-
Notifications
You must be signed in to change notification settings - Fork 15
/
HahnDom.v
621 lines (507 loc) · 21.9 KB
/
HahnDom.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
Require Import HahnBase HahnSets HahnRelationsBasic HahnEquational.
Require Import HahnRewrite.
Require Import Setoid.
Set Implicit Arguments.
(** * Calculating the (co)domain of a relation *)
Section Domains.
Variable A B : Type.
Section Definitions.
Variable r : relation A.
Variable d : A -> Prop.
Variables f g : A -> B.
Definition doma := forall x y (REL: r x y), d x.
Definition domb := forall x y (REL: r x y), d y.
Definition eq_dom := forall x (DX: d x), f x = g x.
Definition dom_cond d := (fun e => dom_rel (r ⨾ ⦗ eq e ⦘) ⊆₁ d).
End Definitions.
Section Lemmas.
Variables r r' : relation A.
Variables f g : A -> B.
Variables d d' : A -> Prop.
Lemma eqv_doma : doma ⦗d⦘ d.
Proof. unfold doma, eqv_rel; ins; desf. Qed.
Lemma eqv_domb : domb ⦗d⦘ d.
Proof. unfold domb, eqv_rel; ins; desf. Qed.
Lemma seq_eqv_doma : doma r d -> doma (⦗d'⦘ ⨾ r) d.
Proof. unfold doma, eqv_rel, seq; ins; desf; eauto. Qed.
Lemma seq_eqv_domb : domb r d -> domb (r ⨾ ⦗d'⦘) d.
Proof. unfold domb, eqv_rel, seq; ins; desf; eauto. Qed.
Lemma restr_eq_rel_doma : doma r d -> doma (restr_eq_rel f r) d.
Proof. unfold doma, restr_eq_rel; ins; desf; eauto. Qed.
Lemma restr_eq_rel_domb : domb r d -> domb (restr_eq_rel f r) d.
Proof. unfold domb, restr_eq_rel; ins; desf; eauto. Qed.
Lemma seq_doma : doma r d -> doma (r ⨾ r') d.
Proof. unfold doma, seq; ins; desf; eauto. Qed.
Lemma seq_domb : domb r' d -> domb (r ⨾ r') d.
Proof. unfold domb, seq; ins; desf; eauto. Qed.
Lemma union_doma : doma r d -> doma r' d -> doma (r ∪ r') d.
Proof. unfold doma, union; ins; desf; eauto. Qed.
Lemma union_domb : domb r d -> domb r' d -> domb (r ∪ r') d.
Proof. unfold domb, union; ins; desf; eauto. Qed.
Lemma ct_doma : doma r d -> doma r⁺ d.
Proof. induction 2; eauto. Qed.
Lemma ct_domb : domb r d -> domb r⁺ d.
Proof. induction 2; eauto. Qed.
Lemma seq_r_doma : doma r d -> doma r' d -> doma (r^? ⨾ r') d.
Proof. unfold clos_refl, seq; red; ins; desf; eauto. Qed.
Lemma seq_r_domb : domb r d -> domb r' d -> domb (r ⨾ r'^?) d.
Proof. unfold clos_refl, seq; red; ins; desf; eauto. Qed.
Lemma minus_doma : doma r d -> doma (r \ r') d.
Proof. unfold doma, minus_rel; ins; desf; eauto. Qed.
Lemma minus_domb : domb r d -> domb (r \ r') d.
Proof. unfold domb, minus_rel; ins; desf; eauto. Qed.
Lemma doma_inter_r : doma r (d ∩₁ d') <-> doma r d /\ doma r d'.
Proof. firstorder. Qed.
Lemma domb_inter_r : domb r (d ∩₁ d') <-> domb r d /\ domb r d'.
Proof. firstorder. Qed.
Lemma restr_doma : doma (restr_rel d r) d.
Proof. firstorder. Qed.
Lemma restr_domb : domb (restr_rel d r) d.
Proof. firstorder. Qed.
Lemma restr_doma_mon : doma r d -> doma (restr_rel d' r) d.
Proof. firstorder. Qed.
Lemma restr_domb_mon : domb r d -> domb (restr_rel d' r) d.
Proof. firstorder. Qed.
Lemma dom_empty : dom_rel (A:=A) ∅₂ ≡₁ ∅.
Proof. unfolder; split; ins; desf. Qed.
