diff --git a/README.md b/README.md index 6a9c5356d..e64269596 100644 --- a/README.md +++ b/README.md @@ -12,15 +12,15 @@ No need to clone the huge PyTorch repo. No need to install Sphinx. No need to wa | Docs | Version | Release Page | | ------------ | ------------------------------------------------------------ | ------------------------------------------------------------ | -| PyTorch | [![torch version](https://img.shields.io/badge/torch_version-v1.7.0-282828.svg?labelColor=4F4F4F&logo=PyTorch)](https://pytorch.org/blog/pytorch-1.7-released/) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.7.0) | -| torchvision | [![torchvision version](https://img.shields.io/badge/torchvision_version-v0.8.0-282828.svg?labelColor=4F4F4FF&logo=PyTorch)](https://github.com/pytorch/vision/releases/tag/v0.8.0) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.7.0) | +| PyTorch | [![torch version](https://img.shields.io/badge/torch_version-v1.8.0-282828.svg?labelColor=4F4F4F&logo=PyTorch)](https://pytorch.org/blog/pytorch-1.8-released/) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.8.0) | +| torchvision | [![torchvision version](https://img.shields.io/badge/torchvision_version-v0.9.0-282828.svg?labelColor=4F4F4FF&logo=PyTorch)](https://github.com/pytorch/vision/releases/tag/v0.9.0) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.8.0) | | Numpy | [![numpy version](https://badgen.net/badge/NumPy%20version/v1.19.0/black?icon=dockbit)](https://numpy.org/doc/1.19/release.html) | [Link](https://numpy.org/doc) | | Scikit-learn | [![scikit-learn version](https://badgen.net/badge/Scikit-learn%20version/v0.22/black?icon=libraries)](https://github.com/scikit-learn/scikit-learn/releases/tag/0.23.2) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.7.1) | | Matplotlib | [![matplotlib version](https://badgen.net/badge/Matplotlib%20version/v3.3.1/black?icon=graphql)](https://github.com/matplotlib/matplotlib/releases/tag/v3.3.1) | [Link](https://github.com/unknownue/PyTorch.docs/releases/tag/v1.6.1) | ## How to use -You can download from [release page](https://github.com/unknownue/PyTorch.docs/releases)(recommended), or clone this repo(about 300+MB) by +You can download from [release page](https://github.com/unknownue/PyTorch.docs/releases)(recommended), or clone this repo(about 700+MB) by ```shell $ git clone https://github.com/unknownue/PyTorch.docs.git @@ -30,4 +30,4 @@ The documentation of PyTorch is in `torch` directory, and that of torchvision is Open `Index.html` to view the documentation. -If you want to build by yourself, the `build` directory contains the build configuration in docker. \ No newline at end of file +If you want to build by yourself, the `build` directory contains the build configuration in docker. diff --git a/torch/__config__.html b/torch/__config__.html index 399377b40..35c504a73 100644 --- a/torch/__config__.html +++ b/torch/__config__.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ +
@@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    @@ -1392,9 +1686,70 @@

    Collective functions +
    +
    +torch.distributed.gather_object(obj, object_gather_list=None, dst=0, group=None)[source]
    +

    Gathers picklable objects from the whole group in a single process. +Similar to gather(), but Python objects can be passed in. Note that the +object must be picklable in order to be gathered.

    +
    +
    Parameters
    +
      +
    • obj (Any) – Input object. Must be picklable.

    • +
    • object_gather_list (list[Any]) – Output list. On the dst rank, it +should be correctly sized as the size of the group for this +collective and will contain the output. Must be None on non-dst +ranks. (default is None)

    • +
    • dst (int, optional) – Destination rank. (default is 0)

    • +
    • group – (ProcessGroup, optional): The process group to work on. If None, +the default process group will be used. Default is None.

    • +
    +
    +
    Returns
    +

    None. On the dst rank, object_gather_list will contain the +output of the collective.

    +
    +
    +
    +

    Note

    +

    Note that this API differs slightly from the gather collective +since it does not provide an async_op handle and thus will be a blocking +call.

    +
    +
    +

    Note

    +

    Note that this API is not supported when using the NCCL backend.

    +
    +
    +

    Warning

    +

    gather_object() uses pickle module implicitly, which is +known to be insecure. It is possible to construct malicious pickle data +which will execute arbitrary code during unpickling. Only call this +function with data you trust.

    +
    +
    +
    Example::
    >>> # Note: Process group initialization omitted on each rank.
    +>>> import torch.distributed as dist
    +>>> # Assumes world_size of 3.
    +>>> gather_objects = ["foo", 12, {1: 2}] # any picklable object
    +>>> output = [None for _ in gather_objects]
    +>>> dist.gather_object(
    +        gather_objects[dist.get_rank()],
    +        output if dist.get_rank() == 0 else None,
    +        dst=0
    +    )
    +>>> # On rank 0
    +>>> output
    +['foo', 12, {1: 2}]
    +
    +
    +
    +
    +
    +
    -torch.distributed.scatter(tensor, scatter_list=None, src=0, group=<object object>, async_op=False)[source]
    +torch.distributed.scatter(tensor, scatter_list=None, src=0, group=None, async_op=False)[source]

    Scatters a list of tensors to all processes in a group.

    Each process will receive exactly one tensor and store its data in the tensor argument.

    @@ -1405,7 +1760,8 @@

    Collective functions

    scatter_list (list[Tensor]) – List of tensors to scatter (default is None, must be specified on the source rank)

  • src (int) – Source rank (default is 0)

  • -
  • group (ProcessGroup, optional) – The process group to work on

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op

  • @@ -1416,16 +1772,77 @@

    Collective functions

    +
    +
    +torch.distributed.scatter_object_list(scatter_object_output_list, scatter_object_input_list, src=0, group=None)[source]
    +

    Scatters picklable objects in scatter_object_input_list to the whole +group. Similar to scatter(), but Python objects can be passed in. On +each rank, the scattered object will be stored as the first element of +scatter_object_output_list. Note that all objects in +scatter_object_input_list must be picklable in order to be scattered.

    +
    +
    Parameters
    +
      +
    • scatter_object_output_list (List[Any]) – Non-empty list whose first +element will store the object scattered to this rank.

    • +
    • scatter_object_input_list (List[Any]) – List of input objects to scatter. +Each object must be picklable. Only objects on the src rank will +be scattered, and the argument can be None for non-src ranks.

    • +
    • src (int) – Source rank from which to scatter +scatter_object_input_list.

    • +
    • group – (ProcessGroup, optional): The process group to work on. If None, +the default process group will be used. Default is None.

    • +
    +
    +
    Returns
    +

    None. If rank is part of the group, scatter_object_output_list +will have its first element set to the scattered object for this rank.

    +
    +
    +
    +

    Note

    +

    Note that this API differs slightly from the scatter collective +since it does not provide an async_op handle and thus will be a +blocking call.

    +
    +
    +

    Warning

    +

    scatter_object_list() uses pickle module implicitly, which +is known to be insecure. It is possible to construct malicious pickle +data which will execute arbitrary code during unpickling. Only call this +function with data you trust.

    +
    +
    +
    Example::
    >>> # Note: Process group initialization omitted on each rank.
    +>>> import torch.distributed as dist
    +>>> if dist.get_rank() == 0:
    +>>>     # Assumes world_size of 3.
    +>>>     objects = ["foo", 12, {1: 2}] # any picklable object
    +>>> else:
    +>>>     # Can be any list on non-src ranks, elements are not used.
    +>>>     objects = [None, None, None]
    +>>> output_list = [None]
    +>>> dist.scatter_object_list(output_list, objects, src=0)
    +>>> # Rank i gets objects[i]. For example, on rank 2:
    +>>> output_list
    +[{1: 2}]
    +
    +
    +
    +
    +
    +
    -torch.distributed.reduce_scatter(output, input_list, op=ReduceOp.SUM, group=<object object>, async_op=False)[source]
    +torch.distributed.reduce_scatter(output, input_list, op=<ReduceOp.SUM: 0>, group=None, async_op=False)[source]

    Reduces, then scatters a list of tensors to all processes in a group.

    Parameters
    • output (Tensor) – Output tensor.

    • input_list (list[Tensor]) – List of tensors to reduce and scatter.

    • -
    • group (ProcessGroup, optional) – The process group to work on.

    • +
    • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

    • async_op (bool, optional) – Whether this op should be an async op.

    @@ -1438,7 +1855,7 @@

    Collective functions
    -torch.distributed.all_to_all(output_tensor_list, input_tensor_list, group=<object object>, async_op=False)[source]
    +torch.distributed.all_to_all(output_tensor_list, input_tensor_list, group=None, async_op=False)[source]

    Each process scatters list of input tensors to all processes in a group and return gathered list of tensors in output list.

    @@ -1447,7 +1864,8 @@

    Collective functions

    output_tensor_list (list[Tensor]) – List of tensors to be gathered one per rank.

  • input_tensor_list (list[Tensor]) – List of tensors to scatter one per rank.

  • -
  • group (ProcessGroup, optional) – The process group to work on.

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op.

  • @@ -1518,15 +1936,18 @@

    Collective functions
    -torch.distributed.barrier(group=<object object>, async_op=False)[source]
    +torch.distributed.barrier(group=None, async_op=False, device_ids=None)[source]

    Synchronizes all processes.

    This collective blocks processes until the whole group enters this function, if async_op is False, or if async work handle is called on wait().

    Parameters
      -
    • group (ProcessGroup, optional) – The process group to work on

    • +
    • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

    • async_op (bool, optional) – Whether this op should be an async op

    • +
    • device_ids ([int], optional) – List of device/GPU ids. +Valid only for NCCL backend.

    Returns
    @@ -1543,6 +1964,7 @@

    Collective functionsMIN, MAX, BAND, BOR, and BXOR.

    Note that BAND, BOR, and BXOR reductions are not available when using the NCCL backend.

    +

    Additionally, MAX, MIN and PRODUCT are not supported for complex tensors.

    The values of this class can be accessed as attributes, e.g., ReduceOp.SUM. They are used in specifying strategies for reduction collectives, e.g., reduce(), all_reduce_multigpu(), etc.

    @@ -1560,12 +1982,29 @@

    Collective functions
    -class torch.distributed.reduce_op[source]
    +class torch.distributed.reduce_op

    Deprecated enum-like class for reduction operations: SUM, PRODUCT, MIN, and MAX.

    ReduceOp is recommended to use instead.

    + +
    +

    Autograd-enabled communication primitives

    +

    If you want to use collective communication functions supporting autograd +you can find an implementation of those in the torch.distributed.nn.* module.

    +

    Functions here are synchronous and will be inserted in the autograd graph, so +you need to ensure that all the processes that participated in the collective operation +will do the backward pass for the backward communication to effectively happen and +don’t cause a deadlock.

    +

    Please notice that currently the only backend where all the functions are guaranteed to work is gloo. +.. autofunction:: torch.distributed.nn.broadcast +.. autofunction:: torch.distributed.nn.gather +.. autofunction:: torch.distributed.nn.scatter +.. autofunction:: torch.distributed.nn.reduce +.. autofunction:: torch.distributed.nn.all_gather +.. autofunction:: torch.distributed.nn.all_to_all +.. autofunction:: torch.distributed.nn.all_reduce

    Multi-GPU collective functions

    @@ -1619,7 +2058,7 @@

    Multi-GPU collective functions
    -torch.distributed.broadcast_multigpu(tensor_list, src, group=<object object>, async_op=False, src_tensor=0)[source]
    +torch.distributed.broadcast_multigpu(tensor_list, src, group=None, async_op=False, src_tensor=0)[source]

    Broadcasts the tensor to the whole group with multiple GPU tensors per node.

    tensor must have the same number of elements in all the GPUs from @@ -1638,7 +2077,8 @@

    Multi-GPU collective functionslen(tensor_list) is the same for all the distributed processes calling this function.

  • src (int) – Source rank.

  • -
  • group (ProcessGroup, optional) – The process group to work on

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op

  • src_tensor (int, optional) – Source tensor rank within tensor_list

  • @@ -1652,7 +2092,7 @@

    Multi-GPU collective functions
    -torch.distributed.all_reduce_multigpu(tensor_list, op=ReduceOp.SUM, group=<object object>, async_op=False)[source]
    +torch.distributed.all_reduce_multigpu(tensor_list, op=<ReduceOp.SUM: 0>, group=None, async_op=False)[source]

    Reduces the tensor data across all machines in such a way that all get the final result. This function reduces a number of tensors on every node, while each tensor resides on different GPUs. @@ -1660,6 +2100,7 @@

    Multi-GPU collective functionstensor in tensor_list is going to be bitwise identical in all processes.

    +

    Complex tensors are supported.

    Only nccl and gloo backend is currently supported tensors should only be GPU tensors

    @@ -1673,7 +2114,8 @@

    Multi-GPU collective functionstorch.distributed.ReduceOp enum. Specifies an operation used for element-wise reductions.

    -
  • group (ProcessGroup, optional) – The process group to work on

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op

  • @@ -1686,7 +2128,7 @@

    Multi-GPU collective functions
    -torch.distributed.reduce_multigpu(tensor_list, dst, op=ReduceOp.SUM, group=<object object>, async_op=False, dst_tensor=0)[source]
    +torch.distributed.reduce_multigpu(tensor_list, dst, op=<ReduceOp.SUM: 0>, group=None, async_op=False, dst_tensor=0)[source]

    Reduces the tensor data on multiple GPUs across all machines. Each tensor in tensor_list should reside on a separate GPU

    Only the GPU of tensor_list[dst_tensor] on the process with rank dst @@ -1704,7 +2146,8 @@

    Multi-GPU collective functionstorch.distributed.ReduceOp enum. Specifies an operation used for element-wise reductions.

    -
  • group (ProcessGroup, optional) – The process group to work on

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op

  • dst_tensor (int, optional) – Destination tensor rank within tensor_list

  • @@ -1719,11 +2162,12 @@

    Multi-GPU collective functions
    -torch.distributed.all_gather_multigpu(output_tensor_lists, input_tensor_list, group=<object object>, async_op=False)[source]
    +torch.distributed.all_gather_multigpu(output_tensor_lists, input_tensor_list, group=None, async_op=False)[source]

    Gathers tensors from the whole group in a list. Each tensor in tensor_list should reside on a separate GPU

    Only nccl backend is currently supported tensors should only be GPU tensors

    +

    Complex tensors are supported.

    Parameters
    @@ -1760,7 +2205,7 @@

    Multi-GPU collective functions
    -torch.distributed.reduce_scatter_multigpu(output_tensor_list, input_tensor_lists, op=ReduceOp.SUM, group=<object object>, async_op=False)[source]
    +torch.distributed.reduce_scatter_multigpu(output_tensor_list, input_tensor_lists, op=<ReduceOp.SUM: 0>, group=None, async_op=False)[source]

    Reduce and scatter a list of tensors to the whole group. Only nccl backend is currently supported.

    Each tensor in output_tensor_list should reside on a separate GPU, as @@ -1789,7 +2234,8 @@

    Multi-GPU collective functionslen(input_tensor_lists[i])) need to be the same for all the distributed processes calling this function.

    -
  • group (ProcessGroup, optional) – The process group to work on.

  • +
  • group (ProcessGroup, optional) – The process group to work on. If None, +the default process group will be used.

  • async_op (bool, optional) – Whether this op should be an async op.

  • @@ -1890,11 +2336,11 @@

    Launch utility
    >>> torch.cuda.set_device(arg.local_rank)  # before your code runs
    +
    >>> torch.cuda.set_device(args.local_rank)  # before your code runs
     

    or

    -
    >>> with torch.cuda.device(arg.local_rank):
    +
    >>> with torch.cuda.device(args.local_rank):
     >>>    # your code to run
     
    @@ -1912,8 +2358,8 @@

    Launch utilitytorch.nn.parallel.DistributedDataParallel() module, here is how to configure it.

    model = torch.nn.parallel.DistributedDataParallel(model,
    -                                                  device_ids=[arg.local_rank],
    -                                                  output_device=arg.local_rank)
    +                                                  device_ids=[args.local_rank],
    +                                                  output_device=args.local_rank)
     

    Please ensure that device_ids argument is set to be the only GPU device id @@ -2014,6 +2460,7 @@

    Spawn utilityPoint-to-point communication
  • Synchronous and asynchronous collective operations
  • Collective functions
  • +
  • Autograd-enabled communication primitives
  • Multi-GPU collective functions
  • Third-party backends
  • Launch utility
  • @@ -2208,10 +2655,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -2232,14 +2675,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/distributions.html b/torch/distributions.html index c3aa89d74..96fb474d7 100644 --- a/torch/distributions.html +++ b/torch/distributions.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + -
    - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    +
    property stddev
    @@ -928,14 +980,19 @@

    Categorical{0,,K1}\{0, \ldots, K-1\} where K is probs.size(-1).

    -

    If probs is 1D with length-K, each element is the relative -probability of sampling the class at that index.

    -

    If probs is 2D, it is treated as a batch of relative probability -vectors.

    +

    If probs is 1-dimensional with length-K, each element is the relative probability +of sampling the class at that index.

    +

    If probs is N-dimensional, the first N-1 dimensions are treated as a batch of +relative probability vectors.

    Note

    -

    probs must be non-negative, finite and have a non-zero sum, -and it will be normalized to sum to 1.

    +

    The probs argument must be non-negative, finite and have a non-zero sum, +and it will be normalized to sum to 1 along the last dimension. attr:probs +will return this normalized value. +The logits argument will be interpreted as unnormalized log probabilities +and can therefore be any real number. It will likewise be normalized so that +the resulting probabilities sum to 1 along the last dimension. attr:logits +will return this normalized value.

    See also: torch.multinomial()

    Example:

    @@ -948,13 +1005,13 @@

    CategoricalParameters
    • probs (Tensor) – event probabilities

    • -
    • logits (Tensor) – event log-odds

    • +
    • logits (Tensor) – event log probabilities (unnormalized)

    -arg_constraints = {'logits': Real(), 'probs': Simplex()}
    +arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
    @@ -1272,7 +1329,7 @@

    Dirichlet
    -arg_constraints = {'concentration': GreaterThan(lower_bound=0.0)}
    +arg_constraints = {'concentration': IndependentConstraint(GreaterThan(lower_bound=0.0), 1)}

    @@ -1641,7 +1698,7 @@

    Gumbel
    -arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}

    @@ -1706,7 +1763,7 @@

    HalfCauchy
    -arg_constraints = {'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)}

    @@ -1786,7 +1843,7 @@

    HalfNormal
    -arg_constraints = {'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)}

    @@ -1878,7 +1935,7 @@

    Independent
    -arg_constraints = {}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}

    @@ -1938,6 +1995,141 @@

    Independent +

    Kumaraswamy

    +
    +
    +class torch.distributions.kumaraswamy.Kumaraswamy(concentration1, concentration0, validate_args=None)[source]
    +

    Bases: torch.distributions.transformed_distribution.TransformedDistribution

    +

    Samples from a Kumaraswamy distribution.

    +

    Example:

    +
    >>> m = Kumaraswamy(torch.Tensor([1.0]), torch.Tensor([1.0]))
    +>>> m.sample()  # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1
    +tensor([ 0.1729])
    +
    +
    +
    +
    Parameters
    +
      +
    • concentration1 (float or Tensor) – 1st concentration parameter of the distribution +(often referred to as alpha)

    • +
    • concentration0 (float or Tensor) – 2nd concentration parameter of the distribution +(often referred to as beta)

    • +
    +
    +
    +
    +
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)}
    +
    + +
    +
    +entropy()[source]
    +
    + +
    +
    +expand(batch_shape, _instance=None)[source]
    +
    + +
    +
    +has_rsample = True
    +
    + +
    +
    +property mean
    +
    + +
    +
    +support = Interval(lower_bound=0.0, upper_bound=1.0)
    +
    + +
    +
    +property variance
    +
    + +
    + +

    +
    +

    LKJCholesky

    +
    +
    +class torch.distributions.lkj_cholesky.LKJCholesky(dim, concentration=1.0, validate_args=None)[source]
    +

    Bases: torch.distributions.distribution.Distribution

    +

    LKJ distribution for lower Cholesky factor of correlation matrices. +The distribution is controlled by concentration parameter η\eta + + +to make the probability of the correlation matrix MM + + generated from +a Cholesky factor propotional to det(M)η1\det(M)^{\eta - 1} + +. Because of that, +when concentration == 1, we have a uniform distribution over Cholesky +factors of correlation matrices. Note that this distribution samples the +Cholesky factor of correlation matrices and not the correlation matrices +themselves and thereby differs slightly from the derivations in [1] for +the LKJCorr distribution. For sampling, this uses the Onion method from +[1] Section 3.

    +
    +

    L ~ LKJCholesky(dim, concentration) +X = L @ L’ ~ LKJCorr(dim, concentration)

    +
    +

    Example:

    +
    >>> l = LKJCholesky(3, 0.5)
    +>>> l.sample()  # l @ l.T is a sample of a correlation 3x3 matrix
    +tensor([[ 1.0000,  0.0000,  0.0000],
    +        [ 0.3516,  0.9361,  0.0000],
    +        [-0.1899,  0.4748,  0.8593]])
    +
    +
    +
    +
    Parameters
    +
      +
    • dimension (dim) – dimension of the matrices

    • +
    • concentration (float or Tensor) – concentration/shape parameter of the +distribution (often referred to as eta)

    • +
    +
    +
    +

    References

    +

    [1] Generating random correlation matrices based on vines and extended onion method, +Daniel Lewandowski, Dorota Kurowicka, Harry Joe.

    +
    +
    +arg_constraints = {'concentration': GreaterThan(lower_bound=0.0)}
    +
    + +
    +
    +expand(batch_shape, _instance=None)[source]
    +
    + +
    +
    +log_prob(value)[source]
    +
    + +
    +
    +sample(sample_shape=torch.Size([]))[source]
    +
    + +
    +
    +support = CorrCholesky()
    +
    + +
    +

    Laplace

    @@ -2051,7 +2243,7 @@

    LogNormal
    -arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)}

    @@ -2138,7 +2330,7 @@

    LowRankMultivariateNormal
    -arg_constraints = {'cov_diag': GreaterThan(lower_bound=0.0), 'cov_factor': Real(), 'loc': Real()}
    +arg_constraints = {'cov_diag': IndependentConstraint(GreaterThan(lower_bound=0.0), 1), 'cov_factor': IndependentConstraint(Real(), 2), 'loc': IndependentConstraint(Real(), 1)}

    @@ -2188,7 +2380,7 @@

    LowRankMultivariateNormal
    -support = Real()
    +support = IndependentConstraint(Real(), 1)

    @@ -2249,7 +2441,7 @@

    MixtureSameFamily
    -arg_constraints = {}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}
    @@ -2311,15 +2503,20 @@

    Multinomial class torch.distributions.multinomial.Multinomial(total_count=1, probs=None, logits=None, validate_args=None)[source]

    Bases: torch.distributions.distribution.Distribution

    -

    Creates a Multinomial distribution parameterized by total_count and +

    Creates a Multinomial distribution parameterized by total_count and either probs or logits (but not both). The innermost dimension of probs indexes over categories. All other dimensions index over batches.

    -

    Note that total_count need not be specified if only log_prob() is +

    Note that total_count need not be specified if only log_prob() is called (see example below)

    Note

    -

    probs must be non-negative, finite and have a non-zero sum, -and it will be normalized to sum to 1.

    +

    The probs argument must be non-negative, finite and have a non-zero sum, +and it will be normalized to sum to 1 along the last dimension. attr:probs +will return this normalized value. +The logits argument will be interpreted as unnormalized log probabilities +and can therefore be any real number. It will likewise be normalized so that +the resulting probabilities sum to 1 along the last dimension. attr:logits +will return this normalized value.

    • sample() requires a single shared total_count for all @@ -2341,13 +2538,13 @@

      Multinomial
      • total_count (int) – number of trials

      • probs (Tensor) – event probabilities

      • -
      • logits (Tensor) – event log probabilities

      • +
      • logits (Tensor) – event log probabilities (unnormalized)

    -arg_constraints = {'logits': Real(), 'probs': Simplex()}
    +arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
    @@ -2390,6 +2587,11 @@

    Multinomialproperty support

    +
    +
    +total_count: int = None
    +
    +
    property variance
    @@ -2448,7 +2650,7 @@

    MultivariateNormal
    -arg_constraints = {'covariance_matrix': PositiveDefinite(), 'loc': RealVector(), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()}
    +arg_constraints = {'covariance_matrix': PositiveDefinite(), 'loc': IndependentConstraint(Real(), 1), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()}
    @@ -2498,7 +2700,7 @@

    MultivariateNormal
    -support = Real()
    +support = IndependentConstraint(Real(), 1)

    @@ -2518,15 +2720,15 @@

    NegativeBinomialCreates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before total_count failures are achieved. The probability -of success of each Bernoulli trial is probs.

    +of failure of each Bernoulli trial is probs.

    Parameters
    • total_count (float or Tensor) – non-negative number of negative Bernoulli trials to stop, although the distribution is still valid for real valued count

    • -
    • probs (Tensor) – Event probabilities of success in the half open interval [0, 1)

    • -
    • logits (Tensor) – Event log-odds for probabilities of success

    • +
    • probs (Tensor) – Event probabilities of failure in the half open interval [0, 1)

    • +
    • logits (Tensor) – Event log-odds for probabilities of failure

    @@ -2685,8 +2887,13 @@

    OneHotCategoricalSamples are one-hot coded vectors of size probs.size(-1).

    Note

    -

    probs must be non-negative, finite and have a non-zero sum, -and it will be normalized to sum to 1.

    +

    The probs argument must be non-negative, finite and have a non-zero sum, +and it will be normalized to sum to 1 along the last dimension. attr:probs +will return this normalized value. +The logits argument will be interpreted as unnormalized log probabilities +and can therefore be any real number. It will likewise be normalized so that +the resulting probabilities sum to 1 along the last dimension. attr:logits +will return this normalized value.

    See also: torch.distributions.Categorical() for specifications of probs and logits.

    @@ -2700,13 +2907,13 @@

    OneHotCategoricalParameters
    • probs (Tensor) – event probabilities

    • -
    • logits (Tensor) – event log probabilities

    • +
    • logits (Tensor) – event log probabilities (unnormalized)

    -arg_constraints = {'logits': Real(), 'probs': Simplex()}
    +arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
    @@ -2761,7 +2968,7 @@

    OneHotCategorical
    -support = Simplex()
    +support = OneHot()

    @@ -2795,7 +3002,7 @@

    Pareto
    -arg_constraints = {'alpha': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'alpha': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}

    @@ -2916,7 +3123,7 @@

    RelaxedBernoulli
    -arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)}
    @@ -3040,13 +3247,13 @@

    RelaxedOneHotCategorical
    • temperature (Tensor) – relaxation temperature

    • probs (Tensor) – event probabilities

    • -
    • logits (Tensor) – the log probability of each event.

    • +
    • logits (Tensor) – unnormalized log probability for each event

    -arg_constraints = {'logits': Real(), 'probs': Simplex()}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()}
    @@ -3190,7 +3397,7 @@

    TransformedDistributionRelaxedOneHotCategorical

    -arg_constraints = {}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {}
    @@ -3432,7 +3639,7 @@

    Weibull
    -arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}
    +arg_constraints: Dict[str, torch.distributions.constraints.Constraint] = {'concentration': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)}

    @@ -3572,10 +3779,6 @@

    Weibullint or Tensor) – For bijective univariate transforms, this should be +1 or -1 depending on whether transform is monotone increasing or decreasing.

    -
  • ~Transform.event_dim (int) – Number of dimensions that are correlated together in -the transform event_shape. This should be 0 for pointwise -transforms, 1 for transforms that act jointly on vectors, 2 for -transforms that act jointly on matrices, etc.

  • @@ -3599,6 +3802,20 @@

    Weibull +
    +forward_shape(shape)[source]
    +

    Infers the shape of the forward computation, given the input shape. +Defaults to preserving shape.

    +

    + +
    +
    +inverse_shape(shape)[source]
    +

    Infers the shapes of the inverse computation, given the output shape. +Defaults to preserving shape.

    +
    +
    @@ -3617,6 +3834,41 @@

    Weibull +
    +class torch.distributions.transforms.IndependentTransform(base_transform, reinterpreted_batch_ndims, cache_size=0)[source]
    +

    Wrapper around another transform to treat +reinterpreted_batch_ndims-many extra of the right most dimensions as +dependent. This has no effect on the forward or backward transforms, but +does sum out reinterpreted_batch_ndims-many of the rightmost dimensions +in log_abs_det_jacobian().

    +
    +
    Parameters
    +
      +
    • base_transform (Transform) – A base transform.

    • +
    • reinterpreted_batch_ndims (int) – The number of extra rightmost +dimensions to treat as dependent.

    • +
    +
    +
    +

    + +
    +
    +class torch.distributions.transforms.ReshapeTransform(in_shape, out_shape, cache_size=0)[source]
    +

    Unit Jacobian transform to reshape the rightmost part of a tensor.

    +

    Note that in_shape and out_shape must have the same number of +elements, just as for torch.Tensor.reshape().

    +
    +
    Parameters
    +
      +
    • in_shape (torch.Size) – The input event shape.

    • +
    • out_shape (torch.Size) – The output event shape.

    • +
    +
    +
    +
    +
    class torch.distributions.transforms.ExpTransform(cache_size=0)[source]
    @@ -3685,6 +3937,56 @@

    Weibull +
    +class torch.distributions.transforms.CorrCholeskyTransform(cache_size=0)[source]
    +

    Transforms an uncontrained real vector xx + + with length D(D1)/2D*(D-1)/2 + + into the +Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower +triangular matrix with positive diagonals and unit Euclidean norm for each row. +The transform is processed as follows:

    +
    +
      +
    1. First we convert x into a lower triangular matrix in row order.

    2. +
    3. For each row XiX_i + + of the lower triangular part, we apply a signed version of +class StickBreakingTransform to transform XiX_i + + into a +unit Euclidean length vector using the following steps: +- Scales into the interval (1,1)(-1, 1) + + domain: ri=tanh(Xi)r_i = \tanh(X_i) + +. +- Transforms into an unsigned domain: zi=ri2z_i = r_i^2 + +. +- Applies si=StickBreakingTransform(zi)s_i = StickBreakingTransform(z_i) + +. +- Transforms back into signed domain: yi=sign(ri)siy_i = sign(r_i) * \sqrt{s_i} + +.

    4. +
    +
    +

    +
    class torch.distributions.transforms.SoftmaxTransform(cache_size=0)[source]
    @@ -3719,22 +4021,6 @@

    Weibull -
    -class torch.distributions.transforms.CatTransform(tseq, dim=0, lengths=None, cache_size=0)[source]
    -

    Transform functor that applies a sequence of transforms tseq -component-wise to each submatrix at dim, of length lengths[dim], -in a way compatible with torch.cat().

    -
    -
    Example::

    x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0) -x = torch.cat([x0, x0], dim=0) -t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10]) -t = CatTransform([t0, t0], dim=0, lengths=[20, 20]) -y = t(x)

    -
    -
    -

    -
    class torch.distributions.transforms.StackTransform(tseq, dim=0, cache_size=0)[source]
    @@ -3756,18 +4042,24 @@

    Weibull
  • constraints.boolean

  • constraints.cat

  • +
  • constraints.corr_cholesky

  • constraints.dependent

  • constraints.greater_than(lower_bound)

  • +
  • constraints.greater_than_eq(lower_bound)

  • +
  • constraints.independent(constraint, reinterpreted_batch_ndims)

  • constraints.integer_interval(lower_bound, upper_bound)

  • constraints.interval(lower_bound, upper_bound)

  • +
  • constraints.less_than(upper_bound)

  • constraints.lower_cholesky

  • constraints.lower_triangular

  • +
  • constraints.multinomial

  • constraints.nonnegative_integer

  • -
  • constraints.positive

  • +
  • constraints.one_hot

  • constraints.positive_definite

  • constraints.positive_integer

  • -
  • constraints.real

  • +
  • constraints.positive

  • constraints.real_vector

  • +
  • constraints.real

  • constraints.simplex

  • constraints.stack

  • constraints.unit_interval

  • @@ -3778,10 +4070,21 @@

    Weibull +
    Variables
    +
      +
    • ~Constraint.is_discrete (bool) – Whether constrained space is discrete. +Defaults to False.

    • +
    • ~Constraint.event_dim (int) – Number of rightmost dimensions that together define +an event. The check() method will remove this many dimensions +when computing validity.

    • +
    +
    +

    check(value)[source]
    -

    Returns a byte tensor of sample_shape + batch_shape indicating +

    Returns a byte tensor of sample_shape + batch_shape indicating whether each event in value satisfies this constraint.

    @@ -3793,6 +4096,12 @@

    Weibulltorch.distributions.constraints._DependentProperty

    +
    +
    +torch.distributions.constraints.independent
    +

    alias of torch.distributions.constraints._IndependentConstraint

    +
    +
    torch.distributions.constraints.integer_interval
    @@ -3817,6 +4126,12 @@

    Weibulltorch.distributions.constraints._LessThan

    +
    +
    +torch.distributions.constraints.multinomial
    +

    alias of torch.distributions.constraints._Multinomial

    +
    +
    torch.distributions.constraints.interval
    @@ -4004,6 +4319,8 @@

    WeibullHalfCauchy
  • HalfNormal
  • Independent
  • +
  • Kumaraswamy
  • +
  • LKJCholesky
  • Laplace
  • LogNormal
  • LowRankMultivariateNormal
  • @@ -4217,10 +4534,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -4241,14 +4554,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/dlpack.html b/torch/dlpack.html index fb3c76565..42173e535 100644 --- a/torch/dlpack.html +++ b/torch/dlpack.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    @@ -638,10 +702,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -662,14 +722,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/generated/torch.einsum.html b/torch/generated/torch.einsum.html index 7bfbaf357..3b1f61940 100644 --- a/torch/generated/torch.einsum.html +++ b/torch/generated/torch.einsum.html @@ -31,12 +31,12 @@ - + - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Note

    -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid -cross-correlation, and not a full cross-correlation. -It is up to the user to add proper padding.

    -
    -
    -

    Note

    When groups == in_channels and out_channels == K * in_channels, -where K is a positive integer, this operation is also termed in -literature as depthwise convolution.

    +where K is a positive integer, this operation is also known as a “depthwise convolution”.

    In other words, for an input of size (N,Cin,Lin)(N, C_{in}, L_{in}) , -a depthwise convolution with a depthwise multiplier K, can be constructed by arguments -(Cin=Cin,Cout=Cin×K,...,groups=Cin)(C_\text{in}=C_{in}, C_\text{out}=C_{in} \times K, ..., \text{groups}=C_{in}) +a depthwise convolution with a depthwise multiplier K can be performed with the arguments +(Cin=Cin,Cout=Cin×K,...,groups=Cin)(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in}) .

    Note

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = -True. -Please see the notes on Reproducibility for background.

    +

    In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. See Reproducibility for more information.

    Parameters
    @@ -564,7 +587,7 @@

    Conv1d - + @@ -785,10 +808,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -809,14 +828,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/generated/torch.nn.Conv2d.html b/torch/generated/torch.nn.Conv2d.html index 42017fe69..70e85bc0d 100644 --- a/torch/generated/torch.nn.Conv2d.html +++ b/torch/generated/torch.nn.Conv2d.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    @@ -417,32 +454,19 @@

    Conv2d

    Note

    -

    Depending of the size of your kernel, several (of the last) -columns of the input might be lost, because it is a valid cross-correlation, -and not a full cross-correlation. -It is up to the user to add proper padding.

    - -
    -

    Note

    When groups == in_channels and out_channels == K * in_channels, -where K is a positive integer, this operation is also termed in -literature as depthwise convolution.

    -

    In other words, for an input of size (N,Cin,Hin,Win)(N, C_{in}, H_{in}, W_{in}) +where K is a positive integer, this operation is also known as a “depthwise convolution”.

    +

    In other words, for an input of size (N,Cin,Lin)(N, C_{in}, L_{in}) , -a depthwise convolution with a depthwise multiplier K, can be constructed by arguments -(in_channels=Cin,out_channels=Cin×K,...,groups=Cin)(in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in}) +a depthwise convolution with a depthwise multiplier K can be performed with the arguments +(Cin=Cin,Cout=Cin×K,...,groups=Cin)(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in}) .

    Note

    -

    In some circumstances when using the CUDA backend with CuDNN, this operator -may select a nondeterministic algorithm to increase performance. If this is -undesirable, you can try to make the operation deterministic (potentially at -a performance cost) by setting torch.backends.cudnn.deterministic = -True. -Please see the notes on Reproducibility for background.

    +

    In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. See Reproducibility for more information.

    Parameters
    @@ -807,10 +831,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -831,14 +851,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/generated/torch.nn.Conv3d.html b/torch/generated/torch.nn.Conv3d.html index 06417d53e..0aa27f43a 100644 --- a/torch/generated/torch.nn.Conv3d.html +++ b/torch/generated/torch.nn.Conv3d.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    -
  • any() (torch.BoolTensor method) +
  • any() (in module torch), [1] + +
  • +
  • append() (torch.fx.Node method)
  • @@ -740,6 +791,8 @@

    A

  • arctanh_() (torch.Tensor method) +
  • +
  • are_deterministic_algorithms_enabled() (in module torch)
  • arg_constraints (torch.distributions.bernoulli.Bernoulli attribute) @@ -773,8 +826,12 @@

    A

  • (torch.distributions.half_normal.HalfNormal attribute)
  • (torch.distributions.independent.Independent attribute) +
  • +
  • (torch.distributions.kumaraswamy.Kumaraswamy attribute)
  • (torch.distributions.laplace.Laplace attribute) +
  • +
  • (torch.distributions.lkj_cholesky.LKJCholesky attribute)
  • (torch.distributions.log_normal.LogNormal attribute)
  • @@ -821,18 +878,22 @@

    A

  • (torch.Tensor method)
  • -
  • argmin() (in module torch), [1] +
  • argmin() (in module torch)
  • +
  • args() (torch.fx.Node property) +
  • argsort() (in module torch)
  • +
  • as_standardized() (torch.utils.benchmark.CallgrindStats method) +
  • as_strided() (in module torch)
      @@ -860,8 +921,6 @@

      A

  • asinh_() (torch.Tensor method) -
  • -
  • Assert() (in module torch)
  • async_execution() (in module torch.distributed.rpc.functions)
  • @@ -929,6 +988,8 @@

    B

  • (in module torch.distributed.autograd)
  • (torch.autograd.Function static method) +
  • +
  • (torch.distributed.rpc.RRef method)
  • (torch.Tensor method)
  • @@ -952,6 +1013,8 @@

    B

  • batch_shape() (torch.distributions.distribution.Distribution property)
  • batch_sizes (torch.nn.utils.rnn.PackedSequence attribute) +
  • +
  • batched_powerSGD_hook() (in module torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook)
  • BatchNorm1d (class in torch.nn)
  • @@ -1054,6 +1117,8 @@

    B

  • blackman_window() (in module torch)
  • block_diag() (in module torch) +
  • +
  • blocked_autorange() (torch.utils.benchmark.Timer method)
  • bmm() (in module torch) @@ -1067,12 +1132,6 @@

    B

  • (torch.Tensor method)
  • -
  • BoolTensor (class in torch) -
  • -
  • BoolTensor.all() (in module torch), [1] -
  • -
  • BoolTensor.any() (in module torch), [1] -
  • broadcast() (in module torch.cuda.comm)
  • reciprocal_() (torch.Tensor method) +
  • +
  • recompile() (torch.fx.GraphModule method)
  • record() (torch.cuda.Event method)
  • @@ -4398,6 +4831,8 @@

    R

  • (torch.nn.Unflatten method)
  • +
  • register_comm_hook() (torch.nn.parallel.DistributedDataParallel method) +
  • register_custom_op_symbolic() (in module torch.onnx)
  • register_forward_hook() (torch.jit.ScriptModule method) @@ -4418,11 +4853,27 @@

    R

  • (torch.nn.Module method)
  • (torch.nn.Unflatten method) +
  • + +
  • register_full_backward_hook() (torch.jit.ScriptModule method) + +
  • register_hook() (torch.Tensor method)
  • register_kl() (in module torch.distributions.kl) +
  • +
  • register_module_backward_hook() (in module torch.nn.modules.module) +
  • +
  • register_module_forward_hook() (in module torch.nn.modules.module) +
  • +
  • register_module_forward_pre_hook() (in module torch.nn.modules.module)
  • register_parameter() (torch.jit.ScriptModule method) @@ -4439,17 +4890,9 @@

    R

  • RelaxedOneHotCategorical (class in torch.distributions.relaxed_categorical)
  • ReLU (class in torch.nn) - -
  • relu() (in module torch.nn.functional) - -
  • ReLU6 (class in torch.nn)
  • +
  • replace_all_uses_with() (torch.fx.Node method) +
  • +
  • replace_pattern() (in module torch.fx) +
  • ReplicationPad1d (class in torch.nn)
  • ReplicationPad2d (class in torch.nn) @@ -4553,6 +5000,8 @@

    R

  • reshape_as() (torch.Tensor method) +
  • +
  • ReshapeTransform (class in torch.distributions.transforms)
  • resize_() (torch.FloatStorage method) @@ -4561,21 +5010,17 @@

    R

  • resize_as_() (torch.Tensor method) -
  • -
  • resizeAs_() (torch.sparse.FloatTensor method)
  • result_type() (in module torch)
  • retain_grad() (torch.Tensor method)
  • -
  • rfft() (in module torch) - -
  • rfftn() (in module torch.fft)
  • RMSprop (class in torch.optim) @@ -4609,6 +5054,8 @@

    R

  • round_() (torch.Tensor method) +
  • +
  • row_stack() (in module torch)
  • rpc_async() (in module torch.distributed.rpc) @@ -4685,6 +5132,10 @@

    R

  • rsqrt_() (torch.Tensor method) +
  • +
  • run() (torch.fx.Interpreter method) +
  • +
  • run_node() (torch.fx.Interpreter method)
  • @@ -4706,6 +5157,8 @@

    S

  • (torch.distributions.geometric.Geometric method)
  • (torch.distributions.independent.Independent method) +
  • +
  • (torch.distributions.lkj_cholesky.LKJCholesky method)
  • (torch.distributions.mixture_same_family.MixtureSameFamily method)
  • @@ -4758,9 +5211,11 @@

    S

  • (torch.distributions.multivariate_normal.MultivariateNormal attribute)
  • -
  • scatter() (in module torch.cuda.comm) +
  • scatter() (in module torch)
  • scatter_() (torch.Tensor method)
  • -
  • scatter_add() (torch.Tensor method) +
  • scatter_add() (in module torch) + +
  • scatter_add_() (torch.Tensor method) +
  • +
  • scatter_object_list() (in module torch.distributed) +
  • +
  • schedule() (in module torch.profiler)
  • script() (in module torch.jit) +
  • +
  • script_if_tracing() (in module torch.jit)
  • ScriptFunction (class in torch.jit)
  • @@ -4820,13 +5285,17 @@

    S

  • set_default_tensor_type() (in module torch)
  • -
  • set_detect_anomaly (class in torch.autograd) +
  • set_default_validate_args() (torch.distributions.distribution.Distribution static method)
  • -
  • set_deterministic() (in module torch) +
  • set_detect_anomaly (class in torch.autograd)
  • set_device() (in module torch.cuda) +
  • +
  • set_device_map() (torch.distributed.rpc.TensorPipeRpcBackendOptions method)
  • set_dir() (in module torch.hub) +
  • +
  • set_exception() (torch.futures.Future method)
  • set_flush_denormal() (in module torch)
  • @@ -4845,6 +5314,8 @@

    S

  • set_num_interop_threads() (in module torch)
  • set_num_threads() (in module torch) +
  • +
  • set_per_process_memory_fraction() (in module torch.cuda)
  • set_printoptions() (in module torch)
  • @@ -4868,8 +5339,12 @@

    S

  • SGD (class in torch.optim)
  • -
  • sgn() (torch.Tensor method) +
  • sgn() (in module torch) + +
  • sgn_() (torch.Tensor method)
  • shape_as_tensor() (in module torch.onnx.operators) @@ -4920,6 +5395,8 @@

    S

  • (torch.Tensor method)
  • +
  • significant_figures() (torch.utils.benchmark.Measurement property) +
  • SiLU (class in torch.nn)
  • silu() (in module torch.nn.functional) @@ -4931,6 +5408,14 @@

    S

  • sin_() (torch.Tensor method) +
  • +
  • sinc() (in module torch) + +
  • +
  • sinc_() (torch.Tensor method)
  • sinh() (in module torch) @@ -4945,17 +5430,21 @@

    S

  • size() (torch.FloatStorage method)
  • +
  • skippable() (in module torch.distributed.pipeline.sync.skip.skippable) +
  • slogdet() (in module torch)
  • +
  • smm() (in module torch) +
  • smooth_l1_loss() (in module torch.nn.functional)
  • SmoothL1Loss (class in torch.nn) @@ -4969,7 +5458,11 @@

    S

  • Softmax (class in torch.nn)
  • softmax() (in module torch.nn.functional) + +
  • Softmax2d (class in torch.nn)
  • SoftmaxTransform (class in torch.distributions.transforms) @@ -4986,6 +5479,8 @@

    S

  • softshrink() (in module torch.nn.functional)
  • + + - -
  • spmm() (torch.sparse.FloatTensor method) -
  • sqrt() (in module torch)
      @@ -5056,15 +5551,15 @@

      S

  • squeeze_() (torch.Tensor method)
  • -
  • sspaddmm() (torch.sparse.FloatTensor method) -
  • -
  • sspmm() (torch.sparse.FloatTensor method) +
  • sspaddmm() (in module torch)
  • stack (in module torch.distributions.constraints)
  • stack() (in module torch)
  • StackTransform (class in torch.distributions.transforms) +
  • +
  • stash (class in torch.distributed.pipeline.sync.skip.skippable)
  • state_dict() (torch.cuda.amp.GradScaler method) @@ -5084,6 +5579,8 @@

    S

  • (torch.optim.Optimizer method)
  • +
  • stats() (torch.utils.benchmark.CallgrindStats method) +
  • std() (in module torch), [1]
  • StepLR (class in torch.optim.lr_scheduler) @@ -5169,17 +5668,11 @@

    S

  • sub() (in module torch)
  • -
  • sub_() (torch.sparse.FloatTensor method) - -
  • Subset (class in torch.utils.data)
  • SubsetRandomSampler (class in torch.utils.data) @@ -5228,8 +5721,12 @@

    S

  • (torch.distributions.half_cauchy.HalfCauchy attribute)
  • (torch.distributions.half_normal.HalfNormal attribute) +
  • +
  • (torch.distributions.kumaraswamy.Kumaraswamy attribute)
  • (torch.distributions.laplace.Laplace attribute) +
  • +
  • (torch.distributions.lkj_cholesky.LKJCholesky attribute)
  • (torch.distributions.log_normal.LogNormal attribute)
  • @@ -5281,12 +5778,28 @@

    S

  • svd() (in module torch)
  • svd_lowrank() (in module torch)
  • swap_module() (in module torch.quantization) +
  • +
  • swapaxes() (in module torch) + +
  • +
  • swapdims() (in module torch) + +
  • +
  • symbolic_trace() (in module torch.fx)
  • symeig() (in module torch) @@ -5318,12 +5831,8 @@

    T

  • (torch.Tensor method)
  • -
  • t_() (torch.sparse.FloatTensor method) - -
  • table() (torch.autograd.profiler.profile method)
  • take() (in module torch) @@ -5373,12 +5882,26 @@

    T

  • Tensor.bernoulli_() (in module torch), [1]
  • Tensor.to() (in module torch), [1], [2] +
  • +
  • Tensor.view() (in module torch) +
  • +
  • tensor_split() (in module torch) + +
  • +
  • tensorboard_trace_handler() (in module torch.profiler)
  • TensorDataset (class in torch.utils.data)
  • tensordot() (in module torch) +
  • +
  • tensorinv() (in module torch.linalg)
  • TensorPipeRpcBackendOptions (class in torch.distributed.rpc) +
  • +
  • tensorsolve() (in module torch.linalg)
  • then() (torch.futures.Future method)
  • @@ -5387,6 +5910,16 @@

    T

  • threshold() (in module torch.nn.functional)
  • threshold_() (in module torch.nn.functional) +
  • +
  • tile() (in module torch) + +
  • +
  • timeit() (torch.utils.benchmark.Timer method) +
  • +
  • Timer (class in torch.utils.benchmark)
  • to() (torch.jit.ScriptModule method) @@ -5402,15 +5935,17 @@

    T

  • (torch.Tensor method)
  • -
  • to_dense() (torch.sparse.FloatTensor method) +
  • to_dense() (torch.Tensor method)
  • to_dlpack() (in module torch.utils.dlpack) +
  • +
  • to_folder() (torch.fx.GraphModule method)
  • to_here() (torch.distributed.rpc.RRef method)
  • to_mkldnn() (torch.Tensor method)
  • -
  • to_sparse() (torch.Tensor method) +
  • to_sparse() (torch.Tensor method)
  • tolist() (torch.FloatStorage method) @@ -5435,6 +5970,8 @@

    T

  • torch.device (class in torch)
  • torch.distributed (module) +
  • +
  • torch.distributed.algorithms.ddp_comm_hooks.default_hooks (module)
  • torch.distributed.autograd (module)
  • @@ -5459,13 +5996,15 @@

    T

  • torch.finfo (class in torch)
  • torch.futures (module) +
  • + + -
  • Transform (class in torch.distributions.transforms)
  • +
  • transform() (torch.fx.Transformer method) + +
  • TransformedDistribution (class in torch.distributions.transformed_distribution)
  • -
  • Transformer (class in torch.nn) +
  • Transformer (class in torch.fx) + +
  • TransformerDecoder (class in torch.nn)
  • TransformerDecoderLayer (class in torch.nn) @@ -5545,17 +6104,11 @@

    T

  • transpose() (in module torch)
  • -
  • transpose_() (torch.sparse.FloatTensor method) - -
  • trapz() (in module torch), [1]
  • triangular_solve() (in module torch) @@ -5658,6 +6211,8 @@

    U

  • (torch.Tensor method)
  • +
  • UninitializedParameter (class in torch.nn.parameter) +
  • unique() (in module torch) @@ -5731,7 +6288,7 @@

    V

  • vander() (in module torch) @@ -5782,6 +6339,8 @@

    V

  • (torch.distributions.half_normal.HalfNormal property)
  • (torch.distributions.independent.Independent property) +
  • +
  • (torch.distributions.kumaraswamy.Kumaraswamy property)
  • (torch.distributions.laplace.Laplace property)
  • @@ -5821,6 +6380,8 @@

    V

  • vector_to_parameters() (in module torch.nn.utils)
  • verify_ninja_availability() (in module torch.utils.cpp_extension) +
  • +
  • verify_skippables() (in module torch.distributed.pipeline.sync.skip.skippable)
  • version() (in module torch.backends.cudnn)
  • @@ -5862,10 +6423,10 @@

    W

  • wait_stream() (torch.cuda.Stream method)
  • - - + @@ -5888,22 +6453,36 @@

    X

    Z

    - + + + + - + - + - - + + - + + + + @@ -426,6 +469,9 @@

    Creating TorchScript Code

    + + +

    trace(func, example_inputs[, optimize, …])

    Trace a function and return an executable or ScriptFunction that will be optimized using just-in-time compilation.

    trace_module(mod, inputs[, optimize, …])

    script_if_tracing(fn)

    Compiles fn when it is first called during tracing.

    trace_module(mod, inputs[, optimize, …])

    Trace a module and return an executable ScriptModule that will be optimized using just-in-time compilation.

    fork(func, *args, **kwargs)

    fork(func, *args, **kwargs)

    Creates an asynchronous task executing func and a reference to the value of the result of this execution.

    wait(future)

    wait(future)

    Forces completion of a torch.jit.Future[T] asynchronous task, returning the result of the task.

    ScriptModule()

    ScriptModule``s wrap a C++ ``torch::jit::Module.

    ScriptModule()

    A wrapper around C++ torch::jit::Module.

    ScriptFunction

    ScriptFunction

    Functionally equivalent to a ScriptModule, but represents a single function and does not have any attributes or Parameters.

    freeze(mod[, preserved_attrs, optimize_numerics])

    Freezing a ScriptModule will clone it and attempt to inline the cloned module’s submodules, parameters, and attributes as constants in the TorchScript IR Graph.

    save(m, f[, _extra_files])

    Save an offline version of this module for use in a separate process.

    unused(fn)

    This decorator indicates to the compiler that a function or method should be ignored and replaced with the raising of an exception.

    isinstance(obj, target_type)

    This function provides for conatiner type refinement in TorchScript.

    @@ -823,18 +869,18 @@

    Frequently Asked QuestionsGet Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -1446,14 +1488,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/jit_builtin_functions.html b/torch/jit_builtin_functions.html index a897a641d..eb5085421 100644 --- a/torch/jit_builtin_functions.html +++ b/torch/jit_builtin_functions.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

      -
    • torchaudio
    • -
    • torchtext
    • -
    • torchvision
    • +
    • torchaudio
    • +
    • torchtext
    • +
    • torchvision
    • TorchElastic
    • TorchServe
    • PyTorch on XLA Devices
    • @@ -630,9 +667,17 @@ Tensor.argmax(dim : Optional[int], keepdim : bool=False) -> Tensor +Tensor.argmax(dim : Optional[int], + keepdim : bool=False, + out : Tensor) -> Tensor + Tensor.argmin(dim : Optional[int], keepdim : bool=False) -> Tensor +Tensor.argmin(dim : Optional[int], + keepdim : bool=False, + out : Tensor) -> Tensor + Tensor.argsort(dim : int=-1, descending : bool=False) -> Tensor @@ -721,14 +766,14 @@ Tensor.bitwise_and(other : number, out : Tensor) -> Tensor -Tensor.bitwise_and(other : number) -> Tensor - Tensor.bitwise_and(other : Tensor) -> Tensor -Tensor.bitwise_and_(other : number) -> Tensor +Tensor.bitwise_and(other : number) -> Tensor Tensor.bitwise_and_(other : Tensor) -> Tensor +Tensor.bitwise_and_(other : number) -> Tensor + Tensor.bitwise_not() -> Tensor Tensor.bitwise_not(out : Tensor) -> Tensor @@ -741,33 +786,35 @@ Tensor.bitwise_or(other : number, out : Tensor) -> Tensor -Tensor.bitwise_or(other : number) -> Tensor - Tensor.bitwise_or(other : Tensor) -> Tensor -Tensor.bitwise_or_(other : number) -> Tensor +Tensor.bitwise_or(other : number) -> Tensor Tensor.bitwise_or_(other : Tensor) -> Tensor +Tensor.bitwise_or_(other : number) -> Tensor + Tensor.bitwise_xor(other : Tensor, out : Tensor) -> Tensor Tensor.bitwise_xor(other : number, out : Tensor) -> Tensor -Tensor.bitwise_xor(other : number) -> Tensor - Tensor.bitwise_xor(other : Tensor) -> Tensor -Tensor.bitwise_xor_(other : number) -> Tensor +Tensor.bitwise_xor(other : number) -> Tensor Tensor.bitwise_xor_(other : Tensor) -> Tensor +Tensor.bitwise_xor_(other : number) -> Tensor + Tensor.bmm(mat2 : Tensor) -> Tensor Tensor.bmm(mat2 : Tensor, out : Tensor) -> Tensor +Tensor.broadcast_to(size : List[int]) -> Tensor + Tensor.cauchy_(median : float=0.0, sigma : float=1.0, generator : Optional[Generator]) -> Tensor @@ -783,11 +830,11 @@ Tensor.cholesky(upper : bool=False) -> Tensor +Tensor.cholesky_inverse(upper : bool=False) -> Tensor + Tensor.cholesky_inverse(upper : bool=False, out : Tensor) -> Tensor -Tensor.cholesky_inverse(upper : bool=False) -> Tensor - Tensor.cholesky_solve(input2 : Tensor, upper : bool=False, out : Tensor) -> Tensor @@ -851,6 +898,17 @@ Tensor.copy_(other : float) -> Tensor +Tensor.copysign(other : Tensor) -> Tensor + +Tensor.copysign(other : Tensor, + out : Tensor) -> Tensor + +Tensor.copysign(other : number) -> Tensor + +Tensor.copysign_(other : Tensor) -> Tensor + +Tensor.copysign_(other : number) -> Tensor + Tensor.cos() -> Tensor Tensor.cos(out : Tensor) -> Tensor @@ -916,6 +974,12 @@ dtype : Optional[int], out : Tensor) -> Tensor +Tensor.cumprod_(dim : int, + dtype : Optional[int]) -> Tensor + +Tensor.cumprod_(dim : str, + dtype : Optional[int]) -> Tensor + Tensor.cumsum(dim : int, dtype : Optional[int]) -> Tensor @@ -930,6 +994,12 @@ dtype : Optional[int], out : Tensor) -> Tensor +Tensor.cumsum_(dim : int, + dtype : Optional[int]) -> Tensor + +Tensor.cumsum_(dim : str, + dtype : Optional[int]) -> Tensor + Tensor.data() -> Tensor Tensor.deg2rad() -> Tensor @@ -968,6 +1038,17 @@ dim2 : str, offset : int=0) -> Tensor +Tensor.diff(n : int=1, + dim : int=-1, + prepend : Optional[Tensor], + append : Optional[Tensor]) -> Tensor + +Tensor.diff(n : int=1, + dim : int=-1, + prepend : Optional[Tensor], + append : Optional[Tensor], + out : Tensor) -> Tensor + Tensor.digamma() -> Tensor Tensor.digamma(out : Tensor) -> Tensor @@ -984,12 +1065,28 @@ Tensor.div(other : number) -> Tensor Tensor.div(other : Tensor, + rounding_mode : str) -> Tensor + +Tensor.div(other : number, + rounding_mode : str) -> Tensor + +Tensor.div(other : Tensor, + out : Tensor) -> Tensor + +Tensor.div(other : Tensor, + rounding_mode : str, out : Tensor) -> Tensor Tensor.div_(other : number) -> Tensor Tensor.div_(other : Tensor) -> Tensor +Tensor.div_(other : Tensor, + rounding_mode : str) -> Tensor + +Tensor.div_(other : number, + rounding_mode : str) -> Tensor + Tensor.divide(other : Tensor) -> Tensor Tensor.divide(other : Tensor, @@ -997,10 +1094,26 @@ Tensor.divide(other : number) -> Tensor +Tensor.divide(other : Tensor, + rounding_mode : str) -> Tensor + +Tensor.divide(other : Tensor, + rounding_mode : str, + out : Tensor) -> Tensor + +Tensor.divide(other : number, + rounding_mode : str) -> Tensor + Tensor.divide_(other : Tensor) -> Tensor Tensor.divide_(other : number) -> Tensor +Tensor.divide_(other : Tensor, + rounding_mode : str) -> Tensor + +Tensor.divide_(other : number, + rounding_mode : str) -> Tensor + Tensor.dot(tensor : Tensor) -> Tensor Tensor.dot(tensor : Tensor, @@ -1014,13 +1127,13 @@ Tensor.element_size() -> int +Tensor.eq(other : Tensor) -> Tensor + Tensor.eq(other : number) -> Tensor Tensor.eq(other : number, out : Tensor) -> Tensor -Tensor.eq(other : Tensor) -> Tensor - Tensor.eq(other : Tensor, out : Tensor) -> Tensor @@ -1074,9 +1187,6 @@ Tensor.exponential_(lambd : float=1.0, generator : Optional[Generator]) -> Tensor -Tensor.fft(signal_ndim : int, - normalized : bool=False) -> Tensor - Tensor.fill_(value : number) -> Tensor Tensor.fill_(value : Tensor) -> Tensor @@ -1110,6 +1220,20 @@ Tensor.flipud() -> Tensor +Tensor.float_power(exponent : Tensor, + out : Tensor) -> Tensor + +Tensor.float_power(exponent : Tensor) -> Tensor + +Tensor.float_power(exponent : number, + out : Tensor) -> Tensor + +Tensor.float_power(exponent : number) -> Tensor + +Tensor.float_power_(exponent : Tensor) -> Tensor + +Tensor.float_power_(exponent : number) -> Tensor + Tensor.floor() -> Tensor Tensor.floor(out : Tensor) -> Tensor @@ -1127,6 +1251,16 @@ Tensor.floor_divide_(other : Tensor) -> Tensor +Tensor.fmax(other : Tensor) -> Tensor + +Tensor.fmax(other : Tensor, + out : Tensor) -> Tensor + +Tensor.fmin(other : Tensor) -> Tensor + +Tensor.fmin(other : Tensor, + out : Tensor) -> Tensor + Tensor.fmod(other : number, out : Tensor) -> Tensor @@ -1172,13 +1306,13 @@ Tensor.gcd_(other : Tensor) -> Tensor +Tensor.ge(other : Tensor) -> Tensor + Tensor.ge(other : number) -> Tensor Tensor.ge(other : number, out : Tensor) -> Tensor -Tensor.ge(other : Tensor) -> Tensor - Tensor.ge(other : Tensor, out : Tensor) -> Tensor @@ -1229,13 +1363,13 @@ Tensor.greater_equal_(other : Tensor) -> Tensor +Tensor.gt(other : Tensor) -> Tensor + Tensor.gt(other : number) -> Tensor Tensor.gt(other : number, out : Tensor) -> Tensor -Tensor.gt(other : Tensor) -> Tensor - Tensor.gt(other : Tensor, out : Tensor) -> Tensor @@ -1274,8 +1408,19 @@ Tensor.i0_() -> Tensor -Tensor.ifft(signal_ndim : int, - normalized : bool=False) -> Tensor +Tensor.igamma(other : Tensor) -> Tensor + +Tensor.igamma(other : Tensor, + out : Tensor) -> Tensor + +Tensor.igamma_(other : Tensor) -> Tensor + +Tensor.igammac(other : Tensor) -> Tensor + +Tensor.igammac(other : Tensor, + out : Tensor) -> Tensor + +Tensor.igammac_(other : Tensor) -> Tensor Tensor.imag() -> Tensor @@ -1371,17 +1516,17 @@ Tensor.indices() -> Tensor +Tensor.inner(other : Tensor) -> Tensor + +Tensor.inner(other : Tensor, + out : Tensor) -> Tensor + Tensor.int_repr() -> Tensor Tensor.inverse() -> Tensor Tensor.inverse(out : Tensor) -> Tensor -Tensor.irfft(signal_ndim : int, - normalized : bool=False, - onesided : bool=True, - signal_sizes : List[int]=[]) -> Tensor - Tensor.is_coalesced() -> bool Tensor.is_complex() -> bool @@ -1437,6 +1582,11 @@ Tensor.item() -> number +Tensor.kron(other : Tensor) -> Tensor + +Tensor.kron(other : Tensor, + out : Tensor) -> Tensor + Tensor.kthvalue(k : int, dim : int=-1, keepdim : bool=False) -> Tuple[Tensor, Tensor] @@ -1464,13 +1614,20 @@ Tensor.lcm_(other : Tensor) -> Tensor +Tensor.ldexp(other : Tensor) -> Tensor + +Tensor.ldexp(other : Tensor, + out : Tensor) -> Tensor + +Tensor.ldexp_(other : Tensor) -> Tensor + +Tensor.le(other : Tensor) -> Tensor + Tensor.le(other : number) -> Tensor Tensor.le(other : number, out : Tensor) -> Tensor -Tensor.le(other : Tensor) -> Tensor - Tensor.le(other : Tensor, out : Tensor) -> Tensor @@ -1483,11 +1640,11 @@ out : Tensor) -> Tensor Tensor.lerp(end : Tensor, - weight : Tensor, - out : Tensor) -> Tensor + weight : number) -> Tensor Tensor.lerp(end : Tensor, - weight : number) -> Tensor + weight : Tensor, + out : Tensor) -> Tensor Tensor.lerp(end : Tensor, weight : Tensor) -> Tensor @@ -1642,13 +1799,13 @@ Tensor.lstsq(A : Tensor) -> Tuple[Tensor, Tensor] +Tensor.lt(other : Tensor) -> Tensor + Tensor.lt(other : number) -> Tensor Tensor.lt(other : number, out : Tensor) -> Tensor -Tensor.lt(other : Tensor) -> Tensor - Tensor.lt(other : Tensor, out : Tensor) -> Tensor @@ -1810,12 +1967,22 @@ values : Tensor, indices : Tensor) -> Tuple[Tensor, Tensor] +Tensor.moveaxis(source : List[int], + destination : List[int]) -> Tensor + +Tensor.moveaxis(source : int, + destination : int) -> Tensor + Tensor.movedim(source : List[int], destination : List[int]) -> Tensor Tensor.movedim(source : int, destination : int) -> Tensor +Tensor.msort(out : Tensor) -> Tensor + +Tensor.msort() -> Tensor + Tensor.mul(other : Tensor) -> Tensor Tensor.mul(other : number) -> Tensor @@ -1856,6 +2023,37 @@ Tensor.mvlgamma_(p : int) -> Tensor +Tensor.nan_to_num(nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float]) -> Tensor + +Tensor.nan_to_num(nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float], + out : Tensor) -> Tensor + +Tensor.nan_to_num_(nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float]) -> Tensor + +Tensor.nanmedian() -> Tensor + +Tensor.nanmedian(dim : int, + keepdim : bool=False) -> Tuple[Tensor, Tensor] + +Tensor.nanmedian(dim : int, + keepdim : bool=False, + values : Tensor, + indices : Tensor) -> Tuple[Tensor, Tensor] + +Tensor.nanmedian(dim : str, + keepdim : bool=False) -> Tuple[Tensor, Tensor] + +Tensor.nanmedian(dim : str, + keepdim : bool=False, + values : Tensor, + indices : Tensor) -> Tuple[Tensor, Tensor] + Tensor.nanquantile(q : float, dim : Optional[int], keepdim : bool=False, @@ -1897,13 +2095,18 @@ start : int, length : int) -> Tensor +Tensor.narrow_copy(dim : int, + start : int, + length : int, + out : Tensor) -> Tensor + +Tensor.ne(other : Tensor) -> Tensor + Tensor.ne(other : number) -> Tensor Tensor.ne(other : number, out : Tensor) -> Tensor -Tensor.ne(other : Tensor) -> Tensor - Tensor.ne(other : Tensor, out : Tensor) -> Tensor @@ -1929,6 +2132,13 @@ device : Optional[Device], pin_memory : Optional[bool]) -> Tensor +Tensor.new_empty_strided(size : List[int], + stride : List[int], + dtype : Optional[int], + layout : Optional[int], + device : Optional[Device], + pin_memory : Optional[bool]) -> Tensor + Tensor.new_full(size : List[int], fill_value : number, dtype : Optional[int], @@ -2140,6 +2350,8 @@ Tensor.random_(generator : Optional[Generator]) -> Tensor +Tensor.ravel() -> Tensor + Tensor.real() -> Tensor Tensor.reciprocal() -> Tensor @@ -2148,6 +2360,8 @@ Tensor.reciprocal_() -> Tensor +Tensor.record_stream(s : Stream) -> Tuple[] + Tensor.refine_names(names : List[str]) -> Tensor Tensor.relu() -> Tensor @@ -2207,10 +2421,6 @@ Tensor.retain_grad() -> Tuple[] -Tensor.rfft(signal_ndim : int, - normalized : bool=False, - onesided : bool=True) -> Tensor - Tensor.roll(shifts : List[int], dims : List[int]=[]) -> Tensor @@ -2281,9 +2491,9 @@ Tensor.select(dim : str, index : int) -> Tensor -Tensor.set_(source : int) -> Tensor +Tensor.set_(source : Storage) -> Tensor -Tensor.set_(source : int, +Tensor.set_(source : Storage, storage_offset : int, size : List[int], stride : List[int]=[]) -> Tensor @@ -2320,6 +2530,12 @@ Tensor.sin_() -> Tensor +Tensor.sinc(out : Tensor) -> Tensor + +Tensor.sinc() -> Tensor + +Tensor.sinc_() -> Tensor + Tensor.sinh() -> Tensor Tensor.sinh(out : Tensor) -> Tensor @@ -2395,10 +2611,10 @@ Tensor.square_() -> Tensor -Tensor.squeeze(dim : int) -> Tensor - Tensor.squeeze() -> Tensor +Tensor.squeeze(dim : int) -> Tensor + Tensor.squeeze(dim : str) -> Tensor Tensor.squeeze_() -> Tensor @@ -2515,6 +2731,18 @@ Tensor.svd(some : bool=True, compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor] +Tensor.swapaxes(axis0 : int, + axis1 : int) -> Tensor + +Tensor.swapaxes_(axis0 : int, + axis1 : int) -> Tensor + +Tensor.swapdims(dim0 : int, + dim1 : int) -> Tensor + +Tensor.swapdims_(dim0 : int, + dim1 : int) -> Tensor + Tensor.symeig(eigenvectors : bool=False, upper : bool=True, e : Tensor, @@ -2544,6 +2772,17 @@ Tensor.tanh_() -> Tensor +Tensor.tensor_split(sections : int, + dim : int=0) -> List[Tensor] + +Tensor.tensor_split(indices : List[int], + dim : int=0) -> List[Tensor] + +Tensor.tensor_split(tensor_indices_or_sections : Tensor, + dim : int=0) -> List[Tensor] + +Tensor.tile(dims : List[int]) -> Tensor + Tensor.to(device : Device, dtype : int, non_blocking : bool=False, @@ -2580,9 +2819,9 @@ Tensor.to(non_blocking : bool=False, copy : bool=False) -> Tensor -Tensor.to_dense() -> Tensor +Tensor.to_dense(dtype : Optional[int]) -> Tensor -Tensor.to_mkldnn() -> Tensor +Tensor.to_mkldnn(dtype : Optional[int]) -> Tensor Tensor.to_sparse(sparse_dim : int) -> Tensor @@ -2722,8 +2961,24 @@ Tensor.view(size : List[int]) -> Tensor +Tensor.view(dtype : int) -> Tensor + Tensor.view_as(other : Tensor) -> Tensor +Tensor.xlogy(other : Tensor) -> Tensor + +Tensor.xlogy(other : Tensor, + out : Tensor) -> Tensor + +Tensor.xlogy(other : number) -> Tensor + +Tensor.xlogy(other : number, + out : Tensor) -> Tensor + +Tensor.xlogy_(other : Tensor) -> Tensor + +Tensor.xlogy_(other : number) -> Tensor + Tensor.zero_() -> Tensor @@ -3522,10 +3777,20 @@ dim : Optional[int], keepdim : bool=False) -> Tensor +torch.argmax(self : Tensor, + dim : Optional[int], + keepdim : bool=False, + out : Tensor) -> Tensor + torch.argmin(self : Tensor, dim : Optional[int], keepdim : bool=False) -> Tensor +torch.argmin(self : Tensor, + dim : Optional[int], + keepdim : bool=False, + out : Tensor) -> Tensor + torch.argsort(self : Tensor, dim : int=-1, descending : bool=False) -> Tensor @@ -3790,10 +4055,10 @@ out : Tensor) -> Tensor torch.bitwise_and(self : Tensor, - other : number) -> Tensor + other : Tensor) -> Tensor torch.bitwise_and(self : Tensor, - other : Tensor) -> Tensor + other : number) -> Tensor torch.bitwise_not(self : Tensor) -> Tensor @@ -3809,10 +4074,10 @@ out : Tensor) -> Tensor torch.bitwise_or(self : Tensor, - other : number) -> Tensor + other : Tensor) -> Tensor torch.bitwise_or(self : Tensor, - other : Tensor) -> Tensor + other : number) -> Tensor torch.bitwise_xor(self : Tensor, other : Tensor, @@ -3823,10 +4088,10 @@ out : Tensor) -> Tensor torch.bitwise_xor(self : Tensor, - other : number) -> Tensor + other : Tensor) -> Tensor torch.bitwise_xor(self : Tensor, - other : Tensor) -> Tensor + other : number) -> Tensor torch.blackman_window(window_length : int, dtype : Optional[int], @@ -3852,6 +4117,9 @@ torch.broadcast_tensors(tensors : List[Tensor]) -> List[Tensor] +torch.broadcast_to(self : Tensor, + size : List[int]) -> Tensor + torch.bucketize(self : Tensor, boundaries : Tensor, out_int32 : bool=False, @@ -3919,11 +4187,11 @@ upper : bool=False) -> Tensor torch.cholesky_inverse(self : Tensor, - upper : bool=False, - out : Tensor) -> Tensor + upper : bool=False) -> Tensor torch.cholesky_inverse(self : Tensor, - upper : bool=False) -> Tensor + upper : bool=False, + out : Tensor) -> Tensor torch.cholesky_solve(self : Tensor, input2 : Tensor, @@ -3938,7 +4206,7 @@ numel : int, n_bins : int, ratio : float, - bit_width : int) -> Tuple[float, float] + bit_width : int) -> Tuple[Tensor, Tensor] torch.chunk(self : Tensor, chunks : int, @@ -3993,6 +4261,11 @@ torch.clone(self : Tensor, memory_format : Optional[int]) -> Tensor +torch.column_stack(tensors : List[Tensor]) -> Tensor + +torch.column_stack(tensors : List[Tensor], + out : Tensor) -> Tensor + torch.combinations(self : Tensor, r : int=2, with_replacement : bool=False) -> Tensor @@ -4079,6 +4352,31 @@ output_padding : List[int], groups : int) -> Tensor +torch.copysign(self : Tensor, + other : Tensor) -> Tensor + +torch.copysign(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch.copysign(self : Tensor, + other : number) -> Tensor + +torch.copysign(a : int, + b : int) -> float + +torch.copysign(a : float, + b : float) -> float + +torch.copysign(a : int, + b : float) -> float + +torch.copysign(a : float, + b : int) -> float + +torch.copysign(a : number, + b : number) -> float + torch.cos(self : Tensor) -> Tensor torch.cos(self : Tensor, @@ -4309,6 +4607,8 @@ torch.dequantize(qtensor : Tensor) -> Tensor +torch.dequantize(qtensors : List[Tensor]) -> List[Tensor] + torch.dequantize(tensors : Any) -> Any torch.det(self : Tensor) -> Tensor @@ -4345,6 +4645,19 @@ dim2 : str, offset : int=0) -> Tensor +torch.diff(self : Tensor, + n : int=1, + dim : int=-1, + prepend : Optional[Tensor], + append : Optional[Tensor]) -> Tensor + +torch.diff(self : Tensor, + n : int=1, + dim : int=-1, + prepend : Optional[Tensor], + append : Optional[Tensor], + out : Tensor) -> Tensor + torch.digamma(self : Tensor) -> Tensor torch.digamma(self : Tensor, @@ -4360,10 +4673,23 @@ torch.div(self : Tensor, other : number) -> Tensor +torch.div(self : Tensor, + other : Tensor, + rounding_mode : str) -> Tensor + +torch.div(self : Tensor, + other : number, + rounding_mode : str) -> Tensor + torch.div(self : Tensor, other : Tensor, out : Tensor) -> Tensor +torch.div(self : Tensor, + other : Tensor, + rounding_mode : str, + out : Tensor) -> Tensor + torch.div(a : int, b : int) -> float @@ -4383,6 +4709,19 @@ torch.divide(self : Tensor, other : number) -> Tensor +torch.divide(self : Tensor, + other : Tensor, + rounding_mode : str) -> Tensor + +torch.divide(self : Tensor, + other : Tensor, + rounding_mode : str, + out : Tensor) -> Tensor + +torch.divide(self : Tensor, + other : number, + rounding_mode : str) -> Tensor + torch.dot(self : Tensor, tensor : Tensor) -> Tensor @@ -4477,6 +4816,9 @@ device : Optional[Device], pin_memory : Optional[bool]) -> Tensor +torch.eq(self : Tensor, + other : Tensor) -> Tensor + torch.eq(self : Tensor, other : number) -> Tensor @@ -4484,9 +4826,6 @@ other : number, out : Tensor) -> Tensor -torch.eq(self : Tensor, - other : Tensor) -> Tensor - torch.eq(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -4494,6 +4833,9 @@ torch.eq(a : List[int], b : List[int]) -> bool +torch.eq(a : Device, + b : Device) -> bool + torch.eq(a : AnyEnumType, b : AnyEnumType) -> bool @@ -4515,9 +4857,6 @@ torch.eq(a : str, b : str) -> bool -torch.eq(a : Device, - b : Device) -> bool - torch.eq(a : List[float], b : List[float]) -> bool @@ -4680,10 +5019,6 @@ p : float, train : bool) -> Tensor -torch.fft(self : Tensor, - signal_ndim : int, - normalized : bool=False) -> Tensor - torch.fill_(self : Tensor, value : number) -> Tensor @@ -4722,6 +5057,27 @@ torch.flipud(self : Tensor) -> Tensor +torch.float_power(self : Tensor, + exponent : Tensor, + out : Tensor) -> Tensor + +torch.float_power(self : Tensor, + exponent : Tensor) -> Tensor + +torch.float_power(self : number, + exponent : Tensor, + out : Tensor) -> Tensor + +torch.float_power(self : number, + exponent : Tensor) -> Tensor + +torch.float_power(self : Tensor, + exponent : number, + out : Tensor) -> Tensor + +torch.float_power(self : Tensor, + exponent : number) -> Tensor + torch.floor(self : Tensor) -> Tensor torch.floor(self : Tensor, @@ -4745,6 +5101,20 @@ other : Tensor, out : Tensor) -> Tensor +torch.fmax(self : Tensor, + other : Tensor) -> Tensor + +torch.fmax(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch.fmin(self : Tensor, + other : Tensor) -> Tensor + +torch.fmin(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + torch.fmod(self : Tensor, other : number, out : Tensor) -> Tensor @@ -4862,6 +5232,9 @@ torch.gcd_(self : Tensor, other : Tensor) -> Tensor +torch.ge(self : Tensor, + other : Tensor) -> Tensor + torch.ge(self : Tensor, other : number) -> Tensor @@ -4869,9 +5242,6 @@ other : number, out : Tensor) -> Tensor -torch.ge(self : Tensor, - other : Tensor) -> Tensor - torch.ge(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -4989,6 +5359,9 @@ b_ih : Optional[Tensor], b_hh : Optional[Tensor]) -> Tensor +torch.gt(self : Tensor, + other : Tensor) -> Tensor + torch.gt(self : Tensor, other : number) -> Tensor @@ -4996,9 +5369,6 @@ other : number, out : Tensor) -> Tensor -torch.gt(self : Tensor, - other : Tensor) -> Tensor - torch.gt(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -5116,9 +5486,19 @@ torch.i0_(self : Tensor) -> Tensor -torch.ifft(self : Tensor, - signal_ndim : int, - normalized : bool=False) -> Tensor +torch.igamma(self : Tensor, + other : Tensor) -> Tensor + +torch.igamma(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch.igammac(self : Tensor, + other : Tensor) -> Tensor + +torch.igammac(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor torch.imag(self : Tensor) -> Tensor @@ -5200,6 +5580,13 @@ dim : str, index : Tensor) -> Tensor +torch.inner(self : Tensor, + other : Tensor) -> Tensor + +torch.inner(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + torch.instance_norm(input : Tensor, weight : Optional[Tensor], bias : Optional[Tensor], @@ -5217,12 +5604,6 @@ torch.inverse(self : Tensor, out : Tensor) -> Tensor -torch.irfft(self : Tensor, - signal_ndim : int, - normalized : bool=False, - onesided : bool=True, - signal_sizes : List[int]=[]) -> Tensor - torch.is_complex(self : Tensor) -> bool torch.is_distributed(self : Tensor) -> bool @@ -5296,6 +5677,13 @@ reduction : int=1, log_target : bool=False) -> Tensor +torch.kron(self : Tensor, + other : Tensor) -> Tensor + +torch.kron(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + torch.kthvalue(self : Tensor, k : int, dim : int=-1, @@ -5337,6 +5725,22 @@ torch.lcm_(self : Tensor, other : Tensor) -> Tensor +torch.ldexp(self : Tensor, + other : Tensor) -> Tensor + +torch.ldexp(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch.ldexp(x : float, + i : int) -> float + +torch.ldexp_(self : Tensor, + other : Tensor) -> Tensor + +torch.le(self : Tensor, + other : Tensor) -> Tensor + torch.le(self : Tensor, other : number) -> Tensor @@ -5344,9 +5748,6 @@ other : number, out : Tensor) -> Tensor -torch.le(self : Tensor, - other : Tensor) -> Tensor - torch.le(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -5376,12 +5777,12 @@ torch.lerp(self : Tensor, end : Tensor, - weight : Tensor, - out : Tensor) -> Tensor + weight : number) -> Tensor torch.lerp(self : Tensor, end : Tensor, - weight : number) -> Tensor + weight : Tensor, + out : Tensor) -> Tensor torch.lerp(self : Tensor, end : Tensor, @@ -5642,6 +6043,9 @@ torch.lstsq(self : Tensor, A : Tensor) -> Tuple[Tensor, Tensor] +torch.lt(self : Tensor, + other : Tensor) -> Tensor + torch.lt(self : Tensor, other : number) -> Tensor @@ -5649,9 +6053,6 @@ other : number, out : Tensor) -> Tensor -torch.lt(self : Tensor, - other : Tensor) -> Tensor - torch.lt(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -5953,6 +6354,11 @@ groups : int, bias_defined : bool) -> Tuple[Tensor, Tensor] +torch.mkldnn_linear_backward_weights(grad_output : Tensor, + input : Tensor, + weight : Tensor, + bias_defined : bool) -> Tuple[Tensor, Tensor] + torch.mkldnn_max_pool2d(self : Tensor, kernel_size : List[int], stride : List[int]=[], @@ -5994,6 +6400,14 @@ values : Tensor, indices : Tensor) -> Tuple[Tensor, Tensor] +torch.moveaxis(self : Tensor, + source : List[int], + destination : List[int]) -> Tensor + +torch.moveaxis(self : Tensor, + source : int, + destination : int) -> Tensor + torch.movedim(self : Tensor, source : List[int], destination : List[int]) -> Tensor @@ -6002,6 +6416,11 @@ source : int, destination : int) -> Tensor +torch.msort(self : Tensor, + out : Tensor) -> Tensor + +torch.msort(self : Tensor) -> Tensor + torch.mul(self : Tensor, other : Tensor) -> Tensor @@ -6064,6 +6483,44 @@ torch.mvlgamma(self : Tensor, p : int) -> Tensor +torch.nan_to_num(self : Tensor, + nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float]) -> Tensor + +torch.nan_to_num(self : Tensor, + nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float], + out : Tensor) -> Tensor + +torch.nan_to_num_(self : Tensor, + nan : Optional[float], + posinf : Optional[float], + neginf : Optional[float]) -> Tensor + +torch.nanmedian(self : Tensor) -> Tensor + +torch.nanmedian(self : Tensor, + dim : int, + keepdim : bool=False) -> Tuple[Tensor, Tensor] + +torch.nanmedian(self : Tensor, + dim : int, + keepdim : bool=False, + values : Tensor, + indices : Tensor) -> Tuple[Tensor, Tensor] + +torch.nanmedian(self : Tensor, + dim : str, + keepdim : bool=False) -> Tuple[Tensor, Tensor] + +torch.nanmedian(self : Tensor, + dim : str, + keepdim : bool=False, + values : Tensor, + indices : Tensor) -> Tuple[Tensor, Tensor] + torch.nanquantile(self : Tensor, q : float, dim : Optional[int], @@ -6110,6 +6567,17 @@ start : Tensor, length : int) -> Tensor +torch.narrow_copy(self : Tensor, + dim : int, + start : int, + length : int) -> Tensor + +torch.narrow_copy(self : Tensor, + dim : int, + start : int, + length : int, + out : Tensor) -> Tensor + torch.native_batch_norm(input : Tensor, weight : Optional[Tensor], bias : Optional[Tensor], @@ -6141,10 +6609,9 @@ eps : float) -> Tuple[Tensor, Tensor, Tensor] torch.native_layer_norm(input : Tensor, + normalized_shape : List[int], weight : Optional[Tensor], bias : Optional[Tensor], - M : int, - N : int, eps : float) -> Tuple[Tensor, Tensor, Tensor] torch.native_norm(self : Tensor, @@ -6156,6 +6623,9 @@ keepdim : bool, dtype : Optional[int]) -> Tensor +torch.ne(self : Tensor, + other : Tensor) -> Tensor + torch.ne(self : Tensor, other : number) -> Tensor @@ -6163,9 +6633,6 @@ other : number, out : Tensor) -> Tensor -torch.ne(self : Tensor, - other : Tensor) -> Tensor - torch.ne(self : Tensor, other : Tensor, out : Tensor) -> Tensor @@ -6381,6 +6848,9 @@ torch.pixel_shuffle(self : Tensor, upscale_factor : int) -> Tensor +torch.pixel_unshuffle(self : Tensor, + downscale_factor : int) -> Tensor + torch.poisson(self : Tensor, generator : Optional[Generator]) -> Tensor @@ -6904,6 +7374,8 @@ step : number=1, out : Tensor) -> Tensor +torch.ravel(self : Tensor) -> Tensor + torch.real(self : Tensor) -> Tensor torch.reciprocal(self : Tensor) -> Tensor @@ -6986,11 +7458,6 @@ torch.result_type(scalar1 : number, scalar2 : number) -> int -torch.rfft(self : Tensor, - signal_ndim : int, - normalized : bool=False, - onesided : bool=True) -> Tensor - torch.rnn_relu(input : Tensor, hx : Tensor, params : List[Tensor], @@ -7066,6 +7533,11 @@ torch.round_(self : Tensor) -> Tensor +torch.row_stack(tensors : List[Tensor]) -> Tensor + +torch.row_stack(tensors : List[Tensor], + out : Tensor) -> Tensor + torch.rrelu(self : Tensor, lower : number=0.125, upper : number=0.3333333333333333, @@ -7200,6 +7672,13 @@ torch.sin_(self : Tensor) -> Tensor +torch.sinc(self : Tensor, + out : Tensor) -> Tensor + +torch.sinc(self : Tensor) -> Tensor + +torch.sinc_(self : Tensor) -> Tensor + torch.sinh(self : Tensor) -> Tensor torch.sinh(self : Tensor, @@ -7326,11 +7805,11 @@ torch.square_(self : Tensor) -> Tensor +torch.squeeze(self : Tensor) -> Tensor + torch.squeeze(self : Tensor, dim : int) -> Tensor -torch.squeeze(self : Tensor) -> Tensor - torch.squeeze(self : Tensor, dim : str) -> Tensor @@ -7469,6 +7948,14 @@ some : bool=True, compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor] +torch.swapaxes(self : Tensor, + axis0 : int, + axis1 : int) -> Tensor + +torch.swapdims(self : Tensor, + dim0 : int, + dim1 : int) -> Tensor + torch.symeig(self : Tensor, eigenvectors : bool=False, upper : bool=True, @@ -7534,11 +8021,29 @@ device : Optional[Device], requires_grad : bool=False) -> Tensor +torch.tensor_split(self : Tensor, + sections : int, + dim : int=0) -> List[Tensor] + +torch.tensor_split(self : Tensor, + indices : List[int], + dim : int=0) -> List[Tensor] + +torch.tensor_split(self : Tensor, + tensor_indices_or_sections : Tensor, + dim : int=0) -> List[Tensor] + torch.tensordot(self : Tensor, other : Tensor, dims_self : List[int], dims_other : List[int]) -> Tensor +torch.tensordot(self : Tensor, + other : Tensor, + dims_self : List[int], + dims_other : List[int], + out : Tensor) -> Tensor + torch.threshold(self : Tensor, threshold : number, value : number) -> Tensor @@ -7552,6 +8057,9 @@ threshold : number, value : number) -> Tensor +torch.tile(self : Tensor, + dims : List[int]) -> Tensor + torch.topk(self : Tensor, k : int, dim : int=-1, @@ -7753,6 +8261,33 @@ torch.where(condition : Tensor) -> List[Tensor] +torch.xlogy(self : Tensor, + other : Tensor) -> Tensor + +torch.xlogy(self : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch.xlogy(self : number, + other : Tensor) -> Tensor + +torch.xlogy(self : number, + other : Tensor, + out : Tensor) -> Tensor + +torch.xlogy(self : Tensor, + other : number) -> Tensor + +torch.xlogy(self : Tensor, + other : number, + out : Tensor) -> Tensor + +torch.xlogy_(self : Tensor, + other : Tensor) -> Tensor + +torch.xlogy_(self : Tensor, + other : number) -> Tensor + torch.zero_(self : Tensor) -> Tensor torch.zeros(size : List[int], @@ -8039,7 +8574,7 @@ stride : List[int], padding : List[int]) -> Tensor -torch._C._nn.mkldnn_linear(input : Tensor, +torch._C._nn.mkldnn_linear(self : Tensor, weight : Tensor, bias : Optional[Tensor]) -> Tensor @@ -8370,10 +8905,6 @@ align_corners : bool, scales : Optional[float]) -> Tensor -torch._C._nn.upsample_nearest1d(input : Tensor, - output_size : Optional[List[int]], - scale_factors : Optional[List[float]]) -> Tensor - torch._C._nn.upsample_nearest1d(self : Tensor, output_size : List[int], scales : Optional[float], @@ -8383,7 +8914,7 @@ output_size : List[int], scales : Optional[float]) -> Tensor -torch._C._nn.upsample_nearest2d(input : Tensor, +torch._C._nn.upsample_nearest1d(input : Tensor, output_size : Optional[List[int]], scale_factors : Optional[List[float]]) -> Tensor @@ -8398,6 +8929,10 @@ scales_h : Optional[float], scales_w : Optional[float]) -> Tensor +torch._C._nn.upsample_nearest2d(input : Tensor, + output_size : Optional[List[int]], + scale_factors : Optional[List[float]]) -> Tensor + torch._C._nn.upsample_nearest3d(input : Tensor, output_size : Optional[List[int]], scale_factors : Optional[List[float]]) -> Tensor @@ -8440,53 +8975,233 @@ dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_fft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_fft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str]) -> Tensor + +torch._C._fft.fft_fft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_fftfreq(n : int, + d : float=1.0, + dtype : Optional[int], + layout : Optional[int], + device : Optional[Device], + pin_memory : Optional[bool]) -> Tensor + +torch._C._fft.fft_fftfreq(n : int, + d : float=1.0, + out : Tensor) -> Tensor + torch._C._fft.fft_fftn(self : Tensor, s : Optional[List[int]], dim : Optional[List[int]], norm : Optional[str]) -> Tensor +torch._C._fft.fft_fftn(self : Tensor, + s : Optional[List[int]], + dim : Optional[List[int]], + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_fftshift(self : Tensor, + dim : Optional[List[int]]) -> Tensor + torch._C._fft.fft_hfft(self : Tensor, n : Optional[int], dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_hfft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + torch._C._fft.fft_ifft(self : Tensor, n : Optional[int], dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_ifft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_ifft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str]) -> Tensor + +torch._C._fft.fft_ifft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str], + out : Tensor) -> Tensor + torch._C._fft.fft_ifftn(self : Tensor, s : Optional[List[int]], dim : Optional[List[int]], norm : Optional[str]) -> Tensor +torch._C._fft.fft_ifftn(self : Tensor, + s : Optional[List[int]], + dim : Optional[List[int]], + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_ifftshift(self : Tensor, + dim : Optional[List[int]]) -> Tensor + torch._C._fft.fft_ihfft(self : Tensor, n : Optional[int], dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_ihfft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + torch._C._fft.fft_irfft(self : Tensor, n : Optional[int], dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_irfft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_irfft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str]) -> Tensor + +torch._C._fft.fft_irfft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str], + out : Tensor) -> Tensor + torch._C._fft.fft_irfftn(self : Tensor, s : Optional[List[int]], dim : Optional[List[int]], norm : Optional[str]) -> Tensor +torch._C._fft.fft_irfftn(self : Tensor, + s : Optional[List[int]], + dim : Optional[List[int]], + norm : Optional[str], + out : Tensor) -> Tensor + torch._C._fft.fft_rfft(self : Tensor, n : Optional[int], dim : int=-1, norm : Optional[str]) -> Tensor +torch._C._fft.fft_rfft(self : Tensor, + n : Optional[int], + dim : int=-1, + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_rfft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str]) -> Tensor + +torch._C._fft.fft_rfft2(self : Tensor, + s : Optional[List[int]], + dim : List[int]=[-2, -1], + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._fft.fft_rfftfreq(n : int, + d : float=1.0, + dtype : Optional[int], + layout : Optional[int], + device : Optional[Device], + pin_memory : Optional[bool]) -> Tensor + +torch._C._fft.fft_rfftfreq(n : int, + d : float=1.0, + out : Tensor) -> Tensor + torch._C._fft.fft_rfftn(self : Tensor, s : Optional[List[int]], dim : Optional[List[int]], norm : Optional[str]) -> Tensor +torch._C._fft.fft_rfftn(self : Tensor, + s : Optional[List[int]], + dim : Optional[List[int]], + norm : Optional[str], + out : Tensor) -> Tensor + +torch._C._linalg.linalg_cholesky(self : Tensor) -> Tensor + +torch._C._linalg.linalg_cholesky(self : Tensor, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_cond(self : Tensor, + p : Optional[number]) -> Tensor + +torch._C._linalg.linalg_cond(self : Tensor, + p : Optional[number], + out : Tensor) -> Tensor + +torch._C._linalg.linalg_cond(self : Tensor, + p : str) -> Tensor + +torch._C._linalg.linalg_cond(self : Tensor, + p : str, + out : Tensor) -> Tensor + torch._C._linalg.linalg_det(self : Tensor) -> Tensor +torch._C._linalg.linalg_eigh(self : Tensor, + UPLO : str=L) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_eigh(self : Tensor, + UPLO : str=L, + eigvals : Tensor, + eigvecs : Tensor) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_eigvalsh(self : Tensor, + UPLO : str=L) -> Tensor + +torch._C._linalg.linalg_eigvalsh(self : Tensor, + UPLO : str=L, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_inv(self : Tensor) -> Tensor + +torch._C._linalg.linalg_inv(self : Tensor, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_matrix_rank(self : Tensor, + tol : Optional[float], + hermitian : bool=False) -> Tensor + +torch._C._linalg.linalg_matrix_rank(self : Tensor, + tol : Optional[float], + hermitian : bool=False, + out : Tensor) -> Tensor + torch._C._linalg.linalg_norm(self : Tensor, ord : Optional[number], dim : Optional[List[int]], @@ -8494,17 +9209,17 @@ dtype : Optional[int]) -> Tensor torch._C._linalg.linalg_norm(self : Tensor, - ord : str, + ord : Optional[number], dim : Optional[List[int]], keepdim : bool=False, - dtype : Optional[int]) -> Tensor + dtype : Optional[int], + out : Tensor) -> Tensor torch._C._linalg.linalg_norm(self : Tensor, - ord : Optional[number], + ord : str, dim : Optional[List[int]], keepdim : bool=False, - dtype : Optional[int], - out : Tensor) -> Tensor + dtype : Optional[int]) -> Tensor torch._C._linalg.linalg_norm(self : Tensor, ord : str, @@ -8512,6 +9227,72 @@ keepdim : bool=False, dtype : Optional[int], out : Tensor) -> Tensor + +torch._C._linalg.linalg_pinv(self : Tensor, + rcond : float=1e-15, + hermitian : bool=False) -> Tensor + +torch._C._linalg.linalg_pinv(self : Tensor, + rcond : float=1e-15, + hermitian : bool=False, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_pinv(self : Tensor, + rcond : Tensor, + hermitian : bool=False) -> Tensor + +torch._C._linalg.linalg_pinv(self : Tensor, + rcond : Tensor, + hermitian : bool=False, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_qr(self : Tensor, + mode : str=reduced) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_qr(self : Tensor, + mode : str=reduced, + Q : Tensor, + R : Tensor) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_slogdet(self : Tensor) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_slogdet(self : Tensor, + sign : Tensor, + logabsdet : Tensor) -> Tuple[Tensor, Tensor] + +torch._C._linalg.linalg_solve(input : Tensor, + other : Tensor) -> Tensor + +torch._C._linalg.linalg_solve(input : Tensor, + other : Tensor, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_svd(self : Tensor, + full_matrices : bool=True, + compute_uv : bool=True, + U : Tensor, + S : Tensor, + V : Tensor) -> Tuple[Tensor, Tensor, Tensor] + +torch._C._linalg.linalg_svd(self : Tensor, + full_matrices : bool=True, + compute_uv : bool=True) -> Tuple[Tensor, Tensor, Tensor] + +torch._C._linalg.linalg_tensorinv(self : Tensor, + ind : int=2) -> Tensor + +torch._C._linalg.linalg_tensorinv(self : Tensor, + ind : int=2, + out : Tensor) -> Tensor + +torch._C._linalg.linalg_tensorsolve(self : Tensor, + other : Tensor, + dims : Optional[List[int]]) -> Tensor + +torch._C._linalg.linalg_tensorsolve(self : Tensor, + other : Tensor, + dims : Optional[List[int]], + out : Tensor) -> Tensor @@ -8525,6 +9306,8 @@ collections.OrderedDict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal] +collections.OrderedDict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal] + collections.OrderedDict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal] collections.OrderedDict() -> Dict[str, Tensor] @@ -8537,6 +9320,8 @@ builtins.dict(inputs : List[Tuple[float, tVal]]) -> Dict[float, tVal] +builtins.dict(inputs : List[Tuple[complex, tVal]]) -> Dict[complex, tVal] + builtins.dict(inputs : List[Tuple[Tensor, tVal]]) -> Dict[Tensor, tVal] builtins.dict() -> Dict[str, Tensor] @@ -8617,11 +9402,11 @@ dims_self : List[int], dims_other : List[int]) -> Tensor -torch.distributed.autograd.get_gradients(context_id : int) -> Dict[Tensor, Tensor] - -torch.distributed.autograd.backward(context_id : int, - roots : List[Tensor], - retain_graph : bool=False) -> Tuple[] +torch.functional.tensordot(self : Tensor, + other : Tensor, + dims_self : List[int], + dims_other : List[int], + out : Tensor) -> Tensor @@ -8647,7 +9432,7 @@

      hasattr

      Attribute name must be a literal string

      -

      isinstance

      +

      isinstance

      Result is static

      range

      @@ -8718,6 +9503,7 @@ len(self : Dict[int, t]) -> int len(self : Dict[bool, t]) -> int len(self : Dict[float, t]) -> int +len(self : Dict[complex, t]) -> int len(self : Dict[Tensor, t]) -> int len(a : List[Any]) -> int @@ -8732,9 +9518,7 @@ round(a : float) -> float round(a : number) -> number -hash(t : str) -> int -hash(t : int) -> int -hash(t : float) -> int +hash(value : t) -> int min(a : int, b : int) -> int @@ -9344,10 +10128,6 @@

      Resources

      Get Started -
    • - Features -
    • -
    • Ecosystem
    • @@ -9368,14 +10148,66 @@

      Resources

      Tutorials -
    • - Docs +
    • + Docs
    • -
    • - Resources + + +
    • + Resources
    • + +
    • Github
    • diff --git a/torch/jit_language_reference.html b/torch/jit_language_reference.html index 8dd3bffc2..1d60d810b 100644 --- a/torch/jit_language_reference.html +++ b/torch/jit_language_reference.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
      - master (1.7.0 ) + master (1.8.0 )
      @@ -205,6 +235,7 @@
    • Extending PyTorch
    • Frequently Asked Questions
    • Features for large-scale deployments
    • +
    • Modules
    • Multiprocessing best practices
    • Reproducibility
    • Serialization semantics
    • @@ -231,18 +262,24 @@
    • torch.distributions
    • torch.fft
    • torch.futures
    • +
    • torch.fx
    • torch.hub
    • torch.jit
    • torch.linalg
    • +
    • torch.overrides
    • +
    • torch.profiler
    • torch.nn.init
    • torch.onnx
    • torch.optim
    • Complex Numbers
    • +
    • DDP Communication Hooks
    • +
    • Pipeline Parallelism
    • Quantization
    • Distributed RPC Framework
    • torch.random
    • torch.sparse
    • torch.Storage
    • +
    • torch.utils.benchmark
    • torch.utils.bottleneck
    • torch.utils.checkpoint
    • torch.utils.cpp_extension
    • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    @@ -711,10 +748,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -735,14 +768,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/linalg.html b/torch/linalg.html index 017bd725a..97254340d 100644 --- a/torch/linalg.html +++ b/torch/linalg.html @@ -31,11 +31,11 @@ - + - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

      -
    • torchaudio
    • -
    • torchtext
    • -
    • torchvision
    • +
    • torchaudio
    • +
    • torchtext
    • +
    • torchvision
    • TorchElastic
    • TorchServe
    • PyTorch on XLA Devices
    • @@ -346,12 +383,586 @@

      torch.linalg

      Common linear algebra operations.

      +

      This module is in BETA. New functions are still being added, and some +functions may change in future PyTorch releases. See the documentation of each +function for details.

      Functions

      +
      +
      +torch.linalg.cholesky(input, *, out=None) → Tensor
      +

      Computes the Cholesky decomposition of a Hermitian (or symmetric for real-valued matrices) +positive-definite matrix or the Cholesky decompositions for a batch of such matrices. +Each decomposition has the form:

      +
      +input=LLH\text{input} = LL^H + +

      where LL + + is a lower-triangular matrix and LHL^H + + is the conjugate transpose of LL + +, +which is just a transpose for the case of real-valued input matrices. +In code it translates to input = L @ L.t() if input is real-valued and +input = L @ L.conj().t() if input is complex-valued. +The batch of LL + + matrices is returned.

      +

      Supports real-valued and complex-valued inputs.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      LAPACK’s potrf is used for CPU inputs, and MAGMA’s potrf is used for CUDA inputs.

      +
      +
      +

      Note

      +

      If input is not a Hermitian positive-definite matrix, or if it’s a batch of matrices +and one or more of them is not a Hermitian positive-definite matrix, then a RuntimeError will be thrown. +If input is a batch of matrices, then the error message will include the batch index +of the first matrix that is not Hermitian positive-definite.

      +
      +
      +
      Parameters
      +

      input (Tensor) – the input tensor of size (,n,n)(*, n, n) + + consisting of Hermitian positive-definite +n×nn \times n + + matrices, where * + + is zero or more batch dimensions.

      +
      +
      Keyword Arguments
      +

      out (Tensor, optional) – The output tensor. Ignored if None. Default: None

      +
      +
      +

      Examples:

      +
      >>> a = torch.randn(2, 2, dtype=torch.complex128)
      +>>> a = torch.mm(a, a.t().conj())  # creates a Hermitian positive-definite matrix
      +>>> l = torch.linalg.cholesky(a)
      +>>> a
      +tensor([[2.5266+0.0000j, 1.9586-2.0626j],
      +        [1.9586+2.0626j, 9.4160+0.0000j]], dtype=torch.complex128)
      +>>> l
      +tensor([[1.5895+0.0000j, 0.0000+0.0000j],
      +        [1.2322+1.2976j, 2.4928+0.0000j]], dtype=torch.complex128)
      +>>> torch.mm(l, l.t().conj())
      +tensor([[2.5266+0.0000j, 1.9586-2.0626j],
      +        [1.9586+2.0626j, 9.4160+0.0000j]], dtype=torch.complex128)
      +
      +>>> a = torch.randn(3, 2, 2, dtype=torch.float64)
      +>>> a = torch.matmul(a, a.transpose(-2, -1))  # creates a symmetric positive-definite matrix
      +>>> l = torch.linalg.cholesky(a)
      +>>> a
      +tensor([[[ 1.1629,  2.0237],
      +        [ 2.0237,  6.6593]],
      +
      +        [[ 0.4187,  0.1830],
      +        [ 0.1830,  0.1018]],
      +
      +        [[ 1.9348, -2.5744],
      +        [-2.5744,  4.6386]]], dtype=torch.float64)
      +>>> l
      +tensor([[[ 1.0784,  0.0000],
      +        [ 1.8766,  1.7713]],
      +
      +        [[ 0.6471,  0.0000],
      +        [ 0.2829,  0.1477]],
      +
      +        [[ 1.3910,  0.0000],
      +        [-1.8509,  1.1014]]], dtype=torch.float64)
      +>>> torch.allclose(torch.matmul(l, l.transpose(-2, -1)), a)
      +True
      +
      +
      +
      + +
      +
      +torch.linalg.cond(input, p=None, *, out=None) → Tensor
      +

      Computes the condition number of a matrix input, or of each matrix in +a batched input, using the matrix norm defined by p.

      +

      For norms {‘fro’, ‘nuc’, inf, -inf, 1, -1} this is defined as the matrix norm of input +times the matrix norm of the inverse of input computed using torch.linalg.norm(). While +for norms {None, 2, -2} this is defined as the ratio between the largest and smallest singular +values computed using torch.linalg.svd().

      +

      This function supports float, double, cfloat and cdouble dtypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function may synchronize that device with the CPU depending +on which norm p is used.

      +
      +
      +

      Note

      +

      For norms {None, 2, -2}, input may be a non-square matrix or batch of non-square matrices. +For other norms, however, input must be a square matrix or a batch of square matrices, +and if this requirement is not satisfied a RuntimeError will be thrown.

      +
      +
      +

      Note

      +

      For norms {‘fro’, ‘nuc’, inf, -inf, 1, -1} if input is a non-invertible matrix then +a tensor containing infinity will be returned. If input is a batch of matrices and one +or more of them is not invertible then a RuntimeError will be thrown.

      +
      +
      +
      Parameters
      +
        +
      • input (Tensor) – the input matrix of size (m, n) or the batch of matrices of size (*, m, n) +where * is one or more batch dimensions.

      • +
      • p (int, float, inf, -inf, 'fro', 'nuc', optional) –

        the type of the matrix norm to use in the computations. +inf refers to float('inf'), numpy’s inf object, or any equivalent object. +The following norms can be used:

        + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

        p

        norm for matrices

        None

        ratio of the largest singular value to the smallest singular value

        ’fro’

        Frobenius norm

        ’nuc’

        nuclear norm

        inf

        max(sum(abs(x), dim=1))

        -inf

        min(sum(abs(x), dim=1))

        1

        max(sum(abs(x), dim=0))

        -1

        min(sum(abs(x), dim=0))

        2

        ratio of the largest singular value to the smallest singular value

        -2

        ratio of the smallest singular value to the largest singular value

        +

        Default: None

        +

      • +
      +
      +
      Keyword Arguments
      +

      out (Tensor, optional) – tensor to write the output to. Default is None.

      +
      +
      Returns
      +

      The condition number of input. The output dtype is always real valued +even for complex inputs (e.g. float if input is cfloat).

      +
      +
      +

      Examples:

      +
      >>> a = torch.randn(3, 4, 4, dtype=torch.complex64)
      +>>> torch.linalg.cond(a)
      +>>> a = torch.tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])
      +>>> torch.linalg.cond(a)
      +tensor([1.4142])
      +>>> torch.linalg.cond(a, 'fro')
      +tensor(3.1623)
      +>>> torch.linalg.cond(a, 'nuc')
      +tensor(9.2426)
      +>>> torch.linalg.cond(a, float('inf'))
      +tensor(2.)
      +>>> torch.linalg.cond(a, float('-inf'))
      +tensor(1.)
      +>>> torch.linalg.cond(a, 1)
      +tensor(2.)
      +>>> torch.linalg.cond(a, -1)
      +tensor(1.)
      +>>> torch.linalg.cond(a, 2)
      +tensor([1.4142])
      +>>> torch.linalg.cond(a, -2)
      +tensor([0.7071])
      +
      +>>> a = torch.randn(2, 3, 3)
      +>>> a
      +tensor([[[-0.9204,  1.1140,  1.2055],
      +        [ 0.3988, -0.2395, -0.7441],
      +        [-0.5160,  0.3115,  0.2619]],
      +
      +        [[-2.2128,  0.9241,  2.1492],
      +        [-1.1277,  2.7604, -0.8760],
      +        [ 1.2159,  0.5960,  0.0498]]])
      +>>> torch.linalg.cond(a)
      +tensor([[9.5917],
      +        [3.2538]])
      +
      +>>> a = torch.randn(2, 3, 3, dtype=torch.complex64)
      +>>> a
      +tensor([[[-0.4671-0.2137j, -0.1334-0.9508j,  0.6252+0.1759j],
      +        [-0.3486-0.2991j, -0.1317+0.1252j,  0.3025-0.1604j],
      +        [-0.5634+0.8582j,  0.1118-0.4677j, -0.1121+0.7574j]],
      +
      +        [[ 0.3964+0.2533j,  0.9385-0.6417j, -0.0283-0.8673j],
      +        [ 0.2635+0.2323j, -0.8929-1.1269j,  0.3332+0.0733j],
      +        [ 0.1151+0.1644j, -1.1163+0.3471j, -0.5870+0.1629j]]])
      +>>> torch.linalg.cond(a)
      +tensor([[4.6245],
      +        [4.5671]])
      +>>> torch.linalg.cond(a, 1)
      +tensor([9.2589, 9.3486])
      +
      +
      +
      +
      torch.linalg.det(input) → Tensor
      -

      Alias of torch.det().

      +

      Computes the determinant of a square matrix input, or of each square matrix +in a batched input.

      +

      This function supports float, double, cfloat and cdouble dtypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The determinant is computed using LU factorization. LAPACK’s getrf is used for CPU inputs, +and MAGMA’s getrf is used for CUDA inputs.

      +
      +
      +

      Note

      +

      Backward through det internally uses torch.linalg.svd() when input is not +invertible. In this case, double backward through det will be unstable when input +doesn’t have distinct singular values. See torch.linalg.svd() for more details.

      +
      +
      +
      Parameters
      +

      input (Tensor) – the input matrix of size (n, n) or the batch of matrices of size +(*, n, n) where * is one or more batch dimensions.

      +
      +
      +

      Example:

      +
      >>> a = torch.randn(3, 3)
      +>>> a
      +tensor([[ 0.9478,  0.9158, -1.1295],
      +        [ 0.9701,  0.7346, -1.8044],
      +        [-0.2337,  0.0557,  0.6929]])
      +>>> torch.linalg.det(a)
      +tensor(0.0934)
      +
      +>>> a = torch.randn(3, 2, 2)
      +>>> a
      +tensor([[[ 0.9254, -0.6213],
      +         [-0.5787,  1.6843]],
      +
      +        [[ 0.3242, -0.9665],
      +         [ 0.4539, -0.0887]],
      +
      +        [[ 1.1336, -0.4025],
      +         [-0.7089,  0.9032]]])
      +>>> torch.linalg.det(a)
      +tensor([1.1990, 0.4099, 0.7386])
      +
      +
      +
      + +
      +
      +torch.linalg.slogdet(input, *, out=None) -> (Tensor, Tensor)
      +

      Calculates the sign and natural logarithm of the absolute value of a square matrix’s determinant, +or of the absolute values of the determinants of a batch of square matrices input. +The determinant can be computed with sign * exp(logabsdet).

      +

      Supports input of float, double, cfloat and cdouble datatypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The determinant is computed using LU factorization. LAPACK’s getrf is used for CPU inputs, +and MAGMA’s getrf is used for CUDA inputs.

      +
      +
      +

      Note

      +

      For matrices that have zero determinant, this returns (0, -inf). +If input is batched then the entries in the result tensors corresponding to matrices with +the zero determinant have sign 0 and the natural logarithm of the absolute value of the determinant -inf.

      +
      +
      +
      Parameters
      +

      input (Tensor) – the input matrix of size (n,n)(n, n) + + or the batch of matrices of size (,n,n)(*, n, n) + + +where * + + is one or more batch dimensions.

      +
      +
      Keyword Arguments
      +

      out (tuple, optional) – tuple of two tensors to write the output to.

      +
      +
      Returns
      +

      A namedtuple (sign, logabsdet) containing the sign of the determinant and the natural logarithm +of the absolute value of determinant, respectively.

      +
      +
      +

      Example:

      +
      >>> A = torch.randn(3, 3)
      +>>> A
      +tensor([[ 0.0032, -0.2239, -1.1219],
      +        [-0.6690,  0.1161,  0.4053],
      +        [-1.6218, -0.9273, -0.0082]])
      +>>> torch.linalg.det(A)
      +tensor(-0.7576)
      +>>> torch.linalg.logdet(A)
      +tensor(nan)
      +>>> torch.linalg.slogdet(A)
      +torch.return_types.linalg_slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
      +
      +
      +
      + +
      +
      +torch.linalg.eigh(input, UPLO='L', *, out=None) -> (Tensor, Tensor)
      +

      Computes the eigenvalues and eigenvectors of a complex Hermitian (or real symmetric) +matrix input, or of each such matrix in a batched input.

      +

      For a single matrix input, the tensor of eigenvalues w and the tensor of eigenvectors +V decompose the input such that input = V diag(w) Vᴴ, where Vᴴ is the transpose of V +for real-valued input, or the conjugate transpose of V for complex-valued input.

      +

      Since the matrix or matrices in input are assumed to be Hermitian, the imaginary part of their diagonals +is always treated as zero. When UPLO is “L”, its default value, only the lower triangular part of each +matrix is used in the computation. When UPLO is “U” only the upper triangular part of each matrix is used.

      +

      Supports input of float, double, cfloat and cdouble dtypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The eigenvalues/eigenvectors are computed using LAPACK’s syevd and heevd routines for CPU inputs, +and MAGMA’s syevd and heevd routines for CUDA inputs.

      +
      +
      +

      Note

      +

      The eigenvalues of real symmetric or complex Hermitian matrices are always real.

      +
      +
      +

      Note

      +

      The eigenvectors of matrices are not unique, so any eigenvector multiplied by a constant remains +a valid eigenvector. This function may compute different eigenvector representations on +different device types. Usually the difference is only in the sign of the eigenvector.

      +
      +
      +

      Note

      +

      See torch.linalg.eigvalsh() for a related function that computes only eigenvalues. +However, that function is not differentiable.

      +
      +
      +
      Parameters
      +
        +
      • input (Tensor) – the Hermitian n times n matrix or the batch of such matrices of size +(*, n, n) where * is one or more batch dimensions.

      • +
      • UPLO ('L', 'U', optional) – controls whether to use the upper-triangular or the lower-triangular part +of input in the computations. Default is 'L'.

      • +
      +
      +
      Keyword Arguments
      +

      out (tuple, optional) – tuple of two tensors to write the output to. Default is None.

      +
      +
      Returns
      +

      A namedtuple (eigenvalues, eigenvectors) containing

      +
      +
        +
      • +
        eigenvalues (Tensor): Shape (*, m).

        The eigenvalues in ascending order.

        +
        +
        +
      • +
      • +
        eigenvectors (Tensor): Shape (*, m, m).

        The orthonormal eigenvectors of the input.

        +
        +
        +
      • +
      +
      +

      +
      +
      Return type
      +

      (Tensor, Tensor)

      +
      +
      +

      Examples:

      +
      >>> a = torch.randn(2, 2, dtype=torch.complex128)
      +>>> a = a + a.t().conj()  # creates a Hermitian matrix
      +>>> a
      +tensor([[2.9228+0.0000j, 0.2029-0.0862j],
      +        [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)
      +>>> w, v = torch.linalg.eigh(a)
      +>>> w
      +tensor([0.3277, 2.9415], dtype=torch.float64)
      +>>> v
      +tensor([[-0.0846+-0.0000j, -0.9964+0.0000j],
      +        [ 0.9170+0.3898j, -0.0779-0.0331j]], dtype=torch.complex128)
      +>>> torch.allclose(torch.matmul(v, torch.matmul(w.to(v.dtype).diag_embed(), v.t().conj())), a)
      +True
      +
      +>>> a = torch.randn(3, 2, 2, dtype=torch.float64)
      +>>> a = a + a.transpose(-2, -1)  # creates a symmetric matrix
      +>>> w, v = torch.linalg.eigh(a)
      +>>> torch.allclose(torch.matmul(v, torch.matmul(w.diag_embed(), v.transpose(-2, -1))), a)
      +True
      +
      +
      +
      + +
      +
      +torch.linalg.eigvalsh(input, UPLO='L', *, out=None) → Tensor
      +

      Computes the eigenvalues of a complex Hermitian (or real symmetric) matrix input, +or of each such matrix in a batched input. The eigenvalues are returned in ascending order.

      +

      Since the matrix or matrices in input are assumed to be Hermitian, the imaginary part of their diagonals +is always treated as zero. When UPLO is “L”, its default value, only the lower triangular part of +each matrix is used in the computation. When UPLO is “U” only the upper triangular part of each matrix is used.

      +

      Supports input of float, double, cfloat and cdouble dtypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The eigenvalues are computed using LAPACK’s syevd and heevd routines for CPU inputs, +and MAGMA’s syevd and heevd routines for CUDA inputs.

      +
      +
      +

      Note

      +

      The eigenvalues of real symmetric or complex Hermitian matrices are always real.

      +
      +
      +

      Note

      +

      This function doesn’t support backpropagation, please use torch.linalg.eigh() instead, +which also computes the eigenvectors.

      +
      +
      +

      Note

      +

      See torch.linalg.eigh() for a related function that computes both eigenvalues and eigenvectors.

      +
      +
      +
      Parameters
      +
        +
      • input (Tensor) – the Hermitian n times n matrix or the batch +of such matrices of size (*, n, n) where * is one or more batch dimensions.

      • +
      • UPLO ('L', 'U', optional) – controls whether to use the upper-triangular or the lower-triangular part +of input in the computations. Default is 'L'.

      • +
      +
      +
      Keyword Arguments
      +

      out (Tensor, optional) – tensor to write the output to. Default is None.

      +
      +
      +

      Examples:

      +
      >>> a = torch.randn(2, 2, dtype=torch.complex128)
      +>>> a = a + a.t().conj()  # creates a Hermitian matrix
      +>>> a
      +tensor([[2.9228+0.0000j, 0.2029-0.0862j],
      +        [0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)
      +>>> w = torch.linalg.eigvalsh(a)
      +>>> w
      +tensor([0.3277, 2.9415], dtype=torch.float64)
      +
      +>>> a = torch.randn(3, 2, 2, dtype=torch.float64)
      +>>> a = a + a.transpose(-2, -1)  # creates a symmetric matrix
      +>>> a
      +tensor([[[ 2.8050, -0.3850],
      +        [-0.3850,  3.2376]],
      +
      +        [[-1.0307, -2.7457],
      +        [-2.7457, -1.7517]],
      +
      +        [[ 1.7166,  2.2207],
      +        [ 2.2207, -2.0898]]], dtype=torch.float64)
      +>>> w = torch.linalg.eigvalsh(a)
      +>>> w
      +tensor([[ 2.5797,  3.4629],
      +        [-4.1605,  1.3780],
      +        [-3.1113,  2.7381]], dtype=torch.float64)
      +
      +
      +
      + +
      +
      +torch.linalg.matrix_rank(input, tol=None, hermitian=False, *, out=None) → Tensor
      +

      Computes the numerical rank of a matrix input, or of each matrix in a batched input.

      +

      The matrix rank is computed as the number of singular values (or absolute eigenvalues when hermitian is True) +that are greater than the specified tol threshold.

      +

      If tol is not specified, tol is set to S.max(dim=-1)*max(input.shape[-2:])*eps, +where S is the singular values (or absolute eigenvalues when hermitian is True), and +eps is the epsilon value for the datatype of input. The epsilon value can be obtained using +the eps attribute of torch.finfo.

      +

      Supports input of float, double, cfloat and cdouble dtypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The matrix rank is computed using singular value decomposition (see torch.linalg.svd()) by default. +If hermitian is True, then input is assumed to be Hermitian (symmetric if real-valued), +and the computation is done by obtaining the eigenvalues (see torch.linalg.eigvalsh()).

      +
      +
      +
      Parameters
      +
        +
      • input (Tensor) – the input matrix of size (m, n) or the batch of matrices of size (*, m, n) +where * is one or more batch dimensions.

      • +
      • tol (float, optional) – the tolerance value. Default is None

      • +
      • hermitian (bool, optional) – indicates whether input is Hermitian. Default is False.

      • +
      +
      +
      Keyword Arguments
      +

      out (Tensor, optional) – tensor to write the output to. Default is None.

      +
      +
      +

      Examples:

      +
      >>> a = torch.eye(10)
      +>>> torch.linalg.matrix_rank(a)
      +tensor(10)
      +>>> b = torch.eye(10)
      +>>> b[0, 0] = 0
      +>>> torch.linalg.matrix_rank(b)
      +tensor(9)
      +
      +>>> a = torch.randn(4, 3, 2)
      +>>> torch.linalg.matrix_rank(a)
      +tensor([2, 2, 2, 2])
      +
      +>>> a = torch.randn(2, 4, 2, 3)
      +>>> torch.linalg.matrix_rank(a)
      +tensor([[2, 2, 2, 2],
      +        [2, 2, 2, 2]])
      +
      +>>> a = torch.randn(2, 4, 3, 3, dtype=torch.complex64)
      +>>> torch.linalg.matrix_rank(a)
      +tensor([[3, 3, 3, 3],
      +        [3, 3, 3, 3]])
      +>>> torch.linalg.matrix_rank(a, hermitian=True)
      +tensor([[3, 3, 3, 3],
      +        [3, 3, 3, 3]])
      +>>> torch.linalg.matrix_rank(a, tol=1.0)
      +tensor([[3, 2, 2, 2],
      +        [1, 2, 1, 2]])
      +>>> torch.linalg.matrix_rank(a, tol=1.0, hermitian=True)
      +tensor([[2, 2, 2, 1],
      +        [1, 2, 2, 2]])
      +
      +
      @@ -366,7 +977,10 @@

      Functions

      @@ -519,6 +1132,555 @@

      Functions +
      +torch.linalg.pinv(input, rcond=1e-15, hermitian=False, *, out=None) → Tensor
      +

      Computes the pseudo-inverse (also known as the Moore-Penrose inverse) of a matrix input, +or of each matrix in a batched input.

      +

      The singular values (or the absolute values of the eigenvalues when hermitian is True) +that are below the specified rcond threshold are treated as zero and discarded in the computation.

      +

      Supports input of float, double, cfloat and cdouble datatypes.

      +
      +

      Note

      +

      When given inputs on a CUDA device, this function synchronizes that device with the CPU.

      +
      +
      +

      Note

      +

      The pseudo-inverse is computed using singular value decomposition (see torch.linalg.svd()) by default. +If hermitian is True, then input is assumed to be Hermitian (symmetric if real-valued), +and the computation of the pseudo-inverse is done by obtaining the eigenvalues and eigenvectors +(see torch.linalg.eigh()).

      +
      +
      +

      Note

      +

      If singular value decomposition or eigenvalue decomposition algorithms do not converge +then a RuntimeError will be thrown.

      +
      +
      +
      Parameters
      +
        +
      • input (Tensor) – the input matrix of size (m, n) or the batch of matrices of size (*, m, n) +where * is one or more batch dimensions.

      • +
      • rcond (float, Tensor, optional) – the tolerance value to determine the cutoff for small singular values. +Must be broadcastable to the singular values of input as returned +by torch.svd(). Default is 1e-15.

      • +
      • hermitian (bool, optional) – indicates whether input is Hermitian. Default is False.

      • +
      +
      +
      Keyword Arguments
      +

      out (Tensor, optional) – The output tensor. Ignored if None. Default is None.

      +
      +
      +

      Examples:

      +
      >>> input = torch.randn(3, 5)
      +>>> input
      +tensor([[ 0.5495,  0.0979, -1.4092, -0.1128,  0.4132],
      +        [-1.1143, -0.3662,  0.3042,  1.6374, -0.9294],
      +        [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]])
      +>>> torch.linalg.pinv(input)
      +tensor([[ 0.0600, -0.1933, -0.2090],
      +        [-0.0903, -0.0817, -0.4752],
      +        [-0.7124, -0.1631, -0.2272],
      +        [ 0.1356,  0.3933, -0.5023],
      +        [-0.0308, -0.1725, -0.5216]])
      +
      +Batched linalg.pinv example
      +>>> a = torch.randn(2, 6, 3)
      +>>> b = torch.linalg.pinv(a)
      +>>> torch.matmul(b, a)
      +tensor([[[ 1.0000e+00,  1.6391e-07, -1.1548e-07],
      +        [ 8.3121e-08,  1.0000e+00, -2.7567e-07],
      +        [ 3.5390e-08,  1.4901e-08,  1.0000e+00]],
      +
      +        [[ 1.0000e+00, -8.9407e-08,  2.9802e-08],
      +        [-2.2352e-07,  1.0000e+00,  1.1921e-07],
      +        [ 0.0000e+00,  8.9407e-08,  1.0000e+00]]])
      +
      +Hermitian input example
      +>>> a = torch.randn(3, 3, dtype=torch.complex64)
      +>>> a = a + a.t().conj()  # creates a Hermitian matrix
      +>>> b = torch.linalg.pinv(a, hermitian=True)
      +>>> torch.matmul(b, a)
      +tensor([[ 1.0000e+00+0.0000e+00j, -1.1921e-07-2.3842e-07j,
      +        5.9605e-08-2.3842e-07j],
      +        [ 5.9605e-08+2.3842e-07j,  1.0000e+00+2.3842e-07j,
      +        -4.7684e-07+1.1921e-07j],
      +        [-1.1921e-07+0.0000e+00j, -2.3842e-07-2.9802e-07j,
      +        1.0000e+00-1.7897e-07j]])
      +
      +Non-default rcond example
      +>>> rcond = 0.5
      +>>> a = torch.randn(3, 3)
      +>>> torch.linalg.pinv(a)
      +tensor([[ 0.2971, -0.4280, -2.0111],
      +        [-0.0090,  0.6426, -0.1116],
      +        [-0.7832, -0.2465,  1.0994]])
      +>>> torch.linalg.pinv(a, rcond)
      +tensor([[-0.2672, -0.2351, -0.0539],
      +        [-0.0211,  0.6467, -0.0698],
      +        [-0.4400, -0.3638, -0.0910]])
      +
      +Matrix-wise rcond example
      +>>> a = torch.randn(5, 6, 2, 3, 3)
      +>>> rcond = torch.rand(2)  # different rcond values for each matrix in a[:, :, 0] and a[:, :, 1]
      +>>> torch.linalg.pinv(a, rcond)
      +>>> rcond = torch.randn(5, 6, 2) # different rcond value for each matrix in 'a'
      +>>> torch.linalg.pinv(a, rcond)
      +
      +
      +

    + +
    +
    +torch.linalg.svd(input, full_matrices=True, compute_uv=True, *, out=None) -> (Tensor, Tensor, Tensor)
    +

    Computes the singular value decomposition of either a matrix or batch of +matrices input.” The singular value decomposition is represented as a +namedtuple (U, S, Vh), such that input=U@diag(S)×Vhinput = U \mathbin{@} diag(S) \times +Vh + +. If input is a batch of tensors, then U, S, and Vh are +also batched with the same batch dimensions as input.

    +

    If full_matrices is False (default), the method returns the reduced singular +value decomposition i.e., if the last two dimensions of input are +m and n, then the returned U and V matrices will contain only +min(n,m)min(n, m) + + orthonormal columns.

    +

    If compute_uv is False, the returned U and Vh will be empy +tensors with no elements and the same device as input. The +full_matrices argument has no effect when compute_uv is False.

    +

    The dtypes of U and V are the same as input’s. S will +always be real-valued, even if input is complex.

    +
    +

    Note

    +

    Unlike NumPy’s linalg.svd, this always returns a namedtuple of +three tensors, even when compute_uv=False. This behavior may +change in a future PyTorch release.

    +
    +
    +

    Note

    +

    The singular values are returned in descending order. If input is a batch of matrices, +then the singular values of each matrix in the batch is returned in descending order.

    +
    +
    +

    Note

    +

    The implementation of SVD on CPU uses the LAPACK routine ?gesdd (a divide-and-conquer +algorithm) instead of ?gesvd for speed. Analogously, the SVD on GPU uses the cuSOLVER routines +gesvdj and gesvdjBatched on CUDA 10.1.243 and later, and uses the MAGMA routine gesdd +on earlier versions of CUDA.

    +
    +
    +

    Note

    +

    The returned matrix U will be transposed, i.e. with strides +U.contiguous().transpose(-2, -1).stride().

    +
    +
    +

    Note

    +

    Gradients computed using U and Vh may be unstable if +input is not full rank or has non-unique singular values.

    +
    +
    +

    Note

    +

    When full_matrices = True, the gradients on U[..., :, min(m, n):] +and V[..., :, min(m, n):] will be ignored in backward as those vectors +can be arbitrary bases of the subspaces.

    +
    +
    +

    Note

    +

    The S tensor can only be used to compute gradients if compute_uv is True.

    +
    +
    +

    Note

    +

    Since U and V of an SVD is not unique, each vector can be multiplied by +an arbitrary phase factor eiϕe^{i \phi} + + while the SVD result is still correct. +Different platforms, like Numpy, or inputs on different device types, may produce different +U and V tensors.

    +
    +
    +
    Parameters
    +
      +
    • input (Tensor) – the input tensor of size (,m,n)(*, m, n) + + where * is zero or more +batch dimensions consisting of m×nm \times n + + matrices.

    • +
    • full_matrices (bool, optional) – controls whether to compute the full or reduced decomposition, and +consequently the shape of returned U and V. Defaults to True.

    • +
    • compute_uv (bool, optional) – whether to compute U and V or not. Defaults to True.

    • +
    • out (tuple, optional) – a tuple of three tensors to use for the outputs. If compute_uv=False, +the 1st and 3rd arguments must be tensors, but they are ignored. E.g. you can +pass (torch.Tensor(), out_S, torch.Tensor())

    • +
    +
    +
    +

    Example:

    +
    >>> import torch
    +>>> a = torch.randn(5, 3)
    +>>> a
    +tensor([[-0.3357, -0.2987, -1.1096],
    +        [ 1.4894,  1.0016, -0.4572],
    +        [-1.9401,  0.7437,  2.0968],
    +        [ 0.1515,  1.3812,  1.5491],
    +        [-1.8489, -0.5907, -2.5673]])
    +>>>
    +>>> # reconstruction in the full_matrices=False case
    +>>> u, s, vh = torch.linalg.svd(a, full_matrices=False)
    +>>> u.shape, s.shape, vh.shape
    +(torch.Size([5, 3]), torch.Size([3]), torch.Size([3, 3]))
    +>>> torch.dist(a, u @ torch.diag(s) @ vh)
    +tensor(1.0486e-06)
    +>>>
    +>>> # reconstruction in the full_matrices=True case
    +>>> u, s, vh = torch.linalg.svd(a)
    +>>> u.shape, s.shape, vh.shape
    +(torch.Size([5, 5]), torch.Size([3]), torch.Size([3, 3]))
    +>>> torch.dist(a, u[:, :3] @ torch.diag(s) @ vh)
    +>>> torch.dist(a, u[:, :3] @ torch.diag(s) @ vh)
    +tensor(1.0486e-06)
    +>>>
    +>>> # extra dimensions
    +>>> a_big = torch.randn(7, 5, 3)
    +>>> u, s, vh = torch.linalg.svd(a_big, full_matrices=False)
    +>>> torch.dist(a_big, u @ torch.diag_embed(s) @ vh)
    +tensor(3.0957e-06)
    +
    +
    +
    + +
    +
    +torch.linalg.solve(input, other, *, out=None) → Tensor
    +

    Computes the solution x to the matrix equation matmul(input, x) = other +with a square matrix, or batches of such matrices, input and one or more right-hand side vectors other. +If input is batched and other is not, then other is broadcast +to have the same batch dimensions as input. +The resulting tensor has the same shape as the (possibly broadcast) other.

    +

    Supports input of float, double, cfloat and cdouble dtypes.

    +
    +

    Note

    +

    If input is a non-square or non-invertible matrix, or a batch containing non-square matrices +or one or more non-invertible matrices, then a RuntimeError will be thrown.

    +
    +
    +

    Note

    +

    When given inputs on a CUDA device, this function synchronizes that device with the CPU.

    +
    +
    +
    Parameters
    +
      +
    • input (Tensor) – the square n×nn \times n + + matrix or the batch +of such matrices of size (,n,n)(*, n, n) + + where * is one or more batch dimensions.

    • +
    • other (Tensor) – right-hand side tensor of shape (,n)(*, n) + + or (,n,k)(*, n, k) + +, +where kk + + is the number of right-hand side vectors.

    • +
    +
    +
    Keyword Arguments
    +

    out (Tensor, optional) – The output tensor. Ignored if None. Default: None

    +
    +
    +

    Examples:

    +
    >>> A = torch.eye(3)
    +>>> b = torch.randn(3)
    +>>> x = torch.linalg.solve(A, b)
    +>>> torch.allclose(A @ x, b)
    +True
    +
    +
    +

    Batched input:

    +
    >>> A = torch.randn(2, 3, 3)
    +>>> b = torch.randn(3, 1)
    +>>> x = torch.linalg.solve(A, b)
    +>>> torch.allclose(A @ x, b)
    +True
    +>>> b = torch.rand(3) # b is broadcast internally to (*A.shape[:-2], 3)
    +>>> x = torch.linalg.solve(A, b)
    +>>> x.shape
    +torch.Size([2, 3])
    +>>> Ax = A @ x.unsqueeze(-1)
    +>>> torch.allclose(Ax, b.unsqueeze(-1).expand_as(Ax))
    +True
    +
    +
    +
    + +
    +
    +torch.linalg.tensorinv(input, ind=2, *, out=None) → Tensor
    +

    Computes a tensor input_inv such that tensordot(input_inv, input, ind) == I_n (inverse tensor equation), +where I_n is the n-dimensional identity tensor and n is equal to input.ndim. +The resulting tensor input_inv has shape equal to input.shape[ind:] + input.shape[:ind].

    +

    Supports input of float, double, cfloat and cdouble data types.

    +
    +

    Note

    +

    If input is not invertible or does not satisfy the requirement +prod(input.shape[ind:]) == prod(input.shape[:ind]), +then a RuntimeError will be thrown.

    +
    +
    +

    Note

    +

    When input is a 2-dimensional tensor and ind=1, this function computes the +(multiplicative) inverse of input, equivalent to calling torch.inverse().

    +
    +
    +
    Parameters
    +
      +
    • input (Tensor) – A tensor to invert. Its shape must satisfy prod(input.shape[:ind]) == prod(input.shape[ind:]).

    • +
    • ind (int) – A positive integer that describes the inverse tensor equation. See torch.tensordot() for details. Default: 2.

    • +
    +
    +
    Keyword Arguments
    +

    out (Tensor, optional) – The output tensor. Ignored if None. Default: None

    +
    +
    +

    Examples:

    +
    >>> a = torch.eye(4 * 6).reshape((4, 6, 8, 3))
    +>>> ainv = torch.linalg.tensorinv(a, ind=2)
    +>>> ainv.shape
    +torch.Size([8, 3, 4, 6])
    +>>> b = torch.randn(4, 6)
    +>>> torch.allclose(torch.tensordot(ainv, b), torch.linalg.tensorsolve(a, b))
    +True
    +
    +>>> a = torch.randn(4, 4)
    +>>> a_tensorinv = torch.linalg.tensorinv(a, ind=1)
    +>>> a_inv = torch.inverse(a)
    +>>> torch.allclose(a_tensorinv, a_inv)
    +True
    +
    +
    +
    + +
    +
    +torch.linalg.tensorsolve(input, other, dims=None, *, out=None) → Tensor
    +

    Computes a tensor x such that tensordot(input, x, dims=x.ndim) = other. +The resulting tensor x has the same shape as input[other.ndim:].

    +

    Supports real-valued and complex-valued inputs.

    +
    +

    Note

    +

    If input does not satisfy the requirement +prod(input.shape[other.ndim:]) == prod(input.shape[:other.ndim]) +after (optionally) moving the dimensions using dims, then a RuntimeError will be thrown.

    +
    +
    +
    Parameters
    +
      +
    • input (Tensor) – “left-hand-side” tensor, it must satisfy the requirement +prod(input.shape[other.ndim:]) == prod(input.shape[:other.ndim]).

    • +
    • other (Tensor) – “right-hand-side” tensor of shape input.shape[other.ndim].

    • +
    • dims (Tuple[int]) – dimensions of input to be moved before the computation. +Equivalent to calling input = movedim(input, dims, range(len(dims) - input.ndim, 0)). +If None (default), no dimensions are moved.

    • +
    +
    +
    Keyword Arguments
    +

    out (Tensor, optional) – The output tensor. Ignored if None. Default: None

    +
    +
    +

    Examples:

    +
    >>> a = torch.eye(2 * 3 * 4).reshape((2 * 3, 4, 2, 3, 4))
    +>>> b = torch.randn(2 * 3, 4)
    +>>> x = torch.linalg.tensorsolve(a, b)
    +>>> x.shape
    +torch.Size([2, 3, 4])
    +>>> torch.allclose(torch.tensordot(a, x, dims=x.ndim), b)
    +True
    +
    +>>> a = torch.randn(6, 4, 4, 3, 2)
    +>>> b = torch.randn(4, 3, 2)
    +>>> x = torch.linalg.tensorsolve(a, b, dims=(0, 2))
    +>>> x.shape
    +torch.Size([6, 4])
    +>>> a = a.permute(1, 3, 4, 0, 2)
    +>>> a.shape[b.ndim:]
    +torch.Size([6, 4])
    +>>> torch.allclose(torch.tensordot(a, x, dims=x.ndim), b, atol=1e-6)
    +True
    +
    +
    +
    + +
    +
    +torch.linalg.inv(input, *, out=None) → Tensor
    +

    Computes the multiplicative inverse matrix of a square matrix input, or of each square matrix in a +batched input. The result satisfies the relation:

    +

    matmul(inv(input),input) = matmul(input,inv(input)) = eye(input.shape[0]).expand_as(input).

    +

    Supports input of float, double, cfloat and cdouble data types.

    +
    +

    Note

    +

    When given inputs on a CUDA device, this function synchronizes that device with the CPU.

    +
    +
    +

    Note

    +

    The inverse matrix is computed using LAPACK’s getrf and getri routines for CPU inputs. For CUDA +inputs, cuSOLVER’s getrf and getrs routines as well as cuBLAS’ getrf and getri routines are +used if CUDA version >= 10.1.243, otherwise MAGMA’s getrf and getri routines are used instead.

    +
    +
    +

    Note

    +

    If input is a non-invertible matrix or non-square matrix, or batch with at least one such matrix, +then a RuntimeError will be thrown.

    +
    +
    +
    Parameters
    +

    input (Tensor) – the square (n, n) matrix or the batch of such matrices of size +(*, n, n) where * is one or more batch dimensions.

    +
    +
    Keyword Arguments
    +

    out (Tensor, optional) – The output tensor. Ignored if None. Default is None.

    +
    +
    +

    Examples:

    +
    >>> x = torch.rand(4, 4)
    +>>> y = torch.linalg.inv(x)
    +>>> z = torch.mm(x, y)
    +>>> z
    +tensor([[ 1.0000, -0.0000, -0.0000,  0.0000],
    +        [ 0.0000,  1.0000,  0.0000,  0.0000],
    +        [ 0.0000,  0.0000,  1.0000,  0.0000],
    +        [ 0.0000, -0.0000, -0.0000,  1.0000]])
    +>>> torch.max(torch.abs(z - torch.eye(4))) # Max non-zero
    +tensor(1.1921e-07)
    +
    +>>> # Batched inverse example
    +>>> x = torch.randn(2, 3, 4, 4)
    +>>> y = torch.linalg.inv(x)
    +>>> z = torch.matmul(x, y)
    +>>> torch.max(torch.abs(z - torch.eye(4).expand_as(x))) # Max non-zero
    +tensor(1.9073e-06)
    +
    +>>> x = torch.rand(4, 4, dtype=torch.cdouble)
    +>>> y = torch.linalg.inv(x)
    +>>> z = torch.mm(x, y)
    +>>> z
    +tensor([[ 1.0000e+00+0.0000e+00j, -1.3878e-16+3.4694e-16j,
    +        5.5511e-17-1.1102e-16j,  0.0000e+00-1.6653e-16j],
    +        [ 5.5511e-16-1.6653e-16j,  1.0000e+00+6.9389e-17j,
    +        2.2204e-16-1.1102e-16j, -2.2204e-16+1.1102e-16j],
    +        [ 3.8858e-16-1.2490e-16j,  2.7756e-17+3.4694e-17j,
    +        1.0000e+00+0.0000e+00j, -4.4409e-16+5.5511e-17j],
    +        [ 4.4409e-16+5.5511e-16j, -3.8858e-16+1.8041e-16j,
    +        2.2204e-16+0.0000e+00j,  1.0000e+00-3.4694e-16j]],
    +    dtype=torch.complex128)
    +>>> torch.max(torch.abs(z - torch.eye(4, dtype=torch.cdouble))) # Max non-zero
    +tensor(7.5107e-16, dtype=torch.float64)
    +
    +
    +
    + +
    +
    +torch.linalg.qr(input, mode='reduced', *, out=None) -> (Tensor, Tensor)
    +

    Computes the QR decomposition of a matrix or a batch of matrices input, +and returns a namedtuple (Q, R) of tensors such that input=QR\text{input} = Q R + + +with QQ + + being an orthogonal matrix or batch of orthogonal matrices and +RR + + being an upper triangular matrix or batch of upper triangular matrices.

    +

    Depending on the value of mode this function returns the reduced or +complete QR factorization. See below for a list of valid modes.

    +
    +

    Note

    +

    Differences with numpy.linalg.qr:

    +
      +
    • mode='raw' is not implemented

    • +
    • unlike numpy.linalg.qr, this function always returns a +tuple of two tensors. When mode='r', the Q tensor is an +empty tensor. This behavior may change in a future PyTorch release.

    • +
    +
    +
    +

    Note

    +

    Backpropagation is not supported for mode='r'. Use mode='reduced' instead.

    +

    Backpropagation is also not supported if the first +min(input.size(1),input.size(2))\min(input.size(-1), input.size(-2)) + + columns of any matrix +in input are not linearly independent. While no error will +be thrown when this occurs the values of the “gradient” produced may +be anything. This behavior may change in the future.

    +
    +
    +

    Note

    +

    This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, +and may produce different (valid) decompositions on different device types +or different platforms.

    +
    +
    +
    Parameters
    +
      +
    • input (Tensor) – the input tensor of size (,m,n)(*, m, n) + + where * is zero or more +batch dimensions consisting of matrices of dimension m×nm \times n + +.

    • +
    • mode (str, optional) –

      if k = min(m, n) then:

      +
        +
      • 'reduced' : returns (Q, R) with dimensions (m, k), (k, n) (default)

      • +
      • 'complete': returns (Q, R) with dimensions (m, m), (m, n)

      • +
      • 'r': computes only R; returns (Q, R) where Q is empty and R has dimensions (k, n)

      • +
      +

    • +
    +
    +
    Keyword Arguments
    +

    out (tuple, optional) – tuple of Q and R tensors. +The dimensions of Q and R are detailed in the description of mode above.

    +
    +
    +

    Example:

    +
    >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])
    +>>> q, r = torch.linalg.qr(a)
    +>>> q
    +tensor([[-0.8571,  0.3943,  0.3314],
    +        [-0.4286, -0.9029, -0.0343],
    +        [ 0.2857, -0.1714,  0.9429]])
    +>>> r
    +tensor([[ -14.0000,  -21.0000,   14.0000],
    +        [   0.0000, -175.0000,   70.0000],
    +        [   0.0000,    0.0000,  -35.0000]])
    +>>> torch.mm(q, r).round()
    +tensor([[  12.,  -51.,    4.],
    +        [   6.,  167.,  -68.],
    +        [  -4.,   24.,  -41.]])
    +>>> torch.mm(q.t(), q).round()
    +tensor([[ 1.,  0.,  0.],
    +        [ 0.,  1., -0.],
    +        [ 0., -0.,  1.]])
    +>>> q2, r2 = torch.linalg.qr(a, mode='r')
    +>>> q2
    +tensor([])
    +>>> torch.equal(r, r2)
    +True
    +>>> a = torch.randn(3, 4, 5)
    +>>> q, r = torch.linalg.qr(a, mode='complete')
    +>>> torch.allclose(torch.matmul(q, r), a)
    +True
    +>>> torch.allclose(torch.matmul(q.transpose(-2, -1), q), torch.eye(5))
    +True
    +
    +
    +
    + @@ -530,7 +1692,7 @@

    Functions - + @@ -757,10 +1919,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -781,14 +1939,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/mobile_optimizer.html b/torch/mobile_optimizer.html index f7cc5fa99..8b1c922a6 100644 --- a/torch/mobile_optimizer.html +++ b/torch/mobile_optimizer.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    @@ -705,10 +771,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -729,14 +791,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/notes/serialization.html b/torch/notes/serialization.html index f3097eaeb..6c6232c71 100644 --- a/torch/notes/serialization.html +++ b/torch/notes/serialization.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    @@ -612,13 +657,240 @@

    Tracing vs Scripting +

    Write PyTorch model in Torch way

    +

    PyTorch models can be written using numpy manipulations, but this is not proper when we convert to the ONNX model. +For the trace-based exporter, tracing treats the numpy values as the constant node, +therefore it calculates the wrong result if we change the input. +So the PyTorch model need implement using torch operators. +For example, do not use numpy operators on numpy tensors:

    +
    np.concatenate((x, y, z), axis=1)
    +
    +
    +

    do not convert to numpy types:

    +
    y = x.astype(np.int)
    +
    +
    +

    Always use torch tensors and torch operators: torch.concat, etc. +In addition, Dropout layer need defined in init function so that inferencing can handle it properly, i.e.,

    +
    class MyModule(nn.Module):
    +    def __init__(self):
    +        self.dropout = nn.Dropout(0.5)
    +
    +    def forward(self, x):
    +        x = self.dropout(x)
    +
    +
    +

    +
    +

    Using dictionaries to handle Named Arguments as model inputs

    +

    There are two ways to handle models which consist of named parameters or keyword arguments as inputs:

    + +

    For example, in the model:

    +
    class Model(torch.nn.Module):
    +  def forward(self, x, y=None, z=None):
    +    if y is not None:
    +      return x + y
    +    if z is not None:
    +      return x + z
    +    return x
    +m = Model()
    +x = torch.randn(2, 3)
    +z = torch.randn(2, 3)
    +
    +
    +

    There are two ways of exporting the model:

    + +

    For cases in which there are no keyword arguments, models can be exported with either an +empty or no dictionary. For example,

    +
    torch.onnx.export(model, (x, {}), ‘test.onnx’)
    +or
    +torch.onnx.export(model, (x, ), ‘test.onnx’)
    +
    +
    +

    An exception to this rule are cases in which the last input is also of a dictionary type. +In these cases it is mandatory to have an empty dictionary as the last argument in the +args tuple. For example,

    +
    class Model(torch.nn.Module):
    +  def forward(self, k, x):
    +    ...
    +    return x
    +m = Model()
    +k =torch.randn(2, 3)
    +x = {torch.tensor(1.):torch.randn(2, 3)}
    +
    +
    +

    Without the presence of the empty dictionary, the export call assumes that the +‘x’ input is intended to represent the optional dictionary consisting of named arguments. +In order to prevent this from being an issue a constraint is placed to provide an empty +dictionary as the last input in the tuple args in such cases. +The new call would look like this.

