-
Notifications
You must be signed in to change notification settings - Fork 15
/
HahnRelationsBasic.v
801 lines (629 loc) · 21.9 KB
/
HahnRelationsBasic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
Require Import HahnBase HahnList.
Require Export Relations.
Set Implicit Arguments.
(******************************************************************************)
(** * Relational operators *)
(******************************************************************************)
Arguments clos_trans [A] R x y.
Arguments clos_refl_trans [A] R x y.
Arguments union [A] R1 R2 x y.
Arguments reflexive [A] R.
Arguments symmetric [A] R.
Arguments transitive [A] R.
Arguments antisymmetric [A] R.
Arguments inclusion {A} R1 R2.
Arguments same_relation {A} R1 R2.
Arguments transp [A] R x y.
Section RelDefs.
Variables A B : Type.
Variable cond : A -> Prop.
Variable f : A -> B.
Variables r r' : relation A.
Definition singl_rel a b : relation A := fun x y => x = a /\ y = b.
Definition inter_rel : relation A := fun x y => r x y /\ r' x y.
Definition minus_rel : relation A := fun x y => r x y /\ ~ r' x y.
Definition eq_rel : relation A := fun x y => f x = f y.
Definition eqv_rel : relation A := fun x y => x = y /\ cond x.
Definition eqv_dom_rel dom : relation A :=
fun x y => x = y /\ In x dom.
Definition restr_rel : relation A :=
fun x y => r x y /\ cond x /\ cond y.
Definition restr_eq_rel : relation A :=
fun x y => r x y /\ f x = f y.
Definition seq : relation A :=
fun x y => exists z, r x z /\ r' z y.
Definition map_rel (r'' : relation B) : relation A := fun x y => r'' (f x) (f y).
Definition clos_refl : relation A := fun x y => x = y \/ r x y.
Definition clos_sym : relation A := fun x y => r x y \/ r y x.
Definition clos_refl_sym : relation A := fun x y => x = y \/ r x y \/ r y x.
Definition dom_rel := fun x => exists y, r x y.
Definition codom_rel := fun y => exists x, r x y.
Definition collect_rel : relation B := fun x y =>
exists x' y', r x' y' /\ f x' = x /\ f y' = y.
Definition immediate : relation A := fun a b =>
r a b /\ (forall c (R1: r a c) (R2: r c b), False).
Definition irreflexive := forall x, r x x -> False.
Definition is_total :=
forall a (IWa: cond a)
b (IWb: cond b) (NEQ: a <> b),
r a b \/ r b a.
Definition restr_subset :=
forall a (IWa: cond a)
b (IWb: cond b) (REL: r a b),
r' a b.
Definition upward_closed (P: A -> Prop) :=
forall x y (REL: r x y) (POST: P y), P x.
Definition functional := forall x y z, r x y -> r x z -> y=z.
Definition strict_partial_order := irreflexive /\ transitive r.
Definition strict_total_order := strict_partial_order /\ is_total.
End RelDefs.
Fixpoint pow_rel A (r: relation A) n :=
match n with
| 0 => eqv_rel (fun _ => True)
| S n => seq (pow_rel r n) r
end.
Definition bunion A B (P : A -> Prop) (r: A -> relation B) x y :=
exists a, P a /\ r a x y.
Definition acyclic A (r: relation A) := irreflexive (clos_trans r).
Definition cross_rel A (r r' : A -> Prop) := (fun a b => r a /\ r' b).
Global Hint Unfold reflexive symmetric transitive inclusion same_relation : unfolderDb.
Global Hint Unfold union transp singl_rel inter_rel minus_rel bunion : unfolderDb.
Global Hint Unfold eq_rel eqv_rel eqv_dom_rel restr_rel restr_eq_rel seq map_rel : unfolderDb.
Global Hint Unfold clos_refl clos_sym clos_refl_sym dom_rel codom_rel cross_rel collect_rel : unfolderDb.
Global Hint Unfold immediate irreflexive acyclic is_total functional : unfolderDb.
Global Hint Unfold antisymmetric strict_partial_order strict_total_order : unfolderDb.
(** We introduce the following notation. *)
Notation "P ∩ Q" := (inter_rel P Q) (at level 40, left associativity).