Lemma codom_empty : codom_rel (A:=A) ∅₂ ≡₁ ∅.
Proof. unfolder; split; ins; desf. Qed.
Lemma dom_singl_rel (x y : A) : dom_rel (singl_rel x y) ≡₁ eq x.
Proof. basic_solver. Qed.
Lemma codom_singl_rel (x y : A) : codom_rel (singl_rel x y) ≡₁ eq y.
Proof. basic_solver. Qed.
Lemma dom_seq : dom_rel (r ⨾ r') ⊆₁ dom_rel r.
Proof. basic_solver. Qed.
Lemma codom_seq : codom_rel (r ⨾ r') ⊆₁ codom_rel r'.
Proof. basic_solver. Qed.
Lemma dom_union : dom_rel (r ∪ r') ≡₁ dom_rel r ∪₁ dom_rel r'.
Proof. unfold dom_rel, union, set_union, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma codom_union : codom_rel (r ∪ r') ≡₁ codom_rel r ∪₁ codom_rel r'.
Proof. unfold codom_rel, union, set_union, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma dom_eqv : dom_rel ⦗d⦘ ≡₁ d.
Proof. unfold dom_rel, eqv_rel, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma codom_eqv : codom_rel ⦗d⦘ ≡₁ d.
Proof. unfold codom_rel, eqv_rel, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma dom_eqv1 : dom_rel (⦗d⦘ ⨾ r) ≡₁ d ∩₁ dom_rel r.
Proof. unfold dom_rel, eqv_rel, seq, set_inter, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma codom_eqv1 : codom_rel (r ⨾ ⦗d⦘) ≡₁ codom_rel r ∩₁ d.
Proof. unfold codom_rel, eqv_rel, seq, set_inter, set_equiv, set_subset.
split; ins; desf; eauto. Qed.
Lemma dom_cross (N: ~ d' ≡₁ ∅): dom_rel (d × d') ≡₁ d.
Proof. apply set_nonemptyE in N; unfold dom_rel, cross_rel, set_equiv, set_subset;
split; ins; desf; eauto. Qed.
Lemma codom_cross (N: ~ d ≡₁ ∅): codom_rel (d × d') ≡₁ d'.
Proof. apply set_nonemptyE in N; unfold codom_rel, cross_rel, set_equiv, set_subset;
split; ins; desf; eauto. Qed.
Lemma set_collect_dom :
f ↑₁ dom_rel r ≡₁ dom_rel (f ↑ r).
Proof. unfolder; split; ins; desf; eauto 10. Qed.
Lemma set_collect_codom :
f ↑₁ codom_rel r ≡₁ codom_rel (f ↑ r).
Proof. unfolder; split; ins; desf; eauto 10. Qed.
Lemma set_map_dom (rr : relation B) :
dom_rel (f ↓ rr) ⊆₁ f ↓₁ dom_rel rr.
Proof. unfolder; ins; desf; eauto 20. Qed.
Lemma set_map_codom (rr : relation B) :
codom_rel (f ↓ rr) ⊆₁ f ↓₁ codom_rel rr.
Proof. unfolder; ins; desf; eauto 10. Qed.
Lemma dom_minus : dom_rel (r \ r') ⊆₁ dom_rel r.
Proof. basic_solver. Qed.
Lemma codom_minus : dom_rel (r \ r') ⊆₁ dom_rel r.
Proof. basic_solver. Qed.
Lemma dom_transp :
dom_rel r⁻¹ ≡₁ codom_rel r.
Proof. basic_solver. Qed.
Lemma codom_transp :
codom_rel r⁻¹ ≡₁ dom_rel r.
Proof. basic_solver. Qed.
Lemma dom_cr : dom_rel r^? ≡₁ set_full.
Proof. basic_solver. Qed.
Lemma codom_cr : codom_rel r^? ≡₁ set_full.
Proof. basic_solver. Qed.
Lemma dom_ct : dom_rel r⁺ ≡₁ dom_rel r.
Proof. rewrite ct_begin. basic_solver 7. Qed.
Lemma codom_ct : codom_rel r⁺ ≡₁ codom_rel r.
Proof. rewrite ct_end. basic_solver 7. Qed.
Lemma dom_crt : dom_rel r* ≡₁ set_full.
Proof. basic_solver. Qed.
Lemma codom_crt : codom_rel r* ≡₁ set_full.
Proof. basic_solver. Qed.