    +
    torch.onnx.export(model, (k, x, {}), ‘test.onnx’)
    +
    +
    +
    +
    +

    Indexing

    +

    Tensor indexing in PyTorch is very flexible and complicated. +There are two categories of indexing. Both are largely supported in exporting today. +If you are experiencing issues exporting indexing that belongs to the supported patterns below, +please double check that you are exporting with the latest opset (opset_version=12).

    +
    +

    Getter

    +

    This type of indexing occurs on the RHS. Export is supported for ONNX opset version >= 9. E.g.:

    +
    data = torch.randn(3, 4)
    +index = torch.tensor([1, 2])
    +
    +# RHS indexing is supported in ONNX opset >= 11.
    +class RHSIndexing(torch.nn.Module):
    +    def forward(self, data, index):
    +        return data[index]
    +
    +out = RHSIndexing()(data, index)
    +
    +torch.onnx.export(RHSIndexing(), (data, index), 'indexing.onnx', opset_version=9)
    +
    +# onnxruntime
    +import onnxruntime
    +sess = onnxruntime.InferenceSession('indexing.onnx')
    +out_ort = sess.run(None, {
    +    sess.get_inputs()[0].name: data.numpy(),
    +    sess.get_inputs()[1].name: index.numpy(),
    +})
    +
    +assert torch.all(torch.eq(out, torch.tensor(out_ort)))
    +
    +
    +

    Below is the list of supported patterns for RHS indexing.

    +
    # Scalar indices
    +data[0, 1]
    +
    +# Slice indices
    +data[:3]
    +
    +# Tensor indices
    +data[torch.tensor([[1, 2], [2, 3]])]
    +data[torch.tensor([2, 3]), torch.tensor([1, 2])]
    +data[torch.tensor([[1, 2], [2, 3]]), torch.tensor([2, 3])]
    +data[torch.tensor([2, 3]), :, torch.tensor([1, 2])]
    +
    +# Ellipsis
    +# Not supported in scripting
    +# i.e. torch.jit.script(model) will fail if model contains this pattern.
    +# Export is supported under tracing
    +# i.e. torch.onnx.export(model)
    +data[...]
    +
    +# The combination of above
    +data[2, ..., torch.tensor([2, 1, 3]), 2:4, torch.tensor([[1], [2]])]
    +
    +# Boolean mask (supported for ONNX opset version >= 11)
    +data[data != 1]
    +
    +
    +

    And below is the list of unsupported patterns for RHS indexing.

    +
    # Tensor indices that includes negative values.
    +data[torch.tensor([[1, 2], [2, -3]]), torch.tensor([-2, 3])]
    +
    +
    +
    +
    +

    Setter

    +

    In code, this type of indexing occurs on the LHS. +Export is supported for ONNX opset version >= 11. E.g.:

    +
    data = torch.zeros(3, 4)
    +new_data = torch.arange(4).to(torch.float32)
    +
    +# LHS indexing is supported in ONNX opset >= 11.
    +class LHSIndexing(torch.nn.Module):
    +    def forward(self, data, new_data):
    +        data[1] = new_data
    +        return data
    +
    +out = LHSIndexing()(data, new_data)
    +
    +data = torch.zeros(3, 4)
    +new_data = torch.arange(4).to(torch.float32)
    +torch.onnx.export(LHSIndexing(), (data, new_data), 'inplace_assign.onnx', opset_version=11)
    +
    +# onnxruntime
    +import onnxruntime
    +sess = onnxruntime.InferenceSession('inplace_assign.onnx')
    +out_ort = sess.run(None, {
    +    sess.get_inputs()[0].name: torch.zeros(3, 4).numpy(),
    +    sess.get_inputs()[1].name: new_data.numpy(),
    +})
    +
    +assert torch.all(torch.eq(out, torch.tensor(out_ort)))
    +
    +
    +

    Below is the list of supported patterns for LHS indexing.

    +
    # Scalar indices
    +data[0, 1] = new_data
    +
    +# Slice indices
    +data[:3] = new_data
    +
    +# Tensor indices
    +# If more than one tensor are used as indices, only consecutive 1-d tensor indices are supported.
    +data[torch.tensor([[1, 2], [2, 3]])] = new_data
    +data[torch.tensor([2, 3]), torch.tensor([1, 2])] = new_data
    +
    +# Ellipsis
    +# Not supported to export in script modules
    +# i.e. torch.onnx.export(torch.jit.script(model)) will fail if model contains this pattern.
    +# Export is supported under tracing
    +# i.e. torch.onnx.export(model)
    +data[...] = new_data
    +
    +# The combination of above
    +data[2, ..., torch.tensor([2, 1, 3]), 2:4] += update
    +
    +# Boolean mask
    +data[data != 1] = new_data
    +
    +
    +

    And below is the list of unsupported patterns for LHS indexing.

    +
    # Multiple tensor indices if any has rank >= 2
    +data[torch.tensor([[1, 2], [2, 3]]), torch.tensor([2, 3])] = new_data
    +
    +# Multiple tensor indices that are not consecutive
    +data[torch.tensor([2, 3]), :, torch.tensor([1, 2])] = new_data
    +
    +# Tensor indices that includes negative values.
    +data[torch.tensor([1, -2]), torch.tensor([-2, 3])] = new_data
    +
    +
    +

    If you are experiencing issues exporting indexing that belongs to the above supported patterns, please double check that +you are exporting with the latest opset (opset_version=12).

    +
    +
    -

    TorchVision support

    +

    TorchVision support

    All TorchVision models, except for quantized versions, are exportable to ONNX. More details can be found in TorchVision.

    -

    Limitations

    +

    Limitations

    -

    Supported operators

    +

    Supported operators

    The following operators are supported:

    Libraries

    - @@ -157,7 +187,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -203,6 +233,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -229,18 +260,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -256,9 +293,9 @@

    Libraries

    -
  • Functions for graph mode quantization:

    -
      -
    • quantize_jit() - Function for graph mode post training static quantization

    • -
    • quantize_dynamic_jit() - Function for graph mode post training dynamic quantization

    • -
    -
  • +
  • Functions for graph mode quantization: +* quantize_jit() - Function for graph mode post training static quantization +* quantize_dynamic_jit() - Function for graph mode post training dynamic quantization

  • Quantization configurations

    Libraries

      -
    • torchaudio
    • -
    • torchtext
    • -
    • torchvision
    • +
    • torchaudio
    • +
    • torchtext
    • +
    • torchvision
    • TorchElastic
    • TorchServe
    • PyTorch on XLA Devices
    • @@ -383,8 +420,8 @@

      Introduction to Quantization

      Note

      -

      PyTorch 1.3 doesn’t provide quantized operator implementations on CUDA yet - -this is direction of future work. Move the model to CPU in order to test the +

      At the moment PyTorch doesn’t provide quantized operator implementations on CUDA - +this is the direction for future work. Move the model to CPU in order to test the quantized functionality.

      Quantization-aware training (through FakeQuantize) supports both CPU and CUDA.

      @@ -410,7 +447,87 @@

      Introduction to Quantization

      Quantization API Summary

      -

      There are three types of quantization supported in PyTorch:

      +

      PyTorch provides two different modes of quantization: Eager Mode Quantization and FX Graph Mode Quantization.

      +

      Eager Mode Quantization is a beta feature. User needs to do fusion and specify where quantization and dequantization happens manually, also it only supports modules and not functionals.

      +

      FX Graph Mode Quantization is a new automated quantization framework in PyTorch, and currently it’s a prototype feature. It improves upon Eager Mode Quantization by adding support for functionals and automating the quantization process, although people might need to refactor the model to make the model compatible with FX Graph Mode Quantization (symbolically traceable with torch.fx). Note that FX Graph Mode Quantization is not expected to work on arbitrary models since the model might not be symbolically traceable, we will integrate it into domain libraries like torchvision and users will be able to quantize models similar to the ones in supported domain libraries with FX Graph Mode Quantization. For arbitrary models we’ll provide general guidelines, but to actually make it work, users might need to be familiar with torch.fx, especially on how to make a model symbolically traceable.

      +

      New users of quantization are encouraged to try out FX Graph Mode Quantization first, if it does not work, user may try to follow the guideline of using FX Graph Mode Quantization or fall back to eager mode quantization.

      +

      The following table compares the differences between Eager Mode Quantization and FX Graph Mode Quantization:

      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

      Eager Mode +Quantization

      FX Graph +Mode +Quantization

      Release +Status

      beta

      prototype

      Operator +Fusion

      Manual

      Automatic

      Quant/DeQuant +Placement

      Manual

      Automatic

      Quantizing +Modules

      Supported

      Supported

      Quantizing +Functionals/Torch +Ops

      Manual

      Automatic

      Support for +Customization

      Limited Support

      Fully +Supported

      Quantization Mode +Support

      Post Training +Quantization: +Static, Dynamic, +Weight Only

      +

      Quantiztion Aware +Training: +Static

      +

      Post Training +Quantization: +Static, Dynamic, +Weight Only

      +

      Quantiztion Aware +Training: +Static

      +

      Input/Output +Model Type

      torch.nn.Module

      torch.nn.Module +(May need some +refactors to make +the model +compatible with FX +Graph Mode +Quantization)

      +
      +

      Eager Mode Quantization

      +

      There are three types of quantization supported in Eager Mode Quantization:

      1. dynamic quantization (weights quantized with activations read/stored in floating point and quantized for compute.)

      2. @@ -423,7 +540,7 @@

        Quantization API Summary -

        Dynamic Quantization

        +

        Dynamic Quantization

        This is the simplest to apply form of quantization where the weights are quantized ahead of time but the activations are dynamically quantized during inference. This is used for situations where the model execution time @@ -438,7 +555,7 @@

        Dynamic Quantizationlinear_weight_fp32 # dynamically quantized model -# linear and conv weights are in int8 +# linear and LSTM weights are in int8 previous_layer_fp32 -- linear_int8_w_fp32_inp -- activation_fp32 -- next_layer_fp32 / linear_weight_int8 @@ -473,7 +590,7 @@

        Dynamic QuantizationTo learn more about dynamic quantization please see our dynamic quantization tutorial.

      -

      Static Quantization

      +

      Static Quantization

      Static quantization quantizes the weights and activations of the model. It fuses activations into preceding layers where possible. It requires calibration with a representative dataset to determine optimal quantization @@ -560,7 +677,7 @@

      Static Quantizationstatic quantization tutorial.

      -

      Quantization Aware Training

      +

      Quantization Aware Training

      Quantization Aware Training models the effects of quantization during training allowing for higher accuracy compared to other quantization methods. During training, all calculations are done in floating point, with fake_quant modules @@ -652,6 +769,92 @@

      Quantization Aware Training +

      (Prototype) FX Graph Mode Quantization

      +

      Quantization types supported by FX Graph Mode can be classified in two ways:

      +

      1. +- Post Training Quantization (apply quantization after training, quantization parameters are calculated based on sample calibration data) +- Quantization Aware Training (simulate quantization during training so that the quantization parameters can be learned together with the model using training data)

      +

      2. +- Weight Only Quantization (only weight is statically quantized) +- Dynamic Quantization (weight is statically quantized, activation is dynamically quantized) +- Static Quantization (both weight and activations are statically quantized)

      +

      These two ways of classification are independent, so theoretically we can have 6 different types of quantization.

      +

      The supported quantization types in FX Graph Mode Quantization are:

      +
        +
      • Post Training Quantization

        +
          +
        • Weight Only Quantization

        • +
        • Dynamic Quantization

        • +
        • Static Quantization

        • +
        +
      • +
      • Quantization Aware Training

        +
          +
        • Static Quantization

        • +
        +
      • +
      +

      There are multiple quantization types in post training quantization (weight only, dynamic and static) and the configuration is done through qconfig_dict (an argument of the prepare_fx function).

      +

      API Example:

      +
      import torch.quantization.quantize_fx as quantize_fx
      +import copy
      +
      +model_fp = UserModel(...)
      +
      +#
      +# post training dynamic/weight_only quantization
      +#
      +
      +# we need to deepcopy if we still want to keep model_fp unchanged after quantization since quantization apis change the input model
      +model_to_quantize = copy.deepcopy(model_fp)
      +model_to_quantize.eval()
      +qconfig_dict = {"": torch.quantization.default_dynamic_qconfig}
      +# prepare
      +model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_dict)
      +# no calibration needed when we only have dynamici/weight_only quantization
      +# quantize
      +model_quantized = quantize_fx.convert_fx(model_prepared)
      +
      +#
      +# post training static quantization
      +#
      +
      +model_to_quantize = copy.deepcopy(model_fp)
      +qconfig_dict = {"": torch.quantization.get_default_qconfig('qnnpack')}
      +model_to_quantize.eval()
      +# prepare
      +model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_dict)
      +# calibrate (not shown)
      +# quantize
      +model_quantized = quantize_fx.convert_fx(model_prepared)
      +
      +#
      +# quantization aware training for static quantization
      +#
      +
      +model_to_quantize = copy.deepcopy(model_fp)
      +qconfig_dict = {"": torch.quantization.get_default_qat_qconfig('qnnpack')}
      +model_to_quantize.train()
      +# prepare
      +model_prepared = quantize_fx.prepare_qat_fx(model_to_qunatize, qconfig_dict)
      +# training loop (not shown)
      +# quantize
      +model_quantized = quantize_fx.convert_fx(model_prepared)
      +
      +#
      +# fusion
      +#
      +model_to_quantize = copy.deepcopy(model_fp)
      +model_fused = quantize_fx.fuse_fx(model_to_quantize)
      +
      +
      +

      Please see the following tutorials for more information about FX Graph Mode Quantization: +- User Guide on Using FX Graph Mode Quantization +- FX Graph Mode Post Training Static Quantization +- FX Graph Mode Post Training Dynamic Quantization

      +

      +

      Quantized Tensors

      PyTorch supports both per tensor and per channel asymmetric linear @@ -761,6 +964,71 @@

      Best Practices +

      Common Errors

      +
      +

      Passing a non-quantized Tensor into a quantized kernel

      +

      If you see an error similar to:

      +
      RuntimeError: Could not run 'quantized::some_operator' with arguments from the 'CPU' backend...
      +
      +
      +

      This means that you are trying to pass a non-quantized Tensor to a quantized +kernel. A common workaround is to use torch.quantization.QuantStub to +quantize the tensor. This needs to be done manually in Eager mode quantization. +An e2e example:

      +
      class M(torch.nn.Module):
      +    def __init__(self):
      +        super().__init__()
      +        self.quant = torch.quantization.QuantStub()
      +        self.conv = torch.nn.Conv2d(1, 1, 1)
      +
      +    def forward(self, x):
      +        # during the convert step, this will be replaced with a
      +        # `quantize_per_tensor` call
      +        x = self.quant(x)
      +        x = self.conv(x)
      +        return x
      +
      +
      +
      +
      +

      Passing a quantized Tensor into a non-quantized kernel

      +

      If you see an error similar to:

      +
      RuntimeError: Could not run 'aten::thnn_conv2d_forward' with arguments from the 'QuantizedCPU' backend.
      +
      +
      +

      This means that you are trying to pass a quantized Tensor to a non-quantized +kernel. A common workaround is to use torch.quantization.DeQuantStub to +dequantize the tensor. This needs to be done manually in Eager mode quantization. +An e2e example:

      +
      class M(torch.nn.Module):
      +    def __init__(self):
      +        super().__init__()
      +        self.quant = torch.quantization.QuantStub()
      +        self.conv1 = torch.nn.Conv2d(1, 1, 1)
      +        # this module will not be quantized (see `qconfig = None` logic below)
      +        self.conv2 = torch.nn.Conv2d(1, 1, 1)
      +        self.dequant = torch.quantization.DeQuantStub()
      +
      +    def forward(self, x):
      +        # during the convert step, this will be replaced with a
      +        # `quantize_per_tensor` call
      +        x = self.quant(x)
      +        x = self.conv1(x)
      +        # during the convert step, this will be replaced with a
      +        # `dequantize` call
      +        x = self.dequant(x)
      +        x = self.conv2(x)
      +        return x
      +
      +m = M()
      +m.qconfig = some_qconfig
      +# turn off quantization for conv2
      +m.conv2.qconfig = None
      +
      +
      +
      +

      Modules that provide quantization functions and classes

      @@ -817,7 +1085,7 @@

      Modules that provide quantization functions and classes - + @@ -852,16 +1120,25 @@

      Modules that provide quantization functions and classesQuantization @@ -1053,10 +1330,6 @@

      Resources

      Get Started -
    • - Features -
    • -
    • Ecosystem
    • @@ -1077,14 +1350,66 @@

      Resources

      Tutorials -
    • - Docs +
    • + Docs
    • -
    • - Resources + + +
    • + Resources
    • + +
    • Github
    • diff --git a/torch/random.html b/torch/random.html index 1460f1458..fc77754a0 100644 --- a/torch/random.html +++ b/torch/random.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
      - master (1.7.0 ) + master (1.8.0 )
      @@ -205,6 +235,7 @@
    • Extending PyTorch
    • Frequently Asked Questions
    • Features for large-scale deployments
    • +
    • Modules
    • Multiprocessing best practices
    • Reproducibility
    • Serialization semantics
    • @@ -231,18 +262,24 @@
    • torch.distributions
    • torch.fft
    • torch.futures
    • +
    • torch.fx
    • torch.hub
    • torch.jit
    • torch.linalg
    • +
    • torch.overrides
    • +
    • torch.profiler
    • torch.nn.init
    • torch.onnx
    • torch.optim
    • Complex Numbers
    • +
    • DDP Communication Hooks
    • +
    • Pipeline Parallelism
    • Quantization
    • Distributed RPC Framework
    • torch.random
    • torch.sparse
    • torch.Storage
    • +
    • torch.utils.benchmark
    • torch.utils.bottleneck
    • torch.utils.checkpoint
    • torch.utils.cpp_extension
    • @@ -258,9 +295,9 @@

      Libraries

      Libraries

        -
      • torchaudio
      • -
      • torchtext
      • -
      • torchvision
      • +
      • torchaudio
      • +
      • torchtext
      • +
      • torchvision
      • TorchElastic
      • TorchServe
      • PyTorch on XLA Devices
      • @@ -429,15 +466,15 @@

        Basics
        Parameters
          +
        • name (str) – a globally unique name of this node. (e.g., +Trainer3, ParameterServer2, Master, Worker1) +Name can only contain number, alphabet, underscore, colon, +and/or dash, and must be shorter than 128 characters.

        • backend (BackendType, optional) – The type of RPC backend implementation. Supported values include BackendType.TENSORPIPE (the default) and BackendType.PROCESS_GROUP. See Backends for more information.

        • -
        • name (str) – a globally unique name of this node. (e.g., -Trainer3, ParameterServer2, Master, Worker1) -Name can only contain number, alphabet, underscore, colon, -and/or dash, and must be shorter than 128 characters.

        • rank (int) – a globally unique id/rank of this node.

        • world_size (int) – The number of workers in the group.

        • rpc_backend_options (RpcBackendOptions, optional) – The options @@ -480,7 +517,7 @@

          Basics
          Parameters

          Libraries

          Libraries

          Libraries

            -
          • torchaudio
          • -
          • torchtext
          • -
          • torchvision
          • +
          • torchaudio
          • +
          • torchtext
          • +
          • torchvision
          • TorchElastic
          • TorchServe
          • PyTorch on XLA Devices
          • @@ -404,6 +441,7 @@ + @@ -576,10 +614,6 @@

            Resources

            Get Started -
          • - Features -
          • -
          • Ecosystem
          • @@ -600,14 +634,66 @@

