args.use_multiple_gpu:
losses["semantic_loss"] = losses["semantic_loss"].unsqueeze(0)
# -- MOTION SEGMENTATION LOSS --
losses["motion_loss"] = self.motion_criterion(outputs["motion", 0], inputs["motion_labels", 0, 0])
if self.args.use_multiple_gpu:
losses["motion_loss"] = losses["motion_loss"].unsqueeze(0)
return features, outputs, losses
def predict_motion_seg(self, inputs, features=None, mode='val'):
outputs = dict()
if self.args.siamese_net:
previous_frames = self.models["encoder"](inputs["color_aug", -1, 0])
current_frames = features if mode != 'val' else self.models["encoder"](inputs["color_aug", 0, 0])
features = [torch.cat([i, j], dim=1) for i, j in zip(previous_frames, current_frames)]
outputs.update(self.models["motion"](features))
else:
features = self.models["encoder"](torch.cat([inputs["color_aug", -1, 0], inputs["color_aug", 0, 0]], 1))
outputs.update(self.models["motion"](features))
return outputs
@torch.no_grad()
def motion_val(self):
"""Validate the motion model"""
self.set_eval()
losses = dict()
for inputs in self.val_loader:
self.inputs_to_device(inputs)
outputs = self.predict_motion_seg(inputs, features=None, mode='val')
losses["motion_loss"] = self.motion_criterion(outputs["motion", 0], inputs["motion_labels", 0, 0])
if self.args.use_multiple_gpu:
losses["motion_loss"] = losses["motion_loss"].unsqueeze(0)
_, predictions = torch.max(outputs["motion", 0].data, 1)
self.motion_metric.add(predictions, inputs["motion_labels", 0, 0])
outputs["class_iou"], outputs["mean_iou"] = self.motion_metric.value()
# Compute stats for the tensorboard
MotionModel.motion_statistics(self, "val", inputs, outputs, losses)
self.motion_metric.reset()
del inputs, losses
self.set_train()
return outputs
def save_best_motion_weights(self):
# Motion Seg. validation on each step and save model on improvements.
motion_val_metrics = self.motion_val()
print(
f"{Fore.MAGENTA}epoch {self.epoch:>3} | Motion IoU: {motion_val_metrics['mean_iou']:.3f}{Style.RESET_ALL}")
if motion_val_metrics["mean_iou"] >= self.best_motion_iou:
print(f"{Fore.MAGENTA}=> Saving motion model weights with mean_iou of {motion_val_metrics['mean_iou']:.3f} "
f"at step {self.step} on {self.epoch} epoch.{Style.RESET_ALL}")
self.best_motion_iou = motion_val_metrics["mean_iou"]
if self.epoch > 50: # Weights are quite large! Sometimes, life is a compromise.
self.save_model()
class DistanceSemanticMotionModel(DistanceSemanticMotionModelBase):
def __init__(self, args):
super().__init__(args)
self.mtl_loss = UncertaintyLoss(tasks=self.args.train).to(self.device)
self.parameters_to_train += list(self.mtl_loss.parameters())
if args.use_multiple_gpu:
self.mtl_loss = torch.nn.DataParallel(self.mtl_loss)
self.configure_optimizers()
self.pre_init()