Lemma transp_doma : domb r d -> doma (transp r) d.
Proof. unfold doma, domb, transp; eauto. Qed.
Lemma transp_domb : doma r d -> domb (transp r) d.
Proof. unfold doma, domb, transp; eauto. Qed.
Lemma cross_doma : doma (d × d') d.
Proof. unfold doma, cross_rel; ins; desf. Qed.
Lemma cross_domb : domb (d × d') d'.
Proof. unfold domb, cross_rel; ins; desf. Qed.
Lemma doma_implies : (forall a, d a -> d' a) -> doma r d -> doma r d'.
Proof. unfold doma; eauto. Qed.
Lemma domb_implies : (forall a, d a -> d' a) -> domb r d -> domb r d'.
Proof. unfold domb; eauto. Qed.
Lemma doma_fold :
(doma r d) -> (forall a, d a -> d' a) -> ⦗d'⦘ ⨾ r ≡ r.
Proof. unfold eqv_rel, seq; split; red; ins; desf; eauto 6. Qed.
Lemma domb_fold :
(domb r d) -> (forall a, d a -> d' a) -> r ⨾ ⦗d'⦘ ≡ r.
Proof. unfold eqv_rel, seq; split; red; ins; desf; eauto 6. Qed.
Lemma doma_rewrite : doma r d -> r ⊆ ⦗d⦘ ⨾ r.
Proof. firstorder. Qed.
Lemma domb_rewrite : domb r d -> r ⊆ r ⨾ ⦗d⦘.
Proof. firstorder. Qed.
Lemma doma_helper : r ⊆ ⦗d⦘ ⨾ r <-> doma r d.
Proof.
split; unfold doma, inclusion, seq, eqv_rel; ins; desf.
by apply H in REL; desf.
by eexists; splits; eauto.
Qed.
Lemma domb_helper : r ⊆ r ⨾ ⦗d⦘ <-> domb r d.
Proof.
split; unfold domb, inclusion, seq, eqv_rel; ins; desf.
by apply H in REL; desf.
by eexists; splits; eauto.
Qed.
Lemma domab_helper :
r ⊆ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ <-> doma r d /\ domb r d'.
Proof.
split; ins; splits; unfold doma, domb, inclusion, eqv_rel, seq in *;
ins; desf; try specialize (H _ _ REL); try specialize (H1 _ _ H0);
desf; splits; eexists; splits; eauto.
Qed.
Lemma domab_helper2 :
r ⊆ d × d' <-> doma r d /\ domb r d'.
Proof.
unfold doma, domb, cross_rel, inclusion; intuition; firstorder.
Qed.
Lemma dom_to_doma : r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ -> doma r d.
Proof.
intro H; unfold doma; ins.
hahn_rewrite H in REL; revert REL; basic_solver.
Qed.
Lemma dom_to_domb : r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ -> domb r d'.
Proof.
intro H; unfold domb; ins.
hahn_rewrite H in REL; revert REL; basic_solver.
Qed.
Lemma dom_l : r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ -> r ≡ ⦗d⦘ ⨾ r.
Proof.
unfolder; firstorder.
Qed.
Lemma dom_r : r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ -> r ≡ r ⨾ ⦗d'⦘.
Proof.
unfolder; firstorder.
Qed.
Lemma dom_helper_1 : r ⊆ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘ <-> r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘.
Proof.
unfolder; firstorder.
Qed.
Lemma dom_helper_2 : r ⊆ ⦗d⦘ ⨾ (fun _ _ => True) ⨾ ⦗d'⦘ <-> r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘.
Proof.
unfolder; firstorder.
Qed.
Lemma dom_helper_3 : r ⊆ d × d' <-> r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘.
Proof.
unfolder; firstorder.
Qed.
Lemma step_dom
(E: r ⊆ (⦗d⦘ ∪ ⦗d'⦘) ⨾ r ⨾ (⦗d⦘ ∪ ⦗d'⦘))
dd (DD: dd = ⦗d⦘ ⨾ r ⨾ ⦗d⦘)
de (DE: de = ⦗d⦘ ⨾ r ⨾ ⦗d'⦘)
ed (ED: ed = ⦗d'⦘ ⨾ r ⨾ ⦗d⦘)
ee (EE: ee = ⦗d'⦘ ⨾ r ⨾ ⦗d'⦘) :
r ⊆ dd ∪ de ∪ ed ∪ ee.