            Resources

            Tutorials -
          • - Docs +
          • + Docs
          • -
          • - Resources + + +
          • + Resources
          • + +
          • Github
          • diff --git a/torch/searchindex.js b/torch/searchindex.js index 713f44908..3a36e397e 100644 --- a/torch/searchindex.js +++ b/torch/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["__config__","amp","autograd","backends","bottleneck","checkpoint","community/contribution_guide","community/governance","community/persons_of_interest","complex_numbers","cpp_extension","cpp_index","cuda","cudnn_persistent_rnn","cudnn_rnn_determinism","data","distributed","distributions","dlpack","fft","futures","generated/torch.Assert","generated/torch.Generator","generated/torch.abs","generated/torch.absolute","generated/torch.acos","generated/torch.acosh","generated/torch.add","generated/torch.addbmm","generated/torch.addcdiv","generated/torch.addcmul","generated/torch.addmm","generated/torch.addmv","generated/torch.addr","generated/torch.allclose","generated/torch.amax","generated/torch.amin","generated/torch.angle","generated/torch.arange","generated/torch.arccos","generated/torch.arccosh","generated/torch.arcsin","generated/torch.arcsinh","generated/torch.arctan","generated/torch.arctanh","generated/torch.argmax","generated/torch.argmin","generated/torch.argsort","generated/torch.as_strided","generated/torch.as_tensor","generated/torch.asin","generated/torch.asinh","generated/torch.atan","generated/torch.atan2","generated/torch.atanh","generated/torch.atleast_1d","generated/torch.atleast_2d","generated/torch.atleast_3d","generated/torch.baddbmm","generated/torch.bartlett_window","generated/torch.bernoulli","generated/torch.bincount","generated/torch.bitwise_and","generated/torch.bitwise_not","generated/torch.bitwise_or","generated/torch.bitwise_xor","generated/torch.blackman_window","generated/torch.block_diag","generated/torch.bmm","generated/torch.broadcast_tensors","generated/torch.bucketize","generated/torch.can_cast","generated/torch.cartesian_prod","generated/torch.cat","generated/torch.cdist","generated/torch.ceil","generated/torch.chain_matmul","generated/torch.cholesky","generated/torch.cholesky_inverse","generated/torch.cholesky_solve","generated/torch.chunk","generated/torch.clamp","generated/torch.clip","generated/torch.clone","generated/torch.combinations","generated/torch.compiled_with_cxx11_abi","generated/torch.complex","generated/torch.conj","generated/torch.cos","generated/torch.cosh","generated/torch.count_nonzero","generated/torch.cross","generated/torch.cummax","generated/torch.cummin","generated/torch.cumprod","generated/torch.cumsum","generated/torch.deg2rad","generated/torch.dequantize","generated/torch.det","generated/torch.diag","generated/torch.diag_embed","generated/torch.diagflat","generated/torch.diagonal","generated/torch.digamma","generated/torch.dist","generated/torch.div","generated/torch.divide","generated/torch.dot","generated/torch.dstack","generated/torch.eig","generated/torch.einsum","generated/torch.empty","generated/torch.empty_like","generated/torch.empty_strided","generated/torch.enable_grad","generated/torch.eq","generated/torch.equal","generated/torch.erf","generated/torch.erfc","generated/torch.erfinv","generated/torch.exp","generated/torch.exp2","generated/torch.expm1","generated/torch.eye","generated/torch.fft","generated/torch.fix","generated/torch.flatten","generated/torch.flip","generated/torch.fliplr","generated/torch.flipud","generated/torch.floor","generated/torch.floor_divide","generated/torch.fmod","generated/torch.frac","generated/torch.from_numpy","generated/torch.full","generated/torch.full_like","generated/torch.gather","generated/torch.gcd","generated/torch.ge","generated/torch.geqrf","generated/torch.ger","generated/torch.get_default_dtype","generated/torch.get_num_interop_threads","generated/torch.get_num_threads","generated/torch.get_rng_state","generated/torch.greater","generated/torch.greater_equal","generated/torch.gt","generated/torch.hamming_window","generated/torch.hann_window","generated/torch.heaviside","generated/torch.histc","generated/torch.hstack","generated/torch.hypot","generated/torch.i0","generated/torch.ifft","generated/torch.imag","generated/torch.index_select","generated/torch.initial_seed","generated/torch.inverse","generated/torch.irfft","generated/torch.is_complex","generated/torch.is_deterministic","generated/torch.is_floating_point","generated/torch.is_nonzero","generated/torch.is_storage","generated/torch.is_tensor","generated/torch.isclose","generated/torch.isfinite","generated/torch.isinf","generated/torch.isnan","generated/torch.isneginf","generated/torch.isposinf","generated/torch.isreal","generated/torch.istft","generated/torch.jit.ScriptFunction","generated/torch.jit.ScriptModule","generated/torch.jit.fork","generated/torch.jit.ignore","generated/torch.jit.load","generated/torch.jit.save","generated/torch.jit.script","generated/torch.jit.trace","generated/torch.jit.trace_module","generated/torch.jit.unused","generated/torch.jit.wait","generated/torch.kaiser_window","generated/torch.kthvalue","generated/torch.lcm","generated/torch.le","generated/torch.lerp","generated/torch.less","generated/torch.less_equal","generated/torch.lgamma","generated/torch.linspace","generated/torch.load","generated/torch.lobpcg","generated/torch.log","generated/torch.log10","generated/torch.log1p","generated/torch.log2","generated/torch.logaddexp","generated/torch.logaddexp2","generated/torch.logcumsumexp","generated/torch.logdet","generated/torch.logical_and","generated/torch.logical_not","generated/torch.logical_or","generated/torch.logical_xor","generated/torch.logit","generated/torch.logspace","generated/torch.logsumexp","generated/torch.lstsq","generated/torch.lt","generated/torch.lu","generated/torch.lu_solve","generated/torch.lu_unpack","generated/torch.manual_seed","generated/torch.masked_select","generated/torch.matmul","generated/torch.matrix_exp","generated/torch.matrix_power","generated/torch.matrix_rank","generated/torch.max","generated/torch.maximum","generated/torch.mean","generated/torch.median","generated/torch.meshgrid","generated/torch.min","generated/torch.minimum","generated/torch.mm","generated/torch.mode","generated/torch.movedim","generated/torch.mul","generated/torch.multinomial","generated/torch.multiply","generated/torch.mv","generated/torch.mvlgamma","generated/torch.nanquantile","generated/torch.nansum","generated/torch.narrow","generated/torch.ne","generated/torch.neg","generated/torch.negative","generated/torch.nextafter","generated/torch.nn.AdaptiveAvgPool1d","generated/torch.nn.AdaptiveAvgPool2d","generated/torch.nn.AdaptiveAvgPool3d","generated/torch.nn.AdaptiveLogSoftmaxWithLoss","generated/torch.nn.AdaptiveMaxPool1d","generated/torch.nn.AdaptiveMaxPool2d","generated/torch.nn.AdaptiveMaxPool3d","generated/torch.nn.AlphaDropout","generated/torch.nn.AvgPool1d","generated/torch.nn.AvgPool2d","generated/torch.nn.AvgPool3d","generated/torch.nn.BCELoss","generated/torch.nn.BCEWithLogitsLoss","generated/torch.nn.BatchNorm1d","generated/torch.nn.BatchNorm2d","generated/torch.nn.BatchNorm3d","generated/torch.nn.Bilinear","generated/torch.nn.CELU","generated/torch.nn.CTCLoss","generated/torch.nn.ConstantPad1d","generated/torch.nn.ConstantPad2d","generated/torch.nn.ConstantPad3d","generated/torch.nn.Conv1d","generated/torch.nn.Conv2d","generated/torch.nn.Conv3d","generated/torch.nn.ConvTranspose1d","generated/torch.nn.ConvTranspose2d","generated/torch.nn.ConvTranspose3d","generated/torch.nn.CosineEmbeddingLoss","generated/torch.nn.CosineSimilarity","generated/torch.nn.CrossEntropyLoss","generated/torch.nn.DataParallel","generated/torch.nn.Dropout","generated/torch.nn.Dropout2d","generated/torch.nn.Dropout3d","generated/torch.nn.ELU","generated/torch.nn.Embedding","generated/torch.nn.EmbeddingBag","generated/torch.nn.Flatten","generated/torch.nn.Fold","generated/torch.nn.FractionalMaxPool2d","generated/torch.nn.GELU","generated/torch.nn.GRU","generated/torch.nn.GRUCell","generated/torch.nn.GroupNorm","generated/torch.nn.Hardshrink","generated/torch.nn.Hardsigmoid","generated/torch.nn.Hardswish","generated/torch.nn.Hardtanh","generated/torch.nn.HingeEmbeddingLoss","generated/torch.nn.Identity","generated/torch.nn.InstanceNorm1d","generated/torch.nn.InstanceNorm2d","generated/torch.nn.InstanceNorm3d","generated/torch.nn.KLDivLoss","generated/torch.nn.L1Loss","generated/torch.nn.LPPool1d","generated/torch.nn.LPPool2d","generated/torch.nn.LSTM","generated/torch.nn.LSTMCell","generated/torch.nn.LayerNorm","generated/torch.nn.LeakyReLU","generated/torch.nn.Linear","generated/torch.nn.LocalResponseNorm","generated/torch.nn.LogSigmoid","generated/torch.nn.LogSoftmax","generated/torch.nn.MSELoss","generated/torch.nn.MarginRankingLoss","generated/torch.nn.MaxPool1d","generated/torch.nn.MaxPool2d","generated/torch.nn.MaxPool3d","generated/torch.nn.MaxUnpool1d","generated/torch.nn.MaxUnpool2d","generated/torch.nn.MaxUnpool3d","generated/torch.nn.Module","generated/torch.nn.ModuleDict","generated/torch.nn.ModuleList","generated/torch.nn.MultiLabelMarginLoss","generated/torch.nn.MultiLabelSoftMarginLoss","generated/torch.nn.MultiMarginLoss","generated/torch.nn.MultiheadAttention","generated/torch.nn.NLLLoss","generated/torch.nn.PReLU","generated/torch.nn.PairwiseDistance","generated/torch.nn.ParameterDict","generated/torch.nn.ParameterList","generated/torch.nn.PixelShuffle","generated/torch.nn.PoissonNLLLoss","generated/torch.nn.RNN","generated/torch.nn.RNNBase","generated/torch.nn.RNNCell","generated/torch.nn.RReLU","generated/torch.nn.ReLU","generated/torch.nn.ReLU6","generated/torch.nn.ReflectionPad1d","generated/torch.nn.ReflectionPad2d","generated/torch.nn.ReplicationPad1d","generated/torch.nn.ReplicationPad2d","generated/torch.nn.ReplicationPad3d","generated/torch.nn.SELU","generated/torch.nn.Sequential","generated/torch.nn.SiLU","generated/torch.nn.Sigmoid","generated/torch.nn.SmoothL1Loss","generated/torch.nn.SoftMarginLoss","generated/torch.nn.Softmax","generated/torch.nn.Softmax2d","generated/torch.nn.Softmin","generated/torch.nn.Softplus","generated/torch.nn.Softshrink","generated/torch.nn.Softsign","generated/torch.nn.SyncBatchNorm","generated/torch.nn.Tanh","generated/torch.nn.Tanhshrink","generated/torch.nn.Threshold","generated/torch.nn.Transformer","generated/torch.nn.TransformerDecoder","generated/torch.nn.TransformerDecoderLayer","generated/torch.nn.TransformerEncoder","generated/torch.nn.TransformerEncoderLayer","generated/torch.nn.TripletMarginLoss","generated/torch.nn.TripletMarginWithDistanceLoss","generated/torch.nn.Unflatten","generated/torch.nn.Unfold","generated/torch.nn.Upsample","generated/torch.nn.UpsamplingBilinear2d","generated/torch.nn.UpsamplingNearest2d","generated/torch.nn.ZeroPad2d","generated/torch.nn.parallel.DistributedDataParallel","generated/torch.nn.parameter.Parameter","generated/torch.nn.utils.clip_grad_norm_","generated/torch.nn.utils.clip_grad_value_","generated/torch.nn.utils.parameters_to_vector","generated/torch.nn.utils.prune.BasePruningMethod","generated/torch.nn.utils.prune.CustomFromMask","generated/torch.nn.utils.prune.Identity","generated/torch.nn.utils.prune.L1Unstructured","generated/torch.nn.utils.prune.LnStructured","generated/torch.nn.utils.prune.PruningContainer","generated/torch.nn.utils.prune.RandomStructured","generated/torch.nn.utils.prune.RandomUnstructured","generated/torch.nn.utils.prune.custom_from_mask","generated/torch.nn.utils.prune.global_unstructured","generated/torch.nn.utils.prune.identity","generated/torch.nn.utils.prune.is_pruned","generated/torch.nn.utils.prune.l1_unstructured","generated/torch.nn.utils.prune.ln_structured","generated/torch.nn.utils.prune.random_structured","generated/torch.nn.utils.prune.random_unstructured","generated/torch.nn.utils.prune.remove","generated/torch.nn.utils.remove_spectral_norm","generated/torch.nn.utils.remove_weight_norm","generated/torch.nn.utils.rnn.PackedSequence","generated/torch.nn.utils.rnn.pack_padded_sequence","generated/torch.nn.utils.rnn.pack_sequence","generated/torch.nn.utils.rnn.pad_packed_sequence","generated/torch.nn.utils.rnn.pad_sequence","generated/torch.nn.utils.spectral_norm","generated/torch.nn.utils.vector_to_parameters","generated/torch.nn.utils.weight_norm","generated/torch.no_grad","generated/torch.nonzero","generated/torch.norm","generated/torch.normal","generated/torch.not_equal","generated/torch.numel","generated/torch.ones","generated/torch.ones_like","generated/torch.orgqr","generated/torch.ormqr","generated/torch.outer","generated/torch.pca_lowrank","generated/torch.pinverse","generated/torch.poisson","generated/torch.polar","generated/torch.polygamma","generated/torch.pow","generated/torch.prod","generated/torch.promote_types","generated/torch.qr","generated/torch.quantile","generated/torch.quantize_per_channel","generated/torch.quantize_per_tensor","generated/torch.quasirandom.SobolEngine","generated/torch.rad2deg","generated/torch.rand","generated/torch.rand_like","generated/torch.randint","generated/torch.randint_like","generated/torch.randn","generated/torch.randn_like","generated/torch.randperm","generated/torch.range","generated/torch.real","generated/torch.reciprocal","generated/torch.remainder","generated/torch.renorm","generated/torch.repeat_interleave","generated/torch.reshape","generated/torch.result_type","generated/torch.rfft","generated/torch.roll","generated/torch.rot90","generated/torch.round","generated/torch.rsqrt","generated/torch.save","generated/torch.searchsorted","generated/torch.seed","generated/torch.set_default_dtype","generated/torch.set_default_tensor_type","generated/torch.set_deterministic","generated/torch.set_flush_denormal","generated/torch.set_grad_enabled","generated/torch.set_num_interop_threads","generated/torch.set_num_threads","generated/torch.set_printoptions","generated/torch.set_rng_state","generated/torch.sigmoid","generated/torch.sign","generated/torch.signbit","generated/torch.sin","generated/torch.sinh","generated/torch.slogdet","generated/torch.solve","generated/torch.sort","generated/torch.sparse_coo_tensor","generated/torch.split","generated/torch.sqrt","generated/torch.square","generated/torch.squeeze","generated/torch.stack","generated/torch.std","generated/torch.std_mean","generated/torch.stft","generated/torch.sub","generated/torch.subtract","generated/torch.sum","generated/torch.svd","generated/torch.svd_lowrank","generated/torch.symeig","generated/torch.t","generated/torch.take","generated/torch.tan","generated/torch.tanh","generated/torch.tensor","generated/torch.tensordot","generated/torch.topk","generated/torch.trace","generated/torch.transpose","generated/torch.trapz","generated/torch.triangular_solve","generated/torch.tril","generated/torch.tril_indices","generated/torch.triu","generated/torch.triu_indices","generated/torch.true_divide","generated/torch.trunc","generated/torch.unbind","generated/torch.unique","generated/torch.unique_consecutive","generated/torch.unsqueeze","generated/torch.vander","generated/torch.var","generated/torch.var_mean","generated/torch.vdot","generated/torch.view_as_complex","generated/torch.view_as_real","generated/torch.vstack","generated/torch.where","generated/torch.zeros","generated/torch.zeros_like","hub","index","jit","jit_builtin_functions","jit_language_reference","jit_python_reference","jit_unsupported","linalg","mobile_optimizer","model_zoo","multiprocessing","name_inference","named_tensor","nn","nn.functional","nn.init","notes/amp_examples","notes/autograd","notes/broadcasting","notes/cpu_threading_torchscript_inference","notes/cuda","notes/ddp","notes/extending","notes/faq","notes/large_scale_deployments","notes/multiprocessing","notes/randomness","notes/serialization","notes/windows","onnx","optim","quantization","quantization-support","random","rpc","rpc/distributed_autograd","rpc/rref","sparse","storage","tensor_attributes","tensor_view","tensorboard","tensors","torch","torch.nn.intrinsic","torch.nn.intrinsic.qat","torch.nn.intrinsic.quantized","torch.nn.qat","torch.nn.quantized","torch.nn.quantized.dynamic","torch.quantization","type_info"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["__config__.rst","amp.rst","autograd.rst","backends.rst","bottleneck.rst","checkpoint.rst","community/contribution_guide.rst","community/governance.rst","community/persons_of_interest.rst","complex_numbers.rst","cpp_extension.rst","cpp_index.rst","cuda.rst","cudnn_persistent_rnn.rst","cudnn_rnn_determinism.rst","data.rst","distributed.rst","distributions.rst","dlpack.rst","fft.rst","futures.rst","generated/torch.Assert.rst","generated/torch.Generator.rst","generated/torch.abs.rst","generated/torch.absolute.rst","generated/torch.acos.rst","generated/torch.acosh.rst","generated/torch.add.rst","generated/torch.addbmm.rst","generated/torch.addcdiv.rst","generated/torch.addcmul.rst","generated/torch.addmm.rst","generated/torch.addmv.rst","generated/torch.addr.rst","generated/torch.allclose.rst","generated/torch.amax.rst","generated/torch.amin.rst","generated/torch.angle.rst","generated/torch.arange.rst","generated/torch.arccos.rst","generated/torch.arccosh.rst","generated/torch.arcsin.rst","generated/torch.arcsinh.rst","generated/torch.arctan.rst","generated/torch.arctanh.rst","generated/torch.argmax.rst","generated/torch.argmin.rst","generated/torch.argsort.rst","generated/torch.as_strided.rst","generated/torch.as_tensor.rst","generated/torch.asin.rst","generated/torch.asinh.rst","generated/torch.atan.rst","generated/torch.atan2.rst","generated/torch.atanh.rst","generated/torch.atleast_1d.rst","generated/torch.atleast_2d.rst","generated/torch.atleast_3d.rst","generated/torch.baddbmm.rst","generated/torch.bartlett_window.rst","generated/torch.bernoulli.rst","generated/torch.bincount.rst","generated/torch.bitwise_and.rst","generated/torch.bitwise_not.rst","generated/torch.bitwise_or.rst","generated/torch.bitwise_xor.rst","generated/torch.blackman_window.rst","generated/torch.block_diag.rst","generated/torch.bmm.rst","generated/torch.broadcast_tensors.rst","generated/torch.bucketize.rst","generated/torch.can_cast.rst","generated/torch.cartesian_prod.rst","generated/torch.cat.rst","generated/torch.cdist.rst","generated/torch.ceil.rst","generated/torch.chain_matmul.rst","generated/torch.cholesky.rst","generated/torch.cholesky_inverse.rst","generated/torch.cholesky_solve.rst","generated/torch.chunk.rst","generated/torch.clamp.rst","generated/torch.clip.rst","generated/torch.clone.rst","generated/torch.combinations.rst","generated/torch.compiled_with_cxx11_abi.rst","generated/torch.complex.rst","generated/torch.conj.rst","generated/torch.cos.rst","generated/torch.cosh.rst","generated/torch.count_nonzero.rst","generated/torch.cross.rst","generated/torch.cummax.rst","generated/torch.cummin.rst","generated/torch.cumprod.rst","generated/torch.cumsum.rst","generated/torch.deg2rad.rst","generated/torch.dequantize.rst","generated/torch.det.rst","generated/torch.diag.rst","generated/torch.diag_embed.rst","generated/torch.diagflat.rst","generated/torch.diagonal.rst","generated/torch.digamma.rst","generated/torch.dist.rst","generated/torch.div.rst","generated/torch.divide.rst","generated/torch.dot.rst","generated/torch.dstack.rst","generated/torch.eig.rst","generated/torch.einsum.rst","generated/torch.empty.rst","generated/torch.empty_like.rst","generated/torch.empty_strided.rst","generated/torch.enable_grad.rst","generated/torch.eq.rst","generated/torch.equal.rst","generated/torch.erf.rst","generated/torch.erfc.rst","generated/torch.erfinv.rst","generated/torch.exp.rst","generated/torch.exp2.rst","generated/torch.expm1.rst","generated/torch.eye.rst","generated/torch.fft.rst","generated/torch.fix.rst","generated/torch.flatten.rst","generated/torch.flip.rst","generated/torch.fliplr.rst","generated/torch.flipud.rst","generated/torch.floor.rst","generated/torch.floor_divide.rst","generated/torch.fmod.rst","generated/torch.frac.rst","generated/torch.from_numpy.rst","generated/torch.full.rst","generated/torch.full_like.rst","generated/torch.gather.rst","generated/torch.gcd.rst","generated/torch.ge.rst","generated/torch.geqrf.rst","generated/torch.ger.rst","generated/torch.get_default_dtype.rst","generated/torch.get_num_interop_threads.rst","generated/torch.get_num_threads.rst","generated/torch.get_rng_state.rst","generated/torch.greater.rst","generated/torch.greater_equal.rst","generated/torch.gt.rst","generated/torch.hamming_window.rst","generated/torch.hann_window.rst","generated/torch.heaviside.rst","generated/torch.histc.rst","generated/torch.hstack.rst","generated/torch.hypot.rst","generated/torch.i0.rst","generated/torch.ifft.rst","generated/torch.imag.rst","generated/torch.index_select.rst","generated/torch.initial_seed.rst","generated/torch.inverse.rst","generated/torch.irfft.rst","generated/torch.is_complex.rst","generated/torch.is_deterministic.rst","generated/torch.is_floating_point.rst","generated/torch.is_nonzero.rst","generated/torch.is_storage.rst","generated/torch.is_tensor.rst","generated/torch.isclose.rst","generated/torch.isfinite.rst","generated/torch.isinf.rst","generated/torch.isnan.rst","generated/torch.isneginf.rst","generated/torch.isposinf.rst","generated/torch.isreal.rst","generated/torch.istft.rst","generated/torch.jit.ScriptFunction.rst","generated/torch.jit.ScriptModule.rst","generated/torch.jit.fork.rst","generated/torch.jit.ignore.rst","generated/torch.jit.load.rst","generated/torch.jit.save.rst","generated/torch.jit.script.rst","generated/torch.jit.trace.rst","generated/torch.jit.trace_module.rst","generated/torch.jit.unused.rst","generated/torch.jit.wait.rst","generated/torch.kaiser_window.rst","generated/torch.kthvalue.rst","generated/torch.lcm.rst","generated/torch.le.rst","generated/torch.lerp.rst","generated/torch.less.rst","generated/torch.less_equal.rst","generated/torch.lgamma.rst","generated/torch.linspace.rst","generated/torch.load.rst","generated/torch.lobpcg.rst","generated/torch.log.rst","generated/torch.log10.rst","generated/torch.log1p.rst","generated/torch.log2.rst","generated/torch.logaddexp.rst","generated/torch.logaddexp2.rst","generated/torch.logcumsumexp.rst","generated/torch.logdet.rst","generated/torch.logical_and.rst","generated/torch.logical_not.rst","generated/torch.logical_or.rst","generated/torch.logical_xor.rst","generated/torch.logit.rst","generated/torch.logspace.rst","generated/torch.logsumexp.rst","generated/torch.lstsq.rst","generated/torch.lt.rst","generated/torch.lu.rst","generated/torch.lu_solve.rst","generated/torch.lu_unpack.rst","generated/torch.manual_seed.rst","generated/torch.masked_select.rst","generated/torch.matmul.rst","generated/torch.matrix_exp.rst","generated/torch.matrix_power.rst","generated/torch.matrix_rank.rst","generated/torch.max.rst","generated/torch.maximum.rst","generated/torch.mean.rst","generated/torch.median.rst","generated/torch.meshgrid.rst","generated/torch.min.rst","generated/torch.minimum.rst","generated/torch.mm.rst","generated/torch.mode.rst","generated/torch.movedim.rst","generated/torch.mul.rst","generated/torch.multinomial.rst","generated/torch.multiply.rst","generated/torch.mv.rst","generated/torch.mvlgamma.rst","generated/torch.nanquantile.rst","generated/torch.nansum.rst","generated/torch.narrow.rst","generated/torch.ne.rst","generated/torch.neg.rst","generated/torch.negative.rst","generated/torch.nextafter.rst","generated/torch.nn.AdaptiveAvgPool1d.rst","generated/torch.nn.AdaptiveAvgPool2d.rst","generated/torch.nn.AdaptiveAvgPool3d.rst","generated/torch.nn.AdaptiveLogSoftmaxWithLoss.rst","generated/torch.nn.AdaptiveMaxPool1d.rst","generated/torch.nn.AdaptiveMaxPool2d.rst","generated/torch.nn.AdaptiveMaxPool3d.rst","generated/torch.nn.AlphaDropout.rst","generated/torch.nn.AvgPool1d.rst","generated/torch.nn.AvgPool2d.rst","generated/torch.nn.AvgPool3d.rst","generated/torch.nn.BCELoss.rst","generated/torch.nn.BCEWithLogitsLoss.rst","generated/torch.nn.BatchNorm1d.rst","generated/torch.nn.BatchNorm2d.rst","generated/torch.nn.BatchNorm3d.rst","generated/torch.nn.Bilinear.rst","generated/torch.nn.CELU.rst","generated/torch.nn.CTCLoss.rst","generated/torch.nn.ConstantPad1d.rst","generated/torch.nn.ConstantPad2d.rst","generated/torch.nn.ConstantPad3d.rst","generated/torch.nn.Conv1d.rst","generated/torch.nn.Conv2d.rst","generated/torch.nn.Conv3d.rst","generated/torch.nn.ConvTranspose1d.rst","generated/torch.nn.ConvTranspose2d.rst","generated/torch.nn.ConvTranspose3d.rst","generated/torch.nn.CosineEmbeddingLoss.rst","generated/torch.nn.CosineSimilarity.rst","generated/torch.nn.CrossEntropyLoss.rst","generated/torch.nn.DataParallel.rst","generated/torch.nn.Dropout.rst","generated/torch.nn.Dropout2d.rst","generated/torch.nn.Dropout3d.rst","generated/torch.nn.ELU.rst","generated/torch.nn.Embedding.rst","generated/torch.nn.EmbeddingBag.rst","generated/torch.nn.Flatten.rst","generated/torch.nn.Fold.rst","generated/torch.nn.FractionalMaxPool2d.rst","generated/torch.nn.GELU.rst","generated/torch.nn.GRU.rst","generated/torch.nn.GRUCell.rst","generated/torch.nn.GroupNorm.rst","generated/torch.nn.Hardshrink.rst","generated/torch.nn.Hardsigmoid.rst","generated/torch.nn.Hardswish.rst","generated/torch.nn.Hardtanh.rst","generated/torch.nn.HingeEmbeddingLoss.rst","generated/torch.nn.Identity.rst","generated/torch.nn.InstanceNorm1d.rst","generated/torch.nn.InstanceNorm2d.rst","generated/torch.nn.InstanceNorm3d.rst","generated/torch.nn.KLDivLoss.rst","generated/torch.nn.L1Loss.rst","generated/torch.nn.LPPool1d.rst","generated/torch.nn.LPPool2d.rst","generated/torch.nn.LSTM.rst","generated/torch.nn.LSTMCell.rst","generated/torch.nn.LayerNorm.rst","generated/torch.nn.LeakyReLU.rst","generated/torch.nn.Linear.rst","generated/torch.nn.LocalResponseNorm.rst","generated/torch.nn.LogSigmoid.rst","generated/torch.nn.LogSoftmax.rst","generated/torch.nn.MSELoss.rst","generated/torch.nn.MarginRankingLoss.rst","generated/torch.nn.MaxPool1d.rst","generated/torch.nn.MaxPool2d.rst","generated/torch.nn.MaxPool3d.rst","generated/torch.nn.MaxUnpool1d.rst","generated/torch.nn.MaxUnpool2d.rst","generated/torch.nn.MaxUnpool3d.rst","generated/torch.nn.Module.rst","generated/torch.nn.ModuleDict.rst","generated/torch.nn.ModuleList.rst","generated/torch.nn.MultiLabelMarginLoss.rst","generated/torch.nn.MultiLabelSoftMarginLoss.rst","generated/torch.nn.MultiMarginLoss.rst","generated/torch.nn.MultiheadAttention.rst","generated/torch.nn.NLLLoss.rst","generated/torch.nn.PReLU.rst","generated/torch.nn.PairwiseDistance.rst","generated/torch.nn.ParameterDict.rst","generated/torch.nn.ParameterList.rst","generated/torch.nn.PixelShuffle.rst","generated/torch.nn.PoissonNLLLoss.rst","generated/torch.nn.RNN.rst","generated/torch.nn.RNNBase.rst","generated/torch.nn.RNNCell.rst","generated/torch.nn.RReLU.rst","generated/torch.nn.ReLU.rst","generated/torch.nn.ReLU6.rst","generated/torch.nn.ReflectionPad1d.rst","generated/torch.nn.ReflectionPad2d.rst","generated/torch.nn.ReplicationPad1d.rst","generated/torch.nn.ReplicationPad2d.rst","generated/torch.nn.ReplicationPad3d.rst","generated/torch.nn.SELU.rst","generated/torch.nn.Sequential.rst","generated/torch.nn.SiLU.rst","generated/torch.nn.Sigmoid.rst","generated/torch.nn.SmoothL1Loss.rst","generated/torch.nn.SoftMarginLoss.rst","generated/torch.nn.Softmax.rst","generated/torch.nn.Softmax2d.rst","generated/torch.nn.Softmin.rst","generated/torch.nn.Softplus.rst","generated/torch.nn.Softshrink.rst","generated/torch.nn.Softsign.rst","generated/torch.nn.SyncBatchNorm.rst","generated/torch.nn.Tanh.rst","generated/torch.nn.Tanhshrink.rst","generated/torch.nn.Threshold.rst","generated/torch.nn.Transformer.rst","generated/torch.nn.TransformerDecoder.rst","generated/torch.nn.TransformerDecoderLayer.rst","generated/torch.nn.TransformerEncoder.rst","generated/torch.nn.TransformerEncoderLayer.rst","generated/torch.nn.TripletMarginLoss.rst","generated/torch.nn.TripletMarginWithDistanceLoss.rst","generated/torch.nn.Unflatten.rst","generated/torch.nn.Unfold.rst","generated/torch.nn.Upsample.rst","generated/torch.nn.UpsamplingBilinear2d.rst","generated/torch.nn.UpsamplingNearest2d.rst","generated/torch.nn.ZeroPad2d.rst","generated/torch.nn.parallel.DistributedDataParallel.rst","generated/torch.nn.parameter.Parameter.rst","generated/torch.nn.utils.clip_grad_norm_.rst","generated/torch.nn.utils.clip_grad_value_.rst","generated/torch.nn.utils.parameters_to_vector.rst","generated/torch.nn.utils.prune.BasePruningMethod.rst","generated/torch.nn.utils.prune.CustomFromMask.rst","generated/torch.nn.utils.prune.Identity.rst","generated/torch.nn.utils.prune.L1Unstructured.rst","generated/torch.nn.utils.prune.LnStructured.rst","generated/torch.nn.utils.prune.PruningContainer.rst","generated/torch.nn.utils.prune.RandomStructured.rst","generated/torch.nn.utils.prune.RandomUnstructured.rst","generated/torch.nn.utils.prune.custom_from_mask.rst","generated/torch.nn.utils.prune.global_unstructured.rst","generated/torch.nn.utils.prune.identity.rst","generated/torch.nn.utils.prune.is_pruned.rst","generated/torch.nn.utils.prune.l1_unstructured.rst","generated/torch.nn.utils.prune.ln_structured.rst","generated/torch.nn.utils.prune.random_structured.rst","generated/torch.nn.utils.prune.random_unstructured.rst","generated/torch.nn.utils.prune.remove.rst","generated/torch.nn.utils.remove_spectral_norm.rst","generated/torch.nn.utils.remove_weight_norm.rst","generated/torch.nn.utils.rnn.PackedSequence.rst","generated/torch.nn.utils.rnn.pack_padded_sequence.rst","generated/torch.nn.utils.rnn.pack_sequence.rst","generated/torch.nn.utils.rnn.pad_packed_sequence.rst","generated/torch.nn.utils.rnn.pad_sequence.rst","generated/torch.nn.utils.spectral_norm.rst","generated/torch.nn.utils.vector_to_parameters.rst","generated/torch.nn.utils.weight_norm.rst","generated/torch.no_grad.rst","generated/torch.nonzero.rst","generated/torch.norm.rst","generated/torch.normal.rst","generated/torch.not_equal.rst","generated/torch.numel.rst","generated/torch.ones.rst","generated/torch.ones_like.rst","generated/torch.orgqr.rst","generated/torch.ormqr.rst","generated/torch.outer.rst","generated/torch.pca_lowrank.rst","generated/torch.pinverse.rst","generated/torch.poisson.rst","generated/torch.polar.rst","generated/torch.polygamma.rst","generated/torch.pow.rst","generated/torch.prod.rst","generated/torch.promote_types.rst","generated/torch.qr.rst","generated/torch.quantile.rst","generated/torch.quantize_per_channel.rst","generated/torch.quantize_per_tensor.rst","generated/torch.quasirandom.SobolEngine.rst","generated/torch.rad2deg.rst","generated/torch.rand.rst","generated/torch.rand_like.rst","generated/torch.randint.rst","generated/torch.randint_like.rst","generated/torch.randn.rst","generated/torch.randn_like.rst","generated/torch.randperm.rst","generated/torch.range.rst","generated/torch.real.rst","generated/torch.reciprocal.rst","generated/torch.remainder.rst","generated/torch.renorm.rst","generated/torch.repeat_interleave.rst","generated/torch.reshape.rst","generated/torch.result_type.rst","generated/torch.rfft.rst","generated/torch.roll.rst","generated/torch.rot90.rst","generated/torch.round.rst","generated/torch.rsqrt.rst","generated/torch.save.rst","generated/torch.searchsorted.rst","generated/torch.seed.rst","generated/torch.set_default_dtype.rst","generated/torch.set_default_tensor_type.rst","generated/torch.set_deterministic.rst","generated/torch.set_flush_denormal.rst","generated/torch.set_grad_enabled.rst","generated/torch.set_num_interop_threads.rst","generated/torch.set_num_threads.rst","generated/torch.set_printoptions.rst","generated/torch.set_rng_state.rst","generated/torch.sigmoid.rst","generated/torch.sign.rst","generated/torch.signbit.rst","generated/torch.sin.rst","generated/torch.sinh.rst","generated/torch.slogdet.rst","generated/torch.solve.rst","generated/torch.sort.rst","generated/torch.sparse_coo_tensor.rst","generated/torch.split.rst","generated/torch.sqrt.rst","generated/torch.square.rst","generated/torch.squeeze.rst","generated/torch.stack.rst","generated/torch.std.rst","generated/torch.std_mean.rst","generated/torch.stft.rst","generated/torch.sub.rst","generated/torch.subtract.rst","generated/torch.sum.rst","generated/torch.svd.rst","generated/torch.svd_lowrank.rst","generated/torch.symeig.rst","generated/torch.t.rst","generated/torch.take.rst","generated/torch.tan.rst","generated/torch.tanh.rst","generated/torch.tensor.rst","generated/torch.tensordot.rst","generated/torch.topk.rst","generated/torch.trace.rst","generated/torch.transpose.rst","generated/torch.trapz.rst","generated/torch.triangular_solve.rst","generated/torch.tril.rst","generated/torch.tril_indices.rst","generated/torch.triu.rst","generated/torch.triu_indices.rst","generated/torch.true_divide.rst","generated/torch.trunc.rst","generated/torch.unbind.rst","generated/torch.unique.rst","generated/torch.unique_consecutive.rst","generated/torch.unsqueeze.rst","generated/torch.vander.rst","generated/torch.var.rst","generated/torch.var_mean.rst","generated/torch.vdot.rst","generated/torch.view_as_complex.rst","generated/torch.view_as_real.rst","generated/torch.vstack.rst","generated/torch.where.rst","generated/torch.zeros.rst","generated/torch.zeros_like.rst","hub.rst","index.rst","jit.rst","jit_builtin_functions.rst","jit_language_reference.rst","jit_python_reference.rst","jit_unsupported.rst","linalg.rst","mobile_optimizer.rst","model_zoo.rst","multiprocessing.rst","name_inference.rst","named_tensor.rst","nn.rst","nn.functional.rst","nn.init.rst","notes/amp_examples.rst","notes/autograd.rst","notes/broadcasting.rst","notes/cpu_threading_torchscript_inference.rst","notes/cuda.rst","notes/ddp.rst","notes/extending.rst","notes/faq.rst","notes/large_scale_deployments.rst","notes/multiprocessing.rst","notes/randomness.rst","notes/serialization.rst","notes/windows.rst","onnx.rst","optim.rst","quantization.rst","quantization-support.rst","random.rst","rpc.rst","rpc/distributed_autograd.rst","rpc/rref.rst","sparse.rst","storage.rst","tensor_attributes.rst","tensor_view.rst","tensorboard.rst","tensors.rst","torch.rst","torch.nn.intrinsic.rst","torch.nn.intrinsic.qat.rst","torch.nn.intrinsic.quantized.rst","torch.nn.qat.rst","torch.nn.quantized.rst","torch.nn.quantized.dynamic.rst","torch.quantization.rst","type_info.rst"],objects:{"":{PYTORCH_JIT:[519,5,1,"-"],clear:[3,0,1,""],max_size:[3,1,1,""]},"torch.BoolTensor":{all:[559,0,1,""],any:[559,0,1,""]},"torch.FloatStorage":{"byte":[555,0,1,""],"char":[555,0,1,""],"double":[555,0,1,""],"float":[555,0,1,""],"int":[555,0,1,""],"long":[555,0,1,""],"new":[555,0,1,""],"short":[555,0,1,""],bfloat16:[555,0,1,""],bool:[555,0,1,""],clone:[555,0,1,""],complex_double:[555,0,1,""],complex_float:[555,0,1,""],copy_:[555,0,1,""],cpu:[555,0,1,""],cuda:[555,0,1,""],data_ptr:[555,0,1,""],device:[555,1,1,""],dtype:[555,1,1,""],element_size:[555,0,1,""],fill_:[555,0,1,""],from_buffer:[555,0,1,""],from_file:[555,0,1,""],half:[555,0,1,""],is_cuda:[555,1,1,""],is_pinned:[555,0,1,""],is_shared:[555,0,1,""],is_sparse:[555,1,1,""],pin_memory:[555,0,1,""],resize_:[555,0,1,""],share_memory_:[555,0,1,""],size:[555,0,1,""],tolist:[555,0,1,""],type:[555,0,1,""]},"torch.Generator":{device:[22,1,1,""],get_state:[22,0,1,""],initial_seed:[22,0,1,""],manual_seed:[22,0,1,""],seed:[22,0,1,""],set_state:[22,0,1,""]},"torch.Tensor":{"byte":[559,0,1,""],"char":[559,0,1,""],"double":[559,0,1,""],"float":[559,0,1,""],"int":[559,0,1,""],"long":[559,0,1,""],"short":[559,0,1,""],"var":[559,0,1,""],T:[559,1,1,""],abs:[559,0,1,""],abs_:[559,0,1,""],absolute:[559,0,1,""],absolute_:[559,0,1,""],acos:[559,0,1,""],acos_:[559,0,1,""],acosh:[559,0,1,""],acosh_:[559,0,1,""],add:[559,0,1,""],add_:[559,0,1,""],addbmm:[559,0,1,""],addbmm_:[559,0,1,""],addcdiv:[559,0,1,""],addcdiv_:[559,0,1,""],addcmul:[559,0,1,""],addcmul_:[559,0,1,""],addmm:[559,0,1,""],addmm_:[559,0,1,""],addmv:[559,0,1,""],addmv_:[559,0,1,""],addr:[559,0,1,""],addr_:[559,0,1,""],align_as:[529,0,1,""],align_to:[529,0,1,""],allclose:[559,0,1,""],amax:[559,0,1,""],amin:[559,0,1,""],angle:[559,0,1,""],apply_:[559,0,1,""],arccos:[559,0,1,""],arccos_:[559,0,1,""],arccosh:[559,0,1,""],arccosh_:[559,0,1,""],arcsin:[559,0,1,""],arcsin_:[559,0,1,""],arcsinh:[559,0,1,""],arcsinh_:[559,0,1,""],arctan:[559,0,1,""],arctan_:[559,0,1,""],arctanh:[559,0,1,""],arctanh_:[559,0,1,""],argmax:[559,0,1,""],argmin:[559,0,1,""],argsort:[559,0,1,""],as_strided:[559,0,1,""],as_subclass:[559,0,1,""],asin:[559,0,1,""],asin_:[559,0,1,""],asinh:[559,0,1,""],asinh_:[559,0,1,""],atan2:[559,0,1,""],atan2_:[559,0,1,""],atan:[559,0,1,""],atan_:[559,0,1,""],atanh:[559,0,1,""],atanh_:[559,0,1,""],backward:[2,0,1,""],baddbmm:[559,0,1,""],baddbmm_:[559,0,1,""],bernoulli:[559,0,1,""],bernoulli_:[559,0,1,""],bfloat16:[559,0,1,""],bincount:[559,0,1,""],bitwise_and:[559,0,1,""],bitwise_and_:[559,0,1,""],bitwise_not:[559,0,1,""],bitwise_not_:[559,0,1,""],bitwise_or:[559,0,1,""],bitwise_or_:[559,0,1,""],bitwise_xor:[559,0,1,""],bitwise_xor_:[559,0,1,""],bmm:[559,0,1,""],bool:[559,0,1,""],cauchy_:[559,0,1,""],ceil:[559,0,1,""],ceil_:[559,0,1,""],cholesky:[559,0,1,""],cholesky_inverse:[559,0,1,""],cholesky_solve:[559,0,1,""],chunk:[559,0,1,""],clamp:[559,0,1,""],clamp_:[559,0,1,""],clip:[559,0,1,""],clip_:[559,0,1,""],clone:[559,0,1,""],conj:[559,0,1,""],contiguous:[559,0,1,""],copy_:[559,0,1,""],cos:[559,0,1,""],cos_:[559,0,1,""],cosh:[559,0,1,""],cosh_:[559,0,1,""],count_nonzero:[559,0,1,""],cpu:[559,0,1,""],cross:[559,0,1,""],cuda:[559,0,1,""],cummax:[559,0,1,""],cummin:[559,0,1,""],cumprod:[559,0,1,""],cumsum:[559,0,1,""],data_ptr:[559,0,1,""],deg2rad:[559,0,1,""],dense_dim:[559,0,1,""],dequantize:[559,0,1,""],det:[559,0,1,""],detach:[2,0,1,""],detach_:[2,0,1,""],device:[559,1,1,""],diag:[559,0,1,""],diag_embed:[559,0,1,""],diagflat:[559,0,1,""],diagonal:[559,0,1,""],digamma:[559,0,1,""],digamma_:[559,0,1,""],dim:[559,0,1,""],dist:[559,0,1,""],div:[559,0,1,""],div_:[559,0,1,""],divide:[559,0,1,""],divide_:[559,0,1,""],dot:[559,0,1,""],eig:[559,0,1,""],element_size:[559,0,1,""],eq:[559,0,1,""],eq_:[559,0,1,""],equal:[559,0,1,""],erf:[559,0,1,""],erf_:[559,0,1,""],erfc:[559,0,1,""],erfc_:[559,0,1,""],erfinv:[559,0,1,""],erfinv_:[559,0,1,""],exp:[559,0,1,""],exp_:[559,0,1,""],expand:[559,0,1,""],expand_as:[559,0,1,""],expm1:[559,0,1,""],expm1_:[559,0,1,""],exponential_:[559,0,1,""],fft:[559,0,1,""],fill_:[559,0,1,""],fill_diagonal_:[559,0,1,""],fix:[559,0,1,""],fix_:[559,0,1,""],flatten:[559,0,1,""],flip:[559,0,1,""],fliplr:[559,0,1,""],flipud:[559,0,1,""],floor:[559,0,1,""],floor_:[559,0,1,""],floor_divide:[559,0,1,""],floor_divide_:[559,0,1,""],fmod:[559,0,1,""],fmod_:[559,0,1,""],frac:[559,0,1,""],frac_:[559,0,1,""],gather:[559,0,1,""],gcd:[559,0,1,""],gcd_:[559,0,1,""],ge:[559,0,1,""],ge_:[559,0,1,""],geometric_:[559,0,1,""],geqrf:[559,0,1,""],ger:[559,0,1,""],get_device:[559,0,1,""],grad:[2,1,1,""],greater:[559,0,1,""],greater_:[559,0,1,""],greater_equal:[559,0,1,""],greater_equal_:[559,0,1,""],gt:[559,0,1,""],gt_:[559,0,1,""],half:[559,0,1,""],hardshrink:[559,0,1,""],heaviside:[559,0,1,""],histc:[559,0,1,""],hypot:[559,0,1,""],hypot_:[559,0,1,""],i0:[559,0,1,""],i0_:[559,0,1,""],ifft:[559,0,1,""],imag:[559,1,1,""],index_add:[559,0,1,""],index_add_:[559,0,1,""],index_copy:[559,0,1,""],index_copy_:[559,0,1,""],index_fill:[559,0,1,""],index_fill_:[559,0,1,""],index_put:[559,0,1,""],index_put_:[559,0,1,""],index_select:[559,0,1,""],indices:[559,0,1,""],int_repr:[559,0,1,""],inverse:[559,0,1,""],irfft:[559,0,1,""],is_complex:[559,0,1,""],is_contiguous:[559,0,1,""],is_cuda:[559,1,1,""],is_floating_point:[559,0,1,""],is_leaf:[2,1,1,""],is_meta:[559,1,1,""],is_pinned:[559,0,1,""],is_quantized:[559,1,1,""],is_set_to:[559,0,1,""],is_shared:[559,0,1,""],is_signed:[559,0,1,""],is_sparse:[559,1,1,""],isclose:[559,0,1,""],isfinite:[559,0,1,""],isinf:[559,0,1,""],isnan:[559,0,1,""],isneginf:[559,0,1,""],isposinf:[559,0,1,""],isreal:[559,0,1,""],istft:[559,0,1,""],item:[559,0,1,""],kthvalue:[559,0,1,""],lcm:[559,0,1,""],lcm_:[559,0,1,""],le:[559,0,1,""],le_:[559,0,1,""],lerp:[559,0,1,""],lerp_:[559,0,1,""],less:[559,0,1,""],less_:[559,0,1,""],less_equal:[559,0,1,""],less_equal_:[559,0,1,""],lgamma:[559,0,1,""],lgamma_:[559,0,1,""],log10:[559,0,1,""],log10_:[559,0,1,""],log1p:[559,0,1,""],log1p_:[559,0,1,""],log2:[559,0,1,""],log2_:[559,0,1,""],log:[559,0,1,""],log_:[559,0,1,""],log_normal_:[559,0,1,""],logaddexp2:[559,0,1,""],logaddexp:[559,0,1,""],logcumsumexp:[559,0,1,""],logdet:[559,0,1,""],logical_and:[559,0,1,""],logical_and_:[559,0,1,""],logical_not:[559,0,1,""],logical_not_:[559,0,1,""],logical_or:[559,0,1,""],logical_or_:[559,0,1,""],logical_xor:[559,0,1,""],logical_xor_:[559,0,1,""],logit:[559,0,1,""],logit_:[559,0,1,""],logsumexp:[559,0,1,""],lstsq:[559,0,1,""],lt:[559,0,1,""],lt_:[559,0,1,""],lu:[559,0,1,""],lu_solve:[559,0,1,""],map_:[559,0,1,""],masked_fill:[559,0,1,""],masked_fill_:[559,0,1,""],masked_scatter:[559,0,1,""],masked_scatter_:[559,0,1,""],masked_select:[559,0,1,""],matmul:[559,0,1,""],matrix_exp:[559,0,1,""],matrix_power:[559,0,1,""],max:[559,0,1,""],maximum:[559,0,1,""],mean:[559,0,1,""],median:[559,0,1,""],min:[559,0,1,""],minimum:[559,0,1,""],mm:[559,0,1,""],mode:[559,0,1,""],movedim:[559,0,1,""],mul:[559,0,1,""],mul_:[559,0,1,""],multinomial:[559,0,1,""],multiply:[559,0,1,""],multiply_:[559,0,1,""],mv:[559,0,1,""],mvlgamma:[559,0,1,""],mvlgamma_:[559,0,1,""],names:[529,1,1,""],nanquantile:[559,0,1,""],nansum:[559,0,1,""],narrow:[559,0,1,""],narrow_copy:[559,0,1,""],ndim:[559,1,1,""],ndimension:[559,0,1,""],ne:[559,0,1,""],ne_:[559,0,1,""],neg:[559,0,1,""],neg_:[559,0,1,""],negative:[559,0,1,""],negative_:[559,0,1,""],nelement:[559,0,1,""],new_empty:[559,0,1,""],new_full:[559,0,1,""],new_ones:[559,0,1,""],new_tensor:[559,0,1,""],new_zeros:[559,0,1,""],nextafter:[559,0,1,""],nextafter_:[559,0,1,""],nonzero:[559,0,1,""],norm:[559,0,1,""],normal_:[559,0,1,""],not_equal:[559,0,1,""],not_equal_:[559,0,1,""],numel:[559,0,1,""],numpy:[559,0,1,""],orgqr:[559,0,1,""],ormqr:[559,0,1,""],outer:[559,0,1,""],permute:[559,0,1,""],pin_memory:[559,0,1,""],pinverse:[559,0,1,""],polygamma:[559,0,1,""],polygamma_:[559,0,1,""],pow:[559,0,1,""],pow_:[559,0,1,""],prod:[559,0,1,""],put_:[559,0,1,""],q_per_channel_axis:[559,0,1,""],q_per_channel_scales:[559,0,1,""],q_per_channel_zero_points:[559,0,1,""],q_scale:[559,0,1,""],q_zero_point:[559,0,1,""],qr:[559,0,1,""],qscheme:[559,0,1,""],quantile:[559,0,1,""],rad2deg:[559,0,1,""],random_:[559,0,1,""],real:[559,1,1,""],reciprocal:[559,0,1,""],reciprocal_:[559,0,1,""],record_stream:[559,0,1,""],refine_names:[529,0,1,""],register_hook:[2,0,1,""],remainder:[559,0,1,""],remainder_:[559,0,1,""],rename:[529,0,1,""],rename_:[529,0,1,""],renorm:[559,0,1,""],renorm_:[559,0,1,""],repeat:[559,0,1,""],repeat_interleave:[559,0,1,""],requires_grad:[2,1,1,""],requires_grad_:[559,0,1,""],reshape:[559,0,1,""],reshape_as:[559,0,1,""],resize_:[559,0,1,""],resize_as_:[559,0,1,""],retain_grad:[2,0,1,""],rfft:[559,0,1,""],roll:[559,0,1,""],rot90:[559,0,1,""],round:[559,0,1,""],round_:[559,0,1,""],rsqrt:[559,0,1,""],rsqrt_:[559,0,1,""],scatter:[559,0,1,""],scatter_:[559,0,1,""],scatter_add:[559,0,1,""],scatter_add_:[559,0,1,""],select:[559,0,1,""],set_:[559,0,1,""],sgn:[559,0,1,""],sgn_:[559,0,1,""],share_memory_:[559,0,1,""],sigmoid:[559,0,1,""],sigmoid_:[559,0,1,""],sign:[559,0,1,""],sign_:[559,0,1,""],signbit:[559,0,1,""],sin:[559,0,1,""],sin_:[559,0,1,""],sinh:[559,0,1,""],sinh_:[559,0,1,""],size:[559,0,1,""],slogdet:[559,0,1,""],solve:[559,0,1,""],sort:[559,0,1,""],sparse_dim:[559,0,1,""],sparse_mask:[559,0,1,""],split:[559,0,1,""],sqrt:[559,0,1,""],sqrt_:[559,0,1,""],square:[559,0,1,""],square_:[559,0,1,""],squeeze:[559,0,1,""],squeeze_:[559,0,1,""],std:[559,0,1,""],stft:[559,0,1,""],storage:[559,0,1,""],storage_offset:[559,0,1,""],storage_type:[559,0,1,""],stride:[559,0,1,""],sub:[559,0,1,""],sub_:[559,0,1,""],subtract:[559,0,1,""],subtract_:[559,0,1,""],sum:[559,0,1,""],sum_to_size:[559,0,1,""],svd:[559,0,1,""],symeig:[559,0,1,""],t:[559,0,1,""],t_:[559,0,1,""],take:[559,0,1,""],tan:[559,0,1,""],tan_:[559,0,1,""],tanh:[559,0,1,""],tanh_:[559,0,1,""],to:[559,0,1,""],to_mkldnn:[559,0,1,""],to_sparse:[559,0,1,""],tolist:[559,0,1,""],topk:[559,0,1,""],trace:[559,0,1,""],transpose:[559,0,1,""],transpose_:[559,0,1,""],triangular_solve:[559,0,1,""],tril:[559,0,1,""],tril_:[559,0,1,""],triu:[559,0,1,""],triu_:[559,0,1,""],true_divide:[559,0,1,""],true_divide_:[559,0,1,""],trunc:[559,0,1,""],trunc_:[559,0,1,""],type:[559,0,1,""],type_as:[559,0,1,""],unbind:[559,0,1,""],unflatten:[529,0,1,""],unfold:[559,0,1,""],uniform_:[559,0,1,""],unique:[559,0,1,""],unique_consecutive:[559,0,1,""],unsqueeze:[559,0,1,""],unsqueeze_:[559,0,1,""],values:[559,0,1,""],vdot:[559,0,1,""],view:[559,0,1,""],view_as:[559,0,1,""],where:[559,0,1,""],zero_:[559,0,1,""]},"torch.__config__":{parallel_info:[0,2,1,""],show:[0,2,1,""]},"torch.autograd":{Function:[2,3,1,""],backward:[2,2,1,""],detect_anomaly:[2,3,1,""],enable_grad:[2,3,1,""],grad:[2,2,1,""],gradcheck:[2,2,1,""],gradgradcheck:[2,2,1,""],no_grad:[2,3,1,""],set_detect_anomaly:[2,3,1,""],set_grad_enabled:[2,3,1,""]},"torch.autograd.Function":{backward:[2,0,1,""],forward:[2,0,1,""]},"torch.autograd.function":{_ContextMethodMixin:[2,3,1,""]},"torch.autograd.function._ContextMethodMixin":{mark_dirty:[2,0,1,""],mark_non_differentiable:[2,0,1,""],save_for_backward:[2,0,1,""],set_materialize_grads:[2,0,1,""]},"torch.autograd.functional":{hessian:[2,2,1,""],hvp:[2,2,1,""],jacobian:[2,2,1,""],jvp:[2,2,1,""],vhp:[2,2,1,""],vjp:[2,2,1,""]},"torch.autograd.profiler":{emit_nvtx:[2,3,1,""],load_nvprof:[2,2,1,""],profile:[2,3,1,""]},"torch.autograd.profiler.profile":{export_chrome_trace:[2,0,1,""],key_averages:[2,0,1,""],self_cpu_time_total:[2,0,1,""],table:[2,0,1,""],total_average:[2,0,1,""]},"torch.backends.cuda":{cufft_plan_cache:[3,1,1,""],is_built:[3,2,1,""],size:[3,1,1,""]},"torch.backends.cuda.matmul":{allow_tf32:[3,1,1,""]},"torch.backends.cudnn":{allow_tf32:[3,1,1,""],benchmark:[3,1,1,""],deterministic:[3,1,1,""],enabled:[3,1,1,""],is_available:[3,2,1,""],version:[3,2,1,""]},"torch.backends.mkl":{is_available:[3,2,1,""]},"torch.backends.mkldnn":{is_available:[3,2,1,""]},"torch.backends.openmp":{is_available:[3,2,1,""]},"torch.cuda":{Event:[12,3,1,""],Stream:[12,3,1,""],amp:[1,4,0,"-"],current_blas_handle:[12,2,1,""],current_device:[12,2,1,""],current_stream:[12,2,1,""],default_stream:[12,2,1,""],device:[12,3,1,""],device_count:[12,2,1,""],device_of:[12,3,1,""],empty_cache:[12,2,1,""],get_arch_list:[12,2,1,""],get_device_capability:[12,2,1,""],get_device_name:[12,2,1,""],get_gencode_flags:[12,2,1,""],get_rng_state:[12,2,1,""],get_rng_state_all:[12,2,1,""],init:[12,2,1,""],initial_seed:[12,2,1,""],ipc_collect:[12,2,1,""],is_available:[12,2,1,""],is_initialized:[12,2,1,""],manual_seed:[12,2,1,""],manual_seed_all:[12,2,1,""],max_memory_allocated:[12,2,1,""],max_memory_cached:[12,2,1,""],max_memory_reserved:[12,2,1,""],memory_allocated:[12,2,1,""],memory_cached:[12,2,1,""],memory_reserved:[12,2,1,""],memory_snapshot:[12,2,1,""],memory_stats:[12,2,1,""],memory_summary:[12,2,1,""],reset_max_memory_allocated:[12,2,1,""],reset_max_memory_cached:[12,2,1,""],seed:[12,2,1,""],seed_all:[12,2,1,""],set_device:[12,2,1,""],set_rng_state:[12,2,1,""],set_rng_state_all:[12,2,1,""],stream:[12,2,1,""],synchronize:[12,2,1,""]},"torch.cuda.Event":{elapsed_time:[12,0,1,""],from_ipc_handle:[12,0,1,""],ipc_handle:[12,0,1,""],query:[12,0,1,""],record:[12,0,1,""],synchronize:[12,0,1,""],wait:[12,0,1,""]},"torch.cuda.Stream":{query:[12,0,1,""],record_event:[12,0,1,""],synchronize:[12,0,1,""],wait_event:[12,0,1,""],wait_stream:[12,0,1,""]},"torch.cuda.amp":{GradScaler:[1,3,1,""],autocast:[1,3,1,""],custom_bwd:[1,2,1,""],custom_fwd:[1,2,1,""]},"torch.cuda.amp.GradScaler":{get_backoff_factor:[1,0,1,""],get_growth_factor:[1,0,1,""],get_growth_interval:[1,0,1,""],get_scale:[1,0,1,""],is_enabled:[1,0,1,""],load_state_dict:[1,0,1,""],scale:[1,0,1,""],set_backoff_factor:[1,0,1,""],set_growth_factor:[1,0,1,""],set_growth_interval:[1,0,1,""],state_dict:[1,0,1,""],step:[1,0,1,""],unscale_:[1,0,1,""],update:[1,0,1,""]},"torch.cuda.comm":{broadcast:[12,2,1,""],broadcast_coalesced:[12,2,1,""],gather:[12,2,1,""],reduce_add:[12,2,1,""],scatter:[12,2,1,""]},"torch.cuda.nvtx":{mark:[12,2,1,""],range_pop:[12,2,1,""],range_push:[12,2,1,""]},"torch.distributed":{Backend:[16,3,1,""],FileStore:[16,3,1,""],HashStore:[16,3,1,""],PrefixStore:[16,3,1,""],ReduceOp:[16,3,1,""],Store:[16,3,1,""],TCPStore:[16,3,1,""],all_gather:[16,2,1,""],all_gather_multigpu:[16,2,1,""],all_reduce:[16,2,1,""],all_reduce_multigpu:[16,2,1,""],all_to_all:[16,2,1,""],autograd:[551,4,0,"-"],barrier:[16,2,1,""],broadcast:[16,2,1,""],broadcast_multigpu:[16,2,1,""],gather:[16,2,1,""],get_backend:[16,2,1,""],get_rank:[16,2,1,""],get_world_size:[16,2,1,""],init_process_group:[16,2,1,""],irecv:[16,2,1,""],is_available:[16,2,1,""],is_initialized:[16,2,1,""],is_mpi_available:[16,2,1,""],is_nccl_available:[16,2,1,""],isend:[16,2,1,""],launch:[16,4,0,"-"],new_group:[16,2,1,""],optim:[551,4,0,"-"],recv:[16,2,1,""],reduce:[16,2,1,""],reduce_multigpu:[16,2,1,""],reduce_op:[16,3,1,""],reduce_scatter:[16,2,1,""],reduce_scatter_multigpu:[16,2,1,""],rpc:[551,4,0,"-"],scatter:[16,2,1,""],send:[16,2,1,""]},"torch.distributed.Store":{add:[16,2,1,""],delete_key:[16,2,1,""],get:[16,2,1,""],num_keys:[16,2,1,""],set:[16,2,1,""],set_timeout:[16,2,1,""],wait:[16,2,1,""]},"torch.distributed.autograd":{backward:[551,2,1,""],context:[551,3,1,""],get_gradients:[551,2,1,""]},"torch.distributed.optim":{DistributedOptimizer:[551,3,1,""]},"torch.distributed.optim.DistributedOptimizer":{step:[551,0,1,""]},"torch.distributed.rpc":{BackendType:[551,3,1,""],ProcessGroupRpcBackendOptions:[551,3,1,""],RRef:[551,3,1,""],RpcBackendOptions:[551,3,1,""],TensorPipeRpcBackendOptions:[551,3,1,""],WorkerInfo:[551,3,1,""],get_worker_info:[551,2,1,""],init_rpc:[551,2,1,""],remote:[551,2,1,""],rpc_async:[551,2,1,""],rpc_sync:[551,2,1,""],shutdown:[551,2,1,""]},"torch.distributed.rpc.ProcessGroupRpcBackendOptions":{init_method:[551,0,1,""],num_send_recv_threads:[551,0,1,""],rpc_timeout:[551,0,1,""]},"torch.distributed.rpc.RRef":{confirmed_by_owner:[551,0,1,""],is_owner:[551,0,1,""],local_value:[551,0,1,""],owner:[551,0,1,""],owner_name:[551,0,1,""],remote:[551,0,1,""],rpc_async:[551,0,1,""],rpc_sync:[551,0,1,""],to_here:[551,0,1,""]},"torch.distributed.rpc.RpcBackendOptions":{init_method:[551,0,1,""],rpc_timeout:[551,0,1,""]},"torch.distributed.rpc.TensorPipeRpcBackendOptions":{init_method:[551,0,1,""],num_worker_threads:[551,0,1,""],rpc_timeout:[551,0,1,""]},"torch.distributed.rpc.WorkerInfo":{id:[551,0,1,""],name:[551,0,1,""]},"torch.distributed.rpc.functions":{async_execution:[551,2,1,""]},"torch.distributions":{constraint_registry:[17,4,0,"-"],constraints:[17,4,0,"-"],kl:[17,4,0,"-"],transforms:[17,4,0,"-"]},"torch.distributions.bernoulli":{Bernoulli:[17,3,1,""]},"torch.distributions.bernoulli.Bernoulli":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],enumerate_support:[17,0,1,""],expand:[17,0,1,""],has_enumerate_support:[17,1,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.beta":{Beta:[17,3,1,""]},"torch.distributions.beta.Beta":{arg_constraints:[17,1,1,""],concentration0:[17,0,1,""],concentration1:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.binomial":{Binomial:[17,3,1,""]},"torch.distributions.binomial.Binomial":{arg_constraints:[17,1,1,""],enumerate_support:[17,0,1,""],expand:[17,0,1,""],has_enumerate_support:[17,1,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],sample:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.categorical":{Categorical:[17,3,1,""]},"torch.distributions.categorical.Categorical":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],enumerate_support:[17,0,1,""],expand:[17,0,1,""],has_enumerate_support:[17,1,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],sample:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.cauchy":{Cauchy:[17,3,1,""]},"torch.distributions.cauchy.Cauchy":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.chi2":{Chi2:[17,3,1,""]},"torch.distributions.chi2.Chi2":{arg_constraints:[17,1,1,""],df:[17,0,1,""],expand:[17,0,1,""]},"torch.distributions.constraint_registry":{ConstraintRegistry:[17,3,1,""]},"torch.distributions.constraint_registry.ConstraintRegistry":{register:[17,0,1,""]},"torch.distributions.constraints":{Constraint:[17,3,1,""],cat:[17,1,1,""],dependent_property:[17,1,1,""],greater_than:[17,1,1,""],greater_than_eq:[17,1,1,""],half_open_interval:[17,1,1,""],integer_interval:[17,1,1,""],interval:[17,1,1,""],less_than:[17,1,1,""],stack:[17,1,1,""]},"torch.distributions.constraints.Constraint":{check:[17,0,1,""]},"torch.distributions.continuous_bernoulli":{ContinuousBernoulli:[17,3,1,""]},"torch.distributions.continuous_bernoulli.ContinuousBernoulli":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],rsample:[17,0,1,""],sample:[17,0,1,""],stddev:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.dirichlet":{Dirichlet:[17,3,1,""]},"torch.distributions.dirichlet.Dirichlet":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.distribution":{Distribution:[17,3,1,""]},"torch.distributions.distribution.Distribution":{arg_constraints:[17,0,1,""],batch_shape:[17,0,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],enumerate_support:[17,0,1,""],event_shape:[17,0,1,""],expand:[17,0,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],perplexity:[17,0,1,""],rsample:[17,0,1,""],sample:[17,0,1,""],sample_n:[17,0,1,""],stddev:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.exp_family":{ExponentialFamily:[17,3,1,""]},"torch.distributions.exp_family.ExponentialFamily":{entropy:[17,0,1,""]},"torch.distributions.exponential":{Exponential:[17,3,1,""]},"torch.distributions.exponential.Exponential":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],stddev:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.fishersnedecor":{FisherSnedecor:[17,3,1,""]},"torch.distributions.fishersnedecor.FisherSnedecor":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.gamma":{Gamma:[17,3,1,""]},"torch.distributions.gamma.Gamma":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.geometric":{Geometric:[17,3,1,""]},"torch.distributions.geometric.Geometric":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],probs:[17,1,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.gumbel":{Gumbel:[17,3,1,""]},"torch.distributions.gumbel.Gumbel":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],stddev:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.half_cauchy":{HalfCauchy:[17,3,1,""]},"torch.distributions.half_cauchy.HalfCauchy":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],scale:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.half_normal":{HalfNormal:[17,3,1,""]},"torch.distributions.half_normal.HalfNormal":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],scale:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.independent":{Independent:[17,3,1,""]},"torch.distributions.independent.Independent":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],enumerate_support:[17,0,1,""],expand:[17,0,1,""],has_enumerate_support:[17,0,1,""],has_rsample:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],sample:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.kl":{kl_divergence:[17,2,1,""],register_kl:[17,2,1,""]},"torch.distributions.laplace":{Laplace:[17,3,1,""]},"torch.distributions.laplace.Laplace":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],stddev:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.log_normal":{LogNormal:[17,3,1,""]},"torch.distributions.log_normal.LogNormal":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],loc:[17,0,1,""],mean:[17,0,1,""],scale:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.lowrank_multivariate_normal":{LowRankMultivariateNormal:[17,3,1,""]},"torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal":{arg_constraints:[17,1,1,""],covariance_matrix:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],precision_matrix:[17,1,1,""],rsample:[17,0,1,""],scale_tril:[17,1,1,""],support:[17,1,1,""],variance:[17,1,1,""]},"torch.distributions.mixture_same_family":{MixtureSameFamily:[17,3,1,""]},"torch.distributions.mixture_same_family.MixtureSameFamily":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],component_distribution:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],mixture_distribution:[17,0,1,""],sample:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.multinomial":{Multinomial:[17,3,1,""]},"torch.distributions.multinomial.Multinomial":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],logits:[17,0,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,0,1,""],sample:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.multivariate_normal":{MultivariateNormal:[17,3,1,""]},"torch.distributions.multivariate_normal.MultivariateNormal":{arg_constraints:[17,1,1,""],covariance_matrix:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],precision_matrix:[17,1,1,""],rsample:[17,0,1,""],scale_tril:[17,1,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.negative_binomial":{NegativeBinomial:[17,3,1,""]},"torch.distributions.negative_binomial.NegativeBinomial":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.normal":{Normal:[17,3,1,""]},"torch.distributions.normal.Normal":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],sample:[17,0,1,""],stddev:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.one_hot_categorical":{OneHotCategorical:[17,3,1,""]},"torch.distributions.one_hot_categorical.OneHotCategorical":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],enumerate_support:[17,0,1,""],expand:[17,0,1,""],has_enumerate_support:[17,1,1,""],log_prob:[17,0,1,""],logits:[17,0,1,""],mean:[17,0,1,""],param_shape:[17,0,1,""],probs:[17,0,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.pareto":{Pareto:[17,3,1,""]},"torch.distributions.pareto.Pareto":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],mean:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.poisson":{Poisson:[17,3,1,""]},"torch.distributions.poisson.Poisson":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.relaxed_bernoulli":{LogitRelaxedBernoulli:[17,3,1,""],RelaxedBernoulli:[17,3,1,""]},"torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],log_prob:[17,0,1,""],logits:[17,1,1,""],param_shape:[17,0,1,""],probs:[17,1,1,""],rsample:[17,0,1,""],support:[17,1,1,""]},"torch.distributions.relaxed_bernoulli.RelaxedBernoulli":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],logits:[17,0,1,""],probs:[17,0,1,""],support:[17,1,1,""],temperature:[17,0,1,""]},"torch.distributions.relaxed_categorical":{RelaxedOneHotCategorical:[17,3,1,""]},"torch.distributions.relaxed_categorical.RelaxedOneHotCategorical":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],logits:[17,0,1,""],probs:[17,0,1,""],support:[17,1,1,""],temperature:[17,0,1,""]},"torch.distributions.studentT":{StudentT:[17,3,1,""]},"torch.distributions.studentT.StudentT":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.distributions.transformed_distribution":{TransformedDistribution:[17,3,1,""]},"torch.distributions.transformed_distribution.TransformedDistribution":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,0,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],rsample:[17,0,1,""],sample:[17,0,1,""],support:[17,0,1,""]},"torch.distributions.transforms":{AbsTransform:[17,3,1,""],AffineTransform:[17,3,1,""],CatTransform:[17,3,1,""],ComposeTransform:[17,3,1,""],ExpTransform:[17,3,1,""],LowerCholeskyTransform:[17,3,1,""],PowerTransform:[17,3,1,""],SigmoidTransform:[17,3,1,""],SoftmaxTransform:[17,3,1,""],StackTransform:[17,3,1,""],StickBreakingTransform:[17,3,1,""],TanhTransform:[17,3,1,""],Transform:[17,3,1,""]},"torch.distributions.transforms.Transform":{inv:[17,0,1,""],log_abs_det_jacobian:[17,0,1,""],sign:[17,0,1,""]},"torch.distributions.uniform":{Uniform:[17,3,1,""]},"torch.distributions.uniform.Uniform":{arg_constraints:[17,1,1,""],cdf:[17,0,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],icdf:[17,0,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],rsample:[17,0,1,""],stddev:[17,0,1,""],support:[17,0,1,""],variance:[17,0,1,""]},"torch.distributions.von_mises":{VonMises:[17,3,1,""]},"torch.distributions.von_mises.VonMises":{arg_constraints:[17,1,1,""],expand:[17,0,1,""],has_rsample:[17,1,1,""],log_prob:[17,0,1,""],mean:[17,0,1,""],sample:[17,0,1,""],support:[17,1,1,""],variance:[17,1,1,""]},"torch.distributions.weibull":{Weibull:[17,3,1,""]},"torch.distributions.weibull.Weibull":{arg_constraints:[17,1,1,""],entropy:[17,0,1,""],expand:[17,0,1,""],mean:[17,0,1,""],support:[17,1,1,""],variance:[17,0,1,""]},"torch.fft":{fft:[19,2,1,""],fftn:[19,2,1,""],hfft:[19,2,1,""],ifft:[19,2,1,""],ifftn:[19,2,1,""],ihfft:[19,2,1,""],irfft:[19,2,1,""],irfftn:[19,2,1,""],rfft:[19,2,1,""],rfftn:[19,2,1,""]},"torch.futures":{Future:[20,3,1,""],collect_all:[20,2,1,""],wait_all:[20,2,1,""]},"torch.futures.Future":{done:[20,0,1,""],set_result:[20,0,1,""],then:[20,0,1,""],value:[20,0,1,""],wait:[20,0,1,""]},"torch.hub":{download_url_to_file:[517,2,1,""],get_dir:[517,2,1,""],help:[517,2,1,""],list:[517,2,1,""],load:[517,2,1,""],load_state_dict_from_url:[517,2,1,""],set_dir:[517,2,1,""]},"torch.jit":{"export":[519,2,1,""],ScriptFunction:[176,3,1,""],ScriptModule:[177,3,1,""],fork:[178,2,1,""],ignore:[179,2,1,""],is_scripting:[521,2,1,""],load:[180,2,1,""],save:[181,2,1,""],script:[182,2,1,""],supported_ops:[520,4,0,"-"],trace:[183,2,1,""],trace_module:[184,2,1,""],unsupported_tensor_ops:[523,4,0,"-"],unused:[185,2,1,""],wait:[186,2,1,""]},"torch.jit.ScriptFunction":{get_debug_state:[176,0,1,""],save:[176,0,1,""],save_to_buffer:[176,0,1,""]},"torch.jit.ScriptModule":{"double":[177,0,1,""],"float":[177,0,1,""],add_module:[177,0,1,""],apply:[177,0,1,""],bfloat16:[177,0,1,""],buffers:[177,0,1,""],children:[177,0,1,""],code:[177,0,1,""],code_with_constants:[177,0,1,""],cpu:[177,0,1,""],cuda:[177,0,1,""],eval:[177,0,1,""],extra_repr:[177,0,1,""],graph:[177,0,1,""],half:[177,0,1,""],inlined_graph:[177,0,1,""],load_state_dict:[177,0,1,""],modules:[177,0,1,""],named_buffers:[177,0,1,""],named_children:[177,0,1,""],named_modules:[177,0,1,""],named_parameters:[177,0,1,""],parameters:[177,0,1,""],register_backward_hook:[177,0,1,""],register_buffer:[177,0,1,""],register_forward_hook:[177,0,1,""],register_forward_pre_hook:[177,0,1,""],register_parameter:[177,0,1,""],requires_grad_:[177,0,1,""],save:[177,0,1,""],state_dict:[177,0,1,""],to:[177,0,1,""],train:[177,0,1,""],type:[177,0,1,""],zero_grad:[177,0,1,""]},"torch.linalg":{det:[524,2,1,""],norm:[524,2,1,""]},"torch.multiprocessing":{SpawnContext:[527,3,1,""],get_all_sharing_strategies:[527,2,1,""],get_sharing_strategy:[527,2,1,""],set_sharing_strategy:[527,2,1,""],spawn:[527,2,1,""]},"torch.multiprocessing.SpawnContext":{join:[527,0,1,""]},"torch.nn":{AdaptiveAvgPool1d:[246,3,1,""],AdaptiveAvgPool2d:[247,3,1,""],AdaptiveAvgPool3d:[248,3,1,""],AdaptiveLogSoftmaxWithLoss:[249,3,1,""],AdaptiveMaxPool1d:[250,3,1,""],AdaptiveMaxPool2d:[251,3,1,""],AdaptiveMaxPool3d:[252,3,1,""],AlphaDropout:[253,3,1,""],AvgPool1d:[254,3,1,""],AvgPool2d:[255,3,1,""],AvgPool3d:[256,3,1,""],BCELoss:[257,3,1,""],BCEWithLogitsLoss:[258,3,1,""],BatchNorm1d:[259,3,1,""],BatchNorm2d:[260,3,1,""],BatchNorm3d:[261,3,1,""],Bilinear:[262,3,1,""],CELU:[263,3,1,""],CTCLoss:[264,3,1,""],ConstantPad1d:[265,3,1,""],ConstantPad2d:[266,3,1,""],ConstantPad3d:[267,3,1,""],Conv1d:[268,3,1,""],Conv2d:[269,3,1,""],Conv3d:[270,3,1,""],ConvTranspose1d:[271,3,1,""],ConvTranspose2d:[272,3,1,""],ConvTranspose3d:[273,3,1,""],CosineEmbeddingLoss:[274,3,1,""],CosineSimilarity:[275,3,1,""],CrossEntropyLoss:[276,3,1,""],DataParallel:[277,3,1,""],Dropout2d:[279,3,1,""],Dropout3d:[280,3,1,""],Dropout:[278,3,1,""],ELU:[281,3,1,""],Embedding:[282,3,1,""],EmbeddingBag:[283,3,1,""],Flatten:[284,3,1,""],Fold:[285,3,1,""],FractionalMaxPool2d:[286,3,1,""],GELU:[287,3,1,""],GRU:[288,3,1,""],GRUCell:[289,3,1,""],GroupNorm:[290,3,1,""],Hardshrink:[291,3,1,""],Hardsigmoid:[292,3,1,""],Hardswish:[293,3,1,""],Hardtanh:[294,3,1,""],HingeEmbeddingLoss:[295,3,1,""],Identity:[296,3,1,""],InstanceNorm1d:[297,3,1,""],InstanceNorm2d:[298,3,1,""],InstanceNorm3d:[299,3,1,""],KLDivLoss:[300,3,1,""],L1Loss:[301,3,1,""],LPPool1d:[302,3,1,""],LPPool2d:[303,3,1,""],LSTM:[304,3,1,""],LSTMCell:[305,3,1,""],LayerNorm:[306,3,1,""],LeakyReLU:[307,3,1,""],Linear:[308,3,1,""],LocalResponseNorm:[309,3,1,""],LogSigmoid:[310,3,1,""],LogSoftmax:[311,3,1,""],MSELoss:[312,3,1,""],MarginRankingLoss:[313,3,1,""],MaxPool1d:[314,3,1,""],MaxPool2d:[315,3,1,""],MaxPool3d:[316,3,1,""],MaxUnpool1d:[317,3,1,""],MaxUnpool2d:[318,3,1,""],MaxUnpool3d:[319,3,1,""],Module:[320,3,1,""],ModuleDict:[321,3,1,""],ModuleList:[322,3,1,""],MultiLabelMarginLoss:[323,3,1,""],MultiLabelSoftMarginLoss:[324,3,1,""],MultiMarginLoss:[325,3,1,""],MultiheadAttention:[326,3,1,""],NLLLoss:[327,3,1,""],PReLU:[328,3,1,""],PairwiseDistance:[329,3,1,""],ParameterDict:[330,3,1,""],ParameterList:[331,3,1,""],PixelShuffle:[332,3,1,""],PoissonNLLLoss:[333,3,1,""],RNN:[334,3,1,""],RNNBase:[335,3,1,""],RNNCell:[336,3,1,""],RReLU:[337,3,1,""],ReLU6:[339,3,1,""],ReLU:[338,3,1,""],ReflectionPad1d:[340,3,1,""],ReflectionPad2d:[341,3,1,""],ReplicationPad1d:[342,3,1,""],ReplicationPad2d:[343,3,1,""],ReplicationPad3d:[344,3,1,""],SELU:[345,3,1,""],Sequential:[346,3,1,""],SiLU:[347,3,1,""],Sigmoid:[348,3,1,""],SmoothL1Loss:[349,3,1,""],SoftMarginLoss:[350,3,1,""],Softmax2d:[352,3,1,""],Softmax:[351,3,1,""],Softmin:[353,3,1,""],Softplus:[354,3,1,""],Softshrink:[355,3,1,""],Softsign:[356,3,1,""],SyncBatchNorm:[357,3,1,""],Tanh:[358,3,1,""],Tanhshrink:[359,3,1,""],Threshold:[360,3,1,""],Transformer:[361,3,1,""],TransformerDecoder:[362,3,1,""],TransformerDecoderLayer:[363,3,1,""],TransformerEncoder:[364,3,1,""],TransformerEncoderLayer:[365,3,1,""],TripletMarginLoss:[366,3,1,""],TripletMarginWithDistanceLoss:[367,3,1,""],Unflatten:[368,3,1,""],Unfold:[369,3,1,""],Upsample:[370,3,1,""],UpsamplingBilinear2d:[371,3,1,""],UpsamplingNearest2d:[372,3,1,""],ZeroPad2d:[373,3,1,""],intrinsic:[561,4,0,"-"],qat:[564,4,0,"-"],quantized:[565,4,0,"-"]},"torch.nn.AdaptiveLogSoftmaxWithLoss":{log_prob:[249,0,1,""],predict:[249,0,1,""]},"torch.nn.Embedding":{from_pretrained:[282,0,1,""]},"torch.nn.EmbeddingBag":{from_pretrained:[283,0,1,""]},"torch.nn.Flatten":{"double":[284,0,1,""],"float":[284,0,1,""],add_module:[284,0,1,""],apply:[284,0,1,""],bfloat16:[284,0,1,""],buffers:[284,0,1,""],children:[284,0,1,""],cpu:[284,0,1,""],cuda:[284,0,1,""],eval:[284,0,1,""],half:[284,0,1,""],load_state_dict:[284,0,1,""],modules:[284,0,1,""],named_buffers:[284,0,1,""],named_children:[284,0,1,""],named_modules:[284,0,1,""],named_parameters:[284,0,1,""],parameters:[284,0,1,""],register_backward_hook:[284,0,1,""],register_buffer:[284,0,1,""],register_forward_hook:[284,0,1,""],register_forward_pre_hook:[284,0,1,""],register_parameter:[284,0,1,""],requires_grad_:[284,0,1,""],state_dict:[284,0,1,""],to:[284,0,1,""],train:[284,0,1,""],type:[284,0,1,""],zero_grad:[284,0,1,""]},"torch.nn.Module":{"double":[320,0,1,""],"float":[320,0,1,""],add_module:[320,0,1,""],apply:[320,0,1,""],bfloat16:[320,0,1,""],buffers:[320,0,1,""],children:[320,0,1,""],cpu:[320,0,1,""],cuda:[320,0,1,""],dump_patches:[320,1,1,""],eval:[320,0,1,""],extra_repr:[320,0,1,""],forward:[320,0,1,""],half:[320,0,1,""],load_state_dict:[320,0,1,""],modules:[320,0,1,""],named_buffers:[320,0,1,""],named_children:[320,0,1,""],named_modules:[320,0,1,""],named_parameters:[320,0,1,""],parameters:[320,0,1,""],register_backward_hook:[320,0,1,""],register_buffer:[320,0,1,""],register_forward_hook:[320,0,1,""],register_forward_pre_hook:[320,0,1,""],register_parameter:[320,0,1,""],requires_grad_:[320,0,1,""],state_dict:[320,0,1,""],to:[320,0,1,""],train:[320,0,1,""],type:[320,0,1,""],zero_grad:[320,0,1,""]},"torch.nn.ModuleDict":{clear:[321,0,1,""],items:[321,0,1,""],keys:[321,0,1,""],pop:[321,0,1,""],update:[321,0,1,""],values:[321,0,1,""]},"torch.nn.ModuleList":{append:[322,0,1,""],extend:[322,0,1,""],insert:[322,0,1,""]},"torch.nn.MultiheadAttention":{forward:[326,0,1,""]},"torch.nn.ParameterDict":{clear:[330,0,1,""],items:[330,0,1,""],keys:[330,0,1,""],pop:[330,0,1,""],update:[330,0,1,""],values:[330,0,1,""]},"torch.nn.ParameterList":{append:[331,0,1,""],extend:[331,0,1,""]},"torch.nn.RNNBase":{flatten_parameters:[335,0,1,""]},"torch.nn.SyncBatchNorm":{convert_sync_batchnorm:[357,0,1,""]},"torch.nn.Transformer":{forward:[361,0,1,""],generate_square_subsequent_mask:[361,0,1,""]},"torch.nn.TransformerDecoder":{forward:[362,0,1,""]},"torch.nn.TransformerDecoderLayer":{forward:[363,0,1,""]},"torch.nn.TransformerEncoder":{forward:[364,0,1,""]},"torch.nn.TransformerEncoderLayer":{forward:[365,0,1,""]},"torch.nn.Unflatten":{"double":[368,0,1,""],"float":[368,0,1,""],add_module:[368,0,1,""],apply:[368,0,1,""],bfloat16:[368,0,1,""],buffers:[368,0,1,""],children:[368,0,1,""],cpu:[368,0,1,""],cuda:[368,0,1,""],eval:[368,0,1,""],half:[368,0,1,""],load_state_dict:[368,0,1,""],modules:[368,0,1,""],named_buffers:[368,0,1,""],named_children:[368,0,1,""],named_modules:[368,0,1,""],named_parameters:[368,0,1,""],parameters:[368,0,1,""],register_backward_hook:[368,0,1,""],register_buffer:[368,0,1,""],register_forward_hook:[368,0,1,""],register_forward_pre_hook:[368,0,1,""],register_parameter:[368,0,1,""],requires_grad_:[368,0,1,""],state_dict:[368,0,1,""],to:[368,0,1,""],train:[368,0,1,""],type:[368,0,1,""],zero_grad:[368,0,1,""]},"torch.nn.functional":{adaptive_avg_pool1d:[531,2,1,""],adaptive_avg_pool2d:[531,2,1,""],adaptive_avg_pool3d:[531,2,1,""],adaptive_max_pool1d:[531,2,1,""],adaptive_max_pool2d:[531,2,1,""],adaptive_max_pool3d:[531,2,1,""],affine_grid:[531,2,1,""],alpha_dropout:[531,2,1,""],avg_pool1d:[531,2,1,""],avg_pool2d:[531,2,1,""],avg_pool3d:[531,2,1,""],batch_norm:[531,2,1,""],bilinear:[531,2,1,""],binary_cross_entropy:[531,2,1,""],binary_cross_entropy_with_logits:[531,2,1,""],celu:[531,2,1,""],conv1d:[531,2,1,""],conv2d:[531,2,1,""],conv3d:[531,2,1,""],conv_transpose1d:[531,2,1,""],conv_transpose2d:[531,2,1,""],conv_transpose3d:[531,2,1,""],cosine_embedding_loss:[531,2,1,""],cosine_similarity:[531,2,1,""],cross_entropy:[531,2,1,""],ctc_loss:[531,2,1,""],dropout2d:[531,2,1,""],dropout3d:[531,2,1,""],dropout:[531,2,1,""],elu:[531,2,1,""],elu_:[531,2,1,""],embedding:[531,2,1,""],embedding_bag:[531,2,1,""],feature_alpha_dropout:[531,2,1,""],fold:[531,2,1,""],gelu:[531,2,1,""],glu:[531,2,1,""],grid_sample:[531,2,1,""],gumbel_softmax:[531,2,1,""],hardshrink:[531,2,1,""],hardsigmoid:[531,2,1,""],hardswish:[531,2,1,""],hardtanh:[531,2,1,""],hardtanh_:[531,2,1,""],hinge_embedding_loss:[531,2,1,""],instance_norm:[531,2,1,""],interpolate:[531,2,1,""],kl_div:[531,2,1,""],l1_loss:[531,2,1,""],layer_norm:[531,2,1,""],leaky_relu:[531,2,1,""],leaky_relu_:[531,2,1,""],linear:[531,2,1,""],local_response_norm:[531,2,1,""],log_softmax:[531,2,1,""],logsigmoid:[531,2,1,""],lp_pool1d:[531,2,1,""],lp_pool2d:[531,2,1,""],margin_ranking_loss:[531,2,1,""],max_pool1d:[531,2,1,""],max_pool2d:[531,2,1,""],max_pool3d:[531,2,1,""],max_unpool1d:[531,2,1,""],max_unpool2d:[531,2,1,""],max_unpool3d:[531,2,1,""],mse_loss:[531,2,1,""],multi_margin_loss:[531,2,1,""],multilabel_margin_loss:[531,2,1,""],multilabel_soft_margin_loss:[531,2,1,""],nll_loss:[531,2,1,""],normalize:[531,2,1,""],one_hot:[531,2,1,""],pad:[531,2,1,""],pairwise_distance:[531,2,1,""],pdist:[531,2,1,""],pixel_shuffle:[531,2,1,""],poisson_nll_loss:[531,2,1,""],prelu:[531,2,1,""],relu6:[531,2,1,""],relu:[531,2,1,""],relu_:[531,2,1,""],rrelu:[531,2,1,""],rrelu_:[531,2,1,""],selu:[531,2,1,""],sigmoid:[531,2,1,""],silu:[531,2,1,""],smooth_l1_loss:[531,2,1,""],soft_margin_loss:[531,2,1,""],softmax:[531,2,1,""],softmin:[531,2,1,""],softplus:[531,2,1,""],softshrink:[531,2,1,""],softsign:[531,2,1,""],tanh:[531,2,1,""],tanhshrink:[531,2,1,""],threshold:[531,2,1,""],threshold_:[531,2,1,""],triplet_margin_loss:[531,2,1,""],triplet_margin_with_distance_loss:[531,2,1,""],unfold:[531,2,1,""],upsample:[531,2,1,""],upsample_bilinear:[531,2,1,""],upsample_nearest:[531,2,1,""]},"torch.nn.init":{calculate_gain:[532,2,1,""],constant_:[532,2,1,""],dirac_:[532,2,1,""],eye_:[532,2,1,""],kaiming_normal_:[532,2,1,""],kaiming_uniform_:[532,2,1,""],normal_:[532,2,1,""],ones_:[532,2,1,""],orthogonal_:[532,2,1,""],sparse_:[532,2,1,""],uniform_:[532,2,1,""],xavier_normal_:[532,2,1,""],xavier_uniform_:[532,2,1,""],zeros_:[532,2,1,""]},"torch.nn.intrinsic":{ConvBn1d:[561,3,1,""],ConvBn2d:[561,3,1,""],ConvBnReLU1d:[561,3,1,""],ConvBnReLU2d:[561,3,1,""],ConvReLU1d:[561,3,1,""],ConvReLU2d:[561,3,1,""],qat:[562,4,0,"-"],quantized:[563,4,0,"-"]},"torch.nn.intrinsic.qat":{ConvBn2d:[562,3,1,""],ConvBnReLU2d:[562,3,1,""],ConvReLU2d:[562,3,1,""],LinearReLU:[562,3,1,""]},"torch.nn.intrinsic.quantized":{ConvReLU2d:[563,3,1,""],ConvReLU3d:[563,3,1,""],LinearReLU:[563,3,1,""]},"torch.nn.parallel":{DistributedDataParallel:[374,3,1,""],data_parallel:[531,2,1,""]},"torch.nn.parallel.DistributedDataParallel":{join:[374,0,1,""],no_sync:[374,0,1,""]},"torch.nn.parameter":{Parameter:[375,3,1,""]},"torch.nn.qat":{Conv2d:[564,3,1,""],Linear:[564,3,1,""]},"torch.nn.qat.Conv2d":{from_float:[564,0,1,""]},"torch.nn.qat.Linear":{from_float:[564,0,1,""]},"torch.nn.quantized":{BatchNorm2d:[565,3,1,""],BatchNorm3d:[565,3,1,""],Conv1d:[565,3,1,""],Conv2d:[565,3,1,""],Conv3d:[565,3,1,""],DeQuantize:[565,3,1,""],ELU:[565,3,1,""],FloatFunctional:[565,3,1,""],GroupNorm:[565,3,1,""],Hardswish:[565,3,1,""],InstanceNorm1d:[565,3,1,""],InstanceNorm2d:[565,3,1,""],InstanceNorm3d:[565,3,1,""],LayerNorm:[565,3,1,""],Linear:[565,3,1,""],QFunctional:[565,3,1,""],Quantize:[565,3,1,""],ReLU6:[565,3,1,""],ReLU:[565,3,1,""],dynamic:[566,4,0,"-"],functional:[565,4,0,"-"]},"torch.nn.quantized.Conv1d":{from_float:[565,0,1,""]},"torch.nn.quantized.Conv2d":{from_float:[565,0,1,""]},"torch.nn.quantized.Conv3d":{from_float:[565,0,1,""]},"torch.nn.quantized.Linear":{from_float:[565,0,1,""]},"torch.nn.quantized.dynamic":{GRUCell:[566,3,1,""],LSTM:[566,3,1,""],LSTMCell:[566,3,1,""],Linear:[566,3,1,""],RNNCell:[566,3,1,""]},"torch.nn.quantized.dynamic.Linear":{from_float:[566,0,1,""]},"torch.nn.quantized.functional":{adaptive_avg_pool2d:[565,2,1,""],avg_pool2d:[565,2,1,""],conv1d:[565,2,1,""],conv2d:[565,2,1,""],conv3d:[565,2,1,""],hardswish:[565,2,1,""],interpolate:[565,2,1,""],linear:[565,2,1,""],max_pool2d:[565,2,1,""],relu:[565,2,1,""],upsample:[565,2,1,""],upsample_bilinear:[565,2,1,""],upsample_nearest:[565,2,1,""]},"torch.nn.utils":{clip_grad_norm_:[376,2,1,""],clip_grad_value_:[377,2,1,""],parameters_to_vector:[378,2,1,""],remove_spectral_norm:[396,2,1,""],remove_weight_norm:[397,2,1,""],spectral_norm:[403,2,1,""],vector_to_parameters:[404,2,1,""],weight_norm:[405,2,1,""]},"torch.nn.utils.prune":{BasePruningMethod:[379,3,1,""],CustomFromMask:[380,3,1,""],Identity:[381,3,1,""],L1Unstructured:[382,3,1,""],LnStructured:[383,3,1,""],PruningContainer:[384,3,1,""],RandomStructured:[385,3,1,""],RandomUnstructured:[386,3,1,""],custom_from_mask:[387,2,1,""],global_unstructured:[388,2,1,""],identity:[389,2,1,""],is_pruned:[390,2,1,""],l1_unstructured:[391,2,1,""],ln_structured:[392,2,1,""],random_structured:[393,2,1,""],random_unstructured:[394,2,1,""],remove:[395,2,1,""]},"torch.nn.utils.prune.BasePruningMethod":{apply:[379,0,1,""],apply_mask:[379,0,1,""],compute_mask:[379,0,1,""],prune:[379,0,1,""],remove:[379,0,1,""]},"torch.nn.utils.prune.CustomFromMask":{apply:[380,0,1,""],apply_mask:[380,0,1,""],prune:[380,0,1,""],remove:[380,0,1,""]},"torch.nn.utils.prune.Identity":{apply:[381,0,1,""],apply_mask:[381,0,1,""],prune:[381,0,1,""],remove:[381,0,1,""]},"torch.nn.utils.prune.L1Unstructured":{apply:[382,0,1,""],apply_mask:[382,0,1,""],prune:[382,0,1,""],remove:[382,0,1,""]},"torch.nn.utils.prune.LnStructured":{apply:[383,0,1,""],apply_mask:[383,0,1,""],compute_mask:[383,0,1,""],prune:[383,0,1,""],remove:[383,0,1,""]},"torch.nn.utils.prune.PruningContainer":{add_pruning_method:[384,0,1,""],apply:[384,0,1,""],apply_mask:[384,0,1,""],compute_mask:[384,0,1,""],prune:[384,0,1,""],remove:[384,0,1,""]},"torch.nn.utils.prune.RandomStructured":{apply:[385,0,1,""],apply_mask:[385,0,1,""],compute_mask:[385,0,1,""],prune:[385,0,1,""],remove:[385,0,1,""]},"torch.nn.utils.prune.RandomUnstructured":{apply:[386,0,1,""],apply_mask:[386,0,1,""],prune:[386,0,1,""],remove:[386,0,1,""]},"torch.nn.utils.rnn":{PackedSequence:[398,3,1,""],pack_padded_sequence:[399,2,1,""],pack_sequence:[400,2,1,""],pad_packed_sequence:[401,2,1,""],pad_sequence:[402,2,1,""]},"torch.nn.utils.rnn.PackedSequence":{batch_sizes:[398,1,1,""],count:[398,0,1,""],data:[398,1,1,""],index:[398,0,1,""],is_cuda:[398,0,1,""],is_pinned:[398,0,1,""],sorted_indices:[398,1,1,""],to:[398,0,1,""],unsorted_indices:[398,1,1,""]},"torch.onnx":{"export":[546,2,1,""],export_to_pretty_string:[546,2,1,""],is_in_onnx_export:[546,2,1,""],register_custom_op_symbolic:[546,2,1,""],select_model_mode_for_export:[546,2,1,""]},"torch.onnx.operators":{shape_as_tensor:[546,2,1,""]},"torch.optim":{ASGD:[547,3,1,""],Adadelta:[547,3,1,""],Adagrad:[547,3,1,""],Adam:[547,3,1,""],AdamW:[547,3,1,""],Adamax:[547,3,1,""],LBFGS:[547,3,1,""],Optimizer:[547,3,1,""],RMSprop:[547,3,1,""],Rprop:[547,3,1,""],SGD:[547,3,1,""],SparseAdam:[547,3,1,""]},"torch.optim.ASGD":{step:[547,0,1,""]},"torch.optim.Adadelta":{step:[547,0,1,""]},"torch.optim.Adagrad":{step:[547,0,1,""]},"torch.optim.Adam":{step:[547,0,1,""]},"torch.optim.AdamW":{step:[547,0,1,""]},"torch.optim.Adamax":{step:[547,0,1,""]},"torch.optim.LBFGS":{step:[547,0,1,""]},"torch.optim.Optimizer":{add_param_group:[547,0,1,""],load_state_dict:[547,0,1,""],state_dict:[547,0,1,""],step:[547,0,1,""],zero_grad:[547,0,1,""]},"torch.optim.RMSprop":{step:[547,0,1,""]},"torch.optim.Rprop":{step:[547,0,1,""]},"torch.optim.SGD":{step:[547,0,1,""]},"torch.optim.SparseAdam":{step:[547,0,1,""]},"torch.optim.lr_scheduler":{CosineAnnealingLR:[547,3,1,""],CosineAnnealingWarmRestarts:[547,3,1,""],CyclicLR:[547,3,1,""],ExponentialLR:[547,3,1,""],LambdaLR:[547,3,1,""],MultiStepLR:[547,3,1,""],MultiplicativeLR:[547,3,1,""],OneCycleLR:[547,3,1,""],ReduceLROnPlateau:[547,3,1,""],StepLR:[547,3,1,""]},"torch.optim.lr_scheduler.CosineAnnealingWarmRestarts":{step:[547,0,1,""]},"torch.optim.lr_scheduler.CyclicLR":{get_lr:[547,0,1,""]},"torch.optim.lr_scheduler.LambdaLR":{load_state_dict:[547,0,1,""],state_dict:[547,0,1,""]},"torch.optim.lr_scheduler.MultiplicativeLR":{load_state_dict:[547,0,1,""],state_dict:[547,0,1,""]},"torch.quantization":{DeQuantStub:[567,3,1,""],FakeQuantize:[567,3,1,""],HistogramObserver:[567,3,1,""],MinMaxObserver:[567,3,1,""],MovingAverageMinMaxObserver:[567,3,1,""],MovingAveragePerChannelMinMaxObserver:[567,3,1,""],NoopObserver:[567,3,1,""],ObserverBase:[567,3,1,""],PerChannelMinMaxObserver:[567,3,1,""],QConfig:[567,3,1,""],QConfigDynamic:[567,3,1,""],QuantStub:[567,3,1,""],QuantWrapper:[567,3,1,""],RecordingObserver:[567,3,1,""],add_observer_:[567,2,1,""],add_quant_dequant:[567,2,1,""],convert:[567,2,1,""],default_eval_fn:[567,2,1,""],fuse_modules:[567,2,1,""],get_observer_dict:[567,2,1,""],prepare:[567,2,1,""],prepare_qat:[567,2,1,""],propagate_qconfig_:[567,2,1,""],quantize:[567,2,1,""],quantize_dynamic:[567,2,1,""],quantize_qat:[567,2,1,""],swap_module:[567,2,1,""]},"torch.quantization.ObserverBase":{with_args:[567,0,1,""]},"torch.quasirandom":{SobolEngine:[429,3,1,""]},"torch.quasirandom.SobolEngine":{draw:[429,0,1,""],fast_forward:[429,0,1,""],reset:[429,0,1,""]},"torch.random":{fork_rng:[550,2,1,""],get_rng_state:[550,2,1,""],initial_seed:[550,2,1,""],manual_seed:[550,2,1,""],seed:[550,2,1,""],set_rng_state:[550,2,1,""]},"torch.sparse":{FloatTensor:[554,3,1,""],addmm:[554,2,1,""],mm:[554,2,1,""],sum:[554,2,1,""]},"torch.sparse.FloatTensor":{_indices:[554,0,1,""],_nnz:[554,0,1,""],_values:[554,0,1,""],add:[554,0,1,""],add_:[554,0,1,""],clone:[554,0,1,""],coalesce:[554,0,1,""],dim:[554,0,1,""],div:[554,0,1,""],div_:[554,0,1,""],get_device:[554,0,1,""],hspmm:[554,0,1,""],is_coalesced:[554,0,1,""],mm:[554,0,1,""],mul:[554,0,1,""],mul_:[554,0,1,""],narrow_copy:[554,0,1,""],resizeAs_:[554,0,1,""],size:[554,0,1,""],spadd:[554,0,1,""],spmm:[554,0,1,""],sspaddmm:[554,0,1,""],sspmm:[554,0,1,""],sub:[554,0,1,""],sub_:[554,0,1,""],t_:[554,0,1,""],to_dense:[554,0,1,""],transpose:[554,0,1,""],transpose_:[554,0,1,""],zero_:[554,0,1,""]},"torch.torch":{default_generator:[560,1,1,""],device:[556,3,1,""],dtype:[556,3,1,""],finfo:[568,3,1,""],iinfo:[568,3,1,""],layout:[556,3,1,""],memory_format:[556,3,1,""]},"torch.utils":{data:[15,4,0,"-"],model_zoo:[526,4,0,"-"]},"torch.utils.checkpoint":{checkpoint:[5,2,1,""],checkpoint_sequential:[5,2,1,""]},"torch.utils.cpp_extension":{BuildExtension:[10,2,1,""],CUDAExtension:[10,2,1,""],CppExtension:[10,2,1,""],check_compiler_abi_compatibility:[10,2,1,""],include_paths:[10,2,1,""],is_ninja_available:[10,2,1,""],load:[10,2,1,""],load_inline:[10,2,1,""],verify_ninja_availability:[10,2,1,""]},"torch.utils.data":{BatchSampler:[15,3,1,""],ChainDataset:[15,3,1,""],ConcatDataset:[15,3,1,""],DataLoader:[15,3,1,""],Dataset:[15,3,1,""],IterableDataset:[15,3,1,""],RandomSampler:[15,3,1,""],Sampler:[15,3,1,""],SequentialSampler:[15,3,1,""],Subset:[15,3,1,""],SubsetRandomSampler:[15,3,1,""],TensorDataset:[15,3,1,""],WeightedRandomSampler:[15,3,1,""],get_worker_info:[15,2,1,""],random_split:[15,2,1,""]},"torch.utils.data.distributed":{DistributedSampler:[15,3,1,""]},"torch.utils.dlpack":{from_dlpack:[18,2,1,""],to_dlpack:[18,2,1,""]},"torch.utils.mobile_optimizer":{optimize_for_mobile:[525,2,1,""]},"torch.utils.model_zoo":{load_url:[526,2,1,""]},"torch.utils.tensorboard.writer":{SummaryWriter:[558,3,1,""]},"torch.utils.tensorboard.writer.SummaryWriter":{__init__:[558,0,1,""],add_audio:[558,0,1,""],add_custom_scalars:[558,0,1,""],add_embedding:[558,0,1,""],add_figure:[558,0,1,""],add_graph:[558,0,1,""],add_histogram:[558,0,1,""],add_hparams:[558,0,1,""],add_image:[558,0,1,""],add_images:[558,0,1,""],add_mesh:[558,0,1,""],add_pr_curve:[558,0,1,""],add_scalar:[558,0,1,""],add_scalars:[558,0,1,""],add_text:[558,0,1,""],add_video:[558,0,1,""],close:[558,0,1,""],flush:[558,0,1,""]},torch:{"var":[508,2,1,""],Assert:[21,2,1,""],BoolTensor:[559,3,1,""],FloatStorage:[555,3,1,""],Generator:[22,3,1,""],Tensor:[559,3,1,""],__config__:[0,4,0,"-"],abs:[23,2,1,""],absolute:[24,2,1,""],acos:[25,2,1,""],acosh:[26,2,1,""],add:[27,2,1,""],addbmm:[28,2,1,""],addcdiv:[29,2,1,""],addcmul:[30,2,1,""],addmm:[31,2,1,""],addmv:[32,2,1,""],addr:[33,2,1,""],allclose:[34,2,1,""],amax:[35,2,1,""],amin:[36,2,1,""],angle:[37,2,1,""],arange:[38,2,1,""],arccos:[39,2,1,""],arccosh:[40,2,1,""],arcsin:[41,2,1,""],arcsinh:[42,2,1,""],arctan:[43,2,1,""],arctanh:[44,2,1,""],argmax:[45,2,1,""],argmin:[46,2,1,""],argsort:[47,2,1,""],as_strided:[48,2,1,""],as_tensor:[49,2,1,""],asin:[50,2,1,""],asinh:[51,2,1,""],atan2:[53,2,1,""],atan:[52,2,1,""],atanh:[54,2,1,""],atleast_1d:[55,2,1,""],atleast_2d:[56,2,1,""],atleast_3d:[57,2,1,""],autograd:[2,4,0,"-"],baddbmm:[58,2,1,""],bartlett_window:[59,2,1,""],bernoulli:[60,2,1,""],bincount:[61,2,1,""],bitwise_and:[62,2,1,""],bitwise_not:[63,2,1,""],bitwise_or:[64,2,1,""],bitwise_xor:[65,2,1,""],blackman_window:[66,2,1,""],block_diag:[67,2,1,""],bmm:[68,2,1,""],broadcast_tensors:[69,2,1,""],bucketize:[70,2,1,""],can_cast:[71,2,1,""],cartesian_prod:[72,2,1,""],cat:[73,2,1,""],cdist:[74,2,1,""],ceil:[75,2,1,""],chain_matmul:[76,2,1,""],cholesky:[77,2,1,""],cholesky_inverse:[78,2,1,""],cholesky_solve:[79,2,1,""],chunk:[80,2,1,""],clamp:[81,2,1,""],clip:[82,2,1,""],clone:[83,2,1,""],combinations:[84,2,1,""],compiled_with_cxx11_abi:[85,2,1,""],complex:[86,2,1,""],conj:[87,2,1,""],cos:[88,2,1,""],cosh:[89,2,1,""],count_nonzero:[90,2,1,""],cross:[91,2,1,""],cuda:[12,4,0,"-"],cummax:[92,2,1,""],cummin:[93,2,1,""],cumprod:[94,2,1,""],cumsum:[95,2,1,""],deg2rad:[96,2,1,""],dequantize:[97,2,1,""],det:[98,2,1,""],diag:[99,2,1,""],diag_embed:[100,2,1,""],diagflat:[101,2,1,""],diagonal:[102,2,1,""],digamma:[103,2,1,""],dist:[104,2,1,""],distributed:[16,4,0,"-"],distributions:[17,4,0,"-"],div:[105,2,1,""],divide:[106,2,1,""],dot:[107,2,1,""],dstack:[108,2,1,""],eig:[109,2,1,""],einsum:[110,2,1,""],empty:[111,2,1,""],empty_like:[112,2,1,""],empty_strided:[113,2,1,""],enable_grad:[114,3,1,""],eq:[115,2,1,""],equal:[116,2,1,""],erf:[117,2,1,""],erfc:[118,2,1,""],erfinv:[119,2,1,""],exp2:[121,2,1,""],exp:[120,2,1,""],expm1:[122,2,1,""],eye:[123,2,1,""],fft:[124,2,1,""],fix:[125,2,1,""],flatten:[126,2,1,""],flip:[127,2,1,""],fliplr:[128,2,1,""],flipud:[129,2,1,""],floor:[130,2,1,""],floor_divide:[131,2,1,""],fmod:[132,2,1,""],frac:[133,2,1,""],from_numpy:[134,2,1,""],full:[135,2,1,""],full_like:[136,2,1,""],futures:[20,4,0,"-"],gather:[137,2,1,""],gcd:[138,2,1,""],ge:[139,2,1,""],geqrf:[140,2,1,""],ger:[141,2,1,""],get_default_dtype:[142,2,1,""],get_num_interop_threads:[143,2,1,""],get_num_threads:[144,2,1,""],get_rng_state:[145,2,1,""],greater:[146,2,1,""],greater_equal:[147,2,1,""],gt:[148,2,1,""],hamming_window:[149,2,1,""],hann_window:[150,2,1,""],heaviside:[151,2,1,""],histc:[152,2,1,""],hstack:[153,2,1,""],hub:[517,4,0,"-"],hypot:[154,2,1,""],i0:[155,2,1,""],ifft:[156,2,1,""],imag:[157,2,1,""],index_select:[158,2,1,""],initial_seed:[159,2,1,""],inverse:[160,2,1,""],irfft:[161,2,1,""],is_complex:[162,2,1,""],is_deterministic:[163,2,1,""],is_floating_point:[164,2,1,""],is_nonzero:[165,2,1,""],is_storage:[166,2,1,""],is_tensor:[167,2,1,""],isclose:[168,2,1,""],isfinite:[169,2,1,""],isinf:[170,2,1,""],isnan:[171,2,1,""],isneginf:[172,2,1,""],isposinf:[173,2,1,""],isreal:[174,2,1,""],istft:[175,2,1,""],jit:[519,4,0,"-"],kaiser_window:[187,2,1,""],kthvalue:[188,2,1,""],lcm:[189,2,1,""],le:[190,2,1,""],lerp:[191,2,1,""],less:[192,2,1,""],less_equal:[193,2,1,""],lgamma:[194,2,1,""],linalg:[524,4,0,"-"],linspace:[195,2,1,""],load:[196,2,1,""],lobpcg:[197,2,1,""],log10:[199,2,1,""],log1p:[200,2,1,""],log2:[201,2,1,""],log:[198,2,1,""],logaddexp2:[203,2,1,""],logaddexp:[202,2,1,""],logcumsumexp:[204,2,1,""],logdet:[205,2,1,""],logical_and:[206,2,1,""],logical_not:[207,2,1,""],logical_or:[208,2,1,""],logical_xor:[209,2,1,""],logit:[210,2,1,""],logspace:[211,2,1,""],logsumexp:[212,2,1,""],lstsq:[213,2,1,""],lt:[214,2,1,""],lu:[215,2,1,""],lu_solve:[216,2,1,""],lu_unpack:[217,2,1,""],manual_seed:[218,2,1,""],masked_select:[219,2,1,""],matmul:[220,2,1,""],matrix_exp:[221,2,1,""],matrix_power:[222,2,1,""],matrix_rank:[223,2,1,""],max:[224,2,1,""],maximum:[225,2,1,""],mean:[226,2,1,""],median:[227,2,1,""],meshgrid:[228,2,1,""],min:[229,2,1,""],minimum:[230,2,1,""],mm:[231,2,1,""],mode:[232,2,1,""],movedim:[233,2,1,""],mul:[234,2,1,""],multinomial:[235,2,1,""],multiply:[236,2,1,""],multiprocessing:[527,4,0,"-"],mv:[237,2,1,""],mvlgamma:[238,2,1,""],nanquantile:[239,2,1,""],nansum:[240,2,1,""],narrow:[241,2,1,""],ne:[242,2,1,""],neg:[243,2,1,""],negative:[244,2,1,""],nextafter:[245,2,1,""],no_grad:[406,3,1,""],nonzero:[407,2,1,""],norm:[408,2,1,""],normal:[409,2,1,""],not_equal:[410,2,1,""],numel:[411,2,1,""],ones:[412,2,1,""],ones_like:[413,2,1,""],onnx:[546,4,0,"-"],optim:[547,4,0,"-"],orgqr:[414,2,1,""],ormqr:[415,2,1,""],outer:[416,2,1,""],pca_lowrank:[417,2,1,""],pinverse:[418,2,1,""],poisson:[419,2,1,""],polar:[420,2,1,""],polygamma:[421,2,1,""],pow:[422,2,1,""],prod:[423,2,1,""],promote_types:[424,2,1,""],qr:[425,2,1,""],quantile:[426,2,1,""],quantization:[567,4,0,"-"],quantize_per_channel:[427,2,1,""],quantize_per_tensor:[428,2,1,""],rad2deg:[430,2,1,""],rand:[431,2,1,""],rand_like:[432,2,1,""],randint:[433,2,1,""],randint_like:[434,2,1,""],randn:[435,2,1,""],randn_like:[436,2,1,""],random:[550,4,0,"-"],randperm:[437,2,1,""],range:[438,2,1,""],real:[439,2,1,""],reciprocal:[440,2,1,""],remainder:[441,2,1,""],renorm:[442,2,1,""],repeat_interleave:[443,2,1,""],reshape:[444,2,1,""],result_type:[445,2,1,""],rfft:[446,2,1,""],roll:[447,2,1,""],rot90:[448,2,1,""],round:[449,2,1,""],rsqrt:[450,2,1,""],save:[451,2,1,""],searchsorted:[452,2,1,""],seed:[453,2,1,""],set_default_dtype:[454,2,1,""],set_default_tensor_type:[455,2,1,""],set_deterministic:[456,2,1,""],set_flush_denormal:[457,2,1,""],set_grad_enabled:[458,3,1,""],set_num_interop_threads:[459,2,1,""],set_num_threads:[460,2,1,""],set_printoptions:[461,2,1,""],set_rng_state:[462,2,1,""],sigmoid:[463,2,1,""],sign:[464,2,1,""],signbit:[465,2,1,""],sin:[466,2,1,""],sinh:[467,2,1,""],slogdet:[468,2,1,""],solve:[469,2,1,""],sort:[470,2,1,""],sparse_coo_tensor:[471,2,1,""],split:[472,2,1,""],sqrt:[473,2,1,""],square:[474,2,1,""],squeeze:[475,2,1,""],stack:[476,2,1,""],std:[477,2,1,""],std_mean:[478,2,1,""],stft:[479,2,1,""],sub:[480,2,1,""],subtract:[481,2,1,""],sum:[482,2,1,""],svd:[483,2,1,""],svd_lowrank:[484,2,1,""],symeig:[485,2,1,""],t:[486,2,1,""],take:[487,2,1,""],tan:[488,2,1,""],tanh:[489,2,1,""],tensor:[490,2,1,""],tensordot:[491,2,1,""],topk:[492,2,1,""],trace:[493,2,1,""],transpose:[494,2,1,""],trapz:[495,2,1,""],triangular_solve:[496,2,1,""],tril:[497,2,1,""],tril_indices:[498,2,1,""],triu:[499,2,1,""],triu_indices:[500,2,1,""],true_divide:[501,2,1,""],trunc:[502,2,1,""],unbind:[503,2,1,""],unique:[504,2,1,""],unique_consecutive:[505,2,1,""],unsqueeze:[506,2,1,""],vander:[507,2,1,""],var_mean:[509,2,1,""],vdot:[510,2,1,""],view_as_complex:[511,2,1,""],view_as_real:[512,2,1,""],vstack:[513,2,1,""],where:[514,2,1,""],zeros:[515,2,1,""],zeros_like:[516,2,1,""]}},objnames:{"0":["py","method","Python method"],"1":["py","attribute","Python attribute"],"2":["py","function","Python function"],"3":["py","class","Python class"],"4":["py","module","Python module"],"5":["std","envvar","environment variable"]},objtypes:{"0":"py:method","1":"py:attribute","2":"py:function","3":"py:class","4":"py:module","5":"std:envvar"},terms:{"00000e":[111,216,469],"0000e":[113,202,211,418,559],"0000j":[19,420],"016s":537,"0303j":9,"041m":2,"048m":2,"0545e":559,"0633j":[157,439,559],"0705e":113,"0949e":559,"0x8000_0000_0000_0000":[22,218,550],"0xffff_ffff_ffff_ffff":[22,218,550],"10x7":[247,251],"11s":537,"1239e":113,"1269e":202,"13x12":286,"1421j":9,"1428e":112,"148m":2,"1548e":418,"1625j":19,"1681j":9,"17m1129830":197,"1918j":9,"1921e":[160,418],"1_batch_16":558,"1cycl":547,"1e4":547,"1e6":547,"1hr":6,"1mb":12,"1st":[17,535],"20determin":543,"20l":[177,284,320,368],"22topic":543,"2352e":418,"2gb":[517,546],"2nd":[17,328,352,531,535,559],"2x2":[],"2x3":[369,554],"3121e":418,"3136j":512,"3487j":9,"3493e":112,"3553j":[157,439,559],"3839j":512,"3842e":77,"3rd":[535,547,559],"3x4":369,"3xhxw":558,"4064e":112,"4142j":420,"4410j":19,"483m":2,"4842e":[113,559],"4901e":418,"4th":535,"4us":2,"5390e":418,"54_":558,"5751e":112,"5765e":559,"5772j":511,"5874j":9,"5955e":112,"5c106cde":[517,526],"5x2":554,"5x7":[247,251],"5x7x9":[248,252],"60s":551,"6391e":418,"6503e":483,"6531e":483,"6623j":511,"6699j":512,"6882j":19,"727m":2,"7497j":511,"7567e":418,"7896j":[157,439,559],"7981j":9,"7x7":[247,251],"7x7x7":[248,252],"7x9x8":[248,252],"8000e":112,"8119j":[157,439,559],"8123j":19,"816u":2,"8182e":559,"8570e":524,"88131e":457,"8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5":546,"9073e":[160,369],"9120j":511,"9407e":418,"9451j":512,"9683e":113,"9802e":[217,418],"\u2102":534,"\u211d":534,"abstract":[15,17,379,538,549,551],"boolean":[2,12,17,62,63,64,65,84,115,139,148,168,169,170,171,174,190,197,214,219,242,259,260,261,282,283,290,297,298,299,306,320,357,485,492,521,522,531,539,547,556,559],"break":[2,6,17,461,518,522,547],"byte":[12,16,17,176,196,326,521,522,528,547,555,559],"case":[1,2,4,9,10,11,12,15,16,19,38,59,61,81,98,110,151,160,161,165,177,183,196,197,202,205,210,213,215,227,235,249,254,255,256,257,258,268,269,270,272,273,274,276,279,280,281,283,284,285,288,291,292,293,294,295,300,301,302,303,304,307,312,314,315,316,320,327,328,334,337,349,355,360,367,368,369,374,407,444,452,468,471,484,514,517,527,528,529,531,532,533,534,535,536,537,539,540,542,544,546,547,548,550,551,552,553,554,557,558,559,567,568],"catch":519,"char":[528,555,559],"ciss\u00e9":249,"class":[1,2,11,12,15,16,17,20,22,114,176,177,179,181,182,183,184,185,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,379,380,381,382,383,384,385,386,398,406,429,456,458,520,522,527,529,531,533,539,540,542,544,546,547,549,551,552,554,555,556,558,559,561,562,563,564,565,566,567,568],"const":[541,546],"default":[1,5,9,10,12,16,19,34,38,49,59,66,68,70,74,77,78,79,83,91,94,95,100,101,102,105,111,112,113,123,124,135,136,142,149,150,156,161,168,175,177,182,183,184,187,195,196,197,210,211,215,223,224,227,232,240,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,268,269,270,271,272,273,274,275,276,277,278,281,282,283,284,285,286,288,289,290,291,292,293,294,295,297,298,299,300,301,302,303,304,305,306,307,308,309,312,313,314,315,316,317,318,319,320,323,324,325,326,327,328,329,333,334,336,337,338,339,345,349,350,354,355,357,360,361,363,365,366,367,368,369,370,374,375,379,380,381,382,383,384,385,386,399,400,402,403,405,407,408,412,413,417,418,423,426,429,431,432,433,434,435,436,437,438,443,446,451,452,454,455,461,471,479,482,483,484,485,490,495,496,498,500,504,505,507,515,516,517,519,524,525,526,527,531,532,533,534,536,537,538,539,540,544,545,546,547,548,549,550,551,554,555,558,559,560,562,564,565,567,568],"enum":[16,546,551],"export":[2,11,12,16,18,178,179,182,185,399,400,519,521,539,551],"final":[16,17,28,31,32,58,72,84,196,288,304,334,519,521,522,528,539,544,552,553],"float":[1,2,9,15,17,29,34,38,59,60,66,71,74,86,104,105,115,131,132,139,142,148,149,150,164,168,169,170,171,172,173,177,183,184,187,191,195,197,202,210,211,214,223,235,239,240,242,245,249,253,263,265,266,267,274,275,278,279,280,281,282,283,284,286,290,291,294,295,297,298,299,302,303,306,307,309,313,320,325,328,329,333,335,337,340,341,342,343,349,355,357,360,361,366,367,368,370,371,372,374,376,377,382,383,385,386,388,391,392,393,394,401,402,403,408,409,418,420,422,426,427,428,438,441,442,454,455,457,461,480,495,514,519,520,521,522,524,527,528,530,531,532,533,537,539,540,546,547,548,549,551,554,555,556,558,559,564,565,566,567,568],"function":[1,5,6,9,10,11,12,14,15,20,22,33,34,48,59,66,68,74,76,83,87,100,102,103,107,110,114,117,118,119,121,124,131,140,141,149,150,151,155,156,160,161,167,175,176,177,178,179,181,182,183,185,187,194,195,196,197,200,202,210,211,215,220,224,227,229,231,232,237,238,253,257,263,264,265,266,267,274,278,281,284,287,288,289,291,292,293,294,295,302,303,304,305,307,310,311,313,320,325,328,334,337,338,339,340,341,342,343,344,347,348,351,353,354,355,356,357,358,359,361,363,365,366,367,368,369,371,373,374,388,398,399,402,406,409,413,414,415,416,417,418,421,425,429,438,441,446,456,458,469,479,483,485,495,504,505,510,511,512,516,517,518,522,526,527,529,532,535,537,538,539,540,541,544,547,550,551,552,553,556,558,559,560],"herv\u00e9":249,"import":[2,6,7,10,12,15,16,19,20,67,124,156,161,175,179,180,181,182,183,184,185,221,320,374,400,401,402,408,420,446,519,521,522,524,527,533,534,536,537,538,539,540,541,542,543,544,546,547,548,551,552,553,556,558,559,565],"int":[1,3,12,15,16,17,19,22,35,36,45,46,47,48,59,61,66,71,73,80,84,90,91,92,93,94,95,99,100,101,102,111,113,123,124,126,135,137,143,144,149,150,152,156,158,159,161,175,177,187,188,195,197,204,211,212,218,222,224,226,227,229,232,233,235,238,239,240,241,246,247,248,249,250,251,252,254,255,256,262,264,265,266,267,268,269,270,271,272,273,275,276,277,282,283,284,285,286,289,290,297,298,299,302,303,305,306,308,309,311,314,315,316,317,318,319,320,322,325,327,328,331,332,335,336,340,341,342,343,344,351,353,354,357,361,366,368,369,370,371,372,373,374,376,377,382,383,385,386,388,391,392,393,394,401,403,405,408,409,411,412,417,421,423,426,427,428,429,431,433,434,435,437,442,443,444,445,446,447,448,453,459,460,470,472,475,476,477,478,479,482,484,491,492,494,495,497,498,499,500,503,504,505,506,507,508,509,515,519,520,521,522,524,527,528,529,531,545,546,547,550,551,554,555,556,558,559,565,567,568],"j\u00e9gou":249,"long":[2,6,7,15,159,232,264,276,304,305,327,424,498,500,504,514,518,527,528,529,531,535,539,540,542,546,549,550,555,556,558,559,565,566],"new":[1,2,5,7,12,15,16,17,20,26,27,49,50,51,52,53,54,70,75,88,89,96,100,120,122,124,128,129,130,156,157,158,161,168,169,171,174,177,182,198,199,200,201,210,219,234,241,243,259,260,261,284,288,297,298,299,320,321,326,330,357,368,379,383,384,385,387,388,389,391,392,393,394,402,430,439,440,444,446,449,450,451,452,454,455,463,464,466,467,473,474,476,487,488,489,502,506,511,512,517,519,521,525,527,528,529,531,534,537,539,541,542,543,544,545,547,553,555,557,558,559,567],"return":[0,1,2,3,5,9,10,12,15,16,17,18,19,20,22,26,27,35,36,38,45,46,47,48,49,50,51,52,53,54,55,56,57,59,60,61,66,67,70,72,75,76,77,78,79,80,81,83,84,85,87,88,89,91,92,93,94,95,96,97,99,100,101,102,104,109,111,112,113,114,115,120,122,123,124,128,129,130,134,135,136,139,140,143,144,145,148,149,150,152,154,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,174,175,177,178,179,180,181,182,183,184,185,186,187,188,190,191,195,196,197,198,199,200,201,204,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,229,230,232,234,235,240,241,242,243,245,249,250,251,252,257,258,274,275,276,277,283,284,286,295,300,301,311,312,313,314,315,316,320,321,322,323,324,325,327,330,331,333,349,350,351,352,353,357,366,367,368,374,376,378,379,380,381,382,383,384,385,386,387,389,390,391,392,393,394,398,399,400,401,402,403,405,406,407,408,409,411,412,413,414,417,418,419,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,442,443,444,445,446,449,450,452,453,457,463,464,466,467,468,469,470,471,473,474,475,477,478,479,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,502,503,504,505,506,507,508,509,511,512,514,515,516,517,519,522,524,525,526,527,529,531,532,533,536,537,539,541,544,545,546,547,548,549,550,551,552,554,555,556,557,559,560,567,568],"short":[175,264,304,305,461,479,521,528,531,534,535,549,551,555,556,559,566],"static":[2,519,520,521,541,546,549,551,555,567],"super":[15,182,183,184,185,320,321,322,330,331,332,519,521,522,539,544,546,547,548],"switch":[9,15,451,527,531,534,547],"throw":[16,20,165,195,211,215,401,456,543,551,559],"transient":553,"true":[1,2,3,5,10,12,15,16,17,19,20,29,34,35,36,49,59,61,62,64,65,66,70,71,77,78,79,84,105,109,114,115,116,124,137,139,148,149,150,156,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,177,179,183,184,185,187,188,190,197,206,207,208,209,212,214,215,217,219,223,224,226,227,229,232,235,240,242,245,249,250,251,252,253,254,255,256,257,258,259,260,261,262,264,268,269,270,271,272,273,274,276,278,279,280,282,283,284,286,288,289,290,295,297,298,299,300,301,302,303,304,305,306,308,312,313,314,315,316,317,318,319,320,323,324,325,326,327,329,333,334,335,336,349,350,357,361,366,367,368,370,371,374,375,390,398,399,400,401,402,403,405,406,407,415,417,423,425,426,429,446,451,452,456,457,458,461,465,470,477,478,479,482,483,485,490,492,496,504,505,507,508,509,514,517,520,521,524,526,527,528,529,531,533,534,535,537,538,539,540,541,543,544,546,547,548,549,550,551,552,554,555,556,557,558,559,560,562,563,564,565,566,567],"try":[4,6,16,61,179,183,264,268,269,270,271,272,273,370,374,517,519,522,531,534,539,540,542,546,547,551,559],"var":[2,259,260,261,290,297,298,299,306,357,520,528,559],"void":[22,541],"while":[1,7,15,16,17,35,36,53,177,178,183,184,197,249,284,297,298,299,320,326,361,368,387,388,389,391,392,393,394,408,425,522,529,531,533,534,537,540,542,543,547,548,551,553,557,558,559],AND:[62,206],Abs:546,And:[92,93,188,224,227,229,264,534,539,545,567],But:[2,6,183,534,539,540,557,559],Doing:11,For:[1,2,4,5,6,7,9,10,11,12,15,16,17,19,28,29,30,31,32,33,58,62,63,64,65,68,94,95,124,137,156,161,177,181,182,183,184,195,197,204,211,212,220,221,222,227,231,249,253,257,258,265,266,267,268,269,270,271,272,273,277,283,284,285,288,304,320,323,324,325,333,334,340,341,342,343,344,354,368,369,373,374,398,399,400,402,446,471,475,511,512,517,518,519,523,528,529,531,533,534,535,536,537,539,540,542,543,546,547,548,549,551,552,553,554,555,556,557,558,559,565,567],Has:[295,313,325,370,427,428,476,531,565],IDs:550,Its:[12,177,284,320,368,510,538,547],NFS:16,NOT:[16,63,207,379,380,381,382,383,384,385,386,395,546,553,554],Not:[195,211,240,519,521,522,539,549],One:[10,16,67,370,433,434,519,529,531,535,536,539,541,547,553,558],Ops:[4,537,559],PRs:[6,7],RHS:216,Such:[10,15,483,485,507],That:[195,211,213,456,525,539,540,544,551],The:[1,2,5,7,9,10,11,12,15,16,17,18,19,20,22,26,27,29,30,31,32,34,35,36,53,54,59,60,61,62,63,64,65,66,71,72,78,84,86,99,100,101,102,104,109,110,111,113,115,117,118,119,124,132,134,135,139,148,149,150,151,152,154,156,157,158,161,175,177,178,179,180,181,182,183,184,187,190,191,196,197,212,213,214,215,216,218,219,220,221,223,227,234,235,241,242,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,264,268,269,270,271,272,273,274,276,277,282,283,284,285,286,288,289,290,294,295,297,298,299,300,301,303,304,305,306,308,311,312,313,314,315,316,320,323,325,327,333,334,336,337,349,357,360,361,366,367,368,369,370,374,376,377,378,379,380,381,382,383,384,385,386,389,395,401,403,405,407,408,409,417,418,420,422,425,429,431,433,435,439,441,443,446,447,451,454,455,456,461,462,471,475,479,483,484,485,487,490,491,492,494,495,497,498,499,500,506,507,510,511,514,517,519,520,521,522,523,524,525,526,527,528,529,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,555,556,558,559,560,565,567,568],Then:[2,285,369,535,538,539,543,546,547,551,552],There:[2,6,7,14,16,110,277,304,334,517,519,521,529,534,537,539,540,541,542,545,546,548,551,553,559,560,567],These:[1,3,10,11,15,16,17,175,177,233,249,518,519,520,521,528,529,530,533,534,537,538,539,544,546,551,552,554,556,560],Use:[2,12,15,16,124,141,156,161,185,277,351,357,374,408,446,528,529,531,542,547,548,551,552,558,559],Used:[15,22,454,549,556],Useful:[12,250,251,252,286,314,315,316,556,559],Uses:[12,522],Using:[2,15,16,17,167,183,279,280,332,374,519,524,534,539,542,546,547,551],WITH:546,Will:[8,16,471,521,529,549],With:[15,17,184,259,260,261,269,270,272,273,282,297,298,299,306,357,368,370,374,522,531,537,539,546,547,551,558,565],Yes:546,__add__:539,__and__:520,__array_function__:539,__bool__:520,__bytes__:522,__config__:[518,536],__constants__:[519,521],__del__:522,__dict__:547,__file__:[517,545],__float__:520,__format__:522,__getitem__:15,__hash__:522,__hex__:520,__iand__:520,__ilshift__:520,__init__:[2,15,17,182,183,184,185,320,321,322,330,331,519,521,539,540,544,546,548,558],__int__:520,__ior__:520,__irshift__:520,__iter__:[15,522],__ixor__:520,__len__:[15,520],__lshift__:520,__main__:[15,535,538,542,545,552],__matmul__:1,__name__:[15,538,539,542,545,552],__new__:[521,522],__oct__:520,__or__:520,__pow__:1,__r:522,__rdiv__:1,__repr__:539,__rpow__:1,__rshift__:520,__rtruediv__:1,__slots__:522,__str__:520,__torch__:520,__xor__:520,_back:[267,344,531],_bottom:[266,267,341,343,344,373,531],_call:17,_caller:550,_cat:17,_channel:[268,269,270,271,272,273,290,531,551,565],_class:249,_compilation_unit:[183,184],_contextmethodmixin:2,_dependentproperti:17,_devices_kw:550,_dim:282,_direct:[288,334],_ext:545,_extra_fil:[176,177,180,181,541],_factor:[332,370,371,372],_featur:[249,262,308,531,565,566],_fft:[479,520],_force_outplac:[183,184],_fork:536,_formatt:461,_forward_cl:2,_frames_up:182,_front:[267,344,531],_glibcxx_use_cxx11_abi:85,_greaterthan:17,_greaterthaneq:17,_growth_track:1,_halfopeninterv:17,_if_scalar_type_a:546,_in:532,_index:327,_indic:[471,554],_instanc:17,_integerinterv:17,_interv:17,_invers:17,_key_padding_mask:361,_layer:[288,334],_left:[265,266,267,340,341,342,343,344,373,531],_length:[59,66,149,150,175,264,479],_lessthan:17,_like:559,_linalg:520,_load_from_state_dict:320,_log_api_usage_onc:541,_mask:[361,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,395],_metadata:[320,539],_mode:532,_module_class:[183,184],_nn:520,_nnz:554,_onnx_master_opset:546,_onnx_stable_opset:546,_orig:[379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,395],_out:[532,534],_output:534,_overrid:539,_pad:[271,272,273],_random_sampl:[286,520],_rcb:182,_resnet18:517,_retain_param_nam:546,_right:[265,266,267,340,341,342,343,344,373,531],_run_process:552,_safe_foo:10,_sampl:235,_scalar:546,_set_rpc_timeout:551,_shape:306,_size:[254,255,256,268,269,270,271,272,273,285,288,289,302,303,304,305,314,315,316,317,318,319,334,336,369],_slope:[307,531,532],_stack:17,_stacklevel:[520,531],_sync_param:538,_tensor:559,_tensor_str:461,_top:[266,267,341,343,344,373,531],_transport:551,_use_new_zipfile_seri:451,_valu:[249,377,471,539,554],_wait:536,_weight:[282,283],_with_arg:567,a3c:542,a_big:[483,485],a_dict:521,a_float32:1,a_ful:537,a_i:[366,367],a_l:217,a_lu:[215,216,217],a_tupl:521,a_u:217,aaa:558,ab_fp32:537,ab_ful:537,ab_tf32:537,abbrevi:12,abc:398,abi:[10,11],abil:[7,451,541],abl:[3,6,181,361,374,418,519,528,539,544,546,548,551],abnorm:[527,542],about:[2,7,12,15,398,517,519,521,536,537,539,540,541,542,544,546,548,551,552,553,557,559],abov:[2,11,16,17,59,66,99,100,101,102,149,150,197,257,285,354,369,409,433,434,461,479,495,497,498,499,500,517,519,521,534,535,536,537,539,543,544,546,547,551,552,553],abridg:540,abruptli:527,abs:[17,24,74,77,160,197,338,361,367,369,405,408,417,420,520,524,528,529,531,537,546,547,559],abs_:[520,528,559],absent:538,absolut:[2,7,9,10,23,34,168,301,349,382,383,385,386,388,391,392,393,394,420,468,520,531,546,559],absolute_:[520,559],abstransform:17,acceler:[6,259,260,261,357,547],accept:[2,6,7,16,134,177,276,284,320,327,368,384,398,399,529,539,546,547,549,551,556,558,559],access:[2,7,15,16,177,178,183,249,284,320,368,399,519,520,522,525,527,529,534,537,540,541,547,551,556,557,559,568],accident:6,accommod:[317,318,319],accompani:6,accomplish:6,accord:[2,60,69,219,235,249,283,379,380,381,382,383,384,385,386,472,529,532,543,545,546,547,553,567],accordingli:[551,559],accordinli:[],account:[4,374,536],accumul:[1,2,28,374,519,520,534,537,538,540,547,551,552,559],accumulategrad:[2,534],accur:[12,200,429,537,546,552],accuraci:[1,533,548,549,558,567],achiev:[15,16,17,264,327,374,531,537,541,546,551,553],ack:553,acknowledg:553,aco:[1,39,520,528,546,559],acos_:[520,528,559],acosh:[40,520,528,559],acosh_:[520,528,559],acquaint:6,acquir:553,across:[2,12,15,16,45,46,181,183,276,277,285,309,328,357,369,374,384,388,425,451,518,519,528,531,534,537,538,540,541,542,543,551,552,555,558,559,567],act:[17,258,321,322,331,379,380,381,382,383,384,385,386,387,389,391,392,393,394,395,456,543,567],action:[7,16,17,537,553],activ:[2,5,6,12,197,253,279,280,290,306,321,337,347,361,363,365,525,527,539,547,548,549,551,567],activation_fp32:548,activation_post_process:[],active_byt:12,actual:[2,131,183,271,272,273,389,517,521,528,531,534,537,538,539,542,545,546,547,548,567],actual_input_1:546,acycl:534,adadelta:547,adagrad:[282,547,551],adam:[7,8,17,547],adamax:547,adamw:547,adapt:[246,247,248,249,250,251,252,278,429,531,537,547,549,565],adaptive_avg_pool1d:[520,539,546],adaptive_avg_pool2d:[520,539,546,549,565],adaptive_avg_pool3d:[520,539,546],adaptive_max_pool1d:[520,539,546],adaptive_max_pool1d_with_indic:[520,539],adaptive_max_pool2d:[520,546],adaptive_max_pool2d_with_indic:520,adaptive_max_pool3d:[520,546],adaptive_max_pool3d_with_indic:520,adaptiveavgpool1d:531,adaptiveavgpool2d:[456,531,565],adaptiveavgpool3d:[456,531],adaptivelogsoftmaxwithloss:523,adaptivemaxpool1d:531,adaptivemaxpool2d:[456,531],adaptivemaxpool3d:531,add:[1,2,6,9,11,12,15,16,20,28,29,30,33,177,182,249,264,268,269,270,271,272,273,284,320,322,326,327,331,333,368,374,379,380,381,382,383,384,385,386,517,519,520,521,525,528,531,533,535,536,539,541,546,547,548,549,551,552,553,554,556,557,558,559,565,567],add_:[2,520,528,535,554,559],add_argu:[16,537],add_audio:558,add_bias_kv:326,add_custom_scalar:558,add_embed:558,add_figur:558,add_graph:558,add_histogram:558,add_hparam:558,add_imag:558,add_mesh:558,add_modul:[177,284,320,368],add_observer_:[549,567],add_param_group:547,add_pr_curv:558,add_pruning_method:384,add_quant_dequ:[549,567],add_relu:565,add_scalar:[558,565],add_text:558,add_video:558,add_zero_attn:[326,520],addbackward0:544,addbmm:[1,58,520,559],addbmm_:[520,559],addcdiv:[1,520,559],addcdiv_:[520,559],addcmul:[1,520,559],addcmul_:[520,559],added:[6,10,16,20,27,28,29,30,31,32,33,58,177,254,255,256,259,260,261,268,269,270,271,272,273,284,285,290,297,298,299,306,314,315,316,317,318,319,320,326,333,346,357,361,368,369,374,375,384,519,521,531,541,546,547,554,558,559,567],adder:2,addglobalcallback:541,adding:[15,16,38,202,258,327,387,388,389,391,392,393,394,517,519,521,529,533,539,546,547,548,559],addit:[1,2,6,7,10,11,12,17,175,177,249,257,258,259,260,261,262,263,271,272,273,281,283,284,287,291,292,293,294,297,298,299,300,301,307,308,309,310,311,312,317,318,319,320,328,333,337,338,339,345,347,348,349,350,351,353,354,355,356,357,358,359,360,361,367,368,374,483,504,505,511,519,521,528,529,531,536,537,539,541,542,545,547,548,549,551,552,553,554,557,559,565],addition:[2,15,16,17,249,297,298,299,540,559,560],addmm:[1,520,528,546,554,559],addmm_:[1,520,528,559],addmv:[1,520,528,559],addmv_:[520,528,559],addr:[1,520,559],addr_:[520,559],address:[2,15,16,527,551,552,559],adequ:[],adher:7,adjac:[38,67,279,280,438],adjust:[16,294,536],admit:537,adopt:[7,562,563,564,565,566],advanc:[5,11,15,361,363,365,407,529,534,537,542,546,557,558],advantag:[16,258,540,551],adventur:546,adversari:403,advic:6,advis:[38,48,542,559],advisori:6,affect:[1,2,6,12,14,114,142,177,284,304,320,334,368,370,406,458,531,533,537,543,555,565],affin:[17,259,260,261,290,297,298,299,306,357,531,534,537,559,565],affine_grid:520,affine_grid_gener:520,affinetransform:17,aforement:542,after:[1,2,6,10,12,15,16,108,110,165,177,220,245,277,284,320,323,368,374,379,383,385,479,513,517,521,527,531,532,533,537,538,540,541,542,547,548,551,552,553,556,558,559,567],afterward:[2,282,320,374],again:[1,5,15,16,235,534],against:[2,4,16,19,38,183,184],agent:551,aggreg:[16,283,388,531],aggress:[2,175,534],agnost:[529,531],agre:553,ahead:[6,518,548],aid:[6,534],aidan:[361,363,365],ail:8,ailzhang:8,aim:6,aka:[534,556],akin:541,alban:8,alband:8,alex:8,alexandr:507,alfredo:8,algebra:[8,524],algorithm:[3,6,13,17,22,61,76,175,197,264,268,269,270,271,272,273,285,288,304,334,369,370,417,456,483,484,531,534,551,559,565],alia:[17,24,39,40,41,42,43,44,82,106,125,141,146,147,192,193,236,244,398,410,481,501,524,559],alias:[521,539],alican:8,alicanb:8,align:[256,264,300,315,316,370,528,531,534,547,565,567],align_a:[520,528,529],align_corn:[370,371,520,531,565],align_tensor:520,align_to:[520,528,529],aliv:[15,540,542,551,552,553],all:[1,2,5,6,7,9,10,11,12,15,16,17,19,20,22,28,29,34,45,46,60,67,72,73,81,84,90,110,153,174,175,177,180,181,182,183,196,215,224,226,227,229,238,239,240,249,256,258,262,264,266,267,268,269,270,271,272,273,277,282,283,284,285,288,289,290,295,300,301,304,305,308,312,316,317,318,319,320,321,322,323,324,325,326,327,328,330,331,334,336,340,341,342,343,344,349,357,361,363,365,366,368,369,373,374,376,384,388,398,402,407,409,423,426,471,475,476,477,478,479,482,483,485,497,498,499,500,503,505,508,509,511,513,517,519,520,521,525,527,528,529,531,533,534,536,537,538,539,540,542,543,544,545,546,548,549,550,551,552,553,554,555,556,558,559,567],all_gath:16,all_gather_multigpu:16,all_reduc:16,all_reduce_multigpu:16,all_to_al:16,allclos:[2,19,425,485,520,546,559],alloc:[2,4,9,12,17,111,113,490,527,534,537,538,556,559],allocated_byt:12,allow:[1,2,6,7,9,10,11,15,16,17,71,84,179,185,202,277,320,323,326,361,374,377,407,456,517,521,528,529,533,534,535,536,537,538,539,541,542,544,546,547,548,549,551,556,557,558,559,567],allow_list:567,allow_tf32:[3,520,537],allow_unreach:2,allow_unus:[2,520],allreduc:[374,538],almost:[156,161,545],alon:521,along:[1,10,12,15,16,17,19,28,47,80,90,108,127,137,153,158,188,241,250,251,252,275,286,311,314,315,316,351,353,383,385,392,393,402,407,426,442,443,447,470,472,476,492,495,503,513,517,521,531,535,539,540,541,547,548,559,567],alongsid:[177,284,320,368],alpha:[17,27,28,31,32,33,58,149,253,263,281,309,345,480,481,520,531,539,546,547,554,559,565],alpha_dropout:520,alpha_dropout_:520,alpha_f:546,alphabet:[110,531,551],alphadropout:531,alreadi:[1,2,9,12,15,16,49,177,196,284,320,368,374,398,503,504,517,519,526,528,529,533,534,539,542,546,547,552,553,555,557,559,567],also:[1,2,3,5,6,7,9,10,11,12,15,16,17,20,59,66,94,95,114,142,149,150,177,178,183,233,249,257,259,260,261,268,269,270,271,272,273,276,283,284,285,288,304,320,327,334,346,349,357,366,367,368,369,374,387,389,391,392,393,394,406,418,435,451,455,475,483,504,505,514,517,518,519,521,525,527,528,529,531,532,533,534,536,537,538,539,540,541,542,544,545,546,547,548,549,551,552,554,557,558,559,560,567],alter:533,altern:[2,15,16,180,196,346,413,516,517,522,531,533,543,545,567],although:[6,12,17,271,272,273,320,328,374,518,533,539],altogeth:547,alwai:[1,2,12,15,16,19,59,66,74,99,105,149,150,181,183,213,257,259,260,261,277,282,297,298,299,354,357,374,398,418,425,452,456,490,504,527,534,535,536,537,538,539,541,546,550,551,553,554,556,559],amax:[36,520,559],amazonaw:[517,526,545],ambigu:[17,165,271,272,273,285,317,318,319,370],amin:[35,520,559],among:[12,15,16,17,277,409,546],amount:[2,4,6,12,16,175,268,269,270,271,272,273,285,309,323,369,382,383,385,386,388,390,391,392,393,394,395,529,534,536,537,540,551],amp:[374,518,533],amper:3,amplitud:547,amsgrad:547,an_error:521,anaconda:545,analog:[19,34,483,547],analysi:[187,417,522],analyt:[2,17],analyz:[538,539],ancestor:553,anchor:[366,367,520,531],anchor_id:367,andrea:197,andrew:197,angl:[17,53,96,307,420,430,520,559],ani:[1,2,4,5,6,7,9,12,15,16,17,19,20,38,69,72,73,176,177,181,182,183,246,247,248,250,251,252,253,257,258,262,263,277,278,281,284,285,287,291,292,293,294,295,296,300,301,307,308,310,311,312,320,328,333,337,338,339,345,346,347,348,349,350,351,353,354,355,356,357,358,359,360,361,367,368,369,374,379,380,381,382,383,384,385,386,389,399,400,402,438,451,459,461,517,519,520,521,524,525,527,528,529,531,533,534,536,537,539,541,542,543,546,547,548,551,552,553,558,559,565,567],anm:110,anneal:547,anneal_epoch:547,anneal_strategi:547,annot:[2,519,521,522,551],anoth:[2,6,12,15,16,321,330,519,521,533,534,536,537,539,542,545,546,552,553,559,560],another_forward:519,another_input:374,answer:[6,7,258,390,567],anticip:5,anyenumtyp:520,anymor:[2,16,374,559],anyon:7,anystr:[521,525],anyth:[5,6,16,182,519,567],anywher:533,aoa:545,apart:9,apaszk:[7,8],api:[7,9,12,16,20,181,182,374,517,518,525,527,528,534,537,538,544,546,549,551,552,554,558],appear:[4,16,17,110,128,129,196,232,233,375,443,483,485,519,528,529,539,547],append:[2,16,20,102,220,289,305,322,331,336,374,521,534,536,542,545,546,558,559,566],appli:[1,2,5,17,19,100,102,177,197,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,268,269,270,271,272,273,274,276,281,284,286,287,288,290,291,292,293,294,295,297,298,299,300,301,302,303,304,306,307,308,309,310,311,312,313,314,315,316,320,323,324,325,327,328,333,334,337,338,339,345,347,348,349,350,351,352,353,354,355,356,357,358,359,361,366,367,368,371,372,374,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,398,399,403,405,408,422,427,428,479,504,505,506,519,527,529,531,533,534,539,546,547,548,551,552,559,564,565,567],applic:[12,16,17,277,363,365,374,534,536,537,538,539,541,543,548,551,552,553,559,567],apply_:[523,559],apply_mask:[379,380,381,382,383,384,385,386],apprear:110,appreci:6,approach:[16,74,519,527,534,548,551],appropri:[1,6,16,17,183,215,276,320,327,522,529,548,551,552,553],approv:7,approx:484,approxim:[2,197,221,249,333,347,354,417,484,531,537,538,539,547,568],apr:175,arang:[9,15,16,19,33,69,127,128,129,155,188,191,194,340,341,342,343,370,371,372,408,409,416,422,438,444,448,472,482,491,492,493,520,524,531,544,546,558,559],arbitrari:[2,16,124,196,277,282,301,312,349,369,398,446,483,531,534,541,546,547,559,560],arbitrarili:[178,531],arcco:[520,559],arccos_:[520,559],arccosh:[520,559],arccosh_:[520,559],arccosin:[],architectur:[12,361,457,537,548],architecutr:[],archiv:541,arcsin:[50,520,559],arcsin_:[520,559],arcsinh:[520,559],arcsinh_:[520,559],arctan:[520,559],arctan_:[520,559],arctang:[52,53],arctanh:[520,559],arctanh_:[520,559],area:[6,7,531],aren:[1,528,552],arg0:[2,16],arg1:[2,16],arg2:16,arg3:16,arg:[1,2,4,5,10,15,16,17,20,81,177,178,215,257,258,274,276,284,288,295,296,300,301,304,312,313,320,323,324,325,327,333,334,346,349,350,357,366,368,374,379,384,398,504,505,517,520,522,527,529,531,534,537,538,539,542,546,551,552,553,555,559,564,565,566],arg_constraint:17,arg_nam:520,argmax:[224,249,314,520,546,559],argmin:[229,520,546,559],argpars:[16,537],argsort:[520,559],argument:[1,2,4,5,10,12,15,16,17,19,20,22,23,25,26,27,28,29,30,31,32,33,35,36,37,38,50,51,52,53,54,58,59,60,62,63,64,65,66,68,70,73,75,77,78,79,81,83,86,87,88,89,91,92,93,94,95,96,99,100,101,102,103,105,108,109,111,112,113,115,117,118,119,120,121,122,130,131,132,135,136,138,139,140,148,149,150,151,152,153,154,155,156,158,160,161,169,170,172,173,177,178,183,184,187,188,189,190,191,196,197,198,199,200,201,202,203,204,206,207,208,209,210,212,213,214,216,219,220,224,225,226,227,229,230,231,232,234,235,237,239,240,242,243,245,259,260,261,264,268,269,270,271,272,273,276,283,284,285,294,296,297,298,299,317,318,319,320,321,327,328,330,357,368,369,371,372,374,379,383,384,388,392,398,407,409,412,416,419,420,421,422,423,425,426,430,431,432,433,434,435,436,437,438,440,441,442,449,450,452,458,463,464,465,466,467,469,470,471,473,474,475,476,477,480,482,483,484,485,488,489,490,491,492,496,497,498,499,500,502,504,508,510,513,515,516,517,520,521,523,524,527,528,529,531,533,535,537,538,539,540,541,546,547,548,550,551,555,556,558,559,565,567,568],argumentpars:[16,537],ari:546,aris:17,arithmet:[76,445,446,522,528,529,548,556],arm:[525,548,549],armand:249,around:[2,6,7,9,12,16,20,21,374,519,527,534,537,551,559],arr:546,arrai:[15,49,61,128,129,134,196,213,285,288,289,304,305,443,461,507,519,522,531,546,555,558,559,567],arrang:67,array_lik:[49,471,490,559],arriv:[551,553],arrow:553,art:429,articul:7,artifact:541,artifici:2,arxiv:[17,337,338,361,405,417,484,534,562],as_strid:[113,520,546,549,557,559],as_strided_:520,as_subclass:[523,559],as_tensor:[490,520,539,558,559],as_tupl:[407,514],asap:527,ascend:[47,470,485,495,504],ascent:17,ascii:[12,196],asgd:547,ashish:[361,363,365],asin:[1,41,520,528,546,559],asin_:[520,528,559],asinh:[42,520,528,559],asinh_:[520,528,559],ask:[16,518],aspect:[6,539],assembl:[9,15],assert:[15,17,521,522,546],assert_allclos:519,assert_int_or_pair:520,assign:[1,2,6,15,16,249,276,320,327,375,519,522,533,539,540,546,548,549,552,553,557,558,567],assign_x:521,assist:538,associ:[2,12,16,110,177,196,264,284,320,368,519,528,529,531,546,551,552,556,559],assp:175,assum:[1,9,15,16,17,19,175,183,197,223,264,313,370,374,402,417,484,496,519,521,528,531,534,539,541,546,547,551,552,553],assumpt:[2,264,534,538,551,552],assymetr:548,ast_1:[275,531],ast_2:[275,531],astyp:546,asuhan:8,asymmetr:[530,548,549],async:[2,16,522,541,555,559],async_add:551,async_add_chain:551,async_execut:551,async_op:16,asyncexecutionclass:551,asynchron:[4,20,177,178,186,284,320,368,522,536,538,551,555,558,559],atan2:[1,520,528,559],atan2_:[520,528,559],atan:[43,520,528,546,559],atan_:[520,528,559],atanh:[44,520,528,559],atanh_:[520,528,559],aten:[235,519,520,536,545],aten_thread:536,atleast_1d:520,atleast_2d:[513,520],atleast_3d:[108,520],atol:[2,34,168,519,520,539,559],atom:522,atomicadd:[],attach:[20,517,519,521,528,539,548,552,559,562,564,567],attempt:[2,10,181,215,519,528,529,533,537,545,551],attend:[326,361],attent:[6,326,361,363,365,545,557],attn:[363,365],attn_mask:[326,520],attn_output:326,attn_output_weight:326,attr1:546,attr1_f:546,attr2:546,attr2_i:546,attr:[87,300,357,408,514,531,546],attribut:[1,2,9,15,16,176,177,178,181,182,197,277,284,320,361,368,374,375,399,518,520,522,533,534,537,539,544,546,547,548,551,559,563,565,566,567,568],attributeerror:539,audio:[534,558],aug_add_x:521,augment:[11,522],author:533,auto:[16,257,258,558],autocastmodel:1,autoencod:17,autograd:[1,4,5,6,17,38,59,66,83,111,112,113,123,135,136,149,150,161,177,187,195,211,284,320,368,374,412,413,431,432,433,434,435,436,437,438,460,471,490,515,516,518,520,523,531,538,540,541,546,559],autograd_context_id:552,autograd_hook:538,autograd_message_id:552,autograd_tensor:2,autom:[519,546],automat:[10,12,16,183,374,375,461,517,518,521,526,528,529,534,535,537,539,542,546,548,549,551,558,559],auxiliari:[517,541],avail:[2,3,10,11,12,15,16,68,124,156,161,215,361,370,417,446,456,479,484,517,518,521,527,531,537,539,543,545,546,548,549,551],averag:[2,16,177,246,247,248,254,255,256,257,258,259,260,261,274,276,283,284,295,300,301,302,303,312,313,320,323,324,325,327,333,349,350,357,366,368,374,531,538,549,565,567],averaged_model_paramet:547,averagedmodel:547,averaging_const:567,avg:2,avg_fn:547,avg_pool1d:[520,546],avg_pool2d:[520,546,549,565],avg_pool3d:[520,546,549],avgpool1d:531,avgpool2d:[531,565],avgpool3d:[456,531],avmgithub:8,avoid:[1,2,7,15,17,22,38,161,196,275,301,312,329,333,349,369,374,446,479,490,504,529,531,534,536,537,540,546,551,552,557,558,559,565],avx2:548,awai:[529,531,534],await:[522,551],awar:[6,529,534,549,552,559,562,564,567],axbc:398,axes:546,axi:[108,127,137,153,427,443,447,448,513,520,546,549,559,567],b_float32:1,b_full:537,b_hf:304,b_hg:304,b_hh:[288,289,304,305,334,336,520],b_hi:304,b_hn:288,b_ho:304,b_hr:288,b_hz:288,b_if:304,b_ig:304,b_ih:[288,289,304,305,334,336,520],b_ii:304,b_in:288,b_io:304,b_ir:288,b_iz:288,back:[1,83,196,517,519,539,542,546,551,554],backcompat:535,backend:[2,10,61,124,156,161,264,268,269,270,271,272,273,374,446,518,519,520,521,525,531,536,537,543,546,548,559],backend_str:16,backendtyp:551,background:[61,264,268,269,270,271,272,273,531,542,551,559],backoff:1,backoff_factor:1,backprop:418,backpropag:[2,17,425,540,547],backward:[1,2,5,7,17,19,98,109,114,177,195,197,205,211,257,258,264,276,277,284,288,301,304,312,313,320,327,333,334,366,367,368,374,375,406,418,425,468,483,485,518,520,529,531,532,533,538,539,540,541,542,547,548,551,554,559],bad:527,bad_kei:16,baddbmm:[1,520,546,559],baddbmm_:[520,559],bader:221,bag:[283,531],bai:8,balanc:22,balnta:[366,367],band:16,bandwidth:[16,548,551],bao:8,bar:[6,181,517,519,521,526,546],bare:10,barrier:16,bartlett:59,bartlett_window:[520,523],base:[2,6,7,10,11,12,15,16,17,121,191,199,201,203,211,221,277,320,323,324,325,361,363,365,374,379,383,385,422,429,451,458,483,484,498,500,518,520,531,534,536,538,539,546,547,548,549,551,552,557,558,559,567],base_distribut:17,base_lr:547,base_momentum:547,base_se:15,basedistribut:17,basep:17,basepruningmethod:[384,390],baseq:17,basi:[17,197,541,547,548,551],basic:[2,6,197,374,522,530,547,549,552,557,558],batch1:[28,58,520,559],batch2:[28,58,520,559],batch:[17,28,58,68,74,77,79,98,100,102,110,124,156,160,161,197,205,215,216,220,221,222,257,258,259,260,261,264,268,269,274,276,277,279,280,282,283,285,288,289,290,295,297,298,299,300,301,304,305,306,312,313,323,324,325,326,327,333,334,336,349,350,357,361,362,363,364,365,366,367,369,374,398,399,401,402,417,418,425,446,468,469,475,479,483,484,485,496,497,499,528,529,531,533,537,540,542,546,548,551,558,561,565],batch_first:[288,304,334,335,399,401,402,520,540],batch_ndx:15,batch_norm:520,batch_norm_backward_elemt:520,batch_norm_backward_reduc:520,batch_norm_elemt:520,batch_norm_gather_stat:520,batch_norm_gather_stats_with_count:520,batch_norm_stat:520,batch_norm_update_stat:520,batch_per_it:533,batch_sampl:15,batch_shap:17,batch_siz:[15,17,398,400,401,520,540,558],batchmean:[300,531],batchnorm1d:[357,531,544,549],batchnorm2d:[277,525,531,548,549,562],batchnorm3d:[357,531,549],batchnorm:[177,284,320,357,368,374,525,546,547,548,549],batchsampl:15,batchsiz:[300,531],batchwis:329,bbb:558,bceloss:[1,258,531],bcewithlogit:1,bcewithlogitsloss:[1,531],bckenstler:547,bddppq:8,beam:519,beauti:534,becaus:[1,2,4,5,6,15,17,19,175,180,196,259,260,261,268,269,270,271,272,273,277,357,374,375,438,452,479,518,519,523,527,528,529,533,534,535,537,538,540,541,546,547,548,551,553,558,559],becom:[2,6,7,15,17,156,268,269,270,271,272,273,288,304,325,334,531,534,538,546,547,548,551,559],been:[1,2,9,12,15,16,17,108,114,178,196,288,294,304,334,379,383,385,429,513,527,528,529,531,533,534,536,542,545,547,551,553,558],befor:[1,2,6,12,15,16,17,19,94,95,128,129,177,240,277,283,284,285,320,321,322,357,368,369,403,405,423,426,447,452,459,460,479,482,496,504,519,521,524,527,531,533,534,537,538,539,541,544,545,546,547,551,552,553,554,558,559,567],beforehand:6,begin:[6,12,15,16,38,59,81,110,151,210,213,256,257,258,274,281,288,289,291,292,293,294,295,300,301,304,305,307,312,315,316,327,328,337,349,355,360,367,374,461,479,504,514,531,533,534,539,541,546,547,559,567],behav:[10,11,183,521,534,543,547,559,567],behavior:[2,3,6,10,14,16,29,48,69,72,84,113,131,161,177,181,183,195,196,211,220,277,284,300,304,320,334,357,368,370,407,408,425,438,444,479,517,519,522,523,528,531,534,535,537,543,544,546,547,551,557,559,565],behaviour:[2,34,531],behind:[518,544,552],being:[2,7,15,16,17,123,168,177,225,230,257,258,274,276,282,283,284,286,288,295,300,301,304,312,313,320,323,324,325,327,333,334,349,350,366,368,374,379,380,381,382,383,384,385,386,425,426,479,496,519,528,529,531,533,539,540,542,546,548,551,552,559,567],belair:8,believ:1,belong:[5,12,16,17,70,537,547],below:[1,2,10,15,16,17,19,99,100,101,102,161,177,184,223,271,272,273,276,284,317,318,319,320,327,349,368,370,374,407,497,498,499,500,519,521,523,524,527,528,531,533,537,538,539,542,543,544,545,546,547,551,552,553,557,565,567],ben:286,benchmark:[3,520,537],benefit:[6,16,527,547,548],benefiti:16,bengio:532,bernoulli:[253,278,279,280,288,304,520,528,531,559,560],bernoulli_:[520,528,559,560],bert:361,besid:[16,537,538,558],bessel:[155,187,477,478,508,509],best:[1,2,6,11,15,16,17,73,183,184,518,519,521,527,533,534,539,540,547,551],beta:[2,9,28,31,32,33,58,149,187,259,260,261,290,297,298,299,306,309,349,354,357,456,518,520,525,531,546,547,548,554,556,559],better:[6,7,12,15,167,183,320,351,374,429,452,531,533,536,537,545,546,547,549,558],between:[1,2,6,12,16,17,19,31,32,33,35,36,38,53,68,74,152,175,177,257,258,264,268,269,270,271,272,273,275,279,280,284,285,301,312,314,315,316,320,323,324,325,329,349,350,351,366,367,368,369,374,379,380,381,382,383,384,385,386,388,391,392,393,394,419,426,433,434,438,476,479,495,519,521,522,527,531,533,534,536,537,542,543,544,547,548,551,553,555,558,559,565,567],bewar:6,beyond:[7,447,540,547,553],bfg:547,bfloat16:[2,177,284,320,368,523,528,555,556,559],bfloat16tensor:[556,559],bia:[7,177,249,262,268,269,270,271,272,273,284,288,289,304,305,306,308,320,326,334,335,336,368,374,387,389,391,403,405,520,525,531,539,544,548,558,562,563,564,565,566],bias:[259,260,261,288,289,290,297,298,299,304,305,306,334,336,357,477,478,508,509],bias_:[565,566],bias_defin:520,bias_g:520,bias_hh:[289,305,336],bias_hh_l:[288,304,334],bias_ih:[289,305,336],bias_ih_l:[288,304,334],bias_k:520,bias_mask:[387,389],bias_v:520,bicub:[370,456,531],bidirect:[288,304,334,335,520,546],big:[6,471],bij:110,biject:17,biject_to:17,bik:110,bilenear:[],bilinear:[1,110,370,371,456,520,549,565],bin:[61,152,520,558,559,567],binari:[1,3,11,17,60,219,257,258,326,387,388,389,390,391,392,393,394,518,522,528,529,531,541,546,558,559],binary16:[556,559],binary_cross_entropi:520,binary_cross_entropy_with_logit:520,binaryio:451,bincount:[456,520,559],bind:[10,12,518,522,546],binomi:520,bit:[6,22,453,465,537,545,548,549,550,556,559,566,567,568],bit_width:520,bitshift:546,bitwidth:[530,548],bitwis:[16,62,63,64,65,522],bitwise_and:[520,559],bitwise_and_:[520,559],bitwise_not:[520,528,559],bitwise_not_:[520,528,559],bitwise_or:[520,559],bitwise_or_:[520,559],bitwise_xor:[520,559],bitwise_xor_:[520,559],bivari:17,bjk:110,bla:536,blacklist:525,blackman:66,blackman_window:[520,523],blane:221,blank:[264,520,522,531],blob:[541,546,558],blobnam:558,block0:[519,546],block1:519,block:[6,12,15,16,20,67,197,268,269,270,271,272,273,285,323,369,374,519,521,527,530,531,534,538,546,551],block_diag:520,blog:[6,548],blogpost:557,blow:540,bmatrix:[],bmm:[1,216,217,456,520,528,543,559],bmva:367,bmvc:367,bn1:567,bn_state_dict:544,bnmodul:567,bnrelu2d:[],bnrelu3d:[],board:7,bodi:[182,519,521,522],boil:6,bool:[1,2,3,5,10,12,15,16,17,20,34,35,36,38,45,46,47,59,62,63,64,65,66,68,70,71,77,78,79,109,111,112,113,116,123,124,134,135,136,137,149,150,156,161,162,164,165,168,175,177,183,184,187,188,195,197,206,207,208,209,211,212,215,217,223,224,226,227,229,232,235,239,240,249,250,251,252,253,254,255,256,257,258,262,263,264,268,269,270,271,272,273,274,276,278,279,280,281,282,283,284,286,289,290,292,293,294,295,297,298,299,300,301,302,303,305,306,307,308,312,313,314,315,316,320,323,324,325,326,327,329,333,335,336,337,338,339,345,347,349,350,357,360,366,367,368,370,374,375,399,400,401,402,408,412,413,417,423,425,426,429,431,432,433,434,435,436,437,438,446,452,456,457,458,470,471,477,478,479,482,483,490,492,496,504,505,507,508,509,515,516,517,519,520,521,523,524,526,527,528,529,531,544,546,547,550,551,555,556,558,559,565,567],bool_tensor:556,booltensor:[219,326,361,514,556,559],bootcamp:6,bootstrap:545,bor:16,border:531,both:[2,9,12,15,16,17,19,58,109,132,138,152,169,175,177,188,189,220,227,254,255,259,260,261,265,268,269,270,271,272,273,284,285,290,297,298,299,304,305,306,314,315,316,320,357,368,369,370,374,441,479,485,519,521,524,528,529,530,531,533,535,539,543,544,546,547,548,551,553,554,559,565],bottleneck:518,bottom:[2,531],bound:[4,11,70,81,210,337,437,452,522,531,532,547,559],bound_async_add:551,boundari:[70,265,266,267,340,341,342,343,344,370,373,452,520,531,547,551,565],bowen:8,bowenbao:8,box:[529,534,538],bozkurt:8,bparam:197,bptt:540,bracket:552,brain:[556,559],branch:[6,517,521],brand:16,bregman:17,breviti:[2,546],brief:[16,374,527,551],bring:[19,531,551],broadcast:[12,16,17,27,28,29,30,31,32,33,53,58,68,69,104,105,107,115,131,132,139,148,154,190,191,214,219,220,231,234,237,242,245,326,374,416,422,441,443,480,491,510,514,518,528,529,538,546,559],broadcast_buff:374,broadcast_coalesc:12,broadcast_multigpu:16,broadcast_tensor:520,broadcast_warn:535,broadcastinglist1:531,broadcastinglist2:531,broadcastinglist3:531,broader:[7,541,560],broken:[6,12,15],brokenpipeerror:545,bsize:558,bucket0:538,bucket1:538,bucket:[249,374,452,520,538],bucket_cap_mb:[374,538],buf:[177,284,320,368],buffer:[2,4,12,15,177,180,181,188,196,259,260,261,277,284,320,357,368,374,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,395,451,470,492,521,534,538,539,544],buffer_s:12,bug:[1,7,215,533,542],bugfix:6,build:[2,10,11,16,17,361,519,530,531,534,548,552,558],build_directori:10,build_ext:10,buildextens:10,built:[3,6,16,85,367,534,536,542,547],builtin:[196,438,519,521,522,551,553],bulk:15,bump:320,bundl:541,bvar:197,bwd:1,bxor:16,bypass:537,byte_arrai:196,bytecod:15,bytesio:[180,181,196,451],bytesliter:522,bytetensor:[12,22,145,326,361,462,550,556,559],c10:541,c10_log_api_usage_onc:541,c10d:[16,538],c655:197,c676:197,c99:545,c_0:[304,305],c_1:305,c_float32:1,c_j:[254,255,256,314,315,316],c_n:304,c_t:304,cach:[3,12,17,124,156,161,375,446,527,540,559],cache_s:17,caffe2:[546,558],calcul:[2,5,15,68,74,98,100,114,175,202,203,205,254,255,256,259,260,261,264,271,272,273,285,290,297,298,299,306,357,369,370,374,384,403,406,408,418,458,468,477,478,485,498,500,508,509,510,524,531,534,535,538,545,547,548,565,567],calculate_gain:[523,532],calculate_qparam:567,calib_data:567,calibr:[533,548,567],call:[1,2,10,11,12,15,16,17,19,124,140,156,161,165,177,178,179,181,182,187,196,197,253,259,260,261,277,278,279,280,284,285,317,318,319,320,327,328,357,368,369,374,384,387,388,389,391,392,393,394,403,405,406,414,415,421,435,446,456,459,460,479,491,517,519,522,527,529,531,533,534,536,537,538,539,540,541,542,543,545,546,547,548,551,552,553,556,557,558,559,561,565,567,568],callabl:[2,15,17,20,177,178,182,183,196,197,284,320,367,368,517,519,521,522,531,547,551,559,567],callback:[20,541,551],calle:[551,553],caller:[534,537,551,553],camera:[541,558],can:[2,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,29,33,49,60,61,73,79,109,110,111,115,124,139,148,156,160,161,175,177,178,181,182,183,184,188,190,196,214,215,217,242,247,248,249,251,252,253,254,255,256,257,258,259,260,261,263,264,268,269,270,271,272,273,276,277,278,281,282,284,286,288,292,293,294,300,301,303,304,307,311,312,314,315,316,317,318,319,320,321,322,325,327,330,331,333,334,335,336,337,338,339,345,346,349,354,357,360,361,367,368,370,374,376,398,399,408,412,422,431,435,444,446,451,458,459,461,469,470,471,475,479,483,485,490,492,496,506,515,517,518,519,520,521,524,525,527,528,529,531,533,535,536,537,538,539,541,542,543,544,545,546,547,548,549,551,552,553,554,556,557,558,559,560,561,565,567,568],can_cast:520,cancel:175,candid:2,cannot:[1,2,15,16,17,19,20,175,179,235,264,370,374,483,484,517,519,520,521,522,523,529,531,534,538,539,544,545,546,551,553,554,555,556,559],capabl:[11,12,16,429,537,541,551,560],capac:[3,537],capacit:17,captur:[2,11,12,178,519,522,537,539,546],card:545,cardin:17,care:[6,10,17,19,320,483,485,527,536,537,538,539,540,542,544,554],carefulli:546,carlo:17,carri:[1,535,548,559,567],carrier:17,cartesian:[17,72,420],cartesian_prod:520,casa:221,cast:[1,2,71,94,95,177,240,284,320,368,408,423,471,482,519,524,531,533,546,555,556,559],cast_input:[1,533],castabl:[],cat:[1,17,338,519,520,528,546,548,554,559,565],categor:[6,522,531,551],categori:[17,235,523,556],categorynam:558,cattransform:17,cauchi:[534,559,560],cauchy_:[520,528,559,560],caught:527,caus:[1,2,3,5,10,15,16,124,156,161,182,183,407,446,479,519,527,531,535,537,539,540,542,543,545,546,548,553,559],caveat:[527,537,544],cb_fut:20,ccc:558,cdf:17,cdist:[1,537],cdot:[238,257,258,275,293,300,323,324,325,327,420,479,531],cdoubl:[2,9,556,559],ceil:[15,254,255,256,302,303,314,315,316,520,528,531,546,559,565],ceil_:[520,528,559],ceil_mod:[254,255,256,302,303,314,315,316,520,531,565],cell:[289,304,305,336,549,566],cellparamsbas:520,celu:[520,546],celu_:520,center:[175,417,479,520,531,534,547,558,559,565],central:541,cerr:541,certain:[12,15,16,100,124,156,161,175,177,180,196,284,306,320,326,368,369,407,446,529,531,535,539,541,546,547,551,552,554],certainli:161,cfloat:[2,9,157,439,512,556,559],ch_axi:567,chain:[2,15,17,20,76,283,534,559],chain_cb_fut:20,chain_matmul:[1,520],chainabl:547,chaindataset:15,challeng:[6,552],chanan:[7,8],chanc:[6,17],chang:[1,2,6,9,12,16,17,20,87,100,142,158,177,181,182,282,284,300,320,349,368,370,374,407,425,456,475,479,494,518,519,525,527,528,529,531,533,534,535,536,537,539,544,545,546,547,548,551,553,554,555,556,557,558,559,567],channel:[7,15,175,259,260,261,268,269,270,271,272,273,278,279,280,285,290,297,298,299,306,309,328,352,357,369,370,371,372,383,384,385,392,393,405,427,529,530,531,532,534,546,548,549,558,559,565,567],channel_shuffl:520,channels_last:[177,284,320,368,374,556],chao:197,charact:[461,519,529,531,551],characterist:484,chart:558,chartensor:[556,559],chartnam:558,chauhan:8,chauhang:8,cheap:[17,249],cheaper:15,check:[1,4,9,10,12,15,16,17,34,124,156,161,167,175,183,184,215,390,400,446,452,517,521,522,528,529,533,537,539,540,541,543,546,547,551,558,559],check_compiler_abi_compat:10,check_grad_dtyp:2,check_hash:[517,526],check_input:[183,184,519],check_model:546,check_reduct:374,check_sparse_nnz:2,check_toler:[183,184],check_trac:[183,184],check_undefined_grad:2,checker:[183,184,546],checkout:546,checkpoint:[1,2,196,374,517,518,526,553],checkpoint_sequenti:5,cher:8,cherniavskii:8,child:[15,177,284,320,368,384,527,545,549,553,567],children:[177,284,320,368,527,549,553,567],chintala:[7,8],choic:[16,183,321,330,536,546],choleski:[17,78,79,197,520,559],cholesky_invers:[520,559],cholesky_solv:[520,559],choos:[2,11,68,257,532,533,536,558],choose_qparams_optim:520,chose:533,chosen:[1,100,188,461,470,492,533,539,546,548,567],chr:520,christian:8,chrome:2,chunk:[5,12,15,16,73,277,374,472,519,520,528,551,557,559],chunk_siz:12,chw:558,circleci:6,circular:[17,268,269,270,531],circumst:[61,264,268,269,270,271,272,273,531,559],circumv:5,claim:6,clamp:[82,210,257,520,525,528,531,546,548,559,567],clamp_:[520,528,559],clamp_max:[520,546],clamp_max_:520,clamp_min:[520,546],clamp_min_:520,class_async_add:551,class_index:15,classat_1_1_tensor:11,classic:534,classif:[258,264,276,323,325,327,350,518,531,532],classifi:[518,534,546,547,558],classmethod:[12,282,283,357,379,380,381,382,383,384,385,386,522,539,551,564,565,566,567],classvar:521,claus:540,clean:[12,16,517,527],cleaner:534,clear:[3,321,330,517,537,544,547],click:560,client:[16,551],client_stor:16,clip:[1,376,377,520,559],clip_:[520,559],clip_grad_norm_:[1,533],clip_grad_value_:533,clip_valu:377,clone:[2,11,15,48,69,113,490,496,520,527,531,544,549,554,555,556,559],cloned_coeffici:496,close:[11,12,70,168,367,452,539,551,558],closer:367,closest:[74,449,531],closur:1,cloud:558,clr:[76,547],cls:[539,551,559],cluster:[249,558],clutter:558,cmake:545,cmake_gener:545,cmake_include_path:545,cmdclass:10,cnn:[349,534,548,549],coalesc:[12,520,538,554,559],code:[2,4,7,9,10,11,15,16,17,177,179,181,182,183,184,185,196,335,374,460,517,521,529,534,535,538,539,540,541,542,544,545,546,547,550,551,552,553,554,556,557,559],code_with_const:177,codebas:7,codec:196,codomain:[17,534],coeffici:[149,496,547],coexist:529,cohes:7,coin:[347,531],col2im:[285,520],col:[498,500,520],col_offset:520,col_offsets_hh:520,col_offsets_ih:520,colesburi:[7,8],collaps:528,collat:15,collate_wrapp:15,collect:[2,6,15,20,74,111,374,412,431,435,515,520,521,547,549,551,553,558,567],collect_al:20,collector:565,colon:[14,304,334,551],color:[299,521,558],colors_tensor:558,column:[2,109,123,128,129,153,197,213,235,268,269,270,271,272,273,369,417,425,483,498,500,507,531,532,559],columns_prun:393,com:[6,7,16,361,456,517,526,543,545,546,548],combin:[1,12,15,19,20,258,276,285,369,384,514,519,520,521,531,533,537,546,548,549,551,561,562],combinations_with_replac:84,come:[6,15,17,196,279,280,525,541,551,553],comm:[12,538],comma:[16,110],command:[2,4,16,545,552],comment:[6,522,539,558],commit:[6,7,517,518,543],committ:7,common:[15,38,105,131,138,189,196,259,260,261,264,357,451,480,524,529,537,539,540,542,544,548,549,557],commonli:[16,17,523,533,534,547,548,556],commun:[6,7,374,518,534,538,551,552],comp:17,compact:[19,539,548],compani:7,compar:[2,5,10,15,19,34,38,110,115,139,148,168,190,214,225,230,242,320,374,537,539,545,548,549,551,558],comparison:[183,184,522,539],compat:[10,15,17,87,179,185,195,211,444,518,521,527,528,533,539,544,555,559],compil:[10,11,12,179,182,183,184,185,519,521,522,523,533,536,541,545],compilationunit:[183,184],complementari:118,complet:[6,12,15,16,20,178,182,186,374,425,518,521,522,527,531,533,534,537,543,551,552,559],complex128:[9,86,134,162,420,454,514,556,559],complex32:559,complex64:[9,19,86,134,162,420,454,556,559],complex:[1,2,6,19,87,105,109,124,156,157,161,162,169,170,171,174,175,177,197,225,230,284,320,368,420,429,439,446,454,479,480,510,511,512,514,518,520,522,542,555,556,559],complex_doubl:555,complex_double_tensor:556,complex_float:555,complex_float_tensor:556,complex_tensor:9,complic:[4,529,535,551,553],compon:[6,11,16,17,19,124,362,364,417,479,511,512,522,534,538,541],component_distribut:17,compos:[17,77,79,160,246,247,248,250,251,252,254,255,256,268,269,270,271,272,273,286,302,303,309,314,315,316,366,371,372,519,528,531,546,558,565],composetransform:17,composit:[17,519],compound:522,comprehens:[522,529,537,548],compress:19,compris:5,comput:[1,5,6,9,12,15,16,17,19,23,25,37,49,62,63,64,65,74,76,77,78,84,87,103,104,107,109,110,114,115,117,118,119,121,124,131,132,133,138,139,140,148,151,152,155,156,161,177,178,182,187,189,190,194,197,206,207,208,209,212,213,214,215,221,223,225,227,230,238,239,242,249,253,254,255,256,259,260,261,275,278,282,283,284,288,290,297,298,299,302,303,304,306,311,314,315,316,317,318,319,320,327,329,333,334,351,353,357,366,367,368,374,376,379,380,381,382,383,384,385,386,387,399,405,406,414,421,425,426,441,442,446,458,479,483,484,485,491,510,519,524,528,529,530,531,533,536,537,539,540,546,547,548,549,551,554,559,565,567],compute_mask:[379,380,381,382,383,384,385,386],compute_mod:74,compute_uv:[483,520,559],compute_z:536,concat:[326,546],concatdataset:15,concaten:[2,10,12,15,73,108,153,264,268,269,270,271,272,273,283,376,476,513,522,531],concentr:17,concentrarion:17,concentration0:17,concentration1:17,concept:[6,546,556],conceptu:[2,534,553],concern:[15,527],concis:551,concret:[17,370,519,531,539,542,565,567],concurr:[536,537,551,552],cond:546,conda:[518,545,546],condit:[2,13,21,34,175,183,288,304,334,400,514,519,520,521,522,534,539,546,558,559],condition:[2,458],condsid:[],conduct:[7,374,417,484,551],confer:7,confid:[6,558],config:545,config_dict:558,configur:[0,6,15,16,124,156,161,374,398,446,456,457,537,538,543,545,548,549,551,558,567],confirm:[6,519,539,546,551,553],confirmed_by_own:551,conflict:19,conform:398,conj:[9,19,520,559],conjuct:[],conjug:[2,87,109,161,197,446,479,510,547],conjunct:[15,374,524,531],connect:[16,268,269,270,271,272,273,527,534,549,551],connectionist:[264,531],conquer:483,consecut:[1,16,504,505,529,559],consensu:6,consequ:[534,537],consid:[2,19,34,79,99,100,101,102,168,171,174,177,223,284,285,300,320,323,368,369,375,379,380,381,382,383,384,385,386,485,497,498,499,500,517,519,531,533,534,535,539,540,547,552,553,556,559,565],consider:[6,53,175,283,374,536],consist:[2,15,17,77,408,425,483,485,519,529,543,546,547,567],consol:558,constant:[2,15,175,177,183,197,265,266,267,283,285,369,418,520,531,533,539,546,547,565,567],constant_:532,constant_pad_nd:520,constantpad2d:531,constantpadnd:546,constmap:177,constrain:[17,354],constraint:[2,374,398],constraint_registri:17,constraintregistri:17,construct:[2,11,15,17,86,99,140,177,182,183,184,195,196,211,268,269,270,284,320,368,374,398,417,420,471,484,490,519,534,538,542,544,548,551,553,554,556,558,559],construct_transform:17,constructor:[10,15,249,325,346,371,372,374,519,522,537,538,551,554,556,559,567,568],consum:[15,18,110,527,542,558],consumpt:[2,406,558],contain:[1,2,5,9,10,11,12,15,16,17,19,22,28,58,59,60,66,68,70,109,124,132,149,150,156,157,158,161,177,180,181,183,184,187,196,213,215,219,227,235,249,258,276,277,282,283,284,285,288,289,290,295,300,304,305,313,320,321,322,327,330,331,334,336,346,350,357,368,369,374,379,380,381,382,383,384,385,386,387,389,391,392,393,394,395,396,397,398,399,400,401,403,405,407,417,419,439,441,446,451,452,468,469,479,483,485,498,500,504,505,519,521,522,529,531,533,534,538,539,540,541,544,546,547,548,551,553,555,556,558,559,560,561,567],containu:[],content:[2,6,180,181,475,494,517,526,527,547,551,557,558,559],contenti:7,context:[1,12,114,177,284,320,368,374,406,458,522,527,533,537,539,541,542,546,550,551,553,560],context_id:[374,520,551,552],contigu:[2,9,126,160,284,323,374,444,469,483,485,520,529,531,555,557,559],contiguous_format:[111,374,556,559],continu:[2,15,17,263,264,300,418,522,534,544,546,559,560,567],continuous_bernoulli:17,continuum:545,contract:[491,529],contrari:[6,536],contrast:[17,547],contribut:[2,7,276,327,374,495,518,531],contributor:[6,7],control:[1,2,3,10,15,47,59,66,99,100,101,102,124,149,150,156,161,182,183,215,249,268,269,270,271,272,273,285,307,315,316,369,374,446,457,470,479,483,485,492,497,498,499,500,519,534,536,537,538,542,544,546,553,567],controlflowmodul:544,controlflowmodule_script:544,controlflowmodule_trac:544,conv1:[182,320,346,519,548,558,567],conv1d:[1,271,456,520,549],conv2:[182,320,346,519],conv2d:[1,182,183,184,272,279,284,320,321,327,346,369,392,456,519,520,525,546,548,549,558,562,563],conv3d:[1,273,280,456,520,548,549,563],conv4:[177,284,320,368],conv5:[177,284,320,368],conv:[183,184,268,269,270,271,272,273,321,327,525,532,537,546,548,549,561,563,567],conv_bn_fus:525,conv_fus:[],conv_tbc:520,conv_transpose1d:[1,520],conv_transpose2d:[1,520],conv_transpose3d:[1,520],convbn1d:549,convbn2d:549,convbnmodul:567,convbnrelu1d:549,convbnrelu2d:549,conveni:[1,6,10,517,521,533,537,539,541,550],convent:[2,110,259,260,261,297,298,299,320,357,451,495,517,526,534,544,546,559],conver:[],converg:[197,533,547],converged_count:197,convers:[6,71,165,398,522,534,546,548,559],convert:[2,15,49,72,84,96,177,284,320,357,368,378,404,427,428,430,519,520,521,539,546,548,549,558,559,567],convert_sync_batchnorm:357,convmodul:567,convolut:[1,3,268,269,270,271,272,273,279,280,332,337,366,367,369,520,525,532,536,537,549,565],convolv:[268,269,270,271,272,273,531,565],convrelu1d:549,convrelu2d:549,convrelu3d:549,convtranspos:403,convtranspose1d:[456,531],convtranspose2d:[456,531],convtranspose3d:[456,531],coo:[471,554,556,559],cooldown:547,coordin:[6,16,17,53,420,471,498,500,534,554,558,559],cope:542,copi:[6,9,12,15,16,49,83,177,182,197,277,284,285,320,368,369,374,398,444,490,519,520,527,535,537,539,542,546,549,551,555,556,557,559,567],copy_:[2,370,519,520,528,537,549,555,559],copysign:520,copyslic:534,core:[3,6,12,536,537,538,546],corner:[67,370,531,565],coroutin:522,corpor:[6,7],correct:[4,6,16,17,19,158,161,183,184,277,300,374,398,460,477,478,508,509,519,521,528,529,555,559],correctli:[5,15,16,183,519,521,529,531,533,534,539,542,543,546,551,559],correl:[2,17,268,269,270,271,272,273,279,280],correspond:[1,2,6,15,16,17,19,49,78,105,109,168,177,184,197,234,235,277,282,284,320,326,361,368,374,387,388,389,391,392,393,394,403,419,420,446,447,452,506,517,519,520,528,529,531,533,537,538,539,541,543,546,547,548,549,551,552,555,558,559,561,567],correspondingli:525,corrupt:[1,277,542],cos:[25,66,149,150,221,274,275,420,520,528,546,547,558,559],cos_:[520,528,559],cosh:[1,26,520,528,559],cosh_:[520,528,559],cosin:[25,26,88,89,274,275,531,547],cosine_embedding_loss:[1,520],cosine_similar:[1,367,520],cosineannealinglr:547,cosineannealingwarmrestart:547,cosineembeddingloss:531,cost:[2,4,61,76,264,268,269,270,271,272,273,531,543,552,559],cotang:[],could:[4,6,12,15,17,19,175,196,300,418,504,521,527,534,537,538,545,547,548,551,552,553,557],couldn:[545,546],count:[2,12,17,61,90,398,504,505,520,551,553],count_include_pad:[254,255,256,520,531,565],count_nonzero:[520,559],counter:[2,12,16,277,527,534],counterintuit:534,counterpart:[374,525,548,549,560,567],coupl:[541,552],cours:[4,517,538,539,547,551],courtesi:17,cov_diag:17,cov_factor:17,covari:[17,259,260,261,357,417],covariance_matrix:17,covector:[],cover:[16,314,523,529,539,541,548,549,551],coverag:[6,518,519,523,529],cpp:[6,7,10,16,235,538],cpp_autograd:11,cpp_c10d_extens:16,cpp_extens:[16,518,539],cpp_frontend:11,cpp_sourc:10,cppdoc:[6,11],cppextens:10,cprofil:4,cpu:[1,2,4,9,10,12,16,22,38,49,59,66,111,113,123,124,135,143,144,149,150,156,161,177,180,181,187,195,196,211,215,227,277,282,284,320,368,374,398,412,431,433,435,437,438,446,457,459,460,471,483,490,491,498,500,504,515,518,519,520,525,527,528,531,537,542,543,545,546,548,550,551,555,556,559,560],cpu_memory_usag:2,cpu_model:519,cpu_tim:2,cpu_time_tot:2,cpuhrsch:8,crack:6,crash:[527,534,551,553,558],creat:[1,2,5,6,10,12,15,16,17,20,22,48,67,83,100,113,134,135,175,178,186,195,211,235,257,274,282,283,285,301,312,313,323,324,325,349,350,357,366,367,369,374,398,471,490,522,525,527,533,534,537,538,539,542,544,546,547,548,549,551,552,553,555,557,558,559,560,564,565,566,567,568],create_extens:545,create_graph:[2,520,533,559],creation:[2,12,15,374,379,519,522,527,537,551,553,559,565,566,567],creator:[534,551,553],crelu:338,criteria:197,criterion:[197,257,258,274,276,300,301,312,313,323,324,325,349,350,366,367,531,540,547],critic:[403,536,548,567],cross:[1,6,17,257,268,269,270,271,272,273,520,531,537,545,559],cross_entropi:[1,520],crossentropyloss:[327,531],crucial:11,csr:283,csrc:[545,546],ctc_loss:[264,520],ctcloss:[456,531],ctx:[2,533,539],cube:[248,252,429],cubla:[9,12,456,543],cublas_workspace_config:[14,304,334,456,543],cublasapi_reproduc:[456,543],cublashandle_t:12,cuda0:[537,559],cuda1:556,cuda2:537,cuda92:545,cuda:[2,4,5,10,14,15,16,22,38,49,59,61,66,68,111,113,123,124,135,149,150,156,161,177,187,195,196,211,215,232,264,268,269,270,271,272,273,277,282,284,304,320,334,357,368,374,407,412,431,433,435,437,438,446,456,471,490,491,498,500,504,515,518,520,528,531,533,539,546,547,548,550,551,555,556,559,560],cuda_extens:10,cuda_hom:10,cuda_launch_block:[14,304,334,537],cuda_memory_usag:2,cuda_prefix:545,cuda_runtim:10,cuda_sourc:10,cuda_tim:2,cuda_time_tot:2,cuda_visible_devic:[12,374,537],cudaev:2,cudaeventsynchron:12,cudaextens:10,cudamalloc:12,cudart:[10,545],cudastreamsynchron:12,cudastreamwaitev:12,cudnn:[13,14,61,264,268,269,270,271,272,273,288,304,334,335,520,531,537,543,559],cudnn_affine_grid_gener:520,cudnn_batch_norm:520,cudnn_convolut:520,cudnn_convolution_transpos:520,cudnn_en:520,cudnn_grid_sampl:520,cudnn_is_accept:520,cufft:[3,124,156,161,446],cufft_plan_cach:[3,537],cuh:10,cultur:7,cummax:[520,559],cummin:[520,559],cumprod:[1,520,528,559],cumsum:[1,520,528,546,559],cumul:[17,92,93,94,95,204,259,260,261,287,357,531],cunningham:17,cur:547,curiou:534,curl:545,current:[1,2,3,5,7,9,10,12,15,16,20,22,38,49,59,66,111,113,123,124,134,135,142,149,150,156,161,177,183,187,195,197,211,282,284,285,320,357,368,369,374,382,383,384,385,386,391,392,393,394,412,425,431,433,435,437,438,446,471,479,490,498,500,504,514,515,519,521,522,523,524,527,531,533,537,541,544,545,546,547,548,549,551,552,555,556,558,559,565,567],current_blas_handl:12,current_datetime_hostnam:558,current_devic:[12,556],current_stream:12,curv:558,custom:[1,10,11,15,16,177,282,320,361,366,367,374,379,388,522,527,528,534,541,544,545,549,559],custom_bwd:[1,533],custom_decod:361,custom_domain:546,custom_encod:361,custom_fwd:[1,533],custom_loop:546,custom_op:546,custom_op_nam:567,custom_opset:546,custom_qconfig:548,customiz:522,cut:[6,549],cutoff:[249,418],cxx11:11,cxx:10,cycl:[2,547,559],cycle_momentum:547,cyclic:547,cycliclr:547,d_1:[276,327,531],d_2:[276,327,531],d_float32:1,d_k:[276,327,531],d_model:[361,362,363,364,365],daemon:527,dag:2,dai:6,damania:8,dampen:547,danger:553,dantu:8,dash:[551,553],data:[1,2,6,9,13,16,17,19,38,49,59,66,70,94,95,111,112,113,123,135,136,149,150,152,162,164,180,183,187,195,196,197,211,217,240,262,264,277,288,290,297,298,299,304,306,308,327,334,335,370,374,375,398,399,400,401,408,412,413,417,423,426,427,428,429,431,432,433,434,435,436,437,438,444,452,471,482,490,498,500,506,515,516,518,519,520,522,527,531,533,534,535,537,539,541,542,544,545,547,548,549,551,553,554,555,556,557,558,559,560,565,567],data_load:[542,547],data_parallel:540,data_ptr:[523,528,555,557,559],data_sourc:15,data_typ:[548,549],databas:15,dataformat:558,dataload:[15,374,537,540,545,547,558,559],dataparallel:[1,16,374,401,540,542,551],dataset:[249,258,540,541,545,547,548,558,567],dataset_it:15,datatyp:[1,124,156,161,177,223,284,320,368,446,546],datetim:16,david:[8,249],dcgan:546,ddp:[357,374,538],ddp_model:[374,538],ddp_sync_bn_network:357,deadlock:[16,374],deal:[6,491,527,540],dealloc:[527,537,540],debug:[2,4,15,16,521,534,536,537,541,543,545,546,549],debugg:179,debuginfoguard:541,decai:[328,547],decemb:429,decent:15,decid:[4,6,16,388],decim:568,decis:[183,533],declar:[2,10,15,521,522,546],decod:[18,196,361,362,363],decoder_lay:[362,363],decompos:534,decomposit:[17,77,140,417,418,425,483,484],decompress:[517,526],deconvolut:[271,272,273,531],decor:[1,2,17,114,179,182,185,406,519,521,533,539,551],decoupl:[405,547],decreas:[12,17,279,280,399,400,495,525,543,547,556],dedic:537,deep:[6,7,259,260,261,357,518,532,547,548,549],def:[1,2,15,17,20,114,177,179,181,182,183,184,185,284,320,321,322,330,331,367,368,374,406,517,519,521,529,533,534,536,538,539,540,542,544,545,546,547,548,551,552,553,559],default_dynamic_qconfig:549,default_eval_fn:[549,567],default_fake_qu:549,default_gener:560,default_mask:[379,380,381,382,383,384,385,386],default_observ:[549,567],default_qat_qconfig:549,default_qconfig:549,default_stream:12,default_weight_fake_qu:549,default_weight_observ:549,defin:[1,2,5,10,11,15,16,17,110,111,113,117,118,119,135,138,140,151,168,189,197,221,232,277,294,302,303,320,337,351,353,360,374,383,385,392,393,409,412,425,431,433,435,461,483,485,497,498,499,500,514,515,517,519,523,527,528,531,534,538,545,546,547,548,551,554,559,560,567],define_macro:545,definit:[6,15,17,77,78,79,300,517,519,521,522,531,533,534,539,546,548,558],deg2rad:[520,528,559],deg2rad_:[520,528],degrad:[536,539],degre:[17,96,329,366,430,448,520],del:[522,527,540],delai:553,delet:[16,517,525,527,550,551,553],delete_kei:16,delimit:522,deliv:7,deliveri:553,delta:[17,288,295,304,532,547],delv:532,demand:[12,15,521,541,551],demonstr:[264,544,551],denomin:[29,259,260,261,290,297,298,299,306,357,547],denorm:457,denot:[2,17,268,269,547,552],dens:[2,59,66,68,149,150,187,197,456,484,543,554,556,559],dense_dim:[471,520,554,559],densenet:546,densiti:17,depend:[2,4,5,15,16,17,19,182,183,220,257,258,268,269,270,271,272,273,274,276,283,285,295,300,301,312,313,323,324,325,327,333,349,350,366,369,370,384,417,425,429,444,496,514,517,519,521,524,527,531,536,537,539,546,547,548,551,554,559,565],dependent_properti:17,deplet:374,deploi:[6,541,544],deploy:518,deprec:[12,16,33,124,131,141,156,161,195,211,257,258,274,276,294,295,300,301,312,313,323,324,325,327,333,349,350,366,371,372,374,408,438,446,519,523,527,531,535,546,549,551,555,559,565],depth:[12,256,270,273,316,370,531,565],depthwis:[108,268,269,270],dequant:[520,548,549,559,567],dequantstub:[548,549,567],deriv:[2,7,16,103,175,215,374,418,421,521,539,549,551,559,565,567],derivedp:17,derivedq:17,descend:[47,177,284,320,368,470,483,520,559],descent:[9,17,534,547],describ:[1,5,6,12,15,71,249,254,255,256,257,258,259,260,261,268,269,270,271,272,273,276,278,279,280,285,286,290,293,297,298,299,300,301,306,312,314,315,316,327,333,337,357,366,367,369,479,518,519,521,531,532,533,534,538,540,541,544,546,547,549,552,553,559,567],descript:[0,6,10,197,521,531,537,539,541,546,568],descriptor:[15,366,367,522,546],deseri:[196,517,526],design:[2,6,7,15,17,187,456,517,537,539],desir:[1,2,12,15,16,17,22,38,49,59,66,83,94,95,111,112,113,123,135,136,149,150,177,187,195,211,218,240,257,284,320,368,398,408,412,413,423,427,428,429,431,432,433,434,435,436,437,438,462,471,482,490,498,500,515,516,528,529,531,533,537,544,546,550,551,554,555,556,559],desmaison:8,despit:[183,184],destin:[12,16,137,177,213,233,284,320,368,520,551,552,555,559],destroi:[277,534,551],destruct:[551,553],destructor:[527,553],det:[17,205,468,520,524,546,559],detach:[2,5,83,264,374,490,519,520,528,531,540,557,559],detach_:[2,374,520,528,559],detail:[0,1,2,6,9,11,12,15,17,98,124,140,156,161,163,177,183,197,203,205,213,227,249,253,263,271,272,273,277,282,283,284,286,288,304,320,326,332,334,345,366,368,375,401,407,414,415,418,446,451,456,468,519,520,521,531,534,538,539,540,541,543,544,546,547,551,552,553,554,557,558,559,560,562,565],detect:[5,10,15,16,374,527,546,551],detect_anomali:2,detector:278,determin:[2,7,9,10,12,14,15,17,19,59,66,71,76,98,112,136,149,150,161,205,286,304,329,334,379,380,381,382,383,384,385,386,413,418,432,434,436,468,479,516,522,529,531,537,538,539,547,548,553,556,558,567],determinist:[3,5,14,17,22,61,68,163,183,184,224,227,229,264,268,269,270,271,272,273,304,334,453,456,520,531,534,543,547,550,559],deterministicli:178,dev:7,dev_idx:16,develop:[16,521,539,541,543,546,548,551],deviat:[17,253,259,260,261,290,297,298,299,306,357,409,477,478,532,559],devic:[1,2,3,5,12,16,22,38,49,59,66,111,112,113,123,135,136,149,150,177,180,181,187,195,196,211,215,227,277,284,320,368,374,398,407,412,413,431,432,433,434,435,436,437,438,471,490,491,498,500,515,516,518,519,520,521,523,525,528,531,533,538,540,543,546,547,548,550,551,555,559,567],device_count:[12,16],device_id:[16,196,277,357,374,531,538],device_of:12,devito:8,df1:17,df2:17,dfrac:[275,403,405,531,559],dhanainm:8,dhanasekar:8,diag:[17,417,483,484,485,