Notation "P ∪ Q" := (union P Q) (at level 50, left associativity).
Notation "P \ Q" := (minus_rel P Q) (at level 46).
Notation "P ⨾ Q" := (seq P Q) (at level 44, right associativity).
Notation "⦗ a ⦘" := (eqv_rel a) (format "⦗ a ⦘").
Notation "∅₂" := (fun _ _ => False).
Notation "P × Q" := (cross_rel P Q) (at level 29, left associativity).
Notation "f ↑ P" := (collect_rel f P) (at level 30).
Notation "f ↓ Q" := (map_rel f Q) (at level 30).
Notation "a ⁻¹" := (transp a) (at level 1, format "a ⁻¹").
Notation "a ^?" := (clos_refl a) (at level 1, format "a ^?").
Notation "a ⁺" := (clos_trans a) (at level 1, format "a ⁺").
Notation "a *" := (clos_refl_trans a) (at level 1, format "a *").
Notation "a ^⋈" := (clos_sym a) (at level 1, format "a ^⋈").
Notation "a ^⋈?" := (clos_refl_sym a) (at level 1, format "a ^⋈?").
Notation "a ^^ n" := (pow_rel a n) (at level 1).
Notation "a ⊆ b" := (inclusion a b) (at level 60).
Notation "a ≡ b" := (same_relation a b) (at level 60).
Notation "⋃ x ∈ s , a" := (bunion s (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x ∈ s , '/ ' a ']'").
Notation "'⋃' x , a" := (bunion (fun _ => True) (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x , '/ ' a ']'").
Notation "'⋃' x < n , a" := (bunion (fun t => t < n) (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x < n , '/ ' a ']'").
Notation "'⋃' x <= n , a" := (bunion (fun t => t <= n) (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x <= n , '/ ' a ']'").
Notation "'⋃' x > n , a" := (bunion (fun t => n < t) (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x > n , '/ ' a ']'").
Notation "'⋃' x >= n , a" := (bunion (fun t => n <= t) (fun x => a))
(at level 200, x ident, right associativity,
format "'[' ⋃ '/ ' x >= n , '/ ' a ']'").
(** Here are some alternative non-unicode notations *)
Notation "P +++ Q" := (union P Q) (at level 50, left associativity, only parsing).
Notation "P ;; Q" := (seq P Q) (at level 44, right associativity, only parsing).
Notation "<| a |>" := (eqv_rel a) (only parsing).
Notation "a ^+" := (clos_trans a) (at level 1, only parsing).
Notation "a ^*" := (clos_refl_trans a) (at level 1, only parsing).
Notation "a ^{-1}" := (transp a) (at level 1, only parsing).
Notation "a <<= b" := (inclusion a b) (at level 60, only parsing).
Notation "a <--> b" := (same_relation a b) (at level 60, only parsing).
(******************************************************************************)
(** ** Very basic properties *)
(******************************************************************************)
Lemma r_refl A (r: relation A) x : r^? x x.
Proof. vauto. Qed.
Lemma r_step A (r: relation A) x y : r x y -> r^? x y.
Proof. vauto. Qed.
Global Hint Immediate r_refl r_step : core hahn.
Section BasicProperties.
Variables A B : Type.
Variable dom : A -> Prop.
Variable f: A -> B.
Variables r r' r'' : relation A.
Lemma immediateE : immediate r ≡ r \ (r ⨾ r).
Proof.
unfold immediate, seq, minus_rel.
repeat split; try red; ins; desf; eauto.
Qed.
Lemma clos_trans_mon a b :
r⁺ a b ->
(forall a b, r a b -> r' a b) ->
r'⁺ a b.
Proof.
induction 1; ins; eauto using clos_trans.
Qed.
Lemma clos_refl_trans_mon a b :
r* a b ->
(forall a b, r a b -> r' a b) ->
r'* a b.
Proof.
induction 1; ins; eauto using clos_refl_trans.
Qed.
Lemma clos_refl_transE a b : r* a b <-> a = b \/ r⁺ a b.
Proof.
split; ins; desf; vauto; induction H; desf; vauto.
Qed.
Lemma clos_trans_in_rt a b : r⁺ a b -> r* a b.
Proof.
induction 1; vauto.
Qed.