Proof.
rewrite E; subst; basic_solver 8.
Qed.
Lemma path_dom
(E1: r ⊆ (⦗d⦘ ∪ ⦗d'⦘) ⨾ r ⨾ (⦗d⦘ ∪ ⦗d'⦘))
(E2: ⦗d⦘ ⨾ ⦗d'⦘ ⊆ ∅₂)
dd (DD: dd = ⦗d⦘ ⨾ r ⨾ ⦗d⦘)
de (DE: de = ⦗d⦘ ⨾ r ⨾ ⦗d'⦘)
ed (ED: ed = ⦗d'⦘ ⨾ r ⨾ ⦗d⦘)
ee (EE: ee = ⦗d'⦘ ⨾ r ⨾ ⦗d'⦘) :
r⁺ ⊆ (dd⁺ ∪ (dd* ⨾ de ⨾ ee* ⨾ ed)⁺ ⨾ dd* ) ∪
(ee⁺ ∪ (ee* ⨾ ed ⨾ dd* ⨾ de)⁺ ⨾ ee* ) ∪
(ee* ⨾ ed ⨾ dd* ⨾ de)* ⨾ ee* ⨾ ed ⨾ dd* ∪
(dd* ⨾ de ⨾ ee* ⨾ ed)* ⨾ dd* ⨾ de ⨾ ee*.
Proof.
apply inclusion_t_ind_right.
{ rewrite step_dom at 1; try eassumption.
repeat apply inclusion_union_l; rewrite ?seqA.
1,4: sin_rewrite !ct_end.
all: try (repeat (apply inclusion_union_r; constructor); basic_solver 14). }
rewrite step_dom at 1; try eassumption.
relsf.
assert (E2': ⦗d'⦘ ⨾ ⦗d⦘ ⊆ (fun _ _ : A => False)).
{ by rewrite seq_eqvC in E2. }
assert (X17: ed ⨾ ed ⊆ ∅₂).
{ rewrite ?DD, ?ED, ?DE, ?EE; generalize E2; basic_solver. }
assert (X18: ed ⨾ ee ⊆ ∅₂).
{ rewrite ?DD, ?ED, ?DE, ?EE; generalize E2; basic_solver. }
assert (X19: de ⨾ dd ⊆ ∅₂).
{ rewrite ?DD, ?ED, ?DE, ?EE; generalize E2; basic_solver. }
assert (X20: de ⨾ de ⊆ ∅₂).
{ by rewrite ?DD, ?ED, ?DE, ?EE; generalize E2; basic_solver. }
assert (X1: dd * ⨾ ed ⊆ ed).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X2: dd * ⨾ dd ⊆ dd* ).
{ by rewrite rt_end at 2; relsf. }
assert (X3: dd * ⨾ ee ⊆ ee).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X4: ee * ⨾ de ⊆ de).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X5: ee * ⨾ ee ⊆ ee* ).
{ by rewrite rt_end at 2; relsf. }
assert (X6: ee * ⨾ dd ⊆ dd).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X7: dd ⁺ ⨾ dd ⊆ dd⁺).
{ by rewrite ct_end at 2; rewrite inclusion_t_rt. }
assert (X8: dd ⁺ ⨾ ed ⊆ ∅₂).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X9: dd ⁺ ⨾ ee ⊆ ∅₂).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X10: (dd * ⨾ de ⨾ ee * ⨾ ed) ⁺ ⨾ ed ⊆ ∅₂).
{ by rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X11: (dd * ⨾ de ⨾ ee * ⨾ ed) ⁺ ⨾ ee ⊆ ∅₂).
{ by rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X12: ee ⁺ ⨾ dd ⊆ ∅₂).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X13: ee ⁺ ⨾ de ⊆ ∅₂).
{ by rewrite ?rtE; relsf; rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X14: ee ⁺ ⨾ ee ⊆ ee⁺).
{ by rewrite ct_end at 2; rewrite inclusion_t_rt. }
assert (X15: (ee * ⨾ ed ⨾ dd * ⨾ de) ⁺ ⨾ dd ⊆ ∅₂).
{ by rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
assert (X16: (ee * ⨾ ed ⨾ dd * ⨾ de) ⁺ ⨾ de ⊆ ∅₂).