520,559],diag_emb:[102,483,485,520,559],diagflat:[99,520,559],diagn:17,diagnost:519,diagon:[17,67,99,100,101,110,123,493,496,497,498,499,500,520,531,539,557,559],diagonaltensor:539,diagram:[548,553],dict:[1,12,17,176,177,183,184,196,197,277,284,285,320,321,330,346,368,369,517,519,520,522,526,539,544,546,547,549,551,552,558,567],dictat:374,dictionari:[10,12,15,17,177,180,183,184,197,282,283,284,320,321,330,368,521,522,531,539,546,547,551,558,567],did:[2,6,239,521,544,547],didn:[534,539,545,547],dies:527,dieterich:8,diff:[6,519],differ:[1,2,5,10,15,16,17,35,36,38,100,102,110,128,129,158,161,177,181,183,249,259,260,261,265,266,267,277,284,297,298,299,318,320,323,326,340,341,342,343,344,357,363,365,367,368,373,374,408,417,443,446,504,505,510,517,519,521,523,524,527,528,531,533,534,535,536,537,538,539,542,543,545,546,547,548,551,553,554,556,558,559,567],differenti:[17,83,263,264,374,531,534,539,540,551,559],difficult:[2,6],difficulti:[6,532],digamma:[421,520,528,559],digamma_:[520,528,559],digit:[461,517,526,541],dilat:[268,269,270,271,272,273,285,314,315,316,369,520,531,546,562,563,564,565],dim0:[494,520,559],dim1:[100,102,494,520,559],dim2:[100,102,520,559],dim:[2,12,17,19,35,36,45,46,47,73,80,90,91,92,93,94,95,126,127,137,158,188,204,212,224,226,227,229,232,233,239,240,241,249,275,277,283,284,311,326,327,328,351,353,367,368,374,379,383,385,392,393,403,405,408,423,426,442,443,447,448,470,472,475,476,477,478,479,482,491,492,495,503,504,505,506,508,509,519,520,524,529,531,540,544,546,549,554,556,559],dim_arang:546,dim_feedforward:[361,363,365],dimems:559,dimens:[2,9,12,15,17,19,28,35,36,45,46,47,55,56,57,67,73,76,77,79,80,91,92,93,94,95,98,100,101,102,110,124,156,158,160,161,175,188,204,205,212,216,220,224,226,227,229,232,233,238,239,240,241,255,256,257,258,259,260,261,262,263,264,269,270,272,273,275,276,277,281,282,283,285,287,291,292,293,294,295,297,298,299,300,301,303,306,307,308,309,310,311,312,315,316,326,327,328,329,333,337,338,339,345,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,363,365,366,367,368,369,374,379,380,381,382,383,384,385,386,399,400,402,403,405,407,408,418,423,425,426,427,429,442,443,444,446,447,452,461,468,469,470,471,472,475,476,477,478,479,482,483,485,486,491,492,494,495,496,497,498,499,500,503,504,505,506,508,509,511,512,520,521,524,531,532,535,540,548,554,556,558,559,565],dimension:[17,19,55,56,57,67,72,100,102,128,129,137,195,211,220,249,265,266,267,276,277,282,283,311,327,340,341,342,343,344,351,353,357,373,407,429,471,479,490,531,532,535,555,556,559,560],dims_i:546,dims_oth:520,dims_self:520,dir:[517,546],dirac:532,dirac_:[523,532],direct:[6,7,9,16,128,129,177,284,288,300,304,320,334,368,405,417,429,448,534,539,548],directli:[1,6,7,10,11,15,16,17,140,177,284,320,351,368,399,414,415,519,521,531,534,537,538,539,541,542,544,546,548,551,554,558,564,567],directori:[10,16,517,526,541,558],dirnam:517,dirti:534,disabl:[1,114,183,184,374,406,457,458,461,521,533,536,537,543,550],disable_cuda:537,disable_jit_exampl:519,disadvantag:519,disallow:[551,556],disambigu:202,disappear:528,discard:[175,517,521],disconnect:2,discourag:[2,12,534],discov:[16,551],discrep:[374,429],discret:[17,19,124,156,161,300,446,531,558,559,560],discrimin:403,discuss:[7,17,534,543,551,553],disjoint:519,disk:[2,15,451,558],dispatch:[16,179,539,546],displai:[2,12,517,522,526,531,546,558],displaystyl:238,dissimilar:[274,295],dist:[1,16,17,374,469,483,520,538,553,559],dist_autograd:[374,551,552],dist_autograd_simpl:552,dist_optim:[374,551,552],distanc:[74,175,241,274,295,300,329,366,367,479,495,547],distance_funct:[367,531],distant:367,distinct:[98,205,468,483,485,539,544,551,552],distribut:[9,15,20,35,36,60,235,249,253,277,278,279,280,287,300,333,337,357,374,409,419,429,431,432,433,434,435,436,518,520,529,532,533,537,553,554,558,559,560,567],distributed_test:16,distributeddataparallel:[1,15,16,277,357,542],distributedoptim:[374,551,552],distributedsampl:15,distutil:10,div:[106,249,501,520,528,546,554,556,559],div_:[520,528,554,559],div_factor:547,div_valu:249,dive:538,diverg:[183,184,300,531,546],divid:[1,5,12,105,124,131,181,257,258,264,274,295,300,301,312,313,323,324,325,333,349,350,366,367,374,446,483,520,531,559],divide_:[520,559],divide_by_initial_world_s:374,dividend:[105,131,132,441,501],divis:[15,29,80,105,132,181,268,269,270,271,272,273,275,301,312,329,349,441,472,531,533,565],divisor:[105,131,132,138,255,256,285,369,441,501,531,559,565],divisor_overrid:[255,256,520,531,565],divmod:520,dlibenzi:8,dll:545,dlpack:518,dltensor:18,dmytro:[7,8],dnn:[3,536],do_constant_fold:546,doc:[2,4,11,186,362,363,364,365,456,522,527,539,543,546,558,564,565,566],doc_str:546,docstr:[10,517],document:[12,15,16,45,46,47,71,140,163,177,195,211,239,249,282,283,284,320,368,383,392,414,415,424,445,456,517,521,527,528,529,530,533,539,540,543,544,546,557,560,564,565,566],doe:[1,2,4,5,6,7,10,12,16,17,35,36,68,107,110,158,161,176,181,183,191,197,215,219,220,227,231,237,259,260,261,268,269,270,271,272,273,276,282,283,285,288,289,297,298,299,304,305,315,316,321,327,330,334,336,357,369,374,381,413,416,510,516,517,519,521,523,525,527,528,529,531,533,535,536,537,538,539,542,543,546,547,548,551,553,554,556,559,565,567],doesn:[1,2,3,5,6,9,12,15,16,98,180,196,205,277,300,351,374,375,388,468,519,522,528,531,534,535,539,541,542,545,546,547,548,552,567],doi:197,doing:[6,11,15,167,183,426,531,539,545,547],domain:[7,17,19,26,54,546],domin:548,don:[1,2,4,6,9,16,219,297,298,299,370,374,409,517,519,522,527,528,529,531,534,539,540,542,545,546,547,551,552,559,565],done:[2,11,15,16,17,19,20,183,215,223,259,260,261,277,297,298,299,357,374,475,525,527,536,538,540,546,548,551,553,559],donot_use_mm_for_euclid_dist:74,dot:[1,2,92,93,94,95,124,156,220,257,258,285,295,300,301,312,326,327,367,446,479,510,511,512,520,528,559],doubl:[2,71,86,98,177,205,206,207,208,209,283,284,320,368,418,420,468,483,514,524,528,531,537,539,555,556,559,565],double_tensor:556,doubler:[2,114,406],doubletensor:[27,28,29,30,31,32,33,58,81,234,455,490,556,559],dow:558,down:[2,6,12,15,17,129,531,541,542,549,551,553,558,565],download:[526,545,558],download_url_to_fil:517,downsampl:[272,370,531],downstream:1,doxygen:6,dp_m:540,dp_model:533,dpotri:78,dpython:71,dqm:565,draw:[15,60,235,429,558,559],drawn:[15,235,409,429,433,434,532,559,560],drive:[7,16,534],driven:7,driver:[3,551],drop:[15,179,253,519,529,542],drop_last:15,dropout2d:520,dropout3d:520,dropout:[5,177,253,279,280,284,288,304,320,326,334,335,361,363,365,368,520,525,529,546],dropout_:[520,525],dropout_p:520,dropout_st:520,dst1:[],dst2:[],dst:[16,517],dst_name:552,dst_rank:552,dst_tensor:16,dst_type:[177,284,320,368],dstack:520,dtype:[1,9,12,13,15,16,19,29,38,49,59,60,61,62,63,64,65,66,71,86,87,94,95,111,112,113,123,134,135,136,142,149,150,155,157,177,187,195,206,207,208,209,211,215,225,230,235,240,258,264,276,284,285,288,304,320,327,334,340,341,342,343,368,369,370,371,372,388,398,408,412,413,420,423,424,427,428,429,431,432,433,434,435,436,437,438,439,445,454,455,457,471,482,490,498,500,504,511,512,514,515,516,519,520,521,523,524,529,531,537,539,546,548,554,555,558,559,563,565,566,567,568],dtype_filt:565,dtype_input:565,duck:539,due:[2,4,5,6,17,124,156,161,215,361,418,446,484,519,531,537,543,551,553,559],duersch:197,duerschetal2018:197,dummi:[15,539],dummy_add:539,dummy_input1:546,dummy_input2:546,dummy_input:546,dump:545,dump_alias_db:[],dump_patch:320,duplic:[15,59,66,84,149,150,177,284,320,368,471,504,505,540,554,559],dure:[1,2,5,10,12,16,181,183,196,253,259,260,261,277,278,297,298,299,357,363,365,374,498,500,525,528,531,533,534,536,537,538,541,543,546,548,551,553,554,559,561,567],dynam:[1,10,11,15,124,156,161,180,183,196,446,521,522,532,537,546,547,567],dynamic_ax:546,dynamic_threshold:547,dzhulgakov:[7,8],e_float16:1,each:[1,2,5,10,12,15,16,17,18,19,23,25,27,28,35,36,38,55,56,57,58,61,68,70,74,75,77,80,81,92,93,96,105,109,110,117,118,119,124,128,129,130,131,133,151,155,156,161,168,169,170,171,172,173,174,177,183,184,188,196,197,212,213,215,222,224,226,227,229,232,233,234,235,240,249,254,257,258,262,264,268,269,270,271,272,273,274,276,277,278,279,280,282,283,284,285,288,289,290,295,297,298,299,300,301,302,303,304,305,306,308,312,313,320,323,324,325,326,327,328,333,334,336,349,350,352,357,360,366,367,368,369,374,398,399,401,407,409,419,422,423,426,430,438,442,443,446,447,449,450,452,461,465,472,477,478,482,483,485,495,504,505,507,508,509,517,521,528,529,531,532,533,534,535,536,537,538,539,540,541,542,543,544,546,547,548,549,551,552,553,554,556,558,559,567],eager:[460,549],eagerli:12,earli:[279,280,518],earlier:[1,2,540,541,544,546],earliest:538,eas:[2,536,539],easi:[15,519,534,540,541,542,546,548,551,552],easier:[6,15,48,346,519,521,534,535,539],easili:[6,9,16,327,531,544,547,550,551,553,558],ecosystem:541,edg:[2,531,552,565],edgeitem:461,edit:557,edouard:249,edu:264,edward:[7,8],effect:[1,6,10,15,177,249,264,271,272,273,278,279,280,284,320,368,370,374,375,384,517,519,525,531,533,537,547,548,555,558,559,564,565],effici:[2,9,15,17,76,185,197,249,279,280,283,332,525,534,538,539,548,551,552,554,556,557,559,560],effort:551,eig:[9,520,559],eigenpair:197,eigenproblem:197,eigensolv:197,eigenvalu:[109,197,223,417,485],eigenvector:[109,197,485,520,559],eight:[517,524,526],einstein:110,einsum:[520,546],either:[2,10,12,15,16,17,19,73,132,171,175,177,196,247,248,251,252,255,256,257,258,269,270,272,273,274,276,284,295,300,301,303,312,313,315,316,320,323,324,325,327,333,334,336,349,350,366,368,370,371,372,374,390,422,424,441,479,514,517,519,521,523,529,531,532,535,537,539,540,541,542,543,546,547,548,551,552,553,557,559,564,565,566,567,568],elaps:12,elapsed_tim:[12,537],elapsed_time_m:537,elast:551,eleg:542,elem:520,element:[2,15,16,17,19,23,25,26,27,29,30,34,37,45,46,48,50,51,52,53,54,60,67,69,75,81,84,87,88,89,92,93,94,95,96,99,101,102,105,109,113,115,116,117,118,119,120,122,124,130,132,133,137,138,139,148,151,152,155,156,161,165,168,169,170,171,172,173,174,175,187,188,189,190,195,198,199,201,204,206,207,208,209,210,211,213,214,215,224,225,226,227,229,230,234,235,238,240,242,243,253,254,257,258,259,260,261,263,264,268,269,270,271,272,273,274,276,278,279,280,281,283,285,288,289,291,292,293,294,295,300,301,304,305,306,307,310,312,313,314,315,316,321,323,324,325,326,327,328,330,332,333,334,336,337,338,339,345,347,348,349,350,351,353,354,356,357,358,359,360,361,366,367,369,398,399,401,402,407,409,411,418,419,420,422,423,425,426,430,440,441,443,444,446,447,449,450,461,463,464,465,466,467,470,471,473,474,477,478,482,487,488,489,492,493,495,496,497,498,499,500,502,504,505,508,509,514,529,531,532,535,536,544,546,547,549,554,555,556,557,558,559,560,565],element_s:[520,528,555,559],elementari:140,elementwis:[12,34,131,245,297,298,299,355,507,531],elementwise_affin:[306,565],elf:540,elif:521,elig:553,elimin:[16,504,505,559],ell:[257,258,295,300,301,312,327,367],ell_c:258,ellips:110,ellipsi:[110,522,529],ellipsis_idx:520,elman:[334,336,566],els:[6,10,15,16,17,61,182,185,288,304,334,519,521,522,523,527,531,537,539,547,555,559],elsewher:[115,123,139,148,169,170,171,174,190,214,242,517],elu:[520,546,549],elu_:[520,531],ema_avg:547,ema_model:547,embed:[11,249,274,283,295,326,367,520,536,546,548,551,558],embed_dim:326,embed_dim_to_check:520,embedding_bag:520,embedding_dim:[282,283,531],embedding_matrix:531,embedding_renorm_:520,embedding_sum:283,embeddingbag:[456,531,546],emerg:545,emit:[2,10,183,550],emit_nvtx:[2,4],empir:337,emploi:547,employe:7,empti:[1,16,60,61,73,109,112,113,191,206,207,208,209,238,257,258,276,283,327,374,413,471,485,490,516,519,520,521,523,525,528,529,531,532,535,537,546,554,559,560],empty_cach:[12,537],empty_lik:[520,523,528,546],empty_meta:520,empty_quant:520,empty_strid:[520,523],emptydatastructur:521,emul:[522,539,567],enabl:[1,2,3,13,15,16,114,288,304,334,335,374,379,380,381,382,383,384,385,386,457,458,461,525,533,535,536,537,541,543,545,546,547,550,551,552,559,560],enable_grad:[2,523,560],enable_onnx_check:546,enable_tim:[12,537],enablerecordfunct:541,encapsul:[20,551],encod:[16,196,257,258,361,362,363,364,365,519,522,539,544,552],encoder_lay:[364,365],encount:[16,282,374,519,523,531,536],encourag:7,end:[1,6,7,12,15,16,38,59,81,102,151,152,175,191,195,197,210,211,213,241,256,257,258,274,281,288,289,291,292,293,294,295,300,301,304,305,307,312,315,316,322,327,328,331,337,349,355,360,367,438,461,504,505,514,519,520,521,527,531,533,534,538,540,545,547,548,551,559,567],end_dim:[126,284,520,559],end_ev:[12,537],endl:541,enforc:[14,177,284,304,320,334,368,557],enforce_sort:[399,400,401],engin:[2,9,11,429,534,538,539,548,551,552,559],enough:[182,235,367,471,521,527,534,539,547,556],enqueu:[12,537,552],ensur:[1,2,4,6,7,15,16,253,314,323,324,326,361,374,460,517,519,521,526,527,533,534,537,539,542,543,546,548,552,559,567],ensure_tensor:539,enter:[1,16],entir:[5,6,10,15,279,280,297,298,299,306,383,385,405,531,534,539,540,541,548,551,553],entranc:6,entri:[1,2,16,17,102,110,128,129,158,326,383,384,392,471,519,522,534,538,539,547,554,558,567],entropi:[1,17,257,324,531],entrypoint:527,entrypoint_nam:517,enum_fn:521,enumer:[15,17,177,284,320,322,331,368,520,521,533,537,545,547,558],enumerate_support:17,env:[16,17,551],envelop:175,environ:[6,10,11,14,17,183,304,334,456,517,519,534,536,537,543,545,551],environment:12,epoch:[15,533,547,558],eps:[2,210,223,245,259,260,261,275,290,297,298,299,306,329,333,357,366,403,520,531,539,547,562,565,568],epsilon:[38,210,223,259,260,261,275,290,297,298,299,306,357,403,520,531,547],epub:197,eq_:[520,559],equal:[1,12,16,17,34,35,36,59,66,75,76,81,86,101,115,130,139,149,150,152,165,168,190,215,216,242,246,247,248,250,251,252,257,258,264,269,270,272,273,277,285,286,288,304,325,333,334,369,374,399,402,472,479,514,520,522,528,529,531,534,535,547,549,558,559,565,567],equal_nan:[34,168,520,559],equat:[9,79,110,149,257,469,496,520,534],equival:[5,15,17,19,72,74,84,100,108,112,113,128,129,131,136,153,161,176,177,181,183,184,187,249,259,260,261,268,269,270,271,272,273,282,283,284,290,297,298,299,306,320,349,357,368,369,371,374,413,429,432,436,441,446,486,490,505,513,516,519,521,524,531,546,556,559,565],erf:[119,520,528,546,559],erf_:[520,528,559],erfc:[520,528,559],erfc_:[520,528,559],erfinv:[1,520,528,559],erfinv_:[520,528,559],errno:545,error:[1,2,5,6,10,12,15,17,20,38,117,118,119,179,195,196,211,215,235,238,257,258,287,301,312,347,349,374,475,479,519,521,527,528,529,531,533,534,537,539,543,546,548,549,551,559,567],especi:[7,9,15,16,48,69,113,521,531,534,539,544,546,551,559],essenti:[15,16,529,545],establish:534,estim:[15,17,161,175,259,260,261,290,297,298,299,306,357,477,478,495,508,509,547],eta:547,eta_:547,eta_min:547,eta_t:547,etaminu:547,etapli:547,etc:[2,9,15,16,17,175,177,284,320,368,443,517,521,539,540,542,546,547,549,551,558,560],eth0:16,eth1:16,eth2:16,eth3:16,ethernet:16,euclidean:[74,531],eval:[177,183,259,260,261,284,297,298,299,320,357,368,525,546,548],evalu:[4,17,177,249,253,259,260,261,278,284,290,297,298,299,306,320,333,337,357,368,429,522,531,534,539,547,549,567],even:[2,15,16,19,161,165,227,277,374,406,483,511,519,531,534,537,539,540,542,543,544,553,556,559],evenli:[15,35,36,195,211],event:[2,17,183,184,202,527,537,558],event_dim:17,event_file_writ:558,event_nam:541,event_shap:17,eventfilewrit:558,eventlist:2,eventu:[2,6],ever:519,everi:[2,15,16,17,177,253,278,279,280,284,314,320,351,353,368,374,403,405,406,505,531,533,534,537,538,539,546,547,551,552,553,555,558,559,565,567],everyon:6,everyth:[6,15,17,519,527],everywher:[479,531],evid:6,evolv:[538,546],exact:[2,19,45,46,47,227,272,374,532,538,542,554,559],exactli:[2,10,12,16,17,110,175,177,283,284,285,320,368,528,531,534,537,538,539,546],examin:546,exampl:[1,2,5,6,10,12,15,16,17,19,20,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,45,46,47,48,49,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,67,68,69,70,71,72,73,74,75,76,77,78,79,81,84,86,87,88,89,90,91,92,93,94,95,96,98,99,100,101,102,103,104,105,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,126,127,128,129,130,131,132,133,134,135,137,138,139,142,148,151,152,153,154,155,156,157,158,160,161,165,168,169,170,171,172,173,174,175,177,178,179,180,181,182,183,184,185,186,188,189,190,191,194,195,196,198,199,200,201,202,204,205,206,207,208,209,210,211,212,213,214,215,216,217,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,237,238,239,240,241,242,243,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,326,327,328,329,330,331,332,333,334,336,337,338,339,340,341,342,343,344,345,346,347,348,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,387,388,389,390,391,392,393,394,395,396,397,400,401,402,403,405,406,407,408,409,411,412,413,416,418,419,420,421,422,423,424,425,426,427,428,429,430,431,433,435,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,454,455,457,458,463,464,465,466,467,468,469,470,471,472,473,474,475,477,478,480,482,483,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,521,522,524,526,528,529,531,532,534,535,536,537,539,540,541,542,543,544,545,547,548,551,553,554,556,557,558,559,560,562,563,565,566,567],example_forward_input:[183,184],example_input:183,example_method2_input:184,example_output:546,example_weight:[183,184],exce:202,except:[2,5,6,12,16,17,20,26,35,36,54,73,180,185,188,196,212,224,226,227,229,232,240,288,304,334,349,370,398,403,423,426,443,477,478,482,495,508,509,518,519,521,522,523,527,531,537,539,545,546,551,553,554,556,559],exchang:[16,100],exclud:[375,497,498,499,500,531,552],exclus:[15,16,17,374,433,434,437,534],execut:[1,2,4,5,6,10,11,12,15,16,20,178,183,184,196,277,374,459,519,521,522,525,533,534,535,536,540,541,542,543,545,546,548,551,552],exist:[2,6,7,10,15,16,17,48,183,197,239,321,330,418,517,519,527,528,534,535,539,541,546,551,553,557,559],exit:[1,2,4,374,527,542,546,553],exp1:558,exp2:[520,558],exp2_:520,exp:[1,2,17,204,212,221,258,263,276,281,310,311,324,333,345,348,350,351,353,354,358,422,479,520,528,531,546,559],exp_:[520,528,559],exp_add:2,exp_famili:17,exp_rang:547,exp_reduc:2,expand:[2,7,17,48,368,517,520,528,529,535,546,549,557,559],expand_a:[160,520,539,546,557,559],expect:[2,6,15,16,19,158,175,183,184,227,259,260,261,276,288,289,290,297,298,299,300,304,305,306,327,334,336,351,357,361,363,365,370,399,486,511,517,518,523,531,534,538,540,547,558],expens:[4,15,17,541,551,559],experi:[9,347,374,531,539,558],experiment:[16,20,374,519,521,528,529,543,545,546],expert:7,explain:[11,517,533,537],explan:539,explicilti:521,explicit:[1,140,167,491,522,528,531,533,537,539,546,549,557],explicitli:[1,12,16,100,102,233,479,519,521,522,531,537,539,541,544,546,547,548,549,550,551,554],explitili:521,explod:349,explor:517,expm1:[1,520,528,559],expm1_:[520,528,559],expon:[17,249,309,422,520,531,556,559],exponenti:[120,121,122,202,203,204,212,221,263,547,559,560],exponential_:[520,528,559,560],exponential_average_factor:520,exponentiallr:547,export_chrome_trac:2,export_param:546,export_raw_ir:546,export_to_pretty_str:546,expos:[1,2,16,20,537,541,551],express:[9,110,124,156,479,522,525,534,539,559],exptransform:17,ext:[517,526],ext_modul:10,extend:[2,17,322,331,518,541,542,546],extens:[10,16,17,196,197,451,533,544,551],extension_kernel:10,extent:536,extern:[183,536,545],external_data_format:546,extra:[6,15,16,177,180,181,196,320,327,426,479,483,485,521,529,534,536,538,539,540,541],extra_cflag:10,extra_compile_arg:[10,545],extra_cuda_cflag:10,extra_fil:[180,181],extra_include_path:10,extra_ldflag:10,extra_repr:[177,320,539],extract:[282,285,369,531,551],extrafilesmap:541,extrem:[4,374],extrema:531,extrud:540,eye:[17,78,160,221,223,425,520,523,539,546],eye_:[523,532],eyes:6,ezyang:[7,8,557],f_add:565,f_float16:1,f_float32:1,f_t:304,fab:520,face:[539,558],facebook:7,faces_tensor:558,facil:[196,527],facilit:[17,100,517,519,543],fact:[2,59,66,149,150,519,539,552,559],factor:[1,17,31,32,33,58,77,78,79,213,215,216,217,278,309,332,414,415,425,469,531,532,533,547,548,567],factori:[2,9,17,520,529,537,567],fail:[2,6,12,17,161,180,181,195,196,197,211,215,523,527,539,542,545,546,551],failur:[2,7,16,17,177,183,184,284,320,368,527,551,553],fake:[548,562,564,567],fake_qu:548,fake_quant_en:567,fake_quantize_per_channel_affin:520,fake_quantize_per_tensor_affin:520,fakequant:[548,549,562,564,567],fall:[6,196,349,531,546],fallback:[10,16,533,546],fals:[1,2,5,10,12,15,16,17,34,35,36,38,45,46,47,59,62,64,65,66,68,70,71,77,78,79,84,109,111,112,113,115,116,123,124,135,136,137,139,148,149,150,156,161,165,168,169,170,171,172,173,174,175,177,179,183,184,185,187,188,190,195,206,207,208,209,211,212,214,215,219,223,224,226,227,229,232,235,239,240,242,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,274,276,278,279,280,281,282,283,284,286,288,289,290,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,312,313,314,315,316,320,323,324,325,326,327,329,333,334,335,336,337,338,339,345,347,349,350,357,360,361,366,367,368,370,374,390,399,400,401,402,406,407,408,412,413,415,423,425,426,429,431,432,433,434,435,436,437,438,446,451,452,456,457,458,461,465,470,471,477,478,479,482,483,485,490,492,496,507,508,509,514,515,516,517,519,520,521,524,525,526,527,529,531,533,534,537,539,540,543,546,547,550,551,555,557,558,559,560,562,565,567],famili:17,familiar:[11,12,519,534,552,553],fan:532,fan_in:532,fan_out:532,fang:8,faq:[15,277,401,518],far:531,fashion:[6,16,202,388,519,559],fast:[6,15,297,298,299,349,429,536,537,539,547,551,556,557],fast_forward:429,faster:[1,2,9,15,68,110,197,335,351,374,525,531,534,537,548],fastest:[3,374,407,543],fatal:[527,542],favor:[12,294,371,372,531,549,565],fbgemm:548,fbgemm_linear_fp16_weight:520,fbgemm_linear_fp16_weight_fp32_activ:520,fbgemm_linear_int8_weight:520,fbgemm_linear_int8_weight_fp32_activ:520,fbgemm_linear_quantize_weight:520,fbgemm_pack_gemm_matrix_fp16:520,fbgemm_pack_quantized_matrix:520,fcntl:16,featur:[7,9,11,16,182,246,247,248,249,250,251,252,273,278,279,280,286,288,289,304,305,326,334,336,352,361,363,365,366,367,368,374,417,456,518,519,521,522,529,531,539,540,543,546,551,558,565],feature_alpha_dropout:520,feature_alpha_dropout_:520,feature_dropout:520,feature_dropout_:520,featurealphadropout:531,featuredropout:546,fed:558,fedyunin:8,feed:[519,540],feedback:[6,518],feedforward:[361,363,365,532],feel:6,feng:8,fep:197,fetch:[15,379,380,381,382,383,384,385,386,551],few:[2,6,374,517,534,540,545,557,559,560],fewer:[17,35,36,188,212,224,226,227,229,232,240,423,452,477,478,482,508,509,535,544,554,559],ffi:545,fft:[9,156,161,446,518,520,537,559],fft_fft:520,fft_fftn:520,fft_hfft:520,fft_ifft:520,fft_ifftn:520,fft_ihfft:520,fft_irfft:520,fft_irfftn:520,fft_rfft:520,fft_rfftn:520,fft_size:175,fftn:[19,124],field:[2,6,16,177,249,257,258,274,276,284,295,300,301,312,313,320,323,324,325,327,333,349,350,366,368,398,531,534,538,542,546,547,552],figur:[6,536,538,546,553,558],file:[1,2,6,7,9,10,12,15,180,181,196,451,517,519,522,523,526,528,529,539,541,543,544,545,546,552,555,558],file_nam:[16,517,526],filenam:[10,176,180,181,517,520,526,555,558],filename_suffix:558,fileno:546,filestor:16,filesystem:[16,517],filesytem:[],fill:[16,61,100,111,113,135,136,215,283,361,412,413,431,432,433,434,435,436,515,516,529,531,532,537,539,544,559],fill_:[177,191,284,320,368,442,520,528,555,559],fill_diagonal_:[520,559],fill_row_zero:519,fill_valu:[135,136,264,520,537,559],filter:[175,187,268,269,270,271,272,273,479,531,559,565],final_div_factor:547,financi:7,find:[2,6,7,10,16,188,197,271,272,273,417,452,484,517,525,527,529,534,536,537,538,539,540,542,543,546,551,556,558],find_unused_paramet:[374,538],fine:[10,16,183,374,517,527,534,539,547,567],finetun:[177,284,320,368,534],finfo:245,finish:[16,20,537,538,545,551,553],finit:[2,4,17,168,169,235,257,539],fire:[538,541],first:[2,4,5,6,7,10,12,15,16,17,27,28,31,33,34,45,46,48,53,58,62,64,65,68,69,70,91,100,102,109,113,115,124,126,139,148,153,154,155,156,161,168,180,187,190,196,197,213,214,220,224,227,229,231,234,235,242,245,249,255,256,262,269,270,272,273,282,283,284,288,303,304,313,315,316,334,374,388,398,417,425,446,447,448,452,471,491,494,498,500,505,507,510,513,517,519,521,526,527,528,531,533,534,537,539,540,542,543,544,545,546,547,552,553,554,558,559,567],first_kei:16,first_valu:16,fisher:17,fit:[175,443,547,551,559],five:[1,544],fix:[15,17,110,282,283,374,519,520,531,533,540,542,545,546,547,559],fix_:[520,559],flag:[2,10,12,16,59,66,68,77,149,150,163,217,374,446,458,518,519,527,531,534,537,543,546,558,559],flat:[443,546],flat_img:529,flatten:[45,46,101,369,426,443,447,504,505,520,524,528,529,532,546,549,557,559],flatten_paramet:335,flexibl:539,flip:[128,129,520,559],fliplr:[520,559],flipud:[520,559],float16:[13,134,164,177,284,288,304,320,334,368,533,549,556,559,567,568],float16_dynamic_qconfig:549,float32:[15,86,134,142,155,164,245,258,370,371,372,420,424,429,445,454,455,471,511,531,533,537,546,556,559,565,568],float64:[1,9,86,134,142,164,177,284,320,368,420,427,454,455,457,471,490,511,514,524,556,559,568],float_float:520,float_int:520,float_tensor:556,floatfunct:[548,549],floatstorag:555,floattensor:[1,2,16,27,28,29,30,31,32,33,58,81,142,234,282,283,323,326,361,455,554,556,559],floor:[105,131,181,254,255,256,302,303,314,315,316,479,520,528,531,544,546,559,565],floor_:[520,528,559],floor_divid:[105,520,546,559],floor_divide_:[520,559],flow:[1,83,183,519,531,534,539,544,546,553],flush:[1,2,12,181,451,457,558],flush_sec:558,fly:[15,379,380,381,382,383,384,385,386,534],fmassa:8,fmod:[441,520,559],fmod_:[520,559],focu:547,focus:521,fold:[369,484,520,525,546,549],fold_param:[285,369],folder:[6,10,15,517,558],folk:6,follow:[1,2,6,7,9,11,12,13,14,15,16,17,70,109,110,117,118,124,156,161,177,197,220,249,258,264,283,284,285,288,304,320,334,368,369,374,408,417,446,452,456,471,479,495,517,519,520,521,522,523,524,525,526,527,528,529,531,532,533,534,535,536,537,540,542,544,545,546,547,548,549,551,552,553,554,556,557,559,565,567,568],followup:553,foo:[10,180,181,182,183,517,519,521,546,567],foo_build:567,foo_forward:546,foo_instance1:567,foo_instance2:567,foo_namespac:546,foomodel:546,foomodul:546,footprint:547,foral:559,forc:[1,2,10,12,178,186,456,517,519,533,537,558],force_reload:517,force_stop:197,forev:[527,538],forg:[545,546],forget:[304,521],forgotten:545,fork:[15,186,374,536,540,541,542,545,550,551,553],fork_rng:550,forkid:553,forkingpickl:545,forkserv:[374,527,542],form:[2,6,7,9,15,16,17,19,77,100,109,247,248,251,252,264,286,288,304,334,369,370,415,491,517,519,522,531,534,539,546,547,548,558,565,567],formal:[70,452,529],format:[2,13,83,111,112,136,161,177,264,283,284,288,304,320,334,368,374,399,401,413,432,434,436,446,451,471,516,517,519,522,539,544,548,552,554,556,558,559],former:320,formul:[263,281,291,311,354,355,531],formula:[2,17,22,59,66,110,149,150,191,218,333,428,531,539,547,550,565],forth:[507,517,547],fortun:540,forum:[6,7,540,542],forward:[1,2,5,10,19,177,179,181,182,183,184,185,253,257,277,278,279,280,283,284,288,304,317,318,319,320,321,322,326,327,330,331,334,361,362,363,364,365,368,374,379,380,381,382,383,384,385,386,395,403,405,429,483,519,521,525,527,529,531,532,533,534,536,537,538,539,540,541,544,546,547,548,551,554,565,567],forward_hook:567,forward_pre_hook:[390,567],found:[1,11,70,91,92,93,188,224,227,229,232,253,263,345,452,519,533,539,542,546,548,558],four:[539,551,553],fourier:[19,124,156,161,175,446,479],fp16:374,fp32:[97,374,537,548,564,565,567],fparam:197,fps:558,frac:[17,29,38,59,66,103,105,117,118,124,131,149,150,155,156,187,195,210,211,238,249,254,255,256,257,258,259,260,261,262,268,269,270,271,272,273,276,278,285,288,289,290,297,298,299,302,303,304,305,306,308,309,310,311,314,315,316,323,324,325,327,334,336,337,348,349,350,351,353,354,356,357,358,369,421,438,440,446,450,463,479,520,528,531,532,534,547,559,565],frac_:[520,528,559],fraction:[15,133,271,272,273,286,382,383,385,386,388,391,392,393,394,532],fractional_max_pool2d:520,fractional_max_pool2d_with_indic:520,fractional_max_pool3d:520,fractional_max_pool3d_with_indic:520,fractionalmaxpool2d:456,fractionalmaxpool3d:456,fragment:12,frame:[175,479,540,558],framework:[6,7,17,20,374,461,518,546,547,552,553],francisco:8,frank:17,free:[2,6,16,17,178,183,197,525,532,534,540,542,545],freed:[2,12,527,537,551,559],freedom:17,freez:[177,282,283,284,320,368,534],freeze_bn:562,freeze_modul:525,freeze_support:545,frequenc:[19,61,161,249,282,283,479,531,547],frequent:[9,249,518,544],fresh:517,frexp:520,friendli:546,fritz:8,fritzo:8,fro:[383,392,408,524,559],frobeniu:[408,524],frobenius_norm:[520,546],from:[1,2,5,6,7,10,11,12,15,16,17,19,20,22,38,49,59,60,66,67,70,71,83,96,134,135,149,150,175,177,179,180,181,195,196,197,211,216,217,235,241,249,253,259,260,261,262,268,269,270,271,272,273,274,277,278,279,280,282,283,284,285,288,289,290,297,298,299,304,305,306,308,320,321,322,326,330,331,334,336,337,357,362,363,367,368,369,374,375,379,380,381,382,383,384,385,386,388,390,395,396,397,398,399,400,401,402,405,409,414,415,417,419,429,430,431,432,433,434,435,436,437,438,443,444,445,448,451,452,456,461,471,479,480,483,484,490,496,498,500,504,505,507,514,519,520,521,523,524,525,526,527,529,530,531,532,537,538,539,540,541,542,543,544,547,548,549,551,552,553,554,556,558,559,560,562,563,564,565,566,567],from_buff:555,from_dlpack:18,from_fil:[520,555],from_float:[564,565,566,567],from_ipc_handl:12,from_numpi:559,from_pretrain:[282,283],front:[197,323,529,559],frontend:11,frozen:[522,534,545,547],frozen_modul:[],fulfil:534,full:[2,11,15,16,17,19,59,66,136,149,150,161,197,213,258,264,268,269,270,271,272,273,333,361,446,461,483,484,517,519,520,521,523,529,531,533,537,539,543,546,547,548,549,551,552,557],full_lik:[191,520,523,546],fulli:[15,16,317,318,319,534,539,549],func:[2,35,36,178,183,184,186,533,539,551,553],func_dict:539,func_nam:551,func_output:2,functional_modul:[],functioneventavg:2,functool:[539,567],functor:17,fundament:[6,521,551],further:[2,7,10,16,140,249,374,414,415,542,553,558],furthermor:[10,278,528,529,543,548,549],fuse:[525,528,548,549,561,562,563,567],fuse_known_modul:567,fuse_modul:[548,549,567],fused_m:567,fuser_func:567,fusion:[183,184,525,548,549,567],fut0:20,fut1:[20,551],fut2:551,fut:[20,536,551],fut_list:20,futur:[2,12,29,33,87,131,141,156,161,178,181,186,195,211,408,438,446,456,479,518,519,520,521,522,525,529,531,536,539,544,546,547,548,551,554,559],fvar:197,fwd:1,fwd_output:533,g_cpu:22,g_cpu_oth:22,g_cuda:22,g_float16:1,g_float32:1,g_t:304,ga100:537,gain:[7,532],galleri:6,gamma:[103,194,238,259,260,261,290,297,298,299,306,357,520,547],gamma_:238,gan:[177,284,320,368,403],ganem:17,gao:8,gap:[38,438,518],garbag:[15,553],gate:[288,289,304,347,531,566],gather:[12,16,520,539,540,541,546,559],gather_list:16,gaussian:[17,287,347,531],gcc:11,gcd:[520,559],gcd_:[520,559],gchanan:[7,8],ge_:[520,559],geeta:8,gelu:[1,347,361,363,365,520,546],gemm:[536,546],gen_non_contig_grad_output:2,gencod:12,gener:[2,6,10,15,16,17,60,140,145,149,159,161,197,218,227,235,285,361,369,370,379,380,381,382,383,384,385,386,403,409,417,419,429,433,434,453,462,484,491,507,518,519,520,521,522,523,525,528,531,532,534,537,539,540,541,545,546,547,550,551,552,554,556,558,559],generate_square_subsequent_mask:361,gentl:519,geometr:[507,531,559,560,565],geometri:[124,156,161,446,537],geometric_:[520,559,560],georg:8,geq:[137,139,213,276,307,327,328,337,421,531,532],geqrf:[414,415,520,559],ger:[520,559],gesdd:483,gesvd:483,get:[2,9,10,12,15,16,20,22,28,70,99,142,177,183,282,283,284,302,303,317,318,319,320,368,374,375,399,403,442,452,517,519,527,528,534,537,539,540,541,546,547,551,553,557,558,559,567],get_all_sharing_strategi:527,get_arch_list:12,get_backend:16,get_backoff_factor:1,get_context:542,get_debug_st:176,get_default_dtyp:[38,438,556,568],get_default_qat_qconfig:548,get_default_qconfig:548,get_devic:[520,528,554,556,559],get_device_cap:12,get_device_nam:12,get_dir:[517,526],get_gencode_flag:12,get_gradi:[520,551,552],get_growth_factor:1,get_growth_interv:1,get_ignored_funct:539,get_info:[215,559],get_input:546,get_lr:547,get_num_interop_thread:536,get_num_thread:536,get_observer_dict:[549,567],get_overridable_funct:539,get_rank:16,get_rng_stat:[12,550],get_rng_state_al:12,get_scal:[1,533],get_sharing_strategi:527,get_stat:22,get_testing_overrid:539,get_worker_info:[15,551],get_world_s:16,getattr:[520,551],getenv:541,getsourc:541,gil:[15,16,534,537,551],gimelshein:8,girshick:349,github:[6,7,16,361,517,523,539,543,546,547,548],give:[1,2,4,6,9,15,19,110,300,325,369,370,407,425,479,517,519,527,529,534,537,539,546,547],given:[1,2,6,7,10,12,15,16,17,19,20,35,36,37,38,47,60,63,69,72,73,79,80,84,87,90,91,97,99,110,127,154,161,177,180,183,184,188,191,197,204,206,207,208,209,212,213,224,226,227,229,232,238,240,249,257,258,264,274,276,277,282,283,284,286,288,295,300,304,313,317,318,319,320,322,324,325,326,327,331,334,349,352,366,367,368,370,371,372,374,398,403,405,408,409,415,419,423,427,428,438,443,447,456,470,471,472,475,482,484,487,491,492,494,503,508,509,517,518,519,524,526,527,529,531,532,533,534,536,538,539,541,543,544,546,547,551,552,554,558,559,565,567],global:[5,15,16,17,38,59,66,111,113,123,135,149,150,163,178,183,187,195,211,374,384,388,412,431,433,435,438,515,519,522,533,539,541,542,543,548,551,552,553,558],global_step:558,globalcontext:545,gloo:[16,374,538,551],gloo_socket_ifnam:16,glorot:532,glu:[520,546],gmm:17,goal:[534,553],goe:[253,540],going:[2,6,16,197,527,534,536,541,545,558,559],gomez:[361,363,365],good:[6,10,22,328,517,527,539,541],got:539,gotten:534,govern:[6,518],gpu1:[177,284,320,368],gpu:[1,2,3,4,6,12,13,15,177,196,213,227,249,277,284,288,304,320,334,335,357,368,374,398,483,518,519,537,543,545,547,551,555,559,560],gpu_model:519,gpudirect:16,grace:551,grad0:538,grad1:538,grad:[1,2,5,9,17,114,177,197,284,320,368,374,456,458,519,520,528,529,533,534,538,539,542,547,551,552,554,559],grad_bia:539,grad_fn:[2,534,544,554,559],grad_input:[177,284,320,368,539,545],grad_loss:529,grad_mod:520,grad_norm:533,grad_out:520,grad_output:[2,177,284,320,368,520,534,539,545],grad_param:533,grad_tensor:[2,520],grad_vari:2,grad_weight:539,gradcheck:[2,161,539],gradgradcheck:[2,539],gradient:[5,9,15,16,17,35,36,83,114,137,177,197,224,227,229,257,264,271,272,273,276,277,282,283,284,302,303,320,327,349,368,374,375,376,377,406,458,483,485,519,520,529,531,534,538,539,540,547,551,552,554,559],gradient_as_bucket_view:374,gradscal:[1,533],graham:286,grain:[16,534,567],grangier:249,grant:7,granular:533,graph:[2,5,17,49,177,178,182,183,374,525,530,533,538,539,546,549,551,552,553,558,559,567],graphexecutorst:176,graphic:545,graphroot:2,graphtask:534,grave:[249,264],grayscal:558,great:[6,534],greater:[4,16,75,76,139,148,238,257,366,403,456,520,531,534,543,546,549,559],greater_:[520,559],greater_equ:[520,559],greater_equal_:[520,559],greater_than:17,greater_than_eq:17,greaterthan:17,greaterthaneq:17,greatest:138,greatli:10,greedili:529,green:521,greg:[7,8],gregori:8,grep:540,grid:[520,531,537,558],grid_i:[],grid_sampl:520,grid_sampler_2d:520,grid_sampler_3d:520,grid_x:[],griffin:175,gross:[7,8],ground:[6,558],group:[2,7,15,268,269,270,271,272,273,290,357,374,505,517,520,527,531,532,538,546,547,558,559,562,563,564,565],group_by_input_shap:2,group_by_stack_n:2,group_nam:16,group_norm:[1,520,546],groupnorm:549,grow:[6,554],growth:1,growth_factor:1,growth_interv:1,gru:[289,520,537,549,566],gru_cel:520,grucel:[1,548,549],gt_:[520,559],guanheng:8,guarante:[2,5,15,16,17,277,374,534,536,543,547,551,553],guard:542,guess:15,guid:[2,15,182,518],guidanc:[6,11],guidelin:[7,388],gumbel:531,gumbel_softmax:520,gunnar:[417,484],guoliang:8,h_0:[288,304,305,334],h_1:305,h_i:352,h_n:[288,304,334],h_t:[288,304,334],hack:6,had:[6,183,534],hadamard:[288,289,304,305],haidar:8,half:[1,2,17,19,124,156,161,177,268,269,270,271,272,273,284,286,320,368,446,479,528,531,547,555,556,559],half_cauchi:17,half_norm:17,half_open_interv:17,halfopeninterv:17,halftensor:[556,559],halko:[417,484],ham:[74,149,531],hamiltonian:17,hamming_window:[520,523],hand:[2,4,104,110,253,456,496,519,521,534,544,546],handi:[534,537],handl:[1,2,5,9,10,12,15,16,177,277,284,320,367,368,374,379,380,381,382,383,384,385,386,484,510,517,527,529,531,537,539,540,542,546,548,551,553,559],handled_funct:539,handler:[384,541],hang:[374,538],hann:150,hann_window:[149,479,520,523],happen:[2,6,7,16,17,357,374,518,527,534,538,539,540,542,545,546,547,548,557,559,567],happi:6,hard:[2,6,197,291,519,520,521,531,534,546],harden:551,harder:[268,269,270,271,272,273,285,315,316,369],hardshrink:[520,559],hardsigmoid:[520,549],hardsigmoid_:520,hardswish:[520,549],hardswish_:520,hardtanh:[520,525,546,549],hardtanh_:[520,531],hardwar:[456,543,548],has:[1,2,5,6,7,9,11,12,13,15,16,17,20,22,35,36,45,46,49,60,74,77,87,100,102,114,132,158,175,177,180,181,182,183,188,196,205,212,213,215,224,226,227,229,232,239,240,257,258,259,260,261,268,269,270,271,272,273,276,277,278,283,284,285,286,288,290,297,298,299,300,304,306,314,315,316,320,324,325,327,328,334,351,357,368,369,370,374,379,383,385,388,398,399,407,408,409,423,426,441,443,451,452,465,468,475,477,478,482,508,509,519,521,524,527,528,529,531,533,534,535,536,537,538,539,541,542,544,545,546,547,549,550,551,552,553,554,555,556,558,559,560,565,567],has_bias:520,has_enumerate_support:17,has_nam:528,has_rsampl:17,hasattr:[520,539],hash:[517,520,526],hash_prefix:517,hashmap:16,hashstor:16,hasn:547,hat:[259,260,261,297,298,299,357],have:[1,2,5,6,7,9,12,15,16,17,19,22,35,36,59,60,66,73,74,91,98,108,116,124,137,138,149,150,158,176,177,178,180,182,183,184,188,189,196,205,207,212,213,224,226,227,229,232,235,240,249,253,257,268,269,270,271,272,273,276,277,282,283,284,286,294,297,298,299,306,313,320,323,324,325,326,327,367,368,374,375,376,377,401,406,408,423,426,429,456,468,477,478,479,482,485,490,508,509,511,513,517,519,520,521,523,525,527,528,529,531,532,533,534,535,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,556,557,558,559,567],hdr:8,head:[249,326,361,363,365],head_1:326,head_bia:249,head_h:326,head_i:326,header:[2,10,545],health:7,healthi:[6,7],heard:552,heart:15,heavi:[2,16,534,545],heavili:[4,536,539,547],heavisid:[520,559],heaviside_:520,hei:6,height:[255,256,269,270,272,273,303,315,316,327,352,370,529,531,546,565],held:[12,20,533],hello:521,help:[1,2,4,6,7,9,12,15,16,177,187,279,280,284,320,368,517,528,529,533,534,535,537,538,546,551,552,560],helper:[1,5,16,357,517,521,537,538,546,548,551,567],henc:[60,317,318,319,370,471,537,538,546,551,553],here:[1,2,6,7,11,15,16,17,19,182,259,260,261,297,298,299,328,346,357,429,483,517,519,521,523,528,529,531,533,534,537,539,540,541,545,546,547,548,557,558,559],hermitian:19,hessian:[2,532],heterogen:521,heurist:[10,15],hex:520,hfft:19,hidden:[5,288,289,304,305,334,336,375,537,558],hidden_s:[288,289,304,305,334,335,336,520,566],hierarch:558,hierarchi:[522,539,548,549,567],high:[4,6,11,12,17,264,433,434,520,527,547,548,551,558,559],higher:[6,16,152,276,313,327,484,539,541,548,551,556,559],highest:[249,433,434],highli:[7,249,374,517,546],highlight:564,hing:[323,325],hinge_embedding_loss:[1,520],hingeembeddingloss:531,hint:[519,521],hinton:547,his:547,histc:[456,520,559],histogram:[152,549,558,567],histogramobserv:[549,567],histor:[12,29,536,544],histori:[2,539,540,547,552],history_s:547,hit:[5,374,517],hmc:17,hogwild:534,hoist:525,hoist_conv_packed_param:525,hold:[2,16,20,197,285,321,322,330,331,369,384,398,471,535,539,540,541,542,547,551,552,553,556,558,559],holist:6,holomorph:[9,534],homomorph:534,hong:8,hood:[2,527,538,542,553],hook:[2,177,277,284,320,368,374,379,380,381,382,383,384,385,386,395,403,405,538,541,559,565],hop:[175,479],hop_length:[175,479,520,559],hope:[],horizont:153,host:[15,16,177,284,320,368,374,407,537,552,555,559],host_nam:16,hostnam:16,hot:[17,531],houseroad:8,how:[2,5,6,7,11,15,16,124,156,161,181,196,285,320,369,370,374,398,446,519,521,526,527,528,529,530,531,533,536,538,539,540,542,543,544,546,551,552,553,558,565,567],howev:[1,4,5,6,7,9,11,12,15,16,17,100,102,156,178,181,196,197,215,257,271,272,273,277,282,283,374,398,418,518,521,531,533,534,537,539,542,543,544,545,546,547,551,553,554,559],hparam:558,hparam_dict:558,hparam_domain_discret:558,hpp:538,hspmm:[520,554],hstack:520,html:[2,4,6,11,367,456,543,547,558,564,565,566],http:[2,4,6,11,16,17,110,197,264,337,338,361,367,405,417,456,517,522,526,534,543,545,546,547,548,558,562,564,565,566],hua:8,hub:[518,526],hub_dir:[517,526],hubconf:517,huber:349,huge:484,human:[0,12,532,546],hundr:[533,541],hurt:538,hvp:2,hwc:558,hxw:520,hybrid:554,hyper:[521,558],hyperbol:[26,51,54,89,467,489],hyperparamet:558,hypot:[520,559],hypot_:[520,559],hypotenus:154,i0_:[520,559],i_0:[155,187,491],i_1:19,i_d:491,i_n:[19,491],i_t:304,icdf:17,icml_2006:264,idea:[6,249,537,541,552],ideal:[183,529],idempot:553,ident:[2,10,15,16,17,100,156,161,197,222,253,278,514,522,531,532,543,554,559,567],identifi:[6,16,196,357,522,527,535,541,551,552,553,558],identity_transform:17,idiom:545,ids:[357,531],idx:[15,177,249,284,320,368,520,529],ieee:175,iff:17,ifft:[19,124,161,520,559],ifftn:[19,156],ifs:522,ignor:[6,12,19,28,31,32,33,45,46,58,124,152,156,182,185,239,257,258,274,276,283,295,300,301,312,313,320,323,324,325,326,327,333,349,350,361,366,408,461,479,483,519,524,529,531,539,546,547,559,567],ignore_index:[276,327,520,531],ihfft:19,ilia:8,ill:531,illia:[361,363,365],illustr:[533,539],im2col:[369,520,546],imag:[15,86,247,251,252,268,269,270,271,272,273,276,285,286,298,327,332,352,369,371,372,520,531,557,558,559],imagenet:[16,532],imagin:551,imaginari:[9,19,86,109,124,156,157,169,170,171,174,479,511,512,522,534,559],imagnumb:522,imbalanc:249,img:[529,558],img_batch:558,img_hwc:558,img_tensor:558,immedi:[6,7,177,178,284,320,368,544,551,553],impact:[525,548,549,557],imped:533,imper:16,implement:[2,5,12,15,16,17,29,33,48,177,180,181,196,197,221,227,249,264,277,284,302,303,320,332,338,354,363,365,368,374,388,401,403,405,418,421,425,429,451,456,483,484,491,504,521,522,527,531,533,534,536,539,540,541,542,543,544,545,546,547,548,549,551,552,554,557,559,561,562,563,564,565,567],impli:[527,534,551],implic:[183,551],implicit:[254,255,256,268,269,270,271,272,273,285,314,315,316,369,520,522,531,546,557,565],implicit_cast:546,implicitcasttyp:546,implicitli:[6,110,183,184,196,254,255,256,314,315,316,519,521],implicitly_compiled_method:519,imported_funct:533,importerror:545,impos:[527,533],imposs:533,improb:15,improv:[1,2,7,13,16,278,288,304,334,518,533,538,539,543,546,547,551],in1:[262,531],in1_featur:262,in2:[262,531],in2_featur:262,in_channel:[268,269,270,271,272,273,562,563,564,565],in_featur:[177,249,284,308,320,368,403,405,562,563,564,565,566],in_proj_bia:520,in_proj_weight:520,inaccur:15,inaccuraci:2,inact:12,inactive_split:12,inactive_split_byt:12,inc:521,incas:559,incept:546,incid:[551,553],includ:[1,2,3,4,5,6,7,10,11,15,16,19,177,254,255,256,264,277,284,317,318,319,320,368,374,399,400,402,497,498,499,500,517,519,521,525,527,531,536,537,540,541,544,548,549,551,553,558,559,560,565],include_last_offset:[283,520,531],include_path:10,inclus:[17,22,152,195,211,218,433,434,476,550,559],incom:[1,16,262,308,527,531,534,549,565,567],incompat:[7,10,175,535],incomplet:[15,523],inconsist:[38,438,539],incorpor:548,incorrect:[4,48,69,113,183,196,479,519,531,537,559],increas:[1,2,6,12,17,61,70,249,258,264,268,269,270,271,272,273,332,452,507,520,531,534,536,537,547,559],increment:[2,16,277,519,521,534],incur:[1,5,76,542],inde:[519,553],indent:522,independ:[2,7,12,15,16,278,279,280,405,425,519,531,533,534,544,559,565],index:[11,12,15,17,35,36,70,92,93,110,137,158,184,188,204,212,215,219,224,227,229,232,235,249,264,276,282,283,300,321,322,327,330,331,367,369,383,385,392,393,398,407,446,452,456,471,479,487,506,518,519,520,527,528,529,531,534,537,538,543,546,547,549,553,554,556,557,558,559],index_add:[520,559],index_add_:[456,520,543,559],index_add_cuda_:543,index_copi:[520,546,559],index_copy_:[520,559],index_fil:[520,528,546,559],index_fill_:[520,528,559],index_put:[1,520,546,559],index_put_:[520,559],index_select:[456,520,546,559],indexerror:[383,385],indic:[1,2,3,12,15,16,17,35,36,45,46,47,70,77,92,93,110,124,137,158,177,179,185,188,196,204,212,215,217,223,224,227,229,232,235,249,250,251,252,282,283,286,315,316,317,318,319,323,325,407,446,452,470,471,487,492,497,498,499,500,504,505,514,519,520,528,529,531,539,546,547,551,554,557,558,559],indici:559,individu:[6,7,15,77,160,177,222,264,284,320,357,368,528,533,539,541,543,551,559,567],induc:531,ineffici:548,inf:[1,17,26,28,31,32,33,54,58,70,104,119,168,169,170,172,173,205,311,351,361,376,383,392,408,452,468,524,533],infer:[2,9,11,12,38,49,110,135,406,438,444,454,455,471,490,518,519,521,528,531,546,547,548,549,554,559],inferencesess:546,infin:[169,170,172,173,257,314,376,547],infiniband:[16,374,551],infinit:[15,170,197,257,264,524,531,539,551],influenc:7,info:[12,16,215,518,539],inform:[2,4,6,14,15,16,19,161,175,177,184,304,320,326,334,361,363,365,398,424,445,519,536,537,539,541,546,548,551,556,558,559],infrastructur:7,infti:[74,155,175,221,257,302,303,531],ingredi:[297,298,299],inher:528,inherit:[390,519,521,539,542],init:[12,16,177,284,320,328,368,518,523,541],init_method:[16,374,551],init_process_group:[16,374,538,551],init_rpc:[551,552],init_scal:1,init_weight:[177,284,320,368],initi:[2,4,12,15,22,49,142,159,177,196,197,259,260,261,262,264,271,272,273,277,282,283,284,288,289,290,297,298,299,304,305,306,308,320,328,334,336,357,367,368,374,454,455,471,490,521,531,532,537,538,539,541,545,546,547,550,551,552,559,562,564,565,566],initial_accumulator_valu:547,initial_lr:547,initial_se:[12,15,22,550],inject:541,inlin:[10,177,183,536],inline_extens:10,inlined_graph:177,inner:[107,510,546,551],innermost:[17,452],inp:[2,15,369,374],inp_unf:369,inplac:[177,253,263,278,279,280,281,284,292,293,294,307,320,337,338,339,345,347,360,368,520,531,539,546,549,565,567],inplace_assign:546,inplaceindexedassign:546,input1:[262,275,288,289,313,329,334,336,520,531,533,545,546],input2:[79,262,275,288,289,313,329,334,336,414,415,520,531,533,545,546,559],input3:[415,520,559],input:[2,5,7,9,11,12,13,15,16,17,19,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,74,75,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,98,99,100,101,102,103,104,105,106,107,109,112,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,132,133,136,137,138,139,140,141,146,147,148,149,150,151,152,154,155,156,157,158,160,161,162,164,165,168,169,170,171,172,173,174,175,177,178,182,183,184,187,188,189,190,191,192,193,194,197,198,199,200,201,202,203,204,205,206,207,208,209,210,212,213,214,216,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,323,324,325,326,327,328,332,333,334,336,337,338,339,340,341,342,343,344,345,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,379,380,381,382,383,384,385,386,387,389,391,392,393,394,398,399,400,402,406,407,408,410,411,413,414,415,416,417,418,419,420,421,422,423,425,426,427,428,430,432,434,436,438,439,440,441,442,443,444,445,446,447,448,449,450,456,463,464,465,466,467,468,469,470,473,474,475,477,478,479,480,481,482,483,484,485,486,487,488,489,492,493,494,495,496,497,499,502,503,504,505,506,507,508,509,510,511,512,516,519,520,521,522,523,524,525,529,531,532,534,536,537,538,539,540,541,543,544,546,547,548,549,550,551,552,554,556,557,559,562,563,565,566,567],input_1:546,input_2:546,input_3x3:370,input_data:546,input_featur:539,input_fp32:548,input_g:520,input_length:[264,520,531,540],input_list:16,input_nam:546,input_on:[285,369],input_s:[288,289,304,305,334,335,336,566],input_scal:520,input_split:16,input_tensor_list:16,input_to_model:558,input_tupl:519,input_var:[5,277],ins:519,insecur:196,insensit:296,insert:[16,17,20,321,322,330,374,452,461,476,506,519,525,548,549,567],insert_fold_prepack_op:525,insid:[2,6,519,521,525,533,537,539,541],insight:6,inspect:[1,2,177,182,533,539,541,556],inspir:[539,547],instal:[2,10,11,16,124,156,161,446,517,519,546,551,558],instanc:[1,15,16,17,183,197,282,283,285,297,298,299,306,320,362,364,369,374,384,398,403,471,519,521,522,525,527,529,531,533,538,539,540,548,551,552,553,559,565,567],instance_norm:[520,546],instancenorm1d:[531,549],instancenorm2d:[531,549],instancenorm3d:[531,549],instancenorm:290,instantan:12,instanti:[2,16,114,283,398,406,517,519,521,531,539,551,567],instead:[2,5,7,10,15,16,17,19,70,124,131,140,141,156,161,167,177,179,213,227,254,255,256,257,258,259,260,261,274,276,277,279,280,284,295,300,301,302,303,312,313,314,315,316,320,323,324,325,327,333,334,349,350,351,357,366,368,374,408,438,446,452,483,519,521,529,531,533,534,538,539,540,542,543,544,545,546,547,548,551,552,554,559,565],instruct:[4,9,519,546,548],instrument:541,insuffici:12,int16:[134,207,556,559,568],int32:[70,134,215,264,424,452,548,556,559,568],int64:[16,38,61,70,112,134,398,437,438,452,531,537,546,556,559,568],int8:[62,63,64,65,134,206,207,208,209,548,556,559,564,567,568],int_:[117,118],int_a:495,int_b:495,int_float:520,int_int:520,int_repr:[427,428,520,549,559],int_tensor:556,int_to_int:520,int_zerodim:556,intact:551,integ:[12,15,16,17,27,28,29,30,31,32,33,38,58,59,66,75,81,105,111,130,131,132,135,138,149,150,181,189,197,234,249,264,268,269,270,306,398,409,412,417,421,427,428,431,433,434,435,437,441,449,472,480,484,491,502,515,521,522,528,531,539,546,547,548,549,556,559,565,568],integer_interv:17,integergreaterthan:17,integr:[15,60,62,63,64,65,177,284,320,368,429,495,514,541,546,547,556,559],intel:545,intel_openmp:545,intend:[187,531],intens:547,intent:6,intention:551,inter:[143,459,536,538,551],interact:[2,7,11,12,15,522,546,558],interchang:[17,521,547],interconnect:16,interest:[6,7,518,534,548],interfac:[11,479,539,541,546,547,558,562,563,564,566],interfer:[1,537,546],interleav:547,intermedi:[5,283,361,363,365,519,531,534,540,546],intermediari:[10,17],intern:[1,7,12,15,17,48,98,177,205,259,260,261,357,418,468,471,522,531,533,534,536,537,546,551,552,553,554,557],internet:6,interop:459,interperet:197,interpol:[191,370,371,372,426,456,546,549,565,567],interpolation_mod:520,interpret:[12,15,16,17,19,143,177,179,182,183,300,459,517,521,527,531,536,537,554,557,565],interprocess:12,interrupt:527,interv:[1,17,38,431,432,495],intervent:[1,551],intra:[536,538],intraop:460,intrins:548,introduc:[17,197,288,304,334,447,517,535,538,546,551,559],introduct:[16,374,519,522,528,535,551,558],inttensor:[215,216,556,559],intuit:546,inv:[17,78],inv_scal:533,invalid:[235,533,534],invari:[17,398,471,553,554],invers:[9,17,19,25,26,51,54,73,78,79,119,124,156,161,175,222,271,272,273,282,283,285,317,318,319,369,401,418,446,520,531,547,559],inverse_indic:[504,505],invert:[17,79,98,156,161,205,222,317,318,319,468],invest:7,investig:6,invis:537,invoc:[2,5,178,183,519,539,541,546,551,553,567],invok:[1,11,16,20,177,178,277,284,320,368,374,519,522,525,533,536,538,539,541,547,552],involv:[6,7,9,15,528,534,537,538,540,551,552,553],invstd:520,iotamudelta:8,iparam:197,ipc:12,ipc_collect:12,ipc_handl:12,irecv:16,irfft:[19,446,520,559],irfftn:19,irrelev:[2,522],irrespect:[160,213,469,483,485,537],is_accept:520,is_avail:[3,12,16,124,156,161,446,537],is_built:3,is_coalesc:[520,554],is_complet:16,is_complex:[520,556,559],is_contigu:[520,528,557,559],is_cuda:[398,528,555,559],is_determinist:3,is_distribut:[15,520],is_en:1,is_floating_point:[520,528,556,559],is_grad_en:520,is_in_onnx_export:546,is_initi:[12,16],is_leaf:[2,520,528,559],is_mast:16,is_meta:559,is_mpi_avail:16,is_nccl_avail:16,is_ninja_avail:10,is_nonzero:520,is_own:551,is_pin:[15,398,520,528,555,559],is_python_modul:10,is_quant:559,is_same_s:520,is_script:521,is_set_to:[520,559],is_shar:[523,528,555,559],is_sign:[520,528,559],is_spars:[528,555,559],is_tensor:528,is_train:[2,458,560],is_vulkan_avail:520,isclos:[520,559],isend:16,isfinit:[520,559],isinf:[520,559],isinst:[17,167,520,539],isn:[6,15,175,534,537,539],isnan:[520,546,559],isneginf:[520,559],isol:527,isposinf:[520,559],isreal:[520,559],issu:[1,5,7,9,10,14,16,215,304,334,523,527,528,529,531,533,534,539,542,543,545],issubclass:539,istep:197,istft:[520,559],itch:6,item:[15,321,330,461,517,519,520,521,528,546,551,558,559,567],iter:[1,2,6,12,16,17,177,197,284,320,321,322,330,331,368,374,375,376,377,378,379,380,381,382,383,384,385,386,388,403,404,417,484,520,522,527,529,533,534,535,538,539,547,550,558],iter_end:15,iter_start:15,iterabledataset:[15,541],iters_to_accumul:533,itertool:[17,72,84],its:[1,2,4,6,7,10,11,12,15,16,17,19,45,46,47,78,79,86,99,102,131,154,177,181,220,257,259,260,261,268,269,270,271,272,273,277,284,297,298,299,320,321,330,357,368,374,375,384,387,388,389,390,391,392,393,394,399,405,438,455,456,458,465,484,511,519,521,525,527,531,533,534,535,537,538,539,540,543,544,545,546,547,549,551,552,553,554,556,557,559,567],itself:[5,6,177,182,183,284,320,351,368,374,379,380,381,382,383,384,385,386,395,519,527,531,543,546,551,557],ivalu:541,ivar:197,jacobian:[2,17,161,534],jakob:[361,363,365],jang:17,javadoc:518,jax:534,jed:197,jit:[9,10,20,143,176,177,459,460,518,521,523,525,529,536,541,544,546,551],job:[16,374,541,547,558],joel:[417,484],johann:8,johnson:8,join:[6,16,20,374,517,522,527,534,538,542],jointli:[17,326],jone:[361,363,365],joulin:249,journal:429,jpeg:541,json:541,juggl:5,jump:[556,559],junji:8,just:[2,3,6,10,17,29,87,183,184,279,280,374,497,498,499,500,517,519,527,533,534,537,539,541,544,546,551,552,557,559,567],jvp:2,k_0:491,k_proj_weight:520,kaiming_normal_:[523,532],kaiming_uniform_:532,kaiser:[187,361,363,365],kaiser_window:520,karl:8,karuppasami:8,kdim:326,keep:[2,6,15,196,259,260,261,282,297,298,299,329,357,374,384,442,517,519,527,529,531,534,537,538,540,542,546,547,551,552,553],keep_initializers_as_input:546,keep_intermedi:10,keep_var:[177,284,320,368],keepdim:[35,36,45,46,188,212,224,226,227,229,232,239,240,329,408,423,426,477,478,482,508,509,520,524,528,531,546,559],kei:[2,15,177,184,196,284,320,321,326,330,361,362,363,364,365,368,391,520,521,539,541,544,546,547,548,551,552,555,558,559,564],kept:[259,260,261,297,298,299,357,527,531,565],kernel:[4,9,10,12,254,255,256,268,269,270,271,272,273,285,286,302,303,314,315,316,317,318,319,369,525,531,539,546,565],kernel_s:[254,255,256,268,269,270,271,272,273,285,286,302,303,314,315,316,317,318,319,369,520,531,558,562,563,564,565],kernel_shap:546,kesheng:197,key_averag:2,key_padding_mask:[326,520],keyword:[1,2,12,15,22,23,25,26,27,28,29,30,31,32,33,35,36,37,38,50,51,52,53,54,58,59,60,62,63,64,65,66,68,70,73,75,77,78,79,81,83,86,87,88,89,91,92,93,94,95,96,99,103,105,108,109,111,112,113,115,117,118,119,120,121,122,130,131,132,135,136,138,139,140,148,149,150,151,152,153,154,155,158,160,172,173,177,178,183,184,187,188,189,190,191,196,198,199,200,201,202,203,204,206,207,208,209,210,212,213,214,216,219,220,224,225,226,227,229,230,231,232,234,235,237,239,240,242,243,245,277,284,294,296,320,368,379,384,388,407,409,413,416,419,420,421,422,423,425,426,430,431,432,433,434,435,436,437,438,440,441,442,449,450,452,463,464,465,466,467,469,470,471,473,474,475,476,477,480,482,483,485,488,489,490,492,496,497,498,499,500,502,508,510,513,515,516,517,522,524,529,539,546,547,551,558],kick:[538,551,552],kickoff:552,kill:[527,540],kind:[16,155,187,375,424,539,542,548,556],kl_div:[1,520],kl_diverg:17,kl_normal_norm:17,kl_version1:17,kl_version2:17,kldivloss:[531,546],know:[2,5,6,181,374,519,533,534,546,551,552,553,559],knowledg:553,known:[6,14,16,183,184,196,268,269,270,271,272,273,285,304,334,349,369,418,519,520,523,527,532,534,536,543,546,548,551,553],knuth:6,knyazev2001:197,knyazev:197,kostmo:8,kth:188,kthvalu:[520,528,559],kullback:[17,300,531],kw_i:326,kwarg:[1,2,5,10,16,177,178,179,215,284,288,296,304,320,334,368,379,384,388,398,451,504,505,517,522,531,539,546,551,555,559,566,567],kwlist:558,l1_loss:[1,520],l1loss:[349,531],l1unstructur:388,l2norm:548,l423:546,l_1:[257,258,295,300,301,312,327,367],l_c:258,l_i:367,l_infin:367,l_n:[257,258,295,300,301,312,327,367],l_p:[367,531],label:[6,15,249,258,264,274,295,313,323,324,399,531,538,542,543,547,558],label_img:558,labori:539,lack:9,lambd:[291,355,520,531,547,559],lambda1:547,lambda2:547,lambda:[2,15,17,20,74,196,291,355,367,522,531,539,547,551,559],lambdalr:547,langl:17,languag:[10,182,249,361,518,531,540,546],lapack:[9,78,140,414,415,425,483],lara:8,larg:[6,12,15,22,249,285,369,374,425,518,527,529,531,536,540,544,546,547,551,554,556,559,567],large_model:546,large_pool:12,larger:[1,2,7,61,81,249,277,282,283,313,367,370,374,531,534,537,540,541,544,546,558,559],largest:[61,130,197,492,520,521,524,531,549,559,568],last:[2,5,9,15,19,59,66,70,80,100,124,126,149,150,165,175,188,227,232,249,262,268,269,270,271,272,273,283,284,288,304,306,308,327,333,334,362,363,369,374,375,407,408,446,447,452,470,472,479,483,491,492,495,511,512,521,528,531,534,539,543,547],last_epoch:547,late:533,latenc:536,later:[2,6,14,196,276,304,314,315,316,327,334,347,374,519,531,534,536,537,538,539,544,552,553,565,566],latest:[6,16,17,384,517,546,551],latin1:196,latter:[9,29,177,284,320,368,542,543,567],launch:[4,15,374,534,536,537,551],launcher:16,law:249,layer:[1,16,254,255,256,258,259,260,261,262,268,269,270,271,272,273,279,280,288,289,290,297,298,299,304,305,306,308,314,315,316,326,327,334,336,357,361,362,363,364,365,531,532,534,539,540,541,544,547,548,549,565,567],layer_count:546,layer_norm:[1,520,546],layernorm:[290,297,298,299,531,549],layout:[12,38,59,66,111,112,113,123,135,136,149,150,187,195,211,412,413,431,432,433,434,435,436,437,438,471,498,500,515,516,517,519,520,521,523,554,558,559],lazi:547,lazili:[12,519],lbfg:547,lbrace:[497,498,499,500],lceil:[38,75],lcm:[520,559],lcm_:[520,559],ldexp:520,ldot:[17,195,211,306,314,315,316],le_:[520,559],lead:[2,6,14,124,304,334,374,446,475,529,536,538,539,545,547,559],leadership:7,leaf:[2,490,533,549,559,567],leak:[2,527],leaki:[337,531,532],leaky_relu:[520,532,546],leaky_relu_:[520,531],leakyrelu:[321,531],learn:[1,6,11,17,262,274,279,280,282,283,295,308,328,347,366,367,518,530,531,532,548,551,553],learnabl:[259,260,261,262,268,269,270,271,272,273,282,283,288,289,290,297,298,299,304,305,306,308,328,334,336,357,531,565,566],learned_0:546,learned_14:546,learned_15:546,learned_1:546,learned_2:546,learned_3:546,learned_:546,least:[17,61,100,102,124,128,129,156,161,175,189,197,213,220,249,399,446,517,529,532,535,540,553,555,559],leav:[2,179,185,475,519,521,534,559],left:[38,59,66,67,70,75,103,110,128,130,131,133,149,150,175,179,187,202,203,235,238,249,254,255,256,257,258,268,269,270,271,272,273,276,285,300,301,302,303,309,310,311,312,314,315,316,323,324,325,329,330,366,369,370,371,372,377,415,438,452,479,491,507,519,520,531,539,546,547,559,567],leg:154,legaci:[531,556],legitim:[328,531],leibler:[17,300,531],lemma:17,len:[15,16,19,212,226,240,277,383,385,401,471,472,477,478,482,507,508,509,519,520,531,546,547,554,558],length:[2,12,15,16,17,19,84,109,158,175,183,187,241,258,264,268,277,283,285,288,302,304,326,334,361,369,398,399,400,401,402,429,479,520,529,531,535,540,559,567],lens_unpack:401,leq:[34,59,60,81,168,190,210,264,276,281,323,325,327,479,531],lerp:[520,559],lerp_:[520,559],less:[2,6,12,15,16,17,110,130,190,197,214,215,249,333,349,355,401,465,498,500,517,520,539,542,549,559],less_:[520,559],less_equ:[520,559],less_equal_:[520,559],less_than:17,lesser:[534,536,548],let:[2,6,15,17,187,528,529,534,537,538,539,542,543,544,545,552,553,558,559],letter:110,level:[6,11,12,15,140,277,374,519,522,527,532,536,539,548,551,558,559],leverag:551,lexic:522,lexicograph:407,lfloor:[75,130,133,249,254,255,256,268,269,270,271,272,273,285,302,303,314,315,316,369,370,371,372,438,446,479,531],lgamma:[520,559],lgamma_:[520,559],lib64:10,lib:[196,451,545],libenzi:8,librari:[4,7,9,10,11,12,15,215,441,518,536,538,539,540,541,542,545,546,548,551],library_root:11,librosa:479,libtorch:11,lie:[351,353,531,558],lies:426,life:559,lifetim:[6,551],lift:529,light:558,like:[1,2,4,5,6,7,9,10,11,12,15,16,17,19,48,59,66,105,110,111,149,150,160,180,181,183,187,196,249,257,285,288,297,298,299,304,321,322,330,331,334,369,374,375,398,412,431,435,451,469,515,517,518,519,521,527,528,529,531,533,537,540,541,542,544,545,546,548,549,551,552,556,559,563,567],likelihood:[17,249,327,333,531],lim:[17,175],lim_:[257,534],limit:[15,124,156,161,264,282,388,446,518,527,529,534,538,543,544,548,549,551,552],limits_:204,linalg:[408,518],linalg_det:520,linalg_norm:520,line:[2,4,16,177,181,320,461,519,522,531,535,539,543,545,546],line_search_fn:547,linear1:548,linear:[1,2,8,12,79,177,182,191,216,257,263,284,287,294,320,322,334,336,338,347,354,357,368,370,374,387,388,389,390,391,393,394,395,396,397,403,405,417,426,456,469,520,521,524,525,532,534,537,538,539,540,544,546,547,548,549,559,562,563,567],linear_fp32:548,linear_int8_w_fp32_inp:548,linear_relu:[],linear_weight_fp32:548,linear_weight_int8:548,linear_with_activation_int8:548,linearfunct:539,linearli:[370,425,531,540,547,548,549,565],linearrelu:549,liner:337,linewidth:461,link:[10,11,17,268,269,270,271,272,273,285,314,315,316,369,529,531,541,546],linker:10,linspac:[9,61,520,523],linux:[11,16,517],list:[1,2,5,6,7,10,11,12,15,16,17,20,49,55,56,57,69,72,80,84,97,110,111,127,135,161,177,183,184,226,240,277,282,284,306,320,322,331,357,368,374,375,379,380,381,382,383,384,385,386,395,398,399,400,401,402,408,412,431,435,448,471,472,477,478,482,490,491,504,505,515,517,519,520,522,523,524,525,528,529,531,539,543,544,545,546,547,548,549,551,552,554,555,556,557,558,559,560,567],listconstruct:[519,546],listen:16,listloopmodel:546,listofproperti:558,liter:[520,522,529],literatur:[268,269,270],littl:[539,553],live:[177,284,320,368,519,540,547,551,553],llion:[361,363,365],lmbda:547,load:[1,2,9,10,11,181,183,320,374,451,519,525,526,529,541,545,546,547,548],load_inlin:10,load_nvprof:2,load_state_dict:[1,177,196,284,320,368,517,544,547],load_state_dict_from_url:[517,526],load_url:526,loadabl:517,loaded_even:544,loaded_numb:544,loaded_smal:544,loaded_weight:559,loader:[15,547],loaiza:17,loc:[17,196],local:[1,16,114,197,279,280,285,309,369,374,406,458,517,521,527,531,533,538,540,551,552,553,558],local_process_rank:16,local_rank:[16,357],local_response_norm:520,local_valu:551,localhost:[551,552],locallr_0:558,localresponsenorm:531,locat:[2,10,12,17,48,69,70,92,93,113,188,196,224,227,229,232,235,277,285,352,369,374,452,517,519,526,531,546,547,553,554,558,559],lock:[6,15,16,17,534,537,542,552],log10:[1,520,528,559],log10_:[520,528,559],log1p:[1,520,528,546,559],log1p_:[520,528,559],log2:[1,121,520,528,546,559],log2_:[520,528,559],log:[1,10,15,17,120,122,194,200,202,204,205,212,238,249,257,258,276,300,310,311,324,327,333,350,351,354,468,520,528,531,537,539,546,558,559,560],log_2:203,log_:[198,199,200,201,520,528,559],log_abs_det_jacobian:17,log_dir:558,log_input:[333,520,531],log_norm:17,log_normal_:[520,528,559,560],log_pob:249,log_prob:[17,249,264,520,531],log_sigmoid:[520,546],log_softmax:[1,264,520,529,546],log_target:[300,520,531],logabsdet:468,logaddexp2:[520,559],logaddexp:[203,520,559],logarithm:[103,194,198,199,200,201,202,203,204,211,264,531],logcumsumexp:[520,559],logdet:[468,520,546,559],logdir:558,loggingtensor:539,logic:[5,15,19,62,63,64,65,206,207,208,209,424,445,522,539,548],logical_and:[520,559],logical_and_:[520,559],logical_not:[520,528,559],logical_not_:[520,528,559],logical_or:[520,559],logical_or_:[520,559],logical_xor:[520,559],logical_xor_:[520,559],logist:[17,347,350,531],logit:[17,258,520,531,559],logit_:[520,559],logsoftmax:[276,327,351,531],logspac:[9,520,523],logsumexp:[202,520,528,546,559],long_tensor:556,long_zerodim:556,longer:[2,29,374,551,553],longest:[264,399,401,402,540],longtensor:[45,46,47,92,93,137,158,188,224,227,229,232,235,282,283,323,407,437,470,471,487,492,514,531,554,556,559],look:[4,6,7,11,16,17,249,332,390,418,519,521,528,531,533,534,541,542,545,546,551,552],lookup:[17,282,519,522,531,536,546,552],loop:[12,183,374,519,520,536,540,546,548,558,567],loop_and_list:546,loop_count:546,loop_in_traced_fn:519,loop_rang:546,loopmodel2:546,loopmodel:546,loos:541,lorentz:17,lose:529,loss0:533,loss1:533,loss:[1,2,9,17,175,249,257,258,264,274,276,295,300,301,312,313,323,324,325,327,333,349,350,366,367,374,399,517,529,534,538,540,547,548,551,552,558],loss_fn:[1,533,538,542,547],loss_func:[374,551],lost:[1,161,268,269,270,271,272,273,277,317,318,319,425],lot:[6,527,534,542,550,552,558],low:[2,6,12,17,140,264,417,429,433,434,484,520,527,559],lower:[2,16,17,67,70,77,78,79,81,110,152,227,235,249,337,424,442,452,485,496,497,498,519,520,530,531,532,534,546,547,548],lower_bound:17,lower_choleski:17,lower_triangular:17,lowercas:16,lowercholeski:17,lowercholeskytransform:17,lowest:[76,382,383,391,392,433,434,539],lowrank_multivariate_norm:17,lp_pool1d:520,lp_pool2d:520,lppool1d:531,lppool2d:531,lr_0:558,lr_decai:547,lr_lambda:547,lr_schedul:547,lrelu:321,lrn:309,lru:[124,156,161,446,537],lstm:[2,5,305,520,537,546,548,549,558],lstm_cell:520,lstmcell:[1,548,549],lstsq:[520,559],lt_:[520,559],lu_data:[216,217,520,559],lu_pivot:[216,217,520,559],lu_solv:[520,559],lu_unpack:215,lukasz:[361,363,365],lvert:[34,168,366,531],m_state_dict:544,macbook:558,machin:[3,16,354,374,541,543,550,551,552],machine_nam:16,machineri:539,maco:[16,527],macro:10,maddison:17,made:[2,7,363,365,521,545,547,558],mae:301,magic:[520,522],magma:[78,215,483,545],magma_2:545,magma_hom:545,magnitud:[1,405,425,532,533,537],mai:[1,2,3,4,6,10,12,14,15,16,17,33,48,61,69,87,110,113,124,132,156,161,175,177,178,181,183,196,197,202,249,264,268,269,270,271,272,273,276,284,304,320,327,334,363,365,368,374,408,425,441,444,446,456,479,518,519,521,525,529,531,533,535,536,537,539,540,543,544,545,546,547,551,553,554,555,559,560],main:[15,16,17,99,100,101,102,497,498,499,500,519,527,529,531,533,534,538,539,545,551,552,558,559],main_tag:558,mainli:[17,264,531,567],maintain:[1,6,15,16,17,253,374,398,518,531,533,537],major:[2,6,12,300,518,531,546,554],make:[2,4,5,10,11,12,15,16,17,19,61,77,78,79,100,114,177,181,197,257,264,268,269,270,271,272,273,284,320,346,368,374,388,406,454,485,492,517,519,521,527,528,531,533,534,535,537,538,539,540,542,543,545,546,547,548,549,551,552,553,556,558,559,565],make_dict:519,make_grid:558,malici:196,manag:[1,2,6,17,22,114,374,406,458,522,540,541,546,550,551,552,559,560],mandat:539,mandatorili:15,mani:[1,2,6,7,9,10,15,16,22,48,177,264,284,320,368,497,498,499,500,519,521,528,532,534,535,536,539,541,548,549,553,556,558,559,560],manipul:[533,540,548,549],manner:[2,5,529,535,559],manoj:8,mantissa:[537,559],manual:[1,15,16,257,258,276,324,325,327,398,519,527,531,533,537,539,540,545,546,547,548,558],manual_se:[12,15,22,520,528,543,550],manual_seed_al:12,map:[10,17,26,54,180,181,196,197,271,272,273,279,280,285,317,318,319,321,326,330,428,504,505,522,529,531,534,538,539,545,546,548,549,551,552,553,555,567],map_:[523,559],map_loc:[180,196,374,517,526],margin:[274,295,313,323,325,366,367,520,531,558],margin_ranking_loss:[1,520],marginrankingloss:531,mark:[2,12,20,374,519,521,534,538,539,552,559],mark_dirti:[2,539],mark_non_differenti:[2,539],marker:12,market:[6,7],marten:532,martinsson:[417,484],mask:[219,253,264,326,361,362,363,364,365,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,520,528,529,531,559],masked_fil:[520,528,546,559],masked_fill_:[520,528,529,559],masked_scatt:[520,546,559],masked_scatter_:[520,559],masked_select:[520,528,546,559],mass:17,massa:8,master:[6,361,517,546,551],master_addr:[16,551,552],master_port:[16,551,552],mat1:[31,231,520,554,559],mat2:[31,68,231,520,554,559],mat:[32,237,415,429,520,554,558,559],match:[1,2,12,16,17,177,196,219,283,284,320,368,370,374,409,427,491,519,524,528,531,534,535,539,544,546,547,548,551,556,559,565],materi:[2,539],math:[15,120,121,122,221,300,417,484,519,521,531],mathbb:327,mathbf:[17,403,405],mathbin:[28,31,32,58,68],mathcal:[262,268,269,270,271,272,273,282,283,288,289,304,305,308,334,336,337,357,435,532],mathemat:[2,9,161,221,257,259,260,261,297,298,299,357,374,446,531,534,560],mathematician:534,mathremaind:520,mathrm:[17,60,117,118,119,259,260,261,290,297,298,299,306,333,357],matmul:[1,3,9,68,77,160,231,369,417,418,425,469,483,485,520,528,537,559],matplotlib:558,matric:[17,28,31,58,68,76,77,79,98,100,140,197,205,213,215,222,231,417,425,461,468,469,483,484,485,496,497,499,520,524,528,531,554,559],matrix:[3,17,28,31,32,33,58,60,67,68,74,76,77,78,79,98,99,100,102,109,110,140,160,197,205,213,215,217,220,221,222,223,231,235,237,282,283,369,403,408,414,415,416,417,418,425,468,469,471,483,484,485,491,493,496,497,498,499,500,507,524,528,529,531,532,536,537,548,554,558,559],matrix_exp:[520,559],matrix_pow:[221,520,559],matrix_rank:520,matter:[2,4,7,100,180,181,183,534],max:[2,15,16,35,36,45,61,74,77,81,82,92,152,160,182,213,223,227,250,251,252,263,264,274,275,283,286,295,302,303,307,309,313,314,315,316,317,318,319,323,324,325,328,338,339,345,366,367,369,376,401,519,520,524,531,535,537,540,546,547,549,559,565,567,568],max_:[314,315,316,403],max_bin:558,max_ev:547,max_indic:[224,227],max_it:547,max_job:10,max_lr:547,max_memory_alloc:[12,537],max_memory_cach:12,max_memory_reserv:[12,537],max_momentum:547,max_norm:[1,282,283,376,520,531,533],max_pool1d:520,max_pool1d_with_indic:520,max_pool2d:[520,549,565],max_pool2d_with_indic:520,max_pool3d:520,max_pool3d_with_indic:520,max_queu:558,max_siz:[3,537],max_unpool1d:520,max_unpool2d:520,max_unpool3d:520,max_val:[294,520,531],max_valu:[294,520],maxim:[81,224,317,318,319,547],maximum:[12,17,35,45,92,93,152,197,224,294,377,429,442,520,531,533,537,547,548,549,559,567],maxnorm:[442,520,559],maxpool1d:[317,531,546],maxpool2d:[318,321,531,546,549,565],maxpool3d:[319,456,531,546],maxpool:[286,546],maxunpool1d:[250,314,531],maxunpool2d:[251,286,315,531],maxunpool3d:[252,316,531],may04_22:558,mayb:6,mean:[1,2,3,5,6,11,15,16,17,58,181,227,235,247,248,249,251,252,253,257,258,259,260,261,262,263,264,274,276,278,281,283,287,288,290,291,292,293,294,295,297,298,299,300,301,304,306,307,308,310,311,312,313,323,324,325,327,328,333,334,337,338,339,345,347,348,349,350,351,353,354,355,356,357,358,359,360,366,367,374,409,435,436,478,484,509,519,520,521,527,528,529,531,532,533,537,538,539,540,545,546,547,548,549,551,552,553,559,565],mean_di:520,mean_dy_xmu:520,meant:[398,533,551],meantim:[257,258,274,276,295,300,301,312,313,323,324,325,327,333,349,350,366,531],measur:[12,17,257,258,274,295,300,301,312,313,366,367,531,537,541,547],mechan:[16,518,527,539,541,548,549,551,552],median:[17,520,528,559],medium:6,meet:537,megabyt:374,meiyu:197,member:[6,7,15,16,177,284,320,368,519,521,540],membership:[7,522],memcheck:537,memo:[177,284,320,368],memoiz:17,memori:[2,5,9,17,18,48,69,83,110,111,112,113,134,136,177,185,283,284,304,305,320,361,362,363,368,374,398,406,413,432,434,436,490,516,519,525,527,529,531,534,542,547,548,549,551,555,556,557,559,566],memory_alloc:[12,537],memory_cach:12,memory_effici:185,memory_format:[83,111,112,136,177,284,320,368,374,413,432,434,436,516,520,559],memory_key_padding_mask:[361,362,363],memory_mask:[361,362,363],memory_reserv:[12,537],memory_snapshot:[12,537],memory_stat:[12,537],memory_summari:12,mendoza:8,mention:[517,521,529,537,539,557],mere:6,merg:[6,7,15,321,330],mesh:558,meshgrid:520,messag:[6,12,21,517,519,520,522,540,546,547,551,553],messmer:8,met:197,meta:[551,558,559],metaclass:522,metadata:[196,451,539,544,551,552,558],metadata_head:558,metadatatensor:539,meth:196,method2:184,method:[1,6,10,11,12,15,16,17,20,45,46,47,124,156,161,177,178,179,181,182,183,184,185,196,197,223,249,257,282,284,320,321,322,330,331,368,374,379,381,384,387,388,389,391,392,393,394,395,401,403,418,446,479,483,517,519,522,525,527,528,529,531,532,533,537,539,540,542,544,546,547,548,549,551,553,554,556,558,559,560,567],metric:[12,547,558],metric_dict:558,michael:8,middl:546,might:[2,4,7,10,11,17,91,109,183,184,268,269,270,271,272,273,374,375,517,519,534,536,538,539,541,543,546,551,552,553,557,559],mileston:547,millisecond:12,mimick:9,min:[15,16,35,36,46,81,82,93,152,235,263,307,309,328,339,345,417,425,483,497,498,499,500,520,524,528,531,546,547,549,551,559,565,567,568],min_indic:[229,520],min_lr:547,min_val:[294,520,531],min_valu:294,min_x:213,mind:[282,534,546],minfunc:547,ming:197,mingzh:8,mingzhe09088:8,mini:[15,259,260,261,282,283,290,295,297,298,299,306,313,323,325,357,366,531,565],minibatch:[15,215,249,257,258,274,276,295,300,301,312,313,323,324,325,327,333,349,350,366,370,531,565],minim:[2,6,9,45,46,81,229,517,533,542,544,547,548,567],minimum:[10,36,46,61,93,152,229,264,294,367,471,520,547,548,549,556,559,567],ministri:539,minkowski:[74,531],minlength:[61,520,559],minmax:548,minmaxobserv:[549,567],minor:[7,12],minu:122,minut:[6,16,558],miopen_batch_norm:520,miopen_convolut:520,miopen_convolution_transpos:520,miopen_depthwise_convolut:520,miopen_rnn:520,mirror:559,misalign:528,mise:17,mismatch:[1,161,521,533,538,539,540],misnom:131,miss:[177,274,284,297,298,299,320,368,545,546],missing_kei:[177,284,320,368],mistak:540,mix:[10,17,374,518,536,546],mixtur:[1,17],mixture_distribut:17,mixture_same_famili:17,mkl:[124,156,161,446,536,545],mkl_2018:[],mkl_2020:545,mkl_fft:545,mkl_num_thread:536,mkl_thread:536,mkldnn:559,mkldnn_adaptive_avg_pool2d:520,mkldnn_convolut:520,mkldnn_convolution_backward_weight:520,mkldnn_cpu_runtim:536,mkldnn_linear:520,mkldnn_max_pool2d:520,mkldnn_max_pool3d:520,mkldnn_reorder_conv2d_weight:520,mkldnn_reorder_conv3d_weight:520,mmap:527,mnist:558,mnist_train:558,mnt:16,mobil:[525,548],mobile_optim:518,mobilenet_v2:546,mobilenetv3:[293,531],mobileoptimizertyp:525,mod:[184,521,564,565,566,567],mode:[2,4,15,16,17,19,161,177,183,185,259,260,261,283,284,290,297,298,299,300,306,320,335,357,368,370,371,374,406,456,457,458,520,525,528,531,532,537,538,540,546,547,548,549,551,559,565,567],model0:533,model1:533,model:[1,2,4,5,12,16,17,177,179,183,185,196,249,277,284,299,320,326,346,357,361,363,365,368,374,375,378,388,404,479,519,521,522,525,526,531,534,536,537,538,542,543,544,546,549,551,552,558],model_dir:[517,526],model_fp32:548,model_fp32_fus:548,model_fp32_prepar:548,model_int8:548,model_paramet:547,model_zoo:518,moder:5,modestli:547,modf:520,modif:[2,11,134,374,548,559],modifi:[1,2,15,87,155,175,177,178,187,282,284,320,361,363,365,368,374,376,377,387,388,389,391,392,393,394,519,528,531,533,534,537,539,544,546,547,551,557,559,567],modified_tensor:[],modl:17,modul:[1,2,5,10,16,19,124,156,161,177,178,179,180,181,182,183,184,185,196,249,253,259,260,261,262,268,269,270,271,272,273,277,278,279,280,282,283,284,290,297,298,299,306,308,321,322,326,330,331,335,346,351,357,361,368,374,375,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,401,403,405,446,451,517,518,522,525,527,529,530,531,533,534,536,537,538,540,541,542,543,545,546,547,549,551,558,559,560,561,562,563,564,565,566,567],modular:[1,533],module_kwarg:531,moduledict:521,modules_to_fus:567,modulo:17,modulu:446,momemtum:[],moment:[2,525,527,546,547,551,565],momentum:[259,260,261,297,298,299,357,520,531,534,547,562,565],monitor:[12,124,156,161,446,537,547],monoton:[17,70,452],mont:17,moor:418,more:[1,2,4,7,9,10,11,12,14,15,16,17,19,48,55,56,57,67,69,70,76,77,79,98,101,113,124,156,160,161,163,165,167,177,184,197,200,203,205,216,249,253,258,263,264,282,283,284,304,320,326,332,333,334,345,357,368,374,375,407,408,418,424,425,445,446,451,452,456,468,469,483,485,496,517,519,521,526,527,528,529,530,531,532,534,536,537,539,540,541,544,546,547,548,551,552,553,554,556,557,558,559,560,565],more_img:529,moreov:[161,374,551,559],most:[2,4,6,11,12,15,16,17,165,232,249,517,519,521,523,527,529,531,534,537,539,542,543,547,548,552,553,554,556,558,559],mostli:[6,17],motiv:[6,552],moustapha:249,move:[5,177,180,196,233,259,260,261,284,320,357,368,521,525,526,527,529,531,537,540,542,547,548,551,555,559,567],movedim:[520,557,559],movement:557,moviepi:558,movingaverageminmaxobserv:[549,567],movingaverageperchannelminmaxobserv:[549,567],mpi:16,mro:522,mrshenli:8,mse_loss:[1,520],mseloss:[349,531,538],msg:12,msys2:545,much:[1,2,4,6,7,11,15,197,283,374,388,519,534,537,544,547,551,552,559],mul:[2,236,519,520,528,539,546,552,554,556,559,565],mul_:[9,520,528,554,559],mul_scalar:565,mulbackward0:2,mulconst:539,mult:15,multi:[4,12,177,258,277,288,304,320,323,324,325,334,361,363,370,374,519,536,537,546,551,556,559,560],multi_head_attention_forward:520,multi_margin_loss:[1,520],multicast:16,multidimension:297,multihead:326,multihead_attn:326,multiheadattent:[361,363,365],multilabel_margin_loss:[1,520],multilabel_soft_margin_loss:520,multilabelmarginloss:531,multilabelsoftmarginloss:531,multilay:[288,304],multilin:558,multilinear:110,multimarginloss:531,multinomi:[520,546,559],multipi:[],multipl:[1,3,12,15,16,17,20,28,30,31,35,36,45,46,74,110,177,184,189,220,224,229,231,257,258,271,272,273,274,276,283,284,285,295,300,301,309,312,313,320,323,324,325,327,333,349,350,366,368,369,374,379,380,381,382,383,384,385,386,491,496,517,521,527,528,529,531,534,536,537,538,541,542,543,544,545,547,548,551,552,553,554,559,567],multiplex:551,multipli:[1,27,28,29,30,31,32,33,58,68,110,156,161,220,231,234,237,257,268,269,270,273,288,304,370,371,372,415,479,480,520,528,531,537,547,554,559,565],multiplicand:234,multiplicativelr:547,multiply_:[520,559],multiprocess:[15,16,277,374,518,529,538,552],multiprocessing_context:15,multisteplr:547,multithread:537,multivari:[17,238],multivariate_norm:17,must:[1,2,10,12,15,16,17,19,20,22,27,28,29,30,31,32,33,53,58,60,62,63,64,65,68,70,73,81,86,91,100,102,104,124,128,129,132,137,138,154,177,181,183,189,191,197,216,218,219,220,233,234,235,238,245,258,264,268,269,270,271,272,273,277,283,284,285,314,320,323,355,368,374,388,398,416,417,420,422,441,446,447,452,456,460,479,484,491,498,500,511,514,519,520,521,524,527,528,529,531,532,533,534,535,538,539,542,544,546,547,548,549,550,551,552,553,555,559,565],mutabl:[183,519],mutat:[374,559,567],mute:517,mutex:534,mutual:[15,16],mvlgamma:[520,559],mvlgamma_:[520,559],mvn:17,my_add:552,my_api:541,my_const:519,my_constraint:17,my_dict:[519,521],my_experi:558,my_factori:17,my_imag:558,my_image_batch:558,my_image_hwc:558,my_int:[519,521],my_lib:545,my_lib_add_backward_cuda:545,my_lib_add_forward_cuda:545,my_list:521,my_lstm:540,my_mesh:558,my_model:[374,519],my_modul:519,my_module_inst:519,my_paramet:521,my_qconfig:567,my_registri:17,my_script_add:551,my_script_modul:[519,521],my_scripted_model:519,my_submodul:521,my_transform:17,my_variable_nam:521,myconstraint:17,myconstraintclass:17,mycpuorg:8,myfloat32func:533,myfunc:2,myiterabledataset:15,mymm:533,mymodel:[533,542,567],mymodul:[179,181,182,185,321,322,330,331,519,521,540,544],mymodule2:[],mypi:[167,521],myscriptmodul:519,mytransform:17,n_0:531,n_1:[124,156,446],n_2:[],n_bin:520,n_class:249,n_d:[124,156,446],n_epoch:15,n_fft:[175,479,520,559],n_frame:175,n_i:[124,156,161,254,255,256,268,269,270,314,315,316,366,367,446],n_iter:558,n_k:531,n_power_iter:403,n_t:288,naiv:15,name:[2,10,12,16,17,19,131,177,180,181,184,196,284,320,368,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,403,405,451,455,507,517,518,519,520,522,523,526,527,532,538,539,541,546,551,552,555,558,565,567,568],named_buff:[177,284,320,368,544],named_children:[177,284,320,368],named_flat_img:529,named_img:529,named_modul:[177,284,320,368],named_paramet:[177,284,320,368,544],named_tensor:529,namedshap:[368,529],namedtensor:[368,529],namedtupl:[15,92,93,109,140,177,188,213,224,227,229,232,249,284,320,368,417,425,468,469,470,483,485,492,496,519,521],namespac:[1,519,522,539,546,549],nan:[1,2,17,26,28,31,32,33,34,50,54,58,70,168,169,170,171,198,200,205,210,225,230,239,240,450,452,468,473,483,485,531,533],nanquantil:[520,559],nansum:[520,559],narrow:[520,528,546,557,559],narrow_copi:[520,554,559],nasdaq:558,natalia:8,nathan:[417,484],nativ:[1,181,519,527,551],native_batch_norm:520,native_group_norm:520,native_layer_norm:520,native_norm:520,natur:[2,4,6,9,17,198,200,249],nbatch:[257,258],nbcsm:8,nccl2:374,nccl:374,nccl_blocking_wait:16,nccl_debug:16,nccl_debug_subsi:16,nccl_socket_ifnam:16,nchannel:328,nchw:558,ndarrai:[49,134,471,490,546,559],ndata:539,ndim:[528,559],ndimens:[523,528,559],ne_:[520,559],nearest:[370,372,531,549,565],nearli:[2,417,542,551,559],necessari:[1,2,10,15,22,158,182,399,400,519,529,534,535,537,538,545,548,551,552,553,556,559],necessarili:[3,16,17,109,227,276,327,418,537,539,546],need:[1,2,6,7,11,12,15,16,17,19,48,69,76,100,102,113,161,219,235,317,318,319,320,326,361,363,365,379,383,385,409,476,483,485,518,519,521,525,527,529,531,534,536,537,539,540,541,542,543,544,545,546,547,548,551,552,553,554,555,556,559,562,567],need_weight:[326,520],needs_input_grad:[2,539],needsinput:541,neeraj:8,neerajprad:8,neg:[10,12,15,17,19,22,61,169,170,172,205,218,222,235,249,258,307,314,323,327,333,349,366,367,491,495,497,498,499,500,506,519,520,528,531,532,534,546,550,559],neg_:[520,528,559],negat:[],negative_:[520,559],negative_binomi:17,negative_id:367,negative_slop:[307,520,531,532],neglig:[2,546],negoti:[7,551],neighbor:[175,370,372,479,549],neighborhood:[285,369],neighbour:[309,531,565],neither:[15,16,551],nelement:[324,350,523,559],nep:539,neq:[242,323,325,547],nest:[1,2,12,178,183,320,551,559],nesterov:547,net:[1,11,177,183,184,277,284,320,368,374,388,521,533,537,547,558],netlifi:6,network:[1,2,6,11,17,177,183,184,253,259,260,261,264,277,278,279,280,284,320,327,332,337,345,347,357,361,363,365,368,401,403,519,521,531,532,533,534,537,543,546,547,551,552,553,567],neural:[6,11,253,264,278,320,327,332,345,347,361,363,365,519,521,531,532,537,547],neurip:17,neuron:278,never:[2,5,6,16,74,175,196,374,398,534,551,559],nevertheless:553,new_:[537,559],new_bn:544,new_data:546,new_empti:[520,546,559],new_factor:1,new_ful:[520,537,546,559],new_group:[16,357],new_interv:1,new_lr:547,new_m:544,new_on:[523,559],new_scal:1,new_stat:[12,22,462,550],new_strategi:527,new_tensor:[523,537,559],new_zero:[520,546,559],newer:[3,536,537,544],newli:[6,427,428,534],newtyp:521,next:[2,15,16,17,245,288,289,300,305,334,336,374,527,531,533,534,536,542,546,551,552,556,558,559],next_layer_fp32:548,next_layer_int8:548,next_stat:17,nextaft:[520,559],nextafter_:[520,559],nfs:16,ngimel:8,nhead:[361,362,363,364,365],nhwc:[556,558],nice:[2,268,269,270,271,272,273,285,314,315,316,369,529,534],nichola:17,niederreit:429,nielsen:17,niki:[361,363,365],ninja:[10,545],niter:[197,417,484],nll:327,nll_loss2d:520,nll_loss:[1,520,546],nllloss:[276,300,351,456,531],nlp:[297,298,299],nn_func:539,nn_module_inst:519,nnode:16,nnq:567,nnz:[2,471,554,559],no_grad:[2,5,114,177,284,320,368,546,560],no_sync:374,noam:[361,363,365],noarch:545,nock:17,node:[16,264,277,374,525,537,546,551,552,553],node_rank:16,nois:[520,543],nola:175,nomin:521,non:[1,2,5,9,10,12,14,16,17,22,38,61,68,70,73,77,87,90,160,177,178,183,184,197,207,215,220,235,254,255,256,269,270,272,273,276,284,288,303,304,314,315,316,317,318,319,320,323,325,326,327,334,336,361,367,368,374,407,452,453,456,471,491,504,519,521,523,527,532,535,537,539,540,543,550,551,553,556,557,558,559,565,566,567],non_block:[177,284,320,368,398,520,537,555,559],non_leaf_module_list:567,noncontigu:2,nondet_tol:2,nondetermin:[2,543],nondeterminist:[61,264,268,269,270,271,272,273,456,531,559],nondetermnist:[],none:[1,2,10,12,15,16,17,19,20,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,49,50,51,52,53,54,58,59,60,61,62,63,64,65,66,68,70,73,75,77,78,79,81,82,86,87,88,89,90,91,92,93,94,95,96,99,103,105,106,108,109,111,112,113,115,117,118,119,120,121,122,123,125,130,131,132,133,135,136,137,138,139,140,141,146,147,148,149,150,151,152,153,154,155,158,160,161,172,173,175,176,177,180,181,182,183,184,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,216,219,220,223,224,225,226,227,229,230,231,232,234,235,236,237,239,240,242,243,244,245,247,248,251,252,254,255,256,257,258,259,260,261,264,274,276,277,282,283,284,286,294,295,300,301,302,303,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,330,331,333,335,349,350,351,353,357,361,362,363,364,365,366,367,368,370,371,372,374,377,379,380,381,382,383,384,385,386,401,402,403,404,405,407,408,409,410,412,413,416,417,419,420,421,422,423,425,426,429,430,431,432,433,434,435,436,437,438,440,441,442,443,447,449,450,451,452,461,462,463,464,465,466,467,469,470,471,473,474,475,476,477,479,480,481,482,483,484,485,488,489,490,492,497,498,499,500,502,504,505,507,508,510,513,515,516,517,519,520,521,524,525,526,527,528,529,531,532,537,539,542,544,546,547,548,550,551,554,555,558,559,562,564,565,567],nonexist:521,nonfinit:168,nonlinear:[257,274,295,334,336,532,566],nonlinearli:6,nonloc:522,nonmask:384,nonneg:[17,367,417,421,484],nonnegative_integ:17,nonzero:[2,175,206,208,209,215,514,520,546,559],noopobserv:[549,567],noordhui:8,noplot:6,nor:[15,16,374,424],noreturn:521,norm:[1,19,74,104,213,216,217,282,283,312,329,362,364,366,376,382,383,388,391,392,403,405,442,520,523,524,531,533,546,547,559,561],norm_except_dim:520,norm_typ:[282,283,302,303,376,520,531],normal:[1,2,19,109,124,156,161,175,177,179,202,253,259,260,261,279,280,290,297,298,299,306,309,345,357,362,364,376,377,388,396,397,403,405,435,436,442,446,456,479,517,519,520,523,528,532,534,537,551,558,559,560],normal_:[520,528,532,537,559,560],normalized_shap:[306,520,531,565],not_equ:[520,559],not_equal_:[520,559],notat:[461,522,559],note:[2,3,9,10,11,14,15,16,17,18,19,20,38,53,61,76,91,100,161,167,175,195,197,211,257,258,264,268,269,270,271,272,273,274,276,282,283,295,300,301,304,312,313,321,323,324,325,326,327,330,333,334,349,350,361,366,374,408,425,429,456,479,517,518,519,520,522,527,531,534,535,536,537,538,539,541,542,543,544,546,547,548,549,552,553,554,557,558,559,567],notebook:6,noth:[6,10,12,519,521,553],notic:[16,19,161,257,370,483,518,519,547],notifi:[7,553],notimpl:[522,539],notimplementederror:17,notion:[2,15,259,260,261,297,298,299,357],now:[2,5,12,142,161,183,335,370,388,519,528,529,533,534,535,537,538,539,546,547,552,553,559],nproc:[527,538,552],nproc_per_nod:16,nuanc:6,nuc:[383,392,408,524],nuclear:[408,524],nuclear_norm:520,num:[235,288,290,334],num_alloc_retri:12,num_averag:547,num_batches_track:544,num_channel:[290,529,565],num_class:[520,531],num_decoder_lay:361,num_direct:[288,304,334],num_embed:[282,283,531],num_encoder_lay:361,num_featur:[177,259,260,261,284,297,298,299,320,357,368,531,565],num_gpus_you_hav:16,num_group:[290,520,565],num_head:[326,520],num_kei:16,num_lay:[288,304,334,335,362,364,520,546],num_oom:12,num_paramet:328,num_proc:533,num_process:542,num_replica:15,num_sampl:[15,235,520,559],num_send_recv_thread:551,num_threshold:558,num_work:[15,545],num_worker_thread:551,number:[1,2,3,4,5,6,10,15,16,17,22,27,28,29,30,31,32,33,38,58,60,61,68,69,72,80,81,84,90,105,109,110,111,115,123,124,131,132,136,139,143,144,145,148,152,156,158,159,161,190,197,202,214,218,227,234,235,238,240,242,246,247,248,249,250,251,252,254,255,256,257,258,262,263,264,268,269,270,271,272,273,274,276,277,281,282,285,286,287,288,289,290,291,292,293,294,295,300,301,304,305,306,307,308,310,311,312,313,314,315,316,320,323,324,325,326,327,328,333,334,336,337,338,339,345,347,348,349,350,351,353,354,355,356,358,359,360,361,362,363,364,365,366,367,369,374,382,383,385,386,388,391,392,393,394,398,399,400,402,403,407,409,411,412,417,419,422,429,431,432,433,435,436,441,443,444,445,446,447,448,453,454,457,459,460,461,462,471,476,479,484,491,498,500,504,505,507,510,511,512,515,518,520,521,522,523,524,527,529,531,532,535,537,539,544,546,547,550,551,552,554,555,556,558,559,560,565,567,568],number_of_vertic:558,numel:[19,165,520,528,559],numer:[1,15,17,29,70,161,183,184,212,223,258,259,260,261,290,297,298,299,306,351,354,357,403,452,522,525,531,539,546,547,548,559,568],numpi:[15,34,49,134,408,420,443,461,471,490,523,524,535,539,540,543,545,546,556,557,558,559,568],nvcc:[10,12],nvidia:[2,16,456,537,540,543,545,560],nvlink:551,nvprof:[2,4],nvtx:[2,4],nvvp:2,nyquist:19,o_ort:546,o_t:304,obermey:8,obj:[12,166,167,182,451,545],object:[1,2,12,15,16,17,18,20,22,166,167,177,180,181,182,183,184,196,197,218,277,279,280,284,297,298,299,320,357,368,390,399,400,451,517,521,522,524,525,526,527,534,536,537,539,540,541,542,543,544,545,546,547,550,551,553,555,556,558,559,568],obscur:10,observ:[1,257,258,259,260,261,274,276,295,297,298,299,300,301,312,313,323,324,325,327,333,349,350,357,366,531,533,534,541,548,549],observer_en:567,observer_kwarg:567,observer_non_leaf_module_list:567,observerbas:567,obtain:[2,15,16,17,223,264,327,374,417,484,527,528,531,536,548,559],obviou:[540,553,554],obvious:6,occas:[2,6,534],occasion:554,occupi:[12,309,531,537,568],occur:[1,9,12,15,175,178,264,521,529,531,533,537,540,546,551,553,557,559],occurr:[227,398,504,505],oct:520,octob:12,odd:[17,19],odict_kei:391,odot:304,off:[2,6,12,59,66,149,150,175,183,258,458,531,536,538,541,549,551,552],offer:[16,537],offici:[7,16,249],offlin:181,offset:[48,100,101,102,283,374,427,428,498,500,520,531,548,559],often:[1,2,4,6,10,15,16,17,161,183,232,282,297,298,299,300,531,534,540,541,543,546,547,551,558,559],old:[16,413,451,516,519,534,545,547],older:[537,544],omagma:545,omega:479,omega_1:[124,156,446],omega_d:[124,156,446],omega_i:[124,156],omit:[2,5,10,16,19,110,333,545,546,551],omkl:545,omp:536,omp_num_thread:536,onc:[1,2,6,11,15,16,18,110,177,196,277,284,320,368,374,425,459,519,525,527,533,534,536,537,539,541,546,547,558],one:[1,2,4,5,6,9,10,11,12,15,16,17,19,20,48,55,61,69,70,101,110,113,124,156,161,162,164,165,187,195,211,220,225,230,235,249,254,257,258,259,260,261,264,268,271,272,273,276,283,286,297,298,299,301,302,303,312,320,324,357,370,374,375,378,388,399,404,405,407,408,425,427,428,446,452,456,461,475,494,506,518,519,524,525,527,528,529,531,534,535,536,537,538,539,541,542,543,545,546,547,551,553,555,556,558,559,565],one_hot:520,one_hot_categor:17,onecyclelr:547,ones:[2,15,16,17,20,48,60,69,113,123,175,182,196,258,285,290,306,324,325,327,369,374,379,380,381,382,383,384,385,386,388,389,402,413,442,514,520,523,528,529,531,534,535,537,539,543,546,547,551,553,556,559],ones_:532,ones_lik:[520,537,546],onesid:[161,175,446,479,520,559],onfunctionent:541,onfunctionexit:541,ongo:551,onli:[1,2,3,4,5,6,7,9,12,15,16,17,18,19,20,35,36,59,60,66,68,109,111,113,124,149,150,156,157,161,168,177,178,182,183,184,187,196,197,249,271,272,273,277,282,283,284,285,300,320,323,325,328,335,357,368,369,370,374,398,399,400,408,418,421,425,439,446,456,457,459,475,479,483,485,490,498,500,504,505,511,512,520,521,525,527,528,529,531,532,533,534,537,538,539,540,541,542,543,544,545,546,547,548,549,551,552,553,554,556,557,558,559,565,567],onlin:547,only_input:2,onnx:[399,400,518,529],onnx_model:546,onnxruntim:546,onto:[12,180,181,196,527,540],oom:540,opaqu:16,open:[2,7,17,180,196,519,527,545,551],openbla:545,opencv:11,openmp:[536,545],oper:[1,4,5,6,7,9,11,12,15,17,20,28,31,38,48,58,59,61,66,68,69,73,76,83,92,93,94,95,111,112,113,123,124,135,136,144,149,150,156,161,177,181,182,183,184,187,195,204,211,220,231,240,253,258,263,264,268,269,270,271,272,273,277,278,279,280,281,283,284,285,286,292,293,294,295,296,301,307,312,317,318,319,320,337,338,339,345,349,360,368,369,374,401,408,412,413,422,423,431,432,433,434,435,436,437,438,445,446,456,471,475,482,483,485,490,514,515,516,518,519,522,524,531,533,535,536,537,538,540,542,543,547,550,551,552,554,556,557,559,562,563,565,567],operand:[110,522,539,556],operatiton:[],operator_export_typ:546,operatorexporttyp:546,operatornam:[133,257,258,264,295,300,301,312,367,464],opinion:6,opnam:546,opportun:[519,552],opposit:19,ops:[1,2,16,183,184,523,525,528,529,536,537,539,546,547,557,559,560,565,567],opset:546,opset_vers:546,opt:[182,519,539],opt_einsum:110,optim:[1,2,6,9,10,11,16,17,110,177,182,183,184,197,221,259,260,261,282,284,297,298,299,320,323,324,325,350,357,368,374,417,518,519,521,525,529,532,536,538,539,540,542,546,548,549,567],optima:547,optimiz:[519,546],optimization_blacklist:[],optimization_blocklist:525,optimize_for_mobil:525,optimizer0:533,optimizer1:533,optimizer2:533,optimizer_class:551,optimizer_param:374,optimum:547,option:[1,2,5,10,12,15,16,17,19,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,47,48,49,50,51,52,53,54,58,59,60,61,62,63,64,65,66,68,70,73,75,77,78,79,81,83,84,87,88,89,90,91,92,93,94,95,96,99,100,101,102,103,104,105,108,109,111,112,113,115,117,118,119,120,121,122,123,124,130,131,132,135,136,137,138,139,140,148,149,150,151,152,153,154,155,156,158,160,161,168,172,173,175,177,183,184,187,188,189,190,191,194,195,196,197,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,216,217,219,220,223,224,225,226,227,229,230,231,232,234,235,237,239,240,242,243,245,249,253,257,258,259,263,264,268,269,270,271,272,273,274,275,276,279,280,281,282,283,284,285,286,292,293,294,295,297,300,301,306,307,311,312,313,317,318,319,320,321,322,323,324,325,326,327,329,330,331,333,337,338,339,345,349,350,351,353,357,360,361,362,363,364,365,366,367,368,369,370,371,372,375,379,380,381,382,383,384,385,386,396,397,398,399,400,401,402,403,405,407,408,409,412,413,416,417,419,421,422,423,425,426,429,430,431,432,433,434,435,436,437,438,440,441,442,443,446,449,450,452,461,463,464,465,466,467,469,470,471,473,474,475,476,477,479,480,482,483,484,485,488,489,490,492,496,497,498,499,500,502,504,505,507,508,510,513,515,516,517,519,520,523,524,525,526,531,532,539,540,541,543,546,551,554,556,558,559,565,567],ord:[408,520,524],order:[2,5,6,16,17,19,20,47,67,76,100,109,127,128,129,155,187,197,233,235,249,264,277,321,330,346,374,384,398,399,400,401,408,421,452,469,470,483,485,492,495,498,500,504,507,517,519,520,522,524,527,528,529,531,534,535,537,538,539,546,547,548,551,552,553,556,559],ordereddict:[321,330,346,388,520,544],ordin:[556,559],ordinari:[12,533],ordinarili:[1,533],org:[2,4,6,11,17,197,337,338,361,367,405,417,517,522,534,543,545,558,562,564,565,566],organ:[6,7,538,541],orgqr:[520,559],origin:[2,9,15,19,71,76,158,160,161,175,180,182,183,184,219,233,249,253,277,347,357,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,398,401,403,405,447,469,470,472,483,485,492,504,505,519,527,529,531,537,539,540,541,542,544,546,547,548,555,559,567],original_nam:544,ormqr:[520,559],orphan:[288,304,334],ort:546,ort_sess:546,ortho:[19,197],ortho_bparam:197,ortho_fparam:197,ortho_iparam:197,orthogon:[197,414,415,425,532],orthogonal_:[523,532],orthonorm:[19,483,485],ossci:545,ostmo:8,other:[1,2,4,6,7,10,11,12,15,17,27,34,38,49,53,62,64,65,67,70,91,100,104,105,106,114,115,116,131,132,138,139,146,147,148,153,154,158,168,182,189,190,192,193,202,203,204,206,208,209,212,214,220,224,225,229,230,233,234,236,242,245,268,269,270,271,272,273,277,285,320,321,330,369,374,388,406,408,410,438,441,452,458,471,475,480,481,490,494,497,499,510,511,517,519,520,521,522,523,524,525,527,528,529,531,533,534,535,536,537,538,539,540,542,544,546,547,548,551,552,553,558,559,565,567],other_help:521,othersubtensor:539,otherwis:[1,2,6,7,9,10,15,16,22,27,28,29,30,31,32,33,35,36,38,49,58,70,81,109,116,177,178,188,196,197,212,218,224,226,227,229,232,234,238,240,255,256,279,280,284,288,291,292,293,294,304,307,320,324,325,327,328,334,335,337,349,355,360,366,367,368,374,398,402,406,417,423,425,426,429,438,444,452,454,477,478,479,482,483,485,504,505,508,509,514,521,525,528,531,533,539,542,546,547,550,551,553,555,556,557,558,559,565,567],otim:[33,531],our:[2,6,257,534,539,542,546,548,552,554],out0:544,out0_relu:544,out:[1,2,6,7,9,11,12,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,50,51,52,53,54,58,60,61,62,63,64,65,68,70,73,75,77,78,79,81,82,86,87,88,89,91,92,93,94,95,96,99,103,105,106,108,109,111,115,117,118,119,120,121,122,123,125,130,131,132,133,135,136,137,138,139,140,141,146,147,148,151,152,153,154,155,158,160,172,173,182,188,189,190,191,192,193,194,195,198,199,200,201,202,203,204,206,207,208,209,210,211,212,213,214,215,216,219,220,224,225,226,227,229,230,231,232,234,235,236,237,239,242,243,244,245,254,255,256,262,265,266,267,268,269,270,271,272,273,278,279,280,288,289,302,303,308,314,315,316,317,318,319,332,334,336,340,341,342,343,344,361,362,363,364,365,368,369,370,371,372,373,382,383,384,385,407,408,409,410,412,413,416,419,420,421,422,425,426,429,430,431,433,435,437,438,440,441,442,449,450,452,463,464,465,466,467,469,470,473,474,475,476,477,480,481,483,485,488,489,490,492,494,497,499,501,502,508,510,513,514,515,516,517,519,520,524,527,529,531,534,535,538,539,542,546,548,549,551,552,553,554,556,558,559,565,566,567],out_channel:[268,269,270,271,272,273,562,563,564,565],out_dim:[520,529],out_featur:[177,262,284,308,320,368,403,405,562,563,564,565,566],out_i:187,out_int32:[70,452,520],out_j:270,out_ort:546,out_padh:531,out_padt:531,out_padw:531,out_proj_bia:520,out_proj_weight:520,out_unf:369,outdim:520,outer:[33,110,141,520,559],outlier:349,outlin:552,outmost:551,output0:533,output1:[249,288,334,533,546],output2:[249,288,334],output:[1,2,4,5,6,12,15,16,17,19,20,23,25,26,27,28,29,30,31,32,33,35,36,37,38,45,46,48,50,51,52,53,54,55,56,57,58,60,61,62,63,64,65,68,70,73,74,75,77,78,79,81,87,88,89,91,92,93,94,95,96,99,100,102,103,105,108,109,110,111,112,113,115,117,118,119,120,121,122,123,130,131,132,135,136,137,138,139,140,148,151,152,153,154,155,158,160,161,172,173,175,177,182,183,184,188,189,190,191,194,195,198,199,200,201,202,203,204,206,207,208,209,210,211,212,214,215,216,219,220,224,225,226,227,229,230,231,232,234,235,237,239,240,242,243,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,323,324,325,326,327,328,329,332,333,334,336,337,338,339,340,341,342,343,344,345,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,366,367,368,369,370,371,372,373,374,399,401,402,403,405,407,408,409,412,413,416,421,422,423,426,429,430,431,432,433,434,435,436,437,438,440,441,442,443,446,449,450,452,456,461,463,464,465,466,467,469,470,473,474,475,476,477,478,479,480,482,483,485,488,489,492,496,497,499,502,504,505,507,508,509,510,513,515,516,517,519,520,524,525,528,529,531,533,534,536,538,539,540,545,546,547,548,549,552,554,556,557,558,559,562,563,565,566,567],output_2d:309,output_4d:309,output_devic:[16,277,357,374,531],output_featur:539,output_nam:546,output_nr:520,output_pad:[271,272,273,520,531],output_ratio:[286,520],output_s:[246,247,248,250,251,252,272,285,286,317,318,319,369,520,531,565],output_scal:520,output_split:16,output_tensor_list:16,output_zero_point:520,outsid:[1,5,7,15,26,54,521,531,537,540,547],outstand:551,over:[2,7,15,16,17,73,92,93,94,95,110,177,183,196,204,226,240,246,247,248,250,251,252,253,254,255,256,257,258,259,260,261,264,268,269,270,271,272,273,274,276,283,284,285,286,290,295,297,298,299,300,301,302,303,306,309,312,313,314,315,316,320,323,324,325,327,333,349,350,352,357,366,368,369,376,405,442,477,478,479,482,491,524,527,528,529,531,533,535,536,538,539,542,546,547,551,552,554,559,560,565],overal:[2,7,16,19,534,536,542],overall_end:15,overall_start:15,overestim:[417,484],overflow:[94,95,124,156,161,240,423,446,482,498,500,531,548],overhead:[1,2,4,16,374,536,537,538,541,552,559,565],overlap:[2,15,175,285,369,374,479,537,556],overload:[16,521],overparameter:17,overrid:[10,16,17,257,258,274,276,295,300,301,312,313,323,324,325,327,333,349,350,366,379,451,461,531,546,547,551,558],overridden:[2,10,320,539],override_dict:539,overriden:539,overshoot:531,oversubscript:536,overview:[11,16,374,527,534,548,551],overwhelm:6,overwrit:[15,16,321,330,534],overwritten:[565,566,567],overwrritten:[],owen:429,own:[1,6,7,16,17,19,177,196,268,269,270,271,272,273,320,533,537,546,548,551,553],owner:[517,539,551,552],owner_nam:551,ownerrref:[551,553],ownership:[6,7],p1d:531,p2d:531,p3d:531,p_c:258,p_i:[366,367],p_tensor:559,pacakg:16,pace:6,pack:[217,277,288,304,334,398,399,400,401,520,525,540,545,565],pack_padded_sequ:[288,304,334,398,401,540],pack_sequ:[304,334,401],packag:[6,12,17,20,374,517,539,547,551,558,560],packagesnotfounderror:545,packed_hh:520,packed_ih:520,packed_input:540,packed_output:540,packed_weight:520,packedsequ:[13,288,304,334,399,400,401],pad:[15,19,175,254,255,256,264,265,266,267,268,269,270,271,272,273,282,285,314,315,316,317,318,319,323,324,326,340,341,342,343,344,369,373,399,401,402,479,520,540,546,548,558,562,563,564,565],pad_mod:[479,559],pad_packed_sequ:540,padd:565,padded_input:540,padding_idx:[282,520,531],padding_input:540,padding_mod:[268,269,270,271,272,273,520,531,562,563,564,565],padding_valu:[401,402],padh:[531,565],padt:531,padw:[531,565],page:[1,6,15,197,361,363,365,537,538],pai:[545,557],pair:[16,19,38,74,109,313,321,326,330,438,521,528,531,547,551,552,553,554,558],pairwis:[17,295,329,366],pairwise_dist:520,pairwisedist:[367,531],paper119:367,paper:[6,17,249,253,259,260,261,263,278,279,280,286,290,293,297,298,299,306,332,337,345,349,357,361,363,365,366,367,531,547],parallel:[0,1,15,16,143,144,178,277,326,357,374,459,460,518,531,533,534,536,542,545,551,553],parallel_info:[0,536],param1:17,param2:17,param:[1,2,17,56,57,177,186,284,320,330,331,368,374,520,525,532,533,534,538,547,567],param_byt:547,param_group:547,param_shap:17,paramet:[1,2,5,10,12,15,16,17,18,19,20,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,45,46,47,48,49,50,51,52,53,54,55,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,108,109,110,111,112,113,115,117,118,119,120,121,122,123,124,126,127,128,129,130,131,132,135,136,137,138,139,140,148,149,150,151,152,153,154,155,156,157,158,160,161,162,164,165,166,167,168,171,172,173,174,175,176,177,178,180,181,182,183,184,187,188,189,190,191,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,229,230,231,232,233,234,235,237,238,239,240,241,242,243,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,349,350,351,353,354,355,357,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,399,400,401,402,403,404,405,407,408,409,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,454,455,456,457,458,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,482,483,485,486,487,488,489,490,491,492,494,495,496,497,498,499,500,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,519,523,524,525,526,527,529,531,532,533,534,538,539,541,542,543,544,546,548,549,550,551,552,554,555,558,559,565,566,567],parameter:[17,559],parameteriz:17,parameters_to_prun:388,parameters_to_vector:388,parameterserver2:551,parametr:[17,381,539],params_rref:551,paramter:[],parent:[527,545,553,558,567],parenthes:522,parenthesi:[2,114,406],pariti:374,parmar:[361,363,365],pars:[2,16],parse_arg:[16,537,546],parser:[16,537],part:[1,4,5,6,7,10,11,16,17,86,109,124,156,161,169,170,171,174,177,181,183,184,284,320,368,374,497,498,499,500,517,518,519,521,525,526,533,534,539,540,544,546,547,548,551,552,553,554,558,567],parti:[7,517,519,537],partial:[17,102,216,317,318,319,384,522,529,531,534,539,546,553,567],particip:[15,16,374,552],particular:[1,6,15,177,277,284,320,368,496,519,521,537,539,540,541,546,547,559],particularli:[15,276,277,327,519],partit:[249,552,553],partli:7,partner:6,pass:[1,2,5,6,10,15,16,17,19,20,70,102,109,177,183,184,196,249,250,251,252,277,282,283,284,286,300,320,325,346,349,362,363,364,365,368,374,379,384,398,401,451,452,483,490,517,519,522,525,527,528,529,531,532,533,534,536,537,538,539,541,546,547,548,549,551,553,554,558,559,567],past:[16,540],paszk:[7,8],patch:[6,285,369],path:[2,4,10,16,335,517,521,534,539,544],path_importer_cach:517,path_to_hub_dir:517,pathlik:[196,451],patienc:547,pattern:[16,277,401,519,534,537,539,540,544,548,549],paus:551,pca:417,pct_start:547,pdb:[179,182,185,519,521],pdf:[264,337,534,562],pdist:[1,329,520],peak:[12,374,547],peer:[6,16,537],penal:367,penalti:[1,547,565],pend:[551,558],penros:418,peopl:[6,534],pep:[519,521],per:[1,10,12,15,16,110,197,257,258,259,260,261,274,276,277,283,290,295,297,298,299,300,301,306,312,313,323,324,325,327,333,349,350,357,361,362,363,364,365,366,374,405,409,417,427,461,484,529,530,531,536,538,541,548,549,552,558,559,567],per_channel_affin:[427,549,567],per_channel_symmetr:549,per_index_weight:283,per_sample_weight:[283,520,531],per_tensor_affin:[428,549,567],per_tensor_symmetr:[549,567],per_work:15,percentag:547,perchannelminmaxobserv:[549,567],perfectli:[],perform:[1,2,5,9,13,14,15,16,17,28,29,30,31,32,33,49,58,61,68,94,95,105,124,156,161,177,181,183,197,202,231,237,240,264,268,269,270,271,272,273,283,284,288,300,304,320,328,334,368,374,398,408,417,423,445,446,452,456,482,483,484,518,519,524,527,528,529,530,531,532,533,534,536,537,538,539,543,547,548,549,551,552,553,554,555,556,557,558,559,565,567],period:[12,59,66,149,150,187,520,542,547],perman:[379,380,381,382,383,384,385,386,395,553],permiss:539,permit:554,permut:[15,110,437,520,529,546,557,559],perplex:17,perserved_method:525,persist:[5,6,13,177,284,288,304,320,334,368,544,545],persistent_work:15,person:[6,7,518],perspect:[538,552],perturb:[2,161],pervas:17,peter:8,peterjc123:[8,545],phase:[2,545],phenomenon:540,phi:[287,531],phy:429,physic:[522,536],pick:551,pickl:[15,196,320,451,527,544],pickle_load_arg:196,pickle_modul:[196,451],pickle_protocol:451,pid:540,piec:[6,552],pieter:8,pietern:8,pillow:558,pin:[111,113,177,284,320,368,398,490,555,559],pin_memori:[15,111,113,490,519,520,537,555,559],pinvers:[520,559],pip:[545,558],pipe:551,pipelin:551,pivot:[215,216,217,425,559],pixel:[269,279,280,327,332,370,531,565],pixel_shuffl:[332,520,546],pixelshuffl:531,pkg:545,place:[1,6,9,12,15,16,22,48,69,113,177,235,253,263,277,278,279,280,281,284,292,293,294,307,320,336,337,338,339,345,360,368,374,376,377,387,388,389,391,392,393,394,447,491,519,521,529,531,533,537,541,546,549,551,552,555,557,559,565,567],placehold:[296,549],plai:16,plain:[10,258,321,330],plan:[2,3,6,16,124,156,161,374,425,446],plane:[100,246,247,248,250,251,252,254,255,256,268,269,270,271,272,273,286,302,303,306,309,314,315,316,405,448,531,565],platform:[10,425,525,543,548],pleas:[1,2,4,6,7,9,11,16,17,48,61,69,113,264,268,269,270,271,272,273,300,374,418,523,528,529,530,531,533,539,543,545,546,547,548,551,552,557,558,559,564,565,566],plenti:540,plot:[536,558],plu:2,plugin:558,pmf:17,point:[1,2,6,7,9,12,15,22,38,59,60,66,132,142,149,150,161,164,175,177,183,184,191,195,197,202,211,245,254,255,256,268,269,270,271,272,273,284,285,314,315,316,320,368,369,374,418,426,427,428,429,438,441,454,455,461,495,519,521,522,530,531,533,534,538,547,548,549,551,552,556,558,559,565,566,567,568],pointer:[12,335,538,541,551,553,559],pointwis:[17,202,203,528,535],poisson:[333,520,531],poisson_nll_loss:[1,520],poissonnllloss:531,polar:[17,520],polici:[17,547],policy_network:17,polosukhin:[361,363,365],polyfil:519,polygamma:[520,559],polygamma_:[520,559],polymorph:521,polynomi:221,pool:[12,246,247,248,250,251,252,254,255,256,286,302,303,314,315,316,317,318,319,321,536,539,542,549,551,565],poor:[533,534],pop:[12,321,330],popul:[2,17,559],port:16,portion:[133,277,374,379,380,381,382,383,384,385,386,485,531,547],pos_weight:[258,520,531],pose:552,posit:[2,15,17,19,22,59,61,66,77,78,79,149,150,170,173,177,178,197,218,233,258,268,269,270,275,277,283,284,320,326,354,361,366,367,368,447,497,498,499,500,506,517,520,528,529,531,539,546,550,559,567,568],position:[528,529],positive_definit:17,positive_id:367,positive_integ:17,positivedefinit:17,possess:7,possibl:[7,10,11,15,17,177,183,196,258,264,284,320,368,444,472,479,519,521,527,528,531,532,534,536,538,539,542,543,545,548,551,553,556,559,567],post:[6,540,545,548,549,567],potenti:[16,61,264,268,269,270,271,272,273,374,521,527,531,534,546,557,559],potential_energi:17,pow:[1,2,520,528,533,546,559],pow_:[520,528,559],pow_adder_reduc:2,pow_reduc:2,powbackward0:2,power:[222,302,303,403,422,442,507,522,531,547],powertransform:17,pr_curv:558,practic:[15,17,518,519,527,529,534,539,544],pradhan:8,pre:[2,11,177,284,320,368,379,380,381,382,383,384,385,386,387,517,519,525,536,546,547,559],preced:[522,536,547,548],precis:[2,10,17,124,156,161,254,255,256,258,268,269,270,314,315,316,374,425,446,461,518,530,531,534,537,546,548,549,556,558,559,568],precision_matrix:17,precompil:541,precondit:197,precondition:197,pred:[374,547,551],predict:[249,258,547,558],predict_net:546,preemptiv:[374,567],preexist:2,prefer:[7,15,161,197,327,452,519],prefetch:15,prefetch_factor:15,prefix:[16,177,284,320,368,517,554,565,567],prefixstor:16,prehook:567,prelu:[1,321,520,546],prepack:525,prepar:[522,546,549],prepare_for_backward:538,prepare_qat:[548,549,567],prepend:[10,15,16,177,220,284,320,368,426,535],preprocess:[11,177,559],prerequisit:538,presenc:7,present:[7,16,177,215,249,284,320,368,398,517,526,527,528,529,533,534,539,552,556],preserv:[2,15,128,129,181,321,330,370,451,452,479,519,525,528,531,532,537,546,551,556,559,565],preserve_format:[83,112,136,413,432,434,436,516,556,559],preserve_rng_st:5,preserved_attr:[],preserved_method:525,pressur:[2,534],pretrain:[282,283,517,534,546],pretti:[177,461,519],prevent:[1,6,12,15,16,94,95,175,240,278,326,349,374,423,482,498,500,527,531,533,538,540,548,553,554],previou:[16,181,288,304,334,379,380,381,382,383,384,385,386,429,479,525,534,545,553,559],previous:[2,180,519,535,537,550,551,559],previous_layer_fp32:548,previous_layer_int8:548,prim:[519,546],primari:[7,522],primarili:[17,20,548,559,567],primit:[16,519,521,522,536,551],princip:417,print:[2,15,20,177,180,182,215,262,284,296,308,320,332,368,387,388,389,390,393,461,517,519,520,531,536,537,539,546,547,549,551,558,559,562,563,565,566],printable_graph:546,printer:519,printout:12,prior:[2,6,7,197,388,535,539,547,548],prioriti:[6,12,521],pritam:8,pritamdamania87:8,privat:539,pro:[545,558],prob:[17,520],probabilist:[417,484],probabl:[15,60,202,235,249,253,264,278,279,280,288,300,304,327,334,527,531,539,545,546,558,559],problem:[6,16,183,197,213,276,327,527,531,534,540,542,545,553],problemat:[6,519],proce:[533,537,551],procedur:[183,184,197,551],proceed:[12,552,553],process:[1,2,9,10,12,16,17,181,197,257,258,274,276,282,283,295,300,301,312,313,317,318,319,323,324,325,327,333,349,350,357,361,363,365,366,374,517,519,527,528,529,531,534,536,537,538,539,541,542,543,545,548,553,554,555],process_group:[357,374,551],process_id:357,processcontext:527,processgroup:16,processgroupag:551,processgroupgloo:[538,551],processgroupmpi:538,processgroupnccl:538,processgrouprpcbackendopt:551,prod:[1,19,284,285,369,520,528,546,559],prod_:[124,156,161,269,270,272,273,446],prod_d:[285,369],produc:[1,6,10,12,15,19,22,140,182,183,184,187,224,227,229,264,268,269,270,271,272,273,374,429,438,456,519,521,527,528,531,533,534,535,537,541,543,544,545,554,557,564,565,566],producer_info:541,product:[2,11,16,17,28,31,32,33,58,68,72,76,91,94,107,110,220,231,237,288,289,304,305,416,423,491,510,519,528,531,534,541,559],prof:2,profil:[4,461,551],profile_memori:2,program:[2,4,12,15,16,87,519,521,522,534,537,540,541,542,544,545,558],programm:521,progress:[12,507,517,526,547],prohibit:544,project:[6,110,417,517],projector:558,promot:[71,105,131,279,280,424,445,480,556],promote_typ:520,prompt:545,promptli:197,prone:[527,542],propabl:425,propag:[2,17,28,31,32,33,35,36,58,527,528,539,541,546,549,554,565,567],propagate_qconfig_:[549,567],proper:[15,268,269,270,271,272,273,521,534,537,545],properli:[6,15,19,321,322,330,331,374,483,485,539,542,544,551,552,556],properti:[2,15,17,19,177,253,351,375,398,531,534,537,547,551,556,568],proport:[302,303],proportion:[370,531,565],propos:[7,8,547,552],protect:534,proto:546,protobuf:546,protocol:[15,451,539,545,551],prototyp:[16,374,518,529,544,551,556],prove:527,proven:[6,278,374],provid:[1,2,6,7,9,10,11,12,15,16,17,20,67,70,73,78,79,110,175,180,182,183,195,197,211,271,272,273,276,288,289,304,305,317,318,319,326,327,334,336,361,374,379,417,445,452,471,498,500,517,519,521,525,527,528,529,531,537,538,539,546,547,549,551,552,553,554,555,556,558,559,560,565,566,567,568],proxi:551,prune:[379,380,381,382,383,384,385,386],pruned_tensor:[379,380,381,382,383,384,385,386],pruning_method:388,pruning_typ:[384,388],pseudo:[22,418],pseudoinvers:17,pseudorandom:[60,235,409,417,419,433,484],psi:[103,421],pth:[517,519,526,544],ptq:548,publish:[6,197],puhrsch:8,pull:[7,11],purchas:7,pure:[11,178,519],purg:558,purge_step:558,purpos:[16,220,264,461,552,559],push:[6,7,12],put:[6,15,196,290,517,527,537,542,552,553,559],put_:[520,559],pybind11:[10,11,521],pybind:10,pyc:541,pycapsul:18,pypi:518,pyplot:558,python3:[196,451],python:[1,2,4,7,10,11,12,15,16,21,35,36,72,73,84,90,105,113,159,177,178,179,181,182,183,196,212,226,233,240,277,321,322,330,331,374,408,438,444,447,454,477,478,482,491,508,509,517,518,524,527,529,531,534,535,536,537,538,539,540,541,542,544,545,546,549,550,551,552,553,554,559],python_only_fn:182,pytorch:[0,2,3,4,9,10,12,15,17,48,71,85,124,131,141,156,161,166,167,181,195,211,257,264,361,374,398,408,446,451,456,479,517,521,526,529,530,535,536,537,540,541,542,545,547,548,549,551,552,556,557,558,559,564,565,566,568],pytorch_jit:519,pytorch_no_cuda_memory_cach:537,q_add:565,q_filter:565,q_input:565,q_per_channel_axi:[520,549,559],q_per_channel_scal:[520,549,559],q_per_channel_zero_point:[520,549,559],q_proj_weight:520,q_scale:[520,549,559],q_zero_point:[520,549,559],qat:548,qconfig:[548,549,562,564,567],qconfig_dict:[548,567],qconfig_propagation_list:567,qconfig_spec:567,qconfigdynam:[549,567],qfunction:549,qint32:[427,428,549,565],qint8:[427,428,548,549,563,565,566,567],qnnpack:548,qparams_dict:[564,565,566],qscheme:[520,549,559,567],qtensor:[520,559],quad:[257,258,300,301,312,327,367],quadrant:53,quadrat:540,qualiti:6,quant:[548,562,564,567],quant_max:[520,567],quant_min:[520,567],quantifi:367,quantil:[227,239,520,559],quantiti:[16,382,383,385,386,388,391,392,393,394,547],quantiz:[2,9,97,427,428,518,546,556,559,561,562,564],quantization_schem:[427,428],quantize_dynam:[548,549,567],quantize_dynamic_jit:549,quantize_jit:549,quantize_per_channel:[520,549],quantize_per_tensor:[520,549,565],quantize_qat:[549,567],quantized_batch_norm:520,quantized_gru:520,quantized_gru_cel:520,quantized_input:565,quantized_lstm:520,quantized_lstm_cel:520,quantized_max_pool1d:520,quantized_max_pool2d:520,quantized_rnn_relu_cel:520,quantized_rnn_tanh_cel:520,quantstub:[548,549,567],quantwrapp:[549,567],quasi:429,quasirandom:429,quennevil:8,queri:[12,326,520,537],question:[518,534],queu:[12,537,559],queue:[6,527,558],queue_2:527,quick:[2,6],quickli:6,quint8:[427,428,548,549,565,567],quit:[6,539,540,551],quotient:131,qw_i:326,r_t:288,race:534,rad2deg:[520,528,559],rad2deg_:[520,528],radian:[17,37,53,96,430,520],rais:[1,2,5,6,10,17,22,179,180,185,196,218,222,383,385,388,398,456,522,524,527,534,537,539,540,550,551,559],raise_except:2,ram:196,rand:[1,2,17,19,160,182,183,184,185,199,201,210,361,362,363,364,365,374,419,432,519,520,521,523,528,529,531,546,551,552,557,558,559,560],rand_lik:[520,523,560],randint:[61,232,264,367,520,523,529,531,554,558,559,560],randint_lik:[520,523,560],randn:[2,9,17,25,26,27,28,29,30,31,32,35,36,45,46,47,48,50,51,52,53,54,55,56,57,58,68,73,75,76,77,78,79,81,88,89,90,91,92,93,94,95,98,99,100,101,102,104,105,110,124,130,156,157,158,160,161,182,198,200,204,205,212,215,216,217,219,220,221,222,224,226,227,229,231,232,233,234,237,243,246,247,248,250,251,252,253,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,272,273,275,276,278,279,280,281,284,285,286,287,288,289,290,291,292,293,294,296,297,298,299,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,319,327,328,329,330,331,332,333,334,336,337,338,339,344,345,347,348,351,352,353,354,355,356,357,358,359,360,366,368,369,373,411,418,422,423,425,426,436,439,440,446,449,450,463,466,467,468,469,470,473,474,477,478,482,483,485,486,488,489,491,494,495,496,497,499,502,508,509,511,512,514,520,521,523,528,529,531,534,535,536,537,538,539,543,544,546,548,554,556,558,559,560,562,563,565,566],randn_lik:[520,523,546,560],random:[17,22,60,145,159,197,218,253,264,288,304,337,379,385,386,393,394,409,417,429,431,432,433,434,435,436,437,453,462,484,517,518,520,531,546,558,559],random_:[257,258,276,327,520,528,531,559,560],random_devic:22,random_sampl:520,random_split:15,random_tensor:552,random_unstructur:[390,395],randomli:[2,15,253,278,279,280,337,385,531,541,565,566],randomsampl:15,randperm:[520,523,560],rang:[1,2,12,15,16,17,22,26,54,60,81,119,124,126,152,156,161,202,218,239,249,276,284,286,289,294,305,311,322,327,331,336,351,352,353,374,377,426,446,506,519,520,531,534,536,537,540,542,546,547,548,550,556,558,559,560,566,567],range_pop:12,range_push:12,rangl:17,rank:[15,16,17,213,223,313,357,374,417,418,483,484,538,542,551,552],rao:8,rapidli:540,rare:[6,533],rate:[1,17,279,280,419,541,558],rather:[2,5,10,140,461,519,529,531,535,539,546,548,551,558,559,565],ratio:[17,286,520],ravel:384,raw:276,rbrace:[497,498,499,500],rceil:[38,75],rcond:[418,520],rdinat:[471,554],reach:[6,7,15,197,542,547,551],reachabl:16,read:[15,16,48,180,196,490,528,529,534,535,537,541,546,547,548,551,559],readabl:[0,2,12,15,546],readi:[6,10,20,59,66,149,150,374,519,538,551,552],readlin:[180,196],readonli:3,readthedoc:110,real:[2,15,17,19,27,28,29,30,31,32,33,58,81,86,109,124,156,161,169,170,171,174,175,234,329,332,367,446,479,483,485,511,512,517,520,534,548,551,553,557,559],real_vector:17,realiti:4,realli:[2,6,483,485,534],realloc:158,realvector:17,rearrang:[332,529,531],reason:[15,16,19,183,184,227,257,451,519,521,531,534,538,544,546,551,556,567],rebas:6,rebuild:6,rebuilt:6,recal:[258,539,558],receiv:[2,6,12,15,16,17,20,374,527,533,542,547,551,552,553],recent:[1,2,6,165,521,539,543],recip:[1,320,379,533],reciproc:[1,450,520,528,546,559],reciprocal_:[520,528,559],recogn:[15,551],recommend:[1,2,15,16,17,19,22,87,167,178,197,249,277,374,490,504,517,519,527,529,531,532,533,534,536,537,539,542,544,546,548,551,559],recomput:[5,405,531,547],recompute_scale_factor:531,reconstruct:[12,257,258,544],record:[2,12,38,59,66,111,112,113,123,135,136,149,150,177,183,187,195,211,277,284,320,368,412,413,431,432,433,434,435,436,437,438,471,490,515,516,519,521,533,534,537,546,549,551,558,559,567],record_ev:12,record_shap:2,record_stream:[523,559],recordfunct:541,recordfunctioncallback:541,recordingobserv:[549,567],recov:[19,156,161,217,374,398,533,540],recoveri:540,recreat:[2,534],rectangular:217,rectifi:[337,338,531,532,549,565],recurr:[16,183,264,277,288,289,304,334,401,537,547,566],recurs:[17,177,182,284,320,368,521,539,547],recursivescriptmodul:544,recv1:552,recv2:552,recv:[16,552],red:521,redirect:10,redistribut:545,reduc:[1,2,12,16,28,35,36,45,46,212,224,226,227,229,232,239,240,257,258,259,260,261,274,276,283,295,300,301,312,313,323,324,325,327,333,349,350,357,366,374,406,423,425,426,477,478,482,483,508,509,520,524,527,528,531,536,538,543,544,545,547,548,551,554,559,567],reduce_add:12,reduce_multigpu:16,reduce_op:16,reduce_rang:[548,549,567],reduce_scatt:16,reduce_scatter_multigpu:16,reducelronplateau:547,reduceop:16,reducesum:546,reduct:[1,16,202,239,257,258,264,274,276,283,295,300,301,312,313,323,324,325,327,333,349,350,366,367,374,520,524,528,531,538,548,549,559],redunct:374,redund:[16,19,161,446,479],redundantli:533,reevalu:547,refactor:[6,545],refcount:[527,542],refer:[2,12,15,16,17,20,48,69,113,124,163,178,182,186,197,264,326,367,374,417,429,484,517,520,524,527,528,530,531,533,534,538,539,540,542,543,548,551,552,556,557,558,559,560],referenc:[496,521,534,551],refin:529,refine_nam:[520,528,529],reflect:[134,175,195,211,268,269,270,340,341,479,519,531,540,557,559],reflection_pad1d:520,reflection_pad2d:520,reflection_pad:546,reflectionpad1d:456,reflectionpad2d:[456,531],reflector:140,regard:[271,272,273,282,283,519,531,553],regardless:[1,15,504,533,544,551],region:[1,17,286,294,485,519,527,531,533,537,565],regist:[2,11,16,17,177,196,284,320,321,322,330,331,368,374,375,527,538,539,541,546,551,559],register_backend:[16,551],register_backward_hook:[177,284,320,368],register_buff:[177,284,320,368,519,521,539],register_custom_op_symbol:546,register_forward_hook:[177,284,320,368],register_forward_pre_hook:[177,277,284,320,368],register_hook:[2,177,284,320,368,523,528,559],register_kl:17,register_packag:196,register_paramet:[177,284,320,368,539],registr:374,regress:[6,257,300,543],regular:[2,4,9,16,264,278,279,280,320,321,322,330,331,529,531,539,541,546,547,548,549],regularli:[6,546],reimplement:[],reinforc:[17,347,531],reiniti:517,reinterpret:[17,559],reinterpreted_batch_ndim:17,rel:[2,7,10,17,34,168,366,367,531,536,537,541,547],relat:[6,7,15,16,19,285,369,374,417,551],relationship:[2,83,367,534,544],relative_error:537,relative_path_to_checkpoint:517,relative_to:545,relax:[17,183,184],relaxed_bernoulli:17,relaxed_categor:17,releas:[6,12,14,16,29,33,131,141,156,161,195,211,300,304,334,408,438,446,451,479,517,518,521,527,531,536,537,543,544,545,546,551],relev:[7,522,533,534,548,559],reli:[7,15,195,211,277,534,536,538,543,544,557],reliabl:551,reload:517,relu1:[346,567],relu2:346,relu6:[520,549],relu:[182,320,334,336,346,354,361,363,365,519,520,525,529,532,544,546,548,549,561,562,563,566,567],relu_:[520,531,549],rem:545,remain:[2,17,213,233,374,379,380,381,382,383,384,385,386,395,444,527,533,540],remaind:[132,520,559],remainder_:[520,559],remap:[22,180,196,218,517,526,550],rememb:[540,542],remot:[15,16,374,551,552],remov:[2,7,16,33,124,141,156,161,175,177,220,284,320,321,330,368,374,379,380,381,382,383,384,385,386,391,392,393,394,396,397,408,438,446,475,495,503,525,531,544,553,559,567],removablehandl:[177,284,320,368],remove_dropout:525,remove_qconfig:567,renam:[520,528,529],rename_:[520,528,529],rename_map:529,renamed_img:529,render:[6,558],rendezv:[538,551],renorm:[1,282,283,520,531,559],renorm_:[520,559],rep:546,repackag:540,reparameter:[17,379,380,381,382,383,384,385,386,395,396,397,405],reparametr:[17,379,380,381,382,383,384,385,386,389,531],reparametriz:17,repeat:[17,215,417,443,484,520,531,546,559],repeat_interleav:[456,520,559],repeatedli:[124,156,161,446,537,554],repetit:443,repl:2,replac:[1,2,10,15,16,179,180,185,235,360,387,388,389,391,392,393,394,405,519,520,525,534,541,542,545,546,548,549,559,561,567],replic:[15,181,268,269,270,277,285,342,343,344,369,374,531],replica:[15,16,277,374,538],replication_pad1d:520,replication_pad2d:520,replication_pad3d:520,replication_pad:546,replicationpad1d:456,replicationpad2d:[456,531],replicationpad3d:456,repo:[6,517,545,547],repo_nam:517,repo_or_dir:517,repo_own:517,report:[2,4,7,533,537],repositori:[7,517,539,542],repr:461,repres:[2,9,12,15,17,18,19,110,124,152,168,169,171,174,176,183,184,249,264,288,320,334,367,369,378,379,382,383,384,385,386,388,391,392,393,394,398,404,415,417,426,469,479,485,495,504,505,511,512,519,521,534,539,541,546,547,548,549,551,554,556,568],represent:[1,19,177,320,326,519,539,546,548,549,554,559,565,568],reproduc:[6,15,61,264,268,269,270,271,272,273,517,518,531,547,559],requant:548,request:[7,12,16,197,533,534,536,537,547,551,552,553],requir:[1,2,5,7,10,11,12,15,16,17,19,128,129,161,177,197,283,284,320,361,362,363,364,365,367,368,374,375,379,456,479,483,517,519,523,525,527,529,531,533,534,536,537,538,539,540,541,542,544,546,547,548,551,552,553,558,559,567],require_grad:2,requires_grad:[2,17,38,49,59,66,111,112,113,114,123,135,136,149,150,177,187,195,211,257,258,276,282,283,284,301,312,313,320,327,333,366,367,368,374,375,406,412,413,431,432,433,434,435,436,437,438,458,471,490,515,516,520,523,528,529,531,539,544,546,551,552,554,559,560],requires_grad_:[2,177,264,284,320,368,490,520,528,531,554,559],rerr:197,rerun:5,res1:546,res2:546,res:[68,546,548],rescal:[257,258,276,324,325,327,351,353,403,531],research:[6,517,534,544],resembl:11,reserv:[12,522],reserved_byt:12,reset:[2,12,288,335,417,429,484,546,550],reset_max_memory_alloc:12,reset_max_memory_cach:12,reset_peak_memory_stat:12,reset_peak_stat:12,reshap:[11,108,285,340,341,342,343,369,403,408,472,491,513,520,524,529,546,554,557,558,559],reshape_a:[520,546,557,559],reshuffl:15,resid:[16,196,374,537,559],residu:[197,213],resili:[547,551],resiz:[134,370,528,531,549,555,559],resize_:[2,188,519,520,521,528,549,555,559],resize_as_:[2,520,528,559],resizeas_:554,resnet18:[517,519,521,526,534],resnet50:[517,558],resnet:[517,519,521,546,558],resolut:[332,522,531,568],resolv:[6,7,17,271,272,273,285,521,522,545],resourc:[10,15,527],respect:[1,2,16,17,31,32,33,54,100,102,113,177,197,257,264,271,272,273,277,284,288,304,320,321,330,334,366,367,368,370,379,383,385,425,469,483,491,529,533,547,555,559,567],respond:6,respons:[4,6,7,16,17,20,309,374,531,534,537,539,551],rest:[6,15,529,543,548,549,551,554,567],restart:[527,547,558],restor:[5,22,447,544],restrict:[15,300,521,522,529,534,548,549],restructur:6,result:[2,4,6,10,12,15,16,17,19,20,27,28,29,30,31,32,35,36,48,58,61,69,72,81,83,84,92,93,94,95,98,110,113,124,156,161,178,183,184,186,188,191,204,205,212,224,226,227,229,232,234,240,277,279,280,285,288,304,334,349,369,374,406,407,409,417,418,422,423,426,429,445,446,452,468,477,478,479,482,484,487,494,497,499,508,509,519,520,521,524,525,528,529,531,532,533,534,535,536,537,538,539,540,543,546,547,551,552,554,556,558,559],result_typ:520,resum:[547,551,553,558],ret:[539,551],ret_fut:551,retain:[2,35,36,45,46,49,188,212,224,226,227,229,232,239,240,408,423,426,451,477,478,482,497,498,499,500,508,509,524,527,542,559],retain_grad:[2,520,559],retain_graph:[2,520,533,534,551,559],retri:[12,553],retriev:[2,5,15,16,282,285,369,399,531,541,551,552,553],return_complex:[175,479,520,559],return_count:[504,505,520,559],return_indic:[250,251,252,286,314,315,316,317,318,319,520,531,565],return_invers:[504,505,520,559],return_typ:[92,93,188,224,227,229,232,468,492,496],reus:[2,16,534,551,559],reveal:[538,554],revers:[1,17,127,374,379,380,381,382,383,384,385,386,395,507,520,521,534,538,559],revert:[7,354,531,553],review:7,reward:17,rewrit:[525,534],rfc:552,rfft:[19,161,520,559],rfftn:19,rfloor:[75,130,133,249,254,255,256,268,269,270,271,272,273,285,302,303,314,315,316,369,370,371,372,438,446,479,531],rgb:[298,299,558],rho:547,riba:[366,367],richard:17,riemann:534,right:[1,6,16,17,38,59,66,67,70,75,103,104,110,128,130,131,133,149,150,154,175,187,196,202,203,235,238,249,254,255,256,257,258,268,269,270,271,272,273,276,285,300,301,302,303,309,310,311,312,314,315,316,323,324,325,329,330,335,366,369,370,371,372,377,438,452,479,491,496,507,517,520,527,528,529,531,539,546,547,553,567],rightmost:17,risk:6,riski:6,rmsprop:547,rng:[5,12,15,453,540,543,550],rnn:[14,288,289,304,305,336,375,398,520,523,540,546,548,549,558,566,567],rnn_relu:520,rnn_relu_cel:520,rnn_tanh:520,rnn_tanh_cel:520,rnncell:[1,548,549],robin:16,robust:[197,527],roll:[520,559],roof:[],root:[450,473,520,525,534,547,551,552,554],ross:349,rot90:[520,559],rotat:[17,448],rough:6,roughli:[15,161,538],round:[15,16,19,38,131,425,520,528,531,546,548,559,564,567],round_:[520,528,559],roundtrip:[6,19],routin:[78,197,483],row:[15,74,109,123,128,129,188,212,213,224,226,227,229,232,235,239,240,407,423,426,442,477,478,482,498,500,507,508,509,513,520,531,554,558,559],row_limit:2,rowmajor:[2,374],rpc:[20,374,518,552,553],rpc_async:[20,551,553],rpc_backend_opt:551,rpc_sync:[551,552,553],rpc_timeout:551,rpcagent:551,rpcbackendopt:551,rprop:547,rref1:[551,552],rref2:[551,552],rref:[374,552],rrefid:553,rrelu:[520,546],rrelu_:[520,531],rrelu_with_nois:520,rrelu_with_noise_:520,rsampl:17,rsqrt:[1,520,528,546,559],rsqrt_:[520,528,559],rst:6,rsub:[520,546],rtol:[2,34,168,519,520,559],rule:[2,16,17,70,71,259,260,261,297,298,299,357,379,380,381,382,383,384,385,386,452,495,519,521,528,534,535,539,556,559],run:[1,2,3,4,5,6,11,15,16,20,110,124,156,161,177,178,180,183,184,196,197,227,259,260,261,277,284,297,298,299,320,357,368,446,456,460,498,500,518,519,525,527,533,534,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,558,560,564,567],run_14h:558,run_arg:567,run_fn:[2,5,567],run_model:540,run_nam:558,run_process:552,runnabl:[533,558],running_mean:[177,259,260,261,284,297,298,299,320,357,368,520,531,544],running_var:[177,259,260,261,284,297,298,299,320,357,368,520,531,544],runtim:[2,5,10,16,195,211,528,529,539,542,546,567],runtimeerror:[1,2,10,22,165,218,235,456,519,521,524,528,533,535,540,543,545,546,550,556,559],runtimewarn:17,rv0:519,rv1:519,rvert:[34,168],rvert_p:[366,531],s1064827500366124:197,s1064827500370883:197,s_min:264,s_n:264,safe:[1,12,16,374,519,533,534,541,551],safest:[10,554],safeti:[519,529],sai:[6,519,533,534,540,546,552,553,559],said:2,sam:[7,8],same:[1,2,6,10,11,12,15,16,17,19,20,28,35,36,49,58,60,61,68,69,70,73,86,91,100,102,110,112,116,124,132,134,136,137,156,157,158,161,175,177,181,182,183,184,188,212,219,224,226,227,229,232,240,241,247,248,251,252,253,255,256,257,258,259,260,261,262,263,265,266,267,269,270,271,272,273,275,276,278,279,280,281,283,285,287,290,291,292,293,294,295,297,298,299,300,301,303,306,307,308,309,310,311,312,313,315,316,317,318,319,323,324,326,327,328,329,333,337,338,339,340,341,342,343,344,345,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,369,370,373,374,379,380,381,382,383,384,385,386,398,402,409,413,419,420,422,423,425,426,432,434,436,439,441,443,444,446,447,452,456,476,477,478,482,487,495,504,505,506,508,509,516,517,519,521,527,528,529,531,533,534,535,536,537,538,539,540,541,542,543,544,546,548,549,551,552,553,554,555,556,557,558,559,562,563,564,565,566,567],sampl:[15,17,22,60,184,215,235,253,257,258,262,268,269,270,271,272,273,274,276,278,279,280,282,283,295,297,298,299,300,301,308,312,313,323,324,325,327,333,337,349,350,357,366,374,409,417,419,429,433,495,531,532,533,537,541,547,558,559,565],sample_input_cpu:519,sample_input_gpu:519,sample_n:17,sample_r:558,sample_shap:17,sampler:549,samplingprob:541,sane:461,satisfi:[2,13,17,19,34,70,161,249,264,285,288,304,334,388,425,452,479,534,547,556,559],satur:531,save:[2,5,6,9,11,16,176,177,179,180,183,185,196,284,320,368,374,519,520,526,529,534,539,542,543,546,547,548,558,559,567],save_for_backward:[2,533,539],save_invstd:520,save_mean:520,save_to_buff:176,saved_tensor:[2,533,534,539],saved_weight:559,sax:532,scalar1:520,scalar2:520,scalar:[2,17,27,29,30,49,70,105,135,190,191,220,234,239,249,257,258,264,276,277,295,300,301,306,313,323,324,325,327,333,349,350,366,367,407,412,413,422,424,426,452,471,480,490,504,505,514,515,516,520,521,531,532,534,539,546,547,551,554,556,558,559,565],scalar_scalar:520,scalar_tensor:[520,546],scalar_valu:558,scalartensor:539,scale:[6,15,17,31,32,33,58,211,253,278,282,283,306,345,370,371,372,427,428,480,518,520,529,531,532,540,547,548,549,559,565,567],scale_channel:529,scale_factor:[370,371,372,520,531,565],scale_fn:547,scale_grad_by_freq:[282,283,520,531],scale_hh:520,scale_ih:520,scale_mod:547,scale_tril:17,scaled_grad_param:533,scaler:[1,533],scales_d:520,scales_h:520,scales_w:520,scatter:[12,16,277,520,540,546,551,559],scatter_:[520,559],scatter_add:[520,546,559],scatter_add_:[456,520,559],scatter_list:16,scenario:[1,15,537,546,551],scene:[544,558],schedul:541,schema:[519,520],scheme:[548,559,567],schmidtm:547,sci:197,sci_mod:461,scientif:461,scipi:[74,531,558],scope:[6,357,388,519,521,540,546,553],score:276,scrambl:429,scratch:[6,534],script:[1,4,15,16,179,181,183,185,517,521,525,536,541,544,551],script_add:551,script_bar:[],script_method:[519,546],script_modul:525,scriptabl:185,scripted_fn:519,scripted_modul:[182,544],scriptfuncion:182,scriptfunct:[180,182,183],scriptmodul:[176,180,181,182,183,184,519,521,525,546],scrutini:6,search:[6,9,70,293,452,519,528,529,531,567],searchsort:520,seat:7,sebastian:8,second:[2,5,10,16,27,28,31,33,34,45,46,47,53,58,62,64,65,68,91,100,102,109,115,138,139,148,153,154,168,189,190,196,202,203,214,220,225,230,231,234,242,245,249,255,256,262,269,270,272,273,282,283,288,303,304,309,313,315,316,334,388,448,471,494,498,500,507,510,521,531,534,540,543,545,551,554,558],secondli:257,section:[2,6,15,17,277,319,401,519,521,522,527,529,533,534,538,539,542,552,558,559,562],see:[1,2,3,4,5,6,7,10,11,12,14,15,16,17,35,36,38,45,46,47,49,59,61,66,68,83,98,105,111,113,123,124,135,140,149,150,156,161,177,182,183,184,186,187,188,195,197,203,205,211,212,215,224,226,227,229,231,232,239,240,249,257,258,264,268,269,270,271,272,273,274,276,277,282,283,284,288,295,300,301,304,312,313,317,318,319,320,323,324,325,326,327,333,334,337,347,349,350,362,363,364,365,366,367,368,370,374,375,383,392,401,403,405,407,412,414,415,418,423,424,426,431,433,435,437,438,444,445,446,451,456,468,471,477,478,479,482,490,498,500,508,509,514,515,517,518,519,520,521,522,526,527,528,529,531,533,534,537,539,540,541,542,543,544,545,546,548,549,551,552,554,556,557,559,560,564,565,566],seed:[12,15,22,159,218,417,429,484,520,540,543,550],seed_al:12,seek:[180,196],seem:[6,546],seen:[2,17,73,271,272,273,519,534,547,559],segfault:527,segment:[5,12],select:[2,3,11,12,13,15,17,61,76,197,264,268,269,270,271,272,273,288,304,334,393,394,514,519,520,527,528,529,531,536,537,543,546,548,549,557,559],select_model_mode_for_export:546,self:[1,2,15,16,20,157,176,177,179,181,182,183,184,185,249,253,284,320,321,322,330,331,345,347,363,365,368,383,385,398,422,439,519,520,521,528,529,531,533,534,535,536,539,540,544,546,547,548,549,551,555,559],self_cpu_memory_usag:2,self_cpu_time_tot:2,self_cuda_memory_usag:2,selu:[253,520,546],selu_:520,semant:[7,12,45,46,47,69,181,505,518,521,546],semi:[274,295,532],semidefinit:79,send1:552,send2:552,send:[6,12,15,16,527,538,542,545,551,552,553,560],sender:[16,553],sens:[4,17,388,504,505,534],sensit:[349,546,552],sent:[12,16,496,527,542,551,552,553],separ:[1,2,10,15,16,19,110,140,181,288,290,297,298,299,304,306,328,334,409,517,520,531,533,534,536,537,544,547,552,558],seq:[2,73,84,288,304,334,401,503,559],seq_len:[288,304,334],seq_unpack:401,sequenc:[2,12,15,17,70,72,73,76,97,108,111,140,153,183,249,264,268,277,283,288,304,326,334,361,362,363,364,365,384,398,399,400,401,402,409,412,429,431,435,452,476,479,513,515,519,531,537,540,546,547,551,559,567],sequenceat:546,sequenceinsert:546,sequenti:[5,15,177,284,320,357,368,388,527,546,561],sequentialsampl:15,seri:[264,297],serial:[11,15,181,196,451,517,518,520,526,529,534,537,541,542,548,551,552],serializ:[519,546],seriou:527,serv:[1,6,11,16,547,551,552],server:[6,15,16,548,551],server_stor:16,servic:538,sess:546,set:[0,1,2,5,7,10,12,14,15,16,17,20,22,38,61,67,70,84,111,113,124,142,156,161,177,180,182,183,184,195,196,197,211,215,218,223,249,253,257,258,259,260,261,262,264,268,269,270,271,272,273,274,276,277,278,279,280,282,284,288,290,295,297,298,299,300,301,302,303,304,306,308,312,313,317,318,319,320,323,324,325,326,327,333,334,349,350,357,366,367,368,374,425,429,438,446,453,454,455,456,458,459,460,461,462,465,479,490,497,498,499,500,517,519,521,522,524,525,526,527,531,532,533,535,536,537,538,539,540,541,542,543,545,546,547,548,550,551,558,559,565,567],set_:[2,520,559],set_backoff_factor:1,set_default_dtyp:142,set_default_tensor_typ:[38,49,59,66,111,113,123,135,142,149,150,187,195,211,412,431,433,435,437,438,471,490,498,500,515],set_detect_anomali:2,set_determinist:[3,163,543],set_devic:[12,16,374,556],set_dir:517,set_epoch:15,set_grad_en:[2,114,520,560],set_growth_factor:1,set_growth_interv:1,set_materialize_grad:[2,539],set_num_interop_thread:536,set_num_thread:536,set_result:[20,551],set_rng_stat:[12,550],set_rng_state_al:12,set_sharing_strategi:527,set_start_method:542,set_stat:22,set_timeout:16,set_to_non:[177,284,320,368,547],set_trac:[179,182,185,519],set_train:546,setapiusagehandl:541,setapiusagelogg:541,setexportmoduleextrafileshook:541,setup:[10,374,536,551,552,567],setuptool:10,sever:[11,16,110,246,247,248,249,250,251,252,254,255,256,257,268,269,270,271,272,273,286,302,303,309,314,315,316,317,318,319,371,372,519,531,533,536,537,541,547,548,549,551,565],sgd:[1,15,282,374,533,534,538,547,551,552],sgdr:547,sgn:[133,464,520,528,559],sgn_:[520,528,559],sha256:[517,526],shadow:374,shall:320,shallow:[277,366,367],shamelessli:461,shao:197,shape:[2,9,12,17,19,27,29,30,48,53,60,61,73,74,102,104,105,109,110,111,113,115,124,131,132,135,139,148,154,156,158,161,183,184,187,190,191,213,214,219,233,234,235,242,245,249,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,275,276,278,279,280,281,282,283,284,285,287,288,289,290,291,292,293,294,295,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,323,324,326,327,328,329,332,333,334,336,337,338,339,340,341,342,343,344,345,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,383,385,409,412,422,426,431,433,434,435,441,443,444,446,447,471,475,479,480,483,485,487,495,504,505,514,515,519,520,528,529,531,534,535,539,540,546,551,554,558,559,565,566],shape_as_tensor:546,shard:[6,15],share:[2,6,10,12,15,17,18,134,157,241,277,409,439,451,475,494,506,520,533,534,536,542,544,545,546,551,555,557,559],share_folder_nam:16,share_memori:542,share_memory_:[523,527,555,559],shared_memori:527,sharedfil:16,shazeer:[361,363,365],shceme:[],shell:10,shen:8,shi:332,shift:[253,259,260,261,357,447,520,522,531,559],ship:[536,551],shippabl:6,shm_open:527,shorter:[175,546,551],shortest:399,shorthand:187,shorttensor:[556,559],should:[1,2,4,5,6,7,10,11,12,15,16,17,27,28,31,32,33,38,58,59,60,61,66,81,91,110,111,112,113,123,124,135,136,149,150,156,161,175,177,179,182,183,184,185,187,195,196,202,211,217,221,234,249,257,258,262,274,276,277,279,280,283,284,288,304,313,320,327,328,334,366,368,370,374,379,380,381,382,383,384,385,386,388,391,392,393,394,398,399,400,412,413,425,427,431,432,433,434,435,436,437,438,444,471,490,496,515,516,517,518,519,521,526,527,529,531,533,534,536,537,538,539,540,542,543,545,546,547,548,551,553,554,557,558,559,565,567],shouldn:[554,557],shout:546,show:[0,3,4,6,15,16,517,528,536,537,538,547,551,553],showcas:[7,317,537,542],shown:[1,12,519,533,539,540,548],shrinkag:[291,355,531],shuffl:[15,558],shut:[15,551],shutdown:[15,551,552],siam:197,side:[2,10,19,104,110,161,175,254,255,256,265,266,267,268,269,270,271,272,273,285,314,315,316,340,341,342,343,344,369,373,446,479,496,517,519,531,533,546,547,551,565],sigma:[17,258,288,289,304,305,347,348,403,520,531,559],sigmoid:[1,17,257,258,288,289,304,305,347,520,528,529,532,546,559],sigmoid_:[520,528,559],sigmoidtransform:17,sign:[6,17,53,100,132,313,441,465,468,520,528,546,549,556,559],sign_:[520,528,559],signal:[9,19,124,156,161,175,246,247,248,250,251,252,254,255,256,268,269,270,286,302,303,309,314,315,316,371,372,446,479,527,531,542,551,565],signal_2d:309,signal_4d:309,signal_length:175,signal_ndim:[124,156,161,446,520,559],signal_s:[161,520,559],signatur:[2,15,177,195,211,284,320,368,398,408,479,539,548,549,559],signbit:[520,559],signific:[2,534,537,547],significand:[556,559],significantli:[2,374],silent:[12,158,183,320],silli:539,silu:520,silu_:520,sim:[60,333,419,435,531],similar:[6,15,16,17,72,84,161,177,274,275,284,285,295,297,298,299,320,366,368,398,409,443,505,521,527,528,531,534,536,539,546,552,554,559,562,564,565,566,568],similarli:[6,16,49,77,288,304,334,379,380,381,382,383,384,385,386,395,497,498,499,500,521,540,546,567],simon:8,simpl:[1,11,12,182,259,260,261,282,357,517,519,522,531,533,536,538,539,540,541,546,551],simplecustombatch:15,simplequeu:542,simpler:[519,534,539],simplest:[254,255,256,268,269,270,314,315,316,539,548,553,567],simplex:17,simpli:[2,10,15,17,167,253,278,374,379,380,381,382,383,384,385,386,519,521,534,554,567],simplic:552,simplifi:[20,180,311,534,547,552],simul:[17,548,549,564,567],simultan:[534,547,551],sin:[10,50,150,221,420,520,528,546,558,559],sin_:[520,528,559],sin_add:10,sinc:[6,12,15,16,17,19,76,109,161,175,177,179,181,215,257,284,317,318,319,320,368,370,388,483,485,519,520,521,525,531,533,534,537,539,540,541,544,545,546,547,550,551,552,554,556,557,559,565],sine:[51,466,467],sing:524,singl:[2,10,16,17,20,35,36,48,59,66,69,113,149,150,165,176,177,183,184,187,202,247,248,251,252,255,256,258,268,269,270,272,273,276,277,284,286,290,302,303,306,315,316,320,328,332,357,368,374,376,377,378,404,422,444,472,504,505,519,521,527,529,531,534,536,537,539,542,543,544,546,547,548,551,552,553,555,556,559,565,567],singleton:[17,306,506,535,559],singular:[98,197,205,215,223,417,418,468,483,484,524],sinh:[1,51,520,528,559],sinh_:[520,528,559],site:6,situat:[17,527,542,548,549,553],size:[2,3,6,12,15,16,17,19,32,33,35,36,38,48,58,59,61,66,68,69,70,77,79,80,91,94,95,98,100,110,111,112,113,116,124,135,136,137,149,150,156,158,160,161,175,177,188,195,197,205,211,212,213,215,216,220,223,224,226,227,229,232,233,235,237,240,246,247,248,249,250,251,252,254,255,256,257,258,259,260,261,262,264,265,266,267,268,269,270,271,272,273,276,277,282,283,284,285,286,290,296,297,298,299,300,301,302,303,306,308,309,312,313,314,315,316,317,318,319,320,323,324,325,326,327,332,340,341,342,343,344,357,361,367,368,369,370,371,372,373,374,388,398,399,400,401,402,403,405,407,409,412,413,416,417,418,419,423,424,425,426,427,428,429,431,432,433,434,435,436,438,446,447,452,468,469,471,472,475,476,477,478,479,482,483,484,485,490,491,496,504,505,506,508,509,511,512,515,516,519,520,524,525,528,529,531,533,534,535,537,538,539,540,541,543,544,546,547,548,551,554,555,556,558,559,562,563,565,566,567],size_averag:[257,258,274,276,295,300,301,312,313,323,324,325,327,333,349,350,366,520,531],sizedim:559,sizeof:555,skeleton:379,skew:[2,4],skip:[1,519,533,534,538,539,547],slack:6,sleep:20,slice:[35,36,259,260,261,351,353,357,442,503,519,522,531,546,557,559],slide:[175,285,314,369,479,531],slightli:[7,15,408,417,452,484,517],slogdet:[520,559],slope:[307,532],slow:[2,504,542,558],slow_conv3d:520,slow_conv_dilated2d:520,slow_conv_dilated3d:520,slow_conv_transpose2d:520,slow_conv_transpose3d:520,slow_set_futur:20,slower:[2,4,16,68,531,539,543],slowli:550,small:[1,2,6,7,12,15,16,17,38,200,202,249,275,329,333,346,370,418,519,521,531,537,539,540,544,548],small_pool:12,smaller:[15,80,81,374,424,472,544,547,559],smallest:[75,188,197,424,492,524,554,568],smart:[539,551],smartcat2010:8,smessmer:8,smi:[12,537,540],smm:520,smooth:[354,546,547],smooth_l1_loss:[1,520],smoother:517,smoothl1loss:531,snapshot:[12,537],snd_tensor:558,snedecor:17,snippet:[517,544],sobol:429,soboleng:429,socket:[527,551],soft:[355,531],soft_margin_loss:[1,520],softmarginloss:531,softmax:[1,17,249,311,352,520,529,537,546],softmaxtransform:17,softmin:[1,520],softplu:[1,520,546],softshrink:520,softshrinkag:355,softsign:520,softwar:[456,547],sole:547,solid:553,solut:[6,9,213,257,374,469,496,520,532,533,540,542],solv:[6,9,79,197,213,216,496,520,534,545,559],solver:[469,496],some:[1,2,5,6,7,10,12,14,16,17,19,61,161,175,177,181,183,249,253,257,258,264,268,269,270,271,272,273,274,276,277,278,284,295,297,298,299,300,301,304,312,313,320,323,324,325,327,333,334,349,350,366,368,374,375,425,483,517,519,520,521,522,525,527,528,529,531,533,534,537,539,540,541,542,543,544,545,546,547,548,551,552,553,554,558,559,565],some_dict:521,some_entry_point:182,some_fil:16,some_fn2:519,some_fn3:519,some_fn4:519,some_fn:519,someon:[6,529],someth:[6,183,523,527,528,534,545,551],sometim:[2,6,161,183,285,369,518,527,531,540,542,556,559],somewhat:534,somewher:[529,541],soon:[9,551,553],sophist:547,sort:[2,47,110,152,249,399,400,407,452,492,504,520,539,540,546,549,559],sort_bi:2,sorted_indic:[398,401],sorted_sequ:[452,520],sorted_sequence_1d:452,soumith:[7,8],sound:558,sourc:[0,1,2,3,4,5,10,12,15,16,17,20,21,35,36,55,56,57,67,69,72,74,76,85,110,114,137,145,159,163,166,167,175,177,178,179,180,181,182,183,184,185,186,196,197,217,218,228,233,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,408,417,429,451,453,454,455,456,458,461,462,472,479,484,491,517,519,520,521,525,527,529,531,532,540,541,546,547,550,551,552,554,555,558,559,561,562,563,564,565,566,567],space:[15,17,183,184,195,211,249,268,269,270,271,272,273,285,300,315,316,369,495,531,534,544,565],spadd:554,span:[12,300,551,559],spandan:8,spandantiwari:8,spars:[1,2,9,68,137,165,197,282,283,351,417,456,471,484,518,520,523,532,543,547,556,557,559],sparse_:532,sparse_coo:[471,554,556,559],sparse_coo_tensor:[520,523,554,559],sparse_dim:[471,520,554,559],sparse_grad:[137,520],sparse_mask:[520,554,559],sparse_resize_:520,sparse_resize_and_clear_:520,sparseadam:[282,547],sparseaddmmbackward:554,sparsedim:559,sparsefloattensor:554,sparsetensor:[2,471,554,559],sparsiti:532,spatia:531,spatial:[74,260,285,332,352,369,370,371,372,531,565],spatio:[261,357],spawn:[15,178,374,533,538,542,545,552],spawncontext:527,speak:[161,554],special:[6,9,19,196,277,375,407,522,529,534,539,541,548,557,558,567],specif:[2,5,6,7,10,12,16,17,22,80,156,161,175,177,183,184,227,284,285,306,320,368,379,517,519,521,523,529,534,537,542,543,546,547,548,551,553,558,559],specifi:[2,10,12,15,16,17,19,48,61,90,94,95,99,100,102,137,177,183,184,196,197,207,223,233,240,255,256,257,258,264,272,274,276,277,283,284,285,295,300,301,306,312,313,318,320,323,324,325,326,327,333,349,350,361,366,367,368,369,371,372,374,377,379,380,381,382,383,384,385,386,388,391,392,393,394,405,408,417,423,429,444,447,448,451,461,482,504,505,506,507,517,519,521,524,526,528,529,531,537,539,545,546,547,548,550,551,554,555,556,558,559,565,567],specifii:[],spectral:[9,187,396,403],spectral_norm:[277,396],speed:[6,10,124,156,161,249,446,483,536,537,538,539,540,548,551],spend:[4,6,197],spent:[2,4,16,536,547],sphinx:6,split:[6,15,16,73,80,277,374,519,520,528,531,546,551,557,559,565],split_siz:[472,520,559],split_size_or_sect:472,split_with_s:[520,557],spmm:554,sponsorship:7,spotri:78,spread:537,sqrt:[19,117,118,124,154,156,161,187,259,260,261,262,268,269,270,271,272,273,288,289,290,297,298,299,302,303,304,305,306,308,334,336,357,446,450,520,528,532,533,546,547,554,559],sqrt_:[520,528,559],squar:[98,99,101,109,160,175,205,213,215,222,247,251,255,256,269,270,272,273,286,303,312,315,316,319,349,361,450,468,469,473,507,520,531,547,554,559,565],square_:[520,559],squeez:[35,36,188,212,224,226,227,229,232,240,423,426,477,478,482,508,509,520,528,546,554,557,559],squeeze_:[520,559],squeezebackward1:2,src:[16,235,361,364,365,487,520,549,559],src_key_padding_mask:[361,364,365],src_mask:[361,365],src_tensor:16,srinivasan:8,ssa:519,sse3:457,ssnl:8,sspaddmm:[520,554],sspmm:554,stabil:[1,212,258,259,260,261,290,297,298,299,306,354,357,403,531,547],stabl:[1,2,16,17,110,197,258,483,485,518,539,543,546,551,564,565,566],stack:[1,2,12,15,17,108,153,264,288,304,334,362,364,402,513,520,537,538,540,546],stacktransform:17,stage:[6,518,553],stagnat:547,stai:[6,277,542,548,551,559],stand:[521,553],standalon:[182,183,519],standard:[6,10,17,253,259,260,261,290,297,298,299,306,357,363,365,409,417,435,477,478,521,522,532,536,542,546,549,559],star:[268,269,270],start:[2,4,7,12,15,16,20,38,191,195,211,241,249,283,321,323,374,379,383,385,438,459,517,520,521,527,529,531,534,535,537,538,540,542,545,546,547,551,552,553,559],start_dim:[126,284,520,559],start_epoch:15,start_ev:537,start_method:527,start_process:527,startup:4,stash:[2,5,374,539],stat:[12,357,374],state:[1,2,5,12,15,17,22,145,177,178,183,197,284,288,289,304,305,320,334,336,368,375,429,462,525,533,534,537,538,542,544,545,547,549,550,565],state_dict:[1,177,284,320,368,391,517,526,538,542,544,546,547],stateless:549,statement:[183,522,534,539,542,544,546,551],stathopoulo:197,stathopoulosetal2002:197,static_async_add:551,static_k:520,static_v:520,staticmethod:[2,533,539,551],statist:[12,17,202,259,260,261,290,297,298,299,306,357,540,547,567],statu:[215,518,522,527],std:[10,22,409,505,520,528,532,541,545,546,559],std_mean:[520,528],stddev:17,stderr:[517,526],stdin:[2,539,543],stdout:547,steepest:534,step:[1,4,7,10,15,16,17,28,38,61,151,195,197,211,286,374,398,429,438,519,520,529,531,533,534,537,538,540,542,543,545,548,551,552,558,559,565,567],step_siz:547,step_size_down:547,step_size_up:547,steplr:547,steps_per_epoch:547,stft:[9,59,66,149,150,175,187,520,559],stick:17,stickbreakingtransform:17,still:[1,2,15,16,17,161,185,301,312,349,451,519,527,528,529,533,534,537,538,540,544,545,547,551,552,553,567],stirl:[333,531],stitch:551,stmt:536,stochast:[15,17,286],stop:[12,17,38,197,264,438,519,547,551],storag:[2,12,48,157,158,166,180,196,219,241,277,439,451,475,494,517,518,523,526,527,534,537,542,544,551,556,557,559],storage_offset:[48,520,559],storage_typ:[523,559],storageshar:545,store1:16,store2:16,store:[2,5,10,12,28,68,180,181,197,202,282,387,388,389,391,392,393,394,398,517,519,529,530,538,539,540,541,546,548,551,552,553,554,558,559,567],store_tru:537,str:[2,10,12,16,19,74,176,177,197,257,258,264,268,269,270,271,272,273,274,276,283,284,295,300,301,312,313,320,321,323,324,325,327,330,333,335,336,349,350,361,366,367,368,370,379,380,381,382,383,384,385,386,387,389,391,392,393,394,395,396,397,403,405,451,479,519,520,521,522,525,527,529,531,547,551,555,558,559,565],straight:[257,531],strategi:[6,15,16,249,521],stream:[15,559],strict:[2,177,183,184,284,320,368],strictli:[7,15,177,284,320,368,534],stride:[2,9,38,48,59,66,111,113,123,135,136,149,150,160,187,195,211,213,254,255,256,268,269,270,271,272,273,285,302,303,314,315,316,317,318,319,332,369,374,412,431,433,434,435,437,438,444,469,483,485,498,500,511,515,520,522,528,531,546,551,556,558,559,562,563,564,565],strike:6,string:[0,2,10,12,16,110,177,180,181,196,257,258,264,268,269,270,274,276,283,284,295,300,301,312,313,320,321,323,324,325,327,330,333,349,350,366,367,368,388,451,455,479,517,520,521,522,526,527,529,531,539,541,546,551,555,556,558,559,565,567],strip:[519,531,546],strip_doc_str:546,strive:6,strong:7,strong_wolf:547,strongli:[7,279,280,517],struct:[11,525,541],structur:[6,7,15,183,320,384,388,417,484,521,522,537,538,539,542,544,545,546,547,551,558,559,560],stub:[549,567],student:17,studi:534,studio:545,style:[407,519,521,549],styliz:[297,298,299],sub:[20,182,183,184,224,227,229,332,361,362,364,442,481,519,520,528,546,554,556,559,567],sub_:[520,528,554,559],subclass:[1,2,10,15,17,181,320,375,379,384,522,533,551,559],subfold:10,subgradi:547,subgraph:[375,538],subject:[9,16,20,38,213,374,528,529,539,548,551,556],submatrix:17,submit:[12,543],submod:[],submodul:[11,177,181,182,277,284,320,321,322,368,374,519,521,525,544,546,548,567],subprocess:[15,16,540,542],subregion:1,subscript:522,subsequ:[6,10,11,16,177,183,268,269,270,271,272,273,284,320,368,543,551],subset:[15,16,177,182,284,320,368,519,521,539,546,548,549],subsetrandomsampl:15,subspac:[326,417,483,484,559],substanti:7,substitut:[534,556],subsystem:[6,9],subtensor2:539,subtensor:539,subtl:[6,297,298,299],subtleti:[15,277,540],subtli:547,subtract:[480,520,531,559],subtract_:[520,559],subtyp:521,succe:[16,539,545],succeed:215,success:[7,17,215,384],successfulli:[16,457,527,544,546,551],succinct:517,suffici:[10,17,161,517,546,548,549,556],suffix:[558,559],sugar:521,suggest:[7,274,517,523,533,534,540],suhan:8,suit:[519,521,546,551],suitabl:[15,17,70,187,452,547,558],sum:[1,2,12,15,16,17,95,110,202,203,204,212,213,235,240,257,258,264,273,274,276,277,283,285,295,300,301,302,303,312,313,323,324,325,327,333,349,350,351,353,366,367,369,374,388,393,394,408,471,493,520,524,528,531,533,534,537,538,539,546,547,551,552,554,559],sum_:[28,124,155,156,175,221,238,254,255,256,268,269,270,302,303,309,323,327,329,349,479,491],sum_i:[324,325,350],sum_j:[212,276,311,351,353,531],sum_pair:521,sum_to_s:[520,559],sumbackward0:2,sumbackward1:2,summar:[4,461],summari:[2,12,461,558],summarywrit:558,summat:[110,175,204,212],sunset:[7,8],suo:8,superclass:539,superresolut:546,supervis:[274,295],suppli:[1,5,6,10,11,16],support:[1,2,3,6,7,9,10,11,12,15,16,17,28,29,31,35,36,58,59,66,68,105,109,124,131,149,150,157,182,183,187,197,213,220,221,225,230,231,268,269,270,271,272,273,282,283,285,308,320,325,357,367,369,374,413,425,439,446,457,480,498,500,511,512,516,517,519,521,522,523,524,525,527,530,531,534,535,536,539,542,544,545,547,548,549,551,554,556,557,558,559,565],suppos:[15,16,175,485,554],suppress:550,sure:[2,6,15,16,114,183,184,197,374,406,492,528,534,538,540,545,546,547,551,552,553,558],surg:196,surpass:532,surpris:517,surrog:17,surround:[1,521,533,567],sutskev:547,svd:[9,98,205,223,417,418,468,484,520,559],svi:17,swa_lr:547,swa_model:547,swa_schedul:547,swa_start:547,swa_util:547,swalr:547,swap:[366,367,494,520,522,531,549,559,567],swap_modul:[549,567],swish:[347,531],symbol:[14,21,304,334,545,546],symbolic_fn:546,symbolic_foo_forward:546,symbolic_help:546,symbolic_nam:546,symbolic_opset10:546,symbolic_opset9:546,symbolic_opset:546,symeig:[9,109,520,559],symmetr:[19,59,66,77,78,79,149,150,187,197,223,485,520,548,549,567],symmetri:[19,161,446,479],sync:[1,374,538],sync_bn_modul:357,sync_bn_network:357,syncbatchnorm:374,synchron:[4,12,197,357,374,407,536,537,538,542,551],syntact:7,syntax:[177,519],sys:517,system:[6,10,11,12,79,180,196,216,361,363,365,374,457,469,496,522,534,536,537,541,545,551],t4d:531,t_0:547,t_co:15,t_max:547,t_modul:[396,397,403,405],t_mult:547,tabl:[2,16,282,520,531,539,551],tag:[2,6,16,196,517,518,541,558],tag_nam:517,tag_scalar_dict:558,tail:15,taiwan:558,take:[1,2,4,6,7,10,12,15,17,19,20,79,91,100,102,131,160,249,258,283,286,288,304,315,316,317,318,319,320,328,334,361,371,372,374,422,469,496,517,519,520,525,527,528,529,531,533,534,536,537,538,539,540,543,545,546,548,549,551,552,553,556,557,558,559,567],taken:[17,19,38,110,264,276,283,327,461,483,485,531,536,537,539,540,541,544,546],talk:541,tall:[539,559],tamper:196,tan:[1,52,520,528,546,558,559],tan_:[520,528,559],tangent:[54,488,489],tanh:[17,54,288,289,304,305,334,336,359,520,528,529,532,546,559,566],tanh_:[520,528,559],tanhshrink:520,tanhtransform:17,tanx:558,tape:6,target:[1,20,71,246,247,248,249,250,251,252,257,258,264,276,286,295,300,301,312,313,317,318,319,323,324,325,326,327,333,349,350,361,370,520,531,533,534,542,547,548,551,558,559,565,567],target_dict:567,target_length:[264,520,531],target_n:264,task:[2,6,178,186,297,298,299,536,541,545],tau:[140,414,415,520,531],taylor:221,tbb:536,tcp:551,tcpstore:16,tdr:545,team:[6,7,544],technic:[6,7,534,540],techniqu:[278,379,530,548],tell:[2,6,180,196,519,534,539,559],temperatur:[17,531],tempor:[259,261,264,357,370,531],temporari:[10,375,540,567],temporarili:546,temporary_fil:517,ten:[521,558],tend:[6,456],teng:8,tensor1:[29,30,220,445,520,559],tensor2:[29,30,220,445,520,559],tensor:[1,3,5,6,10,12,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,145,146,147,148,149,150,151,152,153,154,155,156,157,158,160,161,162,164,165,167,168,169,170,171,172,173,174,175,177,180,181,182,183,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,237,238,239,240,241,242,243,244,245,249,253,254,257,258,264,265,266,267,268,269,270,271,272,273,274,276,277,278,279,280,282,283,284,285,288,289,295,300,301,304,305,311,312,313,314,317,318,319,320,323,324,325,326,327,328,332,334,336,340,341,342,343,344,350,351,352,353,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,395,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,454,455,456,457,458,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,518,519,521,524,530,531,532,533,534,535,536,537,538,540,542,543,545,546,547,550,551,552,554,555,558,565,566,567],tensor_a:[72,84],tensor_b:72,tensor_dict:544,tensor_index:11,tensor_list:16,tensorboard:518,tensordataset:15,tensordot:[1,520,523,537],tensorfloat32:[28,31,58,68,220,231,268,269,270,271,272,273,308,531,537],tensorfloat:3,tensorflow:[17,534,547,558],tensorpipeag:551,tensorpiperpcbackendopt:551,term:[7,17,19,76,110,249,257,268,269,270,304,305,325,333,349,374,379,380,381,382,383,384,385,386,518,531,533,534,540,547,549,552,559,566],termin:[527,547,551],terminolog:[259,260,261,357],test:[2,10,16,166,167,170,172,173,465,518,519,522,527,543,547,548,558],test_input:547,testcod:521,text:[6,17,23,25,26,27,28,29,30,31,32,33,34,37,38,50,51,52,53,54,58,59,60,66,68,75,81,87,88,89,105,109,130,131,133,139,148,149,150,151,154,155,168,175,190,191,194,195,204,210,211,212,213,214,234,235,242,243,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,279,280,281,282,285,287,288,289,290,291,292,293,294,295,297,298,299,300,301,302,303,304,305,306,307,308,310,311,312,313,314,315,316,317,318,319,323,324,325,326,327,328,332,333,334,336,337,338,339,340,341,342,343,344,345,347,348,349,350,351,353,354,355,356,357,358,359,360,367,368,369,370,371,372,373,377,419,420,422,425,435,438,440,450,463,464,466,467,473,479,480,485,488,489,514,531,532,547,558,559,565,566,567],text_str:558,texttt:[34,168,249,559],tf32:3,tgt:[15,361,362,363],tgt_key_padding_mask:[361,362,363],tgt_mask:[361,362,363],thalloc:545,than:[1,2,4,5,7,9,10,12,15,16,35,36,48,61,69,75,76,100,101,113,128,129,130,139,148,152,158,165,175,182,188,190,200,214,224,227,229,232,235,238,257,258,277,282,283,313,318,333,349,355,366,367,374,401,403,408,423,424,442,456,461,465,498,500,510,517,519,521,523,529,530,531,532,534,535,537,539,540,542,543,544,546,547,548,551,554,556,558,559,565],thank:[17,539],thc:545,thc_state:545,thcstate:545,thcudacheck:545,thcudatensor:545,thcudatensor_cadd:545,thcudatensor_fil:545,thcudatensor_issamesizea:545,thcudatensor_resizea:545,the_model:[],the_templ:520,thei:[1,2,5,6,7,9,12,15,16,17,20,28,31,32,33,35,36,58,81,168,169,175,177,180,188,196,213,219,224,227,229,232,235,271,272,273,284,285,320,326,335,346,368,369,374,375,376,398,401,426,456,479,507,519,521,523,525,527,528,529,531,533,534,537,538,539,542,544,545,546,547,548,549,551,554,558,559,560,567],them:[1,2,5,6,9,11,15,16,48,69,97,100,113,196,226,240,282,320,351,353,384,399,402,477,478,482,517,521,525,527,528,529,531,533,534,535,539,540,541,543,545,547,548,549,551