Lemma rt_t_trans a b c : r* a b -> r⁺ b c -> r⁺ a c.
Proof.
ins; induction H; eauto using clos_trans.
Qed.
Lemma t_rt_trans a b c : r⁺ a b -> r* b c -> r⁺ a c.
Proof.
ins; induction H0; eauto using clos_trans.
Qed.
Lemma t_step_rt x y : r⁺ x y <-> (exists z, r x z /\ r* z y).
Proof.
split; ins; desf.
by apply clos_trans_tn1 in H; induction H; desf; eauto using clos_refl_trans.
by rewrite clos_refl_transE in *; desf; eauto using clos_trans.
Qed.
Lemma t_rt_step x y : r⁺ x y <-> (exists z, r* x z /\ r z y).
Proof.
split; ins; desf.
by apply clos_trans_t1n in H; induction H; desf; eauto using clos_refl_trans.
by rewrite clos_refl_transE in *; desf; eauto using clos_trans.
Qed.
Lemma clos_trans_of_transitiveD (T: transitive r) x y :
r⁺ x y -> r x y.
Proof.
induction 1; eauto.
Qed.
Lemma clos_trans_of_transitive (T: transitive r) x y :
r⁺ x y <-> r x y.
Proof.
by split; ins; eauto using t_step; eapply clos_trans_of_transitiveD.
Qed.
Lemma clos_refl_trans_of_transitive (T: transitive r) x y :
r* x y <-> r^? x y.
Proof.
by ins; rewrite clos_refl_transE, clos_trans_of_transitive; ins.
Qed.
Lemma clos_trans_eq :
forall B (f : A -> B)
(H: forall a b (SB: r a b), f a = f b) a b
(C: r⁺ a b),
f a = f b.
Proof.
ins; induction C; eauto; congruence.
Qed.
Lemma trans_irr_acyclic :
irreflexive r -> transitive r -> acyclic r.
Proof.
eby repeat red; ins; eapply H, clos_trans_of_transitiveD.
Qed.
Lemma is_total_restr :
is_total dom r ->
is_total dom (restr_rel dom r).
Proof.
red; ins; eapply H in NEQ; eauto; desf; vauto.
Qed.
Lemma clos_trans_restrD x y :
clos_trans (restr_rel dom r) x y -> dom x /\ dom y.
Proof.
unfold restr_rel; induction 1; ins; desf.
Qed.
Lemma clos_trans_restr_eqD x y :
clos_trans (restr_eq_rel f r) x y -> f x = f y.
Proof.
unfold restr_eq_rel; induction 1; ins; desf; congruence.
Qed.
Lemma acyclic_antisymmetric :
acyclic r -> antisymmetric r.
Proof.
clear; autounfold with unfolderDb; intuition.
exfalso; eauto using clos_trans.
Qed.
Lemma trans_irr_antisymmetric :
irreflexive r -> transitive r -> antisymmetric r.
Proof.
auto using acyclic_antisymmetric, trans_irr_acyclic.
Qed.
Lemma strict_partial_order_antisymmetric :
strict_partial_order r -> antisymmetric r.
Proof.
unfold strict_partial_order; ins; desc.
auto using trans_irr_antisymmetric.
Qed.
Lemma irreflexive_inclusion:
r ⊆ r' ->
irreflexive r' ->
irreflexive r.
Proof.
unfold irreflexive, inclusion; eauto.
Qed.
Lemma irreflexive_union :
irreflexive (r ∪ r') <-> irreflexive r /\ irreflexive r'.
Proof.
unfold irreflexive, union; repeat split;
try red; ins; desf; eauto.
Qed.
Lemma irreflexive_bunion (s : B -> Prop) (rr : B -> relation A) :
irreflexive (bunion s rr) <-> forall x, s x -> irreflexive (rr x).
Proof.
unfold irreflexive, bunion; repeat split;
try red; ins; desf; eauto.
Qed.
Lemma irreflexive_seqC :
irreflexive (r ⨾ r') <-> irreflexive (r' ⨾ r).
Proof.
unfold irreflexive, seq; repeat split;
try red; ins; desf; eauto.
Qed.
Lemma irreflexive_restr :
irreflexive r -> irreflexive (restr_rel dom r).