{ by rewrite ct_end, ?seqA, ?DD, ?ED, ?DE, ?EE, ?seqA;
try sin_rewrite E2; try sin_rewrite E2'; relsf. }
repeat apply inclusion_union_l; rewrite ?seqA.
all: rewrite ?X1, ?X2, ?X3, ?X4, ?X5, ?X6, ?X7, ?X8, ?X9, ?X10,
?X11, ?X12, ?X13, ?X14, ?X15, ?X16, ?X17, ?X18, ?X19, ?X20.
all: rels.
all: try (repeat (apply inclusion_union_r; constructor); basic_solver 5).
all: try (repeat (apply inclusion_union_r; constructor); basic_solver 20).
Qed.
Lemma path_dom_same
(E1: r ⊆ (⦗d⦘ ∪ ⦗d'⦘) ⨾ r ⨾ (⦗d⦘ ∪ ⦗d'⦘))
(E2: ⦗d⦘ ⨾ ⦗d'⦘ ⊆ ∅₂)
dd (DD: dd = ⦗d⦘ ⨾ r ⨾ ⦗d⦘)
de (DE: de = ⦗d⦘ ⨾ r ⨾ ⦗d'⦘)
ed (ED: ed = ⦗d'⦘ ⨾ r ⨾ ⦗d⦘)
ee (EE: ee = ⦗d'⦘ ⨾ r ⨾ ⦗d'⦘) :
⦗d⦘ ⨾ r⁺ ⨾ ⦗d⦘ ⊆ dd⁺ ∪ (dd* ⨾ de ⨾ ee* ⨾ ed)⁺ ⨾ dd*.
Proof.
rewrite path_dom; try edone.
relsf; repeat apply inclusion_union_l; rewrite ?seqA.
all: try by rewrite inclusion_seq_eqv_l, inclusion_seq_eqv_r; relsf.
{ by rewrite ct_begin, EE, ?seqA; sin_rewrite E2; relsf. }
{ rewrite ct_begin at 1; rewrite EE at 1; rewrite ED at 1;
rewrite rtE at 1; relsf.
rewrite ?seqA.
repeat apply inclusion_union_l; rewrite ?seqA.
{ by sin_rewrite E2; relsf. }
rewrite ct_begin, EE, ?seqA; sin_rewrite E2; relsf. }
{ rewrite rtE at 1; relsf.
rewrite rtE at 1; relsf.
repeat apply inclusion_union_l; rewrite ?seqA.
{ rewrite ED, ?seqA; sin_rewrite E2; relsf. }
{ rewrite ct_begin, EE, ?seqA; sin_rewrite E2; relsf. }
rewrite ct_begin at 1; rewrite ?seqA.
rewrite rtE at 1; relsf.
rewrite ED, ?seqA; sin_rewrite E2; relsf.
rewrite ct_begin, EE, ?seqA; sin_rewrite E2; relsf. }
rewrite ?seqA.
arewrite (⦗d⦘ ⨾ (dd * ⨾ de ⨾ ee * ⨾ ed) * ⨾ dd * ⊆ fun _ _ => True).
rewrite rtE at 1; relsf.
rewrite DE, ?seqA.
arewrite (⦗d'⦘ ⨾ ⦗d⦘ ⊆ (fun _ _ : A => False)).
{ by rewrite seq_eqvC in E2. }
relsf.
rewrite ct_end at 1; rewrite ?seqA.
rewrite EE, ?seqA.
arewrite (⦗d'⦘ ⨾ ⦗d⦘ ⊆ (fun _ _ : A => False)).
{ by rewrite seq_eqvC in E2. }
relsf.
Qed.
Lemma irr_dom
(E1: r ⊆ (⦗d⦘ ∪ ⦗d'⦘) ⨾ r ⨾ (⦗d⦘ ∪ ⦗d'⦘))
(E2: ⦗d⦘ ⨾ ⦗d'⦘ ⊆ ∅₂)
(IRRd: irreflexive (⦗d⦘ ⨾ r ⨾ ⦗d⦘))
(IRRe: irreflexive (⦗d'⦘ ⨾ r ⨾ ⦗d'⦘)) :
irreflexive r.
Proof.
rewrite step_dom; try edone.
repeat rewrite irreflexive_union; splits; try done;
generalize E2; basic_solver 8.
Qed.
Lemma eq_dom_union :
eq_dom (d ∪₁ d') f g <-> eq_dom d f g /\ eq_dom d' f g.
Proof.
split.