,552,553,554,558,559],themodelclass:[],themselv:[2,492,537,567],theophil:507,theori:534,therebi:[15,548],therefor:[1,2,5,15,16,17,19,48,59,66,149,150,156,161,183,283,369,418,490,531,533,534,539,540,541,546,547,553,554,559],theta:[17,520,531],thi:[1,2,3,4,5,6,7,10,11,12,14,15,16,17,19,20,26,28,31,33,34,45,46,47,48,54,58,61,68,74,76,83,87,91,94,95,98,100,102,107,108,109,110,114,124,131,138,140,141,142,149,153,156,160,161,167,175,177,178,179,180,181,182,183,184,185,187,189,195,196,197,200,202,205,211,215,220,224,227,229,231,232,237,239,240,249,253,257,258,259,260,261,264,268,269,270,271,272,273,274,276,277,278,279,280,282,283,284,285,286,290,295,297,298,299,300,302,303,304,306,308,314,315,316,317,318,319,320,323,327,332,334,335,349,351,354,357,363,365,366,368,369,370,371,372,374,375,388,398,399,400,401,402,403,405,406,413,414,415,416,417,418,421,423,425,429,438,443,446,454,455,456,458,461,468,469,475,479,482,483,485,486,504,505,506,510,511,512,513,516,517,518,519,520,521,522,523,524,525,527,528,529,531,532,533,534,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,558,559,560,561,562,563,564,565,567,568],thin:425,thing:[2,6,16,257,521,531,534,537,539,540,542,548,553,554,567],think:[6,519,521,534,553],third:[17,108,215,249,256,270,273,316,519,537],thnn_conv2d:520,thnn_conv_depthwise2d:520,thoma:8,those:[2,4,12,15,48,100,102,183,196,249,257,258,274,276,283,295,300,301,312,313,323,324,325,327,333,349,350,366,370,374,483,521,528,529,531,533,537,543,544,547,548,549,551,553,562],though:[2,16,19,519,522,529,534,542],thousand:[],thrash:16,thread:[1,2,8,12,15,16,20,114,143,144,277,406,458,459,460,518,519,533,541,542,546,551,553,560],threadlocaldebuginfo:541,three:[2,9,16,57,256,270,273,316,538,539,547,548,551,553,558],threej:558,threshold:[223,349,354,461,520,533,546,547,558],threshold_:[520,531],threshold_mod:547,through:[1,2,5,6,7,11,15,16,17,98,178,183,184,186,205,327,362,363,364,365,425,468,483,485,517,518,521,527,528,529,531,539,540,541,545,546,548,549,551,552,553,557,559,560,567,568],throughout:[398,548],throughput:536,thrown:[12,20,238,559],thtensor:[],thtensorrandom:235,thu:[2,15,16,17,19,220,282,320,370,374,471,519,525,531,534,536,539,540,541,546,547,548,551,557,559,565,567],thumb:16,tie:17,tile:559,time:[2,4,6,10,12,15,16,17,19,20,22,27,28,29,30,31,32,33,34,58,68,74,76,94,109,110,168,175,177,180,183,184,191,196,197,213,220,231,234,235,237,238,243,254,255,256,258,259,260,261,264,268,269,270,271,272,273,277,283,284,285,286,288,297,298,299,304,306,307,314,315,316,317,318,319,320,332,334,354,357,368,369,370,371,372,374,407,416,425,443,448,475,479,480,483,491,518,521,522,525,527,531,532,534,536,537,538,539,540,541,542,543,545,547,548,549,551,552,553,554,558,559,565,566,567],timedelta:16,timefram:551,timeit:536,timelin:[2,4],timeout:[15,16,527,551],timestamp:558,tini:[559,568],tip:6,tiwari:8,tmp:[2,10,16,517],to_dens:[520,554],to_dlpack:18,to_her:[374,551,552,553],to_mkldnn:[520,559],to_spars:[520,543,554,559],todai:548,togeth:[1,15,16,17,124,156,288,304,334,374,376,525,533,540,541,549,551,552,553,558],token:[517,522],tol:[197,223,520],told:521,toler:[2,34,168,183,184,197,223,519,547],tolerance_chang:547,tolerance_grad:547,tolist:[555,559],too:[6,10,264,320,375,531,533,536,540,542,543,545,553,554],tool:[2,4,7,517,519,521,536,537,545],top:[2,15,17,257,258,295,301,312,327,367,370,379,383,385,492,522,527,531,539],top_level_events_onli:2,top_level_method:521,topic:[7,541],topk:[520,528,546,549,559],topolog:2,torch:[7,9,11,13,22,114,176,177,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,379,380,381,382,383,384,385,386,398,406,429,458,518,519,520,521,528,529,533,534,535,536,537,538,540,541,542,543,545,548,551,552,553,557],torch_14808_1591070686:545,torch_extens:10,torch_extensions_dir:10,torch_funct:539,torch_hom:517,torch_shm_manag:527,torchaudio:[9,518],torchelast:518,torchscript:[178,179,182,183,185,518,522,544,546,551],torchserv:518,torchtext:518,torchvis:[517,518,519,521,534,558],toronto:264,total:[2,4,6,12,15,16,264,285,295,301,312,326,349,369,374,376,407,409,411,461,479,517,521,529,531,537,547],total_averag:2,total_count:17,total_length:[401,540],total_loss:540,total_step:547,totensor:558,touch:[6,546],toward:[7,131,197,245,374,448],trace:[2,6,11,15,178,182,184,197,520,521,523,534,537,544,559],trace_modul:[183,519],trace_nam:2,traceabl:[21,519],traceback:[2,165,521,527,539,543],traced_bar:519,traced_cpu:519,traced_fn:519,traced_foo:[183,519],traced_gpu:519,traced_modul:544,tracer:[183,546],tracerwarn:519,track:[2,5,12,259,260,261,297,298,299,357,374,384,527,529,537,539,540,541,547,552,553,559],track_running_stat:[259,260,261,297,298,299,357,544,565],tracker:[6,7,197],trade:[5,258,536],tradeoff:[548,552],tradition:9,trail:[400,402,532,535,539],train:[1,11,12,15,16,177,179,182,183,249,253,259,260,261,276,277,278,284,290,297,298,299,306,320,327,357,368,374,403,517,519,520,525,531,532,534,537,538,540,544,547,549,551,553,558,562,564,567],train_batch:547,train_fn:534,train_load:537,trainabl:547,trainer3:551,trainer:551,training_loop:548,training_method:179,trainingmod:546,trainload:558,trainset:558,tran:175,transb:546,transfer:[15,16,527,537,551],transform:[15,19,124,156,161,175,262,290,297,298,299,306,308,362,363,364,365,446,479,531,534,548,558,565,567],transform_to:17,transformed_distribut:17,transformer_decod:362,transformer_encod:364,transformer_model:361,transformerdecoderlay:362,transformerencoderlay:364,transit:519,translat:[534,553],transmit:551,transpar:[538,551,553],transport:551,transpos:[77,160,213,271,272,273,369,401,415,425,469,483,485,486,496,520,528,531,534,546,554,557,559],transpose_:[2,520,554,559],transposed_data:15,trapezoid:495,trapz:520,travers:[374,538,539,549,552,567],treat:[2,17,196,206,207,208,209,240,283,306,324,325,327,351,407,479,487,521,528,531,534,547,551,556,559],tree:[6,320,361,553],tri:[1,6,177,284,320,368,521,527,540,547,559],triag:7,trial:17,triangl:[154,558],triangular2:547,triangular:[17,77,78,79,425,485,496,497,498,499,500,531,547],triangular_solv:[520,559],trick:[2,17,258,531,534,541],tricki:[534,553],trickier:553,trigger:[1,2,6,7,20,461,533,538,541,544,551,559],tril:[520,559],tril_:[520,559],tril_indic:[520,523],trilinear:[370,456,531],trim:[19,59,66,149,150,175],trip:19,tripl:531,triplet:[366,367],triplet_loss:[366,367],triplet_margin_loss:[1,520],tripletmarginloss:[367,531],tripletmarginwithdistanceloss:[366,531],triu:[496,520,546,559],triu_:[520,559],triu_indic:[520,523],trivial:[76,553],tropp:[417,484],trou:[268,269,270,271,272,273,285,369],troubleshoot:6,troublesom:539,true_divid:[520,546,559],true_divide_:[520,559],truli:546,trunc:[29,125,131,520,528,559],trunc_:[520,528,559],truncat:[131,502,537,540],trust:[15,196],truth:558,tseq:17,tune:[16,547],tup:521,tupl:[2,5,12,15,19,35,36,48,49,55,56,57,90,92,93,109,111,113,127,135,140,177,183,184,188,197,212,213,215,217,224,226,227,229,232,233,240,246,247,248,250,251,252,254,255,256,264,265,266,267,268,269,270,271,272,273,277,284,285,286,302,303,314,315,316,317,318,319,320,321,326,330,340,341,342,343,344,368,369,370,371,372,373,388,401,407,408,412,414,417,425,431,433,435,444,447,448,469,470,471,477,478,482,483,484,485,490,491,492,503,504,505,508,509,514,515,519,520,522,524,527,529,531,539,544,546,547,551,554,558,559,565],tuple_or_list:521,turn:[10,15,163,183,362,364,534,543,546,552],tutori:[7,11,16,519,539,541,544,546,548],tval:520,tvar:197,twelv:556,twice:[1,2,20,533,534,540],two:[1,2,4,9,10,11,12,15,16,17,19,34,56,74,92,93,100,107,116,121,161,168,181,191,196,220,224,227,229,232,255,257,258,268,269,270,271,272,273,274,276,285,288,295,300,301,303,304,306,312,313,315,323,324,325,327,328,333,334,349,350,366,367,369,399,405,407,408,426,438,446,471,483,491,510,517,519,521,524,528,529,531,534,535,536,537,538,539,544,545,547,548,549,551,552,553,554,558,559],two_fft:19,two_ifft:19,twse:558,txt:[180,181],type1:[424,520],type2:[424,520],type:[2,10,11,12,16,17,20,22,27,28,29,30,31,32,33,38,49,56,57,58,59,61,62,63,64,65,66,67,69,70,71,72,73,76,81,84,94,95,105,109,111,112,113,123,124,131,135,136,138,142,149,150,152,156,161,162,164,165,174,175,177,178,182,183,184,186,187,189,195,197,211,213,215,234,240,249,253,277,284,320,321,330,368,374,376,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,402,407,408,412,413,423,424,427,428,429,431,432,433,434,435,436,437,438,443,445,446,452,455,471,472,479,480,482,485,490,498,500,504,505,507,514,515,516,517,518,519,522,523,524,525,528,531,533,536,537,541,545,548,549,551,554,555,556,558,559,560,565,567],type_a:[520,528,546,559],type_p:17,type_q:17,typecheck:167,typeerror:[388,539],typic:[10,15,16,17,177,274,284,295,320,368,374,517,518,519,534,536,543,544,546,547,548,549,557,568],typing_extens:[519,521],typo:6,ubc:547,udf:553,uint8:[134,388,424,427,428,445,548,556,558,559,568],uint8_t:559,uint_tensor:556,ultim:[7,10],unabl:[6,547],unaffect:559,unari:[522,528],unavailbl:521,unbalanc:[276,327],unbatch:124,unbias:[259,260,261,290,297,298,299,306,357,477,478,508,509,520,559],unbind:[520,528,546,557,559],unchang:[177,284,320,326,361,368,442,475,533,559,567],unclear:559,uncoalesc:[471,554],uncondition:[399,517,539],unconstrain:17,uncorrupt:[],undefin:[2,16,161,257,537,539,559],under:[1,2,4,15,71,177,264,284,320,368,442,527,531,533,534,538,542,545,548,549,550,553,558,560],underflow:[1,533],underli:[12,16,17,48,140,157,158,177,196,241,414,415,439,494,506,519,531,537,540,549,551,557,559,565],underscor:[517,529,551,554,559],understand:[6,7,346,532,534,537,544,558],understood:73,undertak:6,underwai:2,undesir:[11,61,264,268,269,270,271,272,273,531,539,559],undon:[379,380,381,382,383,384,385,386,395],unequ:[269,270,272,273,565],uneven:374,unexpect:[16,91,177,284,320,368,475,519,539],unexpected_kei:[177,284,320,368],unexpectedli:[374,559],unflatten:[520,528,529,557],unflattened_img:529,unflattened_named_img:529,unflattened_s:368,unfold:[285,520,546,557,559],unfortun:[2,5,7,15,374],unicod:522,unicodedecodeerror:196,unifi:529,unifies_names_from_input_tensor:528,uniform:[60,337,431,432,532,559,560],uniform_:[26,54,60,238,520,528,532,539,559,560],uniformli:[17,433,434,495],unind:550,uniniti:[111,112,113,559],union:[2,12,177,246,247,248,250,251,252,254,255,256,265,266,267,268,269,270,271,272,273,284,285,286,302,303,306,314,315,316,317,318,319,320,340,341,342,343,344,368,369,370,371,372,373,376,377,451,521,529],uniqu:[16,227,233,505,517,519,523,526,539,546,551,552,553,558,559],unique_consecut:[504,520,559],unit:[109,253,263,287,288,289,337,338,347,381,382,386,389,391,394,496,531,536,549,565,566],unit_interv:17,unitari:[124,156,161,446],unitriangular:[496,520,559],univari:17,univers:521,unix:[15,527],unknown:553,unless:[1,2,4,6,16,61,177,227,284,320,368,374,388,456,524,534,537,543,547,559,567],unlik:[2,6,17,224,227,229,306,521,527,542,543,556,559],unlist:1,unmask:[326,361],unment:529,unmodifi:1,unnam:[528,529],unncessari:557,unnecessari:[537,539,544],unnorm:[276,531],unnot:527,unoccupi:12,unord:[321,330],unpack:[217,277,288,304,334,401,522,539,540],unpack_data:217,unpack_pivot:217,unpickl:[15,196],unpool:[317,318,319],unpooled_output:319,unprun:[382,383,385,386,387,388,389,390,391,392,393,394],unreadi:538,unreduc:[257,258,300,301,312,327,367],unrel:[6,533,539],unresolv:545,unrol:[521,546],unsafe_chunk:520,unsafe_split:520,unsafe_split_with_s:520,unscal:[1,374],unscale_:[1,533],unseg:264,unsign:[549,556,559],unskip:1,unsort:[399,400],unsorted_indic:[398,401],unspecif:351,unspecifi:[16,546,558,559,567],unsqueez:[338,520,539,546,557,558,559],unsqueeze_:[520,559],unstabl:[1,17,98,205,418,468,531],unstructur:[384,388],unsuccess:16,unsupport:[519,522,529,546],unsupported_linear_op:521,untest:529,until:[6,12,16,20,197,527,531,534,537,540,551,553,559],untouch:15,untrack:183,untrain:546,untrust:196,unus:[12,179,182,296,374,519,521,537,538],unused_argument1:296,unused_argument2:296,unused_method:519,unusu:6,unwant:558,upcom:[16,533],updat:[1,2,7,9,259,260,261,277,282,283,288,297,298,299,321,330,357,517,519,525,533,534,538,542,544,545,547,551,552,553,558,559,567],update_bn:547,update_paramet:547,upgrad:547,upon:[15,527,553],upper:[17,67,70,77,78,79,81,152,337,425,437,452,485,496,499,500,520,531,532,547,559],upper_bound:17,uppercas:16,ups:6,upsampl:[272,371,372,549,565,567],upsample_bicubic2d:520,upsample_bilinear2d:520,upsample_bilinear:[549,565],upsample_linear1d:520,upsample_nearest1d:[520,546],upsample_nearest2d:[520,546],upsample_nearest3d:[520,546],upsample_nearest:[549,565],upsample_r:567,upsample_trilinear3d:520,upsample_trilinear:531,upscal:332,upscale_factor:[332,520,531],upstream:545,url:[2,16,517,526,551],usa:558,usag:[1,2,4,6,11,12,15,17,197,374,418,519,529,533,534,540,546,553,558,559,560,565,567],use:[1,2,3,5,6,7,9,10,11,12,15,17,19,20,48,74,140,151,158,161,167,177,179,181,182,183,184,187,196,197,219,227,235,254,255,256,264,265,266,267,277,284,288,289,300,302,303,304,305,314,315,316,317,320,327,334,335,336,340,341,342,343,344,367,368,370,373,374,399,400,405,427,438,443,451,452,456,477,478,484,490,495,504,508,509,517,519,520,521,525,527,528,529,530,531,532,533,534,536,537,539,540,541,542,543,544,545,546,548,551,552,556,558,559,560,565,567],use_cuda:2,use_distribut:16,use_dynam:520,use_env:16,use_external_data_format:546,use_gpu:519,use_input_stat:[520,531],use_memory_effic:185,use_memory_effici:185,use_mkldnn:536,use_mm_for_euclid_dist:74,use_mm_for_euclid_dist_if_necessari:74,use_ninja:10,use_openmp:536,use_separate_proj_weight:520,use_tbb:536,used:[1,2,3,4,6,9,10,11,12,13,15,16,17,20,58,59,60,66,109,124,143,144,149,150,152,156,161,177,180,182,183,184,188,196,197,249,255,256,257,258,259,260,261,269,270,271,272,273,274,276,277,279,280,282,284,288,295,297,298,299,303,304,306,309,315,316,320,327,328,333,334,336,354,357,366,367,368,374,375,376,409,446,451,453,455,456,458,459,460,470,477,478,479,485,492,506,508,509,510,517,519,520,521,523,524,526,529,531,532,533,534,536,537,539,541,542,543,545,546,547,548,549,550,551,552,553,554,556,558,559,560,562,564,565,567],useful:[1,2,6,12,15,17,94,95,175,202,240,276,285,300,327,332,401,406,423,482,484,517,519,521,529,531,536,539,541,544,546,547,548,551,552,560,567],user:[2,5,9,11,12,15,16,17,177,196,268,269,270,271,272,273,284,320,361,363,365,368,374,388,517,518,519,521,527,529,533,534,537,539,541,542,546,547,548,551,552,557,558,559,564,565,566,567],userrref:[551,553],userwarn:[535,546],uses:[1,2,4,10,12,15,16,17,22,38,49,59,66,98,111,113,123,135,149,150,182,187,195,196,205,211,259,260,261,264,265,266,267,290,297,298,299,306,328,340,341,342,343,344,349,357,373,374,412,429,431,433,435,437,438,468,471,483,490,498,500,515,517,519,531,533,534,536,537,538,539,540,541,543,545,547,551,552,553,556,559,565,567],using:[1,2,5,6,7,9,10,11,15,16,17,33,61,76,78,110,158,175,177,179,180,181,182,183,184,185,196,197,215,216,223,253,257,258,264,265,266,267,268,269,270,271,272,273,274,277,278,279,280,282,283,284,288,294,295,304,320,322,329,331,334,340,341,342,343,344,346,366,367,368,373,374,403,418,429,451,490,495,517,518,519,521,522,523,527,529,531,532,533,534,536,537,538,539,540,541,542,543,544,545,546,547,548,549,551,552,553,558,559,560,565],usr:[196,451],usual:[2,6,10,15,279,280,295,297,298,299,483,519,533,536,540,541,546,549,551,558,559,567],uszkoreit:[361,363,365],utf:196,util:[1,6,12,20,177,284,288,304,320,334,368,379,380,381,382,383,384,385,386,398,518,533,535,536,537,539,540,541,546,547,551,564,565,566],v100:[13,288,304,334],v_1:329,v_2:329,v_proj_weight:520,val:[520,532,559],val_loss:547,valid:[2,16,17,177,268,269,270,271,272,273,383,388,392,425,514,519,521,529,546,547,551,552,565,567],validate_arg:17,valu:[1,2,5,6,7,9,10,12,15,17,19,20,22,23,26,27,29,30,33,35,36,38,45,46,47,54,59,60,61,66,70,74,81,90,92,93,98,115,135,137,139,148,149,150,151,152,157,161,165,169,170,171,174,175,177,178,180,183,186,188,190,195,196,197,200,205,211,214,215,218,223,224,226,227,229,232,235,239,242,245,249,254,255,256,257,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,281,283,284,285,290,291,294,295,297,298,299,300,302,303,306,308,311,313,314,315,316,317,318,319,320,321,325,326,327,328,329,330,333,349,351,352,353,354,355,357,360,361,363,365,366,367,368,369,370,374,377,398,401,402,407,408,412,413,417,418,420,422,426,428,438,439,442,443,447,452,461,468,470,471,479,483,484,492,495,497,498,499,500,502,504,505,506,514,515,516,517,519,520,522,524,526,527,531,532,533,534,536,537,539,540,544,546,547,548,549,550,551,554,556,557,558,559,560,565,566,567],valueerror:[398,401,539],vamshi:8,vander:[520,523],vandermond:507,var1:547,var2:547,var_mean:[520,528],vari:[398,547,567],variabl:[5,10,12,14,17,111,113,183,197,262,268,269,270,271,272,273,277,282,283,288,289,304,305,308,320,323,328,334,336,374,398,399,400,401,402,412,431,433,435,456,490,515,517,529,534,536,537,540,543,545,546,547,551,558,559,562,563,564,565,566,567],variabletyp:546,varianc:[17,259,260,261,297,298,299,357,435,436,508,509,531,532,547],variant:[1,239,496,541,547,549,559,567],variat:[17,539],varieti:552,variou:[3,5,7,10,15,197,527,542,547],vaswani:[361,363,365],vc2017:545,vdantu:8,vdim:326,vdot:[520,559],vec1:[33,520,559],vec2:[33,141,416,520,559],vec:[32,237,404,408,520,559],vector:[2,9,17,31,32,33,48,53,69,74,84,91,94,95,99,101,113,220,235,237,258,259,260,261,264,277,282,283,285,290,297,298,299,329,357,366,369,376,378,404,408,416,417,483,485,507,524,531,534,548,558,559],vehicl:7,veloc:547,verbos:[10,517,529,546,547,558],veri:[2,4,6,9,297,298,299,375,521,527,534,539,540,542,545,547,550,551,552],verifi:[2,10,517,519,526,539,546],verify_ninja_avail:10,versa:[134,313,534,555,559],version:[3,5,12,14,17,149,180,181,220,241,258,304,320,321,334,370,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,456,479,494,517,528,529,531,534,535,537,539,541,543,545,546,547,548,549,559,560,562,564,565,567],versu:[6,324],vert:[275,329,531],vertex:558,vertic:[513,558],vertices_tensor:558,vgg:546,vhp:2,via:[2,6,10,11,12,15,16,17,73,114,197,259,260,261,277,290,297,298,299,306,357,403,405,477,478,508,509,519,521,527,532,534,537,539,540,542,546,547,552,556,557,559],vice:[134,313,534,555,559],vid_tensor:558,video:[332,529,558],viehmann:8,view:[2,6,7,9,15,48,55,56,57,69,80,87,102,127,128,129,283,288,304,334,369,370,371,372,374,376,444,447,448,472,482,487,493,511,512,518,519,520,527,529,531,535,546,549,551,553,556,559],view_a:[520,557,559],view_as_complex:[9,520],view_as_imag:557,view_as_r:[9,520,557],viewbackward:2,vincent:8,vincentqb:8,violat:7,virtual:546,vishwak:8,vishwakftw:8,visibl:[12,16,321,322,330,331,374],vision:[7,517],visual:[2,268,269,270,271,272,273,285,314,315,316,369,545,558],vitali:8,vitalyfedyunin:8,vjp:2,vol:175,volumetr:[261,357,370,531],von:17,von_mis:17,vs2017:545,vs2017_runtim:545,vstack:520,vulkan:525,vw_i:326,vychisl:429,w_hf:304,w_hg:304,w_hh:520,w_hi:304,w_hn:288,w_ho:304,w_hr:288,w_hz:288,w_if:304,w_ig:304,w_ih:520,w_ii:304,w_in:288,w_io:304,w_ir:288,w_iz:288,w_j:352,w_n:[257,258],w_y:536,w_z:536,wai:[2,5,6,7,10,15,16,17,19,110,257,283,297,298,299,320,363,365,374,519,521,527,528,529,531,534,536,539,540,542,545,546,547,548,551,552,554,557,559,567],wait:[2,12,16,20,178,374,520,527,536,537,538,547,551],wait_al:20,wait_ev:12,wait_stream:[12,537],walk:[11,539,552,553,557],walkthrough:533,walltim:558,wang:8,want:[1,2,6,12,15,16,140,183,184,286,370,374,375,451,490,517,531,533,534,536,537,539,546,547,554,559,565,567],warm:547,warmup:2,warn:[10,178,183,535,539,546,550],wasn:[196,519],wast:6,weaker:17,weight:[15,17,61,177,182,184,191,235,257,258,262,268,269,270,271,272,273,276,282,283,284,288,289,290,304,305,306,308,320,324,325,326,327,328,334,336,347,361,368,374,388,390,391,392,393,394,395,396,397,403,405,517,520,521,525,529,531,532,534,539,540,544,546,548,549,558,559,562,564,565,566,567],weight_decai:547,weight_fake_qu:[562,564],weight_g:[405,520],weight_hh:[289,305,336],weight_hh_l:[288,304,334],weight_ih:[289,305,336],weight_ih_l:[288,304,334],weight_mask:[391,394],weight_norm:[397,546],weight_orig:391,weight_scal:520,weight_siz:520,weight_stride0:520,weight_u:403,weight_v:405,weight_zero_point:520,weighted_kernel_sum:184,weightedrandomsampl:15,weird:[],welcom:6,well:[2,6,10,16,177,181,183,259,260,261,284,300,320,357,368,374,425,483,519,528,529,531,533,534,539,542,543,546,551,553,554,557,558,560,567],were:[1,2,3,12,16,20,180,196,376,384,401,452,487,521,531,533,539,544,546,554,559],weren:2,what:[1,2,5,6,7,16,17,183,184,268,269,270,271,272,273,285,315,316,369,379,380,381,382,383,384,385,386,517,519,521,528,539,546,547,548,551,552,554],whatev:[490,496,559],wheel:545,when:[1,2,4,5,6,7,10,12,15,16,17,20,33,38,61,74,77,84,87,98,132,161,168,169,170,171,174,177,178,182,183,184,196,197,205,210,213,223,227,235,249,254,255,256,257,258,259,260,261,264,268,269,270,271,272,273,274,276,277,283,284,285,290,295,297,298,299,300,301,302,303,306,312,313,315,316,320,323,324,325,326,327,328,333,349,350,351,352,354,357,366,368,369,370,371,372,374,375,379,380,381,382,383,384,385,386,401,403,406,407,408,409,417,422,425,426,441,444,456,468,475,479,483,485,486,490,491,498,500,504,514,517,519,521,524,525,527,528,529,531,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,556,557,558,559,565,567],whenev:[7,282,527,531,552,553],where:[1,2,3,4,6,7,9,10,11,12,15,16,17,19,35,36,59,66,70,77,79,92,93,98,99,109,115,124,137,139,148,149,150,151,156,160,161,168,169,170,171,174,175,187,188,190,196,197,202,205,212,214,215,216,220,223,224,226,227,229,232,235,238,240,242,249,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,275,276,281,282,283,285,287,288,289,290,291,292,293,294,295,297,298,299,300,301,302,303,304,305,307,308,309,310,311,312,313,314,315,316,317,318,319,323,324,325,326,327,328,329,332,333,334,336,337,338,339,340,341,342,343,344,345,347,348,349,350,351,353,354,355,356,357,358,359,360,361,366,367,369,370,371,372,373,374,399,400,401,402,407,418,423,425,426,442,443,446,468,469,470,471,477,478,479,482,483,485,492,496,497,498,499,500,504,505,508,509,511,512,519,520,522,526,527,531,532,533,534,535,537,539,540,543,546,547,548,551,553,554,556,558,559,565,567],wherev:[7,528],whether:[1,2,3,6,7,10,12,15,16,17,35,36,45,46,59,66,77,78,79,84,85,124,149,150,156,161,175,177,188,212,215,223,224,226,227,229,232,235,239,240,264,274,284,295,300,320,329,333,367,368,374,390,408,423,426,446,456,457,458,477,478,479,482,483,485,492,496,504,505,508,509,517,526,531,533,537,539,546,547,551,554,555,557,558,559],which:[1,2,4,5,6,7,10,11,12,15,17,19,20,21,22,26,48,54,61,70,73,76,80,90,99,100,101,102,109,132,137,140,158,160,165,175,178,181,182,183,196,202,219,223,232,235,241,247,248,249,251,252,253,255,256,259,260,261,264,269,270,272,273,277,283,288,297,298,299,300,302,303,304,306,311,315,316,317,318,319,323,325,349,351,353,357,366,367,374,379,380,381,382,383,384,385,386,387,388,389,391,392,393,394,395,405,417,426,427,438,441,443,444,447,456,461,472,475,483,495,497,498,499,500,504,506,517,519,521,523,525,526,527,529,531,533,534,535,536,537,538,539,540,541,543,545,546,547,548,550,551,552,553,554,555,556,558,559,561,564,565,566,567,568],whichev:531,whilst:[17,537],white_list:[],whitespac:522,who:[6,9,534],whole:[15,16,175,177,284,320,357,368,534,542],whose:[16,17,76,100,115,139,148,177,184,190,195,211,214,242,284,320,368,374,409,420,534,539,546,558],why:[6,546],wide:536,wider:547,width:[17,152,255,256,269,270,272,273,303,315,316,327,352,370,529,531,546,565,567],wikipedia:[531,534],wildcard:529,willing:7,win:479,win_length:[175,479,520,559],window:[15,16,59,66,149,150,175,187,254,255,256,286,302,303,314,315,316,317,318,319,479,518,520,531,559],window_length:[59,66,149,150,187,520],wip:6,wire:551,wirting:2,wise:[16,17,29,30,37,53,87,115,132,138,139,148,153,189,190,206,207,208,209,214,225,230,238,242,263,273,281,291,292,293,294,307,310,328,337,338,339,345,347,348,349,354,356,358,359,441,513,531,536,557,565],wish:[1,533,539],wit:519,with_arg:[549,567],with_cuda:[10,545],with_pytorch_error_handl:10,with_replac:[84,520],with_stack:2,within:[2,5,7,12,15,16,17,22,218,264,279,280,285,314,320,357,369,374,379,380,381,382,383,384,385,386,387,389,391,392,393,394,395,452,506,519,521,536,537,539,541,546,547,548,550,551,552,558],without:[1,2,5,6,7,12,15,17,19,83,140,161,175,235,259,260,261,283,297,298,299,306,328,357,374,389,429,444,503,517,521,525,527,529,531,533,534,535,537,539,542,543,544,546,547,548,550,551,558,559,568],won:[1,5,177,182,284,320,368,374,517,531,533,534,539,546,551,560],woodburi:17,word:[1,2,16,70,249,268,269,270,282,283,361,374,452,521,531,534,540,552],word_language_model:[361,546],work:[1,2,3,5,6,7,9,10,11,12,16,17,111,113,182,197,277,335,351,374,459,490,517,519,522,527,528,529,531,534,536,537,538,539,542,544,545,548,549,551,552,554,559,560,567],workaround:543,worker0:551,worker1:[20,374,551,552],worker2:551,worker:[6,10,15,16,374,551,552,553],worker_id:15,worker_info:15,worker_init_fn:[15,540],worker_nam:551,workerinfo:551,workflow:[11,517,539,548],workground:545,workload:[15,16,541,551],workspac:[10,546],world:[16,357,374,534,548],world_siz:[16,374,538,551,552],worri:551,wors:456,worst:539,worth:[15,517,557],would:[2,3,5,7,9,15,16,17,19,76,111,113,160,179,180,183,184,238,257,258,288,304,334,374,375,398,406,445,452,490,494,519,521,528,529,531,533,534,535,536,537,538,539,544,546,548,551,552,553,554,559],wouldn:553,wrap:[1,2,11,15,177,183,277,284,320,357,368,374,401,519,520,533,538,539,545,547,548,549,551,552,559,567],wrapper:[12,16,20,21,277,374,519,521,527,549,565,567],write:[6,7,16,48,69,113,181,451,521,529,531,537,540,546,547,554,558,559],writeabl:87,writer:558,written:[2,277,519,521,525,534,538,539,544,546,547,555,558],wrong:[16,374,538,542,545,547],wrote:6,www:[264,367,547,558],x86:[457,548],x86_x64:545,x_0:[137,565],x_1:[92,93,94,95,137,262,274,275,531],x_2:[92,93,94,95,262,274,275,531],x_3:[92,93,94,95],x_clone:527,x_cpu:537,x_cpu_long:537,x_gpu:537,x_i:[81,92,93,94,95,137,200,311,329,349,351,353,366,422,531],x_j:[311,351,353,531],x_n:[257,258,295,300,301,312,534],x_out:567,x_t:[259,260,261,288,297,298,299,304,334,357],xavier_normal_:532,xavier_uniform_:532,xcosx:558,xdg_cache_hom:517,xeon:536,xiaoqiang:8,xing:429,xla:518,xnnpack:525,xor:[65,209],xsinx:558,xuhdev:8,y_cpu:537,y_cpu_long:537,y_gpu:537,y_hard:531,y_i:[81,92,93,94,95,200,349,366],y_n:[257,258,295,300,301,312,327,534],y_soft:531,yang:[7,8,197],year:551,yes:6,yet:[12,178,179,185,232,374,379,383,385,518,521,529,548,551,553,556,559],yf225:8,yield:[15,100,102,177,210,284,320,368,514,522,548],yinghai:8,you:[1,2,4,5,6,7,9,10,11,12,14,15,16,17,48,61,69,110,113,140,177,179,183,184,185,196,264,268,269,270,271,272,273,276,284,304,317,318,319,320,325,326,327,334,352,361,363,365,368,370,374,399,406,425,444,451,490,517,519,521,523,525,527,528,531,533,534,535,537,539,540,541,542,543,544,545,546,547,548,550,551,552,553,554,556,557,558,559,560,565,567],your:[1,2,4,6,9,10,11,12,15,16,17,177,179,183,184,185,268,269,270,271,272,273,320,327,374,425,452,457,504,519,521,527,528,529,533,534,535,537,539,540,541,543,545,546,547,548,550,552,554,558,559,560,567],your_training_script:16,yourself:542,z_n:534,z_t:288,zach:8,zdevito:8,zero:[1,2,12,17,19,33,55,56,57,60,61,77,79,90,98,123,131,151,152,160,165,175,177,197,205,206,207,208,209,215,216,235,240,253,254,255,256,264,268,269,270,271,272,273,275,278,279,280,282,283,284,285,288,289,290,302,303,304,305,306,314,315,316,317,318,319,320,326,329,333,334,336,355,361,368,369,370,373,382,383,384,385,400,407,411,418,425,427,428,465,468,469,471,475,483,485,490,496,516,519,520,523,527,528,529,531,532,534,537,539,545,546,547,548,549,551,554,556,558,559,560,562,563,564,565,566,567],zero_:[2,520,528,529,531,554,559],zero_grad:[1,2,177,284,320,368,374,533,540,542,547],zero_infin:[264,520,531],zero_point:[427,428,520,548,549,559,565,567],zero_point_hh:520,zero_point_ih:520,zeros_:532,zeros_lik:[520,523,537,546],zeroth:[155,187],zhang:8,zhangguanheng66:8,zheng:8,zip:[15,517,520,521,526,541,546],zipf:249,zipfil:451},titles:["torch.__config__","Automatic Mixed Precision package - torch.cuda.amp","Automatic differentiation package - torch.autograd","torch.backends","torch.utils.bottleneck","torch.utils.checkpoint","PyTorch Contribution Guide","PyTorch Governance","PyTorch Governance | Persons of Interest","Complex Numbers","torch.utils.cpp_extension","C++","torch.cuda","<no title>","<no title>","torch.utils.data","Distributed communication package - torch.distributed","Probability distributions - torch.distributions","torch.utils.dlpack","torch.fft","torch.futures","torch.Assert","Generator","torch.abs","torch.absolute","torch.acos","torch.acosh","torch.add","torch.addbmm","torch.addcdiv","torch.addcmul","torch.addmm","torch.addmv","torch.addr","torch.allclose","torch.amax","torch.amin","torch.angle","torch.arange","torch.arccos","torch.arccosh","torch.arcsin","torch.arcsinh","torch.arctan","torch.arctanh","torch.argmax","torch.argmin","torch.argsort","torch.as_strided","torch.as_tensor","torch.asin","torch.asinh","torch.atan","torch.atan2","torch.atanh","torch.atleast_1d","torch.atleast_2d","torch.atleast_3d","torch.baddbmm","torch.bartlett_window","torch.bernoulli","torch.bincount","torch.bitwise_and","torch.bitwise_not","torch.bitwise_or","torch.bitwise_xor","torch.blackman_window","torch.block_diag","torch.bmm","torch.broadcast_tensors","torch.bucketize","torch.can_cast","torch.cartesian_prod","torch.cat","torch.cdist","torch.ceil","torch.chain_matmul","torch.cholesky","torch.cholesky_inverse","torch.cholesky_solve","torch.chunk","torch.clamp","torch.clip","torch.clone","torch.combinations","torch.compiled_with_cxx11_abi","torch.complex","torch.conj","torch.cos","torch.cosh","torch.count_nonzero","torch.cross","torch.cummax","torch.cummin","torch.cumprod","torch.cumsum","torch.deg2rad","torch.dequantize","torch.det","torch.diag","torch.diag_embed","torch.diagflat","torch.diagonal","torch.digamma","torch.dist","torch.div","torch.divide","torch.dot","torch.dstack","torch.eig","torch.einsum","torch.empty","torch.empty_like","torch.empty_strided","enable_grad","torch.eq","torch.equal","torch.erf","torch.erfc","torch.erfinv","torch.exp","torch.exp2","torch.expm1","torch.eye","torch.fft","torch.fix","torch.flatten","torch.flip","torch.fliplr","torch.flipud","torch.floor","torch.floor_divide","torch.fmod","torch.frac","torch.from_numpy","torch.full","torch.full_like","torch.gather","torch.gcd","torch.ge","torch.geqrf","torch.ger","torch.get_default_dtype","torch.get_num_interop_threads","torch.get_num_threads","torch.get_rng_state","torch.greater","torch.greater_equal","torch.gt","torch.hamming_window","torch.hann_window","torch.heaviside","torch.histc","torch.hstack","torch.hypot","torch.i0","torch.ifft","torch.imag","torch.index_select","torch.initial_seed","torch.inverse","torch.irfft","torch.is_complex","torch.is_deterministic","torch.is_floating_point","torch.is_nonzero","torch.is_storage","torch.is_tensor","torch.isclose","torch.isfinite","torch.isinf","torch.isnan","torch.isneginf","torch.isposinf","torch.isreal","torch.istft","ScriptFunction","ScriptModule","torch.jit.fork","torch.jit.ignore","torch.jit.load","torch.jit.save","torch.jit.script","torch.jit.trace","torch.jit.trace_module","torch.jit.unused","torch.jit.wait","torch.kaiser_window","torch.kthvalue","torch.lcm","torch.le","torch.lerp","torch.less","torch.less_equal","torch.lgamma","torch.linspace","torch.load","torch.lobpcg","torch.log","torch.log10","torch.log1p","torch.log2","torch.logaddexp","torch.logaddexp2","torch.logcumsumexp","torch.logdet","torch.logical_and","torch.logical_not","torch.logical_or","torch.logical_xor","torch.logit","torch.logspace","torch.logsumexp","torch.lstsq","torch.lt","torch.lu","torch.lu_solve","torch.lu_unpack","torch.manual_seed","torch.masked_select","torch.matmul","torch.matrix_exp","torch.matrix_power","torch.matrix_rank","torch.max","torch.maximum","torch.mean","torch.median","torch.meshgrid","torch.min","torch.minimum","torch.mm","torch.mode","torch.movedim","torch.mul","torch.multinomial","torch.multiply","torch.mv","torch.mvlgamma","torch.nanquantile","torch.nansum","torch.narrow","torch.ne","torch.neg","torch.negative","torch.nextafter","AdaptiveAvgPool1d","AdaptiveAvgPool2d","AdaptiveAvgPool3d","AdaptiveLogSoftmaxWithLoss","AdaptiveMaxPool1d","AdaptiveMaxPool2d","AdaptiveMaxPool3d","AlphaDropout","AvgPool1d","AvgPool2d","AvgPool3d","BCELoss","BCEWithLogitsLoss","BatchNorm1d","BatchNorm2d","BatchNorm3d","Bilinear","CELU","CTCLoss","ConstantPad1d","ConstantPad2d","ConstantPad3d","Conv1d","Conv2d","Conv3d","ConvTranspose1d","ConvTranspose2d","ConvTranspose3d","CosineEmbeddingLoss","CosineSimilarity","CrossEntropyLoss","DataParallel","Dropout","Dropout2d","Dropout3d","ELU","Embedding","EmbeddingBag","Flatten","Fold","FractionalMaxPool2d","GELU","GRU","GRUCell","GroupNorm","Hardshrink","Hardsigmoid","Hardswish","Hardtanh","HingeEmbeddingLoss","Identity","InstanceNorm1d","InstanceNorm2d","InstanceNorm3d","KLDivLoss","L1Loss","LPPool1d","LPPool2d","LSTM","LSTMCell","LayerNorm","LeakyReLU","Linear","LocalResponseNorm","LogSigmoid","LogSoftmax","MSELoss","MarginRankingLoss","MaxPool1d","MaxPool2d","MaxPool3d","MaxUnpool1d","MaxUnpool2d","MaxUnpool3d","Module","ModuleDict","ModuleList","MultiLabelMarginLoss","MultiLabelSoftMarginLoss","MultiMarginLoss","MultiheadAttention","NLLLoss","PReLU","PairwiseDistance","ParameterDict","ParameterList","PixelShuffle","PoissonNLLLoss","RNN","RNNBase","RNNCell","RReLU","ReLU","ReLU6","ReflectionPad1d","ReflectionPad2d","ReplicationPad1d","ReplicationPad2d","ReplicationPad3d","SELU","Sequential","SiLU","Sigmoid","SmoothL1Loss","SoftMarginLoss","Softmax","Softmax2d","Softmin","Softplus","Softshrink","Softsign","SyncBatchNorm","Tanh","Tanhshrink","Threshold","Transformer","TransformerDecoder","TransformerDecoderLayer","TransformerEncoder","TransformerEncoderLayer","TripletMarginLoss","TripletMarginWithDistanceLoss","Unflatten","Unfold","Upsample","UpsamplingBilinear2d","UpsamplingNearest2d","ZeroPad2d","DistributedDataParallel","Parameter","torch.nn.utils.clip_grad_norm_","torch.nn.utils.clip_grad_value_","torch.nn.utils.parameters_to_vector","BasePruningMethod","CustomFromMask","Identity","L1Unstructured","LnStructured","PruningContainer","RandomStructured","RandomUnstructured","torch.nn.utils.prune.custom_from_mask","torch.nn.utils.prune.global_unstructured","torch.nn.utils.prune.identity","torch.nn.utils.prune.is_pruned","torch.nn.utils.prune.l1_unstructured","torch.nn.utils.prune.ln_structured","torch.nn.utils.prune.random_structured","torch.nn.utils.prune.random_unstructured","torch.nn.utils.prune.remove","torch.nn.utils.remove_spectral_norm","torch.nn.utils.remove_weight_norm","PackedSequence","torch.nn.utils.rnn.pack_padded_sequence","torch.nn.utils.rnn.pack_sequence","torch.nn.utils.rnn.pad_packed_sequence","torch.nn.utils.rnn.pad_sequence","torch.nn.utils.spectral_norm","torch.nn.utils.vector_to_parameters","torch.nn.utils.weight_norm","no_grad","torch.nonzero","torch.norm","torch.normal","torch.not_equal","torch.numel","torch.ones","torch.ones_like","torch.orgqr","torch.ormqr","torch.outer","torch.pca_lowrank","torch.pinverse","torch.poisson","torch.polar","torch.polygamma","torch.pow","torch.prod","torch.promote_types","torch.qr","torch.quantile","torch.quantize_per_channel","torch.quantize_per_tensor","SobolEngine","torch.rad2deg","torch.rand","torch.rand_like","torch.randint","torch.randint_like","torch.randn","torch.randn_like","torch.randperm","torch.range","torch.real","torch.reciprocal","torch.remainder","torch.renorm","torch.repeat_interleave","torch.reshape","torch.result_type","torch.rfft","torch.roll","torch.rot90","torch.round","torch.rsqrt","torch.save","torch.searchsorted","torch.seed","torch.set_default_dtype","torch.set_default_tensor_type","torch.set_deterministic","torch.set_flush_denormal","set_grad_enabled","torch.set_num_interop_threads","torch.set_num_threads","torch.set_printoptions","torch.set_rng_state","torch.sigmoid","torch.sign","torch.signbit","torch.sin","torch.sinh","torch.slogdet","torch.solve","torch.sort","torch.sparse_coo_tensor","torch.split","torch.sqrt","torch.square","torch.squeeze","torch.stack","torch.std","torch.std_mean","torch.stft","torch.sub","torch.subtract","torch.sum","torch.svd","torch.svd_lowrank","torch.symeig","torch.t","torch.take","torch.tan","torch.tanh","torch.tensor","torch.tensordot","torch.topk","torch.trace","torch.transpose","torch.trapz","torch.triangular_solve","torch.tril","torch.tril_indices","torch.triu","torch.triu_indices","torch.true_divide","torch.trunc","torch.unbind","torch.unique","torch.unique_consecutive","torch.unsqueeze","torch.vander","torch.var","torch.var_mean","torch.vdot","torch.view_as_complex","torch.view_as_real","torch.vstack","torch.where","torch.zeros","torch.zeros_like","torch.hub","PyTorch documentation","TorchScript","TorchScript Builtins","TorchScript Language Reference","Python Language Reference Coverage","TorchScript Unsupported Pytorch Constructs","torch.linalg","torch.utils.mobile_optimizer","torch.utils.model_zoo","Multiprocessing package - torch.multiprocessing","Named Tensors operator coverage","Named Tensors","torch.nn","torch.nn.functional","torch.nn.init","Automatic Mixed Precision examples","Autograd mechanics","Broadcasting semantics","CPU threading and TorchScript inference","CUDA semantics","Distributed Data Parallel","Extending PyTorch","Frequently Asked Questions","Features for large-scale deployments","Multiprocessing best practices","Reproducibility","Serialization semantics","Windows FAQ","torch.onnx","torch.optim","Quantization","Quantization Operation coverage","torch.random","Distributed RPC Framework","Distributed Autograd Design","Remote Reference Protocol","torch.sparse","torch.Storage","Tensor Attributes","Tensor Views","torch.utils.tensorboard","torch.Tensor","torch","torch.nn.intrinsic","torch.nn.intrinsic.qat","torch.nn.intrinsic.quantized","torch.nn.qat","torch.nn.quantized","torch.nn.quantized.dynamic","torch.quantization","Type Info"],titleterms:{"break":521,"case":[6,519],"class":[519,521,523,548],"default":[2,15,521],"enum":521,"export":546,"float":544,"function":[2,7,16,17,19,519,520,521,523,524,528,530,531,533,534,546,548,549,554,565,567],"import":[517,545],"new":6,"return":[521,540,553],"static":548,"var":508,"while":521,Adding:[6,539,546],For:521,Not:523,One:545,Ops:[1,523,560],The:6,Use:[521,537,546],With:523,__config__:0,__torch_function__:539,about:[6,534],abs:[9,23],absolut:24,access:[9,521],accumul:533,aco:25,acosh:26,across:544,activ:[530,531],adaptive_avg_pool1d:531,adaptive_avg_pool2d:531,adaptive_avg_pool3d:531,adaptive_max_pool1d:531,adaptive_max_pool2d:531,adaptive_max_pool3d:531,adaptiveavgpool1d:246,adaptiveavgpool2d:247,adaptiveavgpool3d:248,adaptivelogsoftmaxwithloss:249,adaptivemaxpool1d:250,adaptivemaxpool2d:251,adaptivemaxpool3d:252,add:27,addbmm:28,addcdiv:29,addcmul:30,addmm:31,addmv:32,addr:33,adjust:547,affine_grid:531,agnost:537,alexnet:546,algebra:9,algorithm:[543,547,552],align:529,all:547,allclos:34,alloc:540,alpha_dropout:531,alphadropout:253,alwai:544,amax:35,amd:8,amin:36,amp:1,amper:537,angl:[9,37],anomali:2,api:[2,8,11,519,529,536,539,541,548,567],appendix:519,approach:[],arang:38,arcco:39,arccosh:40,arcsin:41,arcsinh:42,arctan:43,arctanh:44,argmax:45,argmin:46,argsort:47,argument:553,arithmet:521,as_strid:48,as_tensor:49,asin:50,asinh:51,ask:[6,519,540,546],assert:21,assign:521,assumpt:553,asynchron:[16,537,542],atan2:53,atan:52,atanh:54,aten:546,atleast_1d:55,atleast_2d:56,atleast_3d:57,attach:541,attribut:[519,521,523,556],author:11,autocast:[1,533],autograd:[2,8,9,11,529,533,534,539,551,552],automat:[1,2,15,519,533],averag:547,avg_pool1d:531,avg_pool2d:531,avg_pool3d:531,avgpool1d:254,avgpool2d:255,avgpool3d:256,avoid:[6,542,543],awai:528,awar:548,backend:[3,16,551],background:[552,553],backward:[534,535,552],baddbmm:58,bartlett_window:59,basepruningmethod:379,basic:[16,529,551],batch:[15,547],batch_norm:531,batchnorm1d:259,batchnorm2d:[260,565],batchnorm3d:[261,565],bceloss:257,bcewithlogitsloss:258,behavior:[1,15],benchmark:[8,543],bernoulli:[17,60],best:[537,542,548],beta:17,between:523,bilinear:[262,531],binary_cross_entropi:[1,531],binary_cross_entropy_with_logit:[1,531],bincount:61,binomi:17,bitwise_and:62,bitwise_not:63,bitwise_or:64,bitwise_xor:65,bla:560,blackman_window:66,block_diag:67,bmm:68,bottleneck:4,bound:523,broadcast:535,broadcast_tensor:69,broken:545,bucket:70,buffer:[537,542],bug:6,build:[6,8,536,541,545],built:[519,520],builtin:520,c10:8,cach:[517,537],calculu:534,call:521,can:[1,534,540],can_cast:71,care:547,cartesian_prod:72,cast:521,cat:73,categor:17,cauchi:17,cdist:74,ceil:75,celu:[263,531],cffi:545,chain_matmul:76,chang:7,channel:545,check:[2,519,534],checkpoint:5,chi2:17,choleski:77,cholesky_invers:78,cholesky_solv:79,choos:16,chunk:80,clamp:81,claus:545,clip:[82,533],clip_grad_norm_:376,clip_grad_value_:377,clone:83,closur:547,code:[6,519,537],codebas:6,collate_fn:15,collect:[12,16],combin:84,come:[16,534],common:[6,16,541],commun:[12,16],comparison:[519,521,560],compat:535,compiled_with_cxx11_abi:85,complex:[9,86,534],compon:545,comput:[2,534,552,560],concurr:534,conj:87,conjug:534,consider:541,constant:[519,521],constantpad1d:265,constantpad2d:266,constantpad3d:267,constraint:17,construct:[521,523,547],contain:530,content:544,context:[2,552],continu:521,continuousbernoulli:17,contract:528,contribut:6,control:543,controversi:7,conv1d:[268,531,565],conv2d:[269,531,564,565],conv3d:[270,531,565],conv_transpose1d:531,conv_transpose2d:531,conv_transpose3d:531,convbn1d:561,convbn2d:[561,562],convbnrelu1d:561,convbnrelu2d:[561,562],convolut:[530,531,543],convrelu1d:561,convrelu2d:[561,562,563],convrelu3d:563,convtranspose1d:271,convtranspose2d:272,convtranspose3d:273,core:7,correct:[2,534],correctli:523,cos:88,cosh:89,cosine_embedding_loss:531,cosine_similar:531,cosineembeddingloss:274,cosinesimilar:275,count_nonzero:90,coverag:[522,528,539,548,549],cpp:545,cpp_extens:10,cpu:[8,534,536],creat:[9,519,529],creation:560,cross:[91,534],cross_entropi:531,crossentropyloss:276,ctc_loss:531,ctcloss:264,cuda:[1,3,8,12,527,537,540,542,543,545],cudnn:3,cufft:537,cummax:92,cummin:93,cumprod:94,cumsum:95,current:529,custom:[533,539,546,547,548],custom_from_mask:387,customfrommask:380,data:[15,538,540,546],data_parallel:531,dataload:8,dataparallel:[277,530,531,533,537],dataset:15,deadlock:542,debug:[519,567],decis:7,defin:[521,539],deg2rad:96,depend:552,deploy:541,deprec:2,dequant:[97,565],deriv:[17,534],descriptor:527,design:[538,551,552,553],det:98,detect:2,determin:[534,543],develop:[6,7],devic:[537,556],diag:99,diag_emb:100,diagflat:101,diagon:102,dict:521,differenti:2,digamma:103,dim:528,dimens:[528,529],dirichlet:17,disabl:[2,15,519,560],discuss:6,dispatch:8,dist:104,distanc:[530,531],distribut:[8,16,17,530,531,538,551,552],distributeddataparallel:[374,533,537,538],div:[105,544],diverg:[17,523],divid:106,divis:544,dlpack:18,doc:6,document:[6,518],doe:534,doesn:540,domain:534,dot:107,down:545,download:517,driver:545,dropout2d:[279,531],dropout3d:[280,531],dropout:[278,530,531],dstack:108,dtype:[533,544,549,556],dure:552,dynam:[548,549,566],edg:519,eig:109,einsum:110,elig:1,elu:[281,531,565],embed:[282,531],embedding_bag:531,embeddingbag:283,empti:111,empty_lik:112,empty_strid:113,enable_grad:114,encod:534,end:[546,552],engin:8,entrypoint:517,environ:[16,541],equal:116,erf:117,erfc:118,erfinv:119,error:[540,545],event:12,exampl:[533,538,546,552],except:540,exclud:534,execut:537,exp2:121,exp:120,explicit:529,expm1:122,exponenti:17,exponentialfamili:17,express:521,extend:[11,539],extens:[11,12,539,541,545],extern:546,eye:123,factori:528,faq:[7,545],fast:552,featur:[6,541],feature_alpha_dropout:531,fft:[19,124],fight:542,file:[16,527],file_descriptor:527,file_system:527,finfo:568,fishersnedecor:17,fix:[6,125],flatten:[126,284],fleet:541,flip:127,fliplr:128,flipud:129,float16:1,float32:1,floatfunct:565,floor:130,floor_divid:131,fmod:132,fold:[285,531],fork:178,format:546,formula:534,forward:552,found:545,frac:133,fractionalmaxpool2d:286,framework:551,freed:540,freez:[],frequent:[6,519,540,546],from:[9,517,528,534,545,546],from_numpi:134,full:[135,544],full_lik:136,futur:20,gamma:17,gather:137,gcd:138,gelu:[287,531],gener:[8,12,22,535,543,560],geometr:17,geqrf:140,ger:141,get:6,get_default_dtyp:142,get_num_interop_thread:143,get_num_thread:144,get_rng_stat:145,global_unstructur:388,glu:531,govern:[7,8],gpu:[16,530,531,533,540],gradient:[1,2,533,560],graph:[519,534],greater:146,greater_equ:147,grid_sampl:531,group:[16,551],groupnorm:[290,565],gru:288,grucel:[289,566],guid:[6,7],gumbel:17,gumbel_softmax:531,halfcauchi:17,halfnorm:17,hamming_window:149,handler:540,hann_window:150,happen:[],hardshrink:[291,531],hardsigmoid:[292,531],hardswish:[293,531,565],hardtanh:[294,531],heavisid:151,higher:2,hinge_embedding_loss:531,hingeembeddingloss:295,hip:8,histc:152,histori:534,hogwild:542,hook:534,how:[517,534,547],hstack:153,hub:517,hypot:154,ident:[296,381,389,540],ifft:156,ignor:179,iinfo:568,imag:[9,157],implement:[6,517,538,553],improv:6,includ:545,independ:17,index:560,index_select:158,indic:518,infer:[529,536,544],info:568,init:532,initi:16,initial_se:159,input:[1,528,533],inspect:519,instal:545,instance_norm:531,instancenorm1d:[297,565],instancenorm2d:[298,565],instancenorm3d:[299,565],instead:537,instrins:[],integ:544,interest:8,interfac:[16,565],intern:538,interpol:531,interpret:519,intrins:[549,561,562,563],introduct:548,invers:160,ipc:545,irfft:161,is_complex:162,is_determinist:163,is_floating_point:164,is_nonzero:165,is_prun:390,is_storag:166,is_tensor:167,isclos:168,isfinit:169,isinf:170,isn:540,isnan:171,isneginf:172,isposinf:173,isreal:174,issu:6,istft:175,iter:[15,521],javadoc:[],jit:[8,178,179,180,181,182,183,184,185,186,519],join:560,jvp:[],kaiser_window:187,keep:528,kei:[7,16,545],kl_div:531,kldivloss:300,known:517,kthvalu:188,l1_loss:531,l1_unstructur:391,l1loss:301,l1unstructur:382,languag:[519,521,522],lapack:560,laplac:17,larg:541,launch:16,layer:530,layer_norm:531,layernorm:[306,565],layout:[2,556],lcm:189,leaky_relu:531,leakyrelu:307,learn:547,lerp:191,less:192,less_equ:193,level:[2,8,567],lgamma:194,librari:[8,543],lifetim:553,like:539,limit:[517,546],linalg:524,linear:[9,308,530,531,564,565,566],linearrelu:[562,563],linspac:195,list:521,liter:521,ln_structur:392,lnstructur:383,load:[15,180,196,517,544],loader:540,lobpcg:197,local:[2,560],local_response_norm:531,localresponsenorm:309,log10:199,log1p:200,log2:201,log:[198,541],log_softmax:531,logaddexp2:203,logaddexp:202,logcumsumexp:204,logdet:205,logic:[517,521],logical_and:206,logical_not:207,logical_or:208,logical_xor:209,logit:210,logitrelaxedbernoulli:17,lognorm:17,logsigmoid:[310,531],logsoftmax:311,logspac:211,logsumexp:212,lookup:521,loop:521,loss:[530,531,533],lowrankmultivariatenorm:17,lp_pool1d:531,lp_pool2d:531,lppool1d:302,lppool2d:303,lstm:[304,543,566],lstmcell:[305,566],lstsq:213,lu_solv:216,lu_unpack:217,maintain:[7,8],make:[6,7],manag:[12,527,537],manipul:529,manual:2,manual_se:218,map:15,margin_ranking_loss:531,marginrankingloss:313,masked_select:219,match:[521,529],math:[520,560],matmul:220,matrix_exp:221,matrix_pow:222,matrix_rank:223,max:224,max_pool1d:531,max_pool2d:531,max_pool3d:531,max_unpool1d:531,max_unpool2d:531,max_unpool3d:531,maximum:225,maxpool1d:314,maxpool2d:315,maxpool3d:316,maxunpool1d:317,maxunpool2d:318,maxunpool3d:319,mean:226,mechan:534,median:227,memori:[12,15,537,540],memory_format:556,meshgrid:228,metadata:541,method:[2,520,521,523],migrat:519,min:229,minimum:230,mistak:6,mix:[1,519,533],mixin:2,mixturesamefamili:17,mkl:3,mkldnn:[3,8],mobile_optim:525,mode:[232,552],model:[11,517,533,540,541,547,548,567],model_zoo:526,moder:7,modul:[8,320,519,520,521,523,539,544,548],moduledict:321,modulelist:[322,521],more:6,movedim:233,mse_loss:531,mseloss:312,mul:234,multi:[15,16,530,531],multi_margin_loss:531,multiheadattent:326,multilabel_margin_loss:531,multilabel_soft_margin_loss:531,multilabelmarginloss:323,multilabelsoftmarginloss:324,multimarginloss:325,multinomi:[17,235],multipl:[533,539],multipli:236,multiprocess:[8,527,537,542,545],multithread:534,multivariatenorm:17,mutat:560,mvlgamma:238,name:[521,528,529],nanquantil:239,nansum:240,narrow:241,nccl:16,need:533,neg:[243,244],negativebinomi:17,network:[16,540],nextaft:245,nll_loss:531,nllloss:327,no_grad:406,node:534,non:[15,530,531,534,546],nondeterminist:543,nonlinear:530,nonzero:407,norm:408,normal:[17,409,530,531,547],not_equ:410,note:551,notic:517,notion:[],number:[9,12,534,536,540,543],numel:411,numer:2,numpi:[],nvidia:12,nvtx:12,observ:567,old:9,one:533,one_hot:531,onehotcategor:17,ones:412,ones_lik:413,onlin:6,onnx:[8,546],onnx_aten:546,onnx_aten_fallback:546,onnx_fallthrough:546,open:6,openmp:3,oper:[2,8,16,521,528,529,534,539,541,545,546,548,549,560],ops:533,optim:[8,533,534,547,551,552],option:[521,536,545,547],order:15,orgqr:414,ormqr:415,other:[16,530,543,560],out:[528,540],outer:416,over:[1,521],overrid:539,overview:6,own:534,owner:553,pack_padded_sequ:399,pack_sequ:400,packag:[1,2,11,16,527,545],packedsequ:398,pad:[530,531],pad_packed_sequ:401,pad_sequ:402,pairwise_dist:531,pairwisedist:329,parallel:[537,538,540,560],paramet:[375,521,547],parameterdict:330,parameterlist:331,parameters_to_vector:378,pareto:17,parti:16,particip:6,particular:533,pass:[542,552],pathwis:17,pattern:521,pca_lowrank:417,pdist:531,penalti:533,peopl:7,per:[533,547],perform:[8,544],permut:528,person:8,philosophi:7,pictur:534,pin:[15,537],pinvers:418,pipe:545,pixel_shuffl:531,pixelshuffl:332,place:[2,528,534,535,560],plan:537,platform:15,point:[16,541],pointwis:560,poisson:[17,419],poisson_nll_loss:531,poissonnllloss:333,polar:420,polygamma:421,pool:[530,531],pow:422,powerpc:8,practic:[537,542,548],precis:[1,533],prefer:1,prelu:[328,531],prepar:[548,567],preserv:544,print:521,probabl:17,process:[6,7,15,533,551],processgroup:538,prod:423,profil:[2,541],project:7,promot:[1,6],promote_typ:424,propag:529,properli:540,properti:523,propos:6,protect:545,protocol:553,provid:548,prune:[387,388,389,390,391,392,393,394,395],pruningcontain:384,publish:517,pull:6,put:547,python:[6,519,520,521,522,523],pytorch:[6,7,8,11,16,518,519,520,523,534,539,543,544,546],qat:[549,562,564],qfunction:565,quantil:426,quantiz:[530,548,549,563,565,566,567],quantize_per_channel:427,quantize_per_tensor:428,quasi:560,question:[6,519,540,546],queue:542,rad2deg:430,rand:431,rand_lik:432,randint:433,randint_lik:434,randn:435,randn_lik:436,random:[12,15,540,543,550,560],random_structur:393,random_unstructur:394,randomstructur:385,randomunstructur:386,randperm:437,rang:[438,521],rate:547,raw:546,readabl:6,real:[9,439],reason:553,reciproc:440,recommend:[],record:552,recurr:[530,540],recurs:519,reduct:560,refer:[1,519,521,522,529,553],refin:521,reflectionpad1d:340,reflectionpad2d:341,registri:17,relaxedbernoulli:17,relaxedonehotcategor:17,relu6:[339,531,565],relu:[338,531,565],remaind:441,remot:553,remov:[395,528],remove_spectral_norm:396,remove_weight_norm:397,renorm:442,repeat_interleav:443,replicationpad1d:342,replicationpad2d:343,replicationpad3d:344,report:[6,540],represent:9,reproduc:543,request:6,requires_grad:534,reshap:444,resolut:521,result_typ:445,retain:534,reus:542,review:6,rfft:446,rng:8,rnn:[334,399,400,401,402,543],rnnbase:335,rnncell:[336,566],robust:6,rocm:8,roll:447,rot90:448,round:449,rpc:551,rref:[551,553],rrelu:[337,531],rsqrt:450,rule:529,run:517,runtim:[536,540],safeti:534,sampl:560,sampler:15,save:[181,451,517,541,544],scalar:[],scale:[1,533,541],scenario:553,schedul:547,schema:523,scheme:549,score:17,script:[182,519,545,546],scriptfunct:176,scriptmodul:[177,544],searchsort:452,seed:453,selu:[345,531],semant:[529,535,537,544],sequenti:346,serial:[9,544,560],set_default_dtyp:454,set_default_tensor_typ:455,set_determinist:456,set_flush_denorm:457,set_grad_en:458,set_num_interop_thread:459,set_num_thread:460,set_printopt:461,set_rng_stat:462,share:[16,527,553],shut:545,sigmoid:[348,463,531],sign:464,signbit:465,silu:[347,531],simd:8,simpl:[521,552],sin:466,singl:[15,533],sinh:467,slice:[521,560],slogdet:468,smart:552,smooth_l1_loss:531,smoothl1loss:349,sobolengin:429,soft_margin_loss:531,softmarginloss:350,softmax2d:352,softmax:[351,531],softmin:[353,531],softplu:[354,531],softshrink:[355,531],softsign:[356,531],solv:469,sort:470,sourc:[6,543,545],spars:[530,531,554],sparse_coo_tensor:471,spawn:[16,527],specif:[1,15],spectral:560,spectral_norm:403,speed:545,split:472,sqrt:473,squar:474,squeez:475,stack:476,start:6,statement:521,std:477,std_mean:478,step:547,stft:479,stochast:547,storag:555,store:16,strategi:[527,547],stream:[12,537],studentt:17,style:15,sub:480,subclass:539,subgraph:534,submit:6,subprocess:527,subscript:521,subsystem:529,subtract:481,sum:[482,530],summari:548,support:[520,528,529,546],svd:483,svd_lowrank:484,swa:547,symeig:485,syncbatchnorm:357,synchron:16,system:[16,527],tabl:[518,544],take:[487,547],tan:488,tanh:[358,489,531],tanhshrink:[359,531],tcp:16,tenet:7,tensor:[2,9,11,490,520,523,527,528,529,539,544,548,549,556,557,559,560],tensorboard:558,tensordot:491,tensorfloat:537,tensorpip:551,ternari:521,test:[6,539],tf32:537,them:544,third:16,thread:[534,536],threshold:[360,531],through:542,tip:542,togeth:547,tool:12,top:567,topk:492,torch:[0,1,2,3,4,5,8,10,12,15,16,17,18,19,20,21,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,376,377,378,387,388,389,390,391,392,393,394,395,396,397,399,400,401,402,403,404,405,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,523,524,525,526,527,530,531,532,539,544,546,547,549,550,554,555,556,558,559,560,561,562,563,564,565,566,567,568],torchaudio:8,torchscript:[11,519,520,521,523,536,541],torchserv:8,torchtext:8,torchvis:[8,546],trace:[183,493,519,546],trace_modul:184,tracer:519,train:[533,542,546,548],transform:[17,361,530],transformeddistribut:17,transformerdecod:362,transformerdecoderlay:363,transformerencod:364,transformerencoderlay:365,transit:9,transpos:494,trapz:495,triag:6,triangular_solv:496,tril:497,tril_indic:498,triplet_margin_loss:531,triplet_margin_with_distance_loss:531,tripletmarginloss:366,tripletmarginwithdistanceloss:367,triu:499,triu_indic:500,true_divid:501,trunc:502,tune:536,tupl:521,tutori:[6,551],type:[1,15,521,539,546,568],typic:533,unbind:503,uncontroversi:7,unflatten:368,unfold:[369,531],unifi:528,uniform:17,uniqu:504,unique_consecut:505,unscal:533,unsqueez:506,unsupport:[521,523],unus:185,upsampl:[370,531],upsample_bilinear:531,upsample_nearest:531,upsamplingbilinear2d:371,upsamplingnearest2d:372,usag:[541,545],use:[16,547],useful:534,user:553,util:[4,5,8,10,15,16,18,376,377,378,387,388,389,390,391,392,393,394,395,396,397,399,400,401,402,403,404,405,525,526,530,558,560,567],valu:[16,521,553],vander:507,var_mean:509,variabl:[2,16,519,521],variant:528,vdot:510,vector_to_paramet:404,version:544,view:[544,557],view_as_complex:511,view_as_r:512,vision:[530,531],vjp:[],vonmis:17,vstack:513,wait:186,warn:519,weibul:17,weight:[530,547],weight_norm:405,what:534,where:[514,517],which:16,wide:541,widest:1,win:545,window:[8,545],wirting:534,without:545,work:[15,533,540],worker:540,workflow:[],wrapper:539,write:[534,539],xla:8,zero:515,zeropad2d:373,zeros_lik:516}}) \ No newline at end of file +Search.setIndex({docnames:["__config__","amp","autograd","backends","benchmark_utils","bottleneck","checkpoint","community/contribution_guide","community/governance","community/persons_of_interest","complex_numbers","cpp_extension","cpp_index","cuda","cudnn_persistent_rnn","cudnn_rnn_determinism","data","ddp_comm_hooks","distributed","distributions","dlpack","fft","futures","fx","generated/torch.Generator","generated/torch._assert","generated/torch.abs","generated/torch.absolute","generated/torch.acos","generated/torch.acosh","generated/torch.add","generated/torch.addbmm","generated/torch.addcdiv","generated/torch.addcmul","generated/torch.addmm","generated/torch.addmv","generated/torch.addr","generated/torch.all","generated/torch.allclose","generated/torch.amax","generated/torch.amin","generated/torch.angle","generated/torch.any","generated/torch.arange","generated/torch.arccos","generated/torch.arccosh","generated/torch.arcsin","generated/torch.arcsinh","generated/torch.arctan","generated/torch.arctanh","generated/torch.are_deterministic_algorithms_enabled","generated/torch.argmax","generated/torch.argmin","generated/torch.argsort","generated/torch.as_strided","generated/torch.as_tensor","generated/torch.asin","generated/torch.asinh","generated/torch.atan","generated/torch.atan2","generated/torch.atanh","generated/torch.atleast_1d","generated/torch.atleast_2d","generated/torch.atleast_3d","generated/torch.baddbmm","generated/torch.bartlett_window","generated/torch.bernoulli","generated/torch.bincount","generated/torch.bitwise_and","generated/torch.bitwise_not","generated/torch.bitwise_or","generated/torch.bitwise_xor","generated/torch.blackman_window","generated/torch.block_diag","generated/torch.bmm","generated/torch.broadcast_shapes","generated/torch.broadcast_tensors","generated/torch.broadcast_to","generated/torch.bucketize","generated/torch.can_cast","generated/torch.cartesian_prod","generated/torch.cat","generated/torch.cdist","generated/torch.ceil","generated/torch.chain_matmul","generated/torch.cholesky","generated/torch.cholesky_inverse","generated/torch.cholesky_solve","generated/torch.chunk","generated/torch.clamp","generated/torch.clip","generated/torch.clone","generated/torch.column_stack","generated/torch.combinations","generated/torch.compiled_with_cxx11_abi","generated/torch.complex","generated/torch.conj","generated/torch.copysign","generated/torch.cos","generated/torch.cosh","generated/torch.count_nonzero","generated/torch.cross","generated/torch.cummax","generated/torch.cummin","generated/torch.cumprod","generated/torch.cumsum","generated/torch.deg2rad","generated/torch.dequantize","generated/torch.det","generated/torch.diag","generated/torch.diag_embed","generated/torch.diagflat","generated/torch.diagonal","generated/torch.diff","generated/torch.digamma","generated/torch.dist","generated/torch.div","generated/torch.divide","generated/torch.dot","generated/torch.dstack","generated/torch.eig","generated/torch.einsum","generated/torch.empty","generated/torch.empty_like","generated/torch.empty_strided","generated/torch.enable_grad","generated/torch.eq","generated/torch.equal","generated/torch.erf","generated/torch.erfc","generated/torch.erfinv","generated/torch.exp","generated/torch.exp2","generated/torch.expm1","generated/torch.eye","generated/torch.fake_quantize_per_channel_affine","generated/torch.fake_quantize_per_tensor_affine","generated/torch.fix","generated/torch.flatten","generated/torch.flip","generated/torch.fliplr","generated/torch.flipud","generated/torch.float_power","generated/torch.floor","generated/torch.floor_divide","generated/torch.fmax","generated/torch.fmin","generated/torch.fmod","generated/torch.frac","generated/torch.from_numpy","generated/torch.full","generated/torch.full_like","generated/torch.gather","generated/torch.gcd","generated/torch.ge","generated/torch.geqrf","generated/torch.ger","generated/torch.get_default_dtype","generated/torch.get_num_interop_threads","generated/torch.get_num_threads","generated/torch.get_rng_state","generated/torch.greater","generated/torch.greater_equal","generated/torch.gt","generated/torch.hamming_window","generated/torch.hann_window","generated/torch.heaviside","generated/torch.histc","generated/torch.hstack","generated/torch.hypot","generated/torch.i0","generated/torch.igamma","generated/torch.igammac","generated/torch.imag","generated/torch.index_select","generated/torch.initial_seed","generated/torch.inner","generated/torch.inverse","generated/torch.is_complex","generated/torch.is_floating_point","generated/torch.is_nonzero","generated/torch.is_storage","generated/torch.is_tensor","generated/torch.isclose","generated/torch.isfinite","generated/torch.isinf","generated/torch.isnan","generated/torch.isneginf","generated/torch.isposinf","generated/torch.isreal","generated/torch.istft","generated/torch.jit.ScriptFunction","generated/torch.jit.ScriptModule","generated/torch.jit.fork","generated/torch.jit.freeze","generated/torch.jit.ignore","generated/torch.jit.isinstance","generated/torch.jit.load","generated/torch.jit.save","generated/torch.jit.script","generated/torch.jit.script_if_tracing","generated/torch.jit.trace","generated/torch.jit.trace_module","generated/torch.jit.unused","generated/torch.jit.wait","generated/torch.kaiser_window","generated/torch.kron","generated/torch.kthvalue","generated/torch.lcm","generated/torch.ldexp","generated/torch.le","generated/torch.lerp","generated/torch.less","generated/torch.less_equal","generated/torch.lgamma","generated/torch.linspace","generated/torch.load","generated/torch.lobpcg","generated/torch.log","generated/torch.log10","generated/torch.log1p","generated/torch.log2","generated/torch.logaddexp","generated/torch.logaddexp2","generated/torch.logcumsumexp","generated/torch.logdet","generated/torch.logical_and","generated/torch.logical_not","generated/torch.logical_or","generated/torch.logical_xor","generated/torch.logit","generated/torch.logspace","generated/torch.logsumexp","generated/torch.lstsq","generated/torch.lt","generated/torch.lu","generated/torch.lu_solve","generated/torch.lu_unpack","generated/torch.manual_seed","generated/torch.masked_select","generated/torch.matmul","generated/torch.matrix_exp","generated/torch.matrix_power","generated/torch.matrix_rank","generated/torch.max","generated/torch.maximum","generated/torch.mean","generated/torch.median","generated/torch.meshgrid","generated/torch.min","generated/torch.minimum","generated/torch.mm","generated/torch.mode","generated/torch.moveaxis","generated/torch.movedim","generated/torch.msort","generated/torch.mul","generated/torch.multinomial","generated/torch.multiply","generated/torch.mv","generated/torch.mvlgamma","generated/torch.nan_to_num","generated/torch.nanmedian","generated/torch.nanquantile","generated/torch.nansum","generated/torch.narrow","generated/torch.ne","generated/torch.neg","generated/torch.negative","generated/torch.nextafter","generated/torch.nn.AdaptiveAvgPool1d","generated/torch.nn.AdaptiveAvgPool2d","generated/torch.nn.AdaptiveAvgPool3d","generated/torch.nn.AdaptiveLogSoftmaxWithLoss","generated/torch.nn.AdaptiveMaxPool1d","generated/torch.nn.AdaptiveMaxPool2d","generated/torch.nn.AdaptiveMaxPool3d","generated/torch.nn.AlphaDropout","generated/torch.nn.AvgPool1d","generated/torch.nn.AvgPool2d","generated/torch.nn.AvgPool3d","generated/torch.nn.BCELoss","generated/torch.nn.BCEWithLogitsLoss","generated/torch.nn.BatchNorm1d","generated/torch.nn.BatchNorm2d","generated/torch.nn.BatchNorm3d","generated/torch.nn.Bilinear","generated/torch.nn.CELU","generated/torch.nn.CTCLoss","generated/torch.nn.ChannelShuffle","generated/torch.nn.ConstantPad1d","generated/torch.nn.ConstantPad2d","generated/torch.nn.ConstantPad3d","generated/torch.nn.Conv1d","generated/torch.nn.Conv2d","generated/torch.nn.Conv3d","generated/torch.nn.ConvTranspose1d","generated/torch.nn.ConvTranspose2d","generated/torch.nn.ConvTranspose3d","generated/torch.nn.CosineEmbeddingLoss","generated/torch.nn.CosineSimilarity","generated/torch.nn.CrossEntropyLoss","generated/torch.nn.DataParallel","generated/torch.nn.Dropout","generated/torch.nn.Dropout2d","generated/torch.nn.Dropout3d","generated/torch.nn.ELU","generated/torch.nn.Embedding","generated/torch.nn.EmbeddingBag","generated/torch.nn.Flatten","generated/torch.nn.Fold","generated/torch.nn.FractionalMaxPool2d","generated/torch.nn.GELU","generated/torch.nn.GRU","generated/torch.nn.GRUCell","generated/torch.nn.GaussianNLLLoss","generated/torch.nn.GroupNorm","generated/torch.nn.Hardshrink","generated/torch.nn.Hardsigmoid","generated/torch.nn.Hardswish","generated/torch.nn.Hardtanh","generated/torch.nn.HingeEmbeddingLoss","generated/torch.nn.Identity","generated/torch.nn.InstanceNorm1d","generated/torch.nn.InstanceNorm2d","generated/torch.nn.InstanceNorm3d","generated/torch.nn.KLDivLoss","generated/torch.nn.L1Loss","generated/torch.nn.LPPool1d","generated/torch.nn.LPPool2d","generated/torch.nn.LSTM","generated/torch.nn.LSTMCell","generated/torch.nn.LayerNorm","generated/torch.nn.LazyConv1d","generated/torch.nn.LazyConv2d","generated/torch.nn.LazyConv3d","generated/torch.nn.LazyConvTranspose1d","generated/torch.nn.LazyConvTranspose2d","generated/torch.nn.LazyConvTranspose3d","generated/torch.nn.LazyLinear","generated/torch.nn.LeakyReLU","generated/torch.nn.Linear","generated/torch.nn.LocalResponseNorm","generated/torch.nn.LogSigmoid","generated/torch.nn.LogSoftmax","generated/torch.nn.MSELoss","generated/torch.nn.MarginRankingLoss","generated/torch.nn.MaxPool1d","generated/torch.nn.MaxPool2d","generated/torch.nn.MaxPool3d","generated/torch.nn.MaxUnpool1d","generated/torch.nn.MaxUnpool2d","generated/torch.nn.MaxUnpool3d","generated/torch.nn.Module","generated/torch.nn.ModuleDict","generated/torch.nn.ModuleList","generated/torch.nn.MultiLabelMarginLoss","generated/torch.nn.MultiLabelSoftMarginLoss","generated/torch.nn.MultiMarginLoss","generated/torch.nn.MultiheadAttention","generated/torch.nn.NLLLoss","generated/torch.nn.PReLU","generated/torch.nn.PairwiseDistance","generated/torch.nn.ParameterDict","generated/torch.nn.ParameterList","generated/torch.nn.PixelShuffle","generated/torch.nn.PixelUnshuffle","generated/torch.nn.PoissonNLLLoss","generated/torch.nn.RNN","generated/torch.nn.RNNBase","generated/torch.nn.RNNCell","generated/torch.nn.RReLU","generated/torch.nn.ReLU","generated/torch.nn.ReLU6","generated/torch.nn.ReflectionPad1d","generated/torch.nn.ReflectionPad2d","generated/torch.nn.ReplicationPad1d","generated/torch.nn.ReplicationPad2d","generated/torch.nn.ReplicationPad3d","generated/torch.nn.SELU","generated/torch.nn.Sequential","generated/torch.nn.SiLU","generated/torch.nn.Sigmoid","generated/torch.nn.SmoothL1Loss","generated/torch.nn.SoftMarginLoss","generated/torch.nn.Softmax","generated/torch.nn.Softmax2d","generated/torch.nn.Softmin","generated/torch.nn.Softplus","generated/torch.nn.Softshrink","generated/torch.nn.Softsign","generated/torch.nn.SyncBatchNorm","generated/torch.nn.Tanh","generated/torch.nn.Tanhshrink","generated/torch.nn.Threshold","generated/torch.nn.Transformer","generated/torch.nn.TransformerDecoder","generated/torch.nn.TransformerDecoderLayer","generated/torch.nn.TransformerEncoder","generated/torch.nn.TransformerEncoderLayer","generated/torch.nn.TripletMarginLoss","generated/torch.nn.TripletMarginWithDistanceLoss","generated/torch.nn.Unflatten","generated/torch.nn.Unfold","generated/torch.nn.Upsample","generated/torch.nn.UpsamplingBilinear2d","generated/torch.nn.UpsamplingNearest2d","generated/torch.nn.ZeroPad2d","generated/torch.nn.modules.lazy.LazyModuleMixin","generated/torch.nn.modules.module.register_module_backward_hook","generated/torch.nn.modules.module.register_module_forward_hook","generated/torch.nn.modules.module.register_module_forward_pre_hook","generated/torch.nn.parallel.DistributedDataParallel","generated/torch.nn.parameter.Parameter","generated/torch.nn.parameter.UninitializedParameter","generated/torch.nn.utils.clip_grad_norm_","generated/torch.nn.utils.clip_grad_value_","generated/torch.nn.utils.parameters_to_vector","generated/torch.nn.utils.prune.BasePruningMethod","generated/torch.nn.utils.prune.CustomFromMask","generated/torch.nn.utils.prune.Identity","generated/torch.nn.utils.prune.L1Unstructured","generated/torch.nn.utils.prune.LnStructured","generated/torch.nn.utils.prune.PruningContainer","generated/torch.nn.utils.prune.RandomStructured","generated/torch.nn.utils.prune.RandomUnstructured","generated/torch.nn.utils.prune.custom_from_mask","generated/torch.nn.utils.prune.global_unstructured","generated/torch.nn.utils.prune.identity","generated/torch.nn.utils.prune.is_pruned","generated/torch.nn.utils.prune.l1_unstructured","generated/torch.nn.utils.prune.ln_structured","generated/torch.nn.utils.prune.random_structured","generated/torch.nn.utils.prune.random_unstructured","generated/torch.nn.utils.prune.remove","generated/torch.nn.utils.remove_spectral_norm","generated/torch.nn.utils.remove_weight_norm","generated/torch.nn.utils.rnn.PackedSequence","generated/torch.nn.utils.rnn.pack_padded_sequence","generated/torch.nn.utils.rnn.pack_sequence","generated/torch.nn.utils.rnn.pad_packed_sequence","generated/torch.nn.utils.rnn.pad_sequence","generated/torch.nn.utils.spectral_norm","generated/torch.nn.utils.vector_to_parameters","generated/torch.nn.utils.weight_norm","generated/torch.no_grad","generated/torch.nonzero","generated/torch.norm","generated/torch.normal","generated/torch.not_equal","generated/torch.numel","generated/torch.ones","generated/torch.ones_like","generated/torch.orgqr","generated/torch.ormqr","generated/torch.outer","generated/torch.pca_lowrank","generated/torch.pinverse","generated/torch.poisson","generated/torch.polar","generated/torch.polygamma","generated/torch.pow","generated/torch.prod","generated/torch.promote_types","generated/torch.qr","generated/torch.quantile","generated/torch.quantize_per_channel","generated/torch.quantize_per_tensor","generated/torch.quasirandom.SobolEngine","generated/torch.rad2deg","generated/torch.rand","generated/torch.rand_like","generated/torch.randint","generated/torch.randint_like","generated/torch.randn","generated/torch.randn_like","generated/torch.randperm","generated/torch.range","generated/torch.ravel","generated/torch.real","generated/torch.reciprocal","generated/torch.remainder","generated/torch.renorm","generated/torch.repeat_interleave","generated/torch.reshape","generated/torch.result_type","generated/torch.roll","generated/torch.rot90","generated/torch.round","generated/torch.row_stack","generated/torch.rsqrt","generated/torch.save","generated/torch.scatter","generated/torch.scatter_add","generated/torch.searchsorted","generated/torch.seed","generated/torch.set_default_dtype","generated/torch.set_default_tensor_type","generated/torch.set_flush_denormal","generated/torch.set_grad_enabled","generated/torch.set_num_interop_threads","generated/torch.set_num_threads","generated/torch.set_printoptions","generated/torch.set_rng_state","generated/torch.sgn","generated/torch.sigmoid","generated/torch.sign","generated/torch.signbit","generated/torch.sin","generated/torch.sinc","generated/torch.sinh","generated/torch.slogdet","generated/torch.solve","generated/torch.sort","generated/torch.sparse_coo_tensor","generated/torch.split","generated/torch.sqrt","generated/torch.square","generated/torch.squeeze","generated/torch.stack","generated/torch.std","generated/torch.std_mean","generated/torch.stft","generated/torch.sub","generated/torch.subtract","generated/torch.sum","generated/torch.svd","generated/torch.svd_lowrank","generated/torch.swapaxes","generated/torch.swapdims","generated/torch.symeig","generated/torch.t","generated/torch.take","generated/torch.tan","generated/torch.tanh","generated/torch.tensor","generated/torch.tensor_split","generated/torch.tensordot","generated/torch.tile","generated/torch.topk","generated/torch.trace","generated/torch.transpose","generated/torch.trapz","generated/torch.triangular_solve","generated/torch.tril","generated/torch.tril_indices","generated/torch.triu","generated/torch.triu_indices","generated/torch.true_divide","generated/torch.trunc","generated/torch.unbind","generated/torch.unique","generated/torch.unique_consecutive","generated/torch.unsqueeze","generated/torch.use_deterministic_algorithms","generated/torch.vander","generated/torch.var","generated/torch.var_mean","generated/torch.vdot","generated/torch.view_as_complex","generated/torch.view_as_real","generated/torch.vstack","generated/torch.where","generated/torch.xlogy","generated/torch.zeros","generated/torch.zeros_like","hub","index","jit","jit_builtin_functions","jit_language_reference","jit_python_reference","jit_unsupported","linalg","mobile_optimizer","model_zoo","multiprocessing","name_inference","named_tensor","nn","nn.functional","nn.init","notes/amp_examples","notes/autograd","notes/broadcasting","notes/cpu_threading_torchscript_inference","notes/cuda","notes/ddp","notes/extending","notes/faq","notes/large_scale_deployments","notes/modules","notes/multiprocessing","notes/randomness","notes/serialization","notes/windows","onnx","optim","pipeline","profiler","quantization","quantization-support","random","rpc","rpc/distributed_autograd","rpc/rref","sparse","storage","tensor_attributes","tensor_view","tensorboard","tensors","torch","torch.nn.intrinsic","torch.nn.intrinsic.qat","torch.nn.intrinsic.quantized","torch.nn.qat","torch.nn.quantized","torch.nn.quantized.dynamic","torch.overrides","torch.quantization","type_info"],envversion:{"sphinx.domains.c":1,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":1,"sphinx.domains.index":1,"sphinx.domains.javascript":1,"sphinx.domains.math":2,"sphinx.domains.python":1,"sphinx.domains.rst":1,"sphinx.domains.std":1,"sphinx.ext.intersphinx":1,"sphinx.ext.todo":2,"sphinx.ext.viewcode":1,sphinx:56},filenames:["__config__.rst","amp.rst","autograd.rst","backends.rst","benchmark_utils.rst","bottleneck.rst","checkpoint.rst","community/contribution_guide.rst","community/governance.rst","community/persons_of_interest.rst","complex_numbers.rst","cpp_extension.rst","cpp_index.rst","cuda.rst","cudnn_persistent_rnn.rst","cudnn_rnn_determinism.rst","data.rst","ddp_comm_hooks.rst","distributed.rst","distributions.rst","dlpack.rst","fft.rst","futures.rst","fx.rst","generated/torch.Generator.rst","generated/torch._assert.rst","generated/torch.abs.rst","generated/torch.absolute.rst","generated/torch.acos.rst","generated/torch.acosh.rst","generated/torch.add.rst","generated/torch.addbmm.rst","generated/torch.addcdiv.rst","generated/torch.addcmul.rst","generated/torch.addmm.rst","generated/torch.addmv.rst","generated/torch.addr.rst","generated/torch.all.rst","generated/torch.allclose.rst","generated/torch.amax.rst","generated/torch.amin.rst","generated/torch.angle.rst","generated/torch.any.rst","generated/torch.arange.rst","generated/torch.arccos.rst","generated/torch.arccosh.rst","generated/torch.arcsin.rst","generated/torch.arcsinh.rst","generated/torch.arctan.rst","generated/torch.arctanh.rst","generated/torch.are_deterministic_algorithms_enabled.rst","generated/torch.argmax.rst","generated/torch.argmin.rst","generated/torch.argsort.rst","generated/torch.as_strided.rst","generated/torch.as_tensor.rst","generated/torch.asin.rst","generated/torch.asinh.rst","generated/torch.atan.rst","generated/torch.atan2.rst","generated/torch.atanh.rst","generated/torch.atleast_1d.rst","generated/torch.atleast_2d.rst","generated/torch.atleast_3d.rst","generated/torch.baddbmm.rst","generated/torch.bartlett_window.rst","generated/torch.bernoulli.rst","generated/torch.bincount.rst","generated/torch.bitwise_and.rst","generated/torch.bitwise_not.rst","generated/torch.bitwise_or.rst","generated/torch.bitwise_xor.rst","generated/torch.blackman_window.rst","generated/torch.block_diag.rst","generated/torch.bmm.rst","generated/torch.broadcast_shapes.rst","generated/torch.broadcast_tensors.rst","generated/torch.broadcast_to.rst","generated/torch.bucketize.rst","generated/torch.can_cast.rst","generated/torch.cartesian_prod.rst","generated/torch.cat.rst","generated/torch.cdist.rst","generated/torch.ceil.rst","generated/torch.chain_matmul.rst","generated/torch.cholesky.rst","generated/torch.cholesky_inverse.rst","generated/torch.cholesky_solve.rst","generated/torch.chunk.rst","generated/torch.clamp.rst","generated/torch.clip.rst","generated/torch.clone.rst","generated/torch.column_stack.rst","generated/torch.combinations.rst","generated/torch.compiled_with_cxx11_abi.rst","generated/torch.complex.rst","generated/torch.conj.rst","generated/torch.copysign.rst","generated/torch.cos.rst","generated/torch.cosh.rst","generated/torch.count_nonzero.rst","generated/torch.cross.rst","generated/torch.cummax.rst","generated/torch.cummin.rst","generated/torch.cumprod.rst","generated/torch.cumsum.rst","generated/torch.deg2rad.rst","generated/torch.dequantize.rst","generated/torch.det.rst","generated/torch.diag.rst","generated/torch.diag_embed.rst","generated/torch.diagflat.rst","generated/torch.diagonal.rst","generated/torch.diff.rst","generated/torch.digamma.rst","generated/torch.dist.rst","generated/torch.div.rst","generated/torch.divide.rst","generated/torch.dot.rst","generated/torch.dstack.rst","generated/torch.eig.rst","generated/torch.einsum.rst","generated/torch.empty.rst","generated/torch.empty_like.rst","generated/torch.empty_strided.rst","generated/torch.enable_grad.rst","generated/torch.eq.rst","generated/torch.equal.rst","generated/torch.erf.rst","generated/torch.erfc.rst","generated/torch.erfinv.rst","generated/torch.exp.rst","generated/torch.exp2.rst","generated/torch.expm1.rst","generated/torch.eye.rst","generated/torch.fake_quantize_per_channel_affine.rst","generated/torch.fake_quantize_per_tensor_affine.rst","generated/torch.fix.rst","generated/torch.flatten.rst","generated/torch.flip.rst","generated/torch.fliplr.rst","generated/torch.flipud.rst","generated/torch.float_power.rst","generated/torch.floor.rst","generated/torch.floor_divide.rst","generated/torch.fmax.rst","generated/torch.fmin.rst","generated/torch.fmod.rst","generated/torch.frac.rst","generated/torch.from_numpy.rst","generated/torch.full.rst","generated/torch.full_like.rst","generated/torch.gather.rst","generated/torch.gcd.rst","generated/torch.ge.rst","generated/torch.geqrf.rst","generated/torch.ger.rst","generated/torch.get_default_dtype.rst","generated/torch.get_num_interop_threads.rst","generated/torch.get_num_threads.rst","generated/torch.get_rng_state.rst","generated/torch.greater.rst","generated/torch.greater_equal.rst","generated/torch.gt.rst","generated/torch.hamming_window.rst","generated/torch.hann_window.rst","generated/torch.heaviside.rst","generated/torch.histc.rst","generated/torch.hstack.rst","generated/torch.hypot.rst","generated/torch.i0.rst","generated/torch.igamma.rst","generated/torch.igammac.rst","generated/torch.imag.rst","generated/torch.index_select.rst","generated/torch.initial_seed.rst","generated/torch.inner.rst","generated/torch.inverse.rst","generated/torch.is_complex.rst","generated/torch.is_floating_point.rst","generated/torch.is_nonzero.rst","generated/torch.is_storage.rst","generated/torch.is_tensor.rst","generated/torch.isclose.rst","generated/torch.isfinite.rst","generated/torch.isinf.rst","generated/torch.isnan.rst","generated/torch.isneginf.rst","generated/torch.isposinf.rst","generated/torch.isreal.rst","generated/torch.istft.rst","generated/torch.jit.ScriptFunction.rst","generated/torch.jit.ScriptModule.rst","generated/torch.jit.fork.rst","generated/torch.jit.freeze.rst","generated/torch.jit.ignore.rst","generated/torch.jit.isinstance.rst","generated/torch.jit.load.rst","generated/torch.jit.save.rst","generated/torch.jit.script.rst","generated/torch.jit.script_if_tracing.rst","generated/torch.jit.trace.rst","generated/torch.jit.trace_module.rst","generated/torch.jit.unused.rst","generated/torch.jit.wait.rst","generated/torch.kaiser_window.rst","generated/torch.kron.rst","generated/torch.kthvalue.rst","generated/torch.lcm.rst","generated/torch.ldexp.rst","generated/torch.le.rst","generated/torch.lerp.rst","generated/torch.less.rst","generated/torch.less_equal.rst","generated/torch.lgamma.rst","generated/torch.linspace.rst","generated/torch.load.rst","generated/torch.lobpcg.rst","generated/torch.log.rst","generated/torch.log10.rst","generated/torch.log1p.rst","generated/torch.log2.rst","generated/torch.logaddexp.rst","generated/torch.logaddexp2.rst","generated/torch.logcumsumexp.rst","generated/torch.logdet.rst","generated/torch.logical_and.rst","generated/torch.logical_not.rst","generated/torch.logical_or.rst","generated/torch.logical_xor.rst","generated/torch.logit.rst","generated/torch.logspace.rst","generated/torch.logsumexp.rst","generated/torch.lstsq.rst","generated/torch.lt.rst","generated/torch.lu.rst","generated/torch.lu_solve.rst","generated/torch.lu_unpack.rst","generated/torch.manual_seed.rst","generated/torch.masked_select.rst","generated/torch.matmul.rst","generated/torch.matrix_exp.rst","generated/torch.matrix_power.rst","generated/torch.matrix_rank.rst","generated/torch.max.rst","generated/torch.maximum.rst","generated/torch.mean.rst","generated/torch.median.rst","generated/torch.meshgrid.rst","generated/torch.min.rst","generated/torch.minimum.rst","generated/torch.mm.rst","generated/torch.mode.rst","generated/torch.moveaxis.rst","generated/torch.movedim.rst","generated/torch.msort.rst","generated/torch.mul.rst","generated/torch.multinomial.rst","generated/torch.multiply.rst","generated/torch.mv.rst","generated/torch.mvlgamma.rst","generated/torch.nan_to_num.rst","generated/torch.nanmedian.rst","generated/torch.nanquantile.rst","generated/torch.nansum.rst","generated/torch.narrow.rst","generated/torch.ne.rst","generated/torch.neg.rst","generated/torch.negative.rst","generated/torch.nextafter.rst","generated/torch.nn.AdaptiveAvgPool1d.rst","generated/torch.nn.AdaptiveAvgPool2d.rst","generated/torch.nn.AdaptiveAvgPool3d.rst","generated/torch.nn.AdaptiveLogSoftmaxWithLoss.rst","generated/torch.nn.AdaptiveMaxPool1d.rst","generated/torch.nn.AdaptiveMaxPool2d.rst","generated/torch.nn.AdaptiveMaxPool3d.rst","generated/torch.nn.AlphaDropout.rst","generated/torch.nn.AvgPool1d.rst","generated/torch.nn.AvgPool2d.rst","generated/torch.nn.AvgPool3d.rst","generated/torch.nn.BCELoss.rst","generated/torch.nn.BCEWithLogitsLoss.rst","generated/torch.nn.BatchNorm1d.rst","generated/torch.nn.BatchNorm2d.rst","generated/torch.nn.BatchNorm3d.rst","generated/torch.nn.Bilinear.rst","generated/torch.nn.CELU.rst","generated/torch.nn.CTCLoss.rst","generated/torch.nn.ChannelShuffle.rst","generated/torch.nn.ConstantPad1d.rst","generated/torch.nn.ConstantPad2d.rst","generated/torch.nn.ConstantPad3d.rst","generated/torch.nn.Conv1d.rst","generated/torch.nn.Conv2d.rst","generated/torch.nn.Conv3d.rst","generated/torch.nn.ConvTranspose1d.rst","generated/torch.nn.ConvTranspose2d.rst","generated/torch.nn.ConvTranspose3d.rst","generated/torch.nn.CosineEmbeddingLoss.rst","generated/torch.nn.CosineSimilarity.rst","generated/torch.nn.CrossEntropyLoss.rst","generated/torch.nn.DataParallel.rst","generated/torch.nn.Dropout.rst","generated/torch.nn.Dropout2d.rst","generated/torch.nn.Dropout3d.rst","generated/torch.nn.ELU.rst","generated/torch.nn.Embedding.rst","generated/torch.nn.EmbeddingBag.rst","generated/torch.nn.Flatten.rst","generated/torch.nn.Fold.rst","generated/torch.nn.FractionalMaxPool2d.rst","generated/torch.nn.GELU.rst","generated/torch.nn.GRU.rst","generated/torch.nn.GRUCell.rst","generated/torch.nn.GaussianNLLLoss.rst","generated/torch.nn.GroupNorm.rst","generated/torch.nn.Hardshrink.rst","generated/torch.nn.Hardsigmoid.rst","generated/torch.nn.Hardswish.rst","generated/torch.nn.Hardtanh.rst","generated/torch.nn.HingeEmbeddingLoss.rst","generated/torch.nn.Identity.rst","generated/torch.nn.InstanceNorm1d.rst","generated/torch.nn.InstanceNorm2d.rst","generated/torch.nn.InstanceNorm3d.rst","generated/torch.nn.KLDivLoss.rst","generated/torch.nn.L1Loss.rst","generated/torch.nn.LPPool1d.rst","generated/torch.nn.LPPool2d.rst","generated/torch.nn.LSTM.rst","generated/torch.nn.LSTMCell.rst","generated/torch.nn.LayerNorm.rst","generated/torch.nn.LazyConv1d.rst","generated/torch.nn.LazyConv2d.rst","generated/torch.nn.LazyConv3d.rst","generated/torch.nn.LazyConvTranspose1d.rst","generated/torch.nn.LazyConvTranspose2d.rst","generated/torch.nn.LazyConvTranspose3d.rst","generated/torch.nn.LazyLinear.rst","generated/torch.nn.LeakyReLU.rst","generated/torch.nn.Linear.rst","generated/torch.nn.LocalResponseNorm.rst","generated/torch.nn.LogSigmoid.rst","generated/torch.nn.LogSoftmax.rst","generated/torch.nn.MSELoss.rst","generated/torch.nn.MarginRankingLoss.rst","generated/torch.nn.MaxPool1d.rst","generated/torch.nn.MaxPool2d.rst","generated/torch.nn.MaxPool3d.rst","generated/torch.nn.MaxUnpool1d.rst","generated/torch.nn.MaxUnpool2d.rst","generated/torch.nn.MaxUnpool3d.rst","generated/torch.nn.Module.rst","generated/torch.nn.ModuleDict.rst","generated/torch.nn.ModuleList.rst","generated/torch.nn.MultiLabelMarginLoss.rst","generated/torch.nn.MultiLabelSoftMarginLoss.rst","generated/torch.nn.MultiMarginLoss.rst","generated/torch.nn.MultiheadAttention.rst","generated/torch.nn.NLLLoss.rst","generated/torch.nn.PReLU.rst","generated/torch.nn.PairwiseDistance.rst","generated/torch.nn.ParameterDict.rst","generated/torch.nn.ParameterList.rst","generated/torch.nn.PixelShuffle.rst","generated/torch.nn.PixelUnshuffle.rst","generated/torch.nn.PoissonNLLLoss.rst","generated/torch.nn.RNN.rst","generated/torch.nn.RNNBase.rst","generated/torch.nn.RNNCell.rst","generated/torch.nn.RReLU.rst","generated/torch.nn.ReLU.rst","generated/torch.nn.ReLU6.rst","generated/torch.nn.ReflectionPad1d.rst","generated/torch.nn.ReflectionPad2d.rst","generated/torch.nn.ReplicationPad1d.rst","generated/torch.nn.ReplicationPad2d.rst","generated/torch.nn.ReplicationPad3d.rst","generated/torch.nn.SELU.rst","generated/torch.nn.Sequential.rst","generated/torch.nn.SiLU.rst","generated/torch.nn.Sigmoid.rst","generated/torch.nn.SmoothL1Loss.rst","generated/torch.nn.SoftMarginLoss.rst","generated/torch.nn.Softmax.rst","generated/torch.nn.Softmax2d.rst","generated/torch.nn.Softmin.rst","generated/torch.nn.Softplus.rst","generated/torch.nn.Softshrink.rst","generated/torch.nn.Softsign.rst","generated/torch.nn.SyncBatchNorm.rst","generated/torch.nn.Tanh.rst","generated/torch.nn.Tanhshrink.rst","generated/torch.nn.Threshold.rst","generated/torch.nn.Transformer.rst","generated/torch.nn.TransformerDecoder.rst","generated/torch.nn.TransformerDecoderLayer.rst","generated/torch.nn.TransformerEncoder.rst","generated/torch.nn.TransformerEncoderLayer.rst","generated/torch.nn.TripletMarginLoss.rst","generated/torch.nn.TripletMarginWithDistanceLoss.rst","generated/torch.nn.Unflatten.rst","generated/torch.nn.Unfold.rst","generated/torch.nn.Upsample.rst","generated/torch.nn.UpsamplingBilinear2d.rst","generated/torch.nn.UpsamplingNearest2d.rst","generated/torch.nn.ZeroPad2d.rst","generated/torch.nn.modules.lazy.LazyModuleMixin.rst","generated/torch.nn.modules.module.register_module_backward_hook.rst","generated/torch.nn.modules.module.register_module_forward_hook.rst","generated/torch.nn.modules.module.register_module_forward_pre_hook.rst","generated/torch.nn.parallel.DistributedDataParallel.rst","generated/torch.nn.parameter.Parameter.rst","generated/torch.nn.parameter.UninitializedParameter.rst","generated/torch.nn.utils.clip_grad_norm_.rst","generated/torch.nn.utils.clip_grad_value_.rst","generated/torch.nn.utils.parameters_to_vector.rst","generated/torch.nn.utils.prune.BasePruningMethod.rst","generated/torch.nn.utils.prune.CustomFromMask.rst","generated/torch.nn.utils.prune.Identity.rst","generated/torch.nn.utils.prune.L1Unstructured.rst","generated/torch.nn.utils.prune.LnStructured.rst","generated/torch.nn.utils.prune.PruningContainer.rst","generated/torch.nn.utils.prune.RandomStructured.rst","generated/torch.nn.utils.prune.RandomUnstructured.rst","generated/torch.nn.utils.prune.custom_from_mask.rst","generated/torch.nn.utils.prune.global_unstructured.rst","generated/torch.nn.utils.prune.identity.rst","generated/torch.nn.utils.prune.is_pruned.rst","generated/torch.nn.utils.prune.l1_unstructured.rst","generated/torch.nn.utils.prune.ln_structured.rst","generated/torch.nn.utils.prune.random_structured.rst","generated/torch.nn.utils.prune.random_unstructured.rst","generated/torch.nn.utils.prune.remove.rst","generated/torch.nn.utils.remove_spectral_norm.rst","generated/torch.nn.utils.remove_weight_norm.rst","generated/torch.nn.utils.rnn.PackedSequence.rst","generated/torch.nn.utils.rnn.pack_padded_sequence.rst","generated/torch.nn.utils.rnn.pack_sequence.rst","generated/torch.nn.utils.rnn.pad_packed_sequence.rst","generated/torch.nn.utils.rnn.pad_sequence.rst","generated/torch.nn.utils.spectral_norm.rst","generated/torch.nn.utils.vector_to_parameters.rst","generated/torch.nn.utils.weight_norm.rst","generated/torch.no_grad.rst","generated/torch.nonzero.rst","generated/torch.norm.rst","generated/torch.normal.rst","generated/torch.not_equal.rst","generated/torch.numel.rst","generated/torch.ones.rst","generated/torch.ones_like.rst","generated/torch.orgqr.rst","generated/torch.ormqr.rst","generated/torch.outer.rst","generated/torch.pca_lowrank.rst","generated/torch.pinverse.rst","generated/torch.poisson.rst","generated/torch.polar.rst","generated/torch.polygamma.rst","generated/torch.pow.rst","generated/torch.prod.rst","generated/torch.promote_types.rst","generated/torch.qr.rst","generated/torch.quantile.rst","generated/torch.quantize_per_channel.rst","generated/torch.quantize_per_tensor.rst","generated/torch.quasirandom.SobolEngine.rst","generated/torch.rad2deg.rst","generated/torch.rand.rst","generated/torch.rand_like.rst","generated/torch.randint.rst","generated/torch.randint_like.rst","generated/torch.randn.rst","generated/torch.randn_like.rst","generated/torch.randperm.rst","generated/torch.range.rst","generated/torch.ravel.rst","generated/torch.real.rst","generated/torch.reciprocal.rst","generated/torch.remainder.rst","generated/torch.renorm.rst","generated/torch.repeat_interleave.rst","generated/torch.reshape.rst","generated/torch.result_type.rst","generated/torch.roll.rst","generated/torch.rot90.rst","generated/torch.round.rst","generated/torch.row_stack.rst","generated/torch.rsqrt.rst","generated/torch.save.rst","generated/torch.scatter.rst","generated/torch.scatter_add.rst","generated/torch.searchsorted.rst","generated/torch.seed.rst","generated/torch.set_default_dtype.rst","generated/torch.set_default_tensor_type.rst","generated/torch.set_flush_denormal.rst","generated/torch.set_grad_enabled.rst","generated/torch.set_num_interop_threads.rst","generated/torch.set_num_threads.rst","generated/torch.set_printoptions.rst","generated/torch.set_rng_state.rst","generated/torch.sgn.rst","generated/torch.sigmoid.rst","generated/torch.sign.rst","generated/torch.signbit.rst","generated/torch.sin.rst","generated/torch.sinc.rst","generated/torch.sinh.rst","generated/torch.slogdet.rst","generated/torch.solve.rst","generated/torch.sort.rst","generated/torch.sparse_coo_tensor.rst","generated/torch.split.rst","generated/torch.sqrt.rst","generated/torch.square.rst","generated/torch.squeeze.rst","generated/torch.stack.rst","generated/torch.std.rst","generated/torch.std_mean.rst","generated/torch.stft.rst","generated/torch.sub.rst","generated/torch.subtract.rst","generated/torch.sum.rst","generated/torch.svd.rst","generated/torch.svd_lowrank.rst","generated/torch.swapaxes.rst","generated/torch.swapdims.rst","generated/torch.symeig.rst","generated/torch.t.rst","generated/torch.take.rst","generated/torch.tan.rst","generated/torch.tanh.rst","generated/torch.tensor.rst","generated/torch.tensor_split.rst","generated/torch.tensordot.rst","generated/torch.tile.rst","generated/torch.topk.rst","generated/torch.trace.rst","generated/torch.transpose.rst","generated/torch.trapz.rst","generated/torch.triangular_solve.rst","generated/torch.tril.rst","generated/torch.tril_indices.rst","generated/torch.triu.rst","generated/torch.triu_indices.rst","generated/torch.true_divide.rst","generated/torch.trunc.rst","generated/torch.unbind.rst","generated/torch.unique.rst","generated/torch.unique_consecutive.rst","generated/torch.unsqueeze.rst","generated/torch.use_deterministic_algorithms.rst","generated/torch.vander.rst","generated/torch.var.rst","generated/torch.var_mean.rst","generated/torch.vdot.rst","generated/torch.view_as_complex.rst","generated/torch.view_as_real.rst","generated/torch.vstack.rst","generated/torch.where.rst","generated/torch.xlogy.rst","generated/torch.zeros.rst","generated/torch.zeros_like.rst","hub.rst","index.rst","jit.rst","jit_builtin_functions.rst","jit_language_reference.rst","jit_python_reference.rst","jit_unsupported.rst","linalg.rst","mobile_optimizer.rst","model_zoo.rst","multiprocessing.rst","name_inference.rst","named_tensor.rst","nn.rst","nn.functional.rst","nn.init.rst","notes/amp_examples.rst","notes/autograd.rst","notes/broadcasting.rst","notes/cpu_threading_torchscript_inference.rst","notes/cuda.rst","notes/ddp.rst","notes/extending.rst","notes/faq.rst","notes/large_scale_deployments.rst","notes/modules.rst","notes/multiprocessing.rst","notes/randomness.rst","notes/serialization.rst","notes/windows.rst","onnx.rst","optim.rst","pipeline.rst","profiler.rst","quantization.rst","quantization-support.rst","random.rst","rpc.rst","rpc/distributed_autograd.rst","rpc/rref.rst","sparse.rst","storage.rst","tensor_attributes.rst","tensor_view.rst","tensorboard.rst","tensors.rst","torch.rst","torch.nn.intrinsic.rst","torch.nn.intrinsic.qat.rst","torch.nn.intrinsic.quantized.rst","torch.nn.qat.rst","torch.nn.quantized.rst","torch.nn.quantized.dynamic.rst","torch.overrides.rst","torch.quantization.rst","type_info.rst"],objects:{"":{PYTORCH_JIT:[568,5,1,"-"],clear:[3,0,1,""],max_size:[3,1,1,""]},"torch.FloatStorage":{"byte":[607,0,1,""],"char":[607,0,1,""],"double":[607,0,1,""],"float":[607,0,1,""],"int":[607,0,1,""],"long":[607,0,1,""],"new":[607,0,1,""],"short":[607,0,1,""],bfloat16:[607,0,1,""],bool:[607,0,1,""],clone:[607,0,1,""],complex_double:[607,0,1,""],complex_float:[607,0,1,""],copy_:[607,0,1,""],cpu:[607,0,1,""],cuda:[607,0,1,""],data_ptr:[607,0,1,""],device:[607,1,1,""],dtype:[607,1,1,""],element_size:[607,0,1,""],fill_:[607,0,1,""],from_buffer:[607,0,1,""],from_file:[607,0,1,""],get_device:[607,0,1,""],half:[607,0,1,""],is_cuda:[607,1,1,""],is_pinned:[607,0,1,""],is_shared:[607,0,1,""],is_sparse:[607,1,1,""],pin_memory:[607,0,1,""],resize_:[607,0,1,""],share_memory_:[607,0,1,""],size:[607,0,1,""],tolist:[607,0,1,""],type:[607,0,1,""]},"torch.Generator":{device:[24,1,1,""],get_state:[24,0,1,""],initial_seed:[24,0,1,""],manual_seed:[24,0,1,""],seed:[24,0,1,""],set_state:[24,0,1,""]},"torch.Tensor":{"byte":[611,0,1,""],"char":[611,0,1,""],"double":[611,0,1,""],"float":[611,0,1,""],"int":[611,0,1,""],"long":[611,0,1,""],"short":[611,0,1,""],"var":[611,0,1,""],T:[611,1,1,""],abs:[611,0,1,""],abs_:[611,0,1,""],absolute:[611,0,1,""],absolute_:[611,0,1,""],acos:[611,0,1,""],acos_:[611,0,1,""],acosh:[611,0,1,""],acosh_:[611,0,1,""],add:[611,0,1,""],add_:[611,0,1,""],addbmm:[611,0,1,""],addbmm_:[611,0,1,""],addcdiv:[611,0,1,""],addcdiv_:[611,0,1,""],addcmul:[611,0,1,""],addcmul_:[611,0,1,""],addmm:[611,0,1,""],addmm_:[611,0,1,""],addmv:[611,0,1,""],addmv_:[611,0,1,""],addr:[611,0,1,""],addr_:[611,0,1,""],align_as:[578,0,1,""],align_to:[578,0,1,""],all:[611,0,1,""],allclose:[611,0,1,""],amax:[611,0,1,""],amin:[611,0,1,""],angle:[611,0,1,""],any:[611,0,1,""],apply_:[611,0,1,""],arccos:[611,0,1,""],arccos_:[611,0,1,""],arccosh:[611,0,1,""],arccosh_:[611,0,1,""],arcsin:[611,0,1,""],arcsin_:[611,0,1,""],arcsinh:[611,0,1,""],arcsinh_:[611,0,1,""],arctan:[611,0,1,""],arctan_:[611,0,1,""],arctanh:[611,0,1,""],arctanh_:[611,0,1,""],argmax:[611,0,1,""],argmin:[611,0,1,""],argsort:[611,0,1,""],as_strided:[611,0,1,""],as_subclass:[611,0,1,""],asin:[611,0,1,""],asin_:[611,0,1,""],asinh:[611,0,1,""],asinh_:[611,0,1,""],atan2:[611,0,1,""],atan2_:[611,0,1,""],atan:[611,0,1,""],atan_:[611,0,1,""],atanh:[611,0,1,""],atanh_:[611,0,1,""],backward:[2,0,1,""],baddbmm:[611,0,1,""],baddbmm_:[611,0,1,""],bernoulli:[611,0,1,""],bernoulli_:[611,0,1,""],bfloat16:[611,0,1,""],bincount:[611,0,1,""],bitwise_and:[611,0,1,""],bitwise_and_:[611,0,1,""],bitwise_not:[611,0,1,""],bitwise_not_:[611,0,1,""],bitwise_or:[611,0,1,""],bitwise_or_:[611,0,1,""],bitwise_xor:[611,0,1,""],bitwise_xor_:[611,0,1,""],bmm:[611,0,1,""],bool:[611,0,1,""],broadcast_to:[611,0,1,""],cauchy_:[611,0,1,""],ceil:[611,0,1,""],ceil_:[611,0,1,""],cholesky:[611,0,1,""],cholesky_inverse:[611,0,1,""],cholesky_solve:[611,0,1,""],chunk:[611,0,1,""],clamp:[611,0,1,""],clamp_:[611,0,1,""],clip:[611,0,1,""],clip_:[611,0,1,""],clone:[611,0,1,""],coalesce:[606,0,1,""],conj:[611,0,1,""],contiguous:[611,0,1,""],copy_:[611,0,1,""],copysign:[611,0,1,""],copysign_:[611,0,1,""],cos:[611,0,1,""],cos_:[611,0,1,""],cosh:[611,0,1,""],cosh_:[611,0,1,""],count_nonzero:[611,0,1,""],cpu:[611,0,1,""],cross:[611,0,1,""],cuda:[611,0,1,""],cummax:[611,0,1,""],cummin:[611,0,1,""],cumprod:[611,0,1,""],cumprod_:[611,0,1,""],cumsum:[611,0,1,""],cumsum_:[611,0,1,""],data_ptr:[611,0,1,""],deg2rad:[611,0,1,""],dense_dim:[606,0,1,""],dequantize:[611,0,1,""],det:[611,0,1,""],detach:[2,0,1,""],detach_:[2,0,1,""],device:[611,1,1,""],diag:[611,0,1,""],diag_embed:[611,0,1,""],diagflat:[611,0,1,""],diagonal:[611,0,1,""],diff:[611,0,1,""],digamma:[611,0,1,""],digamma_:[611,0,1,""],dim:[611,0,1,""],dist:[611,0,1,""],div:[611,0,1,""],div_:[611,0,1,""],divide:[611,0,1,""],divide_:[611,0,1,""],dot:[611,0,1,""],eig:[611,0,1,""],element_size:[611,0,1,""],eq:[611,0,1,""],eq_:[611,0,1,""],equal:[611,0,1,""],erf:[611,0,1,""],erf_:[611,0,1,""],erfc:[611,0,1,""],erfc_:[611,0,1,""],erfinv:[611,0,1,""],erfinv_:[611,0,1,""],exp:[611,0,1,""],exp_:[611,0,1,""],expand:[611,0,1,""],expand_as:[611,0,1,""],expm1:[611,0,1,""],expm1_:[611,0,1,""],exponential_:[611,0,1,""],fill_:[611,0,1,""],fill_diagonal_:[611,0,1,""],fix:[611,0,1,""],fix_:[611,0,1,""],flatten:[611,0,1,""],flip:[611,0,1,""],fliplr:[611,0,1,""],flipud:[611,0,1,""],float_power:[611,0,1,""],float_power_:[611,0,1,""],floor:[611,0,1,""],floor_:[611,0,1,""],floor_divide:[611,0,1,""],floor_divide_:[611,0,1,""],fmax:[611,0,1,""],fmin:[611,0,1,""],fmod:[611,0,1,""],fmod_:[611,0,1,""],frac:[611,0,1,""],frac_:[611,0,1,""],gather:[611,0,1,""],gcd:[611,0,1,""],gcd_:[611,0,1,""],ge:[611,0,1,""],ge_:[611,0,1,""],geometric_:[611,0,1,""],geqrf:[611,0,1,""],ger:[611,0,1,""],get_device:[611,0,1,""],grad:[2,1,1,""],greater:[611,0,1,""],greater_:[611,0,1,""],greater_equal:[611,0,1,""],greater_equal_:[611,0,1,""],gt:[611,0,1,""],gt_:[611,0,1,""],half:[611,0,1,""],hardshrink:[611,0,1,""],heaviside:[611,0,1,""],histc:[611,0,1,""],hypot:[611,0,1,""],hypot_:[611,0,1,""],i0:[611,0,1,""],i0_:[611,0,1,""],igamma:[611,0,1,""],igamma_:[611,0,1,""],igammac:[611,0,1,""],igammac_:[611,0,1,""],imag:[611,1,1,""],index_add:[611,0,1,""],index_add_:[611,0,1,""],index_copy:[611,0,1,""],index_copy_:[611,0,1,""],index_fill:[611,0,1,""],index_fill_:[611,0,1,""],index_put:[611,0,1,""],index_put_:[611,0,1,""],index_select:[611,0,1,""],indices:[606,0,1,""],inner:[611,0,1,""],int_repr:[611,0,1,""],inverse:[611,0,1,""],is_coalesced:[606,0,1,""],is_complex:[611,0,1,""],is_contiguous:[611,0,1,""],is_cuda:[611,1,1,""],is_floating_point:[611,0,1,""],is_leaf:[2,1,1,""],is_meta:[611,1,1,""],is_pinned:[611,0,1,""],is_quantized:[611,1,1,""],is_set_to:[611,0,1,""],is_shared:[611,0,1,""],is_signed:[611,0,1,""],is_sparse:[606,1,1,""],isclose:[611,0,1,""],isfinite:[611,0,1,""],isinf:[611,0,1,""],isnan:[611,0,1,""],isneginf:[611,0,1,""],isposinf:[611,0,1,""],isreal:[611,0,1,""],istft:[611,0,1,""],item:[611,0,1,""],kthvalue:[611,0,1,""],lcm:[611,0,1,""],lcm_:[611,0,1,""],ldexp:[611,0,1,""],ldexp_:[611,0,1,""],le:[611,0,1,""],le_:[611,0,1,""],lerp:[611,0,1,""],lerp_:[611,0,1,""],less:[611,0,1,""],less_:[611,0,1,""],less_equal:[611,0,1,""],less_equal_:[611,0,1,""],lgamma:[611,0,1,""],lgamma_:[611,0,1,""],log10:[611,0,1,""],log10_:[611,0,1,""],log1p:[611,0,1,""],log1p_:[611,0,1,""],log2:[611,0,1,""],log2_:[611,0,1,""],log:[611,0,1,""],log_:[611,0,1,""],log_normal_:[611,0,1,""],logaddexp2:[611,0,1,""],logaddexp:[611,0,1,""],logcumsumexp:[611,0,1,""],logdet:[611,0,1,""],logical_and:[611,0,1,""],logical_and_:[611,0,1,""],logical_not:[611,0,1,""],logical_not_:[611,0,1,""],logical_or:[611,0,1,""],logical_or_:[611,0,1,""],logical_xor:[611,0,1,""],logical_xor_:[611,0,1,""],logit:[611,0,1,""],logit_:[611,0,1,""],logsumexp:[611,0,1,""],lstsq:[611,0,1,""],lt:[611,0,1,""],lt_:[611,0,1,""],lu:[611,0,1,""],lu_solve:[611,0,1,""],map_:[611,0,1,""],masked_fill:[611,0,1,""],masked_fill_:[611,0,1,""],masked_scatter:[611,0,1,""],masked_scatter_:[611,0,1,""],masked_select:[611,0,1,""],matmul:[611,0,1,""],matrix_exp:[611,0,1,""],matrix_power:[611,0,1,""],max:[611,0,1,""],maximum:[611,0,1,""],mean:[611,0,1,""],median:[611,0,1,""],min:[611,0,1,""],minimum:[611,0,1,""],mm:[611,0,1,""],mode:[611,0,1,""],moveaxis:[611,0,1,""],movedim:[611,0,1,""],msort:[611,0,1,""],mul:[611,0,1,""],mul_:[611,0,1,""],multinomial:[611,0,1,""],multiply:[611,0,1,""],multiply_:[611,0,1,""],mv:[611,0,1,""],mvlgamma:[611,0,1,""],mvlgamma_:[611,0,1,""],names:[578,1,1,""],nan_to_num:[611,0,1,""],nan_to_num_:[611,0,1,""],nanmedian:[611,0,1,""],nanquantile:[611,0,1,""],nansum:[611,0,1,""],narrow:[611,0,1,""],narrow_copy:[611,0,1,""],ndim:[611,1,1,""],ndimension:[611,0,1,""],ne:[611,0,1,""],ne_:[611,0,1,""],neg:[611,0,1,""],neg_:[611,0,1,""],negative:[611,0,1,""],negative_:[611,0,1,""],nelement:[611,0,1,""],new_empty:[611,0,1,""],new_full:[611,0,1,""],new_ones:[611,0,1,""],new_tensor:[611,0,1,""],new_zeros:[611,0,1,""],nextafter:[611,0,1,""],nextafter_:[611,0,1,""],nonzero:[611,0,1,""],norm:[611,0,1,""],normal_:[611,0,1,""],not_equal:[611,0,1,""],not_equal_:[611,0,1,""],numel:[611,0,1,""],numpy:[611,0,1,""],orgqr:[611,0,1,""],ormqr:[611,0,1,""],outer:[611,0,1,""],permute:[611,0,1,""],pin_memory:[611,0,1,""],pinverse:[611,0,1,""],polygamma:[611,0,1,""],polygamma_:[611,0,1,""],pow:[611,0,1,""],pow_:[611,0,1,""],prod:[611,0,1,""],put_:[611,0,1,""],q_per_channel_axis:[611,0,1,""],q_per_channel_scales:[611,0,1,""],q_per_channel_zero_points:[611,0,1,""],q_scale:[611,0,1,""],q_zero_point:[611,0,1,""],qr:[611,0,1,""],qscheme:[611,0,1,""],quantile:[611,0,1,""],rad2deg:[611,0,1,""],random_:[611,0,1,""],ravel:[611,0,1,""],real:[611,1,1,""],reciprocal:[611,0,1,""],reciprocal_:[611,0,1,""],record_stream:[611,0,1,""],refine_names:[578,0,1,""],register_hook:[2,0,1,""],remainder:[611,0,1,""],remainder_:[611,0,1,""],rename:[578,0,1,""],rename_:[578,0,1,""],renorm:[611,0,1,""],renorm_:[611,0,1,""],repeat:[611,0,1,""],repeat_interleave:[611,0,1,""],requires_grad:[2,1,1,""],requires_grad_:[611,0,1,""],reshape:[611,0,1,""],reshape_as:[611,0,1,""],resize_:[611,0,1,""],resize_as_:[611,0,1,""],retain_grad:[2,0,1,""],roll:[611,0,1,""],rot90:[611,0,1,""],round:[611,0,1,""],round_:[611,0,1,""],rsqrt:[611,0,1,""],rsqrt_:[611,0,1,""],scatter:[611,0,1,""],scatter_:[611,0,1,""],scatter_add:[611,0,1,""],scatter_add_:[611,0,1,""],select:[611,0,1,""],set_:[611,0,1,""],sgn:[611,0,1,""],sgn_:[611,0,1,""],share_memory_:[611,0,1,""],sigmoid:[611,0,1,""],sigmoid_:[611,0,1,""],sign:[611,0,1,""],sign_:[611,0,1,""],signbit:[611,0,1,""],sin:[611,0,1,""],sin_:[611,0,1,""],sinc:[611,0,1,""],sinc_:[611,0,1,""],sinh:[611,0,1,""],sinh_:[611,0,1,""],size:[611,0,1,""],slogdet:[611,0,1,""],solve:[611,0,1,""],sort:[611,0,1,""],sparse_dim:[606,0,1,""],sparse_mask:[606,0,1,""],sparse_resize_:[606,0,1,""],sparse_resize_and_clear_:[606,0,1,""],split:[611,0,1,""],sqrt:[611,0,1,""],sqrt_:[611,0,1,""],square:[611,0,1,""],square_:[611,0,1,""],squeeze:[611,0,1,""],squeeze_:[611,0,1,""],std:[611,0,1,""],stft:[611,0,1,""],storage:[611,0,1,""],storage_offset:[611,0,1,""],storage_type:[611,0,1,""],stride:[611,0,1,""],sub:[611,0,1,""],sub_:[611,0,1,""],subtract:[611,0,1,""],subtract_:[611,0,1,""],sum:[611,0,1,""],sum_to_size:[611,0,1,""],svd:[611,0,1,""],swapaxes:[611,0,1,""],swapdims:[611,0,1,""],symeig:[611,0,1,""],t:[611,0,1,""],t_:[611,0,1,""],take:[611,0,1,""],tan:[611,0,1,""],tan_:[611,0,1,""],tanh:[611,0,1,""],tanh_:[611,0,1,""],tensor_split:[611,0,1,""],tile:[611,0,1,""],to:[611,0,1,""],to_dense:[606,0,1,""],to_mkldnn:[611,0,1,""],to_sparse:[606,0,1,""],tolist:[611,0,1,""],topk:[611,0,1,""],trace:[611,0,1,""],transpose:[611,0,1,""],transpose_:[611,0,1,""],triangular_solve:[611,0,1,""],tril:[611,0,1,""],tril_:[611,0,1,""],triu:[611,0,1,""],triu_:[611,0,1,""],true_divide:[611,0,1,""],true_divide_:[611,0,1,""],trunc:[611,0,1,""],trunc_:[611,0,1,""],type:[611,0,1,""],type_as:[611,0,1,""],unbind:[611,0,1,""],unflatten:[578,0,1,""],unfold:[611,0,1,""],uniform_:[611,0,1,""],unique:[611,0,1,""],unique_consecutive:[611,0,1,""],unsqueeze:[611,0,1,""],unsqueeze_:[611,0,1,""],values:[606,0,1,""],vdot:[611,0,1,""],view:[611,0,1,""],view_as:[611,0,1,""],where:[611,0,1,""],xlogy:[611,0,1,""],xlogy_:[611,0,1,""],zero_:[611,0,1,""]},"torch.__config__":{parallel_info:[0,4,1,""],show:[0,4,1,""]},"torch.autograd":{Function:[2,2,1,""],backward:[2,4,1,""],detect_anomaly:[2,2,1,""],enable_grad:[2,2,1,""],grad:[2,4,1,""],gradcheck:[2,4,1,""],gradgradcheck:[2,4,1,""],no_grad:[2,2,1,""],set_detect_anomaly:[2,2,1,""],set_grad_enabled:[2,2,1,""]},"torch.autograd.Function":{backward:[2,0,1,""],forward:[2,0,1,""]},"torch.autograd.function":{_ContextMethodMixin:[2,2,1,""]},"torch.autograd.function._ContextMethodMixin":{mark_dirty:[2,0,1,""],mark_non_differentiable:[2,0,1,""],save_for_backward:[2,0,1,""],set_materialize_grads:[2,0,1,""]},"torch.autograd.functional":{hessian:[2,4,1,""],hvp:[2,4,1,""],jacobian:[2,4,1,""],jvp:[2,4,1,""],vhp:[2,4,1,""],vjp:[2,4,1,""]},"torch.autograd.profiler":{emit_nvtx:[2,2,1,""],load_nvprof:[2,4,1,""],profile:[2,2,1,""]},"torch.autograd.profiler.profile":{export_chrome_trace:[2,0,1,""],key_averages:[2,0,1,""],self_cpu_time_total:[2,0,1,""],table:[2,0,1,""],total_average:[2,0,1,""]},"torch.backends.cuda":{cufft_plan_cache:[3,1,1,""],is_built:[3,4,1,""],size:[3,1,1,""]},"torch.backends.cuda.matmul":{allow_tf32:[3,1,1,""]},"torch.backends.cudnn":{allow_tf32:[3,1,1,""],benchmark:[3,1,1,""],deterministic:[3,1,1,""],enabled:[3,1,1,""],is_available:[3,4,1,""],version:[3,4,1,""]},"torch.backends.mkl":{is_available:[3,4,1,""]},"torch.backends.mkldnn":{is_available:[3,4,1,""]},"torch.backends.openmp":{is_available:[3,4,1,""]},"torch.cuda":{Event:[13,2,1,""],Stream:[13,2,1,""],amp:[1,3,0,"-"],can_device_access_peer:[13,4,1,""],current_blas_handle:[13,4,1,""],current_device:[13,4,1,""],current_stream:[13,4,1,""],default_stream:[13,4,1,""],device:[13,2,1,""],device_count:[13,4,1,""],device_of:[13,2,1,""],empty_cache:[13,4,1,""],get_arch_list:[13,4,1,""],get_device_capability:[13,4,1,""],get_device_name:[13,4,1,""],get_device_properties:[13,4,1,""],get_gencode_flags:[13,4,1,""],get_rng_state:[13,4,1,""],get_rng_state_all:[13,4,1,""],init:[13,4,1,""],initial_seed:[13,4,1,""],ipc_collect:[13,4,1,""],is_available:[13,4,1,""],is_initialized:[13,4,1,""],list_gpu_processes:[13,4,1,""],manual_seed:[13,4,1,""],manual_seed_all:[13,4,1,""],max_memory_allocated:[13,4,1,""],max_memory_cached:[13,4,1,""],max_memory_reserved:[13,4,1,""],memory_allocated:[13,4,1,""],memory_cached:[13,4,1,""],memory_reserved:[13,4,1,""],memory_snapshot:[13,4,1,""],memory_stats:[13,4,1,""],memory_summary:[13,4,1,""],reset_max_memory_allocated:[13,4,1,""],reset_max_memory_cached:[13,4,1,""],seed:[13,4,1,""],seed_all:[13,4,1,""],set_device:[13,4,1,""],set_per_process_memory_fraction:[13,4,1,""],set_rng_state:[13,4,1,""],set_rng_state_all:[13,4,1,""],stream:[13,4,1,""],synchronize:[13,4,1,""]},"torch.cuda.Event":{elapsed_time:[13,0,1,""],from_ipc_handle:[13,0,1,""],ipc_handle:[13,0,1,""],query:[13,0,1,""],record:[13,0,1,""],synchronize:[13,0,1,""],wait:[13,0,1,""]},"torch.cuda.Stream":{query:[13,0,1,""],record_event:[13,0,1,""],synchronize:[13,0,1,""],wait_event:[13,0,1,""],wait_stream:[13,0,1,""]},"torch.cuda.amp":{GradScaler:[1,2,1,""],autocast:[1,2,1,""],custom_bwd:[1,4,1,""],custom_fwd:[1,4,1,""]},"torch.cuda.amp.GradScaler":{get_backoff_factor:[1,0,1,""],get_growth_factor:[1,0,1,""],get_growth_interval:[1,0,1,""],get_scale:[1,0,1,""],is_enabled:[1,0,1,""],load_state_dict:[1,0,1,""],scale:[1,0,1,""],set_backoff_factor:[1,0,1,""],set_growth_factor:[1,0,1,""],set_growth_interval:[1,0,1,""],state_dict:[1,0,1,""],step:[1,0,1,""],unscale_:[1,0,1,""],update:[1,0,1,""]},"torch.cuda.comm":{broadcast:[13,4,1,""],broadcast_coalesced:[13,4,1,""],gather:[13,4,1,""],reduce_add:[13,4,1,""],scatter:[13,4,1,""]},"torch.cuda.nvtx":{mark:[13,4,1,""],range_pop:[13,4,1,""],range_push:[13,4,1,""]},"torch.distributed":{Backend:[18,2,1,""],FileStore:[18,2,1,""],HashStore:[18,2,1,""],PrefixStore:[18,2,1,""],ReduceOp:[18,2,1,""],Store:[18,2,1,""],TCPStore:[18,2,1,""],all_gather:[18,4,1,""],all_gather_multigpu:[18,4,1,""],all_gather_object:[18,4,1,""],all_reduce:[18,4,1,""],all_reduce_multigpu:[18,4,1,""],all_to_all:[18,4,1,""],autograd:[603,3,0,"-"],barrier:[18,4,1,""],broadcast:[18,4,1,""],broadcast_multigpu:[18,4,1,""],broadcast_object_list:[18,4,1,""],gather:[18,4,1,""],gather_object:[18,4,1,""],get_backend:[18,4,1,""],get_rank:[18,4,1,""],get_world_size:[18,4,1,""],init_process_group:[18,4,1,""],irecv:[18,4,1,""],is_available:[18,4,1,""],is_initialized:[18,4,1,""],is_mpi_available:[18,4,1,""],is_nccl_available:[18,4,1,""],isend:[18,4,1,""],launch:[18,3,0,"-"],new_group:[18,4,1,""],optim:[603,3,0,"-"],recv:[18,4,1,""],reduce:[18,4,1,""],reduce_multigpu:[18,4,1,""],reduce_op:[18,2,1,""],reduce_scatter:[18,4,1,""],reduce_scatter_multigpu:[18,4,1,""],rpc:[603,3,0,"-"],scatter:[18,4,1,""],scatter_object_list:[18,4,1,""],send:[18,4,1,""]},"torch.distributed.Store":{add:[18,4,1,""],delete_key:[18,4,1,""],get:[18,4,1,""],num_keys:[18,4,1,""],set:[18,4,1,""],set_timeout:[18,4,1,""],wait:[18,4,1,""]},"torch.distributed.algorithms.ddp_comm_hooks":{default_hooks:[17,3,0,"-"]},"torch.distributed.algorithms.ddp_comm_hooks.default_hooks":{allreduce_hook:[17,4,1,""],fp16_compress_hook:[17,4,1,""]},"torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook":{PowerSGDState:[17,2,1,""],batched_powerSGD_hook:[17,4,1,""],powerSGD_hook:[17,4,1,""]},"torch.distributed.autograd":{backward:[603,4,1,""],context:[603,2,1,""],get_gradients:[603,4,1,""]},"torch.distributed.optim":{DistributedOptimizer:[603,2,1,""]},"torch.distributed.optim.DistributedOptimizer":{step:[603,0,1,""]},"torch.distributed.pipeline.sync":{Pipe:[598,2,1,""]},"torch.distributed.pipeline.sync.Pipe":{forward:[598,0,1,""]},"torch.distributed.pipeline.sync.skip.skippable":{pop:[598,2,1,""],skippable:[598,4,1,""],stash:[598,2,1,""],verify_skippables:[598,4,1,""]},"torch.distributed.rpc":{BackendType:[603,2,1,""],ProcessGroupRpcBackendOptions:[603,2,1,""],RRef:[603,2,1,""],RpcBackendOptions:[603,2,1,""],TensorPipeRpcBackendOptions:[603,2,1,""],WorkerInfo:[603,2,1,""],get_worker_info:[603,4,1,""],init_rpc:[603,4,1,""],remote:[603,4,1,""],rpc_async:[603,4,1,""],rpc_sync:[603,4,1,""],shutdown:[603,4,1,""]},"torch.distributed.rpc.ProcessGroupRpcBackendOptions":{init_method:[603,0,1,""],num_send_recv_threads:[603,0,1,""],rpc_timeout:[603,0,1,""]},"torch.distributed.rpc.RRef":{backward:[603,0,1,""],confirmed_by_owner:[603,0,1,""],is_owner:[603,0,1,""],local_value:[603,0,1,""],owner:[603,0,1,""],owner_name:[603,0,1,""],remote:[603,0,1,""],rpc_async:[603,0,1,""],rpc_sync:[603,0,1,""],to_here:[603,0,1,""]},"torch.distributed.rpc.RpcBackendOptions":{init_method:[603,0,1,""],rpc_timeout:[603,0,1,""]},"torch.distributed.rpc.TensorPipeRpcBackendOptions":{device_maps:[603,0,1,""],init_method:[603,0,1,""],num_worker_threads:[603,0,1,""],rpc_timeout:[603,0,1,""],set_device_map:[603,0,1,""]},"torch.distributed.rpc.WorkerInfo":{id:[603,0,1,""],name:[603,0,1,""]},"torch.distributed.rpc.functions":{async_execution:[603,4,1,""]},"torch.distributions":{constraint_registry:[19,3,0,"-"],constraints:[19,3,0,"-"],kl:[19,3,0,"-"],transforms:[19,3,0,"-"]},"torch.distributions.bernoulli":{Bernoulli:[19,2,1,""]},"torch.distributions.bernoulli.Bernoulli":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],enumerate_support:[19,0,1,""],expand:[19,0,1,""],has_enumerate_support:[19,1,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.beta":{Beta:[19,2,1,""]},"torch.distributions.beta.Beta":{arg_constraints:[19,1,1,""],concentration0:[19,0,1,""],concentration1:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.binomial":{Binomial:[19,2,1,""]},"torch.distributions.binomial.Binomial":{arg_constraints:[19,1,1,""],enumerate_support:[19,0,1,""],expand:[19,0,1,""],has_enumerate_support:[19,1,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],sample:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.categorical":{Categorical:[19,2,1,""]},"torch.distributions.categorical.Categorical":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],enumerate_support:[19,0,1,""],expand:[19,0,1,""],has_enumerate_support:[19,1,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],sample:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.cauchy":{Cauchy:[19,2,1,""]},"torch.distributions.cauchy.Cauchy":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.chi2":{Chi2:[19,2,1,""]},"torch.distributions.chi2.Chi2":{arg_constraints:[19,1,1,""],df:[19,0,1,""],expand:[19,0,1,""]},"torch.distributions.constraint_registry":{ConstraintRegistry:[19,2,1,""]},"torch.distributions.constraint_registry.ConstraintRegistry":{register:[19,0,1,""]},"torch.distributions.constraints":{Constraint:[19,2,1,""],cat:[19,1,1,""],dependent_property:[19,1,1,""],greater_than:[19,1,1,""],greater_than_eq:[19,1,1,""],half_open_interval:[19,1,1,""],independent:[19,1,1,""],integer_interval:[19,1,1,""],interval:[19,1,1,""],less_than:[19,1,1,""],multinomial:[19,1,1,""],stack:[19,1,1,""]},"torch.distributions.constraints.Constraint":{check:[19,0,1,""]},"torch.distributions.continuous_bernoulli":{ContinuousBernoulli:[19,2,1,""]},"torch.distributions.continuous_bernoulli.ContinuousBernoulli":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],rsample:[19,0,1,""],sample:[19,0,1,""],stddev:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.dirichlet":{Dirichlet:[19,2,1,""]},"torch.distributions.dirichlet.Dirichlet":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.distribution":{Distribution:[19,2,1,""]},"torch.distributions.distribution.Distribution":{arg_constraints:[19,0,1,""],batch_shape:[19,0,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],enumerate_support:[19,0,1,""],event_shape:[19,0,1,""],expand:[19,0,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],perplexity:[19,0,1,""],rsample:[19,0,1,""],sample:[19,0,1,""],sample_n:[19,0,1,""],set_default_validate_args:[19,0,1,""],stddev:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.exp_family":{ExponentialFamily:[19,2,1,""]},"torch.distributions.exp_family.ExponentialFamily":{entropy:[19,0,1,""]},"torch.distributions.exponential":{Exponential:[19,2,1,""]},"torch.distributions.exponential.Exponential":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],stddev:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.fishersnedecor":{FisherSnedecor:[19,2,1,""]},"torch.distributions.fishersnedecor.FisherSnedecor":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.gamma":{Gamma:[19,2,1,""]},"torch.distributions.gamma.Gamma":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.geometric":{Geometric:[19,2,1,""]},"torch.distributions.geometric.Geometric":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],probs:[19,1,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.gumbel":{Gumbel:[19,2,1,""]},"torch.distributions.gumbel.Gumbel":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],stddev:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.half_cauchy":{HalfCauchy:[19,2,1,""]},"torch.distributions.half_cauchy.HalfCauchy":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],scale:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.half_normal":{HalfNormal:[19,2,1,""]},"torch.distributions.half_normal.HalfNormal":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],scale:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.independent":{Independent:[19,2,1,""]},"torch.distributions.independent.Independent":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],enumerate_support:[19,0,1,""],expand:[19,0,1,""],has_enumerate_support:[19,0,1,""],has_rsample:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],sample:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.kl":{kl_divergence:[19,4,1,""],register_kl:[19,4,1,""]},"torch.distributions.kumaraswamy":{Kumaraswamy:[19,2,1,""]},"torch.distributions.kumaraswamy.Kumaraswamy":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],mean:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.laplace":{Laplace:[19,2,1,""]},"torch.distributions.laplace.Laplace":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],stddev:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.lkj_cholesky":{LKJCholesky:[19,2,1,""]},"torch.distributions.lkj_cholesky.LKJCholesky":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],sample:[19,0,1,""],support:[19,1,1,""]},"torch.distributions.log_normal":{LogNormal:[19,2,1,""]},"torch.distributions.log_normal.LogNormal":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],loc:[19,0,1,""],mean:[19,0,1,""],scale:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.lowrank_multivariate_normal":{LowRankMultivariateNormal:[19,2,1,""]},"torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal":{arg_constraints:[19,1,1,""],covariance_matrix:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],precision_matrix:[19,1,1,""],rsample:[19,0,1,""],scale_tril:[19,1,1,""],support:[19,1,1,""],variance:[19,1,1,""]},"torch.distributions.mixture_same_family":{MixtureSameFamily:[19,2,1,""]},"torch.distributions.mixture_same_family.MixtureSameFamily":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],component_distribution:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],mixture_distribution:[19,0,1,""],sample:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.multinomial":{Multinomial:[19,2,1,""]},"torch.distributions.multinomial.Multinomial":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],logits:[19,0,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,0,1,""],sample:[19,0,1,""],support:[19,0,1,""],total_count:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.multivariate_normal":{MultivariateNormal:[19,2,1,""]},"torch.distributions.multivariate_normal.MultivariateNormal":{arg_constraints:[19,1,1,""],covariance_matrix:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],precision_matrix:[19,1,1,""],rsample:[19,0,1,""],scale_tril:[19,1,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.negative_binomial":{NegativeBinomial:[19,2,1,""]},"torch.distributions.negative_binomial.NegativeBinomial":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.normal":{Normal:[19,2,1,""]},"torch.distributions.normal.Normal":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],sample:[19,0,1,""],stddev:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.one_hot_categorical":{OneHotCategorical:[19,2,1,""]},"torch.distributions.one_hot_categorical.OneHotCategorical":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],enumerate_support:[19,0,1,""],expand:[19,0,1,""],has_enumerate_support:[19,1,1,""],log_prob:[19,0,1,""],logits:[19,0,1,""],mean:[19,0,1,""],param_shape:[19,0,1,""],probs:[19,0,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.pareto":{Pareto:[19,2,1,""]},"torch.distributions.pareto.Pareto":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],mean:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.poisson":{Poisson:[19,2,1,""]},"torch.distributions.poisson.Poisson":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.relaxed_bernoulli":{LogitRelaxedBernoulli:[19,2,1,""],RelaxedBernoulli:[19,2,1,""]},"torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],log_prob:[19,0,1,""],logits:[19,1,1,""],param_shape:[19,0,1,""],probs:[19,1,1,""],rsample:[19,0,1,""],support:[19,1,1,""]},"torch.distributions.relaxed_bernoulli.RelaxedBernoulli":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],logits:[19,0,1,""],probs:[19,0,1,""],support:[19,1,1,""],temperature:[19,0,1,""]},"torch.distributions.relaxed_categorical":{RelaxedOneHotCategorical:[19,2,1,""]},"torch.distributions.relaxed_categorical.RelaxedOneHotCategorical":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],logits:[19,0,1,""],probs:[19,0,1,""],support:[19,1,1,""],temperature:[19,0,1,""]},"torch.distributions.studentT":{StudentT:[19,2,1,""]},"torch.distributions.studentT.StudentT":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.distributions.transformed_distribution":{TransformedDistribution:[19,2,1,""]},"torch.distributions.transformed_distribution.TransformedDistribution":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,0,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],rsample:[19,0,1,""],sample:[19,0,1,""],support:[19,0,1,""]},"torch.distributions.transforms":{AbsTransform:[19,2,1,""],AffineTransform:[19,2,1,""],ComposeTransform:[19,2,1,""],CorrCholeskyTransform:[19,2,1,""],ExpTransform:[19,2,1,""],IndependentTransform:[19,2,1,""],LowerCholeskyTransform:[19,2,1,""],PowerTransform:[19,2,1,""],ReshapeTransform:[19,2,1,""],SigmoidTransform:[19,2,1,""],SoftmaxTransform:[19,2,1,""],StackTransform:[19,2,1,""],StickBreakingTransform:[19,2,1,""],TanhTransform:[19,2,1,""],Transform:[19,2,1,""]},"torch.distributions.transforms.Transform":{forward_shape:[19,0,1,""],inv:[19,0,1,""],inverse_shape:[19,0,1,""],log_abs_det_jacobian:[19,0,1,""],sign:[19,0,1,""]},"torch.distributions.uniform":{Uniform:[19,2,1,""]},"torch.distributions.uniform.Uniform":{arg_constraints:[19,1,1,""],cdf:[19,0,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],icdf:[19,0,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],rsample:[19,0,1,""],stddev:[19,0,1,""],support:[19,0,1,""],variance:[19,0,1,""]},"torch.distributions.von_mises":{VonMises:[19,2,1,""]},"torch.distributions.von_mises.VonMises":{arg_constraints:[19,1,1,""],expand:[19,0,1,""],has_rsample:[19,1,1,""],log_prob:[19,0,1,""],mean:[19,0,1,""],sample:[19,0,1,""],support:[19,1,1,""],variance:[19,1,1,""]},"torch.distributions.weibull":{Weibull:[19,2,1,""]},"torch.distributions.weibull.Weibull":{arg_constraints:[19,1,1,""],entropy:[19,0,1,""],expand:[19,0,1,""],mean:[19,0,1,""],support:[19,1,1,""],variance:[19,0,1,""]},"torch.fft":{fft2:[21,4,1,""],fft:[21,4,1,""],fftfreq:[21,4,1,""],fftn:[21,4,1,""],fftshift:[21,4,1,""],hfft:[21,4,1,""],ifft2:[21,4,1,""],ifft:[21,4,1,""],ifftn:[21,4,1,""],ifftshift:[21,4,1,""],ihfft:[21,4,1,""],irfft2:[21,4,1,""],irfft:[21,4,1,""],irfftn:[21,4,1,""],rfft2:[21,4,1,""],rfft:[21,4,1,""],rfftfreq:[21,4,1,""],rfftn:[21,4,1,""]},"torch.futures":{Future:[22,2,1,""],collect_all:[22,4,1,""],wait_all:[22,4,1,""]},"torch.futures.Future":{add_done_callback:[22,0,1,""],done:[22,0,1,""],set_exception:[22,0,1,""],set_result:[22,0,1,""],then:[22,0,1,""],value:[22,0,1,""],wait:[22,0,1,""]},"torch.fx":{Graph:[23,2,1,""],GraphModule:[23,2,1,""],Interpreter:[23,2,1,""],Node:[23,2,1,""],Proxy:[23,2,1,""],Tracer:[23,2,1,""],Transformer:[23,2,1,""],replace_pattern:[23,4,1,""],symbolic_trace:[23,4,1,""],wrap:[23,4,1,""]},"torch.fx.Graph":{__init__:[23,0,1,""],call_function:[23,0,1,""],call_method:[23,0,1,""],call_module:[23,0,1,""],create_node:[23,0,1,""],erase_node:[23,0,1,""],get_attr:[23,0,1,""],graph_copy:[23,0,1,""],inserting_after:[23,0,1,""],inserting_before:[23,0,1,""],lint:[23,0,1,""],node_copy:[23,0,1,""],nodes:[23,0,1,""],output:[23,0,1,""],placeholder:[23,0,1,""],print_tabular:[23,0,1,""],python_code:[23,0,1,""]},"torch.fx.GraphModule":{__init__:[23,0,1,""],code:[23,0,1,""],graph:[23,0,1,""],recompile:[23,0,1,""],to_folder:[23,0,1,""]},"torch.fx.Interpreter":{call_function:[23,0,1,""],call_method:[23,0,1,""],call_module:[23,0,1,""],fetch_args_kwargs_from_env:[23,0,1,""],fetch_attr:[23,0,1,""],get_attr:[23,0,1,""],map_nodes_to_values:[23,0,1,""],output:[23,0,1,""],placeholder:[23,0,1,""],run:[23,0,1,""],run_node:[23,0,1,""]},"torch.fx.Node":{all_input_nodes:[23,0,1,""],append:[23,0,1,""],args:[23,0,1,""],kwargs:[23,0,1,""],next:[23,0,1,""],prepend:[23,0,1,""],prev:[23,0,1,""],replace_all_uses_with:[23,0,1,""]},"torch.fx.Tracer":{call_module:[23,0,1,""],create_arg:[23,0,1,""],create_args_for_root:[23,0,1,""],is_leaf_module:[23,0,1,""],path_of_module:[23,0,1,""],trace:[23,0,1,""]},"torch.fx.Transformer":{get_attr:[23,0,1,""],placeholder:[23,0,1,""],transform:[23,0,1,""]},"torch.hub":{download_url_to_file:[566,4,1,""],get_dir:[566,4,1,""],help:[566,4,1,""],list:[566,4,1,""],load:[566,4,1,""],load_state_dict_from_url:[566,4,1,""],set_dir:[566,4,1,""]},"torch.jit":{"export":[568,4,1,""],ScriptFunction:[191,2,1,""],ScriptModule:[192,2,1,""],fork:[193,4,1,""],freeze:[194,4,1,""],ignore:[195,4,1,""],is_scripting:[570,4,1,""],isinstance:[196,4,1,""],load:[197,4,1,""],save:[198,4,1,""],script:[199,4,1,""],script_if_tracing:[200,4,1,""],supported_ops:[569,3,0,"-"],trace:[201,4,1,""],trace_module:[202,4,1,""],unsupported_tensor_ops:[572,3,0,"-"],unused:[203,4,1,""],wait:[204,4,1,""]},"torch.jit.ScriptFunction":{get_debug_state:[191,0,1,""],save:[191,0,1,""],save_to_buffer:[191,0,1,""]},"torch.jit.ScriptModule":{"double":[192,0,1,""],"float":[192,0,1,""],add_module:[192,0,1,""],apply:[192,0,1,""],bfloat16:[192,0,1,""],buffers:[192,0,1,""],children:[192,0,1,""],code:[192,0,1,""],code_with_constants:[192,0,1,""],cpu:[192,0,1,""],cuda:[192,0,1,""],eval:[192,0,1,""],extra_repr:[192,0,1,""],graph:[192,0,1,""],half:[192,0,1,""],inlined_graph:[192,0,1,""],load_state_dict:[192,0,1,""],modules:[192,0,1,""],named_buffers:[192,0,1,""],named_children:[192,0,1,""],named_modules:[192,0,1,""],named_parameters:[192,0,1,""],parameters:[192,0,1,""],register_backward_hook:[192,0,1,""],register_buffer:[192,0,1,""],register_forward_hook:[192,0,1,""],register_forward_pre_hook:[192,0,1,""],register_full_backward_hook:[192,0,1,""],register_parameter:[192,0,1,""],requires_grad_:[192,0,1,""],save:[192,0,1,""],state_dict:[192,0,1,""],to:[192,0,1,""],train:[192,0,1,""],type:[192,0,1,""],xpu:[192,0,1,""],zero_grad:[192,0,1,""]},"torch.linalg":{cholesky:[573,4,1,""],cond:[573,4,1,""],det:[573,4,1,""],eigh:[573,4,1,""],eigvalsh:[573,4,1,""],inv:[573,4,1,""],matrix_rank:[573,4,1,""],norm:[573,4,1,""],pinv:[573,4,1,""],qr:[573,4,1,""],slogdet:[573,4,1,""],solve:[573,4,1,""],svd:[573,4,1,""],tensorinv:[573,4,1,""],tensorsolve:[573,4,1,""]},"torch.multiprocessing":{SpawnContext:[576,2,1,""],get_all_sharing_strategies:[576,4,1,""],get_sharing_strategy:[576,4,1,""],set_sharing_strategy:[576,4,1,""],spawn:[576,4,1,""]},"torch.multiprocessing.SpawnContext":{join:[576,0,1,""]},"torch.nn":{AdaptiveAvgPool1d:[270,2,1,""],AdaptiveAvgPool2d:[271,2,1,""],AdaptiveAvgPool3d:[272,2,1,""],AdaptiveLogSoftmaxWithLoss:[273,2,1,""],AdaptiveMaxPool1d:[274,2,1,""],AdaptiveMaxPool2d:[275,2,1,""],AdaptiveMaxPool3d:[276,2,1,""],AlphaDropout:[277,2,1,""],AvgPool1d:[278,2,1,""],AvgPool2d:[279,2,1,""],AvgPool3d:[280,2,1,""],BCELoss:[281,2,1,""],BCEWithLogitsLoss:[282,2,1,""],BatchNorm1d:[283,2,1,""],BatchNorm2d:[284,2,1,""],BatchNorm3d:[285,2,1,""],Bilinear:[286,2,1,""],CELU:[287,2,1,""],CTCLoss:[288,2,1,""],ChannelShuffle:[289,2,1,""],ConstantPad1d:[290,2,1,""],ConstantPad2d:[291,2,1,""],ConstantPad3d:[292,2,1,""],Conv1d:[293,2,1,""],Conv2d:[294,2,1,""],Conv3d:[295,2,1,""],ConvTranspose1d:[296,2,1,""],ConvTranspose2d:[297,2,1,""],ConvTranspose3d:[298,2,1,""],CosineEmbeddingLoss:[299,2,1,""],CosineSimilarity:[300,2,1,""],CrossEntropyLoss:[301,2,1,""],DataParallel:[302,2,1,""],Dropout2d:[304,2,1,""],Dropout3d:[305,2,1,""],Dropout:[303,2,1,""],ELU:[306,2,1,""],Embedding:[307,2,1,""],EmbeddingBag:[308,2,1,""],Flatten:[309,2,1,""],Fold:[310,2,1,""],FractionalMaxPool2d:[311,2,1,""],GELU:[312,2,1,""],GRU:[313,2,1,""],GRUCell:[314,2,1,""],GaussianNLLLoss:[315,2,1,""],GroupNorm:[316,2,1,""],Hardshrink:[317,2,1,""],Hardsigmoid:[318,2,1,""],Hardswish:[319,2,1,""],Hardtanh:[320,2,1,""],HingeEmbeddingLoss:[321,2,1,""],Identity:[322,2,1,""],InstanceNorm1d:[323,2,1,""],InstanceNorm2d:[324,2,1,""],InstanceNorm3d:[325,2,1,""],KLDivLoss:[326,2,1,""],L1Loss:[327,2,1,""],LPPool1d:[328,2,1,""],LPPool2d:[329,2,1,""],LSTM:[330,2,1,""],LSTMCell:[331,2,1,""],LayerNorm:[332,2,1,""],LazyConv1d:[333,2,1,""],LazyConv2d:[334,2,1,""],LazyConv3d:[335,2,1,""],LazyConvTranspose1d:[336,2,1,""],LazyConvTranspose2d:[337,2,1,""],LazyConvTranspose3d:[338,2,1,""],LazyLinear:[339,2,1,""],LeakyReLU:[340,2,1,""],Linear:[341,2,1,""],LocalResponseNorm:[342,2,1,""],LogSigmoid:[343,2,1,""],LogSoftmax:[344,2,1,""],MSELoss:[345,2,1,""],MarginRankingLoss:[346,2,1,""],MaxPool1d:[347,2,1,""],MaxPool2d:[348,2,1,""],MaxPool3d:[349,2,1,""],MaxUnpool1d:[350,2,1,""],MaxUnpool2d:[351,2,1,""],MaxUnpool3d:[352,2,1,""],Module:[353,2,1,""],ModuleDict:[354,2,1,""],ModuleList:[355,2,1,""],MultiLabelMarginLoss:[356,2,1,""],MultiLabelSoftMarginLoss:[357,2,1,""],MultiMarginLoss:[358,2,1,""],MultiheadAttention:[359,2,1,""],NLLLoss:[360,2,1,""],PReLU:[361,2,1,""],PairwiseDistance:[362,2,1,""],ParameterDict:[363,2,1,""],ParameterList:[364,2,1,""],PixelShuffle:[365,2,1,""],PixelUnshuffle:[366,2,1,""],PoissonNLLLoss:[367,2,1,""],RNN:[368,2,1,""],RNNBase:[369,2,1,""],RNNCell:[370,2,1,""],RReLU:[371,2,1,""],ReLU6:[373,2,1,""],ReLU:[372,2,1,""],ReflectionPad1d:[374,2,1,""],ReflectionPad2d:[375,2,1,""],ReplicationPad1d:[376,2,1,""],ReplicationPad2d:[377,2,1,""],ReplicationPad3d:[378,2,1,""],SELU:[379,2,1,""],Sequential:[380,2,1,""],SiLU:[381,2,1,""],Sigmoid:[382,2,1,""],SmoothL1Loss:[383,2,1,""],SoftMarginLoss:[384,2,1,""],Softmax2d:[386,2,1,""],Softmax:[385,2,1,""],Softmin:[387,2,1,""],Softplus:[388,2,1,""],Softshrink:[389,2,1,""],Softsign:[390,2,1,""],SyncBatchNorm:[391,2,1,""],Tanh:[392,2,1,""],Tanhshrink:[393,2,1,""],Threshold:[394,2,1,""],Transformer:[395,2,1,""],TransformerDecoder:[396,2,1,""],TransformerDecoderLayer:[397,2,1,""],TransformerEncoder:[398,2,1,""],TransformerEncoderLayer:[399,2,1,""],TripletMarginLoss:[400,2,1,""],TripletMarginWithDistanceLoss:[401,2,1,""],Unflatten:[402,2,1,""],Unfold:[403,2,1,""],Upsample:[404,2,1,""],UpsamplingBilinear2d:[405,2,1,""],UpsamplingNearest2d:[406,2,1,""],ZeroPad2d:[407,2,1,""],intrinsic:[613,3,0,"-"],qat:[616,3,0,"-"],quantized:[617,3,0,"-"]},"torch.nn.AdaptiveLogSoftmaxWithLoss":{log_prob:[273,0,1,""],predict:[273,0,1,""]},"torch.nn.Embedding":{from_pretrained:[307,0,1,""]},"torch.nn.EmbeddingBag":{from_pretrained:[308,0,1,""]},"torch.nn.Flatten":{"double":[309,0,1,""],"float":[309,0,1,""],add_module:[309,0,1,""],apply:[309,0,1,""],bfloat16:[309,0,1,""],buffers:[309,0,1,""],children:[309,0,1,""],cpu:[309,0,1,""],cuda:[309,0,1,""],eval:[309,0,1,""],half:[309,0,1,""],load_state_dict:[309,0,1,""],modules:[309,0,1,""],named_buffers:[309,0,1,""],named_children:[309,0,1,""],named_modules:[309,0,1,""],named_parameters:[309,0,1,""],parameters:[309,0,1,""],register_backward_hook:[309,0,1,""],register_buffer:[309,0,1,""],register_forward_hook:[309,0,1,""],register_forward_pre_hook:[309,0,1,""],register_full_backward_hook:[309,0,1,""],register_parameter:[309,0,1,""],requires_grad_:[309,0,1,""],state_dict:[309,0,1,""],to:[309,0,1,""],train:[309,0,1,""],type:[309,0,1,""],xpu:[309,0,1,""],zero_grad:[309,0,1,""]},"torch.nn.LazyConv1d":{cls_to_become:[333,1,1,""]},"torch.nn.LazyConv2d":{cls_to_become:[334,1,1,""]},"torch.nn.LazyConv3d":{cls_to_become:[335,1,1,""]},"torch.nn.LazyConvTranspose1d":{cls_to_become:[336,1,1,""]},"torch.nn.LazyConvTranspose2d":{cls_to_become:[337,1,1,""]},"torch.nn.LazyConvTranspose3d":{cls_to_become:[338,1,1,""]},"torch.nn.LazyLinear":{cls_to_become:[339,1,1,""]},"torch.nn.Module":{"double":[353,0,1,""],"float":[353,0,1,""],add_module:[353,0,1,""],apply:[353,0,1,""],bfloat16:[353,0,1,""],buffers:[353,0,1,""],children:[353,0,1,""],cpu:[353,0,1,""],cuda:[353,0,1,""],dump_patches:[353,1,1,""],eval:[353,0,1,""],extra_repr:[353,0,1,""],forward:[353,0,1,""],half:[353,0,1,""],load_state_dict:[353,0,1,""],modules:[353,0,1,""],named_buffers:[353,0,1,""],named_children:[353,0,1,""],named_modules:[353,0,1,""],named_parameters:[353,0,1,""],parameters:[353,0,1,""],register_backward_hook:[353,0,1,""],register_buffer:[353,0,1,""],register_forward_hook:[353,0,1,""],register_forward_pre_hook:[353,0,1,""],register_full_backward_hook:[353,0,1,""],register_parameter:[353,0,1,""],requires_grad_:[353,0,1,""],state_dict:[353,0,1,""],to:[353,0,1,""],train:[353,0,1,""],type:[353,0,1,""],xpu:[353,0,1,""],zero_grad:[353,0,1,""]},"torch.nn.ModuleDict":{clear:[354,0,1,""],items:[354,0,1,""],keys:[354,0,1,""],pop:[354,0,1,""],update:[354,0,1,""],values:[354,0,1,""]},"torch.nn.ModuleList":{append:[355,0,1,""],extend:[355,0,1,""],insert:[355,0,1,""]},"torch.nn.MultiheadAttention":{forward:[359,0,1,""]},"torch.nn.ParameterDict":{clear:[363,0,1,""],items:[363,0,1,""],keys:[363,0,1,""],pop:[363,0,1,""],update:[363,0,1,""],values:[363,0,1,""]},"torch.nn.ParameterList":{append:[364,0,1,""],extend:[364,0,1,""]},"torch.nn.RNNBase":{flatten_parameters:[369,0,1,""]},"torch.nn.SyncBatchNorm":{convert_sync_batchnorm:[391,0,1,""]},"torch.nn.Transformer":{forward:[395,0,1,""],generate_square_subsequent_mask:[395,0,1,""]},"torch.nn.TransformerDecoder":{forward:[396,0,1,""]},"torch.nn.TransformerDecoderLayer":{forward:[397,0,1,""]},"torch.nn.TransformerEncoder":{forward:[398,0,1,""]},"torch.nn.TransformerEncoderLayer":{forward:[399,0,1,""]},"torch.nn.Unflatten":{"double":[402,0,1,""],"float":[402,0,1,""],add_module:[402,0,1,""],apply:[402,0,1,""],bfloat16:[402,0,1,""],buffers:[402,0,1,""],children:[402,0,1,""],cpu:[402,0,1,""],cuda:[402,0,1,""],eval:[402,0,1,""],half:[402,0,1,""],load_state_dict:[402,0,1,""],modules:[402,0,1,""],named_buffers:[402,0,1,""],named_children:[402,0,1,""],named_modules:[402,0,1,""],named_parameters:[402,0,1,""],parameters:[402,0,1,""],register_backward_hook:[402,0,1,""],register_buffer:[402,0,1,""],register_forward_hook:[402,0,1,""],register_forward_pre_hook:[402,0,1,""],register_full_backward_hook:[402,0,1,""],register_parameter:[402,0,1,""],requires_grad_:[402,0,1,""],state_dict:[402,0,1,""],to:[402,0,1,""],train:[402,0,1,""],type:[402,0,1,""],xpu:[402,0,1,""],zero_grad:[402,0,1,""]},"torch.nn.functional":{adaptive_avg_pool1d:[580,4,1,""],adaptive_avg_pool2d:[580,4,1,""],adaptive_avg_pool3d:[580,4,1,""],adaptive_max_pool1d:[580,4,1,""],adaptive_max_pool2d:[580,4,1,""],adaptive_max_pool3d:[580,4,1,""],affine_grid:[580,4,1,""],alpha_dropout:[580,4,1,""],avg_pool1d:[580,4,1,""],avg_pool2d:[580,4,1,""],avg_pool3d:[580,4,1,""],batch_norm:[580,4,1,""],bilinear:[580,4,1,""],binary_cross_entropy:[580,4,1,""],binary_cross_entropy_with_logits:[580,4,1,""],celu:[580,4,1,""],conv1d:[580,4,1,""],conv2d:[580,4,1,""],conv3d:[580,4,1,""],conv_transpose1d:[580,4,1,""],conv_transpose2d:[580,4,1,""],conv_transpose3d:[580,4,1,""],cosine_embedding_loss:[580,4,1,""],cosine_similarity:[580,4,1,""],cross_entropy:[580,4,1,""],ctc_loss:[580,4,1,""],dropout2d:[580,4,1,""],dropout3d:[580,4,1,""],dropout:[580,4,1,""],elu:[580,4,1,""],elu_:[580,4,1,""],embedding:[580,4,1,""],embedding_bag:[580,4,1,""],feature_alpha_dropout:[580,4,1,""],fold:[580,4,1,""],gelu:[580,4,1,""],glu:[580,4,1,""],grid_sample:[580,4,1,""],gumbel_softmax:[580,4,1,""],hardshrink:[580,4,1,""],hardsigmoid:[580,4,1,""],hardswish:[580,4,1,""],hardtanh:[580,4,1,""],hardtanh_:[580,4,1,""],hinge_embedding_loss:[580,4,1,""],instance_norm:[580,4,1,""],interpolate:[580,4,1,""],kl_div:[580,4,1,""],l1_loss:[580,4,1,""],layer_norm:[580,4,1,""],leaky_relu:[580,4,1,""],leaky_relu_:[580,4,1,""],linear:[580,4,1,""],local_response_norm:[580,4,1,""],log_softmax:[580,4,1,""],logsigmoid:[580,4,1,""],lp_pool1d:[580,4,1,""],lp_pool2d:[580,4,1,""],margin_ranking_loss:[580,4,1,""],max_pool1d:[580,4,1,""],max_pool2d:[580,4,1,""],max_pool3d:[580,4,1,""],max_unpool1d:[580,4,1,""],max_unpool2d:[580,4,1,""],max_unpool3d:[580,4,1,""],mse_loss:[580,4,1,""],multi_margin_loss:[580,4,1,""],multilabel_margin_loss:[580,4,1,""],multilabel_soft_margin_loss:[580,4,1,""],nll_loss:[580,4,1,""],normalize:[580,4,1,""],one_hot:[580,4,1,""],pad:[580,4,1,""],pairwise_distance:[580,4,1,""],pdist:[580,4,1,""],pixel_shuffle:[580,4,1,""],pixel_unshuffle:[580,4,1,""],poisson_nll_loss:[580,4,1,""],prelu:[580,4,1,""],relu6:[580,4,1,""],relu:[580,4,1,""],relu_:[580,4,1,""],rrelu:[580,4,1,""],rrelu_:[580,4,1,""],selu:[580,4,1,""],sigmoid:[580,4,1,""],silu:[580,4,1,""],smooth_l1_loss:[580,4,1,""],soft_margin_loss:[580,4,1,""],softmax:[580,4,1,""],softmin:[580,4,1,""],softplus:[580,4,1,""],softshrink:[580,4,1,""],softsign:[580,4,1,""],tanh:[580,4,1,""],tanhshrink:[580,4,1,""],threshold:[580,4,1,""],threshold_:[580,4,1,""],triplet_margin_loss:[580,4,1,""],triplet_margin_with_distance_loss:[580,4,1,""],unfold:[580,4,1,""],upsample:[580,4,1,""],upsample_bilinear:[580,4,1,""],upsample_nearest:[580,4,1,""]},"torch.nn.init":{calculate_gain:[581,4,1,""],constant_:[581,4,1,""],dirac_:[581,4,1,""],eye_:[581,4,1,""],kaiming_normal_:[581,4,1,""],kaiming_uniform_:[581,4,1,""],normal_:[581,4,1,""],ones_:[581,4,1,""],orthogonal_:[581,4,1,""],sparse_:[581,4,1,""],uniform_:[581,4,1,""],xavier_normal_:[581,4,1,""],xavier_uniform_:[581,4,1,""],zeros_:[581,4,1,""]},"torch.nn.intrinsic":{ConvBn1d:[613,2,1,""],ConvBn2d:[613,2,1,""],ConvBnReLU1d:[613,2,1,""],ConvBnReLU2d:[613,2,1,""],ConvReLU1d:[613,2,1,""],ConvReLU2d:[613,2,1,""],qat:[614,3,0,"-"],quantized:[615,3,0,"-"]},"torch.nn.intrinsic.qat":{ConvBn2d:[614,2,1,""],ConvBnReLU2d:[614,2,1,""],ConvReLU2d:[614,2,1,""],LinearReLU:[614,2,1,""]},"torch.nn.intrinsic.quantized":{ConvReLU2d:[615,2,1,""],ConvReLU3d:[615,2,1,""],LinearReLU:[615,2,1,""]},"torch.nn.modules.lazy":{LazyModuleMixin:[408,2,1,""]},"torch.nn.modules.lazy.LazyModuleMixin":{has_uninitialized_params:[408,0,1,""],initialize_parameters:[408,0,1,""]},"torch.nn.modules.module":{register_module_backward_hook:[409,4,1,""],register_module_forward_hook:[410,4,1,""],register_module_forward_pre_hook:[411,4,1,""]},"torch.nn.parallel":{DistributedDataParallel:[412,2,1,""],data_parallel:[580,4,1,""]},"torch.nn.parallel.DistributedDataParallel":{join:[412,0,1,""],no_sync:[412,0,1,""],register_comm_hook:[412,0,1,""]},"torch.nn.parameter":{Parameter:[413,2,1,""],UninitializedParameter:[414,2,1,""]},"torch.nn.parameter.UninitializedParameter":{materialize:[414,0,1,""]},"torch.nn.qat":{Conv2d:[616,2,1,""],Linear:[616,2,1,""]},"torch.nn.qat.Conv2d":{from_float:[616,0,1,""]},"torch.nn.qat.Linear":{from_float:[616,0,1,""]},"torch.nn.quantized":{BatchNorm2d:[617,2,1,""],BatchNorm3d:[617,2,1,""],Conv1d:[617,2,1,""],Conv2d:[617,2,1,""],Conv3d:[617,2,1,""],DeQuantize:[617,2,1,""],ELU:[617,2,1,""],Embedding:[617,2,1,""],EmbeddingBag:[617,2,1,""],FloatFunctional:[617,2,1,""],GroupNorm:[617,2,1,""],Hardswish:[617,2,1,""],InstanceNorm1d:[617,2,1,""],InstanceNorm2d:[617,2,1,""],InstanceNorm3d:[617,2,1,""],LayerNorm:[617,2,1,""],Linear:[617,2,1,""],QFunctional:[617,2,1,""],Quantize:[617,2,1,""],ReLU6:[617,2,1,""],dynamic:[618,3,0,"-"],functional:[617,3,0,"-"]},"torch.nn.quantized.Conv1d":{from_float:[617,0,1,""]},"torch.nn.quantized.Conv2d":{from_float:[617,0,1,""]},"torch.nn.quantized.Conv3d":{from_float:[617,0,1,""]},"torch.nn.quantized.Embedding":{from_float:[617,0,1,""]},"torch.nn.quantized.EmbeddingBag":{from_float:[617,0,1,""]},"torch.nn.quantized.Linear":{from_float:[617,0,1,""]},"torch.nn.quantized.dynamic":{GRUCell:[618,2,1,""],LSTM:[618,2,1,""],LSTMCell:[618,2,1,""],Linear:[618,2,1,""],RNNCell:[618,2,1,""]},"torch.nn.quantized.dynamic.Linear":{from_float:[618,0,1,""]},"torch.nn.quantized.functional":{adaptive_avg_pool2d:[617,4,1,""],avg_pool2d:[617,4,1,""],conv1d:[617,4,1,""],conv2d:[617,4,1,""],conv3d:[617,4,1,""],hardswish:[617,4,1,""],interpolate:[617,4,1,""],linear:[617,4,1,""],max_pool2d:[617,4,1,""],upsample:[617,4,1,""],upsample_bilinear:[617,4,1,""],upsample_nearest:[617,4,1,""]},"torch.nn.utils":{clip_grad_norm_:[415,4,1,""],clip_grad_value_:[416,4,1,""],parameters_to_vector:[417,4,1,""],remove_spectral_norm:[435,4,1,""],remove_weight_norm:[436,4,1,""],spectral_norm:[442,4,1,""],vector_to_parameters:[443,4,1,""],weight_norm:[444,4,1,""]},"torch.nn.utils.prune":{BasePruningMethod:[418,2,1,""],CustomFromMask:[419,2,1,""],Identity:[420,2,1,""],L1Unstructured:[421,2,1,""],LnStructured:[422,2,1,""],PruningContainer:[423,2,1,""],RandomStructured:[424,2,1,""],RandomUnstructured:[425,2,1,""],custom_from_mask:[426,4,1,""],global_unstructured:[427,4,1,""],identity:[428,4,1,""],is_pruned:[429,4,1,""],l1_unstructured:[430,4,1,""],ln_structured:[431,4,1,""],random_structured:[432,4,1,""],random_unstructured:[433,4,1,""],remove:[434,4,1,""]},"torch.nn.utils.prune.BasePruningMethod":{apply:[418,0,1,""],apply_mask:[418,0,1,""],compute_mask:[418,0,1,""],prune:[418,0,1,""],remove:[418,0,1,""]},"torch.nn.utils.prune.CustomFromMask":{apply:[419,0,1,""],apply_mask:[419,0,1,""],prune:[419,0,1,""],remove:[419,0,1,""]},"torch.nn.utils.prune.Identity":{apply:[420,0,1,""],apply_mask:[420,0,1,""],prune:[420,0,1,""],remove:[420,0,1,""]},"torch.nn.utils.prune.L1Unstructured":{apply:[421,0,1,""],apply_mask:[421,0,1,""],prune:[421,0,1,""],remove:[421,0,1,""]},"torch.nn.utils.prune.LnStructured":{apply:[422,0,1,""],apply_mask:[422,0,1,""],compute_mask:[422,0,1,""],prune:[422,0,1,""],remove:[422,0,1,""]},"torch.nn.utils.prune.PruningContainer":{add_pruning_method:[423,0,1,""],apply:[423,0,1,""],apply_mask:[423,0,1,""],compute_mask:[423,0,1,""],prune:[423,0,1,""],remove:[423,0,1,""]},"torch.nn.utils.prune.RandomStructured":{apply:[424,0,1,""],apply_mask:[424,0,1,""],compute_mask:[424,0,1,""],prune:[424,0,1,""],remove:[424,0,1,""]},"torch.nn.utils.prune.RandomUnstructured":{apply:[425,0,1,""],apply_mask:[425,0,1,""],prune:[425,0,1,""],remove:[425,0,1,""]},"torch.nn.utils.rnn":{PackedSequence:[437,2,1,""],pack_padded_sequence:[438,4,1,""],pack_sequence:[439,4,1,""],pad_packed_sequence:[440,4,1,""],pad_sequence:[441,4,1,""]},"torch.nn.utils.rnn.PackedSequence":{batch_sizes:[437,1,1,""],count:[437,0,1,""],data:[437,1,1,""],index:[437,0,1,""],is_cuda:[437,0,1,""],is_pinned:[437,0,1,""],sorted_indices:[437,1,1,""],to:[437,0,1,""],unsorted_indices:[437,1,1,""]},"torch.onnx":{"export":[596,4,1,""],export_to_pretty_string:[596,4,1,""],is_in_onnx_export:[596,4,1,""],register_custom_op_symbolic:[596,4,1,""],select_model_mode_for_export:[596,4,1,""]},"torch.onnx.operators":{shape_as_tensor:[596,4,1,""]},"torch.optim":{ASGD:[597,2,1,""],Adadelta:[597,2,1,""],Adagrad:[597,2,1,""],Adam:[597,2,1,""],AdamW:[597,2,1,""],Adamax:[597,2,1,""],LBFGS:[597,2,1,""],Optimizer:[597,2,1,""],RMSprop:[597,2,1,""],Rprop:[597,2,1,""],SGD:[597,2,1,""],SparseAdam:[597,2,1,""]},"torch.optim.ASGD":{step:[597,0,1,""]},"torch.optim.Adadelta":{step:[597,0,1,""]},"torch.optim.Adagrad":{step:[597,0,1,""]},"torch.optim.Adam":{step:[597,0,1,""]},"torch.optim.AdamW":{step:[597,0,1,""]},"torch.optim.Adamax":{step:[597,0,1,""]},"torch.optim.LBFGS":{step:[597,0,1,""]},"torch.optim.Optimizer":{add_param_group:[597,0,1,""],load_state_dict:[597,0,1,""],state_dict:[597,0,1,""],step:[597,0,1,""],zero_grad:[597,0,1,""]},"torch.optim.RMSprop":{step:[597,0,1,""]},"torch.optim.Rprop":{step:[597,0,1,""]},"torch.optim.SGD":{step:[597,0,1,""]},"torch.optim.SparseAdam":{step:[597,0,1,""]},"torch.optim.lr_scheduler":{CosineAnnealingLR:[597,2,1,""],CosineAnnealingWarmRestarts:[597,2,1,""],CyclicLR:[597,2,1,""],ExponentialLR:[597,2,1,""],LambdaLR:[597,2,1,""],MultiStepLR:[597,2,1,""],MultiplicativeLR:[597,2,1,""],OneCycleLR:[597,2,1,""],ReduceLROnPlateau:[597,2,1,""],StepLR:[597,2,1,""]},"torch.optim.lr_scheduler.CosineAnnealingWarmRestarts":{step:[597,0,1,""]},"torch.optim.lr_scheduler.CyclicLR":{get_lr:[597,0,1,""]},"torch.optim.lr_scheduler.LambdaLR":{load_state_dict:[597,0,1,""],state_dict:[597,0,1,""]},"torch.optim.lr_scheduler.MultiplicativeLR":{load_state_dict:[597,0,1,""],state_dict:[597,0,1,""]},"torch.overrides":{get_ignored_functions:[619,4,1,""],get_overridable_functions:[619,4,1,""],get_testing_overrides:[619,4,1,""],handle_torch_function:[619,4,1,""],has_torch_function:[619,4,1,""],is_tensor_like:[619,4,1,""],is_tensor_method_or_property:[619,4,1,""],wrap_torch_function:[619,4,1,""]},"torch.profiler":{profile:[599,2,1,""],schedule:[599,4,1,""],tensorboard_trace_handler:[599,4,1,""]},"torch.profiler.profile":{events:[599,0,1,""],export_chrome_trace:[599,0,1,""],export_stacks:[599,0,1,""],key_averages:[599,0,1,""],step:[599,0,1,""]},"torch.quantization":{DeQuantStub:[620,2,1,""],FakeQuantize:[620,2,1,""],HistogramObserver:[620,2,1,""],MinMaxObserver:[620,2,1,""],MovingAverageMinMaxObserver:[620,2,1,""],MovingAveragePerChannelMinMaxObserver:[620,2,1,""],NoopObserver:[620,2,1,""],ObserverBase:[620,2,1,""],PerChannelMinMaxObserver:[620,2,1,""],QConfig:[620,2,1,""],QConfigDynamic:[620,2,1,""],QuantStub:[620,2,1,""],QuantWrapper:[620,2,1,""],RecordingObserver:[620,2,1,""],add_observer_:[620,4,1,""],add_quant_dequant:[620,4,1,""],convert:[620,4,1,""],default_eval_fn:[620,4,1,""],fuse_modules:[620,4,1,""],get_observer_dict:[620,4,1,""],prepare:[620,4,1,""],prepare_qat:[620,4,1,""],propagate_qconfig_:[620,4,1,""],quantize:[620,4,1,""],quantize_dynamic:[620,4,1,""],quantize_qat:[620,4,1,""],swap_module:[620,4,1,""]},"torch.quantization.ObserverBase":{with_args:[620,0,1,""]},"torch.quasirandom":{SobolEngine:[468,2,1,""]},"torch.quasirandom.SobolEngine":{draw:[468,0,1,""],draw_base2:[468,0,1,""],fast_forward:[468,0,1,""],reset:[468,0,1,""]},"torch.random":{fork_rng:[602,4,1,""],get_rng_state:[602,4,1,""],initial_seed:[602,4,1,""],manual_seed:[602,4,1,""],seed:[602,4,1,""],set_rng_state:[602,4,1,""]},"torch.sparse":{addmm:[606,4,1,""],log_softmax:[606,4,1,""],mm:[606,4,1,""],softmax:[606,4,1,""],sum:[606,4,1,""]},"torch.torch":{default_generator:[612,1,1,""],device:[608,2,1,""],dtype:[608,2,1,""],finfo:[621,2,1,""],iinfo:[621,2,1,""],layout:[608,2,1,""],memory_format:[608,2,1,""]},"torch.utils":{benchmark:[4,3,0,"-"],data:[16,3,0,"-"],model_zoo:[575,3,0,"-"]},"torch.utils.benchmark":{CallgrindStats:[4,2,1,""],FunctionCounts:[4,2,1,""],Measurement:[4,2,1,""],Timer:[4,2,1,""]},"torch.utils.benchmark.CallgrindStats":{as_standardized:[4,0,1,""],counts:[4,0,1,""],delta:[4,0,1,""],stats:[4,0,1,""]},"torch.utils.benchmark.FunctionCounts":{denoise:[4,0,1,""],filter:[4,0,1,""],transform:[4,0,1,""]},"torch.utils.benchmark.Measurement":{merge:[4,0,1,""],significant_figures:[4,0,1,""]},"torch.utils.benchmark.Timer":{blocked_autorange:[4,0,1,""],collect_callgrind:[4,0,1,""],timeit:[4,0,1,""]},"torch.utils.checkpoint":{checkpoint:[6,4,1,""],checkpoint_sequential:[6,4,1,""]},"torch.utils.cpp_extension":{BuildExtension:[11,4,1,""],CUDAExtension:[11,4,1,""],CppExtension:[11,4,1,""],check_compiler_abi_compatibility:[11,4,1,""],include_paths:[11,4,1,""],is_ninja_available:[11,4,1,""],load:[11,4,1,""],load_inline:[11,4,1,""],verify_ninja_availability:[11,4,1,""]},"torch.utils.data":{BatchSampler:[16,2,1,""],BufferedShuffleDataset:[16,2,1,""],ChainDataset:[16,2,1,""],ConcatDataset:[16,2,1,""],DataLoader:[16,2,1,""],Dataset:[16,2,1,""],IterableDataset:[16,2,1,""],RandomSampler:[16,2,1,""],Sampler:[16,2,1,""],SequentialSampler:[16,2,1,""],Subset:[16,2,1,""],SubsetRandomSampler:[16,2,1,""],TensorDataset:[16,2,1,""],WeightedRandomSampler:[16,2,1,""],get_worker_info:[16,4,1,""],random_split:[16,4,1,""]},"torch.utils.data.distributed":{DistributedSampler:[16,2,1,""]},"torch.utils.dlpack":{from_dlpack:[20,4,1,""],to_dlpack:[20,4,1,""]},"torch.utils.mobile_optimizer":{optimize_for_mobile:[574,4,1,""]},"torch.utils.model_zoo":{load_url:[575,4,1,""]},"torch.utils.tensorboard.writer":{SummaryWriter:[610,2,1,""]},"torch.utils.tensorboard.writer.SummaryWriter":{__init__:[610,0,1,""],add_audio:[610,0,1,""],add_custom_scalars:[610,0,1,""],add_embedding:[610,0,1,""],add_figure:[610,0,1,""],add_graph:[610,0,1,""],add_histogram:[610,0,1,""],add_hparams:[610,0,1,""],add_image:[610,0,1,""],add_images:[610,0,1,""],add_mesh:[610,0,1,""],add_pr_curve:[610,0,1,""],add_scalar:[610,0,1,""],add_scalars:[610,0,1,""],add_text:[610,0,1,""],add_video:[610,0,1,""],close:[610,0,1,""],flush:[610,0,1,""]},torch:{"var":[556,4,1,""],FloatStorage:[607,2,1,""],Generator:[24,2,1,""],Tensor:[611,2,1,""],__config__:[0,3,0,"-"],_assert:[25,4,1,""],abs:[26,4,1,""],absolute:[27,4,1,""],acos:[28,4,1,""],acosh:[29,4,1,""],add:[30,4,1,""],addbmm:[31,4,1,""],addcdiv:[32,4,1,""],addcmul:[33,4,1,""],addmm:[34,4,1,""],addmv:[35,4,1,""],addr:[36,4,1,""],all:[37,4,1,""],allclose:[38,4,1,""],amax:[39,4,1,""],amin:[40,4,1,""],angle:[41,4,1,""],any:[42,4,1,""],arange:[43,4,1,""],arccos:[44,4,1,""],arccosh:[45,4,1,""],arcsin:[46,4,1,""],arcsinh:[47,4,1,""],arctan:[48,4,1,""],arctanh:[49,4,1,""],are_deterministic_algorithms_enabled:[50,4,1,""],argmax:[51,4,1,""],argmin:[52,4,1,""],argsort:[53,4,1,""],as_strided:[54,4,1,""],as_tensor:[55,4,1,""],asin:[56,4,1,""],asinh:[57,4,1,""],atan2:[59,4,1,""],atan:[58,4,1,""],atanh:[60,4,1,""],atleast_1d:[61,4,1,""],atleast_2d:[62,4,1,""],atleast_3d:[63,4,1,""],autograd:[2,3,0,"-"],baddbmm:[64,4,1,""],bartlett_window:[65,4,1,""],bernoulli:[66,4,1,""],bincount:[67,4,1,""],bitwise_and:[68,4,1,""],bitwise_not:[69,4,1,""],bitwise_or:[70,4,1,""],bitwise_xor:[71,4,1,""],blackman_window:[72,4,1,""],block_diag:[73,4,1,""],bmm:[74,4,1,""],broadcast_shapes:[75,4,1,""],broadcast_tensors:[76,4,1,""],broadcast_to:[77,4,1,""],bucketize:[78,4,1,""],can_cast:[79,4,1,""],cartesian_prod:[80,4,1,""],cat:[81,4,1,""],cdist:[82,4,1,""],ceil:[83,4,1,""],chain_matmul:[84,4,1,""],cholesky:[85,4,1,""],cholesky_inverse:[86,4,1,""],cholesky_solve:[87,4,1,""],chunk:[88,4,1,""],clamp:[89,4,1,""],clip:[90,4,1,""],clone:[91,4,1,""],column_stack:[92,4,1,""],combinations:[93,4,1,""],compiled_with_cxx11_abi:[94,4,1,""],complex:[95,4,1,""],conj:[96,4,1,""],copysign:[97,4,1,""],cos:[98,4,1,""],cosh:[99,4,1,""],count_nonzero:[100,4,1,""],cross:[101,4,1,""],cuda:[13,3,0,"-"],cummax:[102,4,1,""],cummin:[103,4,1,""],cumprod:[104,4,1,""],cumsum:[105,4,1,""],deg2rad:[106,4,1,""],dequantize:[107,4,1,""],det:[108,4,1,""],diag:[109,4,1,""],diag_embed:[110,4,1,""],diagflat:[111,4,1,""],diagonal:[112,4,1,""],diff:[113,4,1,""],digamma:[114,4,1,""],dist:[115,4,1,""],distributed:[18,3,0,"-"],distributions:[19,3,0,"-"],div:[116,4,1,""],divide:[117,4,1,""],dot:[118,4,1,""],dstack:[119,4,1,""],eig:[120,4,1,""],einsum:[121,4,1,""],empty:[122,4,1,""],empty_like:[123,4,1,""],empty_strided:[124,4,1,""],enable_grad:[125,2,1,""],eq:[126,4,1,""],equal:[127,4,1,""],erf:[128,4,1,""],erfc:[129,4,1,""],erfinv:[130,4,1,""],exp2:[132,4,1,""],exp:[131,4,1,""],expm1:[133,4,1,""],eye:[134,4,1,""],fake_quantize_per_channel_affine:[135,4,1,""],fake_quantize_per_tensor_affine:[136,4,1,""],fix:[137,4,1,""],flatten:[138,4,1,""],flip:[139,4,1,""],fliplr:[140,4,1,""],flipud:[141,4,1,""],float_power:[142,4,1,""],floor:[143,4,1,""],floor_divide:[144,4,1,""],fmax:[145,4,1,""],fmin:[146,4,1,""],fmod:[147,4,1,""],frac:[148,4,1,""],from_numpy:[149,4,1,""],full:[150,4,1,""],full_like:[151,4,1,""],futures:[22,3,0,"-"],fx:[23,3,0,"-"],gather:[152,4,1,""],gcd:[153,4,1,""],ge:[154,4,1,""],geqrf:[155,4,1,""],ger:[156,4,1,""],get_default_dtype:[157,4,1,""],get_num_interop_threads:[158,4,1,""],get_num_threads:[159,4,1,""],get_rng_state:[160,4,1,""],greater:[161,4,1,""],greater_equal:[162,4,1,""],gt:[163,4,1,""],hamming_window:[164,4,1,""],hann_window:[165,4,1,""],heaviside:[166,4,1,""],histc:[167,4,1,""],hspmm:[606,4,1,""],hstack:[168,4,1,""],hub:[566,3,0,"-"],hypot:[169,4,1,""],i0:[170,4,1,""],igamma:[171,4,1,""],igammac:[172,4,1,""],imag:[173,4,1,""],index_select:[174,4,1,""],initial_seed:[175,4,1,""],inner:[176,4,1,""],inverse:[177,4,1,""],is_complex:[178,4,1,""],is_floating_point:[179,4,1,""],is_nonzero:[180,4,1,""],is_storage:[181,4,1,""],is_tensor:[182,4,1,""],isclose:[183,4,1,""],isfinite:[184,4,1,""],isinf:[185,4,1,""],isnan:[186,4,1,""],isneginf:[187,4,1,""],isposinf:[188,4,1,""],isreal:[189,4,1,""],istft:[190,4,1,""],jit:[568,3,0,"-"],kaiser_window:[205,4,1,""],kron:[206,4,1,""],kthvalue:[207,4,1,""],lcm:[208,4,1,""],ldexp:[209,4,1,""],le:[210,4,1,""],lerp:[211,4,1,""],less:[212,4,1,""],less_equal:[213,4,1,""],lgamma:[214,4,1,""],linalg:[573,3,0,"-"],linspace:[215,4,1,""],load:[216,4,1,""],lobpcg:[217,4,1,""],log10:[219,4,1,""],log1p:[220,4,1,""],log2:[221,4,1,""],log:[218,4,1,""],logaddexp2:[223,4,1,""],logaddexp:[222,4,1,""],logcumsumexp:[224,4,1,""],logdet:[225,4,1,""],logical_and:[226,4,1,""],logical_not:[227,4,1,""],logical_or:[228,4,1,""],logical_xor:[229,4,1,""],logit:[230,4,1,""],logspace:[231,4,1,""],logsumexp:[232,4,1,""],lstsq:[233,4,1,""],lt:[234,4,1,""],lu:[235,4,1,""],lu_solve:[236,4,1,""],lu_unpack:[237,4,1,""],manual_seed:[238,4,1,""],masked_select:[239,4,1,""],matmul:[240,4,1,""],matrix_exp:[241,4,1,""],matrix_power:[242,4,1,""],matrix_rank:[243,4,1,""],max:[244,4,1,""],maximum:[245,4,1,""],mean:[246,4,1,""],median:[247,4,1,""],meshgrid:[248,4,1,""],min:[249,4,1,""],minimum:[250,4,1,""],mm:[251,4,1,""],mode:[252,4,1,""],moveaxis:[253,4,1,""],movedim:[254,4,1,""],msort:[255,4,1,""],mul:[256,4,1,""],multinomial:[257,4,1,""],multiply:[258,4,1,""],multiprocessing:[576,3,0,"-"],mv:[259,4,1,""],mvlgamma:[260,4,1,""],nan_to_num:[261,4,1,""],nanmedian:[262,4,1,""],nanquantile:[263,4,1,""],nansum:[264,4,1,""],narrow:[265,4,1,""],ne:[266,4,1,""],neg:[267,4,1,""],negative:[268,4,1,""],nextafter:[269,4,1,""],no_grad:[445,2,1,""],nonzero:[446,4,1,""],norm:[447,4,1,""],normal:[448,4,1,""],not_equal:[449,4,1,""],numel:[450,4,1,""],ones:[451,4,1,""],ones_like:[452,4,1,""],onnx:[596,3,0,"-"],optim:[597,3,0,"-"],orgqr:[453,4,1,""],ormqr:[454,4,1,""],outer:[455,4,1,""],pca_lowrank:[456,4,1,""],pinverse:[457,4,1,""],poisson:[458,4,1,""],polar:[459,4,1,""],polygamma:[460,4,1,""],pow:[461,4,1,""],prod:[462,4,1,""],profiler:[599,3,0,"-"],promote_types:[463,4,1,""],qr:[464,4,1,""],quantile:[465,4,1,""],quantization:[620,3,0,"-"],quantize_per_channel:[466,4,1,""],quantize_per_tensor:[467,4,1,""],rad2deg:[469,4,1,""],rand:[470,4,1,""],rand_like:[471,4,1,""],randint:[472,4,1,""],randint_like:[473,4,1,""],randn:[474,4,1,""],randn_like:[475,4,1,""],random:[602,3,0,"-"],randperm:[476,4,1,""],range:[477,4,1,""],ravel:[478,4,1,""],real:[479,4,1,""],reciprocal:[480,4,1,""],remainder:[481,4,1,""],renorm:[482,4,1,""],repeat_interleave:[483,4,1,""],reshape:[484,4,1,""],result_type:[485,4,1,""],roll:[486,4,1,""],rot90:[487,4,1,""],round:[488,4,1,""],row_stack:[489,4,1,""],rsqrt:[490,4,1,""],save:[491,4,1,""],scatter:[492,4,1,""],scatter_add:[493,4,1,""],searchsorted:[494,4,1,""],seed:[495,4,1,""],set_default_dtype:[496,4,1,""],set_default_tensor_type:[497,4,1,""],set_flush_denormal:[498,4,1,""],set_grad_enabled:[499,2,1,""],set_num_interop_threads:[500,4,1,""],set_num_threads:[501,4,1,""],set_printoptions:[502,4,1,""],set_rng_state:[503,4,1,""],sgn:[504,4,1,""],sigmoid:[505,4,1,""],sign:[506,4,1,""],signbit:[507,4,1,""],sin:[508,4,1,""],sinc:[509,4,1,""],sinh:[510,4,1,""],slogdet:[511,4,1,""],smm:[606,4,1,""],solve:[512,4,1,""],sort:[513,4,1,""],sparse_coo_tensor:[514,4,1,""],split:[515,4,1,""],sqrt:[516,4,1,""],square:[517,4,1,""],squeeze:[518,4,1,""],sspaddmm:[606,4,1,""],stack:[519,4,1,""],std:[520,4,1,""],std_mean:[521,4,1,""],stft:[522,4,1,""],sub:[523,4,1,""],subtract:[524,4,1,""],sum:[525,4,1,""],svd:[526,4,1,""],svd_lowrank:[527,4,1,""],swapaxes:[528,4,1,""],swapdims:[529,4,1,""],symeig:[530,4,1,""],t:[531,4,1,""],take:[532,4,1,""],tan:[533,4,1,""],tanh:[534,4,1,""],tensor:[535,4,1,""],tensor_split:[536,4,1,""],tensordot:[537,4,1,""],tile:[538,4,1,""],topk:[539,4,1,""],trace:[540,4,1,""],transpose:[541,4,1,""],trapz:[542,4,1,""],triangular_solve:[543,4,1,""],tril:[544,4,1,""],tril_indices:[545,4,1,""],triu:[546,4,1,""],triu_indices:[547,4,1,""],true_divide:[548,4,1,""],trunc:[549,4,1,""],unbind:[550,4,1,""],unique:[551,4,1,""],unique_consecutive:[552,4,1,""],unsqueeze:[553,4,1,""],use_deterministic_algorithms:[554,4,1,""],vander:[555,4,1,""],var_mean:[557,4,1,""],vdot:[558,4,1,""],view_as_complex:[559,4,1,""],view_as_real:[560,4,1,""],vstack:[561,4,1,""],where:[562,4,1,""],xlogy:[563,4,1,""],zeros:[564,4,1,""],zeros_like:[565,4,1,""]}},objnames:{"0":["py","method","Python method"],"1":["py","attribute","Python attribute"],"2":["py","class","Python class"],"3":["py","module","Python