Proof.
unfold irreflexive, restr_rel; ins; desf; eauto.
Qed.
Lemma inclusion_acyclic :
r ⊆ r' ->
acyclic r' ->
acyclic r.
Proof.
repeat red; ins; eapply H0, clos_trans_mon; eauto.
Qed.
Lemma transitive_cr : transitive r -> transitive r^?.
Proof.
unfold clos_refl; red; ins; desf; eauto.
Qed.
Lemma transitive_restr : transitive r -> transitive (restr_rel dom r).
Proof.
unfold restr_rel; red; ins; desf; eauto.
Qed.
Lemma transitive_ct : transitive r⁺.
Proof. vauto. Qed.
Lemma transitive_rt : transitive r*.
Proof. vauto. Qed.
Lemma reflexive_rt : reflexive r*.
Proof. vauto. Qed.
Lemma reflexive_cr : reflexive r^?.
Proof. vauto. Qed.
Lemma reflexive_seq : reflexive r -> reflexive r' -> reflexive (r ⨾ r').
Proof. vauto. Qed.
Lemma reflexive_union_l : reflexive r -> reflexive (r ∪ r').
Proof. vauto. Qed.
Lemma reflexive_union_r : reflexive r' -> reflexive (r ∪ r').
Proof. vauto. Qed.
Lemma reflexive_inter : reflexive r -> reflexive r' -> reflexive (r ∩ r').
Proof. vauto. Qed.
Lemma restr_eq_trans :
transitive r -> transitive (restr_eq_rel f r).
Proof.
unfold transitive, restr_eq_rel; ins; desf; split; eauto; congruence.
Qed.
Lemma irreflexive_restr_eq :
irreflexive (restr_eq_rel f r) <-> irreflexive r.
Proof.
unfold irreflexive, restr_eq_rel; split; ins; desf; eauto.
Qed.
Lemma upward_closed_seq P :
upward_closed r P ->
upward_closed r' P ->
upward_closed (r ⨾ r') P.
Proof.
unfold seq; red; ins; desf; eauto.
Qed.
Lemma upward_closed_ct P :
upward_closed r P -> upward_closed r⁺ P.
Proof.
induction 2; eauto.
Qed.
Lemma upward_closed_rt P :
upward_closed r P -> upward_closed r* P.
Proof.
induction 2; eauto.
Qed.
(** Lemmas about inclusion *)
(******************************************************************************)
Lemma eq_in_l : r ≡ r' -> r ⊆ r'.
Proof. by destruct 1. Qed.
Lemma eq_in_r : r ≡ r' -> r' ⊆ r.
Proof. by destruct 1. Qed.
Lemma inclusion_refl : reflexive (@inclusion A).
Proof. repeat red; ins. Qed.
Lemma inclusion_trans : transitive (@inclusion A).
Proof. repeat red; eauto. Qed.
Lemma inclusion_refl2 : r ⊆ r.
Proof. done. Qed.
Lemma same_relation_refl2 : r ≡ r.
Proof. split; ins. Qed.
Lemma inclusion_inter_l1 : r ∩ r' ⊆ r.
Proof. clear; firstorder. Qed.
Lemma inclusion_inter_l2 : r ∩ r' ⊆ r'.
Proof. clear; firstorder. Qed.
Lemma inclusion_inter_l1_search : r ⊆ r'' -> r ∩ r' ⊆ r''.
Proof. clear; firstorder. Qed.
Lemma inclusion_inter_l2_search : r' ⊆ r'' -> r ∩ r' ⊆ r''.
Proof. clear; firstorder. Qed.
Lemma inclusion_inter_r : r ⊆ r' -> r ⊆ r'' -> r ⊆ r' ∩ r''.
Proof. clear; firstorder. Qed.
Lemma inclusion_inter_mon s s' : r ⊆ r' -> s ⊆ s' -> r ∩ s ⊆ r' ∩ s'.
Proof. clear; firstorder. Qed.
Lemma inclusion_union_r1 : r ⊆ r ∪ r'.
Proof. vauto. Qed.
Lemma inclusion_union_r2 : r' ⊆ r ∪ r'.
Proof. vauto. Qed.
Lemma inclusion_union_l : r ⊆ r'' -> r' ⊆ r'' -> r ∪ r' ⊆ r''.
