forked from BalintKomjati/smooth-infinite-zoom
-
Notifications
You must be signed in to change notification settings - Fork 16
/
zoom.py
210 lines (184 loc) · 7.46 KB
/
zoom.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from helpers import *
from diffusers import StableDiffusionInpaintPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import gradio as gr
import numpy as np
import torch
import os
import time
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
inpaint_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting",
"parlance/dreamlike-diffusion-1.0-inpainting",
"ghunkins/stable-diffusion-liberty-inpainting",
"ImNoOne/f222-inpainting-diffusers"
]
default_prompt = "A psychedelic jungle with trees that have glowing, fractal-like patterns, Simon stalenhag poster 1920s style, street level view, hyper futuristic, 8k resolution, hyper realistic"
default_negative_prompt = "frames, borderline, text, charachter, duplicate, error, out of frame, watermark, low quality, ugly, deformed, blur"
def zoom(
model_id,
prompts_array,
negative_prompt,
num_outpainting_steps,
guidance_scale,
num_inference_steps,
custom_init_image
):
prompts = {}
for x in prompts_array:
try:
key = int(x[0])
value = str(x[1])
prompts[key] = value
except ValueError:
pass
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipe.scheduler.config)
pipe = pipe.to("cuda")
def no_check(images, **kwargs):
return images, False
pipe.safety_checker = no_check
pipe.enable_attention_slicing()
g_cuda = torch.Generator(device='cuda')
height = 512
width = height
current_image = Image.new(mode="RGBA", size=(height, width))
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255-mask_image).convert("RGB")
current_image = current_image.convert("RGB")
if (custom_init_image):
current_image = custom_init_image.resize(
(width, height), resample=Image.LANCZOS)
else:
init_images = pipe(prompt=prompts[min(k for k in prompts.keys() if k >= 0)],
negative_prompt=negative_prompt,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
mask_image=mask_image,
num_inference_steps=num_inference_steps)[0]
current_image = init_images[0]
mask_width = 128
num_interpol_frames = 30
all_frames = []
all_frames.append(current_image)
for i in range(num_outpainting_steps):
print('Outpaint step: ' + str(i+1) +
' / ' + str(num_outpainting_steps))
prev_image_fix = current_image
prev_image = shrink_and_paste_on_blank(current_image, mask_width)
current_image = prev_image
# create mask (black image with white mask_width width edges)
mask_image = np.array(current_image)[:, :, 3]
mask_image = Image.fromarray(255-mask_image).convert("RGB")
# inpainting step
current_image = current_image.convert("RGB")
images = pipe(prompt=prompts[max(k for k in prompts.keys() if k <= i)],
negative_prompt=negative_prompt,
image=current_image,
guidance_scale=guidance_scale,
height=height,
width=width,
# generator = g_cuda.manual_seed(seed),
mask_image=mask_image,
num_inference_steps=num_inference_steps)[0]
current_image = images[0]
current_image.paste(prev_image, mask=prev_image)
# interpolation steps bewteen 2 inpainted images (=sequential zoom and crop)
for j in range(num_interpol_frames - 1):
interpol_image = current_image
interpol_width = round(
(1 - (1-2*mask_width/height)**(1-(j+1)/num_interpol_frames))*height/2
)
interpol_image = interpol_image.crop((interpol_width,
interpol_width,
width - interpol_width,
height - interpol_width))
interpol_image = interpol_image.resize((height, width))
# paste the higher resolution previous image in the middle to avoid drop in quality caused by zooming
interpol_width2 = round(
(1 - (height-2*mask_width) / (height-2*interpol_width)) / 2*height
)
prev_image_fix_crop = shrink_and_paste_on_blank(
prev_image_fix, interpol_width2)
interpol_image.paste(prev_image_fix_crop, mask=prev_image_fix_crop)
all_frames.append(interpol_image)
all_frames.append(current_image)
# interpol_image.show()
video_file_name = "infinite_zoom_" + str(time.time())
fps = 30
save_path = video_file_name + ".mp4"
start_frame_dupe_amount = 15
last_frame_dupe_amount = 15
write_video(save_path, all_frames, fps, False,
start_frame_dupe_amount, last_frame_dupe_amount)
return save_path
def zoom_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
outpaint_prompts = gr.Dataframe(
type="array",
headers=["outpaint steps", "prompt"],
datatype=["number", "str"],
row_count=1,
col_count=(2, "fixed"),
value=[[0, default_prompt]],
wrap=True
)
outpaint_negative_prompt = gr.Textbox(
lines=1,
value=default_negative_prompt,
label='Negative Prompt'
)
outpaint_steps = gr.Slider(
minimum=5,
maximum=25,
step=1,
value=12,
label='Total Outpaint Steps'
)
with gr.Accordion("Advanced Options", open=False):
model_id = gr.Dropdown(
choices=inpaint_model_list,
value=inpaint_model_list[0],
label='Pre-trained Model ID'
)
guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7,
label='Guidance Scale'
)
sampling_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Sampling Steps for each outpaint'
)
init_image = gr.Image(type="pil")
generate_btn = gr.Button(value='Generate video')
with gr.Column():
output_image = gr.Video(label='Output', format="mp4").style(
width=512, height=512)
generate_btn.click(
fn=zoom,
inputs=[
model_id,
outpaint_prompts,
outpaint_negative_prompt,
outpaint_steps,
guidance_scale,
sampling_step,
init_image
],
outputs=output_image,
)