module"],"4":["py","function","Python function"],"5":["std","envvar","environment variable"]},objtypes:{"0":"py:method","1":"py:attribute","2":"py:class","3":"py:module","4":"py:function","5":"std:envvar"},terms:{"00000e":[122,236,512],"0000e":[124,142,177,222,231,261,457,573,611],"0000j":[21,459,504,573],"0042e":408,"00j":[177,573],"016s":586,"0303j":10,"0331j":573,"041m":2,"0486e":573,"048m":2,"0545e":611,"0626j":573,"0633j":[173,479,611],"0705e":124,"0733j":573,"07j":573,"0862j":573,"0949e":611,"0957e":573,"0th":23,"0x8000_0000_0000_0000":[24,238,602],"0xffff_ffff_ffff_ffff":[24,238,602],"1000e":142,"10x7":[271,275],"1102e":[177,573],"11s":586,"1239e":124,"1252j":573,"1269e":222,"1269j":573,"13x12":311,"1400e":261,"1421j":10,"1428e":123,"148m":2,"1548e":[457,573],"1598e":408,"1604j":573,"1625j":21,"1629j":573,"1644j":573,"1681j":10,"16j":[177,573],"1759j":573,"17j":[177,573],"17m1129830":217,"1918j":10,"1921e":[177,457,573],"1_batch_16":610,"1cycl":597,"1e4":597,"1e6":597,"1hr":7,"1mb":13,"1st":[19,573,584],"1to3":598,"20determin":593,"20l":[192,309,353,402],"2137j":573,"2204e":[177,573],"22topic":593,"2323j":573,"2352e":[457,573],"2490e":[177,573],"24j":504,"2500e":142,"2533j":573,"2976j":573,"2991j":573,"2gb":[566,596],"2nd":[19,361,386,580,584,611],"2x3":403,"3121e":[457,573],"3136j":560,"3471j":573,"3487j":10,"3493e":123,"3553j":[173,479,611],"3839j":560,"3842e":[85,573],"3878e":[177,573],"3898j":573,"3rd":[573,584,597,611],"3x3":19,"3x4":403,"3xhxw":610,"4028e":261,"4064e":123,"4142j":459,"4409e":[177,573],"4410j":21,"4677j":573,"4694e":[177,573],"483m":2,"4842e":[124,611],"4901e":[457,573],"4th":584,"4us":2,"5107e":[177,573],"5390e":[457,573],"54_":610,"5511e":[177,573],"5636e":408,"5637e":408,"5751e":123,"5765e":611,"5772j":559,"5874j":10,"5955e":123,"5c106cde":[566,575],"5x7":[271,275],"5x7x9":[272,276],"60s":603,"6391e":[457,573],"6417j":573,"6503e":526,"6531e":526,"6623j":559,"6653e":[177,573],"6699j":560,"6882j":21,"727m":2,"7497j":559,"7567e":[457,573],"7574j":573,"7656e":142,"7684e":573,"7756e":[177,573],"7896j":[173,479,611],"7897e":573,"7981j":10,"7x7":[271,275],"7x7x7":[272,276],"7x9x8":[272,276],"8000e":123,"8000j":504,"8041e":[177,573],"8119j":[173,479,611],"8123j":21,"816u":2,"8182e":611,"8570e":573,"8582j":573,"8673j":573,"8788e":408,"88131e":498,"8832e":408,"8858e":[177,573],"8944j":504,"8b3f7e2e7a0f2aba0e629e23d89f07c7fc0e6a5":596,"9073e":[177,403,573],"9120j":559,"9389e":[177,573],"9407e":[457,573],"9451j":560,"9508j":573,"9600j":504,"9605e":573,"9683e":124,"9802e":[237,457,573],"\u2102":583,"\u211d":583,"abstract":[16,17,19,418,587,601,603],"boolean":[2,13,19,23,68,69,70,71,93,126,154,163,183,184,185,186,189,210,217,234,239,266,283,284,285,307,308,316,323,324,325,332,353,391,530,539,570,571,580,588,596,597,608,611],"break":[2,7,19,23,502,567,571,597],"byte":[13,18,19,191,216,359,570,571,577,597,606,607,611],"case":[1,2,4,5,10,11,12,13,16,17,18,21,23,43,65,67,97,108,121,166,177,180,200,201,216,217,222,225,230,233,235,247,257,273,278,279,280,281,282,293,294,295,297,298,299,301,304,305,306,308,309,310,313,317,318,319,320,321,326,327,328,329,330,340,345,347,348,349,360,361,368,371,383,389,394,401,403,412,414,446,447,481,484,494,509,511,527,562,563,566,573,576,577,578,580,581,582,583,584,585,586,588,589,591,592,594,596,597,598,600,602,603,604,605,606,609,610,611,619,620,621],"catch":568,"char":[577,607,611],"ciss\u00e9":273,"class":[1,2,4,12,13,16,17,18,19,22,24,125,191,192,193,195,196,198,199,201,202,203,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,412,413,414,418,419,420,421,422,423,424,425,437,445,468,499,554,569,571,576,578,580,582,588,589,591,592,594,596,597,598,599,601,603,604,606,607,608,610,611,613,614,615,616,617,618,619,620,621],"const":[315,590,596],"default":[1,4,6,10,11,13,18,19,21,23,38,43,55,65,72,74,78,82,85,86,87,91,101,104,105,110,111,112,113,116,120,122,123,124,134,150,151,157,164,165,183,190,192,194,199,201,202,205,206,215,216,217,230,231,235,243,244,247,252,261,264,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,293,294,295,296,297,298,299,300,301,302,303,306,307,308,309,310,311,313,314,315,316,317,318,319,320,321,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,345,346,347,348,349,350,351,352,353,356,357,358,359,360,361,362,367,368,370,371,372,373,379,383,384,388,389,391,394,395,397,399,400,401,402,403,404,412,413,418,419,420,421,422,423,424,425,438,439,441,442,444,446,447,451,452,456,457,462,464,465,468,470,471,472,473,474,475,476,477,480,483,491,494,496,497,502,514,522,525,526,527,530,535,536,542,543,545,547,551,552,555,564,565,566,568,573,574,575,576,580,581,582,583,585,586,587,588,589,594,595,596,597,598,599,600,601,602,603,606,607,610,611,612,614,616,617,620,621],"enum":[18,596,603],"export":[2,12,13,18,20,193,195,199,203,438,439,568,570,588,591,599,603],"final":[18,19,31,34,35,64,80,93,121,138,216,235,240,313,330,368,408,568,570,571,577,588,591,594,604,605],"float":[1,2,4,10,13,16,17,19,21,23,32,38,41,43,65,66,72,79,95,97,115,116,126,144,145,146,147,154,157,163,164,165,171,172,179,183,184,185,186,187,188,192,201,202,205,209,211,215,217,222,230,231,234,236,243,257,261,262,263,264,266,269,273,277,299,300,304,305,307,308,309,315,321,346,353,358,361,362,367,374,375,376,377,383,395,400,401,402,404,405,406,412,414,415,416,421,422,424,425,427,430,431,432,433,440,441,442,447,448,457,459,461,465,466,467,477,481,482,496,497,498,502,523,526,542,562,563,568,569,570,571,573,576,577,579,580,582,586,588,589,596,597,600,601,603,606,607,608,610,611,616,617,618,620,621],"function":[1,4,6,7,10,11,12,13,15,16,22,24,37,38,41,42,54,65,72,74,82,84,91,96,110,112,114,121,125,128,129,130,132,138,142,144,145,146,155,156,164,165,166,170,171,172,177,182,190,191,192,193,195,196,198,199,200,201,203,205,206,207,209,214,215,216,217,220,222,230,231,235,236,240,244,247,249,251,252,253,259,260,262,277,281,287,288,290,291,292,299,303,306,309,312,313,314,315,317,318,319,320,321,328,329,330,331,340,343,344,346,353,358,361,368,371,372,373,374,375,376,377,378,381,382,385,387,388,389,390,391,392,393,395,397,399,400,401,402,403,405,407,409,412,427,437,438,441,445,448,452,453,454,455,456,457,460,464,468,472,477,481,499,504,512,514,522,526,528,529,530,536,538,542,551,552,554,558,559,560,565,566,567,571,575,576,578,581,584,586,587,588,589,590,591,594,597,598,599,602,603,604,605,608,610,611,612],"herv\u00e9":273,"import":[2,4,7,8,11,13,16,18,22,23,73,190,193,195,196,197,198,199,201,202,203,241,353,412,418,419,420,421,422,423,424,425,427,430,431,439,440,441,447,459,568,570,571,573,576,582,583,585,586,587,588,589,590,591,592,593,594,596,597,600,603,604,605,606,608,610,611,617,619],"int":[1,3,4,13,16,18,19,21,23,24,37,39,40,42,51,52,53,54,65,67,72,79,81,88,93,100,101,102,103,104,105,109,110,111,112,113,122,124,134,138,150,152,158,159,164,165,167,174,190,192,193,196,205,207,215,217,224,231,232,238,242,244,246,247,249,252,254,257,260,262,263,264,265,271,272,273,275,276,278,279,280,288,289,290,291,292,293,294,295,296,297,298,300,301,302,307,308,309,310,316,328,329,332,333,334,335,336,337,338,344,348,349,350,351,352,353,355,358,360,361,364,365,366,374,375,376,377,378,385,387,391,400,402,403,404,405,406,407,412,415,416,421,422,424,425,427,430,431,432,433,438,440,442,444,447,448,450,451,456,460,462,465,466,467,468,470,472,473,474,476,482,483,484,485,486,487,500,501,513,515,518,519,520,521,522,525,527,536,537,539,541,542,544,545,546,547,550,551,552,553,555,556,557,564,568,569,570,571,573,576,577,578,580,595,596,597,598,599,602,603,606,607,608,610,611,617,620,621],"j\u00e9gou":273,"long":[2,7,8,16,135,175,247,252,262,288,301,308,330,331,360,463,536,545,547,551,562,567,576,577,578,580,584,588,589,592,596,599,601,602,607,608,610,611,617,618],"new":[1,2,6,8,11,13,16,18,19,22,23,29,30,55,56,57,58,59,60,77,78,83,92,97,98,99,106,110,131,133,135,136,140,141,143,173,174,183,184,186,189,192,196,199,218,219,220,221,230,239,256,265,267,283,284,285,309,313,323,324,325,353,354,359,363,391,402,412,418,422,423,424,426,427,428,430,431,432,433,441,457,469,479,480,484,488,490,491,494,496,497,504,505,506,508,510,516,517,519,532,533,534,549,553,559,560,566,568,570,573,574,576,577,578,580,583,586,588,590,591,592,593,594,595,596,597,599,600,605,606,607,609,610,611,620],"public":[588,619],"return":[0,1,2,3,4,6,10,11,13,16,17,18,19,20,21,22,23,24,29,30,37,39,40,41,42,43,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,72,73,75,78,80,83,84,85,86,87,88,89,91,93,94,96,98,99,101,102,103,104,105,106,107,109,110,111,112,114,115,120,122,123,124,125,126,131,133,134,135,136,138,139,140,141,142,143,147,149,150,151,154,155,158,159,160,163,164,165,167,169,173,174,175,177,178,179,180,181,182,183,184,185,186,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204,205,207,210,211,215,216,217,218,219,220,221,224,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,252,256,257,262,264,265,266,267,269,273,274,275,276,281,282,299,300,301,302,308,309,311,321,326,327,344,345,346,347,348,349,353,354,355,356,357,358,360,363,364,367,383,384,385,386,387,391,400,401,402,408,409,410,411,412,415,417,418,419,420,421,422,423,424,425,426,428,429,430,431,432,433,437,438,439,440,441,442,444,445,446,447,448,450,451,452,453,456,457,458,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,482,483,484,485,488,490,494,495,498,504,505,506,508,510,511,512,513,514,516,517,518,520,521,522,525,526,527,530,531,532,533,534,535,537,539,540,541,542,543,544,545,546,547,549,550,551,552,553,555,556,557,559,560,562,564,565,566,568,571,573,574,575,576,578,580,581,582,585,586,588,590,591,594,595,596,597,598,599,600,601,602,603,604,606,607,608,609,611,612,619,620,621],"short":[23,121,190,288,330,331,502,522,570,577,580,583,584,591,601,603,607,608,611,618],"static":[2,4,19,568,569,570,590,596,598,601,603,607,620],"super":[16,23,193,196,199,201,202,203,353,354,355,363,364,365,366,408,568,570,571,588,591,594,596,597,600],"switch":[10,16,23,491,576,580,583,597],"throw":[18,22,23,180,215,231,235,414,440,447,554,593,603,606,611],"transient":605,"true":[1,2,3,4,6,11,13,16,17,18,19,21,22,23,32,37,38,39,40,42,50,52,55,65,68,70,71,72,78,79,85,86,87,93,116,120,125,126,127,152,154,163,164,165,178,179,180,181,182,183,184,185,186,187,188,189,190,192,194,195,196,201,202,203,205,207,210,217,226,227,228,229,232,234,235,237,239,243,244,246,247,249,252,257,264,266,269,273,274,275,276,277,278,279,280,281,282,283,284,285,286,288,293,294,295,296,297,298,299,301,303,304,305,307,308,309,311,313,314,315,316,321,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,341,345,346,347,348,349,350,351,352,353,356,357,358,359,360,362,367,368,369,370,383,384,391,395,400,401,402,404,405,408,412,413,429,437,438,439,440,441,442,444,445,446,447,454,456,462,464,465,468,491,494,498,499,502,507,513,520,521,522,525,526,530,535,539,543,551,552,554,555,556,557,562,566,569,570,573,575,576,577,578,580,582,583,584,586,587,588,589,590,591,593,594,596,597,598,600,601,602,603,604,606,607,608,609,610,611,612,614,615,616,617,618,619,620],"try":[4,5,7,13,18,195,196,201,288,293,294,295,296,297,298,404,412,566,568,571,580,583,588,589,592,596,597,600,603],"var":[2,283,284,285,315,316,323,324,325,332,391,569,577,611],"void":[24,590],"while":[1,4,8,11,16,17,18,19,23,39,40,59,192,193,201,202,217,262,273,289,309,323,324,325,353,359,395,402,412,426,427,428,430,431,432,433,447,526,571,573,578,580,582,583,586,589,591,592,593,597,598,600,603,605,606,609,610,611],AND:[68,226],Abs:596,And:[16,102,103,207,244,249,288,583,588,595,596,620],But:[2,7,201,412,583,588,589,598,609,611,619],CCs:11,Doing:12,For:[1,2,4,5,6,7,8,10,11,12,13,16,17,18,19,21,23,31,32,33,34,35,37,42,64,68,69,70,71,74,87,104,105,121,152,176,192,198,199,201,202,215,217,224,231,232,240,241,242,247,251,273,277,281,282,290,291,292,293,294,295,296,297,298,302,307,308,309,310,313,315,330,353,356,357,358,367,368,374,375,376,377,378,388,402,403,407,408,412,437,438,439,441,447,504,514,518,536,538,559,560,566,567,568,572,573,577,578,579,580,582,583,584,585,586,588,589,591,592,593,596,597,598,599,600,601,603,604,605,606,607,608,609,610,611,617,619,620],Going:23,Has:[321,346,358,404,466,467,519,580,617],IDE:23,IDEs:23,IDs:602,Its:[13,23,192,309,353,402,447,558,573,587,597],LHS:596,NFS:18,NOT:[18,69,227,412,418,419,420,421,422,423,424,425,434,596,605,606],Not:[215,231,264,568,570,571,588,596,601],One:[4,11,18,23,73,404,472,473,568,578,580,584,585,588,590,597,598,605,610],Ops:[5,586,600,611],PRs:[7,8],RHS:[236,596],Such:[11,16,530,555,606],That:[23,215,231,233,554,574,588,589,594,603],The:[1,2,4,6,8,10,11,12,13,16,17,18,19,20,21,22,24,29,30,32,33,34,35,38,39,40,59,60,65,66,67,68,69,70,71,72,79,80,86,93,95,109,110,111,112,113,115,120,121,122,124,126,128,129,130,138,147,149,150,154,163,164,165,166,167,169,171,172,173,174,176,190,192,193,195,197,198,199,201,202,205,206,210,211,216,217,232,233,234,235,236,238,239,240,241,243,247,256,257,262,265,266,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,288,293,294,295,296,297,298,299,301,302,307,308,309,310,311,313,314,315,316,320,321,323,324,325,326,327,329,330,331,332,339,341,344,345,346,347,348,349,353,356,358,360,367,368,370,371,383,391,394,395,400,401,402,403,404,408,410,411,412,414,415,416,417,418,419,420,421,422,423,424,425,427,428,430,431,434,440,442,444,446,447,448,456,457,459,461,464,468,470,472,474,479,481,483,486,491,496,497,502,503,514,518,522,526,527,530,532,535,537,538,539,541,542,544,545,546,547,553,554,555,558,559,562,566,568,569,570,571,572,573,574,575,576,577,578,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,610,611,612,617,620,621],Their:113,Then:[2,16,23,310,403,584,587,588,593,596,597,603,604],There:[2,7,8,15,18,23,302,330,368,566,568,570,578,583,586,588,589,590,592,595,596,600,603,605,611,612,620],These:[1,3,4,11,12,16,18,19,23,190,192,254,273,408,567,568,569,570,577,578,579,582,583,586,587,588,591,594,596,600,603,604,608,612,619],Use:[2,13,16,18,156,203,302,385,391,412,447,573,577,578,580,592,593,597,599,600,603,604,610,611],Used:[4,16,24,496,601,608],Useful:[13,274,275,276,311,347,348,349,608,611],Uses:[13,571],Using:[2,16,18,19,23,182,201,304,305,365,366,412,568,573,583,588,591,592,597,599,600,603,606],WITH:596,Will:[9,18,23,514,570,578,601,606],With:[16,19,202,283,284,285,294,295,297,298,307,323,324,325,332,391,402,404,412,472,526,571,580,586,588,596,597,603,610,617],Yes:596,__add__:588,__and__:569,__array_function__:588,__bool__:[23,569],__bytes__:571,__config__:[567,585],__constants__:[568,570],__del__:571,__dict__:597,__exit__:23,__file__:[566,595],__float__:569,__format__:571,__get__:619,__getitem__:[16,554],__hash__:571,__hex__:569,__iand__:569,__ilshift__:569,__init__:[2,16,19,23,193,196,199,201,202,203,353,354,355,363,364,408,568,570,588,589,591,594,596,600,610],__int__:569,__ior__:569,__irshift__:569,__iter__:[16,571],__ixor__:569,__len__:[16,23,569],__lshift__:569,__main__:[16,584,587,592,595,604],__matmul__:1,__module__:619,__name__:[16,587,588,592,595,604],__new__:[570,571],__oct__:569,__or__:569,__pow__:1,__r:571,__rdiv__:1,__repr__:[4,588],__rpow__:1,__rshift__:569,__rtruediv__:1,__slots__:571,__str__:569,__torch__:569,__torch_function__:[23,619],__xor__:569,_back:[292,378,580],_bottom:[291,292,375,377,378,407,580],_call:19,_caller:602,_cat:19,_channel:[293,294,295,296,297,298,316,580,603,617],_class:273,_compilation_unit:[201,202],_contextmethodmixin:2,_cudadeviceproperti:13,_data:4,_debug_only_display_vmap_fallback_warn:2,_dependentproperti:19,_devices_kw:602,_dim:[307,617],_direct:[313,368],_distributed_c10d:18,_distributed_rpc:603,_embed:617,_ext:595,_extra_fil:[191,192,197,198,590],_factor:[365,366,404,405,406],_featur:[273,286,339,341,580,617,618],_fft:[522,569],_force_outplac:[201,202],_fork:585,_formatt:502,_forward_cl:2,_frames_up:199,_front:[292,378,580],_get_overridable_funct:588,_get_testing_overrid:588,_glibcxx_use_cxx11_abi:94,_gradbucket:[17,412],_greaterthan:19,_greaterthaneq:19,_growth_track:1,_halfopeninterv:19,_head:359,_if_scalar_type_a:596,_in:581,_independentconstraint:19,_index:360,_indic:[514,606],_instanc:19,_int:[135,136],_integerinterv:19,_interv:19,_invers:19,_key_padding_mask:395,_layer:[313,368],_left:[290,291,292,374,375,376,377,378,407,580],_length:[65,72,164,165,190,288,522],_lessthan:19,_like:611,_linalg:569,_linewidth:4,_load_from_state_dict:353,_log_api_usage_onc:590,_mask:[395,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434],_max:[135,136],_metadata:[353,588],_min:[135,136],_mode:581,_module_class:[201,202],_multinomi:19,_nn:569,_onnx_main_opset:596,_onnx_stable_opset:596,_orig:[418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434],_out:[581,583],_output:583,_pad:[296,297,298],_point:[135,136],_random_sampl:[311,569],_rcb:199,_resnet18:566,_retain_param_nam:596,_right:[290,291,292,374,375,376,377,378,407,580],_run_process:604,_safe_foo:11,_sampl:257,_scalar:596,_set_rpc_timeout:603,_shape:332,_size:[278,279,280,293,294,295,296,297,298,310,313,314,328,329,330,331,347,348,349,350,351,352,368,370,403],_slope:[340,580,581],_stack:19,_stacklevel:[569,580],_sync_param:587,_tensor:611,_tensor_str:502,_top:[291,292,375,377,378,407,580],_transport:603,_use_new_zipfile_seri:491,_valu:[89,273,416,514,588,606],_wait:585,_weight:[307,308,617],_with_arg:620,a3c:592,a_0:206,a_1:206,a_big:[526,530,573],a_dict:570,a_float32:1,a_ful:586,a_i:[400,401],a_inv:573,a_l:237,a_lu:[235,236,237],a_n:206,a_tensorinv:573,a_tupl:570,a_u:237,aaa:610,ab_fp32:586,ab_ful:586,ab_tf32:586,abbrevi:13,abc:437,abi:[11,12],abil:[8,491,590],abl:[3,7,198,395,412,457,568,577,588,594,596,600,603],abnorm:[576,592],abort:18,about:[2,8,13,16,23,437,566,568,570,585,586,588,589,590,592,594,596,597,599,600,603,604,605,606,609,611],abov:[2,4,12,18,19,23,65,72,87,109,110,111,112,164,165,171,172,206,217,281,310,388,403,408,448,464,472,473,502,522,542,544,545,546,547,566,568,570,573,583,584,585,586,588,591,593,594,596,597,603,604,605,606],abridg:589,abruptli:576,abs:[19,27,82,85,177,217,330,372,395,401,403,444,447,456,459,569,573,577,578,580,586,591,596,597,611],abs_:[569,577,611],absent:587,absolut:[2,8,10,11,23,26,38,183,327,383,421,422,424,425,427,430,431,432,433,447,459,504,511,569,573,580,591,596,611],absolute_:[569,611],abstransform:19,acceler:[7,17,283,284,285,391,597],accept:[2,7,8,18,149,192,194,301,309,353,360,402,423,437,438,578,588,596,597,601,603,608,610,611],access:[2,8,13,16,18,192,193,201,273,309,353,402,408,414,438,568,569,571,574,576,578,583,586,589,590,591,597,603,606,608,609,611,621],accident:7,accommod:[350,351,352],accompani:7,accomplish:[7,591],accord:[2,66,76,239,257,273,308,408,418,419,420,421,422,423,424,425,515,536,578,581,591,593,595,596,597,605,620],accordingli:[23,330,603,611],account:[5,23,412,585,606],accumul:[1,2,31,412,554,568,569,583,586,587,589,597,603,604,606,611],accumulategrad:[2,583],accur:[13,220,468,586,596,604],accuraci:[1,17,582,600,601,610,620],achiev:[16,17,18,19,288,360,412,580,586,590,596,603,605],ack:605,acknowledg:605,aco:[1,44,569,577,596,611],acos_:[569,577,611],acosh:[45,569,577,611],acosh_:[569,577,611],acquaint:7,acquir:[23,591,605,606],across:[2,13,16,17,18,23,51,121,135,198,201,301,302,310,342,361,391,403,412,423,427,447,491,567,568,577,580,583,586,587,589,590,592,593,598,603,604,607,610,611,620],act:[19,282,354,355,364,418,419,420,421,422,423,424,425,426,428,430,431,432,433,434,554,586,591,593,620],action:[8,18,19,23,586,599,605],activ:[2,6,7,13,217,277,304,305,316,332,354,371,381,395,397,399,574,576,588,591,597,598,599,600,601,603,620],activation_fp32:600,active_byt:13,actual:[2,21,144,201,296,297,298,428,566,570,577,580,583,586,587,588,592,595,596,597,600,606,620],actual_input_1:596,acycl:583,adadelta:[597,603],adagrad:[307,597,603],adam:[8,9,19,597,603],adamax:597,adamw:[597,603],adapt:[4,270,271,272,273,274,275,276,303,580,586,597,601,617],adaptive_avg_pool1d:[569,588,596],adaptive_avg_pool2d:[569,588,596,601,617],adaptive_avg_pool3d:[569,588,596],adaptive_max_pool1d:[569,588,596],adaptive_max_pool1d_with_indic:[569,588],adaptive_max_pool2d:[569,596],adaptive_max_pool2d_with_indic:569,adaptive_max_pool3d:[569,596],adaptive_max_pool3d_with_indic:569,adaptiveavgpool1d:580,adaptiveavgpool2d:[554,580,617],adaptiveavgpool3d:[554,580],adaptivelogsoftmaxwithloss:572,adaptivemaxpool1d:580,adaptivemaxpool2d:[554,580],adaptivemaxpool3d:580,add:[1,2,4,7,12,13,16,18,22,23,31,32,33,36,192,199,273,288,293,294,295,296,297,298,309,333,334,335,336,337,338,353,355,359,360,364,367,402,408,410,411,412,418,419,420,421,422,423,424,425,566,568,569,570,574,577,580,582,584,585,588,590,596,597,600,601,603,604,605,606,608,609,610,611,617,619,620],add_1:23,add_2:23,add_:[2,18,569,577,584,606,611],add_argu:[18,586],add_audio:610,add_bias_kv:359,add_custom_scalar:610,add_done_callback:22,add_embed:610,add_figur:610,add_graph:610,add_histogram:610,add_hparam:610,add_imag:610,add_mesh:610,add_modul:[192,309,353,402],add_observer_:[601,620],add_param_group:597,add_pr_curv:610,add_pruning_method:423,add_quant_dequ:[601,620],add_relu:617,add_scalar:[610,617],add_text:610,add_video:610,add_zero_attn:[359,569],addbackward0:[591,594],addbmm:[1,64,569,611],addbmm_:[569,611],addcdiv:[1,569,611],addcdiv_:[569,611],addcmul:[1,569,611],addcmul_:[569,611],added:[4,7,11,18,22,23,30,31,32,33,34,35,36,64,192,278,279,280,283,284,285,293,294,295,296,297,298,309,310,316,323,324,325,332,333,334,335,336,337,338,347,348,349,350,351,352,353,359,367,380,391,395,402,403,409,410,411,412,413,423,568,570,573,580,590,591,596,597,606,610,611,620],adder:2,addglobalcallback:590,adding:[16,18,23,43,121,222,282,360,426,427,428,430,431,432,433,566,568,570,578,582,588,596,597,600,611],addit:[1,2,4,7,8,11,12,13,19,23,190,192,194,273,281,282,283,284,285,286,287,296,297,298,306,308,309,312,315,317,318,319,320,323,324,325,326,327,336,337,338,339,340,341,342,343,344,345,350,351,352,353,361,367,371,372,373,379,381,382,383,384,385,387,388,389,390,391,392,393,394,395,401,402,412,551,552,559,568,570,577,578,580,585,586,588,590,592,595,596,597,599,600,601,603,604,605,606,609,611,617,620],addition:[2,16,18,19,194,273,323,324,325,589,611,612],additional_fuser_method_map:620,addmm:[1,569,577,596,606,611],addmm_:[1,569,577,606,611],addmod:193,addmv:[1,569,577,611],addmv_:[569,577,611],addr:[1,569,611],addr_:[569,611],address:[2,16,18,576,603,604,611],adher:[8,18],adjac:[43,73,304,305,477],adject:606,adjust:[18,320,585],admit:586,adopt:[8,614,615,616,617,618],advanc:[6,12,16,17,395,397,399,446,578,583,586,592,596,609,610],advantag:[18,282,589,603,606],adventur:596,adversari:442,advic:7,advis:[43,54,592,611],advisori:7,affect:[1,2,7,13,15,125,157,192,309,330,353,368,402,404,445,499,580,582,586,591,593,607,617],affin:[19,283,284,285,316,323,324,325,332,391,580,583,586,591,611,617],affine_grid:569,affine_grid_gener:569,affinetransform:19,aforement:592,after:[1,2,7,11,13,16,18,22,23,119,180,192,240,269,302,309,339,353,356,402,408,410,412,418,422,424,522,561,566,570,573,576,580,581,582,586,587,589,590,591,592,597,599,600,603,604,605,608,610,611,620],afterward:[2,307,353,408,412],again:[1,6,16,18,257,583],against:[2,5,18,21,43,152,201,202],agent:603,aggreg:[17,18,308,412,427,580],aggress:[2,190,583],agnost:[4,578,580],agre:605,agument:619,ahead:[7,567,600],aid:[7,23,583],aidan:[395,397,399],ail:9,ailzhang:9,aim:7,ainv:573,aka:[583,608],akin:590,alban:9,alband:9,alex:9,alexandr:555,alfredo:9,algebra:[9,121,573],algorithm:[3,4,7,10,14,17,19,24,84,190,217,288,293,294,295,296,297,298,310,313,330,368,403,404,412,456,526,527,554,573,580,583,603,606,617],alia:[19,27,44,45,46,47,48,49,90,117,137,156,161,162,212,213,253,258,268,333,334,335,336,337,338,339,437,449,489,524,528,529,548,611],alias:[570,588],alic:598,alican:9,alicanb:9,align:[17,121,280,288,326,348,349,404,447,577,580,583,597,617,620],align_a:[569,577,578],align_corn:[404,405,569,580,617],align_tensor:569,align_to:[569,577,578],aliv:[16,589,592,603,604,605],all:[1,2,4,6,7,8,10,11,12,13,16,17,18,19,21,22,23,24,31,32,38,41,42,51,66,73,75,80,81,89,93,100,120,152,168,189,190,192,197,198,199,201,216,235,244,246,248,249,260,262,263,264,273,280,282,286,288,291,292,293,294,295,296,297,298,302,307,308,309,310,313,314,315,316,321,326,327,330,331,341,345,349,350,351,352,353,354,355,356,357,358,359,360,361,363,364,368,370,374,375,376,377,378,383,391,395,397,399,400,402,403,407,409,410,411,412,415,423,427,437,441,446,447,448,462,465,514,518,519,520,521,522,525,530,536,538,544,545,546,547,550,552,556,557,559,561,566,568,569,570,574,576,577,578,580,582,583,585,586,587,588,589,591,592,593,594,595,596,598,599,600,601,602,603,604,605,606,607,608,610,611,619,620],all_gath:18,all_gather_multigpu:18,all_gather_object:18,all_input_nod:23,all_reduc:18,all_reduce_multigpu:18,all_to_al:18,allclos:[2,21,23,464,530,569,573,596,611],allevi:598,alloc:[2,5,10,13,17,19,122,124,476,535,576,583,586,587,599,608,611],allocated_byt:13,allow:[1,2,4,7,8,10,11,12,13,16,17,18,19,23,79,93,121,192,195,203,222,278,279,280,302,309,347,348,349,353,356,359,395,402,412,416,446,554,566,570,577,578,582,583,584,585,586,587,588,590,591,592,594,596,597,598,599,600,601,603,606,608,609,610,611,620],allow_list:620,allow_tf32:[3,569,586],allow_unreach:2,allow_unus:[2,569],allreduc:[17,18,412,587],allreduce_hook:17,almost:595,alon:570,along:[1,11,13,16,18,19,21,31,52,53,88,100,113,119,121,139,152,168,174,176,207,255,265,274,275,276,300,311,344,347,348,349,385,387,422,424,431,432,441,446,465,482,483,486,513,515,519,536,539,542,550,561,566,570,580,584,588,589,590,591,597,600,606,611,620],alongsid:[192,309,353,402],alpha:[19,30,31,34,35,36,64,164,277,287,306,342,379,523,524,569,580,588,596,597,606,611,617],alpha_dropout:569,alpha_dropout_:569,alpha_f:596,alphabet:[121,580,603],alphadropout:580,alreadi:[1,2,10,13,16,18,22,23,55,192,216,309,353,402,411,412,437,550,551,566,568,575,577,578,582,583,588,592,596,597,604,605,607,609,611,620],also:[1,2,3,4,6,7,8,10,11,12,13,16,17,18,19,21,22,23,65,72,104,105,120,125,152,157,164,165,192,193,194,196,201,248,254,255,262,273,281,283,284,285,293,294,295,296,297,298,301,308,309,310,313,330,353,360,368,380,383,391,400,401,402,403,408,412,426,428,430,431,432,433,445,457,474,491,497,518,526,551,552,562,566,567,568,570,573,574,576,577,578,580,581,582,583,585,586,587,588,589,590,591,592,594,595,596,597,598,600,601,603,604,606,609,610,611,612,619,620],alter:582,altern:[2,16,18,23,197,216,380,452,565,566,571,580,582,591,593,595,620],although:[7,13,19,23,296,297,298,353,361,412,567,582,588,598,600],altogeth:597,alwai:[1,2,11,13,16,17,18,21,23,65,72,82,85,109,116,138,142,164,165,198,201,233,262,281,283,284,285,302,307,323,324,325,388,391,408,412,437,457,494,522,526,535,551,554,573,576,583,584,585,586,587,588,590,596,598,602,603,605,606,608,611],amax:[40,569,611],amazonaw:[566,575,595],ambigu:[19,23,180,296,297,298,310,350,351,352,404],amelior:4,amin:[39,569,611],among:[13,16,17,18,19,302,448,596],amort:4,amount:[2,4,5,7,13,18,23,190,293,294,295,296,297,298,310,342,356,403,421,422,424,425,427,429,430,431,432,433,434,578,583,585,586,589,603],amp:[412,567,582],amper:3,amplitud:597,amsgrad:597,an_error:570,anaconda:595,analag:591,analog:[4,21,23,38,526,538,573,597],analysi:[4,23,205,456,571],analyt:[2,19],analyz:[4,23,587,588],ancestor:605,anchor:[23,400,401,569,580],anchor_id:401,andrea:217,andrew:217,angl:[19,59,106,340,459,469,504,569,611],ani:[1,2,4,5,6,7,8,10,11,13,16,17,18,19,21,22,23,43,76,80,81,147,191,192,194,196,198,199,201,207,270,271,272,274,275,276,277,281,282,286,287,302,303,306,309,310,312,315,317,318,319,320,321,322,326,327,340,341,343,344,345,353,361,367,371,372,373,379,381,382,383,384,385,387,388,389,390,392,393,394,401,402,403,408,412,418,419,420,421,422,423,424,425,428,438,439,441,447,477,491,500,502,566,568,569,570,573,574,576,577,578,580,582,583,585,586,588,590,591,592,593,596,597,600,603,604,605,606,610,611,617,619,620],anm:121,anneal:597,anneal_epoch:597,anneal_strategi:597,annihil:597,annot:[2,23,568,570,571,603],anoth:[2,7,13,16,17,18,19,23,354,363,408,568,570,582,583,585,586,588,591,592,595,596,598,604,605,606,611,612],another_forward:568,another_input:412,answer:[7,8,23,282,429,620],anticip:6,anyenumtyp:569,anymor:[2,18,412,611],anyon:8,anystr:570,anyth:[6,7,199,568,573,591,620],anywher:582,aoa:595,apart:10,apaszk:[8,9],api:[4,8,13,18,22,198,199,412,566,567,574,576,577,583,586,587,594,596,601,603,604,606,610,619],appear:[5,18,19,23,121,140,141,216,252,254,413,483,568,577,578,588,597],append:[2,18,22,23,112,113,240,314,331,355,364,370,412,569,570,583,585,592,595,596,610,611,618],appendix:17,appl:4,appli:[1,2,4,6,17,19,21,23,97,110,112,116,192,217,235,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,293,294,295,296,297,298,299,301,306,309,311,312,313,315,316,317,318,319,320,321,323,324,325,326,327,328,329,330,332,340,341,342,343,344,345,346,347,348,349,353,356,357,358,360,361,367,368,371,372,373,379,381,382,383,384,385,386,387,388,389,390,391,392,393,395,400,401,402,405,406,408,412,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,437,438,442,444,447,461,466,467,522,551,552,553,568,576,578,580,582,583,588,591,596,597,598,600,603,604,606,611,616,617,620],applic:[13,18,19,302,397,399,412,583,585,586,587,588,590,593,600,603,604,605,606,611,620],apply_:[572,611],apply_mask:[418,419,420,421,422,423,424,425],appreci:7,approach:[17,18,23,82,568,576,583,600,603,606],appropri:[1,7,18,19,23,201,235,301,353,360,571,578,598,600,603,604,605,619],approv:8,approx:527,approxim:[2,4,17,23,217,241,273,367,381,388,456,527,580,586,587,588,597,621],apr:190,arang:[10,16,18,21,36,37,42,76,92,139,140,141,142,170,206,207,211,214,374,375,376,377,404,405,406,447,448,455,461,477,484,487,515,525,536,537,539,540,569,573,580,594,596,610,611],arbitrari:[2,4,18,216,302,307,327,345,383,403,437,526,573,580,583,590,591,596,597,598,600,606,611,612,619],arbitrarili:[193,580,611],arcco:[569,611],arccos_:[569,611],arccosh:[569,611],arccosh_:[569,611],arch:11,architectur:[13,23,395,498,586,600],archiv:590,arcsin:[56,569,606,611],arcsin_:[569,606,611],arcsinh:[569,611],arcsinh_:[569,611],arctan:[569,611],arctan_:[569,611],arctang:[58,59],arctanh:[569,611],arctanh_:[569,611],are_deterministic_algorithms_en:3,area:[7,8,580],aren:[1,23,577,604,619],arg0:[2,18,22],arg1:[2,18],arg2:18,arg3:18,arg:[1,2,4,5,6,11,16,18,19,22,23,184,185,192,193,235,281,282,299,301,309,313,321,322,326,327,330,345,346,353,356,357,358,360,367,368,380,383,384,391,400,402,408,412,418,423,437,527,551,552,566,569,571,576,578,580,583,586,587,588,592,596,599,603,604,605,607,611,616,617,618,619],arg_constraint:19,arg_nam:569,arg_transform:23,argmax:[244,273,347,569,596,611],argmin:[249,569,596,611],argpars:[18,586],args_it:23,args_tail:23,argsort:[569,611],arguement:596,argument:[1,2,4,5,6,11,13,16,18,19,21,22,23,24,26,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,56,57,58,59,60,64,65,66,68,69,70,71,72,74,78,81,83,85,86,87,89,91,92,95,96,97,98,99,101,102,103,104,105,106,109,110,111,112,113,114,116,118,119,120,122,123,124,126,128,129,130,131,132,133,134,142,143,144,145,146,147,150,151,152,153,154,155,163,164,165,166,167,168,169,170,171,172,174,176,177,187,188,192,193,201,202,205,206,207,208,209,210,211,215,216,217,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,236,239,240,243,244,245,246,247,249,250,251,252,255,256,257,259,261,262,263,264,266,267,269,283,284,285,288,293,294,295,296,297,298,301,308,309,310,320,322,323,324,325,333,334,335,336,337,338,350,351,352,353,354,360,361,363,391,402,403,405,406,408,410,411,412,414,418,422,423,427,431,437,446,448,451,452,455,458,459,460,461,462,464,465,469,470,471,472,473,474,475,476,477,480,481,482,488,490,494,499,504,505,506,507,508,509,510,512,513,514,516,517,518,519,520,523,525,526,530,533,534,535,537,538,539,542,543,544,545,546,547,549,551,556,558,561,563,564,565,566,569,570,572,573,576,577,578,580,582,584,586,587,588,589,590,597,598,599,600,602,603,606,607,608,610,611,617,619,620,621],argumentpars:[18,586],ari:596,aris:[19,23],arithmet:[84,485,571,577,578,600,608],arm:[574,600,601],armand:273,around:[2,7,8,10,13,18,19,22,23,25,145,146,192,412,568,576,583,586,603,611],arr:596,arrai:[16,55,67,121,149,216,233,310,313,314,330,331,483,502,555,568,571,580,596,606,607,610,611,620],arrang:73,array_lik:[55,514,535,606,611],array_split:536,arriv:[603,605],arrow:[121,605],art:468,articul:8,artifact:590,artifici:2,arug:23,arxiv:[19,330,371,372,395,444,456,527,583],as_standard:4,as_strid:[124,569,596,601,609,611],as_strided_:569,as_subclass:[572,611,619],as_tensor:[535,569,588,610,611],as_tupl:[446,562],asap:576,ascend:[21,53,255,513,530,542,551,573],ascent:19,ascii:[13,216],asgd:597,ashish:[395,397,399],asin:[1,46,569,577,596,606,611],asin_:[569,577,606,611],asinh:[47,569,577,611],asinh_:[569,577,611],ask:[18,567],aspect:[7,23,588,591],assembl:[10,16],assert:[16,19,23,25,193,194,570,571,591,596],assert_allclos:[23,568],assert_int_or_pair:569,assign:[1,2,7,16,18,23,273,301,353,360,413,568,571,582,588,589,596,600,601,604,605,609,610,620],assign_x:570,assist:587,associ:[2,13,18,192,216,288,309,353,402,412,568,577,578,580,591,596,598,603,604,608,611],assp:190,assum:[1,10,16,17,18,19,21,23,190,201,217,243,288,346,404,412,441,456,527,543,568,570,573,577,580,583,588,590,596,597,598,603,604,605,606],assumpt:[2,288,583,587,603,604,606],assymetr:600,ast_1:[300,580],ast_2:[300,580],astyp:596,asuhan:9,asymmetr:[579,600,601],async:[2,18,412,571,590,607,611],async_add:603,async_add_chain:603,async_execut:603,async_op:18,asyncexecutionclass:603,asynchron:[4,5,22,192,193,204,309,353,402,571,585,587,603,607,610,611],atan2:[1,569,577,611],atan2_:[569,577,611],atan:[48,569,577,596,611],atan_:[569,577,611],atanh:[49,569,577,611],atanh_:[569,577,611],aten:[4,257,568,569,585,595,600],aten_thread:585,atleast_1d:569,atleast_2d:[561,569],atleast_3d:[119,569],atol:[2,38,183,568,569,573,588,611],atom:[23,571],attach:[22,408,566,568,570,577,588,600,604,611,614,616,620],attempt:[2,11,194,198,235,414,568,577,578,582,586,595,603],attend:[359,395],attent:[7,359,395,397,399,595,609],attn:[397,399],attn_mask:[359,569],attn_output:359,attn_output_weight:359,attr1:596,attr1_f:596,attr2:596,attr2_i:596,attr:[2,19,96,192,209,261,309,326,353,391,402,447,562,580,596,611],attr_itr:23,attribut:[1,2,10,16,18,23,191,192,193,194,198,199,217,302,309,353,395,402,412,413,438,567,569,571,573,582,583,586,588,594,596,597,600,603,611,615,617,618,619,620,621],attributeerror:588,audio:[583,610],aug_add_x:570,augment:[12,571],author:[17,23,468,582],auto:[18,281,282,610],autocastmodel:1,autoencod:19,autofunct:18,autograd:[1,5,6,7,19,21,43,65,72,91,122,123,124,134,150,151,164,165,192,205,215,231,251,309,315,353,402,412,451,452,470,471,472,473,474,475,476,477,501,514,535,564,565,567,569,572,580,586,587,589,590,591,596,599,606,611,619],autograd_context_id:604,autograd_hook:587,autograd_message_id:604,autograd_tensor:2,autograd_tutori:591,autom:[4,23,568,596,600],automat:[11,13,18,23,201,248,412,413,480,502,566,567,570,575,577,578,583,584,586,588,591,592,596,598,600,601,603,610,611],autorang:4,autowrap_modul:23,auxiliari:[23,566,590],avail:[2,3,11,12,13,16,18,74,196,235,395,404,456,522,527,554,566,567,570,576,580,586,588,593,595,596,599,600,601,603,619],averag:[2,18,192,270,271,272,278,279,280,281,282,283,284,285,299,301,308,309,315,321,326,327,328,329,345,346,353,356,357,358,360,367,383,384,391,400,402,412,580,587,599,601,617,620],averaged_model_paramet:597,averagedmodel:597,averaging_const:620,avg:2,avg_fn:597,avg_pool1d:[569,596],avg_pool2d:[569,596,601,617],avg_pool3d:[569,596,601],avgpool1d:580,avgpool2d:[580,617],avgpool3d:[554,580],avmgithub:9,avoid:[1,2,8,16,19,23,24,43,75,216,300,327,345,362,367,383,403,412,522,535,551,578,580,583,585,586,589,596,598,603,604,609,610,611,617],avx2:600,awai:[17,23,578,580,583],await:[571,603],awar:[4,7,578,583,601,604,611,614,616,620],axbc:437,axes:596,axi:[119,135,139,152,168,466,483,486,487,561,569,596,598,601,611,620],axis0:[528,569,611],axis1:[528,569,611],b_0:206,b_1:206,b_float32:1,b_full:586,b_hf:330,b_hg:330,b_hh:[313,314,330,331,368,370,569],b_hi:330,b_hn:313,b_ho:330,b_hr:313,b_hz:313,b_if:330,b_ig:330,b_ih:[313,314,330,331,368,370,569],b_ii:330,b_in:313,b_io:330,b_ir:313,b_iz:313,b_n:206,b_t:206,back:[1,11,17,19,21,23,91,216,566,568,588,592,596,600,603,606],backcompat:584,backend:[2,11,17,288,293,294,295,296,297,298,412,567,568,569,570,574,580,585,586,593,596,600],backend_str:18,backendtyp:603,background:[288,296,580,592,603],backoff:1,backoff_factor:1,backprop:457,backpropag:[2,19,464,573,589,597],backward:[1,2,6,8,18,19,21,23,108,120,125,171,172,192,215,217,225,231,235,281,282,288,301,302,307,309,313,315,327,330,345,346,353,360,367,368,400,401,402,409,412,413,445,457,464,511,526,530,554,567,569,573,578,580,581,582,587,588,589,590,591,592,597,600,603,606,611],bad:576,bad_kei:18,baddbmm:[1,569,596,611],baddbmm_:[569,611],bader:241,bag:[308,580],bai:9,balanc:[4,24],balnta:[400,401],band:18,bandwidth:[17,18,600,603],bao:9,bar:[4,7,23,193,198,566,568,570,575,596],bare:11,barrier:18,bartlett:65,bartlett_window:[569,572],base2:468,base:[2,4,7,8,11,12,13,16,18,19,23,121,132,142,211,219,221,223,231,241,302,353,356,357,358,395,397,399,412,418,422,424,461,468,491,499,526,527,536,545,547,567,569,573,580,583,585,587,588,591,596,597,598,600,601,603,604,609,610,620],base_distribut:19,base_lr:597,base_momentum:597,base_se:16,base_transform:19,basedistribut:19,baseexcept:22,baselin:4,baseline_exclusive_stat:4,baseline_inclusive_stat:4,basep:19,basepruningmethod:[423,429],baseq:19,basi:[4,19,217,590,597,600,603],basic:[2,4,7,23,196,217,412,571,579,584,597,601,604,609,610],batch1:[31,64,569,611],batch2:[31,64,569,611],batch:[2,17,19,23,31,64,74,75,82,85,87,108,110,112,121,177,217,225,235,236,240,241,242,281,282,283,284,285,288,293,294,299,301,302,304,305,307,308,310,313,314,315,316,321,323,324,325,326,327,330,331,332,345,346,356,357,358,359,360,365,366,367,368,370,383,384,391,395,396,397,398,399,400,401,403,408,412,437,438,440,441,456,457,464,511,512,518,522,526,527,530,543,544,546,573,577,578,580,582,586,589,592,596,598,600,603,610,613,617],batch_first:[313,330,368,369,438,440,441,569,589],batch_ndx:16,batch_norm:569,batch_norm_backward_elemt:569,batch_norm_backward_reduc:569,batch_norm_elemt:569,batch_norm_gather_stat:569,batch_norm_gather_stats_with_count:569,batch_norm_stat:569,batch_norm_update_stat:569,batch_per_it:582,batch_sampl:16,batch_shap:19,batch_siz:[16,19,437,439,440,569,589,593,610],batched_powersgd_hook:17,batchmean:[326,580],batchnorm1d:[391,580,594,601],batchnorm2d:[302,574,580,600,601,614,620],batchnorm3d:[391,580,601],batchnorm:[192,309,353,391,402,412,574,596,597,598,600,601],batchsampl:16,batchsiz:[326,580],batchwis:362,baz:23,bbb:610,bceloss:[1,282,580],bcewithlogit:1,bcewithlogitsloss:[1,580],bckenstler:597,bddppq:9,beam:568,beauti:583,becaus:[1,2,4,5,6,7,11,16,17,19,21,23,190,197,216,283,284,285,302,391,412,413,477,494,522,567,568,572,576,577,578,582,583,584,586,587,589,590,591,596,597,600,603,605,606,610,611,619],becom:[2,7,8,16,19,23,293,294,295,296,297,298,313,330,339,358,368,408,530,580,583,587,596,597,599,600,603,611],been:[1,2,10,13,16,17,18,19,23,119,125,193,194,216,313,320,330,368,418,422,424,522,561,576,577,578,580,582,583,585,591,592,595,597,603,605,606,610],befor:[1,2,4,7,13,16,17,18,19,21,23,92,104,105,113,121,140,141,192,264,302,307,308,309,310,353,354,355,391,402,403,408,410,411,412,442,444,462,465,486,494,500,501,522,525,543,551,568,570,573,576,580,582,583,586,587,588,590,591,594,595,596,597,598,603,604,605,606,610,611,620],beforehand:7,begin:[7,13,16,17,18,21,23,43,65,97,166,206,230,233,280,281,282,299,306,313,314,317,318,319,320,321,326,327,330,331,340,345,348,349,360,361,371,383,389,394,401,412,502,509,522,551,562,563,580,582,583,588,590,596,597,611,620],beginn:591,behav:[11,12,18,23,201,570,583,593,597,611,620],behavior:[2,3,7,11,15,17,18,19,23,32,54,76,80,93,116,124,144,192,198,201,215,216,231,240,302,309,326,330,353,368,391,402,404,409,446,447,464,477,484,526,566,568,571,572,573,577,580,583,584,586,593,594,596,597,603,609,611,617],behaviour:[2,37,38,42,580,597],behind:[567,594,604],being:[2,4,8,16,18,19,23,92,134,145,146,183,192,194,245,250,281,282,299,301,307,308,309,311,313,321,326,327,330,345,346,353,356,357,358,360,367,368,383,384,400,402,412,418,419,420,421,422,423,424,425,430,431,464,465,522,543,568,573,577,578,580,582,588,589,592,596,600,603,604,606,611,619,620],belair:9,believ:1,belong:[6,13,18,19,23,78,586,596,597,619],below:[1,2,11,16,17,18,19,21,23,109,110,111,112,121,192,202,243,296,297,298,301,309,315,330,350,351,352,353,360,383,402,404,412,446,544,545,546,547,568,570,572,573,576,577,580,582,586,587,588,591,592,593,594,595,596,597,598,600,603,604,605,609,617,620],ben:311,benchmark:[3,567,569,586],benefit:[7,18,576,597,600],benefiti:18,bengio:581,bernoulli:[277,303,304,305,313,330,569,577,580,611,612],bernoulli_:[569,577,611,612],bert:395,besid:[17,18,586,587,610],bessel:[170,205,520,521,556,557],best:[1,2,7,12,16,18,19,81,201,202,567,568,570,576,582,583,588,589,597,603],beta:[2,10,23,31,34,35,36,64,164,205,283,284,285,316,323,324,325,332,342,383,388,391,554,567,569,573,574,580,596,597,600,603,606,608,611],better:[4,7,8,11,13,16,182,201,353,385,412,468,494,580,582,585,586,595,596,597,599,601,610],between:[1,2,4,7,13,17,18,19,21,23,34,35,36,39,40,43,59,74,82,121,167,190,192,281,282,288,293,294,295,296,297,298,300,304,305,309,310,327,333,334,335,336,337,338,345,347,348,349,353,356,357,358,362,383,384,385,400,401,402,403,412,418,419,420,421,422,423,424,425,427,430,431,432,433,458,465,472,473,477,519,522,542,568,570,571,573,576,580,582,583,585,586,591,592,593,594,597,598,600,603,605,607,610,611,617,620],bewar:7,beyond:[8,17,486,589,591,597],bfg:597,bfloat16:[2,179,192,309,353,402,572,577,607,608,611],bfloat16tensor:[608,611],bia:[4,8,192,273,286,293,294,295,296,297,298,309,313,314,330,331,332,333,334,335,336,337,338,339,341,353,359,368,369,370,402,408,412,426,428,430,442,444,569,574,580,588,591,594,600,610,614,615,616,617,618],bias:[4,17,283,284,285,313,314,316,323,324,325,330,331,332,368,370,391,520,521,556,557],bias_:[617,618],bias_defin:569,bias_g:569,bias_hh:[314,331,370],bias_hh_l:[313,330,368],bias_ih:[314,331,370],bias_ih_l:[313,330,368],bias_k:569,bias_mask:[426,428],bias_v:569,bicub:[404,554,580],bidirect:[313,330,368,369,569,596],big:[7,514,606],big_net:591,bignet:591,bij:121,biject:19,biject_to:19,bik:121,bilinear:[1,121,404,405,554,569,601,617],bin:[67,167,569,610,611,620],binari:[1,3,11,12,17,19,66,239,281,282,359,426,427,428,429,430,431,432,433,567,571,577,578,580,590,596,610,611],binary16:[608,611],binary_cross_entropi:569,binary_cross_entropy_with_logit:569,bincount:[554,569,611],bind:[11,13,567,571,596],binomi:569,bit:[7,23,24,495,507,586,595,600,601,602,606,608,611,618,620,621],bit_width:569,bitshift:596,bitwidth:[579,600],bitwis:[18,68,69,70,71,571],bitwise_and:[569,611],bitwise_and_:[569,611],bitwise_not:[569,577,611],bitwise_not_:[569,577,611],bitwise_or:[569,611],bitwise_or_:[569,611],bitwise_xor:[569,611],bitwise_xor_:[569,611],bivari:19,bjk:121,bla:585,blackman:72,blackman_window:[569,572],blane:241,blank:[288,569,571,580],blitz:591,blob:[590,596,610],blobnam:610,block0:[568,596],block1:568,block:[4,7,13,16,18,22,23,73,206,217,293,294,295,296,297,298,310,333,334,335,336,337,338,356,403,412,568,570,576,579,580,583,587,596,603],block_diag:569,block_siz:4,blocked_autorang:4,blocklist:574,blog:[7,600],blogpost:609,blow:589,bmatrix:206,bmm:[1,236,237,554,569,577,593,606,611],bmva:401,bmvc:401,bn1:620,bn_state_dict:594,bnmodul:620,board:8,bob:598,bodi:[199,568,570,571],boil:7,boilerpl:591,bool:[1,2,3,6,11,13,16,18,19,21,23,37,38,39,40,42,43,51,52,53,65,68,69,70,71,72,74,78,79,85,86,87,120,122,123,124,127,134,149,150,151,152,164,165,178,179,180,183,190,192,194,196,201,202,205,207,215,217,226,227,228,229,231,232,235,237,243,244,246,247,249,252,257,262,263,264,273,277,281,282,288,293,294,295,296,297,298,299,301,304,305,307,308,309,315,321,326,327,333,334,335,336,337,338,345,346,353,356,357,358,360,362,367,379,383,384,400,401,402,404,412,413,438,439,440,441,447,451,452,456,462,464,465,468,470,471,472,473,474,475,476,477,494,498,499,513,514,520,521,522,525,526,530,535,539,543,551,552,554,555,556,557,564,565,566,568,569,570,572,573,575,576,577,578,580,594,596,597,598,602,603,606,607,608,610,611,617,619,620],bool_tensor:608,booltensor:[239,359,395,562,608,611],bootcamp:7,bootstrap:595,bor:18,border:580,both:[2,4,13,16,17,18,19,21,23,64,116,120,145,146,147,153,167,171,172,176,184,190,192,207,208,240,247,278,279,283,284,285,290,293,294,295,296,297,298,309,310,316,323,324,325,330,331,332,333,334,335,336,337,338,347,348,349,353,391,402,403,404,412,464,481,522,526,530,568,570,573,577,578,579,580,582,584,588,591,593,594,596,597,598,600,603,605,606,611,617],bottleneck:567,bottom:[2,580],bound:[5,12,17,78,89,135,136,230,278,279,280,347,348,349,371,476,494,571,580,581,597,611],bound_async_add:603,boundari:[4,23,78,290,291,292,374,375,376,377,378,404,407,494,569,580,597,598,603,617],bowen:9,bowenbao:9,box:[10,578,583,587],bozkurt:9,bparam:217,bptt:589,bracket:604,brain:[608,611],branch:[7,23,566,570],brand:18,breakpoint:23,bregman:19,brendangregg:599,breviti:[2,23,596],brief:[18,412,576,603],bring:[21,23,580,598,603],broadcast:[13,18,19,30,31,32,33,34,35,36,59,64,74,75,76,77,97,115,116,121,126,144,145,146,147,152,154,163,169,171,172,210,211,234,239,240,251,256,259,266,269,315,359,412,455,461,481,483,523,537,562,567,573,577,578,587,596,611],broadcast_buff:412,broadcast_coalesc:13,broadcast_multigpu:18,broadcast_object:18,broadcast_object_list:18,broadcast_tensor:[75,569],broadcast_to:[569,611],broadcast_warn:584,broader:[8,590,612],broken:[7,13,16],brokenpipeerror:595,bsize:610,bubbl:598,bucket0:587,bucket1:587,bucket:[17,273,412,494,569,587],bucket_cap_mb:[412,587],buf:[192,309,353,402],buffer:[2,5,13,16,192,197,198,207,216,283,284,285,302,309,353,391,402,412,414,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434,491,513,539,570,583,587,588,591,594],buffer_s:[13,16],bufferedshuffledataset:16,bug:[1,8,23,235,582,592],bugfix:7,build:[2,11,12,18,19,23,395,568,579,580,583,600,604,610],build_directori:11,build_ext:11,build_my_extens:11,buildextens:11,built:[3,4,7,17,18,23,94,401,583,585,591,592,597,619],built_with_debug_symbol:4,builtin:[4,23,200,216,477,568,570,571,603,605],bulk:16,bump:353,bundl:590,bvar:217,bwd:1,bxor:18,bypass:586,byte_arrai:216,bytecod:16,bytesio:[197,198,216,491],bytesliter:571,bytetensor:[13,24,160,359,395,503,602,608,611],c10:590,c10_log_api_usage_onc:590,c10d:[18,412,587],c655:217,c676:217,c99:595,c_0:[330,331],c_1:331,c_float32:1,c_j:[278,279,280,347,348,349],c_n:330,c_t:330,cach:[3,4,13,19,413,576,589,611],cache_s:19,caffe2:[596,610],calcul:[2,6,16,74,82,108,110,113,125,190,222,223,225,278,279,280,283,284,285,288,296,297,298,310,315,316,323,324,325,332,391,403,404,412,423,442,445,447,457,499,511,520,521,530,545,547,556,557,558,573,580,583,584,587,595,596,597,600,617,620],calculate_gain:[572,581],calculate_qparam:620,calib_data:620,calibr:[582,600,620],call:[1,2,4,11,12,13,16,17,18,19,21,22,23,77,155,180,192,193,195,198,199,200,205,216,217,277,283,284,285,302,303,304,305,307,309,310,339,350,351,352,353,360,361,391,402,403,409,410,411,412,423,426,427,428,430,431,432,433,442,444,445,453,454,460,474,500,501,522,537,554,566,568,571,573,576,578,580,582,583,585,586,587,588,589,590,591,592,593,595,596,597,598,599,600,603,604,605,606,608,609,610,611,613,617,619,620,621],call_funct:23,call_method:23,call_modul:23,call_self:23,callabl:[4,16,19,22,23,193,199,201,216,217,401,412,566,568,570,571,591,597,599,603,611,619,620],callback:[4,17,22,412,590,599,603],calle:[603,605],caller:[4,23,583,586,603,605],callfunct:23,callgrind:4,callgrind_annot:4,callgrind_control:4,callgrindstat:4,callsit:23,camera:[590,610],can:[2,4,5,6,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,32,55,66,81,87,120,121,122,126,138,154,163,177,190,192,193,194,196,198,199,201,202,207,210,216,234,235,237,248,266,271,272,273,275,276,277,278,279,280,281,282,283,284,285,287,288,293,294,295,296,297,298,301,302,303,306,307,309,311,313,318,319,320,326,327,329,330,340,344,345,347,348,349,350,351,352,353,354,355,358,360,363,364,367,368,369,370,371,372,373,379,380,383,388,391,394,395,401,402,404,408,409,410,411,412,414,415,437,438,447,451,461,470,474,484,491,499,500,502,512,513,514,518,522,526,535,539,543,553,564,566,567,568,569,570,573,574,576,577,578,580,582,584,585,586,587,588,590,591,592,593,594,595,596,597,598,599,600,601,603,604,605,606,608,609,610,611,612,613,617,619,620,621],can_cast:569,can_device_access_p:13,cancel:[4,190],candid:2,cannot:[1,2,4,16,18,19,21,22,23,138,190,195,257,288,307,404,408,412,527,566,568,569,570,571,572,578,580,583,587,588,594,595,596,603,605,606,607,608,611,619],capabl:[11,12,13,18,468,586,590,603,612],capac:[3,13,586],capacit:19,captur:[2,12,13,23,193,568,571,586,588,596],card:[11,595],cardin:19,care:[4,7,11,18,19,21,23,353,530,576,585,586,587,588,589,591,592,594,606],carefulli:596,carlo:19,carol:598,carri:[1,584,600,611,620],carrier:19,cartesian:[19,80,459],cartesian_prod:569,casa:241,cast:[1,2,79,104,105,192,264,309,353,402,447,462,514,525,568,573,580,582,596,606,607,608,611],cast_input:[1,582],cat:[1,19,23,372,568,569,577,596,600,606,611,617],categor:[7,571,580,603],categori:[19,257,572,596,608],categorynam:610,cauchi:[583,611,612],cauchy_:[569,577,611,612],caught:[18,576],caus:[1,2,3,4,6,11,16,17,18,120,199,201,408,446,522,568,576,580,584,586,588,589,592,593,595,596,600,605,611],caution:412,caveat:[408,576,586,594],cb_fut:22,ccc:610,cdf:19,cdist:[1,586],cdot:[171,172,206,260,281,282,300,319,326,356,357,358,359,360,459,522,580],cdoubl:[2,10,177,192,236,309,353,402,526,573,608,611],ceil:[16,278,279,280,328,329,347,348,349,569,577,580,596,611,617],ceil_:[569,577,611],ceil_mod:[278,279,280,328,329,347,348,349,569,580,617],cell:[314,330,331,370,601,618],cellparamsbas:569,celu:[569,596],celu_:569,center:[21,190,456,522,569,580,583,597,610,611,617],central:590,cerr:590,certain:[13,16,17,18,23,110,190,192,197,216,309,332,353,359,402,403,446,578,580,584,588,590,596,597,598,603,604],cfloat:[2,10,18,173,236,479,526,560,573,608,611],ch_axi:620,chain:[2,16,19,22,84,308,583,591,611],chain_cb_fut:22,chain_matmul:[1,569],chainabl:597,chaindataset:16,challeng:[7,604],chanan:[8,9],chanc:[7,19],chang:[1,2,4,7,10,13,17,18,19,21,22,23,96,110,157,174,192,198,199,307,309,326,330,353,383,402,404,408,409,412,414,446,464,518,522,541,554,567,568,573,574,576,577,578,580,582,583,584,585,586,588,591,594,595,596,597,598,600,603,605,606,607,608,609,610,611,620],channel:[8,16,135,190,283,284,285,289,293,294,295,296,297,298,303,304,305,310,316,323,324,325,332,333,334,335,336,337,338,342,361,386,391,403,404,405,406,422,423,424,431,432,444,466,578,579,580,581,583,596,600,601,610,611,617,620],channel_shuffl:[289,569],channels_last:[192,309,353,402,412,608],chao:217,charact:[502,568,578,580,603],characterist:[527,591],chart:610,chartensor:[608,611],chartnam:610,chauhan:9,chauhang:9,cheap:[19,273],cheaper:16,check:[1,5,10,11,13,16,18,19,38,182,190,201,202,235,339,408,429,439,494,566,570,571,577,578,582,586,588,589,590,591,593,596,597,598,603,610,611,619],check_batched_grad:2,check_compiler_abi_compat:11,check_grad_dtyp:2,check_hash:[566,575],check_input:[201,202,568],check_model:596,check_reduct:412,check_sparse_nnz:2,check_toler:[201,202],check_trac:[201,202],check_undefined_grad:2,checker:[201,202,596],checkout:596,checkpoint:[1,2,216,412,566,567,575,598,605],checkpoint_sequenti:6,cher:9,cherniavskii:9,child:[16,192,309,353,402,423,576,591,595,601,605,620],children:[4,192,309,353,402,576,591,601,605,620],chintala:[8,9],choic:[4,18,201,354,363,468,585,596],choleski:[19,86,87,217,569,573,611],cholesky_invers:[569,611],cholesky_solv:[569,611],choos:[2,12,23,74,281,581,582,585,610],choose_qparams_optim:569,chose:582,chosen:[1,110,207,502,513,539,582,588,596,600,620],chr:569,christian:9,chrome:[2,599],chunk:[6,13,16,18,81,302,412,515,568,569,577,598,603,609,611],chunk_siz:13,chw:610,circleci:7,circular:[19,293,294,295,333,334,335,580],circumst:[288,293,294,295,296,297,298,580],circumv:6,claim:[7,597],clamp:[23,90,196,230,281,315,569,574,577,580,596,600,611,620],clamp_1:23,clamp_:[569,577,611],clamp_max:[569,596],clamp_max_:569,clamp_min:[569,596],clamp_min_:569,class_async_add:603,class_index:16,class_nam:23,classat_1_1_tensor:12,classic:583,classif:[282,288,301,356,358,360,384,567,580,581,600],classifi:[567,583,596,597,600,610],classmethod:[13,307,308,391,418,419,420,421,422,423,424,425,571,588,603,616,617,618,620],classvar:570,claus:589,clean:[13,18,23,566,576],cleaner:583,clear:[3,23,354,363,566,586,594,597],click:612,client:[18,603],client_stor:18,cliff:2,clip:[1,415,416,569,611],clip_:[569,611],clip_grad_norm_:[1,582],clip_grad_value_:582,clip_valu:416,clone:[2,12,16,54,76,124,194,307,535,543,569,576,580,594,599,601,606,607,608,611],cloned_coeffici:543,close:[12,13,78,183,401,494,588,603,610],closer:[401,591],closest:[82,488,580],closur:1,cloud:610,clr:[84,597],cls:[588,603,611],cls_to_becom:[333,334,335,336,337,338,339],cluster:[273,610],clutter:610,cmake:595,cmake_gener:595,cmake_include_path:595,cmdclass:11,cnn:[383,583,600,601],coalesc:[4,13,569,587,606,611],code:[2,4,5,8,10,11,12,16,17,18,19,192,194,195,198,199,200,201,202,203,216,369,412,501,566,570,573,578,583,584,587,588,589,590,591,592,594,595,596,597,602,603,604,605,608,609,611,619],code_iteration_to_profil:599,code_to_profil:599,code_with_const:192,codebas:8,codec:216,codomain:[19,583],coeffici:[164,543,597],coexist:578,cohes:8,coin:[381,580],col2im:[310,569],col:[545,547,569],col_offset:569,col_offsets_hh:569,col_offsets_ih:569,colesburi:[8,9],collaps:577,collat:16,collate_wrapp:16,collect:[2,4,7,16,22,23,82,122,412,451,470,474,564,569,570,597,599,601,603,605,606,610,620],collect_al:22,collect_baselin:4,collect_callgrind:4,collecton:599,collector:617,colon:[15,330,368,603],color:[325,570,610],colors_tensor:610,column:[2,4,17,92,120,134,140,141,168,217,233,257,403,456,464,526,545,547,555,573,580,581,606,611],column_stack:569,columns_prun:432,com:[7,8,18,395,554,566,575,593,595,596,599,600],combin:[1,4,13,16,21,22,282,301,310,403,423,562,568,569,570,580,582,586,596,598,600,601,603,613,614],combinations_with_replac:93,come:[7,16,19,121,216,304,305,574,590,603,605],comm:[13,17,587],comma:[18,121],command:[2,5,18,23,595,598,599,604],comment:[7,23,571,588,610],commit:[7,8,566,567,593],committ:8,common:[4,16,23,43,75,97,116,121,144,145,146,147,153,171,172,208,216,283,284,285,288,391,409,411,481,491,523,573,578,586,588,589,592,594,601,609],commonli:[18,19,572,582,583,591,597,600,608],commun:[7,8,412,567,583,587,603,604],commut:23,comp:19,compact:[21,588,600],compani:8,companion:23,compar:[2,4,6,11,16,21,23,38,43,126,145,146,154,163,183,210,234,245,250,266,353,412,586,588,595,600,601,603,610],comparison:[4,17,23,201,202,571,588],compat:[11,16,19,75,96,195,203,215,231,484,567,570,576,577,582,588,594,600,607,611],compens:17,compet:4,compil:[11,12,13,23,194,195,199,200,201,202,203,568,570,571,572,582,585,590,595],compilationunit:[201,202],complementari:129,complet:[7,13,16,18,22,193,199,204,412,464,567,570,571,573,576,580,582,583,586,593,598,603,604,611],complex128:[10,95,142,149,177,178,192,309,353,402,459,496,562,573,608,611],complex32:611,complex64:[10,21,95,149,178,459,496,573,608,611],complex:[1,2,4,7,17,18,21,23,87,96,116,120,142,173,177,178,184,185,186,189,190,192,206,217,245,250,309,327,353,402,447,457,459,468,479,481,496,504,512,522,523,526,543,558,559,560,562,567,569,571,573,592,607,608,611],complex_doubl:607,complex_double_tensor:608,complex_float:607,complex_float_tensor:608,complex_tensor:10,complexfloat:[447,573],complic:[5,23,578,584,596,603,605],compon:[4,7,12,18,19,21,23,396,398,456,522,559,560,571,583,587,590],component_distribut:19,compos:[19,23,85,87,177,270,271,272,274,275,276,278,279,280,293,294,295,296,297,298,311,328,329,342,347,348,349,400,405,406,568,577,580,591,596,610,617],composetransform:19,composit:[19,568,591],compound:571,comprehens:[571,578,586,600],compress:[17,21,412],compris:6,comput:[1,4,6,7,10,11,13,16,17,18,19,21,26,28,41,55,68,69,70,71,82,84,85,86,93,96,113,114,115,118,120,121,125,126,128,129,130,132,142,144,145,146,147,148,153,154,155,163,166,167,170,171,172,176,192,193,199,205,206,208,210,214,217,226,227,228,229,232,233,234,235,241,243,245,247,250,260,263,266,273,277,278,279,280,283,284,285,300,303,307,308,309,313,316,323,324,325,328,329,330,332,344,347,348,349,350,351,352,353,360,362,367,368,385,387,391,400,401,402,408,410,412,415,418,419,420,421,422,423,424,425,426,427,430,431,438,444,445,453,460,464,465,481,482,499,509,522,526,527,530,537,558,563,568,573,577,578,579,580,582,585,586,588,589,591,596,597,600,601,603,606,611,617,620],compute_mask:[418,419,420,421,422,423,424,425],compute_mod:82,compute_uv:[526,569,573,611],compute_z:585,conatin:196,concat:[359,596],concatdataset:16,concaten:[2,11,13,16,81,92,119,168,288,293,294,295,296,297,298,308,415,519,561,571,580,596,606],concentr:19,concentrarion:19,concentration0:19,concentration1:19,concept:[7,23,591,596,608],conceptu:[2,4,583,605],concern:[16,576],concis:603,concret:[19,23,404,568,580,588,592,617,620],concrete_arg:23,concurr:[18,585,586,603,604],cond:[573,596],conda:[567,595,596],condit:[2,14,23,25,38,190,201,313,330,368,439,562,568,569,570,571,573,583,588,596,610,611],condition:[2,499],conduct:[8,412,456,527,603],confer:[8,315],confid:[7,610],config:[17,23,595],config_dict:610,configur:[0,7,16,17,18,412,437,498,554,586,587,593,595,600,601,603,610,620],confirm:[7,568,588,596,603,605],confirmed_by_own:603,conflict:[17,596],conform:437,confound:4,conj:[21,569,573,611],conjug:[2,10,87,96,120,217,522,526,558,573,597],conjunct:[4,16,412,573,580],connect:[18,293,294,295,296,297,298,333,334,335,336,337,338,576,583,601,603],connectionist:[288,580],conquer:[526,573],consecut:[1,18,551,552,578,596,611],consensu:7,consequ:[330,526,573,583,586],consid:[2,17,21,23,38,87,109,110,111,112,183,186,189,192,243,309,310,326,353,356,402,403,413,418,419,420,421,422,423,424,425,530,544,545,546,547,566,568,580,582,583,584,588,589,591,597,599,604,605,606,608,611,617,619],consider:[7,59,190,308,412,585],consist:[2,16,19,23,85,412,447,464,526,530,568,573,578,591,593,596,597,620],consol:610,constant:[2,16,23,139,140,141,190,192,194,201,217,290,291,292,308,310,315,403,457,569,573,580,582,588,591,596,597,606,617,620],constant_:581,constant_pad_nd:569,constantpad2d:580,constantpadnd:596,constitu:23,constitut:23,constmap:192,constrain:[19,388],constraint:[2,412,437,596],constraint_registri:19,constraintregistri:19,construct:[2,11,12,16,18,19,23,95,109,155,192,199,201,202,209,215,216,231,309,353,402,408,412,437,456,459,514,527,535,538,568,583,587,591,592,594,600,603,605,608,610,611],construct_transform:19,constructor:[4,11,16,23,273,358,380,405,406,412,568,571,586,587,603,606,608,611,620,621],consum:[4,16,20,121,576,592,610],consumpt:[2,445,606,610],contain:[1,2,4,6,10,11,12,13,16,18,19,21,23,24,31,64,65,66,72,74,78,97,120,121,142,147,164,165,173,174,192,196,197,198,201,202,205,216,233,235,239,247,257,262,273,282,301,302,307,308,309,310,313,314,316,321,326,330,331,346,353,354,355,360,363,364,368,370,380,384,391,402,403,408,410,411,412,418,419,420,421,422,423,424,425,426,428,430,431,432,433,434,435,436,437,438,439,440,442,444,446,456,458,479,481,491,494,511,512,522,526,530,537,545,547,551,552,568,570,571,573,578,580,582,583,587,588,589,590,591,594,596,597,600,603,605,606,607,608,610,611,612,613,619,620],content:[2,4,7,23,197,198,518,541,566,575,576,597,603,609,610,611],contenti:8,context:[1,13,23,125,192,309,353,402,412,445,499,571,576,582,586,588,590,592,596,599,602,603,605,611,612],context_id:[412,603,604],contigu:[2,10,17,177,309,356,412,478,484,512,526,530,569,573,578,580,606,607,609,611],contiguous_format:[122,412,608,611],continu:[2,16,18,19,287,288,326,457,571,583,594,596,599,611,612,620],continuous_bernoulli:19,continuum:595,contract:[537,578],contrari:[7,585],contrast:[4,19,597],contribut:[2,8,301,360,412,542,567,580,598],contributor:[7,8],control:[1,2,3,11,16,17,19,53,65,72,109,110,111,112,164,165,199,200,201,235,273,293,294,295,296,297,298,310,340,348,349,403,412,498,513,522,526,530,539,544,545,546,547,568,573,583,585,586,587,591,592,594,596,605,620],controlflowmodul:594,controlflowmodule_script:594,controlflowmodule_trac:594,conv1:[199,353,380,568,600,610,620],conv1d:[1,296,333,554,569,601,613],conv2:[199,353,380,568,600],conv2d:[1,199,201,202,297,304,309,334,353,354,360,380,403,431,554,568,569,574,596,600,601,610,613,614,615,620],conv3d:[1,298,305,335,554,569,600,601,615],conv4:[192,309,353,402],conv5:[192,309,353,402],conv:[23,201,202,293,294,295,296,297,298,354,360,574,581,586,596,600,601,613,615,620],conv_bn_fus:574,conv_tbc:569,conv_transpose1d:[1,569],conv_transpose2d:[1,569],conv_transpose3d:[1,569],convbn1d:601,convbn2d:601,convbnmodul:620,convbnrelu1d:601,convbnrelu2d:601,conveni:[1,4,7,11,408,566,570,582,586,588,590,591,602],convent:[2,21,23,121,283,284,285,323,324,325,353,391,491,542,566,575,583,594,596,611],converg:[217,573,582,597],converged_count:217,convers:[7,79,180,437,571,583,596,600,611],convert:[2,16,17,19,21,23,55,80,93,106,192,309,353,391,402,408,414,417,443,466,467,469,568,569,570,588,596,600,601,610,611,620],convert_custom_config_dict:620,convert_fx:600,convert_sync_batchnorm:391,convmodul:620,convolut:[1,2,3,293,294,295,296,297,298,304,305,333,334,335,336,337,338,365,366,371,400,401,403,569,574,581,585,586,591,599,601,617],convolv:[293,294,295,296,297,298,333,334,335,336,337,338,580,617],convrelu1d:601,convrelu2d:601,convrelu3d:601,convtranspos:442,convtranspose1d:[336,554,580],convtranspose2d:[337,554,580],convtranspose3d:[338,554,580],coo:[514,608,611],cooldown:597,coordin:[7,18,19,59,459,514,545,547,583,606,610,611],cope:592,copi:[7,10,13,16,17,18,23,55,91,138,139,140,141,192,199,217,302,309,310,353,402,403,412,437,478,484,535,568,569,576,584,586,588,592,596,598,600,601,603,606,607,608,609,611,620],copy_:[2,404,568,569,577,586,601,607,611],copysign:[569,611],copysign_:[569,611],copyslic:583,core:[3,4,7,13,585,586,587,596],corner:[73,404,580,617],coroutin:571,corpor:[7,8],corr_choleski:19,corrcholeski:19,corrcholeskytransform:19,correct:[4,5,7,18,19,21,174,201,202,302,326,408,412,437,501,520,521,526,556,557,568,570,573,577,578,607,611],correctli:[6,16,18,201,526,568,570,578,580,582,583,588,592,593,596,603,611],correl:[2,19,293,294,295,296,297,298,304,305],correspond:[1,2,7,16,18,19,21,23,55,86,116,120,183,192,202,217,256,257,302,307,309,330,353,359,395,402,412,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,442,447,458,459,486,494,553,566,568,569,573,577,578,580,582,586,587,588,590,593,596,597,600,601,603,604,606,607,610,611,613,620],correspondingli:574,corrupt:[1,18,302,592],cos:[28,72,164,165,241,299,300,459,569,577,596,597,610,611],cos_:[569,577,611],cosh:[1,29,569,577,611],cosh_:[569,577,611],cosin:[28,29,98,99,299,300,580,597],cosine_embedding_loss:[1,569],cosine_similar:[1,401,569],cosineannealinglr:597,cosineannealingwarmrestart:597,cosineembeddingloss:580,cost:[2,4,5,17,84,288,293,294,295,296,297,298,580,593,604],could:[5,7,13,16,19,21,23,190,216,235,326,457,551,570,576,583,586,587,595,597,600,603,604,605,606,609],couldn:[595,596],count:[2,4,13,19,67,100,437,551,552,569,603,605],count_include_pad:[278,279,280,569,580,617],count_nonzero:[569,611],counter:[2,13,18,302,576,583],counterintuit:583,counterpart:[412,574,600,601,612,620],countnam:599,coupl:[590,604],cours:[5,23,566,587,588,597,603],courtesi:19,cov_diag:19,cov_factor:19,covari:[19,75,283,284,285,391,456],covariance_matrix:19,cover:[23,121,347,572,578,588,590,591,600,601,603],coverag:[7,567,568,572,578,603,619],cpp:[7,8,11,18,257,587],cpp_autograd:12,cpp_c10d_extens:18,cpp_extens:[18,567,588],cpp_frontend:12,cpp_sourc:11,cppdoc:[7,12],cppextens:11,cprofil:5,cpu:[1,2,5,11,13,18,21,24,43,55,65,72,99,122,124,134,147,150,158,159,164,165,192,197,198,205,215,216,231,235,247,302,307,309,353,402,412,437,438,451,457,464,470,472,474,476,477,498,500,501,510,514,526,535,536,537,545,547,551,554,564,567,568,569,573,574,576,577,580,586,591,592,593,595,596,599,600,602,603,606,607,608,611,612],cpu_memory_usag:2,cpu_model:568,cpu_tim:2,cpu_time_tot:2,cpuhrsch:9,cpython:4,crack:7,crash:[18,576,583,603,605,610],creat:[1,2,4,6,7,11,13,16,17,18,19,22,23,24,54,73,75,91,92,97,110,124,149,150,190,193,200,204,209,215,231,248,257,281,299,307,308,310,327,345,346,356,357,358,383,384,391,400,401,403,412,414,437,514,535,571,573,574,576,582,583,586,587,588,591,592,594,596,597,599,600,601,603,604,605,606,607,609,610,611,612,616,617,618,620,621],create_arg:23,create_args_for_root:23,create_extens:595,create_graph:[2,569,582,611],create_nod:23,creation:[2,13,16,412,418,568,571,576,586,603,605,611,617,618,620],creator:[583,603,605],crelu:372,criteria:217,criterion:[217,281,282,299,301,326,327,345,346,356,357,358,383,384,400,401,468,580,589,597],critic:[442,585,600,620],cross:[1,7,19,281,293,294,295,296,297,298,569,580,586,595,611],cross_entropi:[1,569],crossentropyloss:[360,580],crucial:12,csc:606,csr:[308,606],csrc:[595,596],ctc_loss:[288,569],ctcloss:[554,580],ctx:[2,582,588],ctx_id:603,cube:[272,276,468],cubic:580,cubla:[10,13,554,573,593],cublas_workspace_config:[15,330,368,554,593],cublasapi_reproduc:[554,593],cublashandle_t:13,cuda0:[586,611],cuda101:595,cuda1:608,cuda2:586,cuda:[2,4,5,6,11,15,16,18,21,24,43,55,65,67,72,74,120,122,124,134,150,164,165,192,205,207,215,216,231,235,252,288,293,294,295,296,297,298,302,307,309,330,353,368,391,402,408,412,446,451,464,470,472,474,476,477,514,526,535,537,545,547,551,554,564,567,569,573,577,580,582,588,591,596,597,598,599,600,602,603,606,607,608,611,612],cuda_extens:11,cuda_hom:11,cuda_launch_block:[15,330,368,586],cuda_memory_usag:2,cuda_prefix:595,cuda_runtim:11,cuda_sourc:11,cuda_tim:2,cuda_time_tot:2,cuda_visible_devic:[13,412,586],cudaev:2,cudaeventsynchron:13,cudaextens:11,cudamalloc:13,cudart:[11,595],cudastreamsynchron:13,cudastreamwaitev:13,cudnn:[14,15,288,293,294,295,296,297,298,313,330,368,369,569,580,586,593],cudnn_affine_grid_gener:569,cudnn_batch_norm:569,cudnn_convolut:569,cudnn_convolution_transpos:569,cudnn_en:569,cudnn_grid_sampl:569,cudnn_is_accept:569,cufft:3,cufft_plan_cach:[3,586],cuh:11,cultur:8,cummax:[569,611],cummin:[569,611],cumprod:[1,569,577,611],cumprod_:[569,611],cumsum:[1,569,577,596,611],cumsum_:[569,611],cumul:[19,102,103,104,105,224,283,284,285,312,391,580],cunningham:19,cur:597,curiou:583,curl:595,current:[1,2,3,4,6,8,10,11,13,16,17,18,21,22,23,24,43,55,65,72,113,122,124,134,149,150,157,164,165,192,194,201,205,215,217,231,307,309,310,353,391,402,403,412,414,421,422,423,424,425,430,431,432,433,451,464,470,472,474,476,477,514,535,545,547,551,562,564,568,570,571,572,576,580,582,586,590,591,594,595,596,597,598,600,601,603,604,606,607,608,610,611,617,619,620],current_blas_handl:13,current_datetime_hostnam:610,current_devic:[13,18,608],current_stream:[13,586],curv:610,cusolv:[526,573],custom:[1,4,11,12,16,18,192,307,353,395,400,401,412,418,427,571,576,577,583,590,593,594,595,601,611,620],custom_bwd:[1,582],custom_decod:395,custom_domain:596,custom_encod:395,custom_fwd:[1,582],custom_loop:596,custom_module_class_map:620,custom_op:596,custom_op_nam:620,custom_opset:596,custom_qconfig:600,customiz:571,custommodul:620,cut:[7,601],cutoff:[273,457,573],cxx11:12,cxx:11,cycl:[2,597,599,611],cycle_momentum:597,cyclic:597,cycliclr:597,d_1:[301,360,580],d_2:[301,360,580],d_float32:1,d_k:[301,360,580],d_model:[395,396,397,398,399],daemon:576,dag:2,dai:7,damania:9,dampen:597,danger:605,daniel:19,dantu:9,dash:[603,605],data:[1,2,4,7,10,14,18,19,21,23,43,55,65,72,78,104,105,122,123,124,134,135,136,138,139,140,141,150,151,164,165,167,178,179,197,201,205,215,216,217,231,237,264,286,288,302,313,316,323,324,325,330,332,341,360,368,369,404,412,413,414,437,438,439,440,447,451,452,456,462,465,466,467,468,470,471,472,473,474,475,476,477,484,494,514,525,526,535,545,547,553,564,565,567,568,569,571,573,576,580,582,583,584,586,588,590,592,593,594,595,597,600,601,603,605,606,607,608,609,610,611,612,617,620],data_load:[592,597],data_parallel:589,data_ptr:[572,577,607,609,611],data_sourc:16,data_typ:[600,601],databas:16,dataformat:610,dataload:[16,412,586,589,595,597,610,611],dataparallel:[1,18,412,440,589,592,603],dataset:[273,282,589,590,595,597,600,610,620],dataset_it:16,datatyp:[1,192,243,309,353,402,414,573,596],date:23,datetim:18,david:[9,273],dcgan:596,ddot:206,ddp:[391,412,567,587],ddp_comm_hook:17,ddp_model:[17,412,587],ddp_sync_bn_network:391,deadlock:[18,412],deal:[7,537,576,589],dealloc:[2,576,586,589,599],debug:[2,5,16,18,410,411,570,583,585,586,590,591,593,595,596,601],debugg:195,debuginfoguard:590,decai:[361,597],decemb:468,decent:16,decid:[5,7,18,427],decim:621,decis:[23,201,582],declar:[2,11,16,570,571,596,598],decod:[20,216,395,396,397,412],decoded_tensor:412,decoder_lay:[396,397],decompos:[17,23,573,583],decomposit:[19,23,85,155,456,457,464,526,527,573],decomposition_rul:23,decompress:[17,566,575],deconvolut:[296,297,298,580],decor:[1,2,19,23,125,195,199,203,445,568,570,582,588,598,603,619],decoupl:[444,597],decreas:[13,19,304,305,366,438,439,542,574,593,597,608],dedic:586,deep:[7,8,23,283,284,285,391,567,581,597,600,601],deepcopi:600,deeper:591,def:[1,2,16,19,22,23,125,192,193,194,195,196,198,199,201,202,203,309,353,354,355,363,364,401,402,408,412,445,566,568,570,578,582,583,585,587,588,589,591,592,593,594,595,596,597,598,599,600,603,604,605,611,619],default_dynamic_qconfig:[600,601],default_eval_fn:[601,620],default_fake_qu:601,default_gener:612,default_hook:17,default_mask:[418,419,420,421,422,423,424,425],default_observ:[601,620],default_qat_qconfig:601,default_qconfig:601,default_stream:[13,18],default_tim:4,default_weight_fake_qu:601,default_weight_observ:601,defer:[17,598],deferred_batch_norm:598,defin:[1,2,4,6,11,12,16,17,18,19,21,23,121,122,124,128,129,130,150,153,155,166,183,208,217,241,248,252,302,320,328,329,353,371,385,387,394,408,412,422,424,431,432,448,451,464,470,472,474,502,530,544,545,546,547,562,564,566,568,572,573,576,577,580,583,587,591,595,596,597,598,600,603,606,611,612,619,620],define_macro:595,definit:[7,16,19,23,85,86,87,206,326,447,481,566,568,570,571,573,580,582,583,588,596,600,610],deg2rad:[569,577,606,611],deg2rad_:[569,577,606],degrad:[4,585,588],degre:[19,106,362,400,469,487,569],del:[571,576,589],delai:605,delet:[18,23,566,574,576,602,603,605],delete_kei:18,delimit:571,deliv:[8,599],deliveri:605,delta:[4,19,313,321,330,581,597],delv:581,demand:[13,16,570,590,603],demonstr:[23,288,591,594,598,603],denois:4,denomin:[32,283,284,285,316,323,324,325,332,391,597],denorm:498,denot:[2,19,23,206,293,294,597,604,606],dens:[2,65,72,74,164,165,205,217,527,554,593,606,608,611],dense_dim:[514,569,606,611],densenet:596,densiti:19,depend:[2,5,6,11,16,18,19,21,23,199,201,240,281,282,299,301,308,310,321,326,327,345,346,356,357,358,360,367,383,384,400,403,404,423,456,468,484,543,562,566,568,570,573,576,580,585,586,588,596,597,600,603,611,617],dependent_properti:19,deplet:412,deploi:[7,590,594],deploy:567,deprec:[13,18,108,144,156,177,190,192,215,231,243,281,282,299,301,309,320,321,326,327,345,346,353,356,357,358,360,367,383,384,400,402,405,406,409,412,447,457,464,477,511,522,526,568,572,576,580,584,596,599,601,603,607,611,617],depth:[13,280,295,298,349,404,580,591,617],depthwis:[119,293,294,295],dequant:[569,600,601,611,620],dequantstub:[600,601,620],deriv:[2,8,10,18,114,190,235,408,412,457,460,570,588,601,603,611,617,620],derivedp:19,derivedq:19,descend:[23,53,192,309,353,402,513,526,569,573,611],descent:[10,19,583,591,597],describ:[1,6,7,13,16,17,23,79,121,206,273,278,279,280,281,282,283,284,285,293,294,295,296,297,298,301,303,304,305,310,311,316,319,323,324,325,326,327,332,345,347,348,349,360,367,371,391,400,401,403,522,567,568,570,573,580,581,582,583,587,589,590,591,594,596,597,601,604,605,611,620],descript:[0,4,7,11,217,464,570,573,580,586,588,590,596,621],descriptor:[16,400,401,571,596],deseri:[4,216,566,575],design:[2,7,8,16,19,205,554,566,586,588,591],desir:[1,2,4,13,16,18,19,21,23,24,43,55,65,72,91,104,105,122,123,124,134,150,151,164,165,192,205,215,231,238,264,281,309,353,402,408,414,437,447,451,452,462,466,467,468,470,471,472,473,474,475,476,477,503,514,525,535,545,547,564,565,577,578,580,582,586,591,594,596,598,602,603,606,607,608,611],desmaison:9,despit:[23,201,202],destin:[13,18,152,192,233,253,254,309,353,402,569,603,604,607,611],destroi:[17,302,583,603],destruct:[18,603,605],destructor:[576,605],det:[19,225,511,569,573,596,611],detach:[2,6,91,288,412,535,568,569,577,580,589,606,609,611],detach_:[2,412,569,577,606,611],detail:[0,1,2,4,7,10,11,12,13,16,18,19,23,50,77,99,108,121,138,155,192,194,201,217,223,225,233,247,273,277,287,296,297,298,302,307,308,309,311,313,330,353,359,365,366,368,379,400,402,413,440,446,453,454,457,464,491,510,511,526,554,568,569,570,573,580,583,584,587,588,589,590,591,593,594,596,597,598,603,604,605,606,609,610,611,612,617,619],detect:[6,11,16,18,194,412,576,596,603],detect_anomali:2,detector:303,determin:[2,4,8,10,11,13,15,16,17,19,21,65,72,79,84,108,123,151,164,165,225,240,311,330,362,368,418,419,420,421,422,423,424,425,452,457,471,473,475,511,522,565,571,573,578,580,586,587,588,597,600,605,608,610,620],determinist:[3,4,6,15,18,19,23,24,50,74,201,202,244,247,249,288,293,294,295,296,297,298,330,368,495,554,569,580,583,593,597,602,611],deterministicli:193,dev:8,dev_idx:18,develop:[17,18,23,570,588,590,591,593,596,600,603,606],deviat:[4,19,277,283,284,285,316,323,324,325,332,391,448,520,521,581,611],devic:[1,2,3,6,13,17,18,21,24,43,55,65,67,72,120,122,123,124,134,150,151,164,165,192,197,198,205,215,216,231,235,247,293,294,295,297,298,302,309,353,402,408,412,414,437,446,451,452,464,470,471,472,473,474,475,476,477,514,526,535,537,545,547,564,565,567,568,569,570,572,573,574,577,580,582,587,589,591,593,596,597,598,599,600,602,603,606,607,611,620],device_count:[13,18],device_id:[18,216,302,391,412,580,587],device_map:603,device_of:13,devito:9,df1:19,df2:19,dfrac:[300,442,444,580,611],dhanainm:9,dhanasekar:9,diag:[19,120,456,526,527,530,569,573,611],diag_emb:[112,526,530,569,573,611],diagflat:[109,569,611],diagn:19,diagnost:568,diagon:[19,73,109,110,111,120,121,134,540,543,544,545,546,547,569,573,580,588,609,611],diagonaltensor:588,diagram:[600,605],dict:[1,4,19,23,191,192,196,201,202,216,302,309,310,353,354,363,380,402,403,408,427,566,568,569,571,575,588,591,594,596,597,601,603,604,610,619,620],dictat:412,dictionari:[4,11,13,16,19,23,192,197,201,202,217,307,308,309,353,354,363,402,427,570,571,580,588,591,597,603,610,619,620],did:[2,7,263,570,594,597],didn:[583,588,595,597],dies:576,dieterich:9,dif:4,diff:[4,7,568,569,611],differ:[1,2,4,6,11,16,18,19,23,39,40,43,75,110,112,113,121,139,140,141,145,146,174,192,198,201,240,273,283,284,285,290,291,292,302,309,323,324,325,330,351,353,356,359,374,375,376,377,378,391,397,399,401,402,407,408,412,414,447,456,464,483,526,551,552,558,566,568,570,572,573,576,577,580,582,583,584,585,586,587,588,591,592,593,595,596,597,598,599,600,603,605,606,608,610,611,620],differenti:[4,19,91,287,288,307,412,573,580,583,588,589,603,611],difficult:[2,7],difficulti:[7,581],digamma:[460,569,577,611],digamma_:[569,577,611],digit:[4,502,566,575,590],dilat:[293,294,295,296,297,298,310,333,334,335,336,337,338,347,348,349,403,569,580,596,614,615,616,617],dim0:[23,529,541,569,611],dim1:[110,112,529,541,569,611],dim2:[110,112,569,611],dim:[2,13,19,21,23,37,39,40,42,51,52,53,81,88,100,101,102,103,104,105,113,138,139,152,174,176,207,224,232,244,246,247,249,252,254,255,262,263,264,265,273,300,302,308,309,344,359,360,361,385,387,401,402,412,418,422,424,431,432,442,444,447,462,465,482,483,486,487,492,493,513,515,518,519,520,521,522,525,536,537,539,542,550,551,552,553,556,557,568,569,573,578,580,589,594,596,601,606,608,611],dim_arang:596,dim_feedforward:[395,397,399],dimems:611,dimens:[2,10,13,16,19,21,23,31,37,39,40,42,51,52,53,61,62,63,73,81,84,85,87,88,101,102,103,104,105,108,110,111,112,113,121,138,152,174,176,177,190,206,207,224,225,232,236,240,244,246,247,248,249,252,254,255,260,262,263,264,265,279,280,281,282,283,284,285,286,287,288,294,295,297,298,300,301,302,306,307,308,310,312,315,317,318,319,320,321,323,324,325,326,327,329,330,332,337,338,340,341,342,343,344,345,348,349,359,360,361,362,365,366,367,371,372,373,379,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,397,399,400,401,402,403,412,418,419,420,421,422,423,424,425,438,439,441,442,444,446,447,457,462,464,465,466,468,482,483,484,486,494,502,511,512,513,514,515,518,519,520,521,522,525,526,530,531,536,537,538,539,541,542,543,544,545,546,547,550,551,552,553,556,557,559,560,569,570,573,580,581,584,589,598,600,606,608,610,611,617],dimension:[19,21,61,62,63,73,80,92,110,112,121,138,140,141,215,231,240,248,273,290,291,292,301,302,307,308,315,344,360,374,375,376,377,378,385,387,391,407,446,468,514,522,535,536,573,580,581,584,606,607,608,611,612],dims_i:596,dims_oth:569,dims_self:569,dir:[566,596],dir_nam:599,dirac:581,dirac_:[572,581],direct:[7,8,10,18,140,141,192,309,313,326,330,353,368,402,444,456,468,487,583,588,591,600],directli:[1,4,7,8,11,12,16,18,19,23,155,385,438,453,454,568,570,580,583,586,587,588,590,592,594,596,599,600,603,610,616,620],directori:[11,18,566,575,590,599,610],dirnam:566,dirti:583,disabl:[1,4,19,125,201,202,412,445,498,499,502,570,582,585,586,593,598,602],disable_cuda:586,disable_jit_exampl:568,disadvantag:568,disallow:[603,608],disambigu:[4,222],disappear:577,discard:[190,566,570,573],disconnect:2,discourag:[2,13,583],discov:[18,603],discrep:[412,468],discret:[19,21,326,580,610,611,612],discrimin:442,discuss:[4,8,19,23,583,591,593,603,605],disjoint:568,disk:[2,16,491,591,610],dispatch:[18,23,195,588,596,619],displai:[2,4,13,566,571,575,580,596,610],displaystyl:260,disprov:23,dissimilar:[299,321],dist:[1,17,18,19,391,412,512,526,569,573,587,605,611],dist_autograd:[412,603,604],dist_autograd_ctx_id:603,dist_autograd_simpl:604,dist_optim:[412,603,604],distanc:[82,190,265,299,321,326,362,400,401,522,542,597],distance_funct:[401,580],distant:401,distinct:[4,108,225,511,530,573,588,594,603,604],distinguish:[4,606],distribut:[10,16,17,22,39,40,66,257,273,277,302,303,304,305,312,315,326,367,371,391,412,448,458,468,470,471,472,473,474,475,567,578,581,582,586,598,599,605,610,611,612,620],distributed_test:18,distributeddataparallel:[1,16,17,18,302,391,592,598],distributedoptim:[412,603,604],distributedsampl:16,distutil:11,div:[117,273,365,366,548,569,577,596,606,608,611],div_:[569,577,606,611],div_factor:597,div_valu:273,dive:587,diverg:[201,202,326,580,596],divid:[1,6,13,21,116,144,198,281,282,288,289,299,321,326,327,345,346,356,357,358,367,383,384,400,401,412,526,569,573,580,611],divide_:[569,611],divide_by_initial_world_s:412,dividend:[116,144,147,481,548],divis:[16,32,88,116,147,198,293,294,295,296,297,298,300,327,345,362,383,481,515,536,580,582,617],divisor:[116,144,147,153,279,280,310,403,481,548,580,611,617],divisor_overrid:[279,280,569,580,617],divmod:569,dlibenzi:9,dll:595,dlpack:567,dltensor:20,dmytro:[8,9],dnn:[3,585],do_activ:23,do_constant_fold:596,doc:[2,4,5,12,204,396,397,398,399,554,571,576,584,588,591,593,596,610,616,617,618],doc_str:596,docstr:[4,11,23,566],document:[13,16,18,23,50,51,52,53,79,155,192,215,231,263,273,307,308,309,339,353,402,422,431,453,454,463,485,554,566,570,573,576,577,578,579,582,588,589,591,593,594,596,609,612,616,617,618],doe:[1,2,4,5,6,7,8,11,13,17,18,19,23,39,40,74,85,121,174,191,194,198,201,211,217,235,239,240,247,251,259,283,284,285,293,294,295,296,297,298,301,307,308,310,313,314,323,324,325,330,331,348,349,354,360,363,368,370,391,403,412,420,447,452,455,565,566,568,570,572,573,574,576,577,578,580,582,584,585,586,587,588,592,593,596,597,600,603,605,606,608,611,617,620],doesn:[1,2,3,6,7,10,13,16,18,23,108,197,216,225,302,326,385,412,413,427,511,568,571,573,577,580,583,584,588,590,592,595,596,597,598,600,604,620],doi:[217,315],doing:[7,12,16,23,182,201,235,408,465,580,588,595,597],domain:[8,19,21,29,60,135,136,596,600],domin:600,don:[1,2,5,7,10,18,23,239,323,324,325,404,408,412,448,566,568,571,576,577,578,580,583,588,589,591,592,595,596,597,598,603,604,611,617,619],done:[2,4,12,16,18,19,21,22,23,201,235,243,283,284,285,302,323,324,325,339,391,412,518,573,574,576,585,587,589,591,596,598,600,603,605,611],donot_use_mm_for_euclid_dist:82,dorota:19,dot:[1,2,102,103,104,105,176,206,240,281,282,310,321,326,327,345,359,360,401,522,558,559,560,569,577,611],doubl:[2,4,79,95,108,120,136,142,192,225,226,227,228,229,236,308,309,353,402,408,457,459,511,526,562,573,577,580,586,588,596,607,608,611,617],double_tensor:608,doubler:[2,125,445],doubletensor:[30,31,32,33,34,35,64,256,497,535,608,611],doubli:23,dow:610,down:[2,7,11,13,16,19,23,116,141,580,590,592,601,603,605,610,617],download:[575,595,610],download_url_to_fil:566,downsampl:[297,404,580],downscal:366,downscale_factor:[366,569,580],downstream:[1,4],doxygen:7,dp_m:589,dp_model:582,dpotri:86,dpython:79,dqm:617,draw:[16,66,257,468,610,611],draw_base2:468,drawn:[16,257,448,468,472,473,581,611,612],drive:[4,8,18,583],driven:8,driver:[3,603],drop:[16,23,195,277,568,578,592],drop_last:16,dropout2d:569,dropout3d:569,dropout:[6,192,277,304,305,309,313,330,353,359,368,369,395,397,399,402,569,574,578,596],dropout_:[569,574],dropout_p:569,dropout_st:569,dry:408,dst:[18,566],dst_name:604,dst_rank:604,dst_tensor:18,dst_type:[192,309,353,402],dstack:[569,606],dtype:[1,2,10,13,14,16,18,21,23,32,37,42,43,55,65,66,67,68,69,70,71,72,79,95,96,104,105,120,122,123,124,134,142,147,149,150,151,157,164,165,170,173,177,192,205,215,226,227,228,229,231,235,236,245,247,250,257,261,262,264,282,288,301,309,310,313,330,353,360,368,374,375,376,377,402,403,404,405,406,408,414,427,437,447,451,452,459,462,463,466,467,468,470,471,472,473,474,475,476,477,479,485,496,497,498,514,525,526,535,545,547,551,559,560,562,564,565,568,569,570,572,573,578,580,586,588,591,596,600,606,607,610,611,615,617,618,620,621],dtype_filt:617,dtype_input:617,duck:588,due:[2,4,5,6,7,18,19,23,200,235,395,457,527,568,580,586,593,603,605,611],duersch:217,duerschetal2018:217,dummi:[16,588,619],dummy_add:588,dummy_input1:596,dummy_input2:596,dummy_input:596,dump:[23,595],dump_alias_db:194,dump_patch:353,duplic:[16,65,72,93,164,165,192,309,353,402,551,552,589,606,611],durat:[18,599],dure:[1,2,6,11,13,17,18,23,198,200,201,216,277,283,284,285,302,303,323,324,325,391,397,399,408,412,545,547,574,577,580,582,583,585,586,587,590,591,593,596,599,600,603,605,606,611,613,620],dyn:23,dynam:[1,11,12,16,197,201,216,570,571,581,586,591,596,597,620],dynamic_ax:596,dynamic_net:591,dynamic_threshold:597,dynamici:600,dynamicnet:591,dzhulgakov:[8,9],e2e:600,e_float16:1,each:[1,2,6,11,13,16,17,18,19,20,21,23,26,28,30,31,37,39,40,42,43,61,62,63,64,67,74,78,82,83,85,88,89,92,102,103,106,116,120,121,128,129,130,140,141,143,144,148,152,166,170,183,184,185,186,187,188,189,192,201,202,207,216,217,232,233,235,242,244,246,247,248,249,252,254,256,257,262,264,273,278,281,282,286,288,293,294,295,296,297,298,299,301,302,303,304,305,307,308,309,310,313,314,316,321,323,324,325,326,327,328,329,330,331,332,337,338,339,341,345,346,353,356,357,358,359,360,361,367,368,370,383,384,386,391,394,400,401,402,403,408,412,437,438,440,446,447,448,458,461,462,465,469,477,482,483,486,488,490,494,502,507,515,520,521,525,526,530,536,538,542,551,552,555,556,557,566,570,573,577,578,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,596,597,598,599,600,601,603,604,605,606,608,610,611,620],eager:[501,601],eagerli:13,earli:[17,304,305,567],earlier:[1,2,526,573,589,590,594,596,599],earliest:587,eas:[2,23,585,588],easi:[4,16,568,583,589,590,591,592,596,600,603,604],easier:[7,16,23,54,380,568,570,583,584,588],easili:[4,7,10,17,18,360,580,591,594,597,602,603,605,610],ecosystem:590,edg:[2,580,604,617],edgeitem:502,edit:[23,609],edouard:273,edu:[288,468],edward:[8,9],effect:[1,4,7,11,16,17,18,19,192,273,288,296,297,298,303,304,305,309,353,402,404,410,412,413,423,526,566,568,573,574,580,582,586,597,600,607,610,611,616,617],effici:[2,4,10,16,19,84,203,217,273,304,305,308,365,366,574,583,587,588,598,600,603,604,606,608,609,611,612],effort:603,eig:[569,611],eigenpair:217,eigenproblem:217,eigensolv:217,eigenvalu:[120,217,243,456,530,573],eigenvector:[120,217,530,569,573,611],eigh:573,eight:[566,573,575],eigval:569,eigvalsh:573,eigvec:569,einstein:121,einsum:[569,596],either:[2,11,13,16,17,18,19,21,23,81,121,171,172,176,186,190,192,216,248,271,272,275,276,279,280,281,282,294,295,297,298,299,301,308,309,321,326,327,329,345,346,348,349,353,356,357,358,360,367,368,370,383,384,400,402,404,405,406,411,412,429,447,461,463,522,526,562,566,568,570,572,573,578,580,581,584,586,588,589,590,591,592,593,596,597,598,600,603,604,605,609,611,616,617,618,620,621],elabor:591,elaps:13,elapsed_tim:[13,586],elapsed_time_m:586,elast:603,eleg:592,elem:[504,569],element:[2,4,16,18,19,21,23,26,28,29,30,32,33,37,38,41,42,51,54,56,57,58,59,60,66,73,76,83,89,93,96,98,99,102,103,104,105,106,109,111,112,116,118,120,121,124,126,127,128,129,130,131,133,138,143,145,146,147,148,152,153,154,163,166,167,170,176,180,183,184,185,186,187,188,189,190,205,207,208,210,215,218,219,221,224,226,227,228,229,230,231,233,234,235,244,245,246,247,249,250,255,256,257,260,262,264,266,267,277,278,281,282,283,284,285,287,288,293,294,295,296,297,298,299,301,303,304,305,306,308,310,313,314,317,318,319,320,321,326,327,330,331,332,333,334,335,336,337,338,340,343,345,346,347,348,349,354,356,357,358,359,360,361,363,365,366,367,368,370,371,372,373,379,381,382,383,384,385,387,388,390,391,392,393,394,395,400,401,403,418,419,420,421,422,423,424,425,430,431,437,438,440,441,446,447,448,450,457,458,459,461,462,465,469,480,481,483,484,486,488,490,502,504,505,506,507,508,510,513,514,516,517,520,521,525,532,533,534,538,539,540,542,543,544,545,546,547,549,551,552,556,557,558,562,573,578,580,581,584,585,594,596,597,601,606,607,608,609,610,611,612,617,619],element_s:[569,577,607,611],elementari:155,elementwis:[13,38,97,142,144,269,323,324,325,389,555,580],elementwise_affin:[332,617],elf:589,elif:[23,196,570],elig:605,elimin:[18,551,552,611],ell:[281,282,321,326,327,345,360,401],ell_c:282,ellipsi:[121,571,578,596],ellipsis_idx:569,elman:[368,370,618],els:[7,11,16,18,19,23,67,199,203,313,330,368,391,568,570,571,572,576,580,586,588,597,607,611],elsewher:[126,134,154,163,184,185,186,189,210,234,266,566],elu:[569,596,601],elu_:[569,580],ema_avg:597,ema_model:597,embed:[12,23,273,299,308,321,359,401,569,585,596,600,603,610],embed_dim:359,embed_dim_to_check:569,embedding_bag:[569,617],embedding_dim:[307,308,580,617],embedding_matrix:580,embedding_renorm_:569,embedding_sum:308,embeddingbag:[554,580,596],emerg:595,emit:[2,11,23,201,602],emit_nvtx:[2,5],empi:573,empir:371,emploi:[591,597,598],employe:8,empti:[1,4,18,23,66,67,75,81,120,121,123,124,211,226,227,228,229,260,281,282,301,308,360,412,452,514,526,530,535,565,568,569,570,572,573,574,577,578,580,581,584,586,596,606,611,612],empty_cach:[13,586],empty_lik:[569,572,577,596,606],empty_meta:569,empty_quant:569,empty_strid:[569,572],emptydatastructur:570,emul:[571,588,620],enabl:[1,2,3,14,16,17,19,125,313,330,368,369,412,418,419,420,421,422,423,424,425,498,499,502,574,582,584,585,586,590,593,595,596,597,598,599,602,603,604,611,612],enable_grad:[2,572,612],enable_onnx_check:596,enable_tim:[13,586],enablerecordfunct:590,encapsul:[22,603],encod:[18,216,281,282,395,396,397,398,399,412,568,571,588,594,604],encode_and_decod:412,encoded_tensor:412,encoder_lay:[398,399],encompass:23,encount:[18,23,307,412,568,572,580,585],encourag:[8,600],end:[1,7,8,13,16,18,23,43,65,97,112,121,138,166,167,190,206,211,215,217,230,231,233,265,280,281,282,299,306,313,314,317,318,319,320,321,326,327,330,331,340,345,348,349,355,360,361,364,371,383,389,394,401,477,502,509,551,552,562,563,568,569,570,576,580,582,583,587,589,595,597,600,603,611,620],end_dim:[138,309,569,611],end_ev:[13,586],endl:590,enforc:[15,17,192,309,330,353,368,402,609],enforce_sort:[438,439,440],engin:[2,10,12,468,583,587,588,600,603,604,611],enhanc:412,enough:[23,199,257,401,514,570,576,583,588,597,606,608,619],enqueu:[13,18,586,604],ensur:[1,2,5,7,8,16,18,23,277,347,356,357,359,395,412,501,566,568,570,575,576,580,582,583,586,588,592,593,596,600,604,611,620],ensure_tensor:588,enter:[1,18],entir:[6,7,11,16,23,304,305,323,324,325,332,422,424,444,580,583,588,589,590,600,603,605],entiti:23,entranc:7,entri:[1,2,4,18,19,112,140,141,174,192,206,309,353,359,402,422,423,431,568,571,573,583,587,588,597,606,610,611,620],entropi:[1,19,281,357,580],entrypoint:576,entrypoint_nam:566,enum_fn:570,enumer:[16,19,23,192,309,353,355,364,402,569,570,582,586,595,597,610],enumerate_support:19,env:[4,18,19,23,603],envelop:190,environ:[4,7,11,12,15,19,23,201,330,368,554,566,568,583,585,586,593,595,603],environment:13,epoch:[16,582,597,610],eps:[2,230,243,269,283,284,285,300,315,316,323,324,325,332,362,367,391,400,442,569,573,580,588,597,614,617,621],epsilon:[23,43,230,243,283,284,285,300,316,323,324,325,332,391,442,569,573,580,597],epub:217,eq_:[569,611],equal:[1,13,16,17,18,19,23,38,39,40,65,72,83,84,89,95,111,126,143,154,164,165,167,180,183,210,235,236,266,270,271,272,274,275,276,281,282,288,294,295,297,298,302,310,311,313,330,358,367,368,403,412,438,441,515,522,536,562,569,571,573,577,578,580,583,584,597,598,601,606,610,611,617,620],equal_nan:[38,183,569,611],equat:[10,87,121,164,171,172,281,512,543,569,573,583],equival:[6,16,19,21,23,75,77,80,82,92,93,110,113,116,119,121,123,124,144,151,168,176,191,192,198,201,202,205,253,255,273,283,284,285,293,294,295,296,297,298,307,308,309,316,323,324,325,332,353,383,391,402,403,405,412,452,464,468,471,475,481,528,529,531,535,552,561,565,568,570,573,580,596,606,608,611,617,619],equivil:4,equval:23,eras:23,erase_nod:23,erf:[130,569,577,596,611],erf_:[569,577,611],erfc:[569,577,611],erfc_:[569,577,611],erfinv:[1,569,577,611],erfinv_:[569,577,611],errno:595,error:[1,2,6,7,11,13,16,17,18,19,22,23,43,128,129,130,192,195,215,216,231,235,257,260,281,282,309,312,327,345,353,381,383,402,412,414,447,518,522,568,570,573,576,577,578,580,582,583,586,588,593,596,601,603,606,611,620],especi:[8,10,16,18,54,76,124,570,580,583,588,594,596,600,603,611],essenti:[16,18,23,235,578,595],establish:583,estim:[2,4,16,19,190,283,284,285,315,316,323,324,325,332,391,520,521,542,556,557,597,599],eta:[19,597],eta_:597,eta_min:597,eta_t:597,etaminu:597,etapli:597,etc:[2,4,10,16,17,18,19,190,192,309,353,402,412,483,566,570,588,589,591,592,596,597,601,603,606,610,612],eth0:18,eth1:18,eth2:18,eth3:18,ethernet:18,euclidean:[19,82,580],eval:[192,194,201,283,284,285,309,323,324,325,353,391,402,574,596,600],evalu:[5,19,23,37,42,192,273,277,283,284,285,303,309,316,323,324,325,332,353,367,371,391,402,468,571,580,583,588,597,601,606,620],even:[2,16,17,18,21,23,180,200,240,247,302,391,412,445,447,526,559,568,573,580,583,586,588,589,591,592,593,594,597,598,605,606,608,611],evenli:[16,39,40,215,231],event:[2,19,201,202,222,576,586,599,610],event_dim:19,event_file_writ:610,event_nam:590,event_shap:19,eventfilewrit:610,eventlist:2,eventu:[2,7,23,598],ever:568,everi:[2,16,18,19,23,121,192,277,303,304,305,309,347,353,385,387,391,402,410,411,412,442,444,445,552,580,582,583,586,587,588,596,597,598,599,603,604,605,607,610,611,617,620],everyon:7,everyth:[7,16,19,568,576],everywher:[522,580],evid:7,evolv:[587,596],exact:[2,4,11,21,51,52,53,247,297,330,412,581,587,592,606,611,619],exactli:[2,11,13,17,18,19,121,145,146,190,192,308,309,310,353,402,447,577,580,583,586,587,588,596,598],examin:[23,591,596,599],exampl:[1,2,4,6,7,11,13,16,17,18,19,21,22,24,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,89,92,93,95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,157,163,166,167,168,169,170,171,172,173,174,176,177,180,183,184,185,186,187,188,189,190,192,193,194,195,196,197,198,199,201,202,203,204,206,207,208,209,210,211,214,215,216,218,219,220,221,222,224,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,322,323,324,325,327,328,329,330,331,332,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,359,360,361,362,363,364,365,366,367,368,370,371,372,373,374,375,376,377,378,379,380,381,382,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,412,426,427,428,429,430,431,432,433,434,435,436,439,440,441,442,444,445,446,447,448,450,451,452,455,457,458,459,460,461,462,463,464,465,466,467,468,469,470,472,474,476,477,478,479,480,481,482,483,484,485,486,487,488,490,491,494,496,497,498,499,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,520,521,523,525,526,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,549,550,551,552,553,555,556,557,558,559,560,561,562,563,564,565,566,567,568,570,571,573,575,577,578,580,581,583,584,585,586,588,589,590,591,592,593,594,595,597,598,599,600,603,605,606,608,609,610,611,612,614,615,617,618,619,620],example_forward_input:[201,202],example_input:201,example_method2_input:202,example_output:596,example_weight:[201,202],examples_nn:591,exce:222,excel:23,except:[2,4,6,7,13,18,19,22,23,29,37,39,40,42,60,81,92,113,121,145,146,197,203,207,216,232,244,246,247,249,252,264,313,330,368,383,404,437,442,447,462,465,483,520,521,525,542,556,557,567,568,570,571,572,576,580,586,588,595,596,598,603,605,606,608,611],except_last:598,exchang:[18,110],exclud:[413,544,545,546,547,580,604],exclus:[4,16,18,19,412,472,473,476,583],execut:[1,2,4,5,6,7,11,12,13,16,18,22,23,193,201,202,216,302,410,412,500,568,570,571,574,582,583,584,585,589,590,591,592,593,595,596,599,600,603,604],exist:[2,7,8,10,11,16,18,19,23,54,194,201,217,263,354,363,457,566,568,576,577,583,584,588,590,596,598,603,605,606,609,611],exit:[1,2,5,23,412,576,592,596,605],exp1:610,exp2:[569,610],exp2_:569,exp:[1,2,19,142,224,232,282,287,301,306,343,344,357,367,379,382,384,385,387,388,392,461,522,569,573,577,580,596,606,611],exp_:[569,577,611],exp_add:2,exp_famili:19,exp_rang:597,exp_reduc:2,expand:[2,8,19,54,77,248,402,566,569,577,578,584,596,598,601,609,611],expand_a:[177,569,573,588,596,609,611],expect:[2,4,7,16,17,18,21,23,139,140,141,174,190,201,202,247,283,284,285,301,313,314,315,316,323,324,325,326,330,331,332,360,368,370,385,391,395,397,399,404,438,531,559,566,567,572,580,583,587,589,591,597,600,603,610],expens:[5,16,19,590,599,603,611],experi:[10,17,381,412,580,588,610],experienc:596,experiment:[2,17,18,22,412,568,570,577,578,593,595,596,598],expert:8,explain:[12,566,582,586],explan:588,explat:4,explicilti:570,explicit:[1,18,23,155,182,537,571,577,580,582,586,588,596,601,609],explicitli:[1,11,13,18,110,112,121,254,522,568,570,571,580,586,588,590,594,596,597,600,601,602,603,606],explitili:570,explod:383,explor:[23,566],expm1:[1,569,577,611],expm1_:[569,577,611],expoenti:17,expon:[19,142,209,273,342,461,468,569,580,608,611],exponenti:[131,132,133,222,223,224,232,241,287,597,611,612],exponential_:[569,577,611,612],exponential_average_factor:569,exponentiallr:597,export_chrome_trac:[2,599],export_param:596,export_raw_ir:596,export_stack:599,export_to_pretty_str:596,expos:[1,2,18,22,23,586,590,603,619],express:[10,23,121,522,571,574,583,588,611,619],exptransform:19,ext:[566,575],ext_modul:11,extend:[2,19,23,355,364,567,590,592,596,606,619],extens:[11,18,19,216,217,491,582,594,603,606],extension_kernel:11,extent:585,extern:[201,585,595],external_data_format:596,extra:[7,16,17,18,19,192,197,198,216,353,360,465,522,530,570,573,578,583,585,587,588,589,590],extra_cflag:11,extra_compile_arg:[11,595],extra_cuda_cflag:11,extra_fil:[197,198],extra_include_path:11,extra_ldflag:11,extra_repr:[192,353,588],extract:[23,307,310,403,580,603],extrafilesmap:590,extrapol:4,extrem:[5,412],extrema:580,extrud:589,eye:[19,86,177,206,241,243,464,569,572,573,588,596],eye_:[572,581],eyes:7,ezyang:[8,9,609],f_add:617,f_alic:598,f_bob:598,f_float16:1,f_float32:1,f_t:330,fab:569,face:[588,610],facebook:8,faces_tensor:610,facil:[4,216,576],facilit:[19,110,566,568,593],fact:[2,4,65,72,164,165,568,588,604,611],factor:[1,4,17,19,34,35,36,64,85,86,87,233,235,236,237,303,342,365,366,383,453,454,464,512,526,573,580,581,582,597,600,620],factori:[2,10,19,569,578,586,620],fail:[2,7,13,18,19,23,197,198,215,216,217,231,235,572,576,588,592,595,596,603],failur:[2,8,18,19,201,202,576,598,603,605],fairli:598,fairscal:598,fake:[23,135,136,600,614,616,620],fake_qu:600,fake_quant:[135,136],fake_quant_en:620,fake_quantize_per_channel_affin:569,fake_quantize_per_tensor_affin:569,fakequant:[600,601,614,616,620],fall:[7,11,216,383,580,596,600],fallback:[11,18,582,596],fals:[1,2,4,6,11,13,16,18,19,21,23,37,38,39,40,42,43,51,52,53,65,68,70,71,72,74,78,79,85,86,87,93,120,122,123,124,126,127,134,150,151,152,154,163,164,165,180,183,184,185,186,187,188,189,190,192,195,196,201,202,203,205,207,210,215,226,227,228,229,231,232,234,235,239,243,244,246,247,249,252,257,262,263,264,266,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,299,301,303,304,305,306,307,308,309,311,313,314,315,316,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,339,340,341,345,346,347,348,349,353,356,357,358,359,360,362,367,368,369,370,371,372,373,379,381,383,384,391,394,395,400,401,402,404,412,429,438,439,440,441,445,446,447,451,452,454,462,464,465,468,470,471,472,473,474,475,476,477,491,494,498,499,502,507,513,514,520,521,522,525,526,530,535,539,543,554,555,556,557,562,564,565,566,568,569,570,573,574,575,576,578,580,582,583,586,588,589,591,593,596,597,598,599,602,603,606,607,609,610,611,612,614,617,619,620],famili:19,familiar:[12,13,23,568,583,600,604,605],fan:581,fan_in:581,fan_out:581,fang:9,faq:[16,302,440,567],far:580,fashion:[7,18,222,427,568,611],fast:[7,16,323,324,325,383,468,585,586,588,597,603,606,608,609],fast_forward:468,fastai:597,faster:[1,2,10,16,17,74,121,217,369,385,412,574,580,583,586,600],fastest:[3,412,446,593],fatal:[576,592],favor:[13,192,309,320,353,402,405,406,409,580,601,617],fbgemm:600,fbgemm_linear_fp16_weight:569,fbgemm_linear_fp16_weight_fp32_activ:569,fbgemm_linear_int8_weight:569,fbgemm_linear_int8_weight_fp32_activ:569,fbgemm_linear_quantize_weight:569,fbgemm_pack_gemm_matrix_fp16:569,fbgemm_pack_quantized_matrix:569,fc1:[408,598],fc2:[408,598],fcntl:18,featur:[2,8,10,12,18,23,199,270,271,272,273,274,275,276,298,303,304,305,311,313,314,330,331,359,368,370,386,395,397,399,400,401,402,412,456,554,567,568,570,571,578,580,588,589,593,596,600,603,610,617],feature_alpha_dropout:569,feature_alpha_dropout_:569,feature_dropout:569,feature_dropout_:569,featurealphadropout:580,featuredropout:596,fed:610,fedyunin:9,feed:[23,568,589,591],feedback:[7,17,412,567],feedforward:[395,397,399,581],feel:7,feng:9,fep:217,fetch:[16,23,418,419,420,421,422,423,424,425,603],fetch_args_kwargs_from_env:23,fetch_attr:23,few:[2,7,17,121,412,566,583,589,595,598,609,611,612],fewer:[19,37,39,40,42,206,207,232,244,246,247,249,252,264,462,494,520,521,525,538,556,557,584,594,606],ffi:595,fft2:21,fft:[10,567,586],fft_center:21,fft_fft2:569,fft_fft:569,fft_fftfreq:569,fft_fftn:569,fft_fftshift:569,fft_hfft:569,fft_ifft2:569,fft_ifft:569,fft_ifftn:569,fft_ifftshift:569,fft_ihfft:569,fft_irfft2:569,fft_irfft:569,fft_irfftn:569,fft_rfft2:569,fft_rfft:569,fft_rfftfreq:569,fft_rfftn:569,fft_size:190,fft_uncent:21,fftfreq:21,fftn:21,fftshift:21,field:[2,4,7,18,23,192,273,281,282,299,301,309,321,326,327,345,346,353,356,357,358,360,367,383,384,400,402,437,580,583,587,592,596,597,604],figur:[4,7,23,585,587,596,598,605,610],file:[1,2,4,7,8,10,11,13,16,23,197,198,216,491,566,568,571,572,575,577,578,588,590,593,594,595,596,599,604,607,610,611],file_nam:[18,566,575],filenam:[11,23,191,197,198,566,569,575,607,610],filename_suffix:610,fileno:596,filepath:4,filestor:18,filesystem:[18,566],fill:[16,18,67,110,122,124,150,151,235,308,395,451,452,470,471,472,473,474,475,526,564,565,578,580,581,586,588,594,606,611],fill_:[192,211,309,353,402,482,569,577,607,611],fill_diagonal_:[569,611],fill_row_zero:568,fill_valu:[150,151,288,569,586,611],filter:[4,190,205,293,294,295,296,297,298,522,580,606,611,617],filter_fn:4,final_div_factor:597,financi:8,find:[2,7,8,11,18,23,207,217,296,297,298,330,456,494,527,566,574,576,578,583,585,586,587,588,589,592,593,596,603,608,610,619],find_unused_paramet:[412,587],fine:[11,18,201,412,566,576,583,588,597,598,620],finetun:[192,309,353,402,583],finfo:[269,573],finish:[18,22,586,587,595,599,603,605],finit:[2,5,19,183,184,257,261,281,588],fire:[587,590],first:[2,5,6,7,8,11,13,16,17,18,19,21,23,30,31,34,36,38,51,52,54,59,64,68,70,71,74,76,78,92,101,110,112,113,118,120,121,124,126,138,154,163,168,169,170,171,172,176,183,197,200,205,210,216,217,233,234,240,244,247,249,251,255,256,257,262,266,269,273,279,280,286,294,295,297,298,307,308,309,313,329,330,339,346,348,349,368,408,412,427,437,456,464,486,487,494,514,536,537,541,545,547,552,555,558,561,566,568,570,573,575,576,577,580,582,583,586,588,589,591,592,593,594,595,596,597,598,599,600,603,604,605,606,610,611,619,620],first_build_dir:4,first_kei:18,first_valu:18,fisher:19,fit:[190,483,597,598,603,611],five:[1,594],fix:[16,19,23,307,308,412,568,569,580,582,589,592,595,596,597,611],fix_:[569,611],fkuo:468,flag:[2,11,13,18,23,50,65,72,74,85,164,165,237,412,499,567,568,576,580,583,586,593,596,610,611],flamegraph:599,flat:[483,596],flat_img:578,flatten:[17,51,52,111,403,447,465,478,483,486,551,552,569,573,577,578,581,596,601,609,611],flatten_paramet:369,flexibl:[412,588,591,596],flip:[140,141,569,611],fliplr:[569,611],flipud:[569,611],float16:[14,17,149,179,192,309,313,330,353,368,402,582,601,608,611,620,621],float16_dynamic_qconfig:601,float32:[16,17,95,135,136,149,157,170,179,269,282,404,405,406,459,463,468,472,485,496,497,514,559,580,582,586,596,606,608,611,617,621],float64:[1,10,95,120,142,149,157,177,179,192,309,353,402,459,466,496,497,498,514,535,559,562,573,591,606,608,611,621],float_float:569,float_int:569,float_pow:[569,611],float_power_:[569,611],float_tensor:608,float_to_observed_custom_module_class:620,floatfunct:[600,601],floatstorag:607,floattensor:[1,2,18,30,31,32,33,34,35,64,157,256,307,308,356,359,395,497,608,611],floor:[116,144,198,278,279,280,328,329,347,348,349,522,569,577,580,594,596,611,617],floor_:[569,577,611],floor_divid:[116,569,596,606,611],floor_divide_:[569,606,611],flop:[2,599],flow:[1,91,200,201,568,580,583,588,594,596,605],flush:[1,2,13,198,491,498,610],flush_sec:610,fly:[16,418,419,420,421,422,423,424,425,583],fmassa:9,fmax:[569,611],fmin:[569,611],fmod:[481,569,611],fmod_:[569,611],fn_or_nam:23,fn_to_be_trac:23,focu:[4,597],focus:570,fold:[403,527,569,574,596,601,606],fold_param:[310,403],folder:[7,11,16,23,566,610],folk:7,follow:[1,2,4,7,8,10,12,13,14,15,16,17,18,19,21,23,78,120,121,128,129,192,206,217,240,273,282,288,308,309,310,313,330,353,368,402,403,410,411,412,447,456,494,514,522,542,554,563,566,568,569,570,571,572,573,574,575,576,577,578,580,581,582,583,584,585,586,589,591,592,593,594,595,596,597,600,601,603,604,605,606,608,609,611,617,619,620,621],followup:605,foo:[4,11,18,22,23,193,197,198,199,201,566,568,570,596,620],foo_build:620,foo_forward:596,foo_instance1:620,foo_instance2:620,foo_namespac:596,foomodel:596,foomodul:596,footprint:597,foral:611,forc:[1,2,11,13,193,204,554,566,568,582,586,610],force_reload:566,force_stop:217,forev:[576,587],forg:[595,596],forget:[330,570],forgotten:595,fork:[16,204,412,585,589,590,592,595,602,603,605],fork_rng:602,forkid:605,forkingpickl:595,forkserv:[412,576,592],form:[2,4,7,8,10,16,18,19,21,23,85,110,120,271,272,275,276,288,311,313,330,368,403,404,454,537,566,568,571,573,580,583,588,591,596,597,600,610,617,620],formal:[78,494,578],format:[2,14,17,23,91,121,122,123,151,192,288,308,309,313,330,353,368,402,412,438,440,452,471,473,475,491,514,565,566,568,571,588,594,599,600,604,606,608,610,611],former:353,formul:[287,306,317,344,388,389,580,606],formula:[2,19,24,65,72,121,164,165,211,238,367,467,580,588,597,599,602,617],forth:[555,566,597,599],fortun:589,forum:[7,8,589,592],forward:[1,2,6,11,19,21,23,113,192,193,194,195,196,198,199,201,202,203,277,281,302,303,304,305,307,308,309,313,330,339,350,351,352,353,354,355,359,360,363,364,368,395,396,397,398,399,402,408,410,411,412,418,419,420,421,422,423,424,425,434,442,444,468,568,570,574,576,578,580,581,582,583,585,586,587,588,589,590,591,594,596,597,598,600,603,606,611,617,620],forward_hook:620,forward_pre_hook:429,forward_shap:19,found:[1,12,23,78,101,102,103,194,207,244,247,249,252,262,277,287,379,494,568,582,588,591,592,596,599,600,610,619],four:[588,603,605],fourier:[190,522],fourth:121,fp16:[17,412],fp16_compress_hook:17,fp32:[107,412,586,600,616,617,620],fparam:217,fps:610,frac:[19,32,43,65,72,114,116,128,129,144,164,165,170,171,172,205,215,230,231,260,273,278,279,280,281,282,283,284,285,286,289,293,294,295,296,297,298,301,303,310,313,314,315,316,323,324,325,328,329,330,331,332,339,341,342,343,344,347,348,349,356,357,358,360,368,370,371,382,383,384,385,387,388,390,391,392,403,460,477,480,490,504,505,522,569,577,580,581,583,597,606,611,617],frac_:[569,577,611],fraction:[13,16,142,148,296,297,298,311,421,422,424,425,427,430,431,432,433,581],fractional_max_pool2d:569,fractional_max_pool2d_with_indic:569,fractional_max_pool3d:569,fractional_max_pool3d_with_indic:569,fractionalmaxpool2d:554,fractionalmaxpool3d:554,fragment:13,frame:[190,522,589,610],framework:[7,8,19,22,412,502,567,596,597,600,604,605],francisco:9,frank:19,free:[2,7,13,18,19,23,193,201,217,574,581,583,589,592,595],freed:[2,13,576,586,603,611],freedom:19,freez:[192,307,308,309,353,402,583],freeze_bn:614,freeze_modul:574,freeze_support:595,frequenc:[21,67,273,307,308,522,580,597],frequent:[10,273,567,594],fresh:566,frexp:569,friendli:596,fritz:9,fritzo:9,fro:[422,431,447,573,611],frobeniu:[447,573],frobenius_norm:[569,596],from:[1,2,4,6,7,8,11,12,13,16,17,18,19,21,22,24,43,55,65,66,72,73,78,79,91,106,114,121,139,140,141,149,150,164,165,176,190,192,193,195,196,197,198,209,215,216,217,231,236,237,257,265,273,277,283,284,285,286,293,294,295,296,297,298,299,302,303,304,305,307,308,309,310,313,314,315,316,323,324,325,330,331,332,333,334,335,336,337,338,339,341,353,354,355,359,363,364,368,370,371,391,396,397,401,402,403,408,412,413,418,419,420,421,422,423,424,425,427,429,434,435,436,437,438,439,440,441,444,448,453,454,456,458,468,469,470,471,472,473,474,475,476,477,483,484,485,487,491,494,502,514,522,523,527,535,543,545,547,551,552,554,555,562,568,569,570,572,573,574,575,576,578,579,580,581,586,587,588,589,590,591,592,593,594,597,598,600,601,603,604,605,606,608,610,611,612,614,615,616,617,618,619,620],from_buff:607,from_dlpack:20,from_fil:[569,607],from_float:[616,617,618,620],from_ipc_handl:13,from_numpi:611,from_observ:620,from_pretrain:[307,308],front:[217,356,578,611],frontend:[12,23],frozen:[194,571,583,595,597],frozen_modul:194,fulfil:583,full:[2,4,12,16,17,18,19,21,23,65,72,151,164,165,194,217,233,235,282,288,315,367,395,502,526,527,566,568,569,570,572,573,578,580,582,586,588,591,593,596,597,600,601,603,604,609,611],full_lik:[211,569,572,596],full_matric:[569,573],full_matrici:526,full_mlp:408,fulli:[10,11,16,18,23,350,351,352,583,588,600,601],func:[2,23,39,40,193,201,202,204,580,582,588,603,605,619],func_dict:588,func_nam:603,func_output:2,func_to_trac:23,function_that_actually_chang:4,functioncount:4,functioneventavg:2,functool:[588,620],functor:19,fundament:[7,570,591,603],further:[2,8,11,18,155,273,339,412,453,454,592,605,610],furthermor:[11,303,577,578,593,600,601],fuse:[574,577,600,601,613,614,615,620],fuse_conv_bn:620,fuse_custom_config_dict:620,fuse_fx:600,fuse_known_modul:620,fuse_modul:[600,601,620],fused_m:620,fuser_func:620,fuser_method:620,fusion:[23,201,202,574,600,601,620],fut0:22,fut1:[22,603],fut2:603,fut:[22,193,412,585,603],fut_list:22,futher:17,futur:[2,13,17,23,32,96,144,156,192,193,198,204,215,231,309,353,402,409,412,447,477,522,554,567,568,569,570,571,573,574,578,580,585,588,594,596,597,598,600,603,606,611],fvar:217,fwd:1,fwd_output:582,fxmodul:23,g_cpu:24,g_cpu_oth:24,g_cuda:24,g_float16:1,g_float32:1,g_t:330,ga100:586,gain:[8,581],galleri:7,gamma:[114,171,172,214,260,283,284,285,316,323,324,325,332,391,569,597],gamma_:260,gan:[192,309,353,402,442],ganem:19,gao:9,gap:[43,477,567],garbag:[16,605],gate:[313,314,330,381,580,618],gather:[13,18,569,588,589,590,596,611],gather_list:18,gather_object:18,gaug:526,gaussian:[19,312,315,381,580],gcc:12,gcd:[569,611],gcd_:[569,611],gchanan:[8,9],ge_:[569,611],geeta:9,gelu:[1,381,395,397,399,569,596],gemm:[585,596],gen_non_contig_grad_output:2,gencod:13,geneig:606,gener:[2,4,7,11,16,17,18,19,66,121,155,160,164,175,206,217,238,247,257,310,395,403,404,418,419,420,421,422,423,424,425,442,448,456,458,468,472,473,476,495,503,527,537,555,567,568,569,570,571,572,574,577,580,581,583,586,588,589,590,591,595,596,597,599,600,602,603,604,606,608,610,611,619],generate_square_subsequent_mask:395,gentl:568,geometr:[555,580,611,612,617],geometri:586,geometric_:[569,611,612],georg:9,geq:[97,154,233,301,340,360,361,371,460,580,581],geqrf:[453,454,569,611],ger:[569,611],gesdd:[526,573],gesvd:[526,573],gesvdj:[526,573],gesvdjbatch:[526,573],get:[2,11,13,16,18,22,23,24,31,78,109,157,201,307,308,328,329,350,351,352,412,413,438,442,482,494,566,568,576,577,583,586,588,589,590,591,596,597,603,605,606,609,610,611,620],get_all_sharing_strategi:576,get_arch_list:13,get_attr:23,get_backend:18,get_backoff_factor:1,get_context:592,get_debug_st:191,get_default_dtyp:[43,477,608,621],get_default_qat_qconfig:600,get_default_qconfig:600,get_devic:[569,577,606,607,608,611],get_device_cap:13,get_device_nam:13,get_device_properti:13,get_dir:[566,575],get_futur:412,get_gencode_flag:13,get_gradi:[603,604],get_growth_factor:1,get_growth_interv:1,get_ignored_funct:[588,619],get_info:[235,611],get_input:596,get_lr:597,get_num_interop_thread:585,get_num_thread:585,get_observer_dict:[601,620],get_overridable_funct:[588,619],get_rank:[18,391],get_rng_stat:[13,602],get_rng_state_al:13,get_scal:[1,582],get_sharing_strategi:576,get_stat:24,get_tensor:412,get_testing_overrid:[588,619],get_worker_info:[16,603],get_world_s:18,getattr:[23,569,603],getenv:590,getr:573,getrf:573,getri:573,getsourc:590,gil:[16,18,583,586,603],gimelshein:9,girshick:383,git:599,github:[7,8,18,171,172,395,566,572,588,593,596,597,599,600],give:[1,2,4,5,7,16,17,21,23,326,358,403,404,446,522,566,568,576,578,583,586,588,591,597,606],given:[1,2,4,7,8,11,13,16,18,19,21,22,23,37,39,40,41,42,43,53,66,67,69,76,80,81,87,88,93,96,100,101,107,109,113,121,139,169,192,197,201,202,207,211,217,224,226,227,228,229,232,233,244,246,249,252,260,264,273,281,282,288,293,294,295,297,298,299,301,302,307,308,309,311,313,321,326,330,346,350,351,352,353,355,357,358,359,360,364,368,383,386,400,401,402,404,405,406,410,411,412,414,437,442,444,447,448,454,458,462,466,467,477,483,486,513,514,515,518,522,525,527,532,537,539,541,550,554,556,557,566,567,568,573,575,576,578,580,581,582,583,585,587,588,590,591,593,594,596,597,603,604,606,610,611,617,619,620],global:[4,6,16,18,19,21,23,43,50,65,72,122,124,134,150,164,165,193,201,205,215,231,410,411,412,423,427,451,470,472,474,477,564,568,571,579,582,588,590,591,592,593,600,603,604,605,610],global_step:610,globalcontext:[586,595],globalsbridg:4,gloo:[18,412,587,603],gloo_socket_ifnam:18,glorot:581,glu:[569,596],gmm:19,goal:[23,583,605],goe:[23,277,589],going:[2,7,18,23,217,576,583,585,590,595,610,611],gomez:[395,397,399],good:[4,7,11,23,24,361,566,576,588,590],gossipgrad:412,got:588,gotten:583,govern:[7,567],gpipe:598,gpu1:[192,309,353,402],gpu:[1,2,3,4,5,7,11,13,14,16,147,192,216,233,247,273,302,309,313,330,353,368,369,391,402,412,437,526,567,568,573,586,591,593,595,597,603,607,611,612],gpu_model:568,gpudirect:18,grace:603,grad0:587,grad1:587,grad:[1,2,6,19,23,125,192,217,309,353,402,412,499,554,568,569,577,578,582,583,586,587,588,592,597,603,604,606,611],grad_bia:588,grad_fn:[2,583,591,594,606,611],grad_input:[192,309,353,402,588,595],grad_loss:578,grad_mod:569,grad_norm:582,grad_out:569,grad_output:[2,192,309,353,402,569,583,586,588,595],grad_param:582,grad_tensor:[2,569,586],grad_vari:2,grad_weight:588,gradbucket:[17,412],gradcheck:[2,588],gradgradcheck:[2,588],gradient:[6,10,16,17,18,19,39,40,67,91,125,152,192,217,244,247,249,281,288,296,297,298,301,302,307,308,309,315,328,329,353,360,383,402,412,413,415,416,445,499,526,568,569,573,578,580,583,586,587,588,589,591,597,603,604,606,611],gradient_as_bucket_view:412,gradscal:[1,582],graham:311,grain:[18,583,620],grangier:273,grant:8,granular:582,graph:[2,6,18,19,55,192,193,194,199,201,412,574,579,582,587,588,596,601,603,604,605,610,611,620],graph_copi:23,graphexecutorst:191,graphic:[23,595],graphroot:2,graphtask:583,grave:[273,288],grayscal:610,great:[7,583],greater:[5,16,18,83,84,154,163,260,281,400,442,554,569,573,580,583,593,596,601,611],greater_:[569,611],greater_equ:[569,611],greater_equal_:[569,611],greater_than:19,greater_than_eq:19,greaterthan:19,greaterthaneq:19,greatest:[153,261],greatli:[11,23],greedili:578,green:570,greg:[8,9],gregori:9,grep:589,grid:[17,21,248,569,580,586,610],grid_i:248,grid_sampl:569,grid_sampler_2d:569,grid_sampler_3d:569,grid_x:248,griffin:190,gross:[8,9],ground:[7,610],group:[2,4,8,16,17,23,289,293,294,295,296,297,298,316,333,334,335,336,337,338,391,412,552,566,569,576,580,581,587,596,597,599,610,611,614,615,616,617],group_by_input_shap:[2,599],group_by_stack_n:[2,599],group_nam:18,group_norm:[1,569,596],groupnorm:601,grow:[7,23,606],growth:1,growth_factor:1,growth_interv:1,gru:[314,569,586,601,618],gru_cel:569,grucel:[1,600,601],gt_:[569,611],guanheng:9,guarante:[2,6,16,18,19,302,412,583,585,593,597,603,605],guard:592,guess:16,guid:[2,16,199,567,600],guidanc:[7,12,598],guidelin:[8,427,600],gumbel:580,gumbel_softmax:569,gunnar:[456,527],guoliang:9,h_0:[313,330,331,368],h_1:331,h_i:386,h_n:[313,330,368],h_t:[313,330,368],hack:7,had:[7,23,201,408,538,583],hadamard:[313,314,330,331],haidar:9,half:[1,2,17,19,21,192,293,294,295,296,297,298,309,311,353,402,522,577,580,597,607,608,611],half_cauchi:19,half_norm:19,half_open_interv:19,halfopeninterv:19,halftensor:[608,611],halko:[456,527],ham:[82,164,580],hamiltonian:19,hamming_window:[569,572],hand:[2,5,18,23,115,121,277,543,554,568,570,573,583,591,594,606],handi:[583,586],handl:[1,2,6,10,11,13,16,17,18,121,145,146,192,302,309,353,401,402,409,410,411,412,418,419,420,421,422,423,424,425,481,527,558,566,576,578,580,586,588,589,592,600,603,605,611],handle_torch_funct:619,handled_funct:588,handler:[17,423,590,619],hang:[412,587],hann:165,hann_window:[164,522,569,572],happen:[2,7,8,18,19,23,391,412,567,576,583,587,588,589,592,595,596,597,600,609,611,620],happi:7,hard:[2,7,217,317,568,569,570,580,583,596],harden:603,harder:[293,294,295,296,297,298,310,348,349,403],hardshrink:[569,611],hardsigmoid:[569,601],hardsigmoid_:569,hardswish:[569,596,601],hardswish_:569,hardtanh:[569,574,596,601],hardtanh_:[569,580],hardwar:[2,554,593,600],harri:19,has:[1,2,6,7,8,10,11,12,13,14,16,17,18,19,21,22,23,24,37,39,40,42,51,52,55,66,82,85,96,110,112,125,147,174,190,192,194,197,198,199,200,201,206,207,216,225,232,233,235,244,246,247,248,249,252,262,263,264,281,282,283,284,285,293,294,295,296,297,298,301,302,303,308,309,310,311,313,315,316,323,324,325,326,330,332,347,348,349,353,357,358,360,361,368,385,391,402,403,404,408,410,411,412,418,422,424,427,437,438,446,447,448,462,465,481,483,491,494,507,511,518,520,521,522,525,526,538,556,557,568,570,573,576,577,578,580,582,583,584,585,586,587,588,590,591,592,594,595,596,597,598,599,601,602,603,604,605,606,607,608,610,611,612,617,620],has_bias:569,has_enumerate_support:19,has_nam:577,has_rsampl:19,has_torch_funct:619,has_uninitialized_param:408,hasattr:[23,569,588],hash:[566,569,575],hash_prefix:566,hashmap:18,hashstor:18,hasn:597,hat:[283,284,285,323,324,325,391],have:[1,2,4,6,7,8,10,13,16,18,19,21,23,24,37,39,40,42,65,66,72,81,82,101,108,119,127,152,153,164,165,174,191,192,193,194,197,199,200,201,202,207,208,216,225,227,232,233,235,244,246,247,248,249,252,257,262,264,273,277,281,293,294,295,296,297,298,301,302,307,308,309,311,315,320,323,324,325,332,346,353,356,357,358,359,360,401,402,410,411,412,413,415,416,440,445,447,462,465,504,511,520,521,522,525,530,535,536,554,556,557,559,561,566,568,569,570,572,573,574,576,577,578,580,581,582,583,584,586,587,588,589,590,591,592,593,594,595,596,597,598,600,601,602,603,604,605,606,608,609,610,611,619,620],haven:591,hdr:9,head:[273,359,395,397,399],head_1:359,head_bia:273,head_h:359,head_i:359,header:[2,11,595],health:8,healthi:[7,8],heard:604,heart:16,heavi:[2,18,583,595],heavili:[5,585,588,597],heavisid:[569,611],heaviside_:569,heevd:573,hei:7,height:[279,280,294,295,297,298,329,348,349,360,386,404,578,580,596,617],held:[13,22,582],hello:570,help:[1,2,5,7,8,10,13,16,17,18,23,192,205,304,305,309,353,402,566,577,578,582,583,584,586,587,596,603,604,612],helper:[1,4,6,18,23,391,566,570,586,587,596,600,603,619,620],henc:[17,66,350,351,352,404,514,586,587,596,603,605,606],here:[1,2,7,8,12,16,17,18,19,21,22,23,99,121,199,283,284,285,323,324,325,361,380,391,510,566,568,570,572,577,578,580,582,583,586,588,589,590,591,595,596,597,598,600,606,609,610,611],hermitian:[21,243,457,569,573],hessian:[2,581],heterogen:570,heteroscedast:315,heurist:[11,16],hex:569,hfft:21,hidden:[6,313,314,330,331,368,370,413,586,610],hidden_s:[313,314,330,331,368,369,370,569,618],hierarch:610,hierarchi:[23,571,588,600,601,620],high:[4,5,7,12,13,17,19,23,288,472,473,569,576,597,600,603,606,610,611],higher:[4,7,18,113,167,176,301,346,360,527,588,590,600,603,608,611],highest:[273,472,473],highli:[8,273,412,566,596],highlight:616,hing:[356,358],hinge_embedding_loss:[1,569],hingeembeddingloss:580,hint:[568,570],hinton:597,his:597,histc:[554,569,611],histogram:[167,601,610,620],histogramobserv:[601,620],histor:[13,32,585,594],histori:[2,588,589,597,604],history_s:597,hit:[6,412,566],hmc:19,hogwild:583,hoist:574,hoist_conv_packed_param:574,hold:[2,18,22,23,217,310,354,355,363,364,403,408,412,414,423,437,514,584,588,589,590,592,597,603,604,605,606,608,610,611],holist:7,holomorph:583,homomorph:583,homoscedast:315,hong:9,hood:[2,576,587,592,605],hook:[2,192,302,309,353,402,409,410,411,412,418,419,420,421,422,423,424,425,434,442,444,567,579,587,590,611,617],hop:[190,522],hop_length:[190,522,569,611],horizont:[92,168,598],host:[16,18,120,192,309,353,402,412,446,586,598,604,607,611],host_nam:18,hostnam:[18,599],hot:[4,19,580],houseroad:9,how:[2,4,6,7,8,12,16,18,23,198,216,310,353,403,404,412,437,481,568,570,575,576,577,578,579,580,582,585,587,588,589,591,592,593,594,596,600,603,604,605,610,617,620],howev:[1,2,4,5,6,7,8,11,12,13,16,18,19,23,85,110,112,193,198,200,216,217,235,281,296,297,298,302,307,308,408,412,437,457,567,570,573,580,582,583,586,588,591,592,593,594,595,596,597,598,603,605,606,611],howevev:4,hparam:610,hparam_dict:610,hparam_domain_discret:610,hpp:587,hspmm:[569,606],hstack:[92,569,606],html:[2,4,5,7,12,401,554,584,591,593,597,610,616,617,618],http:[2,4,5,7,12,18,19,121,217,288,330,371,372,395,401,444,456,468,554,566,571,575,583,584,591,593,595,596,597,599,600,610,616,617,618],hua:9,hub:[567,575],hub_dir:[566,575],hubconf:566,huber:383,huge:527,human:[0,4,13,581,596],hundr:[582,590],hurt:587,hvp:2,hwc:610,hxw:569,hybrid:[17,611],hyper:[23,570,610],hyperbol:[29,57,60,99,510,534],hyperparamet:[17,610],hypot:[569,611],hypot_:[569,611],hypotenus:169,i0_:[569,611],i_0:[170,205,206,537],i_1:[21,206],i_d:537,i_n:[21,206,537,573],i_t:[206,330],icdf:19,icml_2006:288,icnn:315,idea:[7,121,273,412,586,590,604],ideal:[4,201,578],idempot:605,ident:[2,4,11,16,18,19,23,110,217,235,242,262,277,303,562,571,573,580,581,593,606,620],identifi:[4,7,18,23,216,391,571,576,584,590,603,604,605,610],identity_transform:19,idiom:595,ids:[18,391,580],idx:[16,192,273,307,309,353,402,569,578],ieee:[190,315],iff:19,ifft2:21,ifft:21,ifftn:21,ifftshift:21,ifs:571,igamma:[172,569,611],igamma_:[569,611],igammac:[171,569,611],igammac_:[569,611],ignor:[2,7,13,21,31,34,35,36,51,52,64,167,192,199,203,206,262,263,278,279,280,281,282,299,301,308,309,315,321,326,327,345,346,347,348,349,353,356,357,358,359,360,367,383,384,395,400,402,447,502,522,526,568,573,578,580,588,596,597,606,611,620],ignore_index:[301,360,569,580],ihfft:21,ilia:9,ill:580,illia:[395,397,399],illustr:[582,588],im2col:[403,569,596],imag:[11,16,95,271,275,276,293,294,295,296,297,298,301,310,311,324,360,365,366,386,403,405,406,569,580,598,609,610,611],imagenet:[18,581],imagin:[23,603],imaginari:[10,21,95,120,173,184,185,186,189,522,559,560,571,573,583,611],imagnumb:571,imbalanc:273,img:[578,610],img_batch:610,img_hwc:610,img_tensor:610,immedi:[7,8,22,192,193,309,353,402,591,594,603,605],impact:[17,574,600,601,609],imped:582,imper:18,implement:[2,6,13,16,17,18,19,23,32,54,99,121,142,192,197,198,216,217,241,247,273,288,302,328,329,353,365,372,388,397,399,412,427,440,442,444,457,460,464,468,491,510,526,527,537,551,554,570,571,573,576,580,582,583,585,588,589,590,591,592,593,594,595,596,597,598,600,601,603,604,606,609,611,613,614,615,616,617,619,620],impli:[315,576,583,598,603],implic:[201,603],implicit:[278,279,280,293,294,295,296,297,298,310,347,348,349,403,569,571,580,596,609,617],implicit_cast:596,implicitcasttyp:596,implicitli:[7,18,23,201,202,216,278,279,280,347,348,349,568,570],implicitly_compiled_method:568,importance_scor:[418,419,420,421,422,423,424,425,427,430,431],imported_funct:582,importerror:595,impos:[576,582],imposs:582,improb:16,improv:[1,2,4,8,11,14,17,18,23,303,313,330,368,567,582,587,588,593,596,597,600,603],in1:[286,580],in1_featur:286,in2:[286,580],in2_featur:286,in_channel:[293,294,295,296,297,298,333,334,335,336,337,338,614,615,616,617],in_featur:[192,273,309,341,353,402,408,442,444,591,614,615,616,617,618],in_proj_bia:569,in_proj_weight:569,in_shap:19,inaccur:[16,17],inaccuraci:2,inact:13,inactive_split:13,inactive_split_byt:13,inc:570,incept:596,incid:[603,605],includ:[1,2,3,4,5,6,7,8,11,12,16,18,21,23,192,278,279,280,288,302,309,315,350,351,352,353,402,412,438,439,441,457,544,545,546,547,566,568,570,573,574,576,580,585,586,589,590,591,594,596,600,601,603,605,606,610,611,612,617,619],include_last_offset:[308,569,580,617],include_path:11,inclus:[4,19,24,167,215,231,238,472,473,519,602,611],incom:[1,18,286,341,576,580,583,601,617,620],incompat:[8,11,75,190,584],incomplet:[2,16,171,172,572],inconsist:[43,477,588],incorpor:600,incorrect:[5,23,54,76,124,201,216,522,568,580,586,611],increas:[1,2,4,7,13,17,19,78,121,273,282,288,293,294,295,296,297,298,365,494,555,569,580,583,585,586,597,603],increment:[2,18,194,302,568,570,583,603],incur:[1,6,84,592],ind:[569,573],inde:[568,605],indent:571,independ:[2,8,13,16,18,303,304,305,444,464,568,573,580,582,583,594,600,611,617],independentconstraint:19,independenttransform:19,index:[4,12,13,16,19,21,39,40,78,102,103,152,174,202,207,224,232,235,239,244,247,249,252,257,262,273,288,301,307,308,326,354,355,360,363,364,401,403,422,424,431,432,437,446,492,493,494,522,532,553,554,567,568,569,573,576,577,578,580,583,586,587,593,597,601,605,606,608,609,610,611],index_add:[569,611],index_add_:[554,569,593,611],index_add_cuda_:593,index_copi:[554,569,596,611],index_copy_:[569,611],index_fil:[569,577,596,611],index_fill_:[569,577,611],index_put:[1,554,569,596,611],index_put_:[569,611],index_select:[554,569,596,606,611],indexerror:[422,424],indic:[1,2,3,4,13,16,18,19,39,40,51,52,53,78,85,102,103,152,174,192,195,203,207,216,224,232,235,237,243,244,247,249,252,257,262,273,274,275,276,307,308,311,348,349,350,351,352,356,358,412,418,419,420,421,422,423,424,425,430,431,446,447,494,513,514,532,536,539,544,545,546,547,551,552,554,562,568,569,573,577,578,580,588,596,597,603,606,609,610,611,617],indices_or_sect:[536,611],indici:611,individu:[7,8,11,16,17,18,21,23,85,177,192,242,288,309,353,391,402,412,577,582,588,590,593,603,611,620],induc:580,ineffici:600,inf:[1,19,29,31,34,35,36,60,64,78,114,115,130,183,184,185,187,188,225,261,344,385,395,415,422,431,447,494,511,563,573,582],infer:[2,4,10,12,13,19,43,55,150,333,334,335,336,337,338,408,445,477,484,496,497,514,535,567,568,570,577,580,596,597,599,600,601,606,611],inferenc:596,inferencesess:596,infin:[99,184,185,187,188,261,281,347,415,510,573,597,606],infiniband:[18,412,603],infinit:[16,185,217,281,288,573,580,588,603],influenc:[8,23],info:[13,18,235,567,588],inform:[2,4,5,7,15,16,17,18,21,23,67,190,192,202,293,294,295,297,298,330,353,359,368,395,397,399,412,437,463,485,568,580,585,586,588,590,591,596,599,600,603,608,610,611],infrastructur:8,infti:[82,170,171,172,190,241,281,328,329,580],ingredi:[323,324,325],inher:577,inherit:[429,568,570,588,591,592],init:[13,18,192,309,353,361,402,567,572,590,596],init_fn:16,init_method:[18,412,603],init_process_group:[18,412,587,603],init_rpc:[603,604],init_scal:1,init_weight:[192,309,353,402],initi:[2,4,5,13,16,17,24,55,157,175,192,200,216,217,235,283,284,285,286,288,296,297,298,302,307,308,309,313,314,316,323,324,325,330,331,332,333,334,335,336,337,338,339,341,353,361,368,370,391,401,402,408,412,414,496,497,514,535,570,580,581,586,587,588,590,591,595,596,597,598,602,603,604,606,611,614,616,617,618],initial_accumulator_valu:597,initial_env:23,initial_grad:586,initial_lr:597,initial_se:[13,16,24,593,602],initialize_paramet:408,inject:590,inlin:[11,22,192,194,201,585],inline_extens:11,inlined_graph:192,inner:[4,569,596,603,611],innermost:[19,494],inp:[2,16,23,403,412,619],inp_unf:403,inplac:[192,277,287,303,304,305,306,309,318,319,320,340,353,371,372,373,379,381,394,402,410,569,580,588,596,601,617,620],inplace_assign:596,inport:593,input1:[286,300,313,314,346,362,368,370,569,580,582,595,596],input2:[87,286,300,313,314,346,362,368,370,453,454,569,580,582,595,596,611],input3:[454,569,611],input:[2,4,6,8,10,12,13,14,16,17,18,19,21,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,77,78,80,82,83,85,86,87,88,89,90,91,93,95,96,97,98,99,100,101,102,103,104,105,106,108,109,110,111,112,113,114,115,116,117,118,120,121,123,126,127,128,129,130,131,132,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,151,152,153,154,155,156,161,162,163,164,165,166,167,169,170,171,172,173,174,176,177,178,179,180,183,184,185,186,187,188,189,190,192,193,194,196,199,201,202,205,206,207,208,209,210,211,212,213,214,217,218,219,220,221,222,223,224,225,226,227,228,229,230,232,233,234,235,236,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,340,341,342,343,344,345,346,347,348,349,350,351,352,353,356,357,358,359,360,361,365,366,367,368,370,371,372,373,374,375,376,377,378,379,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,410,411,412,418,419,420,421,422,423,424,425,426,428,430,431,432,433,437,438,439,441,445,446,447,449,450,452,453,454,455,456,457,458,459,460,461,462,464,465,466,467,469,471,473,475,477,478,479,480,481,482,483,484,485,486,487,488,490,492,493,504,505,506,507,508,509,510,511,512,513,516,517,518,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,536,538,539,540,541,542,543,544,546,549,550,551,552,553,554,555,556,557,558,559,560,563,565,568,569,570,571,572,573,574,578,580,581,583,585,586,587,588,589,590,591,593,594,597,598,599,600,601,602,603,604,606,608,609,611,614,615,617,618,619,620],input_1:596,input_2:596,input_3x3:404,input_data:596,input_featur:588,input_fp32:600,input_g:569,input_i:596,input_imag:23,input_inv:573,input_length:[288,569,580,589],input_list:18,input_nam:596,input_nod:23,input_on:[310,403],input_s:[313,314,330,331,368,369,370,618],input_scal:569,input_split:18,input_tensor_list:18,input_to_model:610,input_tupl:568,input_valu:23,input_var:[6,302],input_z:596,ins:568,insecur:[18,216],insensit:322,insert:[18,19,22,23,354,355,363,412,494,502,519,553,568,574,600,601,620],insert_fold_prepack_op:574,inserting_aft:23,inserting_befor:23,insid:[2,7,23,412,568,570,574,582,586,588,590],insight:7,inspect:[1,2,23,192,199,582,588,590,608,619],inspir:[588,597],instal:[2,4,11,12,18,23,566,568,591,596,603,610],instanc:[1,4,16,19,23,121,201,217,307,308,310,323,324,325,332,353,396,398,403,412,423,437,442,514,536,568,570,571,574,576,578,580,582,587,588,589,591,600,603,604,605,606,611,617,619,620],instance_norm:[569,596],instancenorm1d:[580,601],instancenorm2d:[580,601],instancenorm3d:[580,601],instancenorm:316,instantan:13,instanti:[2,18,23,125,308,437,445,566,568,570,580,588,603,620],instead:[2,4,6,8,11,16,17,18,19,21,23,78,85,108,144,155,156,177,182,190,192,195,233,243,247,278,279,280,281,282,283,284,285,299,301,302,304,305,309,321,326,327,328,329,345,346,347,348,349,353,356,357,358,360,367,368,383,384,385,391,400,402,412,447,457,464,477,494,511,526,568,570,573,578,580,582,583,587,588,589,592,593,594,595,596,597,600,603,604,606,611,617],instruct:[4,5,10,11,568,596,600],instrument:[4,590],insuffici:13,int16:[149,227,608,611,621],int32:[78,135,149,235,288,463,494,600,608,611,621],int64:[18,43,67,78,123,135,136,149,437,472,476,477,494,580,586,596,606,608,611,621],int8:[68,69,70,71,149,226,227,228,229,600,608,611,616,620,621],int_0:[171,172],int_:[128,129,172],int_a:542,int_b:542,int_float:569,int_int:569,int_repr:[466,467,569,601,611],int_tensor:608,int_to_int:569,int_zerodim:608,intact:603,integ:[13,16,18,19,30,31,32,33,34,35,43,64,65,72,83,97,116,122,142,143,144,145,146,147,150,153,164,165,198,208,209,217,256,273,288,293,294,295,332,437,448,451,456,460,466,467,470,472,473,474,476,481,488,515,523,527,536,537,549,564,570,571,573,577,580,588,596,597,600,601,606,608,611,617,621],integer_interv:19,integergreaterthan:19,integr:[16,66,68,69,70,71,192,209,309,353,402,468,480,542,562,590,591,596,597,598,600,608,611],intel:595,intel_openmp:595,intend:[4,23,205,410,411,580,591,596],intens:597,intent:7,intention:[118,558,603],inter:[158,500,585,587,598,603],interact:[2,8,12,13,16,23,571,596,610],intercept:23,interchang:[19,570,597],interconnect:18,interest:[7,8,567,583,591,600],interfac:[12,17,408,522,588,590,596,597,610,614,615,616,618],interfer:[1,586,596],interleav:597,intermedi:[6,11,23,75,235,308,395,397,399,568,580,583,589,591,596],intermediari:[11,19],intern:[1,4,8,13,16,17,18,19,23,54,108,192,225,283,284,285,315,391,412,457,511,514,571,573,580,582,583,585,586,596,603,604,605,606,609],internet:7,interop:500,interperet:217,interpol:[211,404,405,406,465,554,596,601,617,620],interpolation_mod:569,interpret:[4,13,16,18,19,21,158,192,195,199,201,326,500,566,570,576,580,585,586,603,606,609,617],interprocess:13,interquartil:4,interrupt:576,interv:[1,19,43,470,471,542],intervent:[1,603],intra:[585,587,598],intraop:501,intrins:[4,600],intro_to_torchscript_tutori:591,introduc:[19,217,313,330,368,486,566,584,587,596,598,603,611],introduct:[18,412,568,571,577,584,591,603,610],introspect:23,inttensor:[174,235,236,307,308,608,611],intuit:596,inv:[19,86,177,573],inv_scal:582,invalid:[257,582,583,598],invari:[19,437,514,526,605,606],invers:[19,21,28,29,57,60,81,86,87,130,190,242,296,297,298,307,308,310,350,351,352,403,440,457,569,573,580,597,611],inverse_indic:[551,552],inverse_shap:19,invert:[19,23,87,108,225,242,350,351,352,511,573,603],invest:8,investig:7,invis:586,invoc:[2,4,6,23,193,201,568,588,590,596,603,605,620],invok:[1,2,12,18,22,23,192,193,302,309,353,402,411,412,568,571,574,582,585,586,587,588,590,591,597,604],involv:[4,7,8,10,16,23,412,577,583,586,587,589,591,603,604,605,606],invstd:569,iotamudelta:9,iparam:217,ipc:13,ipc_collect:13,ipc_handl:13,irecv:18,irfft2:21,irfft:21,irfftn:21,irrecover:17,irrelev:[2,4,571],irrespect:[177,233,512,530,586],is_accept:569,is_avail:[3,13,18,586],is_built:3,is_coalesc:[569,606],is_complet:18,is_complex:[569,606,608,611],is_contigu:[569,577,609,611],is_cuda:[437,577,607,611],is_discret:19,is_distribut:[16,569],is_en:1,is_floating_point:[569,577,606,608,611],is_grad_en:569,is_in_onnx_export:596,is_initi:[13,18],is_leaf:[2,569,577,611],is_leaf_modul:23,is_mast:18,is_meta:611,is_modul:23,is_mpi_avail:18,is_nccl_avail:18,is_ninja_avail:11,is_nonzero:[569,606],is_own:603,is_pin:[16,437,569,577,607,611],is_python_modul:11,is_quant:611,is_same_s:[569,606],is_script:570,is_set_to:[569,611],is_shar:[572,577,607,611],is_sign:[569,577,606,611],is_spars:[577,606,607,611],is_standalon:11,is_tensor:[577,606],is_tensor_lik:619,is_tensor_method_or_properti:619,is_train:[2,499,612],is_vulkan_avail:569,isclos:[569,611],isend:18,isfinit:[569,611],isinf:[569,611],isinst:[19,23,182,569,588,606],isn:[7,16,23,190,583,586,588],isnan:[569,596,606,611],isneginf:[569,611],isol:[23,408,576,598],isposinf:[569,611],isreal:[569,611],issu:[1,2,4,6,8,10,11,15,18,23,171,172,235,330,368,572,576,577,578,580,582,583,588,592,593,595,596],issubclass:588,istep:217,istft:[569,611],itch:7,item:[16,354,363,502,566,568,569,570,577,596,603,610,611,620],iter:[1,2,4,7,13,17,18,19,23,192,217,309,353,354,355,363,364,402,412,413,415,416,417,418,419,420,421,422,423,424,425,427,442,443,456,527,569,571,576,578,582,583,584,587,588,591,596,597,599,602,610,619],iter_end:16,iter_start:16,iterabledataset:[16,590],iters_to_accumul:582,itertool:[19,80,93],its:[1,2,5,7,8,11,12,13,16,17,18,19,23,51,52,53,86,87,95,109,112,121,144,169,192,198,240,255,281,283,284,285,293,294,295,296,297,298,302,309,323,324,325,353,354,363,391,402,408,412,413,414,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,438,444,477,497,499,507,527,541,554,559,568,570,573,574,576,580,582,583,584,586,587,588,589,591,593,594,595,596,597,598,601,603,604,605,606,608,609,611,620],itself:[4,6,7,23,37,42,192,199,201,309,353,385,402,412,418,419,420,421,422,423,424,425,434,568,576,580,591,593,596,603,609],ivalu:590,ivar:217,j_0:206,j_1:206,j_n:206,j_t:206,jacobian:[2,19,583],jakob:[395,397,399],jang:19,javadoc:567,jax:583,jed:217,jit:[10,11,158,191,192,500,501,567,570,572,574,578,585,590,594,596,603],jitter:4,job:[18,412,590,597,599,610],joe:19,joel:[456,527],johann:9,johnson:9,join:[7,18,22,23,412,566,571,576,583,587,592],jointli:359,jone:[395,397,399],joulin:273,journal:468,jpeg:590,json:[590,599],juggl:6,jump:[608,611],junji:9,just:[2,3,7,11,17,18,19,23,32,96,201,202,304,305,412,544,545,546,547,566,568,573,576,582,583,586,588,590,591,594,596,603,604,609,611,620],jvp:2,k_0:[206,537],k_1:206,k_n:206,k_proj_weight:569,k_t:206,kaiming_normal_:[572,581],kaiming_uniform_:581,kaiser:[205,395,397,399],kaiser_window:569,karl:9,karuppasami:9,kdim:359,keep:[2,4,7,16,17,216,283,284,285,289,307,323,324,325,362,391,412,423,482,566,568,576,578,580,583,586,587,589,592,596,597,600,603,604,605],keep_initializers_as_input:596,keep_intermedi:11,keep_var:[192,309,353,402],keepdim:[37,39,40,42,51,52,207,232,244,246,247,249,252,262,263,264,362,447,462,465,520,521,525,556,557,569,573,577,580,596,611],kei:[2,4,16,23,192,202,216,309,353,354,359,363,395,396,397,398,399,402,430,569,570,588,590,591,594,596,597,600,603,604,607,610,611,616],kept:[283,284,285,323,324,325,391,576,580,617],kernel:[4,5,10,11,13,278,279,280,293,294,295,296,297,298,310,311,328,329,333,334,335,336,337,338,347,348,349,350,351,352,403,574,580,588,596,599,617],kernel_s:[278,279,280,293,294,295,296,297,298,310,311,328,329,333,334,335,336,337,338,347,348,349,350,351,352,403,569,580,610,614,615,616,617],kernel_shap:596,kesheng:217,key1:196,key2:196,key_averag:[2,599],key_padding_mask:[359,569],keyword:[1,2,13,16,21,23,24,26,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,56,57,58,59,60,64,65,66,68,69,70,71,72,74,78,81,83,85,86,87,89,91,92,95,96,97,98,99,101,102,103,104,105,106,109,113,114,116,118,119,120,122,123,124,126,128,129,130,131,132,133,134,142,143,144,145,146,147,150,151,152,153,154,155,163,164,165,166,167,168,169,170,171,172,174,176,177,187,188,192,193,201,202,205,206,207,208,209,210,211,215,216,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,236,239,240,243,244,245,246,247,249,250,251,252,255,256,257,259,261,262,263,264,266,267,269,302,309,320,322,353,402,410,411,418,423,427,446,448,451,452,455,458,459,460,461,462,464,465,469,470,471,472,473,474,475,476,477,480,481,482,488,490,494,504,505,506,507,508,509,510,512,513,514,516,517,518,519,520,523,525,526,530,533,534,535,539,542,543,544,545,546,547,549,556,558,561,563,564,565,566,571,573,578,588,596,597,603,606,610,619],kick:[587,603,604],kickoff:604,kill:[576,589],kind:[18,170,205,413,463,588,592,600,608],kineto:2,kl_div:[1,569],kl_diverg:19,kl_normal_norm:19,kl_version1:19,kl_version2:19,kldivloss:[580,596],know:[2,6,7,11,23,198,412,568,582,583,596,603,604,605,611],knowledg:605,known:[4,7,15,18,201,202,216,293,294,295,296,297,298,310,330,368,383,403,408,457,568,569,572,573,576,581,583,585,593,596,600,603,605],knuth:7,knyazev2001:217,knyazev:217,kostmo:9,kron:569,kroneck:206,kth:207,kthvalu:[554,569,577,611],kullback:[19,326,580],kurowicka:19,kw_i:359,kwarg:[1,2,6,11,18,23,192,193,195,235,309,313,322,330,353,368,402,408,418,423,427,437,491,551,552,566,571,580,588,596,603,607,611,618,619,620],kwlist:610,l1_loss:[1,569],l1loss:[383,580],l1unstructur:427,l2norm:600,l423:596,l_1:[281,282,321,326,327,345,360,401],l_c:282,l_i:401,l_infin:401,l_n:[281,282,321,326,327,345,360,401],l_p:[401,580],label:[4,7,16,121,273,282,288,299,321,346,356,357,438,580,587,592,593,597,610],label_img:610,labori:588,lack:10,lambd:[317,389,569,580,597,611],lambda1:597,lambda2:597,lambda:[2,16,19,22,23,82,216,317,389,401,571,580,588,597,603,611,619],lambda_i:530,lambda_j:530,lambdalr:597,langl:19,languag:[4,11,199,273,395,567,580,589,596],lapack:[10,86,155,453,454,464,526,573],lara:9,larg:[4,7,13,16,23,24,99,273,310,403,412,510,567,576,578,580,585,589,591,594,596,597,598,603,606,608,611,620],large_model:596,large_pool:13,larger:[1,2,8,16,23,67,89,273,302,307,308,346,401,404,412,580,583,586,589,590,594,596,610,611],largest:[67,143,217,539,569,570,573,580,601,611,621],last:[2,6,10,16,19,21,23,65,72,78,88,110,113,138,164,165,176,180,190,207,247,252,273,286,308,309,313,330,332,341,360,367,368,396,397,403,412,413,446,486,494,513,515,522,526,537,539,542,559,560,570,573,577,580,583,588,593,596,597,598,611],last_epoch:597,late:582,latenc:585,later:[2,4,7,15,23,216,301,330,347,348,349,360,368,381,412,526,568,573,580,583,585,586,587,588,591,594,604,605,617,618],latest:[7,18,19,423,566,596,603],latin1:216,latter:[32,192,309,353,402,591,592,593,620],launch:[5,16,412,583,585,586,603],launcher:18,law:273,layer1:598,layer2:598,layer3:598,layer:[1,17,18,278,279,280,282,283,284,285,286,293,294,295,296,297,298,304,305,313,314,316,323,324,325,330,331,332,339,341,347,348,349,359,360,368,370,391,395,396,397,398,399,580,581,583,588,589,590,591,594,596,597,598,600,601,620],layer_count:596,layer_norm:[1,569,596],layernorm:[316,323,324,325,580,601],layout:[13,21,43,65,72,122,123,124,134,150,151,164,165,205,215,231,451,452,470,471,472,473,474,475,476,477,514,545,547,564,565,566,568,569,570,572,606,610,611],lazi:[200,333,334,335,336,337,338,339,408,597],lazili:[4,13,408,568],lazy_mlp:408,lazylinear:408,lazymlp:408,lazymodulemixin:[333,334,335,336,337,338,339],lbfg:597,lbrace:[544,545,546,547],lceil:[43,83],lcm:[569,611],lcm_:[569,611],ldexp:[569,611],ldexp_:[569,611],ldot:[19,215,231,248,332,347,348,349],le_:[569,611],lead:[2,7,15,330,368,412,518,578,585,587,588,595,597,606,611],leadership:8,leaf:[2,535,582,601,611,620],leak:[2,576],leaki:[371,580,581],leaky_relu:[569,581,596],leaky_relu_:[569,580],leakyrelu:[354,580,591],learn:[1,7,12,19,23,286,299,304,305,307,308,321,339,341,361,381,400,401,412,567,579,580,581,591,600,603,605],learnabl:[283,284,285,286,293,294,295,296,297,298,307,308,313,314,316,323,324,325,330,331,332,333,334,335,336,337,338,339,341,361,368,370,391,580,591,617,618],learned_0:596,learned_14:596,learned_15:596,learned_1:596,learned_2:596,learned_3:596,learned_:596,least:[19,67,110,112,121,140,141,171,172,190,208,217,233,240,261,273,438,563,566,573,578,581,584,589,605,606,607,611],leav:[2,195,203,518,568,570,583,611],led:23,left:[21,23,43,65,72,73,78,83,114,121,140,143,144,148,164,165,190,195,205,222,223,257,260,273,278,279,280,281,282,293,294,295,301,310,315,326,327,328,329,342,343,344,345,347,348,349,356,357,358,362,363,400,403,404,405,406,416,454,477,494,522,537,555,568,569,573,580,588,591,597,611,620],leg:169,legaci:[580,599,608],legitim:[361,580],leibler:[19,326,580],lemma:19,len:[16,18,21,23,194,232,246,264,302,422,424,440,514,515,520,521,525,555,556,557,568,569,573,580,596,597,606,610],len_1:23,length:[2,13,16,17,18,19,21,93,120,174,190,201,205,265,282,288,293,302,308,310,313,328,330,359,368,395,403,437,438,439,440,441,468,522,569,578,580,584,589,611,620],lens_unpack:440,leq:[21,38,65,66,97,183,206,210,230,288,301,306,356,358,360,522,580],lerp:[569,611],lerp_:[569,611],less:[2,4,7,13,16,18,19,121,143,210,217,234,235,273,367,383,389,440,507,530,545,547,566,569,588,592,598,601,611],less_:[569,611],less_equ:[569,611],less_equal_:[569,611],less_than:19,lesser:[583,585,600],let:[2,7,16,17,19,23,89,205,577,578,583,586,587,588,591,592,593,594,595,604,605,606,610,611],letter:121,level:[4,7,12,13,16,23,155,302,412,568,571,576,581,585,588,600,603,606,610,611,619],leverag:603,lewandowski:19,lexic:571,lexicograph:[446,606],lfloor:[83,143,148,273,278,279,280,293,294,295,310,328,329,347,348,349,403,404,405,406,477,522,580],lgamma:[171,172,569,611],lgamma_:[569,611],lhsindex:596,lib64:11,lib:[216,491,595],libenzi:9,librari:[4,5,8,10,11,12,13,16,23,99,200,235,481,510,567,585,587,588,589,590,591,592,595,596,600,603,619],library_root:12,librosa:522,libtorch:12,lie:[385,387,580,606,610],lies:465,life:611,lifetim:[7,603],lift:578,light:610,like:[1,2,4,5,6,7,8,10,11,12,13,16,17,18,19,21,23,54,65,72,116,121,122,142,145,146,164,165,177,197,198,201,205,216,273,281,310,313,323,324,325,330,354,355,363,364,368,403,408,412,413,414,437,451,470,474,491,512,526,564,566,567,568,570,573,576,577,578,580,582,586,589,590,592,594,595,596,598,600,601,603,604,606,608,611,615,619,620],likelihood:[19,273,315,360,367,580],likewis:19,lil:606,lim:[19,190],lim_:[281,583],limit:[13,16,288,307,339,427,567,576,578,583,587,591,593,594,600,601,603,604],limits_:224,linalg:[85,108,177,243,447,457,464,511,526,567],linalg_choleski:569,linalg_cond:569,linalg_det:569,linalg_eigh:569,linalg_eigvalsh:569,linalg_inv:569,linalg_matrix_rank:569,linalg_norm:569,linalg_pinv:569,linalg_qr:569,linalg_slogdet:[569,573],linalg_solv:569,linalg_svd:569,linalg_tensorinv:569,linalg_tensorsolv:569,line:[2,5,18,23,192,198,353,502,568,571,580,584,588,593,595,596,599,611],line_search_fn:597,linear1:600,linear:[1,2,9,13,23,87,121,192,194,199,211,236,281,287,309,312,320,339,353,355,368,370,372,381,388,391,402,404,408,412,426,427,428,429,430,432,433,434,435,436,442,444,456,465,512,554,569,570,573,574,581,583,586,587,588,589,591,594,596,597,598,600,601,611,614,615,620],linear_1:23,linear_fp32:600,linear_int8_w_fp32_inp:600,linear_weight:23,linear_weight_fp32:600,linear_weight_int8:600,linear_with_activation_int8:600,linearfunct:588,linearli:[404,464,573,580,589,597,600,601,617],linearrelu:601,liner:371,linewidth:502,link:[11,12,19,23,293,294,295,296,297,298,310,347,348,349,403,578,580,590,591,596],linker:11,linspac:[10,67,569,572],lint:23,linux:[12,18,566],list:[1,2,6,7,8,11,12,13,16,18,19,22,23,55,61,62,63,76,77,80,88,93,107,122,139,150,192,194,196,201,202,246,248,264,302,307,309,332,353,355,364,391,402,412,413,418,419,420,421,422,423,424,425,434,437,438,439,440,441,447,451,470,474,487,514,515,520,521,525,535,536,537,551,552,554,564,566,568,569,571,572,573,574,577,578,580,588,591,593,594,595,596,597,599,600,601,603,604,606,607,608,609,610,611,612,619,620],list_gpu_process:13,listconstruct:[568,596],listen:18,listloopmodel:596,listofproperti:610,liter:[569,571,578],littl:[18,588,605],live:[192,309,353,402,568,589,597,603,605],lkj:19,lkj_choleski:19,lkjcorr:19,llion:[395,397,399],lmbda:597,load:[1,2,10,11,12,198,201,353,408,412,491,568,574,575,578,590,591,593,595,596,597,600],load_arg:23,load_inlin:11,load_nvprof:2,load_state_dict:[1,192,216,309,353,402,408,566,591,594,597],load_state_dict_from_url:[566,575],load_url:575,loadabl:566,loaded_even:594,loaded_numb:594,loaded_smal:594,loaded_weight:611,loader:[16,597],loaiza:19,lobpcg:606,loc:[19,216],local:[1,18,23,125,217,304,305,310,342,403,412,445,499,566,570,576,580,582,587,589,598,603,604,605,610],local_process_rank:18,local_rank:[18,391],local_response_norm:569,local_valu:[598,603],localhost:[603,604],locallr_0:610,localresponsenorm:580,locat:[2,4,11,13,19,54,76,78,102,103,124,207,216,244,249,252,257,302,310,386,403,412,494,566,568,575,580,596,597,599,603,605,606,610,611],lock:[7,16,18,19,583,586,592,603,604],log10:[1,569,577,611],log10_:[569,577,611],log1p:[1,569,577,596,606,611],log1p_:[569,577,606,611],log2:[1,132,569,577,596,611],log2_:[569,577,611],log:[1,11,16,17,19,131,133,214,220,222,224,225,232,260,273,281,282,301,315,326,343,344,357,360,367,384,385,388,511,563,569,577,580,586,588,596,599,610,611,612],log_2:223,log_:[218,219,220,221,569,577,611],log_abs_det_jacobian:19,log_dir:[599,610],log_input:[367,569,580],log_norm:19,log_normal_:[569,577,611,612],log_pob:273,log_prob:[19,273,288,569,580],log_sigmoid:[569,596],log_softmax:[1,288,569,578,596,606],log_target:[326,569,580],logabsdet:[511,569,573],logaddexp2:[569,611],logaddexp:[223,569,611],logarithm:[114,214,218,219,220,221,222,223,224,231,288,573,580,606],logcumsumexp:[569,611],logdet:[511,569,573,596,611],logdir:[599,610],loggingtensor:588,logic:[4,6,16,21,23,68,69,70,71,226,227,228,229,240,463,485,571,588,600],logical_and:[569,611],logical_and_:[569,611],logical_not:[569,577,611],logical_not_:[569,577,611],logical_or:[569,611],logical_or_:[569,611],logical_xor:[569,611],logical_xor_:[569,611],logist:[19,381,384,580],logit:[19,282,569,580,611],logit_:[569,611],logsoftmax:[301,360,385,580],logspac:[10,569,572],logsumexp:[222,569,577,596,611],long_tensor:608,long_zerodim:608,longer:[2,18,32,412,603,605],longest:[288,438,440,441,589],longtensor:[51,52,53,102,103,152,174,207,244,247,249,252,257,262,307,308,356,446,513,514,532,539,562,580,606,608,611],look:[4,5,7,8,12,18,19,23,240,273,429,457,526,568,570,577,580,582,583,590,591,592,595,596,603,604],lookup:[4,19,307,568,571,580,585,596,604],loop:[4,13,17,23,201,412,568,569,585,589,591,596,599,600,610,620],loop_and_list:596,loop_count:596,loop_in_traced_fn:568,loop_rang:596,loopmodel2:596,loopmodel:596,loos:590,lorentz:19,lose:578,loss0:582,loss1:582,loss:[1,2,17,19,190,273,281,282,288,299,301,307,315,321,326,327,345,346,356,357,358,360,367,383,384,400,401,412,438,526,566,578,583,586,587,589,591,597,600,603,604,610],loss_fn:[1,582,587,592,597],loss_func:[412,603],lost:[1,302,350,351,352],lot:[7,576,583,592,598,602,604,606,610],low:[2,4,7,13,17,19,155,288,456,468,472,473,527,569,576,606,611,619],lower:[2,17,18,19,73,78,85,86,87,89,121,135,136,167,171,247,257,273,371,463,482,494,530,543,544,545,568,569,573,579,580,581,583,596,597,600],lower_bound:19,lower_choleski:19,lower_triangular:19,lowercas:18,lowercholeski:19,lowercholeskytransform:19,lowest:[84,261,421,422,430,431,472,473,588],lowrank_multivariate_norm:19,lp_pool1d:569,lp_pool2d:569,lppool1d:580,lppool2d:580,lr_0:610,lr_decai:597,lr_lambda:597,lr_schedul:597,lrelu:[354,591],lrn:342,lru:586,lstm:[2,6,331,569,586,596,600,601,610],lstm_cell:569,lstmcell:[1,600,601],lstsq:[569,611],lt_:[569,611],lu_data:[236,237,569,611],lu_pivot:[236,237,569,611],lu_solv:[569,611],lu_unpack:235,luck:23,luckili:23,lukasz:[395,397,399],lvert:[38,183,400,580],m_load:591,m_state_dict:594,macbook:610,machin:[3,18,388,412,590,593,602,603,604],machine_nam:18,machineri:[23,588],maco:[18,576],macro:11,maddison:19,made:[2,8,23,397,399,478,570,595,597,610,619],mae:327,magic:[569,571],magma:[86,235,464,526,573,595],magma_2:595,magma_hom:595,magnitud:[1,97,444,581,582,586],mai:[1,2,3,4,5,7,11,13,15,16,17,18,19,23,54,67,76,96,99,121,124,138,142,147,190,193,198,200,201,207,216,217,222,273,288,293,294,295,296,297,298,301,330,360,368,397,399,408,412,447,464,481,484,510,522,526,554,567,568,570,573,574,578,580,582,584,585,586,588,589,591,593,594,595,596,597,600,603,605,606,607,611,612,619],main:[4,16,17,18,19,23,109,110,111,112,544,545,546,547,568,576,578,580,582,583,587,588,595,603,604,610,611],main_tag:610,mainli:[17,19,288,580,620],maintain:[1,7,16,17,18,19,23,277,412,437,567,580,582,586,591],major:[2,7,13,326,567,580,596],make:[2,4,5,6,11,12,13,16,17,18,19,21,23,85,86,87,110,125,139,140,141,192,198,217,281,288,293,294,295,296,297,298,309,353,380,402,412,427,445,496,530,539,566,568,570,576,577,580,582,583,584,586,587,588,589,591,592,593,595,596,597,599,600,601,603,604,605,608,610,611,617,619],make_dict:568,make_grid:610,malici:[18,216],manag:[1,2,7,19,23,24,125,412,445,499,571,589,590,596,598,599,602,603,604,611,612],mandat:588,mandatori:596,mandatorili:16,mani:[1,2,4,7,8,10,11,16,17,18,19,23,24,54,121,200,288,538,544,545,546,547,568,570,577,581,583,584,585,588,590,591,600,601,605,606,608,610,611,612],manipul:[4,582,589,596,598,600,601],manner:[2,6,578,584,611],manoj:9,mantissa:[209,586,611],manual:[1,16,18,23,194,281,282,301,357,358,360,437,568,576,580,582,586,588,589,591,595,596,597,600,610,620],manual_se:[13,16,24,569,577,593,602],manual_seed_al:13,map:[4,11,19,23,29,60,75,197,198,216,217,296,297,298,304,305,310,350,351,352,354,359,363,427,467,551,552,571,578,580,583,587,588,595,596,600,601,603,604,605,607,619,620],map_:[572,611],map_arg:23,map_fn:4,map_loc:[197,216,412,566,575],map_nodes_to_valu:23,margin:[23,299,321,346,356,358,400,401,569,580,610],margin_ranking_loss:[1,569],marginrankingloss:580,mark:[2,13,22,412,568,570,583,587,588,591,604,611],mark_dirti:[2,588],mark_non_differenti:[2,588],marker:13,market:[7,8],marten:581,martinsson:[456,527],mask:[239,277,288,359,395,396,397,398,399,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,569,577,578,580,596,606,611],masked_fil:[569,577,596,611],masked_fill_:[569,577,578,611],masked_scatt:[569,596,611],masked_scatter_:[569,611],masked_select:[569,577,596,611],mass:19,massa:9,master:[7,395,566,591,596,603],master_addr:[18,603,604],master_port:[18,603,604],mat1:[34,206,251,569,606,611],mat2:[34,74,206,251,569,606,611],mat:[35,259,454,468,569,606,610,611],match:[1,2,4,13,18,19,23,37,42,113,121,176,192,216,239,308,309,353,402,404,412,448,466,537,568,573,577,580,583,584,588,591,594,596,597,598,600,603,608,611,617],materi:[2,414,588],math:[16,23,131,132,133,241,326,456,468,527,568,570,580],mathbb:360,mathbf:[19,206,442,444],mathbin:[31,34,35,64,74,573],mathcal:[286,293,294,295,296,297,298,307,308,313,314,330,331,339,341,368,370,371,391,474,581],mathemat:[2,10,23,241,281,283,284,285,323,324,325,391,412,447,481,580,583,612],mathematician:583,mathremaind:569,mathrm:[19,66,128,129,130,241,283,284,285,316,323,324,325,332,367,391],matmul:[1,3,10,74,85,177,251,403,456,457,464,512,526,530,569,573,577,586,606,611],matplotlib:610,matric:[19,31,34,64,74,75,84,85,87,108,110,155,206,217,225,233,235,242,251,456,464,502,511,512,526,527,530,543,544,546,569,573,577,580,606,611],matrix:[2,3,19,31,34,35,36,64,66,73,74,82,84,85,86,87,108,109,110,112,120,121,155,177,206,217,225,233,235,237,240,241,242,243,251,257,259,307,308,330,403,442,447,453,454,455,456,457,464,511,512,514,526,527,530,537,540,543,544,545,546,547,555,573,577,578,580,581,585,586,591,599,600,606,610,611],matrix_approximation_rank:17,matrix_exp:[569,611],matrix_pow:[569,611],matrix_rank:[569,573],matter:[2,4,5,8,110,197,198,201,583],max:[2,16,18,23,39,40,51,67,82,85,89,90,102,135,136,167,177,199,233,243,274,275,276,287,288,299,300,308,311,315,321,328,329,340,342,346,347,348,349,350,351,352,356,357,358,361,372,373,379,400,401,403,415,440,568,569,573,580,584,586,589,596,597,601,611,617,620,621],max_1:23,max_2:23,max_:[347,348,349,442],max_bin:610,max_ev:597,max_indic:244,max_it:597,max_job:11,max_lr:597,max_memory_alloc:[13,586],max_memory_cach:13,max_memory_reserv:[13,586],max_momentum:597,max_norm:[1,307,308,415,569,580,582,617],max_pool1d:569,max_pool1d_with_indic:569,max_pool2d:[569,601,617],max_pool2d_with_indic:569,max_pool3d:569,max_pool3d_with_indic:569,max_queu:610,max_siz:[3,586],max_src_column_width:2,max_unpool1d:569,max_unpool2d:569,max_unpool3d:569,max_val:[320,569,580],max_valu:[89,320,569],maxim:[89,244,350,351,352,597],maximum:[13,19,39,51,102,103,145,167,217,244,320,416,468,482,569,580,582,586,597,600,601,611,620],maxnorm:[482,569,611],maxpool1d:[350,580,596],maxpool2d:[351,354,580,596,601,617],maxpool3d:[352,554,580,596],maxpool:[311,596],maxunpool1d:[274,347,580],maxunpool2d:[275,311,348,580],maxunpool3d:[276,349,580],may04_22:610,mayb:7,mean:[1,2,3,4,6,7,12,16,17,18,19,23,64,75,198,247,257,271,272,273,275,276,277,281,282,283,284,285,286,287,288,299,301,303,306,308,312,313,315,316,317,318,319,320,321,323,324,325,326,327,330,332,340,341,343,344,345,346,356,357,358,360,361,367,368,371,372,373,379,381,382,383,384,385,387,388,389,390,391,392,393,394,400,401,412,448,474,475,521,527,557,568,569,570,576,577,578,580,581,582,586,587,588,589,591,595,596,597,600,601,603,604,605,606,611,617],mean_di:569,mean_dy_xmu:569,meant:[437,582,603],meantim:[281,282,299,301,321,326,327,345,346,356,357,358,360,367,383,384,400,580],measur:[4,13,19,281,282,299,321,326,327,345,346,400,401,580,586,590,597],mechan:[18,23,567,576,588,590,600,601,603,604],median:[4,19,262,554,569,577,611],medium:7,meet:586,megabyt:412,meiyu:217,member:[7,8,16,18,23,192,309,315,353,402,568,570,589],membership:[8,571],memcheck:586,memo:[192,309,353,402],memoiz:19,memor:17,memori:[2,4,6,10,17,19,20,54,76,91,121,122,123,124,149,151,192,203,308,309,330,331,353,395,396,397,402,412,437,445,452,471,473,475,476,535,565,568,574,576,578,580,583,592,597,598,599,600,601,603,606,607,608,609,611,618],memory_alloc:[13,586],memory_cach:13,memory_effici:203,memory_format:[91,122,123,151,192,309,353,402,412,452,471,473,475,565,569,611],memory_key_padding_mask:[395,396,397],memory_mask:[395,396,397],memory_reserv:[13,586],memory_snapshot:[13,586],memory_stat:[13,586],memory_summari:13,mendoza:9,mention:[566,570,578,586,588,591,606,609],mere:7,merg:[4,7,8,16,354,363],mesh:610,meshgrid:569,messag:[7,13,23,25,566,568,569,571,573,589,596,597,598,603,605],messmer:9,met:217,meta:[603,610,611],metaclass:571,metadata:[4,216,491,588,594,603,604,610],metadata_head:610,metadatatensor:588,metal:574,method2:202,method:[1,4,7,11,12,13,16,18,19,22,23,51,52,53,192,193,194,195,198,199,201,202,203,216,217,243,273,281,307,309,353,354,355,363,364,402,408,412,418,420,423,426,427,428,430,431,432,433,434,440,442,457,522,526,566,568,571,573,574,576,577,578,580,581,582,586,588,589,591,592,594,596,597,600,601,603,605,606,608,610,611,612,619,620],method_nam:23,metric:[13,597,599,610],metric_dict:610,michael:9,micro:598,microbatch:598,microsecond:4,middl:596,might:[2,4,5,8,11,12,18,19,23,101,120,201,202,412,413,566,568,580,583,585,587,588,590,593,596,598,600,603,604,605,609,611],mileston:597,millisecond:13,mimic:[19,597],mimick:10,min:[16,18,23,39,40,52,89,90,103,135,136,167,235,257,287,340,342,361,373,379,456,464,526,544,545,546,547,569,573,577,580,596,597,601,603,611,617,620,621],min_:530,min_indic:[249,569],min_lr:597,min_run_tim:4,min_val:[320,569,580],min_valu:[89,320],min_x:233,mind:[307,583,596],minfunc:597,ming:217,mingzh:9,mingzhe09088:9,mini:[16,283,284,285,307,308,316,321,323,324,325,332,346,356,358,391,400,580,598,617],minibatch:[16,235,273,281,282,299,301,321,326,327,345,346,356,357,358,360,367,383,384,400,404,580,598,617],minim:[2,7,51,52,89,249,566,582,591,592,594,597,598,600,620],minimum:[4,11,17,40,52,67,103,146,167,249,288,320,401,514,569,597,600,601,606,608,611,620],ministri:588,minkowski:[82,580],minlength:[67,569,611],minmax:600,minmaxobserv:[601,620],minor:[8,13],minu:133,minut:[7,18,610],miopen_batch_norm:569,miopen_convolut:569,miopen_convolution_transpos:569,miopen_depthwise_convolut:569,miopen_rnn:569,mirror:[4,611],misalign:577,mise:19,mismatch:[1,570,582,587,588,589],misnom:144,miss:[192,299,309,323,324,325,353,402,595,596],missing_kei:[192,309,353,402],mistak:589,mitig:4,mix:[11,19,412,567,585,596,606],mixin:408,mixtur:[1,19],mixture_distribut:19,mixture_same_famili:19,mkl:[585,595],mkl_2020:595,mkl_fft:595,mkl_num_thread:585,mkl_thread:585,mkldnn:611,mkldnn_adaptive_avg_pool2d:569,mkldnn_convolut:569,mkldnn_convolution_backward_weight:569,mkldnn_cpu_runtim:585,mkldnn_linear:569,mkldnn_linear_backward_weight:569,mkldnn_max_pool2d:569,mkldnn_max_pool3d:569,mkldnn_reorder_conv2d_weight:569,mkldnn_reorder_conv3d_weight:569,mlp:408,mmap:576,mnist:610,mnist_train:610,mnt:18,mobil:[574,600],mobile_optim:567,mobilenet_v2:596,mobilenetv3:[319,580],mobileoptimizertyp:574,mod:[23,193,194,202,570,616,617,618,620],mode:[2,