Proof.
unfold union; red; intros; desf; auto.
Qed.
Lemma inclusion_union_r1_search : r ⊆ r' -> r ⊆ r' ∪ r''.
Proof.
unfold union; red; intros; desf; auto.
Qed.
Lemma inclusion_union_r2_search : r ⊆ r'' -> r ⊆ r' ∪ r''.
Proof.
unfold union; red; intros; desf; auto.
Qed.
Lemma inclusion_union_r :
r ⊆ r' \/ r ⊆ r'' -> r ⊆ r' ∪ r''.
Proof.
unfold union; red; intros; desf; auto.
Qed.
Lemma inclusion_union_mon s s' :
r ⊆ r' -> s ⊆ s' -> r ∪ s ⊆ r' ∪ s'.
Proof.
unfold inclusion, union; ins; desf; eauto.
Qed.
Lemma inclusion_bunion_l (P : B -> Prop) (rr : B -> relation A) :
(forall x, P x -> rr x ⊆ r') -> bunion P rr ⊆ r'.
Proof.
clear; firstorder.
Qed.
Lemma inclusion_bunion_r (x: B) (P : B -> Prop) (rr : B -> relation A) :
P x -> r ⊆ rr x -> r ⊆ bunion P rr.
Proof.
clear; firstorder.
Qed.
Lemma inclusion_seq_mon s s' : r ⊆ r' -> s ⊆ s' -> r ⨾ s ⊆ r' ⨾ s'.
Proof.
unfold inclusion, seq; ins; desf; eauto.
Qed.
Lemma inclusion_seq_refl :
r ⊆ r'' -> r' ⊆ r'' -> transitive r'' -> r ⨾ r'^? ⊆ r''.
Proof.
unfold inclusion, seq, clos_refl; ins; desf; eauto.
Qed.
Lemma inclusion_restr : restr_rel dom r ⊆ r.
Proof.
unfold inclusion, restr_rel; ins; desf.
Qed.
Lemma inclusion_restr_rel_l : r ⊆ r' -> restr_rel dom r ⊆ r'.
Proof.
unfold inclusion, seq, restr_rel; ins; desf; eauto.
Qed.
Lemma inclusion_restr_eq : restr_eq_rel f r ⊆ r.
Proof.
unfold restr_eq_rel, inclusion; ins; desf.
Qed.
Lemma inclusion_restr_eq_l : r ⊆ r' -> restr_eq_rel f r ⊆ r'.
Proof.
unfold inclusion, seq, restr_eq_rel; ins; desf; eauto.
Qed.
Lemma inclusion_minus_rel : r \ r' ⊆ r.
Proof.
unfold minus_rel, inclusion; ins; desf; auto.
Qed.
Lemma inclusion_minus_mon s s' : r ⊆ r' -> s' ⊆ s -> r \ s ⊆ r' \ s'.
Proof.
unfold minus_rel, inclusion, not; ins; desf; eauto.
Qed.
Lemma inclusion_minus_l s : r \ r' ⊆ s <-> r ⊆ r' ∪ s.
Proof.
unfold minus_rel, union, inclusion; split; ins; desf.
2: by eapply H in H0; desf; eauto.
by destruct (classic (r' x y)); eauto.
Qed.
Lemma inclusion_union_minus : r ⊆ (r \ r') ∪ r'.
Proof.
by unfold minus_rel, union, inclusion; clear; intros; tauto.
Qed.
Lemma inclusion_eqv_rel_true : ⦗dom⦘ ⊆ ⦗fun _ => True⦘.
Proof.
unfold eqv_rel, inclusion; ins; desf; auto.
Qed.
(** Inclusions involving reflexive closure. *)
Lemma inclusion_id_cr : ⦗fun _ => True⦘ ⊆ r^?.
Proof.
by unfold eqv_rel, inclusion; ins; desf; vauto.
Qed.
Lemma inclusion_eqv_cr : ⦗dom⦘ ⊆ r^?.
Proof.
by unfold eqv_rel, inclusion; ins; desf; vauto.
Qed.
Lemma inclusion_step_cr : r ⊆ r' -> r ⊆ r'^?.
Proof.
unfold seq, clos_refl; red; ins; desf; eauto.
Qed.