{ ins. unfold eq_dom in *.
splits; ins; apply (H x); basic_solver. }
intros [Hs Hs'].
unfold eq_dom in *. ins.
unfold set_union in DX.
desf; basic_solver.
Qed.
Lemma eq_dom_full_eq (EQD : eq_dom (fun _ => True) f g) :
f = g.
Proof. apply functional_extensionality. ins. by apply EQD. Qed.
Lemma dom_cond_elim : r ⨾ ⦗dom_cond r d⦘ ⊆ ⦗d⦘ ⨾ r.
Proof.
unfold dom_cond; basic_solver 12.
Qed.
Lemma dom_cond_elim1 (IN: r ⊆ r') :
r ⨾ ⦗dom_cond r' d⦘ ⊆ ⦗d⦘ ⨾ r.
Proof. unfold dom_cond; basic_solver 21. Qed.
Lemma dom_cond_elim2 :
d' ∩₁ dom_cond r d ⊆₁ dom_cond (⦗ d' ⦘ ⨾ r) d.
Proof. unfold dom_cond. basic_solver 12. Qed.
Lemma dom_cond_union :
dom_cond (r ∪ r') d ≡₁ dom_cond r d ∩₁ dom_cond r' d.
Proof. unfold dom_cond; split; basic_solver 21. Qed.
Lemma dom_cond_in :
r ⨾ ⦗d'⦘ ⊆ ⦗d⦘ ⨾ r' -> d' ⊆₁ dom_cond r d.
Proof.
unfold dom_cond; unfolder; ins; desf.
splits; eauto; eapply H; eauto.
Qed.
Lemma dom_rel_ext :
dom_rel (r ⨾ r'^?) ≡₁ dom_rel r.
Proof. basic_solver 10. Qed.
Lemma dom_rel_eqv_dom_rel :
dom_rel (r ⨾ ⦗dom_rel r'⦘) ≡₁ dom_rel (r ⨾ r').
Proof. basic_solver 42. Qed.
Lemma dom_rel_eqv_codom_rel :
dom_rel (r ⨾ ⦗codom_rel r'⦘) ≡₁ dom_rel (r ⨾ r'⁻¹).
Proof. basic_solver 42. Qed.
Lemma dom_rel_fun_alt w : (fun a => r a w) ≡₁ dom_rel (r ⨾ ⦗ eq w ⦘).
Proof. basic_solver 10. Qed.
Lemma dom_rel_helper (IN : dom_rel r ⊆₁ d) : r ≡ ⦗d⦘ ⨾ r.
Proof. unfolder in *; basic_solver. Qed.
Lemma codom_rel_helper (IN : codom_rel r ⊆₁ d) : r ≡ r ⨾ ⦗d⦘.
Proof. unfolder in *. basic_solver. Qed.
Lemma dom_codom_rel_helper
(IN : dom_rel r ⊆₁ d)
(IN' : codom_rel r ⊆₁ d'):
r ≡ ⦗d⦘ ⨾ r ⨾ ⦗d'⦘.
Proof. unfolder in *. basic_solver 7. Qed.
Lemma dom_rel_helper_in (IN : dom_rel r ⊆₁ d) : r ⊆ ⦗d⦘ ⨾ r.
Proof. unfolder in *; basic_solver. Qed.
End Lemmas.
Lemma doma_eqv (d : A -> Prop) (r : relation A): doma (⦗d⦘ ⨾ r) d.
Proof. apply doma_helper. basic_solver. Qed.
Lemma domb_eqv (d : A -> Prop) (r : relation A): domb (r ⨾ ⦗d⦘) d.
Proof. apply domb_helper. basic_solver. Qed.
Lemma acyc_dom (r: relation A) d e
(E1: r ⊆ (⦗d⦘ ∪ ⦗e⦘) ⨾ r ⨾ (⦗d⦘ ∪ ⦗e⦘))
(E2: ⦗d⦘ ⨾ ⦗e⦘ ⊆ ∅₂)
dd (DD: dd = ⦗d⦘ ⨾ r ⨾ ⦗d⦘)
de (DE: de = ⦗d⦘ ⨾ r ⨾ ⦗e⦘)
ed (ED: ed = ⦗e⦘ ⨾ r ⨾ ⦗d⦘)
ee (EE: ee = ⦗e⦘ ⨾ r ⨾ ⦗e⦘)
(ACYCd: acyclic dd)
(ACYCe: acyclic ee)
(ACYCed: acyclic (ed ⨾ dd* ⨾ de ⨾ ee*)) :
acyclic r.