5,16,17,18,19,21,23,192,194,201,203,283,284,285,308,309,316,323,324,325,326,332,353,369,391,402,404,405,412,445,464,498,499,554,569,573,574,577,580,581,586,587,589,596,597,601,603,611,617,620],model0:582,model1:582,model:[1,2,4,5,6,13,17,18,19,23,192,194,195,201,203,216,273,302,309,315,325,353,359,380,391,395,397,399,402,412,413,417,427,443,522,568,570,571,574,575,580,583,585,586,587,591,592,593,594,599,601,603,604,610],model_dir:[566,575],model_fp32:600,model_fp32_fus:600,model_fp32_prepar:600,model_fp:600,model_fus:600,model_int8:600,model_paramet:597,model_prepar:600,model_quant:600,model_to_quant:600,model_to_qunat:600,model_zoo:567,moder:6,modestli:[11,597],modf:569,modif:[2,12,23,149,412,600,611],modifi:[1,2,16,17,23,96,170,190,192,193,194,205,307,309,353,395,397,399,402,410,411,412,415,416,426,427,428,430,431,432,433,568,577,580,582,583,586,588,591,594,596,597,598,603,609,611,620],modified_tensor:194,modl:19,modul:[1,2,4,6,10,11,18,192,193,194,195,196,197,198,199,201,202,203,216,273,277,283,284,285,286,293,294,295,296,297,298,302,303,304,305,307,308,309,316,323,324,325,332,333,334,335,336,337,338,339,341,354,355,359,363,364,369,380,385,391,395,402,408,412,413,414,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,440,442,444,491,566,567,571,573,574,576,578,580,582,583,585,586,587,589,590,592,593,595,596,597,598,599,601,603,610,611,612,613,614,615,616,617,618,619,620],modular:[1,582],module_kwarg:580,module_nam:23,module_qualified_nam:23,moduledict:[570,591],modulelist:591,modules_to_fus:620,modulo:[4,19,481],moment:[2,574,576,596,597,600,603,617],momentum:[283,284,285,323,324,325,391,569,580,583,591,597,614,617],monitor:[13,586,597],monoton:[19,78,494],mont:19,moor:[457,573],more:[1,2,4,5,8,10,11,12,13,15,16,17,18,19,21,23,50,54,61,62,63,67,73,76,78,84,85,87,108,111,121,124,139,140,141,142,177,180,182,192,202,217,220,223,225,236,262,273,277,282,287,288,293,294,295,297,298,307,308,309,330,353,359,365,366,367,368,379,391,402,408,412,413,446,447,457,463,464,485,491,494,511,512,526,530,543,554,566,568,570,573,575,576,577,578,579,580,581,583,585,586,588,589,590,591,594,596,597,598,599,600,603,604,605,606,608,609,610,611,612,619],more_img:578,moreov:[412,603,611],most:[2,4,5,7,12,13,16,18,19,23,121,180,252,273,412,566,568,570,572,576,578,580,583,586,588,592,593,597,599,600,604,605,606,608,610,611],mostli:[7,19,619],motiv:[7,23,591,604],moustapha:273,move:[6,18,21,23,192,197,216,254,283,284,285,309,353,391,402,414,570,573,574,575,576,578,580,586,589,591,592,597,598,600,603,607,611,620],moveaxi:[569,611],movedim:[253,569,573,609,611],movement:609,moviepi:610,movingaverageminmaxobserv:[601,620],movingaverageperchannelminmaxobserv:[601,620],mpi:18,mro:571,mrshenli:9,mse_loss:[1,569],mseloss:[383,580,587],msg:13,msort:[569,611],msys2:595,much:[1,2,5,7,8,12,16,17,217,308,412,427,568,583,586,591,594,597,598,603,604,611],mul:[2,23,176,258,568,569,577,588,596,604,606,608,611,617],mul_:[10,569,577,606,611],mul_scalar:617,mulbackward0:2,mulconst:588,mult:16,multi:[5,13,21,121,192,282,302,313,330,353,356,357,358,368,395,397,404,412,568,585,586,591,593,596,603,606,608,611,612],multi_head_attention_forward:569,multi_margin_loss:[1,569],multicast:18,multidimension:[176,323],multihead:359,multihead_attn:359,multiheadattent:[395,397,399],multilabel_margin_loss:[1,569],multilabel_soft_margin_loss:569,multilabelmarginloss:580,multilabelsoftmarginloss:580,multilay:[313,330],multilin:610,multimarginloss:580,multinomi:[569,596,611],multipl:[1,2,3,4,13,16,17,18,19,22,23,31,33,34,39,40,51,52,82,121,202,207,208,240,244,249,251,281,282,296,297,298,299,301,308,310,321,326,327,342,345,346,356,357,358,360,367,383,384,400,403,412,418,419,420,421,422,423,424,425,536,537,543,566,570,573,576,577,578,580,583,585,586,587,590,591,592,593,594,595,596,597,599,600,603,604,605,606,611,620],multiplex:603,multipli:[1,13,30,31,32,33,34,35,36,64,74,121,209,240,251,256,259,281,293,294,295,298,313,330,404,405,406,454,522,523,526,569,573,577,580,586,591,597,606,611,617],multiplicand:256,multiplicativelr:597,multiply_:[569,611],multiprocess:[16,18,302,412,567,578,587,604],multiprocessing_context:16,multisteplr:597,multithread:[586,603],multivari:[19,260],multivariate_norm:19,must:[1,2,4,11,13,16,18,19,21,22,23,24,30,31,32,33,34,35,36,59,64,66,68,69,70,71,74,78,81,95,101,110,112,113,115,118,121,140,141,152,153,169,176,192,198,201,208,211,217,236,238,239,240,247,254,256,257,260,262,269,282,288,293,294,295,296,297,298,302,307,308,309,310,347,353,356,389,402,412,427,437,438,447,455,456,459,461,486,494,501,522,527,536,537,545,547,554,558,559,562,563,568,569,570,573,576,577,578,580,581,582,583,584,587,588,592,594,596,597,598,600,601,602,603,604,605,606,607,611,617,619],mutabl:[201,568],mutat:[23,194,412,611,620],mute:566,mutex:583,mutual:[16,18],mvlgamma:[569,611],mvlgamma_:[569,611],mvn:19,my_add:[604,619],my_api:590,my_const:568,my_constraint:19,my_custom_funct:23,my_dict:[568,570],my_experi:610,my_factori:19,my_imag:610,my_image_batch:610,my_image_hwc:610,my_int:[568,570],my_lib:595,my_lib_add_backward_cuda:595,my_lib_add_forward_cuda:595,my_list:570,my_lstm:589,my_mesh:610,my_model:[412,568],my_modul:[23,568],my_module_inst:568,my_module_transform:23,my_paramet:570,my_pass:23,my_qconfig:620,my_registri:19,my_script_add:603,my_script_modul:[568,570],my_scripted_model:568,my_submodul:570,my_transform:19,my_variable_nam:570,myconstraint:19,myconstraintclass:19,mycpuorg:9,mycustomtrac:23,myfloat32func:582,myfunc:2,myiterabledataset:16,mylinear:591,mymm:582,mymodel:[582,592,620],mymodul:[23,194,195,196,198,199,203,354,355,363,364,568,570,589,594,596],mymodule2:194,mypi:[182,570],myscriptmodul:568,myspecialsubmodul:23,mytransform:19,n_0:580,n_1:248,n_2:248,n_bin:569,n_class:273,n_epoch:16,n_fft:[190,522,569,611],n_frame:190,n_i:[278,279,280,293,294,295,347,348,349,400,401],n_iter:610,n_k:[248,580],n_power_iter:442,n_t:313,naiv:[16,598],name:[2,4,11,13,18,19,23,144,192,197,198,202,216,309,353,402,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,442,444,491,497,555,566,567,568,569,571,572,575,576,581,587,588,590,591,598,599,603,604,607,610,617,620,621],named_buff:[192,309,353,402,591,594],named_children:[192,309,353,402,591],named_flat_img:578,named_img:578,named_modul:[23,192,309,353,402,591],named_paramet:[192,194,309,353,402,591,594],named_tensor:578,namedshap:[402,578],namedtensor:[402,578],namedtupl:[16,23,102,103,120,155,192,207,233,244,247,249,252,262,273,309,353,402,456,464,511,512,513,526,530,539,543,568,570,573],namespac:[1,23,568,571,588,591,596,598,601,619],nan:[1,2,19,29,31,34,35,36,38,41,56,60,64,78,114,145,146,147,171,172,183,184,185,186,218,220,225,230,245,250,261,262,263,264,490,494,511,516,563,569,573,580,582,611],nan_to_num:[569,611],nan_to_num_:[569,611],nanmedian:[569,577,611],nanquantil:[569,611],nansum:[569,611],narrow:[569,577,596,609,611],narrow_copi:[569,606,611],nasdaq:610,natalia:9,nathan:[456,527],nativ:[1,10,23,198,568,576,603],native_batch_norm:569,native_group_norm:569,native_layer_norm:569,native_norm:[569,606],natur:[2,5,7,10,18,19,218,220,273,573,606],nbatch:[281,282],nbcsm:9,nccl2:412,nccl:[17,412],nccl_async_error_handl:18,nccl_blocking_wait:18,nccl_debug:18,nccl_debug_subsi:18,nccl_socket_ifnam:18,nchannel:361,nchw:610,ndarrai:[55,149,514,535,596,606,611],ndata:588,ndim:[573,577,606,611],ndimens:[572,577,611],ne_:[569,611],nearbi:[135,136],nearest:[404,406,580,601,617],nearli:[2,456,592,603,611],necessari:[1,2,4,11,16,24,174,199,438,439,568,578,583,584,586,587,591,595,600,603,604,605,608,611],necessarili:[3,17,18,19,120,247,301,360,457,586,588,596],need:[1,2,4,7,8,11,12,13,16,17,18,19,21,23,54,75,76,84,110,112,121,124,142,239,257,307,350,351,352,353,359,395,397,399,412,418,422,424,448,478,519,530,567,568,570,574,576,578,580,583,585,586,588,589,590,592,593,594,595,596,597,598,600,603,604,605,606,607,608,611,614,619,620],need_weight:[359,569],needs_input_grad:[2,588],needsinput:590,neeraj:9,neerajprad:9,neg:[10,11,13,16,19,21,23,24,41,67,99,142,171,172,184,185,187,225,238,242,257,261,273,282,315,340,347,356,360,367,383,400,401,510,537,542,544,545,546,547,553,568,569,577,580,581,583,596,602,606,611],neg_1:23,neg_:[569,577,606,611],negative_:[569,606,611],negative_binomi:19,negative_id:401,negative_slop:[340,569,580,581],neginf:[261,569,611],neglig:[2,200,596],negoti:[8,603],negsigmswapinterpret:23,negsigmswapxform:23,neighbor:[190,404,406,522,601],neighborhood:[310,403],neighbour:[342,580,617],neither:[16,18,142,447,573,603],nelement:[357,384,572,611],nep:588,neq:[266,356,358,530,597],nest:[1,2,13,23,193,201,353,603,611],nesterov:597,net:[1,12,23,192,201,202,302,309,353,402,412,427,570,582,586,591,597,610],netlifi:7,network:[1,2,7,12,19,192,201,202,277,283,284,285,288,302,303,304,305,309,315,330,353,360,365,366,371,379,381,391,395,397,399,402,408,440,442,568,570,580,581,582,583,586,593,596,597,603,604,605,620],neural:[7,12,23,277,288,303,315,353,360,365,366,379,381,395,397,399,568,570,580,581,586,597],neural_networks_tutori:591,neurip:[17,19],neuron:303,never:[2,6,7,17,18,82,190,216,412,437,583,598,603,611],nevertheless:605,new_:[586,611],new_bn:594,new_data:596,new_empti:[569,596,611],new_empty_strid:569,new_f:23,new_factor:1,new_ful:[569,586,596,611],new_graph:23,new_group:[18,391],new_interv:1,new_lr:597,new_m:594,new_net:591,new_nod:23,new_on:[572,611],new_scal:1,new_stat:[13,24,503,602],new_strategi:576,new_tensor:[572,586,611],new_zero:[569,596,611],newer:[3,11,585,586,594],newest:11,newli:[7,23,135,136,466,467,583],newtyp:570,next:[2,4,16,18,19,23,194,269,313,314,326,331,368,370,412,576,580,582,583,585,591,592,596,599,603,604,608,610,611],next_layer_fp32:600,next_layer_int8:600,next_stat:19,nextaft:[569,611],nextafter_:[569,611],nfs:18,ngimel:9,nhead:[395,396,397,398,399],nhwc:[608,610],nice:[2,293,294,295,296,297,298,310,347,348,349,403,578,583],nichola:19,niederreit:468,nielsen:19,niki:[395,397,399],ninja:[11,595],niter:[217,456,527],nix:315,nll:360,nll_loss2d:569,nll_loss:[1,569,596],nllloss:[301,326,385,554,580],nlp:[17,323,324,325],nn_func:588,nn_module_inst:568,nnode:18,nnq:620,nnz:[2,514,606,611],no_grad:[2,6,125,192,309,353,402,596,612],no_sync:412,noam:[395,397,399],noarch:595,nock:19,node:[18,23,288,302,412,574,586,596,598,603,604,605],node_copi:23,node_rank:18,nodes_map:23,noindex:17,nois:[4,569,593],noisi:4,nola:190,nomin:570,non:[1,2,4,6,11,13,15,18,19,24,41,43,67,74,78,81,85,96,100,145,146,171,172,176,177,192,193,200,201,202,217,227,235,240,257,262,278,279,280,294,295,297,298,301,309,313,329,330,347,348,349,350,351,352,353,356,358,359,360,368,370,395,402,412,446,494,495,504,514,526,537,551,554,568,570,572,573,576,581,584,586,588,589,591,593,599,602,603,605,606,608,609,610,611,617,618,619,620],non_block:[192,309,353,402,437,569,586,607,611],non_leaf_module_list:620,noncontigu:2,nondet_tol:2,nondetermin:[2,593],nondeterminist:[23,67,207,288,293,294,295,296,297,298,554,580,611],none:[1,2,4,11,13,16,17,18,19,21,22,23,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,51,52,55,56,57,58,59,60,64,65,66,67,68,69,70,71,72,74,78,81,83,85,86,87,89,90,92,95,96,97,98,99,100,101,102,103,104,105,106,109,113,114,116,117,118,119,120,122,123,124,126,128,129,130,131,132,133,134,137,142,143,144,145,146,147,148,150,151,152,153,154,155,156,161,162,163,164,165,166,167,168,169,170,171,172,174,176,177,187,188,190,191,192,194,197,198,199,201,202,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,239,240,243,244,245,246,247,249,250,251,252,255,256,257,258,259,261,262,263,264,266,267,268,269,271,272,275,276,278,279,280,281,282,283,284,285,288,299,301,302,307,308,309,311,315,320,321,326,327,328,329,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,363,364,367,383,384,385,387,391,395,396,397,398,399,400,401,402,404,405,406,410,411,412,414,418,419,420,421,422,423,424,425,427,430,431,440,441,442,444,446,447,448,449,451,452,455,456,458,459,460,461,462,464,465,468,469,470,471,472,473,474,475,476,477,480,481,482,483,486,488,489,490,494,502,504,505,506,507,508,509,510,512,513,514,516,517,518,519,520,522,523,524,525,526,527,530,533,534,535,537,539,544,545,546,547,548,549,551,552,555,556,558,561,563,564,565,566,568,569,570,573,574,575,576,577,578,580,581,586,588,592,594,596,597,598,599,600,602,603,606,607,610,611,614,616,617,619,620],nonexist:[23,570],nonfinit:183,nonlinear:[281,299,321,368,370,581,606,618],nonlinearli:7,nonloc:571,nonmask:423,nonneg:[19,401,456,460,527],nonnegative_integ:19,nonzero:[2,190,226,228,229,235,562,569,596,611],noop:412,noopobserv:[601,620],noordhui:9,noplot:7,nor:[16,18,412,447,463,573],noreturn:570,norm:[1,19,21,23,82,115,233,236,237,307,308,345,362,396,398,400,415,421,422,427,430,431,442,444,482,569,572,573,580,582,596,597,611,613],norm_except_dim:569,norm_typ:[307,308,328,329,415,569,580,617],normal:[1,2,17,21,23,120,190,192,195,222,277,283,284,285,304,305,316,323,324,325,332,342,379,391,396,398,415,416,427,435,436,442,444,474,475,482,509,522,554,566,568,569,572,577,581,583,586,603,610,611,612],normal_:[569,577,581,586,611,612],normalized_shap:[332,569,580,617],not_equ:[569,611],not_equal_:[569,611],notat:[121,502,571,591,611],notatensor:619,note:[2,3,4,10,11,12,15,16,17,18,19,20,21,22,23,43,59,84,85,101,110,121,152,182,190,196,215,217,231,240,281,282,288,296,297,298,299,301,307,308,315,321,326,327,330,345,346,354,356,357,358,359,360,363,367,368,383,384,391,395,400,408,412,447,464,468,522,526,554,566,567,568,569,571,576,580,583,584,585,586,587,588,590,591,592,593,594,596,597,599,600,601,604,605,606,609,610,611,620],notebook:7,noth:[7,11,13,23,568,570,605],notic:[18,21,281,404,567,568,597,606],notifi:[8,605],notimpl:[571,588],notimplementederror:19,notion:[2,16,283,284,285,323,324,325,391],now:[2,6,13,23,157,194,201,369,404,408,427,568,577,578,582,583,584,586,587,588,591,596,597,604,605,611,619],nproc:[576,587,604],nproc_per_nod:18,nse:[606,611],nuanc:7,nuc:[422,431,447,573],nuclear:[447,573],nuclear_norm:569,num:[257,313,316,359,368,617],num_alloc_retri:13,num_averag:597,num_batches_track:594,num_channel:[316,578,617],num_class:[569,580],num_decoder_lay:395,num_direct:[313,330,368],num_embed:[307,308,580,617],num_encoder_lay:395,num_featur:[192,283,284,285,309,323,324,325,353,391,402,580,591,617],num_gpus_you_hav:18,num_group:[316,569,617],num_head:[359,569],num_kei:18,num_lay:[313,330,368,369,396,398,569,591,596],num_oom:13,num_paramet:361,num_proc:582,num_process:592,num_replica:16,num_sampl:[16,257,569,611],num_send_recv_thread:603,num_thread:4,num_threshold:610,num_work:[16,593,595],num_worker_thread:603,number:[1,2,3,4,5,6,7,11,16,18,19,23,24,30,31,32,33,34,35,36,41,43,64,66,67,74,76,80,88,89,93,97,100,113,116,118,120,121,122,126,134,142,144,147,151,152,154,158,159,160,163,167,174,175,206,209,210,217,222,234,238,247,256,257,260,261,264,266,270,271,272,273,274,275,276,278,279,280,281,282,286,287,288,289,293,294,295,296,297,298,299,301,302,306,307,310,311,312,313,314,315,316,317,318,319,320,321,326,327,330,331,332,333,334,335,336,337,338,340,341,343,344,345,346,347,348,349,353,356,357,358,359,360,361,367,368,370,371,372,373,379,381,382,383,384,385,387,388,389,390,392,393,394,395,396,397,398,399,400,401,403,412,421,422,424,425,427,430,431,432,433,437,438,439,441,442,446,447,448,450,451,456,458,461,468,470,471,472,474,475,476,481,483,484,485,486,487,495,496,498,500,501,502,503,514,519,522,527,536,537,538,545,547,551,552,555,558,559,560,563,564,567,569,570,571,572,573,576,578,580,581,584,586,588,591,594,596,597,598,599,602,603,604,606,607,608,610,611,612,617,620,621],number_of_vertic:610,number_per_run:4,numel:[21,92,180,569,577,606,611],numer:[1,16,19,32,78,194,201,202,232,243,282,283,284,285,316,323,324,325,332,385,388,391,442,494,571,573,574,580,588,596,597,600,611,621],numpi:[16,21,37,38,42,55,116,118,121,138,139,140,141,145,146,149,253,447,459,480,483,502,514,526,528,529,535,536,538,558,572,573,584,588,589,593,595,596,606,608,609,610,611,621],nvcc:[11,13],nvidia:[2,18,554,586,589,593,595,612],nvlink:603,nvprof:[2,5],nvtx:[2,5],nvvp:2,nyquist:21,o_ort:596,o_t:330,obermey:9,obj:[13,18,181,182,196,199,491,595],object:[1,2,4,13,16,17,18,19,20,22,23,24,138,181,182,192,196,197,198,199,201,202,216,217,238,302,304,305,309,323,324,325,353,391,402,412,429,438,439,491,566,570,571,573,574,575,576,583,585,586,588,589,590,592,593,594,595,596,597,602,603,605,607,608,610,611,619,621],object_gather_list:18,object_list:18,obscur:11,observ:[1,281,282,283,284,285,299,301,321,323,324,325,326,327,345,346,356,357,358,360,367,383,384,391,400,580,582,583,590,600,601],observed_to_quantized_custom_module_class:620,observedcustommodul:620,observer_en:620,observer_kwarg:620,observer_non_leaf_module_list:620,observerbas:620,obtain:[2,4,16,18,19,23,243,288,360,412,456,468,527,573,576,577,580,585,599,600,611],obviou:[589,605],obvious:7,occas:[2,7,583],occasion:606,occupi:[13,342,580,586,621],occur:[1,10,13,16,190,193,288,447,570,573,578,580,582,586,589,596,603,605,609,611,619],occurr:[247,437,551,552],oct:569,octob:13,odd:[19,21],odict_kei:430,odot:330,off:[2,7,11,13,23,65,72,164,165,190,201,278,279,280,282,347,348,349,499,580,585,586,587,590,599,600,601,603,604],offer:[18,586],offici:[8,18,273],offlin:198,offset:[54,110,111,112,308,412,466,467,545,547,569,580,600,611,617],often:[1,2,5,7,11,16,18,19,23,201,252,307,323,324,325,326,580,583,589,590,591,593,596,597,603,610,611],old:[18,23,452,491,565,568,583,595,597],older:[11,586,594],omagma:595,omega:522,omit:[2,6,11,18,21,315,367,383,595,596,603],omkl:595,omp:585,omp_num_thread:585,on_trace_readi:599,onc:[1,2,7,12,16,17,18,19,20,23,121,192,194,216,302,309,353,402,412,464,500,568,574,576,582,583,585,586,588,590,591,596,597,610],one:[1,2,4,5,6,7,10,11,12,13,16,17,18,19,21,22,23,54,61,67,76,78,92,111,121,124,138,142,145,146,171,172,178,179,180,194,205,206,215,231,240,245,250,257,262,273,278,281,282,283,284,285,288,293,296,297,298,301,308,311,323,324,325,327,328,329,336,337,338,345,353,357,391,404,408,412,413,414,417,427,438,443,444,446,447,466,467,494,502,518,536,541,553,554,563,567,568,573,574,576,577,578,580,583,584,585,586,587,588,590,591,592,593,595,596,597,598,603,605,606,607,608,610,611,617],one_hot:[19,569],one_hot_categor:19,onecyclelr:597,onehot:19,ones:[2,16,18,19,22,23,54,66,76,124,134,190,192,199,206,216,282,309,310,315,316,332,353,357,358,360,402,403,408,412,414,418,419,420,421,422,423,424,425,427,428,441,452,482,538,562,569,572,577,578,580,583,584,586,588,593,596,597,600,603,605,608,611],ones_:581,ones_lik:[23,569,586,596],onesid:[190,522,569,611],onfunctionent:590,onfunctionexit:590,ongo:603,onion:19,onli:[1,2,3,4,5,6,7,8,13,16,17,18,19,20,21,22,23,39,40,65,66,72,74,113,118,120,122,124,138,145,146,164,165,173,183,192,193,194,199,201,202,205,216,217,235,240,273,296,297,298,302,307,308,309,310,326,330,353,356,358,361,369,391,402,403,404,410,411,412,414,437,438,439,447,457,460,464,476,478,479,498,500,518,522,526,530,535,545,547,551,552,554,558,559,560,569,570,573,574,576,577,578,580,581,582,583,586,587,588,589,590,592,593,594,595,596,597,598,600,601,603,604,605,606,608,609,610,611,617,620],onlin:[23,597],only_input:2,onnx:[438,439,567,578],onnx_model:596,onnxruntim:596,onto:[13,18,197,198,216,576,589],onward:114,oom:589,opaqu:18,opcod:23,open:[2,8,19,171,172,197,216,568,576,595,603],openbla:595,opencv:[12,580],openmp:[585,595],oper:[1,5,6,7,8,10,12,13,16,19,21,22,23,31,34,43,54,64,65,67,72,74,76,81,84,87,91,102,103,104,105,116,121,122,123,124,134,150,151,159,164,165,192,198,199,201,202,205,215,224,231,240,251,264,277,282,287,288,293,294,295,296,297,298,302,303,304,305,306,307,308,309,310,311,318,319,320,321,322,327,340,345,350,351,352,353,366,371,372,373,379,383,394,402,403,412,414,440,447,451,452,461,462,470,471,472,473,474,475,476,477,481,485,514,518,525,526,530,535,554,562,564,565,567,568,571,573,580,582,584,585,586,587,589,592,593,597,599,602,603,604,608,609,611,614,615,617,620],operand:[121,571,588,606,608],operator_export_typ:596,operatorexporttyp:596,operatornam:[148,281,282,288,321,326,327,345,401,506],opinion:7,opnam:596,opportun:[568,604],opposit:[21,526],ops:[1,2,23,201,202,572,574,577,578,585,586,588,596,597,599,609,611,612,617,620],opset:596,opset_vers:596,opt:[199,568,588],opt_einsum:121,optim:[1,2,7,10,11,12,17,18,19,121,192,194,199,201,202,217,241,283,284,285,307,309,323,324,325,353,356,357,358,384,391,402,408,412,456,567,568,570,574,578,581,585,587,588,589,591,592,596,600,601,606,620],optima:597,optimiz:[568,596],optimization_blocklist:574,optimize_for_mobil:574,optimize_frozen_modul:194,optimize_numer:194,optimizer0:582,optimizer1:582,optimizer2:582,optimizer_class:603,optimizer_param:412,optimum:597,option:[1,2,4,6,11,13,16,18,19,21,23,24,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,53,54,55,56,57,58,59,60,64,65,66,67,68,69,70,71,72,74,78,81,83,85,86,87,89,91,92,93,96,97,98,99,100,101,102,103,104,105,106,109,110,111,112,113,114,115,116,119,120,121,122,123,124,126,128,129,130,131,132,133,134,142,143,144,145,146,147,150,151,152,153,154,155,163,164,165,166,167,168,169,170,171,172,174,176,177,183,187,188,190,192,194,196,201,202,205,206,207,208,209,210,211,214,215,216,217,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,239,240,243,244,245,246,247,249,250,251,252,255,256,257,259,261,262,263,264,266,267,269,273,277,281,282,283,287,288,293,294,295,296,297,298,299,300,301,304,305,306,307,308,309,310,311,315,318,319,320,321,323,326,327,332,333,334,335,336,337,338,340,345,346,350,351,352,353,354,355,356,357,358,360,362,363,364,367,371,372,373,379,383,384,391,394,395,396,397,398,399,400,401,402,403,404,405,406,413,414,418,419,420,421,422,423,424,425,435,436,437,438,439,440,441,442,444,446,447,448,451,452,455,456,457,458,460,461,462,464,465,468,469,470,471,472,473,474,475,476,477,480,481,482,483,488,490,494,502,504,505,506,507,508,509,510,512,513,514,516,517,518,519,520,522,523,525,526,527,530,533,534,535,536,539,543,544,545,546,547,549,551,552,555,556,558,561,563,564,565,566,568,569,572,573,574,575,580,581,588,589,590,593,596,599,603,606,608,610,611,617,620],ord:[447,569,573],order:[2,4,6,7,18,19,21,22,23,53,73,84,110,113,120,121,138,139,140,141,170,205,217,254,255,257,273,288,302,354,363,380,408,412,423,437,438,439,440,447,460,494,512,513,526,530,539,542,545,547,551,555,566,568,569,571,573,576,577,578,580,583,584,586,587,588,591,596,597,598,600,603,604,605,606,608,611],ordereddict:[354,363,380,408,427,569,591,594],ordin:[608,611],ordinari:[13,412,582],ordinarili:[1,582],org:[2,4,5,7,12,19,217,330,371,372,395,401,444,456,566,571,583,584,591,593,595,610,616,617,618],organ:[7,8,587,590],organiz:23,orgqr:[569,611],origin:[2,10,16,17,18,21,23,79,84,138,174,177,190,197,199,200,201,202,239,254,273,277,289,302,381,391,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,437,440,442,444,486,512,513,515,530,539,551,552,568,576,578,580,586,588,589,590,592,594,596,597,598,600,606,607,611,619,620],original_nam:594,orlando:315,ormqr:[569,611],orphan:[313,330,368],ort:596,ort_sess:596,ortho:[21,217],ortho_bparam:217,ortho_fparam:217,ortho_iparam:217,orthogon:[17,217,453,454,464,573,581],orthogonal_:[572,581],orthonorm:[21,526,530,573],ossci:595,ostmo:9,other:[1,2,4,5,7,8,11,12,13,16,17,19,21,23,30,38,43,55,59,68,70,71,73,78,97,101,110,115,116,117,118,125,126,127,144,145,146,147,152,153,154,161,162,163,168,169,171,172,174,176,183,199,206,208,209,210,212,213,222,223,224,226,228,229,232,234,240,244,245,248,249,250,254,256,258,266,269,293,294,295,296,297,298,302,310,353,354,363,403,408,412,427,445,449,477,481,494,499,514,518,523,524,535,541,544,546,558,559,563,566,568,569,570,571,572,573,574,576,577,578,580,582,583,584,585,586,587,588,589,591,592,594,596,597,600,603,604,605,610,611,617,619,620],other_help:570,othersubtensor:588,otherwis:[1,2,4,7,8,10,11,16,18,23,24,30,31,32,33,34,35,37,39,40,42,43,55,64,78,120,127,138,192,193,196,200,207,216,217,232,238,244,246,247,249,252,256,260,264,279,280,304,305,309,313,317,318,319,320,330,340,353,357,358,360,361,368,369,371,383,389,394,400,401,402,412,437,441,445,456,462,464,465,468,477,484,494,496,504,509,520,521,522,525,530,551,552,556,557,562,563,570,573,574,577,580,582,588,592,596,597,602,603,605,606,607,608,609,610,611,617,619,620],otim:[36,206,580],our:[2,4,7,21,23,281,583,588,592,596,600,604],out0:594,out0_relu:594,out:[1,2,4,7,8,10,12,13,19,23,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,48,49,56,57,58,59,60,64,66,67,68,69,70,71,74,78,81,83,85,86,87,89,90,92,95,96,97,98,99,101,102,103,104,105,106,109,113,114,116,117,118,119,120,121,122,126,128,129,130,131,132,133,134,137,142,143,144,145,146,147,148,150,152,153,154,155,156,161,162,163,166,167,168,169,170,171,172,174,176,177,187,188,199,206,207,208,209,210,211,212,213,214,215,218,219,220,221,222,223,224,226,227,228,229,230,231,232,233,234,235,236,239,240,243,244,245,246,247,249,250,251,252,255,256,257,258,259,261,262,263,266,267,268,269,278,279,280,286,290,291,292,293,294,295,296,297,298,303,304,305,307,313,314,328,329,339,341,347,348,349,350,351,352,365,366,368,370,374,375,376,377,378,395,396,397,398,399,402,403,404,405,406,407,412,421,422,423,424,446,447,448,449,451,452,455,457,458,459,460,461,464,465,468,469,470,472,474,476,477,480,481,482,488,489,490,492,493,494,504,505,506,507,508,509,510,512,513,516,517,518,519,520,523,524,526,530,533,534,535,537,539,541,544,546,548,549,556,558,561,562,563,564,565,566,568,569,573,576,578,580,583,584,587,588,591,592,596,600,601,603,604,605,606,608,610,611,617,618,619,620],out_:573,out_channel:[293,294,295,296,297,298,333,334,335,336,337,338,614,615,616,617],out_dim:[569,578],out_featur:[192,286,309,339,341,353,402,408,442,444,591,614,615,616,617,618],out_i:205,out_int32:[78,494,569],out_j:295,out_ort:596,out_padh:580,out_padt:580,out_padw:580,out_proj_bia:569,out_proj_weight:569,out_shap:19,out_unf:403,outdim:569,outer:[36,121,156,569,611],outlier:383,outlin:[598,604],outmost:603,output0:582,output1:[273,313,368,582,596],output2:[273,313,368],output:[1,2,5,6,7,13,16,18,19,21,22,23,26,28,29,30,31,32,33,34,35,36,37,39,40,41,42,43,51,52,54,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,74,78,81,82,83,85,86,87,89,92,96,97,98,99,101,102,103,104,105,106,109,110,112,113,114,116,119,120,121,122,123,124,126,128,129,130,131,132,133,134,135,136,142,143,144,145,146,147,150,151,152,153,154,155,163,166,167,168,169,170,171,172,174,176,177,187,188,190,192,194,199,201,202,206,207,208,209,210,211,214,215,218,219,220,221,222,223,224,226,227,228,229,230,231,232,234,235,236,239,240,243,244,245,246,247,248,249,250,251,252,255,256,257,259,261,262,263,264,266,267,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,356,357,358,359,360,361,362,365,366,367,368,370,371,372,373,374,375,376,377,378,379,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,400,401,402,403,404,405,406,407,410,412,438,440,441,442,444,446,447,448,451,452,455,460,461,462,465,468,469,470,471,472,473,474,475,476,477,480,481,482,483,488,490,494,502,504,505,506,507,508,509,510,512,513,516,517,518,519,520,521,522,523,525,526,530,533,534,539,543,544,546,549,551,552,554,555,556,557,558,561,563,564,565,566,568,569,573,574,577,578,580,582,583,585,587,588,589,591,595,596,597,598,599,600,601,604,606,608,609,610,611,614,615,617,618,620],output_2d:342,output_4d:342,output_devic:[18,302,391,412,580],output_featur:588,output_list:18,output_nam:596,output_nr:569,output_pad:[296,297,298,336,337,338,569,580],output_proxi:23,output_ratio:[311,569],output_rref:598,output_s:[270,271,272,274,275,276,297,310,311,350,351,352,403,569,580,617],output_scal:569,output_split:18,output_tensor_list:18,output_zero_point:569,outsid:[1,6,8,16,29,60,570,580,586,589,597],outstand:603,over:[2,8,16,17,18,19,23,81,85,102,103,104,105,121,192,201,216,224,246,248,264,270,271,272,274,275,276,277,278,279,280,281,282,283,284,285,288,293,294,295,296,297,298,299,301,308,309,310,311,316,321,323,324,325,326,327,328,329,332,342,345,346,347,348,349,353,356,357,358,360,367,383,384,386,391,400,402,403,411,415,444,482,520,521,522,525,537,573,576,577,578,580,582,584,585,587,588,591,592,596,597,603,604,606,611,612,617],overal:[2,4,8,18,21,583,585,592],overall_end:16,overall_start:16,overestim:[456,527],overflow:[17,104,105,264,462,525,545,547,580,600,606],overhead:[1,2,4,5,18,412,585,586,587,590,598,599,604,606,611,617],overlap:[2,16,23,190,310,403,412,522,586,608],overload:[18,23,570,611],overparameter:19,overrid:[11,17,18,19,23,281,282,299,301,321,326,327,345,346,356,357,358,360,367,383,384,400,418,491,502,567,580,596,597,603,610],overridden:[2,11,23,353,588,619],override_dict:588,overriden:588,overshoot:580,oversubscript:585,overview:[12,18,412,576,583,591,600,603],overwhelm:7,overwrit:[16,18,354,363,583],overwritten:[617,618,620],overwrot:18,owen:468,own:[1,2,7,8,18,19,21,23,192,216,293,294,295,296,297,298,353,582,586,596,600,603,605],owner:[566,588,603,604],owner_nam:603,ownerrref:[603,605],ownership:[7,8,23],p1d:580,p2d:580,p3d:580,p_c:282,p_i:[400,401],p_tensor:611,pacakg:18,pace:7,pack:[237,302,313,330,368,437,438,439,440,569,574,589,595,617],pack_padded_sequ:[313,330,368,437,440,589],pack_sequ:[330,368,440],packag:[7,13,19,22,412,566,580,588,591,597,603,610,612],packagesnotfounderror:595,packed_hh:569,packed_ih:569,packed_input:589,packed_output:589,packed_weight:569,packedsequ:[14,313,330,368,438,439,440],pad:[16,17,21,190,278,279,280,288,290,291,292,293,294,295,296,297,298,307,310,333,334,335,336,337,338,347,348,349,350,351,352,356,357,359,374,375,376,377,378,403,407,438,440,441,522,569,589,596,600,610,614,615,616,617],pad_mod:[522,611],pad_packed_sequ:589,padd:617,padded_input:589,padding_idx:[307,569,580,617],padding_input:589,padding_mod:[293,294,295,296,297,298,333,334,335,336,337,338,569,580,614,615,616,617],padding_valu:[440,441],padh:[580,617],padt:580,padw:[580,617],page:[1,7,16,217,395,397,399,586,587],pai:[595,609],pair:[18,21,43,82,120,346,354,359,363,477,570,577,580,586,596,597,598,603,604,605,610],pairwis:[19,321,362,400],pairwise_dist:569,pairwisedist:[401,580],paper119:401,paper:[7,17,19,273,277,283,284,285,287,303,304,305,311,316,319,323,324,325,332,365,366,371,379,383,391,395,397,399,400,401,580,597,598],par:17,parallel:[0,1,16,17,18,158,159,193,302,359,391,412,500,501,567,580,582,583,585,592,595,603,605],parallel_info:[0,585],param1:19,param2:19,param:[1,2,19,23,62,63,192,204,309,353,363,364,402,412,569,574,581,582,583,587,597,619,620],param_byt:597,param_group:597,param_shap:19,paramet:[1,2,4,6,10,11,13,16,17,18,19,20,21,22,23,24,26,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,51,52,53,54,55,56,57,58,59,60,61,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,118,119,120,121,122,123,124,126,128,129,130,131,132,133,134,135,136,138,139,140,141,142,143,144,145,146,147,150,151,152,153,154,155,163,164,165,166,167,168,169,170,171,172,173,174,176,177,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,205,206,207,208,209,210,211,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,254,255,256,257,259,260,261,262,263,264,265,266,267,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,383,384,385,387,388,389,391,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,412,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,438,439,440,441,442,443,444,446,447,448,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,490,491,494,496,497,498,499,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,525,526,530,531,532,533,534,535,536,537,538,539,541,542,543,544,545,546,547,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,568,572,573,574,575,576,578,580,581,582,583,587,588,590,591,592,593,594,596,598,599,600,601,602,603,604,606,607,610,611,617,618,619,620],parameter:[19,196,611],parameteriz:19,parameters_to_prun:427,parameters_to_vector:427,parameterserver2:603,parametr:[19,420,588],params_rref:603,parent:[576,595,605,610,620],parenthes:571,parenthesi:[2,125,445],pariti:412,parlanc:23,parmar:[395,397,399],pars:[2,18],parse_arg:[18,586,596],parser:[18,586],part:[1,4,5,6,7,8,11,12,18,19,23,95,120,121,184,185,186,189,192,198,200,201,202,309,353,391,402,412,544,545,546,547,566,567,568,570,573,574,575,582,583,588,589,591,594,596,597,598,600,603,604,605,606,610,620],parti:[8,566,568,586,591],partial:[19,23,112,236,350,351,352,423,571,578,580,583,588,596,605,620],particip:[16,18,412,604],particular:[1,4,7,16,23,192,302,309,353,402,543,568,570,586,588,589,590,591,596,597,606,611,619],particularli:[4,16,17,301,302,360,568],partit:[273,598,604,605],partli:8,partner:7,pass:[1,2,4,6,7,11,16,18,19,21,22,23,78,112,120,138,171,172,192,194,201,202,216,273,274,275,276,302,307,308,309,311,326,353,358,380,383,396,397,398,399,402,408,410,411,412,418,423,437,440,491,494,535,566,568,571,573,574,576,577,578,580,581,582,583,585,587,588,590,591,596,597,598,601,603,605,606,610,611,619,620],past:[18,23,589],paszk:[8,9],patch:[7,310,403],path:[2,4,5,11,18,23,369,566,570,583,588,594,599],path_and_function_nam:4,path_importer_cach:566,path_of_modul:23,path_to_hub_dir:566,pathlik:[23,216,491],patienc:597,pattern:[18,302,440,568,583,586,588,589,594,596,600,601],paus:603,pca:[456,606],pca_lowrank:606,pct_start:597,pdb:[195,199,203,568,570],pdf:[288,371,583],pdist:[1,362,569],peak:[13,412,597,598],peer:[7,13,18,412,586],peer_devic:13,penal:[401,591],penalti:[1,597,617],pend:[603,610],penros:[457,573],peopl:[7,583,600],pep:[568,570],per:[1,2,11,13,16,17,18,135,217,281,282,283,284,285,299,301,302,308,316,321,323,324,325,326,327,332,345,346,356,357,358,360,367,383,384,391,395,396,397,398,399,400,412,444,448,456,466,502,527,538,578,579,580,585,587,590,598,600,601,604,610,611,620],per_channel_affin:[466,601,620],per_channel_symmetr:601,per_index_weight:308,per_sample_weight:[308,569,580],per_tensor_affin:[467,601,620],per_tensor_symmetr:[601,620],per_work:16,percentag:597,perchannelminmaxobserv:[601,620],perf_count:4,perf_viz:599,perfectli:598,perform:[1,2,4,6,10,11,14,15,16,17,18,19,21,23,31,32,33,34,35,36,55,64,74,104,105,116,142,198,201,217,222,251,259,264,288,293,294,295,296,297,298,307,308,313,326,330,353,361,368,408,412,414,437,447,456,462,485,494,525,527,554,567,568,573,576,577,578,579,580,581,582,583,585,586,587,588,591,593,597,599,600,601,603,604,605,606,607,608,609,610,611,617,619,620],performac:4,period:[4,13,21,65,72,164,165,205,569,592,597],perm:235,perman:[23,418,419,420,421,422,423,424,425,434,605],permiss:588,permit:606,permut:[16,121,235,476,569,573,578,596,609,611],perplex:19,perserved_method:574,persist:[6,7,14,192,309,313,330,353,368,402,591,594,595],persistent_work:16,person:[7,8,567],perspect:[587,604],perturb:2,pervas:19,peter:9,peterjc123:[9,595],phase:[2,17,526,573,595,597],phenomenon:589,phi:[312,526,573,580],phy:468,physic:[21,571,585],pick:[603,611],pickabl:18,pickl:[4,16,18,216,353,491,576,594],picklabl:18,pickle_load_arg:216,pickle_modul:[216,491],pickle_protocol:491,pid:[391,589,599],piec:[7,604],pieter:9,pietern:9,pil:580,pillow:610,pin:[122,124,192,309,353,402,437,476,535,607,611],pin_memori:[16,122,124,476,535,568,569,586,607,611],pinv:[457,573],pinvers:[569,611],pip:[595,610],pipe:603,pipel:598,pipelin:[23,567,603],pipelinin:598,pivot:[235,236,237,464,611],pixel:[294,304,305,360,365,366,404,580,617],pixel_shuffl:[365,569,596],pixel_unshuffl:[366,569],pixelshuffl:[366,580],pixelunshuffl:580,pkg:595,place:[1,7,10,13,16,17,18,23,24,54,76,121,124,192,257,277,287,302,303,304,305,306,307,309,318,319,320,340,353,370,371,372,373,379,394,402,408,412,415,416,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,486,492,493,537,568,570,578,580,582,586,590,596,598,601,603,604,607,609,611,617,620],placehold:[23,322,601],placement:[600,603],plai:18,plain:[11,282,354,363],plan:[2,3,7,18,412,464],plane:[110,270,271,272,274,275,276,278,279,280,293,294,295,296,297,298,311,328,329,332,342,347,348,349,444,487,580,617],platform:[11,18,464,526,573,574,593,600],pleas:[1,2,5,7,8,10,12,18,19,23,54,76,108,124,171,172,177,243,288,296,326,412,457,464,511,526,572,573,577,578,579,580,582,588,593,595,596,597,600,603,604,606,609,610,611,616,617,618],plenti:589,plot:[585,610],plu:[2,11,606],plugin:610,pmf:19,point:[1,2,7,8,10,13,16,17,23,24,41,43,65,66,72,97,145,146,147,157,164,165,179,190,192,201,202,209,211,215,217,222,231,269,278,279,280,293,294,295,296,297,298,309,310,347,348,349,353,402,403,412,414,447,457,465,466,467,468,477,481,496,497,502,542,568,570,571,573,579,580,582,583,587,597,598,600,601,603,604,606,608,610,611,617,618,620,621],pointer:[2,13,369,587,590,603,605,611],pointwis:[19,222,223,577,584],poisson:[367,569,580],poisson_nll_loss:[1,569],poissonnllloss:580,polar:[19,569],polici:[19,597],policy_network:19,polosukhin:[395,397,399],polyfil:568,polygamma:[569,611],polygamma_:[569,611],polymorph:570,polynomi:241,pool:[13,270,271,272,274,275,276,278,279,280,311,328,329,347,348,349,350,351,352,354,585,588,591,592,601,603,617],poor:[582,583],pop:[13,354,363,598],popul:[2,18,19,23,247,262,586,611],port:18,portion:[148,302,412,418,419,420,421,422,423,424,425,530,580,597,606],pos_weight:[282,569,580],pose:[23,604],posinf:[261,569,611],posit:[2,16,19,21,23,24,65,67,72,85,86,87,164,165,171,172,185,188,192,193,217,238,254,261,282,293,294,295,300,302,308,309,315,353,359,388,395,400,401,402,410,411,486,544,545,546,547,553,566,569,573,577,578,580,588,596,602,606,611,619,620,621],position:[577,578],positive_definit:19,positive_id:401,positive_integ:19,positivedefinit:19,possess:8,possibl:[8,11,12,13,16,18,19,23,85,192,201,216,282,288,309,353,402,481,484,515,522,568,570,573,576,577,580,581,583,585,587,588,592,593,595,600,603,605,608,611,620],post:[7,589,595,600,601,620],post_trac:23,potenti:[18,288,293,294,295,296,297,298,412,570,576,580,583,596,609],potential_energi:19,potrf:573,pow:[1,2,142,569,577,582,596,606,611],pow_:[569,577,611],pow_adder_reduc:2,pow_reduc:2,powbackward0:2,power:[142,209,242,328,329,442,461,482,555,571,580,597],powersgd_hook:17,powersgdst:17,powertransform:19,pr_curv:610,practic:[16,19,567,568,576,578,583,588,594],pradhan:9,pre:[2,12,23,192,309,353,402,411,418,419,420,421,422,423,424,425,426,566,568,574,585,596,597,598,611],pre_trac:23,preced:[411,571,585,597,600],precis:[2,4,10,11,17,19,142,278,279,280,282,293,294,295,347,348,349,412,502,567,579,580,583,586,591,596,600,601,608,610,611,621],precision_matrix:19,precompil:590,precondit:217,precondition:217,pred:[412,597,603],predict:[273,282,315,597,610],predict_net:596,predivid:412,preemptiv:[412,620],preexist:2,prefer:[8,16,217,360,494,522,568],prefetch:16,prefetch_factor:16,prefix:[4,18,192,309,353,402,566,617,620],prefixstor:18,prelu:[1,354,569,596],prepack:574,prepar:[23,571,596,601],prepare_custom_config_dict:620,prepare_for_backward:587,prepare_fx:600,prepare_qat:[600,601,620],prepare_qat_fx:600,prepend:[11,16,18,23,113,192,240,309,353,402,465,538,569,584,611],preprocess:[12,192,611],prerequisit:587,presenc:[8,596],present:[4,8,18,235,273,330,437,566,575,576,577,578,582,583,588,591,596,604,608],preserv:[2,16,19,23,140,141,194,198,354,363,404,491,494,568,574,577,580,581,586,593,596,603,608,611,617],preserve_format:[91,123,151,452,471,473,475,565,608,611],preserve_rng_st:6,preserved_attr:194,preserved_method:574,press:23,pressur:[2,583],pretrain:[307,308,566,583,596],pretti:[192,502,568],prev:23,prevent:[1,7,13,16,18,23,104,105,190,264,303,359,383,412,462,525,545,547,576,580,582,587,589,596,600,605,606],previou:[18,23,198,313,330,368,418,419,420,421,422,423,424,425,468,522,574,583,591,595,596,605,611],previous:[2,23,41,114,197,568,584,586,591,598,602,603,611],previous_layer_fp32:600,previous_layer_int8:600,prim:[568,596],primari:[8,23,571],primarili:[19,22,600,611,620],primit:[568,570,571,585,603],princip:[4,456],print:[2,4,16,18,22,192,194,196,197,199,235,286,289,309,322,341,353,365,366,402,426,427,428,429,432,502,566,568,569,580,585,586,588,591,596,597,599,601,603,610,611,614,615,617,618],print_tabular:23,printable_graph:596,printer:568,printout:[13,23],prior:[2,7,8,17,217,427,584,588,597,600],prioriti:[7,13,570],pritam:9,pritamdamania87:9,privat:588,pro:[595,610],prob:[19,569],probabilist:[456,527],probabl:[16,66,222,257,273,277,288,303,304,305,313,315,326,330,360,368,576,580,588,595,596,610,611],problem:[7,18,201,217,233,301,360,526,576,580,583,589,592,595,598,605],problemat:[7,23,568],proce:[582,586,603],procedur:[201,202,217,603],proceed:[13,315,604,605],process:[1,2,4,10,11,13,17,18,19,23,198,217,281,282,299,301,307,308,321,326,327,345,346,350,351,352,356,357,358,360,367,383,384,391,395,397,399,400,412,566,568,576,577,578,580,583,585,586,587,588,590,591,592,593,595,598,599,600,605,606,607],process_group:[17,391,412,603],processcontext:576,processgroup:[18,412],processgroupag:603,processgroupgloo:[587,603],processgroupmpi:587,processgroupnccl:587,processgrouprpcbackendopt:603,processor:606,prod:[1,21,307,309,310,403,569,573,577,596,611],prod_:[294,295,297,298],prod_d:[310,403],produc:[1,7,11,13,16,21,23,24,67,155,199,201,202,205,244,247,249,288,293,294,295,296,297,298,333,334,335,336,337,338,412,447,464,468,477,526,554,568,570,573,576,577,580,582,583,584,586,590,591,593,594,595,606,609,616,617,618],producer_info:590,product:[2,12,18,19,31,34,35,36,64,74,80,84,101,104,118,121,176,206,240,251,259,313,314,330,331,455,462,537,558,568,577,580,583,590,606,611],prof:[2,599],profil:[4,5,23,410,411,502,567,591,603],profile_memori:[2,599],profileract:599,program:[2,4,5,13,16,18,23,96,568,570,571,583,586,589,590,592,594,595,610,611],programm:570,programmat:23,progress:[13,555,566,575,597],prohibit:594,proj_siz:[330,369],project:[7,121,330,456,566],projector:610,promot:[79,116,142,144,145,146,147,304,305,463,480,481,485,523,608],promote_typ:569,prompt:[23,595],promptli:217,prone:[576,592],propabl:464,propag:[2,19,23,31,34,35,36,39,40,41,64,145,146,576,577,588,590,596,601,606,611,617,620],propagate_qconfig_:[601,620],proper:[16,23,570,583,586,595,596],properli:[4,7,16,21,354,355,363,364,412,588,591,592,594,596,603,604,608],properti:[2,4,13,16,19,21,23,192,277,385,408,413,414,437,580,583,586,597,603,606,608,619,621],proport:[328,329],proportion:[404,580,617],propos:[8,9,597,604],propot:19,protect:583,proto:596,protobuf:596,protocol:[16,491,588,595,603,619],prototyp:[2,18,412,567,578,594,603,608],prove:[23,576],proven:[7,303,412],provid:[1,2,4,7,8,10,11,12,13,16,17,18,19,21,22,23,73,78,81,86,87,190,196,197,199,201,215,217,231,296,297,298,301,313,314,330,331,350,351,352,359,360,368,370,395,412,418,438,456,485,494,514,545,547,566,568,570,574,576,577,578,580,586,587,588,591,596,597,598,601,603,604,605,606,607,608,610,611,612,617,618,620,621],proxi:603,proxy_arg:23,prune:[418,419,420,421,422,423,424,425,591],pruned_tensor:[418,419,420,421,422,423,424,425],pruning_method:427,pruning_tutori:591,pruning_typ:[423,427],pseudo:[4,24,457,573],pseudoinvers:19,pseudorandom:[66,257,448,456,458,472,476,527],psi:[114,460],pth:[566,575,594],ptq:600,ptx:11,public_api:619,publicli:619,publish:[7,217],puhrsch:9,pull:[8,12,23],purchas:8,pure:[12,193,568],purg:610,purge_step:610,purpos:[17,18,23,240,288,410,411,502,604,611],push:[7,8,13],put:[7,16,21,23,216,316,566,576,586,592,604,605,611],put_:[569,611],pybind11:[11,12,570],pybind:11,pyc:590,pycapsul:20,pycharm:23,pypi:567,pyplot:610,pyrref:603,python3:[216,491],python:[1,2,4,5,8,11,12,13,16,18,19,21,23,25,39,40,80,81,93,100,116,124,175,192,193,194,195,198,199,201,216,232,246,254,264,302,354,355,363,364,412,447,477,484,486,496,520,521,525,536,556,557,566,567,573,576,578,580,583,584,585,586,587,588,589,590,592,594,595,596,601,602,603,604,605,606,611],python_cod:23,python_only_fn:199,pytorch:[0,2,3,4,5,10,11,13,16,19,23,41,54,79,94,114,144,156,171,172,181,182,198,215,231,281,288,395,412,437,447,491,522,554,566,570,573,575,578,579,584,585,586,589,590,591,592,595,597,599,600,601,603,604,606,608,609,610,611,616,617,618,619,621],pytorch_jit:568,pytorch_no_cuda_memory_cach:586,q_add:617,q_filter:617,q_input:617,q_per_channel_axi:[569,601,611],q_per_channel_scal:[569,601,611],q_per_channel_zero_point:[569,601,611],q_proj_weight:569,q_scale:[569,601,611],q_zero_point:[569,601,611],qat:600,qconfig:[600,601,614,616,620],qconfig_dict:[600,620],qconfig_propagation_list:620,qconfig_spec:620,qconfigdynam:[601,620],qfunction:601,qint32:[466,467,601,617],qint8:[466,467,600,601,615,617,618,620],qnnpack:600,qparams_dict:[616,617,618],qscheme:[569,601,611,620],qtensor:[569,611],quad:[281,282,326,327,345,360,401],quadrant:59,quadrat:589,qualfii:23,qualifi:23,qualified_nam:23,qualiti:[4,7,17],quant:[135,136,600,614,616,620],quant_max:[135,136,569,620],quant_min:[135,136,569,620],quantifi:[4,401],quantil:[247,263,569,611],quantiti:[18,421,422,424,425,427,430,431,432,433,597],quantiz:[2,10,23,107,135,136,466,467,567,591,596,608,611,613,614,616],quantization_schem:[466,467],quantize_dynam:[600,601,620],quantize_dynamic_jit:601,quantize_fx:600,quantize_jit:601,quantize_per_channel:[569,601],quantize_per_tensor:[569,600,601,617],quantize_qat:[601,620],quantized_batch_norm:569,quantized_gru:569,quantized_gru_cel:569,quantized_input:617,quantized_lstm:569,quantized_lstm_cel:569,quantized_max_pool1d:569,quantized_max_pool2d:569,quantized_rnn_relu_cel:569,quantized_rnn_tanh_cel:569,quantizedcpu:600,quantizedcustommodul:620,quantizt:600,quantstub:[600,601,620],quantwrapp:[601,620],quasi:468,quasirandom:468,quennevil:9,queri:[13,23,359,569,586],question:[4,16,23,567,583],queu:[13,586,611],queue:[7,576,610],queue_2:576,quick:[2,7,591],quickli:[7,17],quint8:[466,467,600,601,617,620],quit:[4,7,23,588,589,603],quotient:144,qw_i:359,r_i:19,r_t:313,race:583,rad2deg:[569,577,606,611],rad2deg_:[569,577,606],radian:[19,41,59,106,469,569],rais:[1,2,6,7,11,13,19,22,23,24,75,142,147,192,195,197,203,216,238,242,309,353,402,422,424,427,437,554,571,573,576,583,586,588,589,598,602,603,611,619],raise_except:2,ram:216,rand:[1,2,19,21,23,37,42,177,196,199,201,202,203,219,221,230,395,396,397,398,399,412,458,471,568,569,570,572,573,577,578,580,596,598,603,604,609,610,611,612],rand_lik:[569,572,612],randint:[67,142,252,288,401,569,572,578,580,606,610,611,612],randint_lik:[569,572,612],randn:[2,10,19,23,28,29,30,31,32,33,34,35,39,40,42,51,52,53,54,56,57,58,59,60,61,62,63,64,74,81,83,84,85,86,87,89,97,98,99,100,101,102,103,104,105,108,109,110,111,112,115,121,135,136,143,173,174,176,177,199,218,220,224,225,232,235,236,237,239,240,241,242,244,246,247,249,251,252,253,254,255,256,259,267,270,271,272,274,275,276,277,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,297,298,300,301,303,304,305,306,307,309,310,311,312,313,314,315,316,317,318,319,320,322,323,324,325,327,328,329,330,331,332,340,341,342,343,344,345,346,347,348,349,352,360,361,362,363,364,365,366,367,368,370,371,372,373,378,379,381,382,385,386,387,388,389,390,391,392,393,394,400,402,403,407,450,457,461,462,464,465,475,479,480,488,490,505,508,509,510,511,512,513,516,517,520,521,525,526,530,531,533,534,537,541,542,543,544,546,549,556,557,559,560,562,569,570,572,573,577,578,580,583,584,585,586,587,588,591,593,594,596,600,606,608,610,611,612,614,615,617,618],randn_lik:[569,572,596,612],random:[19,23,24,66,160,175,217,238,277,288,313,330,371,418,424,425,432,433,448,456,468,470,471,472,473,474,475,476,495,503,527,566,567,569,580,596,610,611],random_:[281,282,301,360,569,577,580,611,612],random_devic:24,random_sampl:569,random_se:17,random_split:16,random_tensor:604,random_unstructur:[429,434],randomli:[2,16,277,303,304,305,371,424,580,590,591,617,618],randomsampl:16,randperm:[569,572,612],rang:[1,2,4,13,16,18,19,24,29,60,66,89,130,167,222,238,263,273,301,309,311,314,320,331,344,355,360,364,370,385,386,387,391,412,416,465,553,568,569,573,580,583,585,586,589,591,592,596,597,599,600,602,606,608,610,611,612,618,620],range_pop:13,range_push:13,rangl:19,rank:[16,17,18,19,233,235,243,346,391,412,456,457,526,527,573,587,592,596,603,604],rao:9,rapidli:589,rare:[7,582,619],rate:[1,17,19,304,305,412,458,590,610],rather:[2,4,6,11,23,155,502,568,578,580,584,588,596,600,603,610,611,617],ratio:[19,311,569,573],ravel:[423,569,611],raw:[4,23,301,573],raw_tim:4,rbrace:[544,545,546,547],rceil:[43,83],rcond:[457,569,573],rdinat:[514,606],reach:[7,8,16,17,217,592,597,598,603],reachabl:18,read:[16,18,23,54,197,216,535,577,578,583,584,586,590,596,597,600,603,611],readabl:[0,2,4,13,16,23,596],readi:[7,11,22,65,72,164,165,412,568,587,603,604],readlin:[197,216],readonli:3,readthedoc:121,real:[2,16,19,21,23,30,31,32,33,34,35,41,64,87,95,120,177,184,185,186,189,190,206,256,327,362,365,366,401,457,512,522,526,530,543,559,560,566,569,573,583,600,603,605,609,611,619],real_vector:19,realiti:5,realli:[2,7,23,583],realloc:174,realpython:23,rearrang:[21,289,365,366,578,580],reason:[4,16,18,21,201,202,247,281,491,568,570,580,583,587,594,596,603,608,619,620],reassign:23,rebas:7,rebuild:[7,17],rebuilt:7,recal:[282,588,610],receiv:[2,7,13,16,18,19,22,412,576,582,592,597,603,604,605],recent:[1,2,7,180,570,588,593,611],recip:[1,4,353,418,582,591],reciproc:[1,490,569,577,596,611],reciprocal_:[569,577,611],recogn:[16,603],recommend:[1,2,16,18,19,21,24,96,182,193,217,273,302,412,468,535,551,566,568,576,578,580,581,582,583,585,586,588,591,592,594,596,600,603,611],recompil:[11,23],recomput:[6,444,580,597],recompute_scale_factor:580,reconstruct:[13,235,281,282,573,594],record:[2,13,21,23,43,65,72,122,123,124,134,150,151,164,165,192,201,205,215,231,302,309,353,402,451,452,470,471,472,473,474,475,476,477,514,535,564,565,568,570,582,583,586,596,599,601,603,606,610,611,620],record_and_sav:599,record_ev:13,record_shap:[2,599],record_stream:[569,586,611],recordfunct:590,recordfunctioncallback:590,recordingobserv:[601,620],recov:[21,237,412,437,522,582,589],recoveri:589,recreat:[2,583],rectangular:237,rectifi:[371,372,580,581,601],recurr:[18,201,288,302,313,314,330,368,440,586,597,618],recurs:[19,23,113,192,199,309,353,402,570,588,591,597],recursivescriptmodul:594,recv1:604,recv2:604,recv:[18,604],red:570,redirect:11,redistribut:595,reduc:[1,2,4,11,13,18,31,37,39,40,42,51,52,232,244,246,247,249,252,262,263,264,281,282,283,284,285,299,301,308,321,326,327,345,346,356,357,358,360,367,383,384,391,400,412,445,462,464,465,520,521,525,526,556,557,569,573,576,577,580,585,587,593,594,595,597,598,600,603,606,611,619,620],reduce_add:13,reduce_multigpu:18,reduce_op:18,reduce_rang:[600,601,620],reduce_scatt:18,reduce_scatter_multigpu:18,reducelronplateau:597,reduceop:18,reducesum:596,reduct:[1,18,222,263,281,282,288,299,301,308,315,321,326,327,345,346,356,357,358,360,367,383,384,400,401,412,569,573,577,580,587,600,601,611],redunct:412,redund:[18,21,522],redundantli:582,reevalu:597,refactor:[7,595,600],refcount:[576,592],refer:[2,13,16,17,18,19,22,50,54,76,124,193,199,204,217,288,315,401,412,456,468,527,566,569,573,576,577,579,580,582,583,587,588,589,591,592,593,600,603,604,608,609,610,611,612],referenc:[23,543,570,583,603],refin:[196,578],refine_nam:[569,577,578],reflect:[149,190,215,231,293,294,295,333,334,335,374,375,522,568,580,589,609,611],reflection_pad1d:569,reflection_pad2d:569,reflection_pad:596,reflectionpad1d:554,reflectionpad2d:[554,580],reflector:155,regard:[18,296,297,298,307,308,568,580,605],regardless:[1,16,551,582,594,603],regener:23,region:[1,4,19,278,279,280,311,320,347,348,349,530,568,576,580,582,586,617],regist:[2,12,17,18,19,23,192,216,309,353,354,355,363,364,402,409,410,411,412,413,576,587,588,590,591,596,603,611],register_backend:[18,603],register_backward_hook:[192,309,353,402],register_buff:[192,309,353,402,568,570,588,591],register_comm_hook:[17,412],register_custom_op_symbol:596,register_forward_hook:[192,309,353,402,410,591],register_forward_pre_hook:[192,302,309,353,402,411,591],register_full_backward_hook:[192,309,353,402,591],register_hook:[2,572,577,611],register_kl:19,register_module_forward_hook:591,register_module_forward_pre_hook:591,register_module_full_backward_hook:[409,591],register_packag:216,register_paramet:[192,309,353,402,588],registr:412,regress:[7,281,326,593],regular:[2,4,5,18,23,171,172,288,303,304,305,339,353,354,355,363,364,408,414,578,580,588,590,591,596,597,600,601],regularli:[7,596],reinforc:[19,381,580],reiniti:566,reinterpret:[19,611],reinterpreted_batch_ndim:19,rel:[2,8,11,17,19,23,38,183,400,401,580,585,586,590,597],relai:606,relat:[7,8,16,18,21,171,172,310,403,412,456,573,603,606,619],relationship:[2,23,91,401,583,586,594],relative_error:586,relative_path_to_checkpoint:566,relative_to:595,relax:[19,201,202],relaxed_bernoulli:19,relaxed_categor:19,releas:[7,13,15,18,23,32,144,156,215,231,326,330,368,447,477,491,522,566,567,570,573,576,580,585,586,593,594,595,596,600,603],relev:[8,571,582,583,600,611],relevant_arg:619,reli:[4,8,11,16,23,215,231,302,583,585,587,593,594,609],reliabl:[4,603],reload:566,relu1:[380,408,620],relu2:[380,408],relu6:[569,601],relu:[4,23,199,353,368,370,380,388,395,397,399,408,568,569,574,578,581,591,594,596,600,601,613,614,615,618,620],relu_1:23,relu_:[569,580,601],relu_decomposit:23,rem:595,remain:[2,19,233,254,412,418,419,420,421,422,423,424,425,434,484,573,576,582,589,591],remaind:[147,569,611],remainder_:[569,611],remap:[24,197,216,238,566,575,602],rememb:[589,592],remot:[16,18,412,598,603,604],remov:[2,4,8,18,19,23,156,190,192,194,240,309,353,354,363,402,409,410,411,412,418,419,420,421,422,423,424,425,430,431,432,433,435,436,447,477,518,542,550,574,580,594,605,606,611,620],removablehandl:[192,309,353,402,409,410,411],remove_dropout:574,remove_qconfig:620,renam:[243,569,577,578],rename_:[569,577,578],rename_map:578,renamed_img:578,render:[7,610],rendezv:[587,603],renorm:[1,307,308,569,580,611],renorm_:[569,611],reorder:21,rep:[538,596,611],repackag:589,reparameter:[19,418,419,420,421,422,423,424,425,434,435,436,444],reparametr:[19,418,419,420,421,422,423,424,425,428,580],reparametriz:19,repeat:[4,19,121,235,456,483,527,538,569,580,596,599,611],repeat_interleav:[554,569,611],repeatedli:[586,606],repetit:[4,483,538],repl:2,replac:[1,2,11,16,18,23,121,195,197,203,257,261,394,408,426,427,428,430,431,432,433,444,568,569,574,583,590,592,595,596,600,601,611,613,620],replace_all_uses_with:23,replace_with:23,replic:[4,16,198,293,294,295,302,310,333,334,335,376,377,378,403,412,580],replica:[16,18,302,412,587],replication_pad1d:569,replication_pad2d:569,replication_pad3d:569,replication_pad:596,replicationpad1d:554,replicationpad2d:[554,580],replicationpad3d:554,repo:[7,566,595,597],repo_nam:566,repo_or_dir:566,repo_own:566,report:[2,4,5,8,23,582,586,598],repositori:[8,23,566,588,592],repr:502,repres:[2,10,13,16,19,20,21,23,121,167,183,184,186,189,191,201,202,273,288,313,353,368,401,403,417,418,421,422,423,424,425,427,430,431,432,433,437,443,454,456,465,512,522,526,530,542,551,552,559,560,568,570,573,583,588,590,591,596,597,598,600,601,603,606,608,621],represent:[1,4,11,18,21,23,142,192,261,353,359,568,573,588,596,600,601,611,617,621],reproduc:[7,16,67,288,293,294,295,296,297,298,566,567,580,597,611],requant:600,request:[8,10,13,18,171,172,217,582,583,585,586,597,603,604,605],requir:[1,2,6,8,11,12,13,16,17,18,19,21,23,121,140,141,152,217,307,308,395,396,397,398,399,401,408,412,413,418,554,566,568,572,573,574,576,578,580,582,583,585,586,587,588,589,590,591,592,594,596,597,598,600,603,604,605,610,611,619,620],require_grad:2,requires_grad:[2,19,21,43,55,65,72,122,123,124,125,134,150,151,164,165,192,205,215,231,281,282,301,307,308,309,315,327,345,346,353,360,367,400,402,412,413,445,451,452,470,471,472,473,474,475,476,477,499,514,535,564,565,569,572,577,578,580,588,591,594,596,603,604,606,611,612],requires_grad_:[2,192,288,309,353,402,535,569,577,580,606,611],requisit:23,rerr:217,rerun:6,res1:596,res2:596,res:[74,596,600],rescal:[281,282,301,357,358,360,385,387,442,580],rese:593,research:[7,412,566,583,594],resembl:[4,12],reserv:[13,571],reserved_byt:13,reservoir:16,reset:[2,13,313,369,456,468,527,596,602],reset_max_memory_alloc:13,reset_max_memory_cach:13,reset_peak_memory_stat:13,reset_peak_stat:13,reshap:[12,19,92,119,138,206,310,374,375,376,377,403,442,447,515,536,537,561,569,573,578,596,606,609,610,611],reshape_a:[569,596,609,611],reshapetransform:19,reshuffl:16,resid:[18,216,412,586,598,611],residu:[217,233],resili:[597,603],resiz:[149,404,577,580,601,606,607,611],resize_:[2,207,568,569,570,577,601,607,611],resize_as_:[2,569,577,606,611],resnet18:[23,566,568,570,575,583],resnet50:[566,610],resnet:[566,568,570,596,610],resnext:598,resolut:[365,366,571,580,621],resolv:[7,8,19,296,297,298,310,570,571,595],resourc:[11,16,23,576,606],respect:[1,2,18,19,23,34,35,36,60,89,110,112,124,171,172,192,217,251,261,281,288,296,297,298,302,309,313,315,330,353,354,363,368,400,401,402,404,418,422,424,512,526,537,573,578,580,582,591,597,598,606,607,611,620],respond:7,respons:[5,7,8,18,19,22,342,412,580,583,586,588,591,603],responsibl:18,rest:[7,16,536,578,593,600,601,603,620],restart:[576,597,610],restor:[6,23,24,486,591,594],restrict:[4,16,326,570,571,578,583,598,600,601],restructur:7,result:[2,4,5,7,11,13,16,17,18,19,21,22,23,30,31,32,33,34,35,37,39,40,42,54,64,67,76,80,91,93,99,102,103,104,105,108,116,124,142,176,193,194,201,202,204,206,207,211,224,225,232,244,246,247,249,252,256,264,302,304,305,310,313,330,368,383,403,412,445,446,447,448,456,457,461,462,465,468,485,494,510,511,520,521,522,525,526,527,532,536,541,544,546,556,557,568,569,570,573,574,577,578,580,581,582,583,584,585,586,587,588,589,593,596,597,599,603,604,606,608,610,611,619],result_typ:569,resum:[597,603,605,610],ret:[588,603],ret_fut:603,retain:[2,18,37,39,40,42,51,52,55,194,207,232,244,246,247,249,252,262,263,264,447,462,465,491,520,521,525,544,545,546,547,556,557,573,576,592],retain_grad:[2,569,611],retain_graph:[2,569,582,583,603,611],retri:[13,605],retriev:[2,6,16,18,23,307,310,403,412,438,580,590,598,603,604,605],return_complex:[190,522,569,611],return_count:[551,552,569,611],return_indic:[274,275,276,311,347,348,349,350,351,352,569,580,617],return_invers:[551,552,569,611],return_typ:[102,103,207,244,247,249,252,262,511,539,543,573],reus:[2,18,23,583,603,611],reveal:587,revers:[1,19,21,23,139,366,412,418,419,420,421,422,423,424,425,434,555,569,570,580,583,587,611],revert:[8,388,580,605],review:[8,17],reward:19,rewrit:[574,583],rfc:604,rfft2:21,rfft:21,rfftfreq:21,rfftn:21,rfloor:[83,143,148,273,278,279,280,293,294,295,310,328,329,347,348,349,403,404,405,406,477,522,580],rgb:[324,325,610],rho:597,rhsindex:596,riba:[400,401],richard:19,riemann:583,right:[1,7,18,19,23,43,65,72,73,78,83,114,115,140,143,144,148,164,165,169,190,205,216,222,223,257,260,273,278,279,280,281,282,293,294,295,301,310,315,326,327,328,329,342,343,344,345,347,348,349,356,357,358,362,363,369,400,403,404,405,406,416,477,494,522,537,543,555,566,569,573,576,577,578,580,588,596,597,605,620],rightmost:[19,75],risk:[2,7],riski:7,rmsprop:[597,603],rng:[6,13,16,495,589,593,602],rnn:[15,313,314,330,331,370,413,437,569,572,589,596,600,601,610,618,620],rnn_relu:569,rnn_relu_cel:569,rnn_tanh:569,rnn_tanh_cel:569,rnncell:[1,600,601],road:11,robin:18,robust:[4,217,576,591],roll:[569,611],root:[23,490,516,574,583,597,603,604,606],root_fn:23,root_modul:23,ross:383,rot90:[569,611],rotat:[19,487],rough:7,roughli:[16,587],round:[16,18,21,43,99,116,144,464,510,569,573,577,580,586,596,600,611,616,620],round_:[569,577,611],rounding_mod:[116,117,548,569,611],roundtrip:[7,21],routin:[86,217,526,573],row:[2,16,17,19,37,42,82,120,134,140,141,207,232,233,235,244,246,247,249,252,257,262,263,264,446,462,465,482,520,521,525,545,547,555,556,557,561,569,580,606,610,611],row_limit:[2,599],row_stack:569,rowmajor:[2,412],rpc:[22,412,567,604,605],rpc_async:[22,603,605],rpc_backend_opt:603,rpc_sync:[603,604,605],rpc_timeout:603,rpcagent:603,rpcbackendopt:603,rprop:597,rref1:[603,604],rref2:[603,604],rref:[412,598,604],rrefid:605,rrelu:[569,596],rrelu_:[569,580],rrelu_with_nois:569,rrelu_with_noise_:569,rsampl:19,rsqrt:[1,569,577,596,611],rsqrt_:[569,577,611],rst:7,rsub:[569,596],rtol:[2,38,183,568,569,611],rule:[2,18,19,23,78,79,283,284,285,323,324,325,391,418,419,420,421,422,423,424,425,494,542,568,570,577,583,584,588,596,608,611],run:[1,2,3,4,5,6,7,11,12,13,16,17,18,19,22,23,121,192,193,194,197,201,202,216,217,247,283,284,285,302,309,323,324,325,353,391,402,408,412,501,545,547,554,567,568,574,576,582,583,585,586,587,588,589,590,591,592,593,594,595,596,597,598,600,601,602,603,604,605,606,610,611,612,616,620],run_14h:610,run_arg:620,run_fn:[2,6,620],run_model:589,run_nam:610,run_nod:23,run_process:604,runnabl:[23,582,610],running_mean:[192,283,284,285,309,323,324,325,353,391,402,569,580,594],running_var:[192,283,284,285,309,323,324,325,353,391,402,569,580,594],runningmean:591,runtim:[2,4,6,11,18,23,215,231,414,577,578,588,592,596,620],runtimeerror:[1,2,11,23,24,75,147,180,238,257,554,568,570,573,577,582,584,589,593,595,596,600,602,606,608,611],runtimewarn:19,rv0:568,rv1:568,rvert:[38,183],rvert_p:[400,580],s1064827500366124:217,s1064827500370883:217,s_i:19,s_min:288,s_n:288,safe:[1,13,18,23,412,568,582,583,586,590,603],safest:11,safeti:[568,578],sai:[7,23,568,582,583,589,596,604,605,606,611],said:2,sake:23,sam:[8,9],same:[1,2,4,7,11,12,13,16,17,18,19,21,22,23,31,37,39,40,42,55,64,66,67,74,76,78,81,95,101,110,112,118,121,123,127,147,149,151,152,173,174,190,192,198,199,201,202,206,207,232,239,244,246,247,249,252,264,265,271,272,275,276,277,279,280,281,282,283,284,285,286,287,290,291,292,294,295,296,297,298,300,301,303,304,305,306,308,310,312,315,316,317,318,319,320,321,323,324,325,326,327,329,332,340,341,342,343,344,345,346,348,349,350,351,352,356,357,359,360,361,362,367,371,372,373,374,375,376,377,378,379,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,403,404,407,412,414,418,419,420,421,422,423,424,425,427,430,431,437,441,447,448,452,458,459,461,462,465,471,473,475,479,481,483,484,486,494,504,519,520,521,525,526,532,542,551,552,553,554,556,557,558,565,566,568,570,573,576,577,578,580,582,583,584,585,586,587,588,589,590,592,593,594,596,598,600,601,603,604,605,606,607,608,609,610,611,614,615,616,617,618,619,620],sampl:[16,19,21,23,24,66,202,235,257,277,281,282,286,293,294,295,296,297,298,299,301,303,304,305,307,308,315,321,323,324,325,326,327,339,341,345,346,356,357,358,360,367,371,383,384,391,400,412,448,456,458,468,472,476,542,580,581,582,586,590,591,597,600,610,611,617],sample_input:591,sample_input_cpu:568,sample_input_gpu:568,sample_n:19,sample_r:610,sample_shap:19,sampler:601,samplingprob:590,sane:502,satisfactori:17,satisfi:[2,14,19,21,38,78,273,288,310,313,330,368,427,481,494,522,573,583,597,598,608,611],satur:580,save:[2,6,7,10,12,18,191,192,195,197,201,203,216,309,353,402,412,568,569,575,578,583,588,591,592,593,596,597,599,600,606,610,611,620],save_for_backward:[2,582,588],save_invstd:569,save_mean:569,save_to_buff:191,saved_tensor:[2,582,583,588],saved_weight:611,saving_loading_model:591,sax:581,scalar1:569,scalar2:569,scalar:[2,19,30,32,33,55,78,116,121,147,150,176,210,211,240,248,256,263,273,281,282,288,301,302,315,321,326,327,332,346,356,357,358,360,367,383,384,400,401,446,451,452,461,463,465,480,481,494,514,523,535,551,552,562,564,565,569,570,580,581,583,588,596,597,603,606,608,610,611,617],scalar_scalar:569,scalar_tensor:[569,596],scalar_valu:610,scalartensor:588,scale:[7,16,19,21,34,35,36,64,135,136,231,277,303,307,308,332,379,383,404,405,406,466,467,523,567,569,578,580,581,589,597,600,601,606,611,617,620],scale_channel:578,scale_factor:[404,405,406,569,580,617],scale_fn:597,scale_grad_by_freq:[307,308,569,580,617],scale_hh:569,scale_ih:569,scale_mod:597,scale_tril:19,scaled_grad_param:582,scaler:[1,582],scales_d:569,scales_h:569,scales_w:569,scatter:[13,18,302,569,589,596,603,611],scatter_:[492,569,611],scatter_add:[569,596,611],scatter_add_:[493,554,569,611],scatter_list:18,scatter_object_input_list:18,scatter_object_list:18,scatter_object_output_list:18,scenario:[1,16,18,586,596,599,603],scene:[594,610],schedul:[590,599],schema:[18,568,569],scheme:[17,600,611,620],schmidtm:597,sci:217,sci_mod:502,scientif:502,scipi:[82,114,563,580,610],scope:[7,23,391,427,568,570,589,596,605],score:[301,418,419,420,421,422,423,424,425,427,430,431],scrambl:468,scratch:[7,583],script:[1,5,16,18,193,194,195,196,198,200,201,203,566,570,574,585,590,594,603],script_add:603,script_bar:193,script_method:[568,596],script_modul:574,scriptabl:203,scripted_fn:568,scripted_modul:[194,199,594],scriptfuncion:199,scriptfunct:[197,199,200,201],scriptmodul:[191,194,197,198,199,201,202,568,570,574,596],scrutini:7,search:[7,10,17,78,319,468,494,568,577,578,580,620],searchsort:569,seat:8,sebastian:9,second:[2,6,11,18,23,30,31,34,36,38,51,52,53,59,64,68,70,71,74,101,110,112,118,120,126,145,146,153,154,163,168,169,171,172,176,183,208,210,216,222,223,234,240,245,247,250,251,256,262,266,269,273,279,280,286,294,295,297,298,307,308,313,329,330,342,346,348,349,368,408,427,487,514,541,545,547,555,558,570,580,583,589,591,593,595,596,597,599,603,606,610],second_build_dir:4,secondli:281,section:[2,7,16,19,23,121,302,330,352,440,536,568,569,570,571,576,578,582,583,587,588,591,592,604,610,611],see:[1,2,3,4,5,6,7,8,11,12,13,15,16,18,19,21,23,37,39,40,42,43,51,52,53,55,65,67,72,74,77,91,99,108,116,121,122,124,134,138,150,155,164,165,171,172,192,194,199,201,202,204,205,207,215,217,223,225,231,232,235,244,246,247,249,251,252,255,263,264,273,281,282,288,293,294,295,296,297,298,299,301,302,307,308,309,313,315,321,326,327,330,345,346,350,351,352,353,356,357,358,359,360,365,366,367,368,371,381,383,384,396,397,398,399,400,401,402,404,412,413,422,431,440,442,444,446,451,453,454,457,462,463,465,470,472,474,476,477,481,484,485,491,504,510,511,514,520,521,522,525,535,545,547,554,556,557,562,564,566,567,568,569,570,571,573,575,576,577,578,580,582,583,584,586,588,589,590,592,593,594,595,596,598,599,600,601,603,604,606,608,609,611,612,616,617,618,619],seed:[13,16,24,175,238,456,468,527,569,589,593,602],seed_al:13,seed_work:593,seek:[197,216],seem:[7,596],seen:[2,19,23,81,296,297,298,568,583,597,611],segfault:576,segment:[6,13],select:[2,3,12,13,14,16,19,21,84,217,288,293,294,295,296,297,298,313,330,368,432,433,562,568,569,576,577,578,580,585,586,593,596,600,601,606,609,611],select_model_mode_for_export:596,self:[1,2,16,18,22,23,173,191,192,193,194,195,196,198,199,201,202,203,273,277,309,353,354,355,363,364,379,381,397,399,402,408,422,424,437,461,479,554,568,569,570,577,578,580,582,583,584,585,588,589,591,594,596,597,598,600,601,603,606,607,611,619],self_cpu_memory_usag:2,self_cpu_time_tot:[2,599],self_cuda_memory_usag:2,self_cuda_time_tot:599,self_obj:23,selu:[277,569,581,596],selu_:569,semant:[2,4,8,13,18,23,51,52,53,76,194,198,552,567,570,591,596,603,611],semi:[299,321,581],semidefinit:87,send1:604,send2:604,send:[7,13,16,18,408,576,587,592,595,599,603,604,605,612],sender:[18,605],sens:[5,19,23,427,551,552,583],sensit:[17,383,596,604],sent:[13,18,543,576,592,603,604,605],separ:[1,2,4,11,16,18,21,23,121,155,198,313,316,323,324,325,330,332,361,368,448,566,569,580,582,583,585,586,594,597,604,610],seq:[2,81,93,248,313,330,368,440,550,611],seq_len:[313,330,368],seq_unpack:440,sequenc:[2,13,16,19,78,80,81,84,92,107,119,122,155,168,201,248,273,288,293,302,308,313,330,359,368,395,396,397,398,399,423,437,438,439,440,441,448,451,468,470,474,494,519,522,561,564,568,570,580,586,589,596,597,598,603,611,620],sequenceat:596,sequenceinsert:596,sequenti:[6,16,192,309,353,391,402,427,576,591,596,598,613],sequentialsampl:16,seri:[23,288,323,619],serial:[4,12,16,198,216,408,491,566,567,569,575,578,583,586,590,591,592,600,603,604],serializ:[4,568,596],seriou:576,serv:[1,7,12,18,597,603,604],server:[7,16,18,600,603],server_stor:18,servic:587,sess:596,session:23,set:[0,1,2,4,6,8,11,13,15,16,18,19,22,23,24,43,73,78,93,122,124,157,192,194,197,199,201,202,215,216,217,231,235,238,243,273,277,281,282,283,284,285,286,288,293,294,295,296,297,298,299,301,302,303,304,305,307,309,313,316,321,323,324,325,326,327,328,329,330,332,339,341,345,346,350,351,352,353,356,357,358,359,360,367,368,383,384,391,400,401,402,412,464,468,476,477,495,496,497,499,500,501,502,503,507,535,544,545,546,547,554,566,568,570,571,573,574,575,576,580,581,582,584,585,586,587,588,589,590,591,592,593,595,596,597,598,599,600,602,603,610,611,617,619,620],set_:[2,569,611],set_backoff_factor:1,set_default_dtyp:157,set_default_tensor_typ:[21,43,55,65,72,122,124,134,150,157,164,165,205,215,231,451,470,472,474,476,477,514,535,545,547,564,606],set_default_validate_arg:19,set_detect_anomali:2,set_devic:[13,18,412,608],set_device_map:603,set_dir:566,set_epoch:16,set_except:22,set_grad_en:[2,125,569,612],set_growth_factor:1,set_growth_interv:1,set_materialize_grad:[2,588],set_num_interop_thread:585,set_num_thread:585,set_per_process_memory_fract:13,set_result:[22,412,603],set_rng_stat:[13,602],set_rng_state_al:13,set_sharing_strategi:576,set_start_method:592,set_stat:24,set_timeout:18,set_to_non:[192,309,353,402,597],set_trac:[23,195,199,203,568],set_train:596,setallowtf32cubla:586,setallowtf32cudnn:586,setapiusagehandl:590,setapiusagelogg:590,setexportmoduleextrafileshook:590,setup:[4,11,412,585,603,604,620],setuptool:11,sever:[4,12,18,23,270,271,272,273,274,275,276,278,279,280,281,293,294,295,296,297,298,311,328,329,342,347,348,349,350,351,352,405,406,412,568,580,582,585,586,590,591,597,600,601,603,617],sgd:[1,16,307,408,412,582,583,587,591,597,603,604],sgdr:597,sgn:[148,506,569,577,611],sgn_:[569,577,611],sha256:[566,575],shadow:412,shall:353,shallow:[302,400,401],shamelessli:502,shao:217,shape:[2,10,13,17,19,21,23,30,32,33,54,59,66,67,75,77,81,82,97,112,113,115,116,120,121,122,124,126,138,144,145,146,147,150,152,154,163,169,171,172,174,176,201,202,205,210,211,233,234,239,253,254,256,257,266,269,273,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,300,301,303,304,305,306,307,308,309,310,312,313,314,315,316,317,318,319,320,321,323,324,325,326,327,328,329,330,331,332,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,356,357,359,360,361,362,365,366,367,368,370,371,372,373,374,375,376,377,378,379,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,412,414,418,419,420,421,422,423,424,425,427,430,431,448,451,461,465,470,472,473,474,481,483,484,486,514,518,522,523,526,530,532,538,542,551,552,562,564,568,569,573,577,578,580,583,584,588,589,596,599,603,606,610,611,617,618],shape_as_tensor:596,shapeprop:23,shard:[7,16],share:[2,7,11,13,16,19,20,149,173,265,302,412,448,479,491,518,541,553,569,582,583,585,592,594,595,596,603,607,609,611],share_folder_nam:18,share_memori:592,share_memory_:[572,576,607,611],shared_memori:576,sharedfil:18,shazeer:[395,397,399],shell:11,shen:9,shi:[365,366],shift:[21,277,283,284,285,391,486,569,571,580,611],ship:[585,603],shippabl:7,shm_open:576,shorter:[190,596,603],shortest:438,shorthand:205,shorttensor:[608,611],should:[1,2,4,5,6,7,8,11,12,13,16,17,18,19,21,23,30,31,34,35,43,64,65,66,67,72,85,101,122,123,124,134,150,151,164,165,190,192,195,199,200,201,202,203,205,215,216,222,231,237,241,256,273,281,282,286,299,301,302,304,305,308,309,313,330,346,353,360,361,368,400,402,404,408,410,411,412,418,419,420,421,422,423,424,425,427,430,431,432,433,437,438,439,451,452,466,470,471,472,473,474,475,476,477,484,514,535,543,564,565,566,567,568,570,575,576,578,580,582,583,585,586,587,588,589,591,592,593,595,596,597,598,599,600,603,605,606,609,610,611,617,620],shouldn:[4,23,606,609],show:[0,2,3,5,7,16,17,18,23,408,566,577,585,586,587,591,597,603,605],showcas:[8,350,586,592],shown:[1,13,17,568,582,588,589,591,597,598,600],shrinkag:[317,389,580],shuffl:[16,610],shut:[16,603],shutdown:[16,603,604],siam:217,side:[2,11,21,115,190,278,279,280,290,291,292,293,294,295,296,297,298,310,333,334,335,336,337,338,347,348,349,374,375,376,377,378,403,407,522,543,566,568,573,580,582,597,603,617],sigma:[19,282,313,314,330,331,381,382,442,569,580,611],sigmoid:[1,19,23,281,282,307,313,314,330,331,381,569,577,578,581,596,611],sigmoid_:[569,577,611],sigmoidtransform:19,sign:[7,19,21,59,97,110,147,346,481,504,507,511,569,573,577,596,601,608,611],sign_:[569,577,611],signal:[4,10,21,190,270,271,272,274,275,276,278,279,280,293,294,295,311,328,329,342,347,348,349,405,406,522,576,580,592,599,603,617],signal_2d:342,signal_4d:342,signal_length:190,signatur:[2,16,23,192,215,231,309,353,402,410,411,437,447,522,588,596,598,600,601,606,611,619],signbit:[97,569,611],signific:[2,4,583,586,597],significand:[608,611],significant_figur:4,significantli:[2,412],silent:[13,174,201,353],silli:588,silu:569,silu_:569,sim:[66,367,458,474,580],similar:[7,16,18,19,23,75,80,93,114,145,146,192,299,300,309,310,321,323,324,325,353,400,402,437,448,483,526,538,552,563,570,576,577,580,583,585,588,596,600,604,606,611,614,616,617,618,621],similarli:[7,21,23,55,85,313,330,368,418,419,420,421,422,423,424,425,434,544,545,546,547,570,589,596,606,620],simon:9,simpl:[1,12,13,17,23,194,199,283,284,285,307,391,566,568,571,580,582,585,587,588,589,590,596,603],simplecustombatch:16,simplequeu:592,simpler:[568,583,588,591],simplest:[23,278,279,280,293,294,295,347,348,349,588,591,600,605,620],simplex:19,simpli:[2,4,11,16,19,23,182,277,303,412,418,419,420,421,422,423,424,425,568,570,583,591,599,606,620],simplic:604,simplifi:[17,22,197,344,583,591,597,604],simul:[19,600,601,616,620],simultan:[583,597,603],sin:[11,56,165,241,459,509,569,577,596,610,611],sin_:[569,577,611],sin_add:11,sinc:[4,7,13,16,17,18,19,23,84,120,139,140,141,190,192,195,198,235,281,307,309,350,351,352,353,402,404,408,410,427,447,526,530,568,569,570,573,574,580,582,583,586,588,589,590,591,594,595,596,597,598,600,602,603,604,605,608,609,611,617],sinc_:[569,611],sine:[57,508,510],sing:573,singl:[2,4,11,17,18,19,22,23,39,40,54,65,72,76,124,164,165,180,191,192,201,202,205,222,271,272,275,276,279,280,282,293,294,295,297,298,301,302,309,311,316,328,329,332,348,349,353,361,365,366,391,402,411,412,415,416,417,443,461,484,515,551,552,568,570,573,576,578,580,583,585,586,588,592,593,594,596,597,598,599,600,603,604,605,606,607,608,611,617,620],singleton:[19,332,553,584,611],singular:[108,217,225,235,243,456,457,511,526,527,573],sinh:[1,57,569,577,611],sinh_:[569,577,611],site:[4,7],situat:[19,23,576,592,600,601,605,619],size:[2,3,4,7,13,16,17,18,19,21,23,35,36,37,39,40,42,43,54,64,65,67,72,74,75,76,77,78,85,87,88,101,104,105,108,110,121,122,123,124,127,150,151,152,164,165,174,176,177,190,192,207,215,217,225,231,232,233,235,236,240,243,244,246,247,248,249,252,253,254,257,259,264,270,271,272,273,274,275,276,278,279,280,281,282,283,284,285,286,288,290,291,292,293,294,295,296,297,298,301,302,307,308,309,310,311,315,316,322,323,324,325,326,327,328,329,330,332,333,334,335,336,337,338,339,341,342,345,346,347,348,349,350,351,352,353,356,357,358,359,360,365,366,374,375,376,377,378,391,395,401,402,403,404,405,406,407,408,412,427,437,438,439,440,441,442,444,446,448,451,452,455,456,457,458,462,463,464,465,466,467,468,470,471,472,473,474,475,477,486,494,511,512,514,515,518,519,520,521,522,525,526,527,530,535,536,537,543,551,552,553,556,557,559,560,564,565,568,569,573,574,577,578,580,582,583,584,586,587,588,589,590,593,594,596,597,598,600,603,606,607,608,610,611,614,615,617,618,620],size_averag:[281,282,299,301,321,326,327,345,346,356,357,358,360,367,383,384,400,569,580],sizedim:611,sizeof:607,skeleton:418,skew:[2,4,5],skip:[1,568,582,583,587,588,597,599],skip_1to3:598,skippabl:598,slack:7,sleef:[99,510],sleep:22,slice:[39,40,283,284,285,385,387,391,482,550,568,571,580,596,606,609,611],slide:[190,278,279,280,310,347,348,349,403,522,580],slightli:[8,16,18,19,447,456,494,527,566],slogdet:[569,573,611],slope:[340,581],slot:619,slow:[2,551,592,610],slow_conv3d:569,slow_conv_dilated2d:569,slow_conv_dilated3d:569,slow_conv_transpose2d:569,slow_conv_transpose3d:569,slow_set_futur:22,slower:[2,5,11,18,74,139,140,141,580,588,593],slowli:602,small:[1,2,4,7,8,13,16,17,18,19,43,220,222,273,300,362,367,380,404,457,568,570,573,580,586,588,589,594,600,606],small_pool:13,smaller:[16,23,88,89,412,463,515,530,594,597,606,611],smallest:[83,207,217,463,539,573,621],smart:[588,603],smartcat2010:9,smessmer:9,smi:[13,586,589],smm:[569,606,611],smooth:[388,596,597],smooth_l1_loss:[1,569],smoother:566,smoothl1loss:580,snapshot:[13,586],snd_tensor:610,snedecor:19,snippet:[4,566,591,594],sobol:468,soboleng:468,socket:[576,603],soft:[389,580],soft_margin_loss:[1,569],softmarginloss:580,softmax:[1,19,273,344,386,569,578,586,596,606],softmaxtransform:19,softmin:[1,569],softplu:[1,569,596],softshrink:569,softshrinkag:389,softsign:569,softwar:[554,597],sole:597,solid:605,solut:[7,10,233,281,412,512,543,569,573,581,582,589,592],solv:[7,10,87,217,233,236,543,569,573,583,595,611],solver:[512,543],some:[1,2,4,6,7,8,11,13,15,17,18,19,21,23,121,190,198,201,273,277,281,282,288,293,294,295,296,297,298,299,301,302,303,321,323,324,325,326,327,330,345,346,356,357,358,360,367,368,383,384,400,408,412,413,414,464,481,526,566,568,569,570,571,573,574,576,577,578,580,582,583,586,588,589,590,591,592,593,594,595,596,597,600,603,604,605,606,610,611,617],some_dict:570,some_entry_point:199,some_fil:18,some_fn2:568,some_fn3:568,some_fn4:568,some_fn:568,some_oper:600,some_qconfig:600,someon:[7,578],someth:[4,7,121,201,572,576,577,583,595,603,619],sometim:[2,7,23,201,310,403,567,576,580,589,591,592,608,611,619],somewhat:583,somewher:[578,590],soon:[603,605],sophist:597,sort:[2,53,121,167,255,273,438,439,446,494,539,551,569,588,589,596,601,606,611],sort_bi:[2,599],sorted_indic:[437,440],sorted_sequ:[494,569],sorted_sequence_1d:494,soumith:[8,9],sound:610,sourc:[0,1,2,3,4,5,6,11,13,16,17,18,19,22,23,25,39,40,50,61,62,63,73,75,76,80,82,84,94,121,125,152,160,175,181,182,190,192,193,194,195,196,197,198,199,200,201,202,203,204,216,217,237,238,248,253,254,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,447,456,468,491,495,496,497,499,502,503,515,522,527,537,554,566,568,569,570,574,576,578,580,581,589,590,596,597,598,599,602,603,604,606,607,610,611,613,614,615,616,617,618,619,620],space:[16,19,21,201,202,215,231,273,293,294,295,296,297,298,310,326,333,334,335,336,337,338,348,349,403,542,580,583,594,617],span:[13,326,603,611],spandan:9,spandantiwari:9,spare:606,spars:[1,2,10,74,152,180,217,251,307,308,385,456,514,527,554,567,569,572,581,593,597,608,609,611,617],sparse_:581,sparse_coo:[514,606,608,611],sparse_coo_tensor:[23,569,572,606,611],sparse_dim:[514,569,606,611],sparse_grad:[152,569],sparse_mask:[569,606,611],sparse_resize_:[569,606],sparse_resize_and_clear_:[569,606],sparseadam:[307,597],sparseaddmmbackward:606,sparsedim:[606,611],sparsetensor:[2,514,606],sparsiti:[581,606],spatia:580,spatial:[21,82,284,310,365,366,386,403,404,405,406,580,617],spatio:[285,391],spawn:[16,193,412,582,587,592,595,604],spawncontext:576,special:[7,10,21,23,114,216,302,413,414,446,563,571,578,583,588,590,600,609,610,620],specif:[2,4,6,7,8,11,13,18,19,21,23,24,88,190,201,202,247,310,332,410,411,418,566,568,570,572,578,583,586,592,593,596,597,599,600,603,605,606,610,611],specifi:[2,4,11,13,16,18,19,21,23,54,67,100,104,105,109,110,112,121,135,152,192,194,201,202,216,217,227,243,254,261,264,279,280,281,282,288,297,299,301,302,308,309,310,315,321,326,327,330,332,345,346,351,353,356,357,358,359,360,367,383,384,395,400,401,402,403,405,406,412,414,416,418,419,420,421,422,423,424,425,427,430,431,432,433,444,447,456,462,468,484,486,487,491,502,514,525,536,538,551,552,553,555,566,568,570,573,575,577,578,580,586,588,591,595,596,597,599,600,602,603,606,607,608,610,611,617,620],spectral:[10,205,435,442],spectral_norm:[302,435],speed:[7,11,273,526,573,585,586,587,588,589,600,603],speedup:17,spend:[5,7,217],spent:[2,5,18,585,597],sphinx:7,split:[7,16,18,23,81,88,302,412,536,568,569,577,580,596,598,603,609,611,617],split_siz:[515,569,611],split_size_or_sect:515,split_with_s:[569,609],sponsorship:8,spot:4,spotri:86,spread:586,sqrt:[19,21,23,128,129,169,205,283,284,285,286,293,294,295,296,297,298,313,314,316,323,324,325,328,329,330,331,332,339,341,368,370,391,490,569,577,581,582,596,597,606,611],sqrt_1:23,sqrt_:[569,577,611],squar:[17,108,109,111,120,177,190,225,233,235,242,271,275,279,280,294,295,297,298,311,329,345,348,349,352,383,395,490,511,512,516,555,569,573,580,597,606,611,617],square_:[569,611],squeez:[37,39,40,42,207,232,244,246,247,249,252,264,462,465,520,521,525,556,557,569,577,596,606,609,611],squeeze_:[569,611],squeezebackward1:2,src:[4,18,257,395,398,399,492,493,532,569,601,611],src_key_padding_mask:[395,398,399],src_mask:[395,399],src_tensor:18,srinivasan:9,ssa:568,sse3:498,ssnl:9,sspaddmm:[569,606,611],stabil:[1,232,282,283,284,285,315,316,323,324,325,332,388,391,442,580,597],stabl:[1,2,18,19,121,217,282,530,567,584,588,593,596,603,616,617,618],stack:[1,2,13,16,19,23,92,119,168,288,313,330,368,396,398,441,561,569,586,587,589,596,599,606],stack_1:23,stack_2:23,stacktransform:19,stage:[7,567,603,605],stagnat:597,stai:[7,302,592,600,603,611],stand:[570,605],standalon:[11,199,201,568],standard:[7,11,17,19,21,23,277,283,284,285,316,323,324,325,332,391,397,399,448,456,474,520,521,570,571,581,585,592,596,601,611],star:[293,294,295],start:[2,4,5,8,13,16,17,18,22,23,41,43,138,200,211,215,231,265,273,278,279,280,308,347,348,349,354,356,412,418,422,424,477,500,566,569,570,576,578,580,583,584,586,587,589,591,592,595,596,597,599,603,604,605,611],start_dim:[138,309,569,611],start_epoch:16,start_ev:586,start_method:576,start_powersgd_it:17,start_process:576,startup:5,stash:[2,6,412,588,598],stashstashpop:598,stat:[4,13,391,412],state:[1,2,6,13,16,19,23,24,160,192,193,201,217,309,313,314,330,331,353,368,370,402,408,410,411,412,413,468,503,574,582,583,586,587,592,594,595,597,601,602,617],state_dict:[1,192,309,353,402,408,430,566,575,587,591,592,594,596,597],stateless:[17,591,601],statement:[4,19,23,201,571,583,588,592,594,596,603],stathopoulo:217,stathopoulosetal2002:217,static_async_add:603,static_k:569,static_v:569,staticmethod:[2,582,588,603],statist:[4,13,19,222,283,284,285,316,323,324,325,332,391,589,597,598,620],statu:[235,567,571,576,600],std:[11,24,135,136,145,146,448,552,569,577,581,590,595,596,611],std_mean:[569,577],stddev:19,stderr:[566,575],stdin:[2,588,593,611],stdout:597,steepest:[10,583],step:[1,5,8,11,16,17,18,19,23,31,43,67,166,215,217,231,311,412,437,468,477,568,569,578,580,582,583,586,587,589,591,592,593,595,599,600,603,604,606,610,611,617,620],step_num:599,step_siz:597,step_size_down:597,step_size_up:597,steplr:597,steps_per_epoch:597,stepwis:23,stft:[65,72,164,165,190,205,569,611],stick:19,stickbreakingtransform:19,still:[1,2,16,18,19,23,194,203,327,345,383,412,414,491,526,568,573,576,577,578,582,583,586,587,589,594,595,597,598,600,603,604,605,606,620],stirl:[367,580],stitch:603,stmt:[4,585],stmt_exclusive_stat:4,stmt_inclusive_stat:4,stochast:[16,19,311,591],stop:[13,19,43,217,288,477,568,597,603],storag:[2,13,54,173,174,181,197,216,239,265,302,479,491,518,541,566,567,569,572,575,576,583,586,592,594,603,606,608,609,611],storage_offset:[54,569,611],storage_typ:[572,611],storageshar:595,store1:18,store2:18,store:[2,4,6,11,13,17,23,31,74,197,198,217,222,235,307,412,426,427,428,430,431,432,433,437,566,568,578,579,587,588,589,590,596,600,603,604,605,606,610,611,620],store_tru:586,str:[2,11,13,18,19,21,23,116,191,192,193,194,196,217,309,353,402,404,418,419,420,421,422,423,424,425,426,428,430,431,432,433,434,435,436,442,444,568,569,570,571,573,576,578,580,596,597,598,599,603,607,610,611,617],straight:[281,580],straightforward:[23,591],straightfoward:23,strategi:[4,7,16,17,18,273,412,570],stream:[2,16,18,569,611],strict:[2,192,201,202,309,353,402,606],strictli:[8,16,171,172,192,194,309,353,402,583],stride:[2,10,21,43,54,65,72,122,124,134,150,151,164,165,177,205,215,231,233,251,278,279,280,293,294,295,296,297,298,310,328,329,333,334,335,336,337,338,347,348,349,350,351,352,365,403,412,451,470,472,473,474,476,477,484,512,526,530,545,547,559,564,569,571,573,577,580,596,603,606,608,610,611,614,615,616,617],strike:7,string:[0,2,4,11,13,18,23,121,192,197,198,216,281,282,288,293,294,295,299,301,308,309,315,321,326,327,333,334,335,345,346,353,354,356,357,358,360,363,367,383,384,400,401,402,427,464,491,497,522,566,569,570,571,575,576,578,580,588,590,596,603,607,608,610,611,617,620],strip:[4,568,580,596],strip_doc_str:596,strive:7,strm:586,strong:8,strong_wolf:597,stronger:17,strongli:[8,304,305,522,566],struct:[12,574,590],structur:[4,7,8,16,17,23,201,353,423,427,456,527,570,571,586,587,588,592,594,595,596,597,603,606,610,611,612],stub:[601,620],student:19,studi:[583,599],studio:595,stumbl:4,style:[23,116,446,568,570,601],styliz:[323,324,325],sub:[22,199,201,202,244,247,249,365,366,395,396,398,482,524,536,568,569,577,596,606,608,611,620],sub_:[569,577,606,611],sub_label:4,subclass:[1,2,11,16,19,23,198,353,413,418,423,571,582,591,603,611,619],subclassm:23,subcript:121,subfold:11,subgradi:597,subgraph:[413,587],subgraph_rewrit:23,subject:[4,10,17,18,22,23,43,233,412,577,578,588,598,600,603,608],submatrix:19,submit:[13,593],submod:23,submodul:[12,23,192,194,198,199,302,309,353,354,355,402,412,568,570,574,591,594,596,600,620],suboptim:[17,606],subprocess:[16,18,589,592],subregion:1,subscript:[121,571],subsequ:[4,7,11,12,18,23,192,201,293,294,295,296,297,298,309,353,402,593,603],subset:[16,18,199,568,570,588,596,600,601],subsetrandomsampl:16,subspac:[359,456,526,527,573,611],substanti:[8,17],substitut:[23,200,583,608],subsystem:[7,10],subtensor2:588,subtensor:[588,619],subtl:[7,323,324,325,412],subtleti:[16,302,589],subtli:597,subtract:[4,523,569,580,611],subtract_:[569,611],subtract_baselin:4,subtyp:570,succe:[18,588,595],succeed:235,success:[8,19,235,423,591],successfulli:[18,196,498,576,591,594,596,603],succinct:566,suffer:598,suffic:23,suffici:[4,11,19,566,596,600,601,608],suffix:[610,611],sugar:570,suggest:[8,17,299,566,572,582,583,589],suhan:9,suit:[568,570,596,603],suitabl:[16,19,78,205,494,597,599,610],sum:[1,2,13,16,18,19,23,105,121,176,222,223,224,232,233,257,264,281,282,288,298,299,301,302,308,310,315,321,326,327,328,329,345,346,356,357,358,360,367,383,384,385,387,400,401,403,412,427,432,433,447,540,569,573,577,580,582,583,586,587,588,596,597,603,604,606,611,617],sum_1:23,sum_2:23,sum_:[31,170,190,241,260,278,279,280,293,294,295,315,328,329,342,356,360,362,383,522,537],sum_i:[357,358,384],sum_j:[232,301,344,385,387,580,606],sum_pair:570,sum_to_s:[569,611],sumbackward0:2,sumbackward1:2,summar:[4,5,502,606],summari:[2,4,13,502,610],summarywrit:610,summat:[121,190,224,232,606],sunset:[8,9],suo:9,superclass:588,superresolut:596,supervis:[299,321],supplement:4,suppli:[1,6,7,11,12,18,586],support:[1,2,3,4,7,8,10,11,12,13,16,17,18,19,23,31,32,34,37,39,40,42,64,65,72,74,85,87,97,113,116,118,120,144,145,146,147,164,165,171,172,173,177,199,201,205,206,217,233,235,236,240,241,245,250,251,293,294,295,296,297,298,307,308,310,327,341,353,358,391,401,403,412,447,452,457,464,479,480,481,498,512,523,526,543,545,547,558,559,560,565,566,568,570,571,572,573,574,576,579,580,583,584,585,588,592,594,595,597,598,599,600,601,603,608,609,610,611,617,619],suppos:[16,18,23,190,530,606],suppress:602,sure:[2,7,16,18,23,125,194,201,202,217,412,445,539,577,583,587,589,595,596,597,599,603,604,605,610],surg:216,surpass:581,surpris:[4,566],surrog:19,surround:[1,570,582,620],sutskev:597,svd:[10,108,225,243,456,457,511,527,569,573,606,611],svd_lowrank:606,svg:599,svi:19,swa_lr:597,swa_model:597,swa_schedul:597,swa_start:597,swa_util:597,swalr:597,swap:[23,235,400,401,541,569,571,580,601,611,620],swap_modul:[601,620],swapax:[529,569,609,611],swapaxes_:569,swapdim:[569,609,611],swapdims_:569,swish:[381,580],syevd:573,symbol:[15,25,330,368,595,596,600],symbolic_fn:596,symbolic_foo_forward:596,symbolic_help:596,symbolic_nam:596,symbolic_opset10:596,symbolic_opset9:596,symbolic_opset:596,symbolic_trac:23,symeig:[569,611],symmetr:[21,65,72,85,86,87,164,165,205,217,243,530,569,573,597,600,601,620],symmetri:[21,522],sync:[1,23,412,587,598],sync_bn_modul:391,sync_bn_network:391,syncbatchnorm:412,synchron:[4,5,13,120,217,391,412,446,573,585,586,587,592,598,603],syncron:4,syntact:[8,23],syntax:[192,568],sys:566,system:[7,11,12,13,23,87,197,216,236,395,397,399,412,498,512,543,571,583,585,586,590,591,595,603],t4d:580,t_0:597,t_max:597,t_mult:597,tabl:[2,4,18,23,307,569,580,588,599,600,603,606],tabular:23,tag:[2,4,7,18,216,566,567,590,610],tag_nam:566,tag_scalar_dict:610,tail:[4,16],taiwan:610,take:[1,2,4,5,7,8,11,13,16,17,18,19,21,22,23,87,101,110,112,144,177,248,273,282,308,311,313,330,348,349,350,351,352,353,361,368,395,405,406,412,461,464,512,543,566,568,569,574,576,577,578,580,582,583,585,586,587,588,589,591,593,595,596,599,600,601,603,604,605,606,608,609,610,611,620],taken:[19,21,23,43,145,146,288,301,308,360,502,530,580,585,586,588,589,590,594,596],talk:[590,606],tall:[588,611],tamper:216,tan:[1,58,569,577,596,610,611],tan_:[569,577,611],tangent:[60,533,534],tanh:[19,60,313,314,330,331,368,370,393,569,577,578,581,596,611,618],tanh_:[569,577,611],tanhshrink:569,tanhtransform:19,tanx:610,tape:7,target:[1,11,22,23,79,270,271,272,273,274,275,276,281,282,288,301,311,315,321,326,327,345,346,350,351,352,356,357,358,359,360,367,383,384,395,404,569,580,582,583,592,597,600,603,610,611,617,620],target_atom:23,target_dict:620,target_length:[288,569,580],target_n:288,target_typ:196,task:[2,4,7,17,193,204,323,324,325,585,590,591,595],task_spec:4,tau:[155,453,454,569,580],taylor:241,tbb:585,tcp:603,tcpstore:18,tdr:595,teach:591,team:[7,8,594,598],technic:[7,8,23,583,589],techniqu:[23,303,418,579,598,600],tediou:23,tell:[2,7,23,197,216,568,583,588,611],temperatur:[19,580],tempor:[283,285,288,391,404,580],temporari:[11,23,413,589,620],temporarili:596,temporary_fil:566,ten:[570,610],tend:[7,554],teng:9,tensor1:[32,33,240,485,569,611],tensor2:[32,33,240,485,569,611],tensor:[1,3,6,7,11,13,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,161,162,163,164,165,166,167,168,169,170,171,172,173,174,176,177,178,179,180,182,183,184,185,186,187,188,189,190,192,193,194,196,197,198,199,201,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,259,260,261,262,263,264,265,266,267,268,269,273,277,278,281,282,288,289,290,291,292,293,294,295,296,297,298,299,301,302,303,304,305,307,308,309,310,313,314,315,321,326,327,330,331,344,345,346,347,350,351,352,353,356,357,358,360,361,365,366,368,370,374,375,376,377,378,384,385,386,387,394,400,401,402,403,404,405,406,407,408,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,496,497,498,499,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,567,568,570,573,579,580,581,582,583,584,585,586,587,589,591,592,593,595,596,597,598,599,603,604,607,610,617,618,619,620],tensor_a:[80,93],tensor_b:80,tensor_dict:594,tensor_index:12,tensor_indices_or_sect:569,tensor_list:18,tensor_split:[569,611],tensorboard:[567,599],tensorboard_trace_handl:599,tensordataset:16,tensordot:[1,176,569,572,573,586],tensorfloat32:[31,34,64,74,240,251,293,294,295,296,297,298,341,580,586],tensorfloat:3,tensorflow:[19,583,597,610],tensorinv:573,tensorlik:619,tensorpipeag:603,tensorpiperpcbackendopt:603,tensorsolv:573,term:[8,19,21,23,84,273,281,315,330,331,358,367,383,412,418,419,420,421,422,423,424,425,567,580,582,583,589,597,601,604,606,611,618],termin:[23,576,597,603],terminolog:[283,284,285,391],test:[2,4,11,18,23,37,42,181,182,185,187,188,507,567,568,571,576,593,596,597,600,610,619],test_input:597,test_trace_:599,testcod:[196,570],text:[7,19,26,28,29,30,31,32,33,34,35,36,38,41,43,56,57,58,59,60,64,65,66,72,74,83,89,96,97,98,99,116,120,135,136,143,144,148,154,163,164,165,166,169,170,171,172,183,190,206,209,210,211,214,215,224,230,231,232,233,234,235,256,257,266,267,278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,301,304,305,306,307,310,312,313,314,315,316,317,318,319,320,321,323,324,325,326,327,328,329,330,331,332,339,340,341,343,344,345,346,347,348,349,350,351,352,356,357,358,359,360,361,365,366,367,368,370,371,372,373,374,375,376,377,378,379,381,382,383,384,385,387,388,389,390,391,392,393,394,401,402,403,404,405,406,407,416,458,459,461,464,474,477,480,490,504,505,506,508,509,510,516,522,523,530,533,534,562,563,573,580,581,597,606,610,611,617,618,620],text_str:610,texttt:[38,183,273,611],tf32:3,tgt:[16,395,396,397],tgt_key_padding_mask:[395,396,397],tgt_mask:[395,396,397],thalloc:595,than:[1,2,4,5,6,8,10,11,13,16,17,18,23,37,39,40,42,54,67,76,83,84,110,111,124,139,140,141,143,154,163,167,174,180,190,199,206,207,210,220,234,244,247,249,252,257,260,281,282,302,307,308,346,351,367,383,389,400,401,408,412,440,442,462,463,482,502,507,538,545,547,554,558,566,568,570,572,573,578,579,580,581,583,584,586,588,589,591,592,593,594,596,597,598,600,603,606,608,610,611,617],thank:[17,19,588,598],thc:595,thc_state:595,thcstate:595,thcudacheck:595,thcudatensor:595,thcudatensor_cadd:595,thcudatensor_fil:595,thcudatensor_issamesizea:595,thcudatensor_resizea:595,the_funct:23,the_templ:569,thei:[1,2,4,6,7,8,10,13,16,18,19,22,23,31,34,35,39,40,64,183,184,190,192,197,200,207,216,233,239,244,247,249,252,257,278,279,280,296,297,298,309,310,339,347,348,349,353,359,369,380,402,403,408,412,413,415,437,440,465,522,554,555,568,570,572,573,574,576,577,578,580,582,583,586,587,588,591,592,594,595,596,597,598,600,601,603,610,611,612,619,620],them:[1,2,4,6,7,10,11,12,16,17,18,23,54,76,107,110,121,124,207,216,246,264,289,307,353,385,387,423,438,441,520,521,525,566,570,573,574,576,577,578,580,582,583,584,588,589,590,591,593,595,597,598,599,600,601,603,604,605,606,610,611],themselv:[2,19,539,586,619,620],theophil:555,theoret:600,theori:583,therebi:[16,19,600],therefor:[1,2,4,6,16,17,18,19,21,54,65,72,164,165,200,201,308,403,457,535,580,582,583,588,589,590,596,597,605,611],theses:23,theta:[19,569,580],thi:[1,2,3,4,5,6,7,8,11,12,13,15,16,17,18,19,21,22,23,29,31,34,37,38,42,51,52,53,54,60,64,67,74,75,82,84,89,91,96,101,104,105,108,110,112,114,116,119,120,121,125,138,139,140,141,142,144,145,146,153,155,156,157,164,168,177,182,190,192,193,195,196,197,198,199,201,202,203,205,206,207,208,209,215,216,217,220,222,225,231,235,236,240,244,247,249,251,252,253,259,262,263,264,273,277,281,282,283,284,285,288,293,294,295,296,297,298,299,301,302,303,304,305,307,308,309,310,311,316,321,323,324,325,326,328,329,330,332,339,341,347,348,349,350,351,352,353,356,360,365,368,369,383,385,388,391,397,399,400,402,403,404,405,406,408,409,410,411,412,413,414,418,419,420,421,422,423,424,425,427,430,431,437,438,439,440,441,442,444,445,452,453,454,455,456,457,460,462,464,468,472,477,483,496,497,499,502,504,511,512,514,518,522,525,528,529,530,531,536,538,551,552,553,554,559,560,561,565,566,567,568,569,570,571,572,573,574,576,577,578,580,581,582,583,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,610,611,612,613,614,615,616,617,619,620,621],thij:17,thin:464,thing:[2,4,7,18,23,281,570,580,583,586,588,589,592,600,605,606,620],think:[7,23,568,570,583,605],third:[19,119,121,235,273,280,295,298,349,568,586,591,597,599],thnn_conv2d:569,thnn_conv2d_forward:600,thnn_conv_depthwise2d:569,those:[2,5,11,13,16,17,18,23,54,110,112,201,216,273,281,282,299,301,308,321,326,327,345,346,356,357,358,360,367,383,384,400,404,412,526,570,573,577,578,580,582,586,591,593,594,597,600,601,603,605,606,614],though:[2,4,18,21,23,240,447,568,571,578,583,592],thought:[4,21,23],thrash:18,thread:[1,2,4,9,13,16,18,22,125,158,159,302,445,499,500,501,567,568,582,590,592,596,603,605,612],threadlocaldebuginfo:590,threadpool:4,three:[2,18,23,63,280,295,298,349,447,573,587,588,597,598,600,603,605,610],three_phas:597,threej:610,threshold:[17,23,243,383,388,502,569,573,582,596,597,610],threshold_:[569,580],threshold_mod:597,through:[1,2,6,7,8,12,16,18,19,21,23,108,193,201,202,204,225,360,396,397,398,399,408,464,511,530,566,567,570,573,576,577,578,580,588,589,590,591,595,596,598,600,601,603,604,605,609,611,612,620,621],throughout:[437,591,600],throughput:585,thrown:[13,22,260,573,611],thtensorrandom:257,thu:[2,10,16,18,19,21,23,240,307,353,404,412,514,568,574,580,583,585,588,589,590,591,596,597,600,603,606,609,611,617,620],thumb:18,tie:19,tightli:591,tile:[569,611],till:598,time:[2,4,5,7,11,13,16,17,18,19,21,22,23,24,30,31,32,33,34,35,36,38,64,74,82,84,104,113,120,139,140,141,183,190,192,197,200,201,202,206,211,216,217,233,240,251,256,257,259,260,267,278,279,280,282,283,284,285,288,293,294,295,296,297,298,302,308,309,310,311,313,323,324,325,330,332,340,347,348,349,350,351,352,353,365,366,368,388,391,402,403,404,405,406,410,411,412,446,455,464,483,487,518,522,523,537,567,570,571,573,574,576,580,581,583,585,586,587,588,589,590,592,593,595,597,598,599,600,601,603,604,605,606,610,611,617,618,620],timedelta:18,timefram:603,timeit:[4,585],timelin:[2,5],timeout:[16,18,576,603],timer:4,timestamp:610,tini:[611,621],tip:7,titl:599,tiwari:9,tmp:[2,4,11,18,566,599],to_bool:23,to_dens:[569,606],to_dlpack:20,to_eras:23,to_her:[412,603,604,605],to_mkldnn:[569,611],to_spars:[569,593,606,611],todai:[596,600],togeth:[1,4,16,18,19,23,121,313,330,368,412,415,574,582,589,590,591,600,601,603,604,605,610],toggl:586,token:[566,571],tol:[217,243,569,573],told:570,toler:[2,23,38,183,201,202,217,243,568,573,597],tolerance_chang:597,tolerance_grad:597,tolist:[607,611],too:[7,11,17,262,288,353,413,580,582,585,589,592,593,595,598,605,606],tool:[2,5,8,23,566,568,570,585,586,595,599],toolbox:23,toolkit:23,top:[2,4,16,19,23,281,282,321,327,345,360,401,404,418,422,424,539,571,576,580,588],top_level_events_onli:2,top_level_method:570,topic:[8,590,591],topk:[23,569,577,596,601,611],topk_1:23,topolog:[2,23],torch:[8,10,12,14,17,24,125,191,192,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,412,413,414,418,419,420,421,422,423,424,425,437,445,468,499,567,568,569,570,577,578,582,583,584,585,586,587,589,590,591,592,593,595,598,600,603,604,605,609],torch_14808_1591070686:595,torch_cuda_arch_list:11,torch_extens:11,torch_extensions_dir:11,torch_funct:588,torch_hom:566,torch_lib_path:11,torch_shm_manag:576,torchaudio:[10,567],torchelast:567,torchgpip:598,torchscript:[4,23,193,194,195,196,199,201,203,567,571,591,594,596,603,611],torchserv:567,torchtext:567,torchvis:[23,566,567,568,570,583,600,610],toronto:288,total:[2,4,5,7,13,16,17,18,288,310,321,327,345,359,383,403,412,415,446,448,450,502,522,566,570,578,580,586,597],total_averag:2,total_count:19,total_length:[440,589],total_loss:589,total_memori:13,total_step:597,total_tim:4,totensor:610,touch:[7,23,596],toward:[8,116,144,217,269,412,487,598],tpu:591,trace:[2,7,12,16,121,193,199,200,202,217,569,570,572,583,586,594,599,611],trace_handl:599,trace_modul:[201,568],trace_nam:2,traceabl:[23,25,568,600],traceback:[2,23,180,570,576,588,593,611],traced_bar:568,traced_cpu:568,traced_fn:568,traced_foo:[201,568],traced_gpu:568,traced_graph:23,traced_modul:[23,594],traced_with_activ:23,traced_without_activ:23,traceerror:23,tracer:[201,596],tracer_class:23,tracerwarn:568,track:[2,6,13,283,284,285,323,324,325,391,412,423,576,578,586,588,589,590,591,597,598,599,604,605,611],track_running_stat:[283,284,285,323,324,325,391,594,617],tracker:[7,8,217],trade:[6,282,585],tradeoff:[17,600,604],tradit:23,tradition:10,trail:[439,441,581,584,588],train:[1,12,13,16,17,18,192,195,199,201,273,277,283,284,285,301,302,303,309,316,323,324,325,332,353,360,391,402,412,442,566,568,569,574,580,581,583,586,587,589,594,597,598,599,601,603,605,610,614,616,620],train_batch:597,train_dataset:593,train_fn:583,train_load:586,trainabl:597,trainer3:603,trainer:603,training_loop:600,training_method:195,trainingmod:596,trainload:610,trainset:610,trajectori:17,tran:190,transb:596,transfer:[4,16,18,576,586,591,603],transform:[4,16,190,286,316,323,324,325,332,341,396,397,398,399,408,522,580,583,591,600,610,617,620],transform_graph:23,transform_to:19,transformed_distribut:19,transformed_resnet18:23,transformer_decod:396,transformer_encod:398,transformer_model:395,transformerdecoderlay:396,transformerencoderlay:398,transit:568,translat:[573,583,605],transmit:603,transpar:[587,598,603,605],transport:603,transpos:[85,87,121,177,233,296,297,298,403,440,454,464,512,526,528,529,530,531,543,569,573,577,580,583,596,606,609,611],transpose_:[2,569,606,611],transposed_data:16,transposit:235,trapezoid:542,trapz:569,travers:[412,587,588,601,604,620],treat:[2,4,19,23,216,226,227,228,229,248,264,308,315,332,357,358,360,385,412,446,522,532,538,570,573,577,580,583,596,597,603,608,611],treatment:23,tree:[7,353,395,605],tri:[1,4,7,23,192,309,353,402,570,576,589,597,611],triag:8,trial:19,triangl:[169,610],triangular2:597,triangular:[19,85,86,87,464,530,543,544,545,546,547,573,580,597],triangular_solv:[569,611],trick:[2,19,282,580,583,590],tricki:[583,591,605],trickier:605,trigger:[1,2,7,8,22,502,582,587,590,594,603,611],tril:[569,611],tril_:[569,611],tril_indic:[569,572],trilinear:[404,554,580],trim:[21,65,72,164,165,190],trim_sigfig:4,trip:21,tripl:580,triplet:[400,401],triplet_loss:[400,401],triplet_margin_loss:[1,569],tripletmarginloss:[401,580],tripletmarginwithdistanceloss:[400,580],triu:[543,569,596,611],triu_:[569,611],triu_indic:[569,572],trivial:[4,84,120,605],tropp:[456,527],trou:[293,294,295,296,297,298,310,403],troubleshoot:7,troublesom:588,true_divid:[116,569,596,611],true_divide_:[569,611],truediv:23,truli:[23,596],trunc:[32,116,137,144,569,577,611],trunc_:[569,577,611],truncat:[17,144,549,589],trust:[16,18,216],truth:610,tseq:19,tune:[17,18,597],tup:570,tupl:[2,4,6,13,16,21,23,39,40,54,55,61,62,63,77,100,102,103,120,122,124,139,150,155,192,196,201,202,207,232,233,235,237,244,246,249,252,254,264,271,272,275,276,278,279,280,288,290,291,292,293,294,295,296,297,298,302,309,310,311,329,333,334,335,336,337,338,348,349,350,351,352,353,374,375,376,377,378,402,403,404,405,406,407,411,414,427,440,446,447,451,453,464,470,472,474,484,486,487,512,513,514,520,521,525,526,530,535,536,537,538,539,550,551,552,556,557,562,564,568,569,571,573,576,578,580,588,594,596,597,603,606,610,611,617,619],tuple_or_list:570,turn:[11,16,23,50,201,396,398,583,593,596,599,600,604,606],tutori:[4,8,12,18,23,568,588,590,591,594,596,600],tval:569,tvar:217,twelv:608,twice:[1,2,22,582,583,589],two:[1,2,4,5,10,11,12,13,16,17,18,19,21,23,38,62,82,102,103,110,118,121,127,132,145,146,183,198,206,209,211,216,240,244,247,249,252,279,281,282,293,294,295,296,297,298,299,301,310,313,321,326,327,329,330,332,345,346,348,356,357,358,360,361,367,368,383,384,400,401,403,438,444,446,447,465,477,514,526,537,558,566,568,570,573,577,578,580,583,584,585,586,587,588,591,594,595,596,597,598,600,601,603,604,605,606,610,611],two_fft:21,two_ifft:21,two_layer_net_modul:591,two_layer_net_optim:591,twse:610,txt:[197,198],type1:[463,569],type2:[463,569],type:[2,11,12,13,17,18,19,21,22,23,24,30,31,32,33,34,35,43,55,62,63,64,65,67,68,69,70,71,72,73,75,76,78,79,80,81,84,93,104,105,116,120,122,123,124,134,135,136,142,144,145,146,147,150,151,153,157,164,165,167,178,179,180,189,190,192,193,196,199,201,202,204,205,208,215,217,231,233,235,248,256,264,273,277,302,308,309,353,354,363,402,409,410,411,412,414,415,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,441,446,447,451,452,462,463,464,466,467,468,470,471,472,473,474,475,476,477,480,481,483,485,494,497,514,515,522,523,525,526,530,535,545,547,551,552,555,562,564,565,566,567,568,571,572,573,574,577,580,582,585,586,590,591,595,598,600,601,603,606,607,608,610,611,612,617,619,620],type_a:[569,577,596,611],type_expr:23,type_p:19,type_q:19,typecheck:182,typeerror:[427,588,598,619],typic:[11,16,17,18,19,23,142,192,206,209,299,309,321,353,402,408,412,566,567,568,583,585,593,594,596,597,598,600,601,606,609,621],typing_extens:[568,570],typo:7,ubc:597,udf:605,uint8:[37,42,149,427,463,466,467,485,600,608,610,611,621],uint8_t:611,uint_tensor:608,ultim:[8,11],unabl:[7,597],unaffect:[17,315,611],unaggreg:599,unari:[571,577],unavailbl:570,unbalanc:[301,360],unbias:[283,284,285,316,323,324,325,332,391,520,521,556,557,569,611],unbind:[569,577,596,609,611],uncent:21,unchang:[138,192,309,353,359,395,402,482,518,582,600,611,620],unclear:611,uncoalesc:514,uncondition:[438,566,588,619],unconstrain:19,uncontrain:19,undefin:[2,18,281,586,588,611],under:[1,2,4,5,16,18,23,79,192,288,309,353,402,482,576,580,582,583,587,592,595,596,598,600,601,602,605,610,612],underflow:[1,582],undergon:23,underli:[13,18,19,23,54,155,173,174,192,216,265,453,454,479,541,553,568,580,586,589,598,601,603,609,611,617],underscor:[566,578,603,611],understand:[7,8,380,581,583,586,594,599,610],understood:81,undertak:7,underwai:2,undesir:[12,288,293,294,295,296,297,298,580,588],undon:[418,419,420,421,422,423,424,425,434],unequ:[294,295,297,298,617],uneven:412,unexpect:[18,101,192,309,353,402,518,568,588],unexpected_kei:[192,309,353,402],unexpectedli:[412,611],unflatten:[569,577,578,609],unflattened_img:578,unflattened_named_img:578,unflattened_s:402,unfold:[310,569,596,609,611],unfortun:[2,6,8,16,412],unicod:[4,571],unicodedecodeerror:216,unifi:578,unifies_names_from_input_tensor:577,uniform:[66,371,470,471,581,611,612],uniform_:[29,60,66,260,569,577,581,588,611,612],uniformli:[19,472,473,542],unind:602,uniniti:[122,123,124,408,414,611],uninitializedparamet:[339,408],union:[23,402,570,578],uniqu:[18,247,254,526,552,566,568,572,573,575,588,596,599,603,604,605,606,610,611],unique_consecut:[551,569,611],unit:[4,19,21,23,120,277,287,312,313,314,371,372,381,420,421,425,428,430,433,543,580,585,601,618],unit_interv:19,uniti:414,unitriangular:[543,569,611],univari:19,univers:570,unix:[16,576],unknown:[414,605],unless:[1,2,5,7,17,18,23,67,192,247,309,315,353,402,411,412,427,554,573,583,586,593,597,611,620],unlik:[2,4,7,19,21,118,138,142,244,247,249,332,414,480,558,570,573,576,592,593,608,611],unlist:1,unmask:[359,395],unmatch:598,unment:578,unmodifi:[1,18],unnam:[577,578],unncessari:609,unnecessari:[586,588,594],unnorm:[19,301,580],unnot:576,unoccupi:13,unord:[354,363],unpack:[237,302,313,330,368,440,571,588,589],unpack_data:237,unpack_pivot:237,unpickl:[16,18,216],unpool:[350,351,352],unpooled_output:352,unprun:[421,422,424,425,426,427,428,429,430,431,432,433],unpublish:597,unreadi:587,unreduc:[281,282,326,327,345,360,401],unrel:[7,582,588],unresolv:595,unrol:[570,596],unsaf:586,unsafe_chunk:569,unsafe_split:569,unsafe_split_with_s:569,unscal:[1,412],unscale_:[1,582],unseg:288,unserialized_th:591,unset:23,unsign:[19,601,608,611],unskip:1,unsort:[438,439],unsorted_indic:[437,440],unspecif:385,unspecifi:[18,418,419,420,421,422,423,424,425,427,430,431,596,606,610,611,620],unsqueez:[21,206,307,372,538,569,573,588,596,606,609,610,611],unsqueeze_:[569,611],unstabl:[1,19,108,225,457,511,526,573,580],unstructur:[423,427],unsuccess:18,unsupport:[568,571,578,596],unsupported_linear_op:570,unsw:468,untest:578,until:[4,7,13,17,18,22,23,206,217,408,538,576,580,583,586,589,599,603,605,611],untouch:16,untrac:23,untrack:201,untrain:596,untrust:216,unus:[13,195,199,322,412,568,570,586,587],unused_argument1:322,unused_argument2:322,unused_method:568,unusu:7,unwant:610,unwieldi:23,upcom:[18,582],updat:[1,2,8,10,17,23,283,284,285,302,307,308,313,323,324,325,354,363,391,566,568,574,582,583,587,591,592,594,595,596,597,598,603,604,605,610,611,620],update_bn:597,update_paramet:597,upgrad:597,uplo:[569,573],upon:[16,576,600,605],upper:[19,73,78,85,86,87,89,135,136,167,172,371,464,476,494,530,543,546,547,569,573,580,581,597,611],upper_bound:19,uppercas:18,ups:7,upsampl:[297,405,406,601,617,620],upsample_bicubic2d:569,upsample_bilinear2d:569,upsample_bilinear:[601,617],upsample_linear1d:569,upsample_nearest1d:[569,596],upsample_nearest2d:[569,596],upsample_nearest3d:[569,596],upsample_nearest:[601,617],upsample_r:620,upsample_trilinear3d:569,upsample_trilinear:580,upscal:365,upscale_factor:[365,569,580],upstream:595,url:[2,18,566,575,603],usa:[315,610],usag:[1,2,5,7,12,13,16,19,23,217,412,457,568,578,582,583,589,591,596,605,606,610,611,612,617,620],use:[1,2,3,4,6,7,8,10,11,12,13,16,17,19,21,22,23,54,82,99,108,155,166,174,177,182,190,192,195,198,199,200,201,202,205,216,217,239,243,247,257,278,279,280,288,290,291,292,302,309,313,314,326,328,329,330,331,347,348,349,350,353,360,368,369,370,374,375,376,377,378,401,402,404,407,412,438,439,444,457,464,466,477,483,491,494,510,511,520,521,526,527,535,542,551,554,556,557,566,568,569,570,573,574,576,577,578,579,580,581,582,583,585,586,588,589,590,591,592,593,594,595,596,598,599,600,603,604,606,608,610,611,612,617,620],use_cpu:2,use_cuda:[2,599],use_deterministic_algorithm:[3,50,593],use_distribut:18,use_dynam:569,use_env:18,use_error_feedback:17,use_external_data_format:596,use_gpu:568,use_input_stat:[569,580],use_kineto:2,use_memory_effici:203,use_mkldnn:585,use_mm_for_euclid_dist:82,use_mm_for_euclid_dist_if_necessari:82,use_ninja:11,use_openmp:585,use_separate_proj_weight:569,use_tbb:585,used:[1,2,3,4,5,7,10,11,12,13,14,16,17,18,19,21,22,23,64,65,66,72,85,120,121,158,159,164,165,167,192,197,199,201,202,207,209,216,217,273,279,280,281,282,283,284,285,294,295,296,297,298,299,301,302,304,305,307,309,313,315,321,323,324,325,329,330,332,342,348,349,353,360,361,367,368,370,388,391,400,401,402,408,409,410,411,412,413,415,418,419,420,421,422,423,424,425,427,430,431,448,491,495,497,499,500,501,513,520,521,522,526,530,539,553,554,556,557,558,566,568,569,570,572,573,575,578,580,581,582,583,585,586,588,590,591,592,593,595,596,597,598,599,600,601,602,603,604,605,606,608,610,611,612,614,616,617,620],useful:[1,2,4,7,13,16,17,19,21,23,75,104,105,142,190,222,264,301,310,326,360,365,412,440,445,462,525,527,566,568,570,578,580,585,588,590,591,594,596,597,598,599,600,603,604,606,612,619,620],user:[2,6,10,12,13,16,17,18,19,23,192,216,309,353,395,397,399,402,411,412,427,566,567,568,570,576,578,582,583,584,586,588,590,591,592,596,597,599,600,603,604,609,610,611,616,617,618,619,620],usermodel:600,userrref:[603,605],userwarn:[584,596],uses:[1,2,4,5,11,13,16,18,19,21,23,24,43,55,65,72,108,122,124,134,150,164,165,199,205,215,216,225,231,283,284,285,288,290,291,292,316,323,324,325,332,361,374,375,376,377,378,383,391,407,412,451,464,468,470,472,474,476,477,511,514,526,535,545,547,564,566,568,573,580,582,583,585,586,587,588,589,590,591,593,595,597,603,604,605,606,608,611,617,620],using:[1,2,4,6,7,8,10,11,12,16,17,18,19,23,84,86,113,121,135,136,174,190,192,195,196,197,198,199,201,202,203,216,217,235,236,243,277,281,282,288,290,291,292,293,294,295,296,297,298,299,302,303,304,305,307,308,309,313,320,321,330,353,355,362,364,368,374,375,376,377,378,380,400,401,402,407,408,412,442,447,457,468,491,526,535,542,566,567,568,570,571,572,573,576,578,580,581,582,583,585,586,587,588,589,590,591,592,593,594,595,596,597,599,600,601,603,604,605,606,610,611,612,617],usr:[216,491],usual:[2,7,11,16,17,23,304,305,321,323,324,325,408,412,568,573,582,585,589,590,596,601,603,610,611,619,620],uszkoreit:[395,397,399],utf:216,util:[1,7,13,17,22,23,192,309,313,330,353,368,402,409,410,411,418,419,420,421,422,423,424,425,437,567,582,584,585,586,588,589,590,591,596,597,598,603,616,617,618],v100:[14,313,330,368],v_1:362,v_2:362,v_proj_weight:569,val1:196,val2:196,val:[196,569,581,611],val_loss:597,val_map:23,valgrind:4,valid:[2,18,19,23,121,192,207,240,293,294,295,408,422,427,431,464,562,568,570,573,578,580,596,597,603,604,617,620],validate_arg:19,valu:[1,2,4,6,7,8,10,11,13,16,17,19,21,22,23,24,26,29,30,32,33,36,39,40,43,51,52,53,60,65,66,67,72,78,82,87,89,97,100,102,103,108,113,120,126,135,136,142,147,150,152,154,163,164,165,166,167,173,180,184,185,186,189,190,192,193,196,197,201,204,206,207,210,215,216,217,220,225,231,234,235,238,243,244,246,247,249,252,255,257,261,262,263,266,269,273,278,279,280,281,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,299,300,301,302,306,308,309,310,315,316,317,320,321,323,324,325,326,327,328,329,332,339,341,344,346,347,348,349,350,351,352,353,354,358,359,360,361,362,363,367,383,385,386,387,388,389,391,394,395,397,399,400,401,402,403,404,408,411,412,416,418,419,420,421,422,423,424,425,430,431,437,440,441,446,447,451,452,456,457,459,461,465,467,477,479,482,483,486,494,502,504,511,512,513,514,522,526,527,536,539,542,543,544,545,546,547,549,551,552,553,562,564,565,566,568,569,571,573,575,576,580,581,582,583,585,586,588,589,591,594,596,597,599,600,601,602,603,606,608,609,610,611,612,617,618,620],value_remap:23,valueerror:[22,437,440,588,598],vamshi:9,vander:[569,572],vandermond:555,vanilla:17,var1:597,var2:597,var_mean:[569,577],vari:[437,597,606,620],variabl:[4,6,11,13,15,17,19,23,122,124,201,217,286,293,294,295,296,297,298,302,307,308,313,314,330,331,339,341,353,356,361,368,370,412,437,438,439,440,441,451,470,472,474,535,554,564,566,578,583,585,586,589,593,595,596,597,603,610,611,614,615,616,617,618,620],variabletyp:596,varianc:[19,283,284,285,315,323,324,325,391,474,475,556,557,580,581,597],variant:[1,17,263,543,590,597,601,611,620],variat:[4,19,588],varieti:604,variou:[3,6,8,11,16,23,217,576,591,592,597,606,619],vast:606,vaswani:[395,397,399],vc2017:595,vdantu:9,vdim:359,vdot:[206,569,611],vec1:[36,569,611],vec2:[36,156,455,569,611],vec:[35,259,443,569,611],vector:[2,10,17,19,34,35,36,54,59,75,76,82,93,101,104,105,109,111,124,240,248,257,259,282,283,284,285,288,302,307,308,310,316,323,324,325,362,391,400,403,415,417,443,447,455,456,526,530,555,573,580,583,600,606,610,611],vehicl:8,veloc:597,verbos:[11,566,578,596,597,610],veri:[2,5,7,17,18,23,99,323,324,325,412,413,510,570,576,583,588,589,591,592,595,596,597,602,603,604],verifi:[2,11,23,566,568,575,588,596,598],verify_ninja_avail:11,verify_skipp:598,versa:[23,149,346,583,607,611],version:[3,6,11,13,15,19,23,164,190,192,193,194,197,198,240,265,282,309,330,353,354,368,402,404,409,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,457,492,493,522,526,541,554,566,573,577,578,580,583,584,586,588,590,591,593,595,596,597,599,600,601,611,612,614,616,617,620],versu:[7,357],vert:[300,362,580],vertex:610,vertic:[561,598,610],vertices_tensor:610,vgg:596,vhp:2,via:[2,7,11,12,13,16,18,19,23,81,125,217,283,284,285,302,316,323,324,325,332,391,442,444,520,521,556,557,568,570,576,581,583,586,588,589,591,592,596,597,604,608,609,611,619],viabl:23,vice:[23,149,346,583,607,611],vid_tensor:610,video:[365,366,578,610],view:[2,7,8,10,16,17,23,54,61,62,63,76,88,96,112,138,139,140,141,308,313,330,368,403,404,405,406,412,415,484,486,487,515,525,532,536,540,559,560,567,568,569,576,578,580,584,596,601,603,605,608,611],view_a:[569,609,611],view_as_complex:[10,569],view_as_imag:609,view_as_r:[10,522,569,609],viewbackward:2,vincent:9,vincentqb:9,vine:19,violat:8,virtual:596,vishwak:9,vishwakftw:9,visibl:[11,13,18,354,355,363,364,412],vision:[8,566],visual:[2,23,293,294,295,296,297,298,310,347,348,349,403,591,595,599,610],vitali:9,vitalyfedyunin:9,vjp:2,vmap:[2,23],vogel:17,vol:[190,315],volumetr:[285,391,404,580],von:19,von_mis:19,vs2017:595,vs2017_runtim:595,vscode:23,vstack:[489,569,606],vulkan:574,vw_i:359,vychisl:468,w_hf:330,w_hg:330,w_hh:569,w_hi:330,w_hn:313,w_ho:330,w_hr:313,w_hz:313,w_if:330,w_ig:330,w_ih:569,w_ii:330,w_in:313,w_io:330,w_ir:313,w_iz:313,w_j:386,w_n:[281,282],w_y:585,w_z:585,wai:[2,4,6,7,8,11,16,18,19,21,23,281,308,323,324,325,330,353,397,399,412,568,570,576,577,578,580,583,585,588,589,591,592,595,597,600,603,604,606,609,611,620],wait:[2,13,18,22,193,412,569,576,585,586,587,597,599,603],wait_al:22,wait_ev:13,wait_stream:[13,18,586],walk:[12,23,588,604,605,609],walkthrough:582,wall:4,walltim:610,wang:9,want:[1,2,7,11,13,16,18,19,23,155,200,201,202,311,404,412,413,491,535,566,580,582,583,585,586,588,591,596,597,600,606,611,617,620],warm:[17,597,599],warm_start:17,warmup:[2,4,599],warn:[2,11,193,201,584,588,596,602],warrant:4,wasn:[216,568],wast:7,weaker:19,weakli:[171,172],web:468,weigend:315,weight:[16,19,23,67,192,194,199,202,211,257,281,282,286,293,294,295,296,297,298,301,307,308,309,313,314,316,330,331,332,339,341,353,357,358,359,360,361,368,370,381,395,402,408,412,427,429,430,431,432,433,434,435,436,442,444,566,569,570,574,578,580,581,583,588,589,591,594,596,600,601,610,611,614,616,617,618,620],weight_decai:[591,597],weight_fake_qu:[614,616],weight_g:[444,569],weight_hh:[314,331,370],weight_hh_l:[313,330,368],weight_hr_l:330,weight_ih:[314,331,370],weight_ih_l:[313,330,368],weight_mask:[430,433],weight_norm:[436,596],weight_onli:600,weight_orig:430,weight_scal:569,weight_siz:569,weight_stride0:569,weight_u:442,weight_v:444,weight_zero_point:569,weighted_kernel_sum:202,weightedrandomsampl:16,welcom:7,well:[2,4,7,11,17,18,23,192,194,198,201,283,284,285,309,326,330,353,391,402,412,464,568,573,577,578,580,582,583,588,591,592,593,596,603,605,606,609,610,612,620],went:23,were:[1,2,3,4,13,18,22,23,197,216,415,423,440,494,532,538,570,580,582,588,594,596,611],weren:2,what:[1,2,4,6,7,8,18,19,23,201,202,235,293,294,295,296,297,298,310,348,349,403,418,419,420,421,422,423,424,425,566,568,570,577,588,591,596,597,599,600,603,604],what_is_state_dict:591,whatev:[23,412,535,543,611],wheel:595,when:[1,2,4,5,6,7,8,11,13,16,17,18,19,22,23,43,67,82,85,93,96,99,108,120,138,142,147,183,184,185,186,189,192,193,199,200,201,202,206,207,216,217,225,230,233,240,243,247,257,262,273,278,279,280,281,282,283,284,285,288,293,294,295,296,297,298,299,301,302,307,308,309,310,316,321,323,324,325,326,327,328,329,330,332,345,346,347,348,349,353,356,357,358,359,360,361,367,383,384,385,386,388,391,400,402,403,404,405,406,408,412,413,418,419,420,421,422,423,424,425,440,442,445,446,447,448,456,461,464,465,484,510,511,518,522,526,530,531,535,537,545,547,551,554,562,566,568,570,573,574,576,577,578,580,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,608,609,610,611,617,620],whenev:[8,307,576,580,604,605,619],where:[1,2,3,4,5,7,8,10,11,12,13,16,17,18,19,21,23,37,39,40,42,65,72,78,85,87,102,103,108,109,120,126,154,163,164,165,166,171,172,177,183,184,185,186,189,190,205,206,207,210,216,217,222,225,232,234,235,236,240,243,244,246,247,248,249,252,257,260,262,264,266,273,278,279,280,281,282,283,284,285,286,287,288,290,291,292,293,294,295,296,297,298,300,301,306,307,308,310,312,313,314,315,316,317,318,319,320,321,323,324,325,326,327,328,329,330,331,339,340,341,342,343,344,345,346,347,348,349,350,351,352,356,357,358,359,360,361,362,365,366,367,368,370,371,372,373,374,375,376,377,378,379,381,382,383,384,385,387,388,389,390,391,392,393,394,395,400,401,403,404,405,406,407,412,414,438,439,440,441,446,457,462,464,465,482,483,511,512,513,514,520,521,522,525,526,530,539,543,544,545,546,547,551,552,556,557,559,560,568,569,571,573,575,576,580,581,582,583,584,586,588,589,591,593,596,597,598,600,603,605,606,608,610,611,617,619,620],wherea:526,wherev:[8,577],whether:[1,2,3,7,8,11,13,16,18,19,23,37,39,40,42,51,52,65,72,85,86,87,93,94,164,165,190,192,207,232,235,243,244,246,247,249,252,257,262,263,264,288,299,309,321,326,353,362,367,401,402,412,429,447,462,465,498,499,520,521,522,525,526,530,539,543,551,552,554,556,557,566,573,575,580,582,586,588,596,597,598,603,606,607,609,610,611],which:[1,2,4,5,6,7,8,10,11,12,13,16,17,19,21,22,23,24,25,29,54,60,67,78,81,84,88,99,100,109,110,111,112,120,121,138,139,140,141,142,152,155,174,177,180,190,193,198,199,201,216,222,239,243,247,248,252,257,262,265,271,272,273,275,276,277,279,280,283,284,285,288,294,295,297,298,302,308,313,323,324,325,326,328,329,330,332,344,348,349,350,351,352,356,358,383,385,387,391,400,401,408,412,418,419,420,421,422,423,424,425,426,427,428,430,431,432,433,434,444,447,456,457,465,466,477,481,483,484,486,502,510,515,518,526,536,542,544,545,546,547,551,553,554,566,568,570,572,573,574,575,576,578,580,582,583,584,585,586,587,588,589,590,591,593,595,596,597,598,599,600,602,603,604,605,606,607,608,610,611,613,616,617,618,619,620,621],whichev:580,whilst:[19,586],whitespac:[121,571],who:[7,10,583],whole:[16,18,190,192,309,353,391,402,583,592],whose:[17,18,19,23,84,97,110,121,126,154,163,192,202,210,215,231,234,266,309,353,402,412,448,459,504,538,583,588,596,606,610,611],why:[4,7,23,121,194,596],wide:[585,591],wider:[142,597],width:[19,167,279,280,294,295,297,298,329,348,349,360,386,404,578,580,596,617,620],wikipedia:[580,583],wildcard:578,willing:8,win:522,win_length:[190,522,569,611],window:[11,16,18,23,65,72,164,165,190,205,278,279,280,311,328,329,347,348,349,350,351,352,522,567,569,580,611],window_length:[65,72,164,165,205,569],wip:7,wire:603,wirting:[2,10],wise:[18,19,32,33,41,59,96,121,126,145,146,147,153,154,163,168,208,210,226,227,228,229,234,245,250,260,266,287,298,306,317,318,319,320,340,343,361,371,372,373,379,381,382,383,388,390,392,393,481,561,573,580,585,606,609,617],wish:[1,582,588],wit:568,with_activ:23,with_arg:[601,620],with_cuda:[11,595],with_flop:[2,599],with_pytorch_error_handl:11,with_replac:[93,569],with_stack:[2,599],within:[2,6,8,13,16,18,19,23,24,194,238,278,279,280,288,304,305,310,347,348,349,353,391,403,412,418,419,420,421,422,423,424,425,426,428,430,431,432,433,434,494,553,568,570,580,585,586,588,590,591,596,597,600,602,603,604,610],without:[1,2,4,6,7,8,13,16,17,18,19,21,23,91,155,190,257,283,284,285,308,323,324,325,332,361,391,408,412,428,468,484,550,566,570,574,576,578,580,582,583,584,586,588,591,592,593,594,596,597,598,600,602,603,610,611,621],without_activ:23,won:[1,6,17,192,199,309,353,402,410,411,412,566,580,582,583,588,596,603,612],woodburi:19,word:[1,2,18,23,78,273,293,294,295,307,308,395,412,494,570,580,583,589,604],word_language_model:[395,596],work:[1,2,3,4,6,7,8,10,11,12,13,18,19,21,23,122,124,139,140,141,199,200,217,302,369,385,412,476,500,526,535,566,568,571,576,577,578,580,583,585,586,587,588,591,592,594,595,596,597,598,600,601,603,604,611,612,619,620],workaround:[593,600],worker0:603,worker1:[22,412,603,604],worker2:603,worker:[7,11,16,17,18,412,593,599,603,604,605],worker_id:[16,593],worker_info:16,worker_init_fn:[16,589,593],worker_nam:[599,603],worker_se:593,workerinfo:603,workflow:[12,566,588,600],workground:595,workload:[4,16,18,590,603],workspac:[11,596],world:[18,391,412,583,600],world_siz:[16,18,412,587,603,604],worri:603,wors:554,worst:588,worth:[16,566,609],would:[2,3,4,6,8,10,11,16,18,19,21,23,41,84,122,124,177,195,197,201,202,248,260,278,279,280,281,282,313,330,347,348,349,368,408,412,413,437,445,476,485,494,535,536,541,568,570,577,578,580,582,583,584,585,586,587,588,594,596,598,600,603,604,605,606,611],wouldn:605,wrap:[1,2,12,16,23,192,201,302,309,353,391,402,411,412,440,568,569,582,587,588,595,597,598,600,601,603,604,611,619,620],wrap_torch_funct:619,wrapper:[13,18,19,22,23,25,145,146,192,302,412,568,570,576,598,601,617,620],write:[7,8,18,54,76,124,176,198,491,570,573,578,580,586,589,591,597,606,610,611],writeabl:96,writer:610,written:[2,18,302,568,570,574,583,587,588,591,594,596,597,607,610],wrong:[18,23,412,587,592,595,596,597],wrote:7,www:[288,401,597,610],x86:[498,600],x86_x64:595,x_0:617,x_1:[102,103,104,105,286,299,300,580],x_2:[102,103,104,105,286,299,300,580],x_3:[102,103,104,105],x_center:21,x_centered_2:21,x_clone:576,x_cpu:586,x_cpu_long:586,x_gpu:586,x_i:[19,89,102,103,104,105,220,344,362,383,385,387,400,461,580,606],x_j:[344,385,387,580,606],x_k:606,x_n:[281,282,321,326,327,345,583],x_out:620,x_t:[283,284,285,313,323,324,325,330,368,391],x_uncent:21,xavier_normal_:581,xavier_uniform_:581,xcosx:610,xdg_cache_hom:566,xeon:585,xiaoqiang:9,xing:468,xla:567,xlogi:[569,611],xlogy_:[569,611],xnnpack:574,xor:[71,229],xpu:[192,309,353,402,572],xsinx:610,xuhdev:9,y_cpu:586,y_cpu_long:586,y_gpu:586,y_hard:580,y_i:[19,89,102,103,104,105,220,383,400],y_n:[281,282,321,326,327,345,360,583],y_soft:580,yang:[8,9,217],year:603,yes:[7,606],yet:[13,23,85,171,172,193,195,203,252,412,418,422,424,567,570,578,603,605,608],yf225:9,yield:[16,17,23,110,112,192,230,309,353,402,562,571,598,600],yinghai:9,you:[1,2,4,5,6,7,8,10,11,12,13,15,16,18,19,23,54,76,121,124,155,192,194,195,200,201,202,203,216,288,293,294,295,296,297,298,301,330,350,351,352,353,358,359,360,368,386,395,397,399,404,412,438,445,464,484,491,535,566,568,570,572,573,574,576,577,580,582,583,584,586,588,589,590,591,592,593,594,595,596,597,598,600,602,603,604,605,606,608,609,610,611,612,617,619,620],your:[1,2,5,7,10,11,12,13,16,18,19,23,192,195,200,201,202,203,353,360,412,494,498,551,568,570,576,577,578,582,583,584,586,588,589,590,593,595,596,597,600,602,604,606,610,611,612,619,620],your_training_script:18,yourself:[591,592,619],z_i:19,z_n:583,z_t:313,zach:9,zdevito:9,zero:[1,2,13,18,19,21,23,36,41,61,62,63,66,67,85,87,92,100,108,116,134,135,136,138,144,147,166,167,171,172,177,180,190,192,217,225,226,227,228,229,235,236,257,261,264,277,278,279,280,288,293,294,295,296,297,298,300,303,304,305,307,308,309,310,313,314,316,328,329,330,331,332,333,334,335,336,337,338,347,348,349,350,351,352,353,359,362,365,366,367,368,370,389,395,402,403,404,407,421,422,423,424,439,446,450,457,464,466,467,481,507,511,512,514,518,526,530,535,536,538,543,563,565,568,569,572,573,576,577,578,580,581,583,586,588,591,595,596,597,599,600,601,603,606,608,610,611,612,614,615,616,617,618,620],zero_:[2,569,577,578,580,606,611],zero_grad:[1,2,192,309,353,402,412,582,589,591,592,597],zero_infin:[288,569,580],zero_point:[135,136,466,467,569,600,601,611,617,620],zero_point_hh:569,zero_point_ih:569,zeros_:581,zeros_lik:[23,569,572,586,596,606],zeroth:[170,205],zhang:9,zhangguanheng66:9,zheng:9,zip:[16,566,569,570,575,590,596,606],zipf:273,zipfil:491},titles:["torch.__config__","Automatic Mixed Precision package - torch.cuda.amp","Automatic differentiation package - torch.autograd","torch.backends","Benchmark Utils - torch.utils.benchmark","torch.utils.bottleneck","torch.utils.checkpoint","PyTorch Contribution Guide","PyTorch Governance","PyTorch Governance | Persons of Interest","Complex Numbers","torch.utils.cpp_extension","C++","torch.cuda","<no title>","<no title>","torch.utils.data","DDP Communication Hooks","Distributed communication package - torch.distributed","Probability distributions - torch.distributions","torch.utils.dlpack","torch.fft","torch.futures","torch.fx","Generator","torch._assert","torch.abs","torch.absolute","torch.acos","torch.acosh","torch.add","torch.addbmm","torch.addcdiv","torch.addcmul","torch.addmm","torch.addmv","torch.addr","torch.all","torch.allclose","torch.amax","torch.amin","torch.angle","torch.any","torch.arange","torch.arccos","torch.arccosh","torch.arcsin","torch.arcsinh","torch.arctan","torch.arctanh","torch.are_deterministic_algorithms_enabled","torch.argmax","torch.argmin","torch.argsort","torch.as_strided","torch.as_tensor","torch.asin","torch.asinh","torch.atan","torch.atan2","torch.atanh","torch.atleast_1d","torch.atleast_2d","torch.atleast_3d","torch.baddbmm","torch.bartlett_window","torch.bernoulli","torch.bincount","torch.bitwise_and","torch.bitwise_not","torch.bitwise_or","torch.bitwise_xor","torch.blackman_window","torch.block_diag","torch.bmm","torch.broadcast_shapes","torch.broadcast_tensors","torch.broadcast_to","torch.bucketize","torch.can_cast","torch.cartesian_prod","torch.cat","torch.cdist","torch.ceil","torch.chain_matmul","torch.cholesky","torch.cholesky_inverse","torch.cholesky_solve","torch.chunk","torch.clamp","torch.clip","torch.clone","torch.column_stack","torch.combinations","torch.compiled_with_cxx11_abi","torch.complex","torch.conj","torch.copysign","torch.cos","torch.cosh","torch.count_nonzero","torch.cross","torch.cummax","torch.cummin","torch.cumprod","torch.cumsum","torch.deg2rad","torch.dequantize","torch.det","torch.diag","torch.diag_embed","torch.diagflat","torch.diagonal","torch.diff","torch.digamma","torch.dist","torch.div","torch.divide","torch.dot","torch.dstack","torch.eig","torch.einsum","torch.empty","torch.empty_like","torch.empty_strided","enable_grad","torch.eq","torch.equal","torch.erf","torch.erfc","torch.erfinv","torch.exp","torch.exp2","torch.expm1","torch.eye","torch.fake_quantize_per_channel_affine","torch.fake_quantize_per_tensor_affine","torch.fix","torch.flatten","torch.flip","torch.fliplr","torch.flipud","torch.float_power","torch.floor","torch.floor_divide","torch.fmax","torch.fmin","torch.fmod","torch.frac","torch.from_numpy","torch.full","torch.full_like","torch.gather","torch.gcd","torch.ge","torch.geqrf","torch.ger","torch.get_default_dtype","torch.get_num_interop_threads","torch.get_num_threads","torch.get_rng_state","torch.greater","torch.greater_equal","torch.gt","torch.hamming_window","torch.hann_window","torch.heaviside","torch.histc","torch.hstack","torch.hypot","torch.i0","torch.igamma","torch.igammac","torch.imag","torch.index_select","torch.initial_seed","torch.inner","torch.inverse","torch.is_complex","torch.is_floating_point","torch.is_nonzero","torch.is_storage","torch.is_tensor","torch.isclose","torch.isfinite","torch.isinf","torch.isnan","torch.isneginf","torch.isposinf","torch.isreal","torch.istft","ScriptFunction","ScriptModule","torch.jit.fork","torch.jit.freeze","torch.jit.ignore","torch.jit.isinstance","torch.jit.load","torch.jit.save","torch.jit.script","torch.jit.script_if_tracing","torch.jit.trace","torch.jit.trace_module","torch.jit.unused","torch.jit.wait","torch.kaiser_window","torch.kron","torch.kthvalue","torch.lcm","torch.ldexp","torch.le","torch.lerp","torch.less","torch.less_equal","torch.lgamma","torch.linspace","torch.load","torch.lobpcg","torch.log","torch.log10","torch.log1p","torch.log2","torch.logaddexp","torch.logaddexp2","torch.logcumsumexp","torch.logdet","torch.logical_and","torch.logical_not","torch.logical_or","torch.logical_xor","torch.logit","torch.logspace","torch.logsumexp","torch.lstsq","torch.lt","torch.lu","torch.lu_solve","torch.lu_unpack","torch.manual_seed","torch.masked_select","torch.matmul","torch.matrix_exp","torch.matrix_power","torch.matrix_rank","torch.max","torch.maximum","torch.mean","torch.median","torch.meshgrid","torch.min","torch.minimum","torch.mm","torch.mode","torch.moveaxis","torch.movedim","torch.msort","torch.mul","torch.multinomial","torch.multiply","torch.mv","torch.mvlgamma","torch.nan_to_num","torch.nanmedian","torch.nanquantile","torch.nansum","torch.narrow","torch.ne","torch.neg","torch.negative","torch.nextafter","AdaptiveAvgPool1d","AdaptiveAvgPool2d","AdaptiveAvgPool3d","AdaptiveLogSoftmaxWithLoss","AdaptiveMaxPool1d","AdaptiveMaxPool2d","AdaptiveMaxPool3d","AlphaDropout","AvgPool1d","AvgPool2d","AvgPool3d","BCELoss","BCEWithLogitsLoss","BatchNorm1d","BatchNorm2d","BatchNorm3d","Bilinear","CELU","CTCLoss","ChannelShuffle","ConstantPad1d","ConstantPad2d","ConstantPad3d","Conv1d","Conv2d","Conv3d","ConvTranspose1d","ConvTranspose2d","ConvTranspose3d","CosineEmbeddingLoss","CosineSimilarity","CrossEntropyLoss","DataParallel","Dropout","Dropout2d","Dropout3d","ELU","Embedding","EmbeddingBag","Flatten","Fold","FractionalMaxPool2d","GELU","GRU","GRUCell","GaussianNLLLoss","GroupNorm","Hardshrink","Hardsigmoid","Hardswish","Hardtanh","HingeEmbeddingLoss","Identity","InstanceNorm1d","InstanceNorm2d","InstanceNorm3d","KLDivLoss","L1Loss","LPPool1d","LPPool2d","LSTM","LSTMCell","LayerNorm","LazyConv1d","LazyConv2d","LazyConv3d","LazyConvTranspose1d","LazyConvTranspose2d","LazyConvTranspose3d","LazyLinear","LeakyReLU","Linear","LocalResponseNorm","LogSigmoid","LogSoftmax","MSELoss","MarginRankingLoss","MaxPool1d","MaxPool2d","MaxPool3d","MaxUnpool1d","MaxUnpool2d","MaxUnpool3d","Module","ModuleDict","ModuleList","MultiLabelMarginLoss","MultiLabelSoftMarginLoss","MultiMarginLoss","MultiheadAttention","NLLLoss","PReLU","PairwiseDistance","ParameterDict","ParameterList","PixelShuffle","PixelUnshuffle","PoissonNLLLoss","RNN","RNNBase","RNNCell","RReLU","ReLU","ReLU6","ReflectionPad1d","ReflectionPad2d","ReplicationPad1d","ReplicationPad2d","ReplicationPad3d","SELU","Sequential","SiLU","Sigmoid","SmoothL1Loss","SoftMarginLoss","Softmax","Softmax2d","Softmin","Softplus","Softshrink","Softsign","SyncBatchNorm","Tanh","Tanhshrink","Threshold","Transformer","TransformerDecoder","TransformerDecoderLayer","TransformerEncoder","TransformerEncoderLayer","TripletMarginLoss","TripletMarginWithDistanceLoss","Unflatten","Unfold","Upsample","UpsamplingBilinear2d","UpsamplingNearest2d","ZeroPad2d","LazyModuleMixin","torch.nn.modules.module.register_module_backward_hook","torch.nn.modules.module.register_module_forward_hook","torch.nn.modules.module.register_module_forward_pre_hook","DistributedDataParallel","Parameter","UninitializedParameter","torch.nn.utils.clip_grad_norm_","torch.nn.utils.clip_grad_value_","torch.nn.utils.parameters_to_vector","BasePruningMethod","CustomFromMask","Identity","L1Unstructured","LnStructured","PruningContainer","RandomStructured","RandomUnstructured","torch.nn.utils.prune.custom_from_mask","torch.nn.utils.prune.global_unstructured","torch.nn.utils.prune.identity","torch.nn.utils.prune.is_pruned","torch.nn.utils.prune.l1_unstructured","torch.nn.utils.prune.ln_structured","torch.nn.utils.prune.random_structured","torch.nn.utils.prune.random_unstructured","torch.nn.utils.prune.remove","torch.nn.utils.remove_spectral_norm","torch.nn.utils.remove_weight_norm","PackedSequence","torch.nn.utils.rnn.pack_padded_sequence","torch.nn.utils.rnn.pack_sequence","torch.nn.utils.rnn.pad_packed_sequence","torch.nn.utils.rnn.pad_sequence","torch.nn.utils.spectral_norm","torch.nn.utils.vector_to_parameters","torch.nn.utils.weight_norm","no_grad","torch.nonzero","torch.norm","torch.normal","torch.not_equal","torch.numel","torch.ones","torch.ones_like","torch.orgqr","torch.ormqr","torch.outer","torch.pca_lowrank","torch.pinverse","torch.poisson","torch.polar","torch.polygamma","torch.pow","torch.prod","torch.promote_types","torch.qr","torch.quantile","torch.quantize_per_channel","torch.quantize_per_tensor","SobolEngine","torch.rad2deg","torch.rand","torch.rand_like","torch.randint","torch.randint_like","torch.randn","torch.randn_like","torch.randperm","torch.range","torch.ravel","torch.real","torch.reciprocal","torch.remainder","torch.renorm","torch.repeat_interleave","torch.reshape","torch.result_type","torch.roll","torch.rot90","torch.round","torch.row_stack","torch.rsqrt","torch.save","torch.scatter","torch.scatter_add","torch.searchsorted","torch.seed","torch.set_default_dtype","torch.set_default_tensor_type","torch.set_flush_denormal","set_grad_enabled","torch.set_num_interop_threads","torch.set_num_threads","torch.set_printoptions","torch.set_rng_state","torch.sgn","torch.sigmoid","torch.sign","torch.signbit","torch.sin","torch.sinc","torch.sinh","torch.slogdet","torch.solve","torch.sort","torch.sparse_coo_tensor","torch.split","torch.sqrt","torch.square","torch.squeeze","torch.stack","torch.std","torch.std_mean","torch.stft","torch.sub","torch.subtract","torch.sum","torch.svd","torch.svd_lowrank","torch.swapaxes","torch.swapdims","torch.symeig","torch.t","torch.take","torch.tan","torch.tanh","torch.tensor","torch.tensor_split","torch.tensordot","torch.tile","torch.topk","torch.trace","torch.transpose","torch.trapz","torch.triangular_solve","torch.tril","torch.tril_indices","torch.triu","torch.triu_indices","torch.true_divide","torch.trunc","torch.unbind","torch.unique","torch.unique_consecutive","torch.unsqueeze","torch.use_deterministic_algorithms","torch.vander","torch.var","torch.var_mean","torch.vdot","torch.view_as_complex","torch.view_as_real","torch.vstack","torch.where","torch.xlogy","torch.zeros","torch.zeros_like","torch.hub","PyTorch documentation","TorchScript","TorchScript Builtins","TorchScript Language Reference","Python Language Reference Coverage","TorchScript Unsupported Pytorch Constructs","torch.linalg","torch.utils.mobile_optimizer","torch.utils.model_zoo","Multiprocessing package - torch.multiprocessing","Named Tensors operator coverage","Named Tensors","torch.nn","torch.nn.functional","torch.nn.init","Automatic Mixed Precision examples","Autograd mechanics","Broadcasting semantics","CPU threading and TorchScript inference","CUDA semantics","Distributed Data Parallel","Extending PyTorch","Frequently Asked Questions","Features for large-scale deployments","Modules","Multiprocessing best practices","Reproducibility","Serialization semantics","Windows FAQ","torch.onnx","torch.optim","Pipeline Parallelism","torch.profiler","Quantization","Quantization Operation coverage","torch.random","Distributed RPC Framework","Distributed Autograd Design","Remote Reference Protocol","torch.sparse","torch.Storage","Tensor Attributes","Tensor Views","torch.utils.tensorboard","torch.Tensor","torch","torch.nn.intrinsic","torch.nn.intrinsic.qat","torch.nn.intrinsic.quantized","torch.nn.qat","torch.nn.quantized","torch.nn.quantized.dynamic","torch.overrides","torch.quantization","Type Info"],titleterms:{"break":570,"case":[7,568],"class":[23,568,570,572,600],"default":[2,16,17,570],"enum":570,"export":596,"float":594,"function":[2,8,18,19,21,23,568,569,570,572,573,577,579,580,582,583,596,600,601,606,617,619,620],"import":[566,595],"new":7,"return":[570,589,605],"static":[23,600],"var":556,"while":570,Adding:[7,588,596],For:570,Not:572,One:595,Ops:[1,572,612],The:[7,23],Use:[17,23,570,586,596],Using:596,With:[23,572],__config__:0,__torch_function__:588,_assert:25,about:[7,583],abs:[10,26],absolut:27,access:[10,570],accumul:582,acknowledg:[17,598],aco:28,acosh:29,across:594,activ:[579,580],adaptive_avg_pool1d:580,adaptive_avg_pool2d:580,adaptive_avg_pool3d:580,adaptive_max_pool1d:580,adaptive_max_pool2d:580,adaptive_max_pool3d:580,adaptiveavgpool1d:270,adaptiveavgpool2d:271,adaptiveavgpool3d:272,adaptivelogsoftmaxwithloss:273,adaptivemaxpool1d:274,adaptivemaxpool2d:275,adaptivemaxpool3d:276,add:30,addbmm:31,addcdiv:32,addcmul:33,addmm:34,addmv:35,addr:36,adjust:597,advanc:591,affine_grid:580,agnost:586,alexnet:596,algebra:[10,606],algorithm:[593,597,604],align:578,all:[37,597],allclos:38,alloc:589,alpha_dropout:580,alphadropout:277,alwai:594,amax:39,amd:9,amin:40,amp:1,amper:586,angl:[10,41],ani:42,anomali:2,api:[2,9,12,23,568,578,585,588,590,598,599,600,620],appendix:568,arang:43,arcco:44,arccosh:45,arcsin:46,arcsinh:47,arctan:48,arctanh:49,are_deterministic_algorithms_en:50,argmax:51,argmin:52,argsort:53,argument:[596,605],arithmet:570,as_strid:54,as_tensor:55,asin:56,asinh:57,ask:[7,568,589,596],assign:570,assumpt:605,asynchron:[18,586,592],atan2:59,atan:58,atanh:60,aten:596,atleast_1d:61,atleast_2d:62,atleast_3d:63,attach:590,attribut:[568,570,572,608],author:12,autocast:[1,582],autograd:[2,9,10,12,18,578,582,583,588,603,604],automat:[1,2,16,568,582],avail:23,averag:597,avg_pool1d:580,avg_pool2d:580,avg_pool3d:580,avgpool1d:278,avgpool2d:279,avgpool3d:280,avoid:[7,592,593],awai:577,awar:600,backend:[3,18,603],background:[604,605],backward:[583,584,586,604],baddbmm:64,bartlett_window:65,basepruningmethod:418,basic:[18,578,603],batch:[16,597],batch_norm:580,batchnorm1d:283,batchnorm2d:[284,617],batchnorm3d:[285,617],bceloss:281,bcewithlogitsloss:282,behavior:[1,16],benchmark:[4,9,593],bernoulli:[19,66],best:[586,592,600],beta:19,between:572,bilinear:[286,580],binary_cross_entropi:[1,580],binary_cross_entropy_with_logit:[1,580],bincount:67,binomi:19,bitwise_and:68,bitwise_not:69,bitwise_or:70,bitwise_xor:71,bla:612,blackman_window:72,block:591,block_diag:73,bmm:74,bottleneck:5,bound:572,broadcast:584,broadcast_shap:75,broadcast_tensor:76,broadcast_to:77,broken:595,bucket:78,buffer:[586,592],bug:7,build:[7,9,585,590,591,595],built:[568,569],builtin:569,c10:9,cach:[566,586],calculu:583,call:570,can:[1,583,589],can_cast:79,care:597,cartesian_prod:80,cast:570,cat:81,categor:19,cauchi:19,cdist:82,ceil:83,celu:[287,580],cffi:595,chain_matmul:84,chang:8,channel:595,channelshuffl:289,check:[2,23,568,583],checkpoint:6,chi2:19,choleski:85,cholesky_invers:86,cholesky_solv:87,choos:18,chunk:88,clamp:89,claus:595,clip:[90,582],clip_grad_norm_:415,clip_grad_value_:416,clone:91,closur:597,code:[7,23,568,586],codebas:7,collate_fn:16,collect:[13,18],column_stack:92,combin:93,come:[18,583],common:[7,18,590,600],commun:[13,17,18],comparison:[568,570,612],compat:584,compiled_with_cxx11_abi:94,complex:[10,95,583],compon:595,comput:[2,583,604,612],concurr:583,conj:96,conjug:583,connect:598,consider:590,constant:[568,570],constantpad1d:290,constantpad2d:291,constantpad3d:292,constraint:19,construct:[570,572,597,606],contain:579,content:594,context:[2,604],continu:570,continuousbernoulli:19,contract:577,contribut:7,control:[23,593],controversi:8,conv1d:[293,580,617],conv2d:[294,580,616,617],conv3d:[295,580,617],conv_transpose1d:580,conv_transpose2d:580,conv_transpose3d:580,convbn1d:613,convbn2d:[613,614],convbnrelu1d:613,convbnrelu2d:[613,614],convolut:[579,580,593],convrelu1d:613,convrelu2d:[613,614,615],convrelu3d:615,convtranspose1d:296,convtranspose2d:297,convtranspose3d:298,coo:606,copysign:97,core:8,correct:[2,23,583],correctli:572,cos:98,cosh:99,cosine_embedding_loss:580,cosine_similar:580,cosineembeddingloss:299,cosinesimilar:300,count_nonzero:100,coverag:[571,577,588,600,601],cpp:595,cpp_extens:11,cpu:[9,583,585],creat:[10,568,578],creation:612,cross:[101,583],cross_entropi:580,crossentropyloss:301,ctc_loss:580,ctcloss:288,cuda:[1,3,9,13,576,586,589,592,593,595],cudnn:3,cufft:586,cummax:102,cummin:103,cumprod:104,cumsum:105,current:578,custom:[23,582,588,591,596,597,600],custom_from_mask:426,customfrommask:419,data:[16,587,589,596],data_parallel:580,dataload:[9,593],dataparallel:[302,579,580,582,586],dataset:16,ddp:17,deadlock:592,debug:[23,568,620],debugg:23,decis:8,defin:[570,588],deg2rad:106,depend:604,deploy:590,deprec:2,dequant:[107,617],deriv:[19,583],descriptor:576,design:[587,603,604,605],det:108,detect:2,determin:[583,593],develop:[7,8],devic:[586,608],diag:109,diag_emb:110,diagflat:111,diagon:112,dict:570,dictionari:596,diff:113,differenti:2,digamma:114,dim:577,dimens:[577,578],direct:23,dirichlet:19,disabl:[2,16,568,612],discuss:7,dispatch:9,dist:115,distanc:[579,580],distribut:[9,18,19,579,580,587,603,604],distributeddataparallel:[412,582,586,587],div:[116,594],diverg:[19,572],divid:117,divis:594,dlpack:20,doc:7,document:[7,567],doe:583,doesn:589,domain:583,dot:118,down:595,download:566,driver:595,dropout2d:[304,580],dropout3d:[305,580],dropout:[303,579,580],dstack:119,dtype:[582,594,601,608],dure:604,dynam:[23,600,601,618],eager:600,edg:568,eig:120,einsum:121,elig:1,elu:[306,580,617],embed:[307,580,617],embedding_bag:580,embeddingbag:[308,617],empti:122,empty_lik:123,empty_strid:124,enabl:18,enable_grad:125,encod:583,end:[596,604],engin:9,entrypoint:566,environ:[18,590],equal:127,erf:128,erfc:129,erfinv:130,error:[589,595,600],event:13,exampl:[23,582,587,596,604],except:589,exclud:583,execut:[586,598],exp2:132,exp:131,explicit:578,expm1:133,exponenti:19,exponentialfamili:19,express:570,extend:[12,588],extens:[12,13,588,590,595],extern:596,eye:134,factori:577,fake_quantize_per_channel_affin:135,fake_quantize_per_tensor_affin:136,faq:[8,595],fast:[21,604],featur:[7,590,591],feature_alpha_dropout:580,fft:21,fight:592,file:[18,576],file_descriptor:576,file_system:576,finfo:621,fishersnedecor:19,fix:[7,137],flatten:[138,309],fleet:590,flip:139,fliplr:140,flipud:141,float16:1,float32:1,float_pow:142,floatfunct:617,floor:143,floor_divid:144,flow:23,fmax:145,fmin:146,fmod:147,fold:[310,580],fork:193,format:596,formula:583,forward:604,found:595,fourier:21,frac:148,fractionalmaxpool2d:311,framework:603,freed:589,freez:194,frequent:[7,568,589,596],from:[10,23,566,577,583,595,596],from_numpi:149,full:[150,594],full_lik:151,futur:22,gamma:19,gather:152,gaussiannllloss:315,gcd:153,gelu:[312,580],gener:[9,13,23,24,584,593,612],geometr:19,geqrf:155,ger:156,get:7,get_default_dtyp:157,get_num_interop_thread:158,get_num_thread:159,get_rng_stat:160,getter:596,global_unstructur:427,glu:580,govern:[8,9],gpu:[18,579,580,582,589,598],gradient:[1,2,582,612],graph:[23,568,583,600],graphmodul:23,greater:161,greater_equ:162,grid_sampl:580,group:[18,603],groupnorm:[316,617],gru:313,grucel:[314,618],guid:[7,8],gumbel:19,gumbel_softmax:580,halfcauchi:19,halfnorm:19,hamming_window:164,handl:596,handler:589,hann_window:165,hardshrink:[317,580],hardsigmoid:[318,580],hardswish:[319,580,617],hardtanh:[320,580],heavisid:166,helper:21,higher:2,hinge_embedding_loss:580,hingeembeddingloss:321,hip:9,histc:167,histori:583,hogwild:592,hook:[17,583,591],how:[17,566,583,597],hstack:168,hub:566,hybrid:606,hypot:169,ident:[322,420,428,589],igamma:171,igammac:172,ignor:195,iinfo:621,imag:[10,173],implement:[7,566,587,605],improv:7,includ:595,independ:19,index:[596,612],index_select:174,indic:567,infer:[578,585,594],info:621,init:581,initi:[18,579],initial_se:175,inner:176,input:[1,577,582,596],inspect:568,instal:595,instance_norm:580,instancenorm1d:[323,617],instancenorm2d:[324,617],instancenorm3d:[325,617],instead:586,integ:594,interest:9,interfac:[18,617],intern:587,interpol:580,interpret:[23,568],intrins:[601,613,614,615],introduct:[23,600,606],invers:177,ipc:595,is_complex:178,is_floating_point:179,is_nonzero:180,is_prun:429,is_storag:181,is_tensor:182,isclos:183,isfinit:184,isinf:185,isinst:196,isn:589,isnan:186,isneginf:187,isposinf:188,isreal:189,issu:7,istft:190,iter:[16,570],jit:[9,193,194,195,196,197,198,199,200,201,202,203,204,568],join:612,kaiser_window:205,keep:577,kei:[8,18,595],kernel:600,kl_div:580,kldivloss:326,known:566,kron:206,kthvalu:207,kumaraswami:19,l1_loss:580,l1_unstructur:430,l1loss:327,l1unstructur:421,languag:[568,570,571],lapack:612,laplac:19,larg:590,launch:18,layer:579,layer_norm:580,layernorm:[332,617],layout:[2,608],lazi:579,lazyconv1d:333,lazyconv2d:334,lazyconv3d:335,lazyconvtranspose1d:336,lazyconvtranspose2d:337,lazyconvtranspose3d:338,lazylinear:339,lazymodulemixin:408,lcm:208,ldexp:209,leaf:23,leaky_relu:580,leakyrelu:340,learn:597,lerp:211,less:212,less_equ:213,level:[2,9,620],lgamma:214,librari:[9,593],lifetim:605,like:588,limit:[23,566,596],linalg:573,linear:[10,341,579,580,606,616,617,618],linearrelu:[614,615],linspac:215,list:570,liter:570,lkjcholeski:19,ln_structur:431,lnstructur:422,load:[16,197,216,566,594],loader:589,lobpcg:217,local:[2,612],local_response_norm:580,localresponsenorm:342,log10:219,log1p:220,log2:221,log:[218,590],log_softmax:580,logaddexp2:223,logaddexp:222,logcumsumexp:224,logdet:225,logic:[566,570],logical_and:226,logical_not:227,logical_or:228,logical_xor:229,logit:230,logitrelaxedbernoulli:19,lognorm:19,logsigmoid:[343,580],logsoftmax:344,logspac:231,logsumexp:232,lookup:570,loop:570,loss:[579,580,582],lowrankmultivariatenorm:19,lp_pool1d:580,lp_pool2d:580,lppool1d:328,lppool2d:329,lstm:[330,593,618],lstmcell:[331,618],lstsq:233,lu_solv:236,lu_unpack:237,maintain:[8,9],make:[7,8],manag:[13,576,586],manipul:[23,578],manual:2,manual_se:238,map:16,margin_ranking_loss:580,marginrankingloss:346,masked_select:239,match:[570,578],math:[569,612],matmul:240,matrix_exp:241,matrix_pow:242,matrix_rank:243,max:244,max_pool1d:580,max_pool2d:580,max_pool3d:580,max_unpool1d:580,max_unpool2d:580,max_unpool3d:580,maximum:245,maxpool1d:347,maxpool2d:348,maxpool3d:349,maxunpool1d:350,maxunpool2d:351,maxunpool3d:352,mean:246,mechan:583,median:247,memori:[13,16,586,589],memory_format:608,meshgrid:248,metadata:590,method:[2,569,570,572],migrat:568,min:249,minimum:250,miscellanea:23,mistak:7,mix:[1,568,582],mixin:2,mixturesamefamili:19,mkl:3,mkldnn:[3,9],mobile_optim:574,mode:[252,600,604],model:[12,566,582,589,590,596,597,598,600,620],model_zoo:575,moder:8,modul:[9,23,353,409,410,411,568,569,570,572,579,588,591,594,600],moduledict:354,modulelist:[355,570],more:7,moveaxi:253,movedim:254,mse_loss:580,mseloss:345,msort:255,mul:256,multi:[16,18,579,580],multi_margin_loss:580,multiheadattent:359,multilabel_margin_loss:580,multilabel_soft_margin_loss:580,multilabelmarginloss:356,multilabelsoftmarginloss:357,multimarginloss:358,multinomi:[19,257],multipl:[582,588,598],multipli:258,multiprocess:[9,576,586,592,595],multithread:583,multivariatenorm:19,mutat:612,mvlgamma:260,name:[570,577,578,596],nan_to_num:261,nanmedian:262,nanquantil:263,nansum:264,narrow:265,nccl:18,need:582,neg:[267,268],negativebinomi:19,network:[18,589,591],neural:591,nextaft:269,nll_loss:580,nllloss:360,no_grad:445,node:583,non:[16,23,579,580,583,596,600],nondeterminist:593,nonlinear:579,nonzero:446,norm:447,normal:[19,448,579,580,597],not_equ:449,note:603,notic:566,number:[10,13,583,585,589,593],numel:450,numer:2,nvidia:13,nvtx:13,observ:620,old:10,one:582,one_hot:580,onehotcategor:19,ones:451,ones_lik:452,onlin:7,onnx:[9,596],onnx_aten:596,onnx_aten_fallback:596,onnx_fallthrough:596,open:7,openmp:3,oper:[2,9,18,570,577,578,583,588,590,595,596,600,601,606,612],ops:582,optim:[9,582,583,597,603,604],option:[570,585,595,597],order:16,orgqr:453,ormqr:454,other:[18,579,593,606,612],out:[577,589],outer:455,over:[1,570],overrid:[588,619],overview:[7,23,599],own:583,owner:605,pack_padded_sequ:438,pack_sequ:439,packag:[1,2,12,18,576,595],packedsequ:437,pad:[579,580],pad_packed_sequ:440,pad_sequ:441,pairwise_dist:580,pairwisedist:362,parallel:[586,587,589,598,612],paramet:[413,570,597],parameterdict:363,parameterlist:364,parameters_to_vector:417,pareto:19,parti:18,particip:7,particular:582,pass:[586,592,600,604],pathwis:19,pattern:[23,570],pca_lowrank:456,pdb:23,pdist:580,penalti:582,peopl:8,per:[582,597],perform:[9,594],permut:577,person:9,philosophi:8,pictur:583,pin:[16,586],pinvers:457,pipe:[595,598],pipelin:598,pixel_shuffl:580,pixel_unshuffl:580,pixelshuffl:365,pixelunshuffl:366,place:[2,577,583,584,612],plan:586,platform:16,point:[18,590],pointwis:612,poisson:[19,458],poisson_nll_loss:580,poissonnllloss:367,polar:459,polygamma:460,pool:[579,580],pow:461,powerpc:9,powersgd:17,practic:[586,592,600],precis:[1,582],prefer:1,prelu:[361,580],prepar:[600,620],preserv:594,primer:23,primit:18,print:[23,570],probabl:19,process:[7,8,16,582,603],processgroup:587,prod:462,profil:[2,590,599],project:8,promot:[1,7],promote_typ:463,propag:578,properli:589,properti:572,propos:7,protect:595,protocol:605,prototyp:600,provid:600,proxi:23,prune:[426,427,428,429,430,431,432,433,434],pruningcontain:423,publish:566,pull:7,put:597,python:[7,568,569,570,571,572,593],pytorch:[7,8,9,12,18,567,568,569,572,583,588,593,594,596,598],qat:[601,614,616],qfunction:617,quantil:465,quantiz:[579,600,601,615,617,618,620],quantize_per_channel:466,quantize_per_tensor:467,quasi:612,question:[7,568,589,596],queue:592,quick:23,rad2deg:469,rand:470,rand_lik:471,randint:472,randint_lik:473,randn:474,randn_lik:475,random:[13,16,589,593,602,612],random_structur:432,random_unstructur:433,randomstructur:424,randomunstructur:425,randperm:476,rang:[477,570],rate:597,ravel:478,raw:596,readabl:7,real:[10,479],reason:605,reciproc:480,record:604,recurr:[579,589],recurs:568,reduct:612,refer:[1,23,568,570,571,578,599,605],refin:570,reflectionpad1d:374,reflectionpad2d:375,register_module_backward_hook:409,register_module_forward_hook:410,register_module_forward_pre_hook:411,registri:19,relaxedbernoulli:19,relaxedonehotcategor:19,relu6:[373,580,617],relu:[372,580],remaind:481,remot:605,remov:[434,577],remove_spectral_norm:435,remove_weight_norm:436,renorm:482,repeat_interleav:483,replace_pattern:23,replicationpad1d:376,replicationpad2d:377,replicationpad3d:378,report:[7,589],represent:10,reproduc:593,request:7,requires_grad:583,reshap:484,resolut:570,result_typ:485,retain:583,retrac:23,reus:592,review:7,rewrit:23,rng:9,rnn:[368,438,439,440,441,593],rnnbase:369,rnncell:[370,618],robust:7,rocm:9,roll:486,rot90:487,round:488,row_stack:489,rpc:603,rref:[603,605],rrelu:[371,580],rsqrt:490,rule:578,run:566,runtim:[585,589],safeti:583,sampl:612,sampler:16,save:[198,491,566,590,594],scale:[1,582,590],scatter:492,scatter_add:493,scenario:605,schedul:597,schema:572,scheme:601,score:19,script:[199,568,595,596],script_if_trac:200,scriptfunct:191,scriptmodul:[192,594],searchsort:494,seed:495,selu:[379,580],semant:[578,584,586,594],sequenti:380,serial:[10,594,612],set_default_dtyp:496,set_default_tensor_typ:497,set_flush_denorm:498,set_grad_en:499,set_num_interop_thread:500,set_num_thread:501,set_printopt:502,set_rng_stat:503,setter:596,sgn:504,share:[18,576,605],shuffl:579,shut:595,sigmoid:[382,505,580],sign:506,signbit:507,silu:[381,580],simd:9,simpl:[570,591,604],sin:508,sinc:509,singl:[16,582],sinh:510,skip:598,slice:[570,612],slogdet:511,smart:604,smooth_l1_loss:580,smoothl1loss:383,sobolengin:468,soft_margin_loss:580,softmarginloss:384,softmax2d:386,softmax:[385,580],softmin:[387,580],softplu:[388,580],softshrink:[389,580],softsign:[390,580],solv:512,sort:513,sourc:[7,593,595],spars:[579,580,606],sparse_coo_tensor:514,spawn:[18,576],specif:[1,16],spectral:612,spectral_norm:442,speed:595,split:515,sqrt:516,squar:517,squeez:518,stack:519,start:7,state:[17,591],statement:570,std:520,std_mean:521,step:597,stft:522,stochast:597,storag:607,store:18,strategi:[576,597],stream:[13,586],studentt:19,style:16,sub:523,subclass:588,subgraph:[23,583],submit:7,subprocess:576,subscript:570,subsystem:578,subtract:524,sum:[525,579],summari:600,support:[569,577,578,596,606],svd:526,svd_lowrank:527,swa:597,swapax:528,swapdim:529,symbol:23,symeig:530,syncbatchnorm:391,synchron:18,system:[18,576],tabl:[567,594],take:[532,597],tan:533,tanh:[392,534,580],tanhshrink:[393,580],tcp:18,tenet:8,tensor:[2,10,12,535,569,572,576,577,578,588,594,600,601,606,608,609,611,612],tensor_split:536,tensorboard:610,tensordot:537,tensorfloat:586,tensorpip:603,ternari:570,test:[7,588],tf32:586,them:594,third:18,thread:[583,585],threshold:[394,580],through:592,tile:538,tip:592,to_fold:23,togeth:597,tool:13,top:620,topk:539,torch:[0,1,2,3,4,5,6,9,11,13,16,18,19,20,21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,409,410,411,415,416,417,426,427,428,429,430,431,432,433,434,435,436,438,439,440,441,442,443,444,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,572,573,574,575,576,579,580,581,588,594,596,597,599,601,602,606,607,608,610,611,612,613,614,615,616,617,618,619,620,621],torchaudio:9,torchscript:[12,568,569,570,572,585,590],torchserv:9,torchtext:9,torchvis:[9,596],trace:[23,201,540,568,596],trace_modul:202,tracer:[23,568],train:[582,591,592,596,600],transform:[19,21,23,395,579],transformeddistribut:19,transformerdecod:396,transformerdecoderlay:397,transformerencod:398,transformerencoderlay:399,transit:10,transpos:541,trapz:542,triag:7,triangular_solv:543,tril:544,tril_indic:545,triplet_margin_loss:580,triplet_margin_with_distance_loss:580,tripletmarginloss:400,tripletmarginwithdistanceloss:401,triu:546,triu_indic:547,true_divid:548,trunc:549,tune:585,tupl:570,tutori:[7,603],type:[1,16,570,588,596,621],typic:582,unbind:550,uncoalesc:606,uncontroversi:8,unflatten:402,unfold:[403,580],unifi:577,uniform:19,uninitializedparamet:414,uniqu:551,unique_consecut:552,unscal:582,unsqueez:553,unsupport:[570,572],unus:203,upsampl:[404,580],upsample_bilinear:580,upsample_nearest:580,upsamplingbilinear2d:405,upsamplingnearest2d:406,usag:[590,595],use:[18,597],use_deterministic_algorithm:554,useful:583,user:605,using:598,util:[4,5,6,9,11,16,18,20,415,416,417,426,427,428,429,430,431,432,433,434,435,436,438,439,440,441,442,443,444,574,575,579,610,612,620],valu:[18,570,605],vander:555,var_mean:557,variabl:[2,18,568,570],variant:577,vdot:558,vector_to_paramet:443,version:594,view:[594,609],view_as_complex:559,view_as_r:560,vision:[579,580],vonmis:19,vstack:561,wai:596,wait:204,warn:568,weibul:19,weight:[579,597],weight_norm:444,what:583,where:[562,566],which:18,wide:590,widest:1,win:595,window:[9,595],wirting:583,without:595,work:[16,582,589,606],worker:589,wrapper:588,write:[23,583,588,596],xla:9,xlogi:563,zero:564,zeropad2d:407,zeros_lik:565}}) \ No newline at end of file diff --git a/torch/sparse.html b/torch/sparse.html index a9bb20578..54410b627 100644 --- a/torch/sparse.html +++ b/torch/sparse.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + - - @@ -159,7 +189,7 @@
            - master (1.7.0 ) + master (1.8.0 )
            @@ -205,6 +235,7 @@
          • Extending PyTorch
          • Frequently Asked Questions
          • Features for large-scale deployments
          • +
          • Modules
          • Multiprocessing best practices
          • Reproducibility
          • Serialization semantics
          • @@ -231,18 +262,24 @@
          • torch.distributions
          • torch.fft
          • torch.futures
          • +
          • torch.fx
          • torch.hub
          • torch.jit
          • torch.linalg
          • +
          • torch.overrides
          • +
          • torch.profiler
          • torch.nn.init
          • torch.onnx
          • torch.optim
          • Complex Numbers
          • +
          • DDP Communication Hooks
          • +
          • Pipeline Parallelism
          • Quantization
          • Distributed RPC Framework
          • torch.random
          • torch.sparse
          • torch.Storage
          • +
          • torch.utils.benchmark
          • torch.utils.bottleneck
          • torch.utils.checkpoint
          • torch.utils.cpp_extension
          • @@ -258,9 +295,9 @@