Lemma inclusion_r_cr : r ⊆ r' -> r^? ⊆ r'^?.
Proof.
unfold seq, clos_refl; red; ins; desf; eauto.
Qed.
Lemma inclusion_cr_ind :
reflexive r' -> r ⊆ r' -> r^? ⊆ r'.
Proof.
unfold clos_refl; ins; red; ins; desf; eauto.
Qed.
(** Inclusions involving transitive closure. *)
Lemma inclusion_step_t : r ⊆ r' -> r ⊆ r'⁺.
Proof.
unfold seq; red; ins; desf; eauto using t_step.
Qed.
Lemma inclusion_t_rt : r⁺ ⊆ r*.
Proof.
by red; ins; apply clos_trans_in_rt.
Qed.
Lemma inclusion_t_t : r ⊆ r' -> r⁺ ⊆ r'⁺.
Proof.
by red; ins; eapply clos_trans_mon.
Qed.
Lemma inclusion_t_t2 : r ⊆ r'⁺ -> r⁺ ⊆ r'⁺.
Proof.
induction 2; eauto using clos_trans.
Qed.
Lemma inclusion_t_ind : r ⊆ r' -> transitive r' -> r⁺ ⊆ r'.
Proof. unfold seq; induction 3; eauto. Qed.
Lemma inclusion_t_ind_left : r ⊆ r' -> r⨾ r' ⊆ r' -> r⁺ ⊆ r'.
Proof.
unfold seq, inclusion; ins.
apply clos_trans_t1n in H1; induction H1; eauto.
Qed.
Lemma inclusion_t_ind_right : r ⊆ r' -> r'⨾ r ⊆ r' -> r⁺ ⊆ r'.
Proof.
unfold seq, inclusion; ins.
apply clos_trans_tn1 in H1; induction H1; eauto.
Qed.
(** Inclusions involving reflexive-transitive closure. *)
Lemma inclusion_id_rt : ⦗fun _ => True⦘ ⊆ r'*.
Proof.
by unfold eqv_rel, inclusion; ins; desf; vauto.
Qed.
Lemma inclusion_eqv_rt : ⦗dom⦘ ⊆ r'*.
Proof.
by unfold eqv_rel, inclusion; ins; desf; vauto.
Qed.
Lemma inclusion_step_rt : r ⊆ r' -> r ⊆ r'*.
Proof.
unfold seq; red; ins; desf; eauto using rt_step.
Qed.
Lemma inclusion_r_rt : r ⊆ r' -> r^? ⊆ r'*.
Proof.
unfold seq, clos_refl; red; ins; desf; eauto using rt_step, rt_refl.
Qed.
Lemma inclusion_rt_rt : r ⊆ r' -> r* ⊆ r'*.
Proof.
red; ins; eapply clos_refl_trans_mon; eauto.
Qed.
Lemma inclusion_rt_rt2 : r ⊆ r'* -> r* ⊆ r'*.
Proof.
induction 2; eauto using clos_refl_trans.
Qed.
Lemma inclusion_rt_ind :
reflexive r' -> r ⊆ r' -> transitive r' -> r* ⊆ r'.
Proof. unfold seq, eqv_rel; induction 4; eauto. Qed.
Lemma inclusion_rt_ind_left :
reflexive r' -> r⨾ r' ⊆ r' -> r* ⊆ r'.
Proof.
unfold seq, eqv_rel, inclusion; ins.
apply clos_rt_rt1n in H1; induction H1; eauto.
Qed.
Lemma inclusion_rt_ind_right :
reflexive r' -> r'⨾ r ⊆ r' -> r* ⊆ r'.
Proof.
unfold seq, eqv_rel, inclusion; ins.
apply clos_rt_rtn1 in H1; induction H1; eauto.
Qed.
Lemma inclusion_seq_trans t :
transitive t -> r ⊆ t -> r' ⊆ t -> r⨾ r' ⊆ t.
Proof.
unfold seq; red; ins; desf; eauto.
Qed.
Lemma inclusion_seq_rt :
r ⊆ r''* -> r' ⊆ r''* -> r⨾ r' ⊆ r''*.
Proof.
apply inclusion_seq_trans; vauto.
Qed.