Proof.
red.
eapply irr_dom; try edone.
{ arewrite (⦗d⦘ ∪ ⦗e⦘ ≡ ⦗fun x => d x \/ e x⦘) by basic_solver.
apply domab_helper; split.
apply ct_doma; eapply domab_helper with (d':= fun x => d x \/ e x).
rewrite E1 at 1; basic_solver.
apply ct_domb; eapply domab_helper with (d := fun x => d x \/ e x).
rewrite E1 at 1; basic_solver. }
sin_rewrite path_dom_same; try edone.
{ repeat rewrite irreflexive_union; splits; try done.
rewrite irreflexive_seqC.
arewrite( dd* ⨾ (dd * ⨾ de ⨾ ee * ⨾ ed) ⁺ ⊆ (dd * ⨾ de ⨾ ee * ⨾ ed) ⁺).
{ by rewrite ct_begin; rewrite !seqA; rels. }
assert (acyclic (dd * ⨾ de ⨾ ee * ⨾ ed)); try done. (*?*)
rewrite acyclic_seqC; rewrite !seqA.
rewrite acyclic_seqC; rewrite !seqA.
rewrite acyclic_seqC; rewrite !seqA.
done. }
rewrite unionC in E1.
sin_rewrite path_dom_same; try edone; try by rewrite seq_eqvC.
repeat rewrite irreflexive_union; splits; try done.
rewrite irreflexive_seqC.
arewrite( ee* ⨾ (ee * ⨾ ed ⨾ dd * ⨾ de) ⁺ ⊆ (ee * ⨾ ed ⨾ dd * ⨾ de) ⁺).
{ by rewrite ct_begin; rewrite !seqA; rels. }
assert (acyclic(ee * ⨾ ed ⨾ dd * ⨾ de)); try done. (*?*)
rewrite acyclic_seqC; rewrite !seqA.
done.
Qed.
End Domains.
Add Parametric Morphism A : (@doma A) with signature
inclusion --> set_subset ==> Basics.impl as doma_mori.
Proof.
unfold inclusion, doma, Basics.impl; eauto.
Qed.
Add Parametric Morphism A : (@domb A) with signature
inclusion --> set_subset ==> Basics.impl as domb_mori.
Proof.
unfold inclusion, domb, Basics.impl; eauto.
Qed.
Add Parametric Morphism A : (@doma A) with signature
same_relation ==> set_equiv ==> iff as doma_more.
Proof.
unfold same_relation; ins; rewrite set_equivE in *;
desc; split; eapply doma_mori; eauto.
Qed.
Add Parametric Morphism A : (@domb A) with signature
same_relation ==> set_equiv ==> iff as domb_more.
Proof.
unfold same_relation; ins; rewrite set_equivE in *;
desc; split; eapply domb_mori; eauto.
Qed.
Add Parametric Morphism A : (@dom_cond A) with signature
inclusion --> set_subset ==> set_subset as dom_cond_mori.
Proof.
ins. unfold dom_cond.
red; ins.
by rewrite H, <- H0.
Qed.
Add Parametric Morphism A : (@dom_cond A) with signature
same_relation ==> set_equiv ==> set_equiv as dom_cond_more.
Proof.
unfold dom_cond; unfolder; ins; splits; ins; desf; eauto 10.
Qed.
#[export]
Hint Unfold doma domb eq_dom dom_cond : unfolderDb.
#[export]
Hint Resolve eqv_doma seq_eqv_doma restr_eq_rel_doma
seq_doma union_doma ct_doma seq_r_doma
transp_doma cross_doma restr_doma restr_doma_mon
eqv_domb seq_eqv_domb restr_eq_rel_domb
seq_domb union_domb ct_domb seq_r_domb
transp_domb cross_domb restr_domb restr_domb_mon : hahn.
#[export]
Hint Rewrite dom_empty codom_empty dom_union codom_union
dom_eqv codom_eqv dom_eqv1 codom_eqv1 : hahn.
#[export]
Hint Rewrite dom_cross codom_cross : hahn_full.
Ltac dom_helper :=
match goal with
| |- ?x ≡ _ => apply dom_helper_3; unfold x
| |- ?x ⊆ _ => apply dom_helper_1, dom_helper_3; unfold x
| |- ?x ⊆ _ => unfold x
end.