Lemma inclusion_seq_l :
r ⊆ r' -> reflexive r'' -> r ⊆ r' ⨾ r''.
Proof.
unfold seq, eqv_rel, inclusion; ins; eauto 8.
Qed.
Lemma inclusion_seq_r :
reflexive r' -> r ⊆ r'' -> r ⊆ r' ⨾ r''.
Proof.
unfold seq, eqv_rel, inclusion; ins; eauto 8.
Qed.
(** Lemmas about functional relations *)
(******************************************************************************)
Lemma functional_alt :
functional r <-> r⁻¹ ⨾ r ⊆ ⦗fun _ => True⦘.
Proof.
unfold functional, seq, transp, eqv_rel, inclusion.
split; ins; desf; [|apply H]; eauto.
Qed.
Lemma functional_eqv_rel : functional ⦗dom⦘.
Proof.
unfold functional, eqv_rel; ins; desf.
Qed.
Lemma functional_seq :
functional r -> functional r' -> functional (r ⨾ r').
Proof.
unfold functional, seq; ins; desf.
assert (z0 = z1); subst; eauto.
Qed.
Lemma functional_union :
functional r -> functional r' ->
(forall x, dom_rel r x -> dom_rel r' x -> False) ->
functional (r ∪ r').
Proof.
unfold functional, union, dom_rel; ins; desf; eauto;
try solve [exfalso; eauto].
Qed.
Lemma functional_inter_l : functional r -> functional (r ∩ r').
Proof. clear; firstorder. Qed.
Lemma functional_inter_r : functional r' -> functional (r ∩ r').
Proof. clear; firstorder. Qed.
Lemma functional_minus : functional r -> functional (r \ r').
Proof. clear; firstorder. Qed.
Lemma functional_restr : functional r -> functional (restr_rel dom r).
Proof. clear; firstorder. Qed.
Lemma functionalE : functional r -> exists f, forall x y, r x y <-> f x = Some y.
Proof.
clear; unfold functional; ins.
forward apply unique_choice
with (R := fun x y => y = None /\ ~ (exists m, r x m) \/
exists m, y = Some m /\ r x m) as X; ins; desf.
by tertium_non_datur (exists m, r x m); desc; [exists (Some m)| exists None];
split; ins; desf; try f_equal; eauto; try solve [exfalso; eauto].
exists f; ins; specialize (X x); split; ins; desf; try solve [exfalso; eauto].
rewrite X; f_equal; eauto.
Qed.
End BasicProperties.
(** Declare several of the above lemmas as hints for [(e)auto]. *)
Global Hint Resolve same_relation_refl2 : core hahn.
Global Hint Resolve
reflexive_seq reflexive_rt reflexive_cr
reflexive_union_l reflexive_union_r reflexive_inter
transitive_rt transitive_ct
: hahn.
Global Hint Resolve
inclusion_refl2 same_relation_refl2
inclusion_inter_l1_search inclusion_inter_l2_search inclusion_inter_r
inclusion_union_r1 inclusion_union_r2
inclusion_union_r1_search inclusion_union_r2_search inclusion_union_l
inclusion_seq_mon inclusion_minus_mon
inclusion_restr_eq_l inclusion_restr_rel_l
: hahn.
Global Hint Resolve trans_irr_antisymmetric strict_partial_order_antisymmetric : hahn.
Global Hint Resolve
inclusion_step_t inclusion_t_t inclusion_t_ind inclusion_rt_rt
inclusion_r_rt inclusion_step_rt inclusion_step_cr inclusion_r_cr : hahn.
Global Hint Immediate inclusion_acyclic : hahn.
Global Hint Immediate inclusion_t_rt : hahn.
Global Hint Immediate inclusion_eqv_rt inclusion_eqv_cr : hahn.
Lemma clos_trans_of_clos_trans A (r : relation A) x y :
r⁺⁺ x y <-> r⁺ x y.
Proof.
apply clos_trans_of_transitive; vauto.
Qed.
Lemma clos_trans_of_clos_trans1 A (r r' : relation A) x y :
(fun a b => r⁺ a b \/ r' a b)⁺ x y <->
(fun a b => r a b \/ r' a b)⁺ x y.
Proof.
split; induction 1; desf;
eauto using clos_trans, clos_trans_mon.
Qed.