          Libraries

            -
          • torchaudio
          • -
          • torchtext
          • -
          • torchvision
          • +
          • torchaudio
          • +
          • torchtext
          • +
          • torchvision
          • TorchElastic
          • TorchServe
          • PyTorch on XLA Devices
          • @@ -345,263 +382,870 @@

            torch.sparse

            +
            +

            Introduction

            +

            PyTorch provides torch.Tensor to represent a +multi-dimensional array containing elements of a single data type. By +default, array elements are stored contiguously in memory leading to +efficient implementations of various array processing algorithms that +relay on the fast access to array elements. However, there exists an +important class of multi-dimensional arrays, so-called sparse arrays, +where the contiguous memory storage of array elements turns out to be +suboptimal. Sparse arrays have a property of having a vast portion of +elements being equal to zero which means that a lot of memory as well +as processor resources can be spared if only the non-zero elements are +stored or/and processed. Various sparse storage formats (such as COO, +CSR/CSC, LIL, etc.) have been developed that are optimized for a +particular structure of non-zero elements in sparse arrays as well as +for specific operations on the arrays.

            +
            +

            Note

            +

            When talking about storing only non-zero elements of a sparse +array, the usage of adjective “non-zero” is not strict: one is +allowed to store also zeros in the sparse array data +structure. Hence, in the following, we use “specified elements” for +those array elements that are actually stored. In addition, the +unspecified elements are typically assumed to have zero value, but +not only, hence we use the term “fill value” to denote such +elements.

            +
            +
            +

            Note

            +

            Using a sparse storage format for storing sparse arrays can be +advantageous only when the size and sparsity levels of arrays are +high. Otherwise, for small-sized or low-sparsity arrays using the +contiguous memory storage format is likely the most efficient +approach.

            +

            Warning

            -

            This API is in beta and may change in the near future.

            +

            The PyTorch API of sparse tensors is in beta and may change in the near future.

            +
            +
            +
            +

            Sparse COO tensors

            +

            Currently, PyTorch implements the so-called Coordinate format, or COO +format, as the default sparse storage format for storing sparse +tensors. In COO format, the specified elements are stored as tuples +of element indices and the corresponding values. In particular,

            +
            +
              +
            • the indices of specified elements are collected in indices +tensor of size (ndim, nse) and with element type +torch.int64,

            • +
            • the corresponding values are collected in values tensor of +size (nse,) and with an arbitrary integer or floating point +number element type,

            • +
            +
            +

            where ndim is the dimensionality of the tensor and nse is the +number of specified elements.

            +
            +

            Note

            +

            The memory consumption of a sparse COO tensor is at least (ndim * +8 + <size of element type in bytes>) * nse bytes (plus a constant +overhead from storing other tensor data).

            +

            The memory consumption of a strided tensor is at least +product(<tensor shape>) * <size of element type in bytes>.

            +

            For example, the memory consumption of a 10 000 x 10 000 tensor +with 100 000 non-zero 32-bit floating point numbers is at least +(2 * 8 + 4) * 100 000 = 2 000 000 bytes when using COO tensor +layout and 10 000 * 10 000 * 4 = 400 000 000 bytes when using +the default strided tensor layout. Notice the 200 fold memory +saving from using the COO storage format.

            -

            Torch supports sparse tensors in COO(rdinate) format, which can -efficiently store and process tensors for which the majority of elements -are zeros.

            -

            A sparse tensor is represented as a pair of dense tensors: a tensor -of values and a 2D tensor of indices. A sparse tensor can be constructed -by providing these two tensors, as well as the size of the sparse tensor -(which cannot be inferred from these tensors!) Suppose we want to define -a sparse tensor with the entry 3 at location (0, 2), entry 4 at -location (1, 0), and entry 5 at location (1, 2). We would then write:

            -
            >>> i = torch.LongTensor([[0, 1, 1],
            -                          [2, 0, 2]])
            ->>> v = torch.FloatTensor([3, 4, 5])
            ->>> torch.sparse.FloatTensor(i, v, torch.Size([2,3])).to_dense()
            - 0  0  3
            - 4  0  5
            -[torch.FloatTensor of size 2x3]
            +
            +

            Construction

            +

            A sparse COO tensor can be constructed by providing the two tensors of +indices and values, as well as the size of the sparse tensor (when it +cannot be inferred from the indices and values tensors) to a function +torch.sparse_coo_tensor().

            +

            Suppose we want to define a sparse tensor with the entry 3 at location +(0, 2), entry 4 at location (1, 0), and entry 5 at location (1, 2). +Unspecified elements are assumed to have the same value, fill value, +which is zero by default. We would then write:

            +
            >>> i = [[0, 1, 1],
            +         [2, 0, 2]]
            +>>> v =  [3, 4, 5]
            +>>> s = torch.sparse_coo_tensor(i, v, (2, 3))
            +>>> s
            +tensor(indices=tensor([[0, 1, 1],
            +                       [2, 0, 2]]),
            +       values=tensor([3, 4, 5]),
            +       size=(2, 3), nnz=3, layout=torch.sparse_coo)
            +>>> s.to_dense()
            +tensor([[0, 0, 3],
            +        [4, 0, 5]])
             
            -

            Note that the input to LongTensor is NOT a list of index tuples. If you want +

            Note that the input i is NOT a list of index tuples. If you want to write your indices this way, you should transpose before passing them to the sparse constructor:

            -
            >>> i = torch.LongTensor([[0, 2], [1, 0], [1, 2]])
            ->>> v = torch.FloatTensor([3,      4,      5    ])
            ->>> torch.sparse.FloatTensor(i.t(), v, torch.Size([2,3])).to_dense()
            - 0  0  3
            - 4  0  5
            -[torch.FloatTensor of size 2x3]
            +
            >>> i = [[0, 2], [1, 0], [1, 2]]
            +>>> v =  [3,      4,      5    ]
            +>>> s = torch.sparse_coo_tensor(list(zip(*i)), v, (2, 3))
            +>>> # Or another equivalent formulation to get s
            +>>> s = torch.sparse_coo_tensor(torch.tensor(i).t(), v, (2, 3))
            +>>> torch.sparse_coo_tensor(i.t(), v, torch.Size([2,3])).to_dense()
            +tensor([[0, 0, 3],
            +        [4, 0, 5]])
             
            -

            You can also construct hybrid sparse tensors, where only the first n -dimensions are sparse, and the rest of the dimensions are dense.

            -
            >>> i = torch.LongTensor([[2, 4]])
            ->>> v = torch.FloatTensor([[1, 3], [5, 7]])
            ->>> torch.sparse.FloatTensor(i, v).to_dense()
            - 0  0
            - 0  0
            - 1  3
            - 0  0
            - 5  7
            -[torch.FloatTensor of size 5x2]
            +

            An empty sparse COO tensor can be constructed by specifying its size +only:

            +
            >>> torch.sparse_coo_tensor(size=(2, 3))
            +tensor(indices=tensor([], size=(2, 0)),
            +       values=tensor([], size=(0,)),
            +       size=(2, 3), nnz=0, layout=torch.sparse_coo)
             
            -

            An empty sparse tensor can be constructed by specifying its size:

            -
            >>> torch.sparse.FloatTensor(2, 3)
            -SparseFloatTensor of size 2x3 with indices:
            -[torch.LongTensor with no dimension]
            -and values:
            -[torch.FloatTensor with no dimension]
            +
            +
            +

            Hybrid sparse COO tensors

            +

            Pytorch implements an extension of sparse tensors with scalar values +to sparse tensors with (contiguous) tensor values. Such tensors are +called hybrid tensors.

            +

            PyTorch hybrid COO tensor extends the sparse COO tensor by allowing +the values tensor to be a multi-dimensional tensor so that we +have:

            +
            +
              +
            • the indices of specified elements are collected in indices +tensor of size (sparse_dims, nse) and with element type +torch.int64,

            • +
            • the corresponding (tensor) values are collected in values +tensor of size (nse, dense_dims) and with an arbitrary integer +or floating point number element type.

            • +
            +
            +
            +

            Note

            +

            We use (M + K)-dimensional tensor to denote a N-dimensional hybrid +sparse tensor, where M and K are the numbers of sparse and dense +dimensions, respectively, such that M + K == N holds.

            +
            +

            Suppose we want to create a (2 + 1)-dimensional tensor with the entry +[3, 4] at location (0, 2), entry [5, 6] at location (1, 0), and entry +[7, 8] at location (1, 2). We would write

            +
            >>> i = [[0, 1, 1],
            +         [2, 0, 2]]
            +>>> v =  [[3, 4], [5, 6], [7, 8]]
            +>>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
            +>>> s
            +tensor(indices=tensor([[0, 1, 1],
            +                       [2, 0, 2]]),
            +       values=tensor([[3, 4],
            +                      [5, 6],
            +                      [7, 8]]),
            +       size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)
             
            -
            -
            SparseTensor has the following invariants:
              -
            1. sparse_dim + dense_dim = len(SparseTensor.shape)

            2. -
            3. SparseTensor._indices().shape = (sparse_dim, nnz)

            4. -
            5. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])

            6. -
            -
            -
            -

            Since SparseTensor._indices() is always a 2D tensor, the smallest sparse_dim = 1. -Therefore, representation of a SparseTensor of sparse_dim = 0 is simply a dense tensor.

            +
            >>> s.to_dense()
            +tensor([[[0, 0],
            +         [0, 0],
            +         [3, 4]],
            +        [[5, 6],
            +         [0, 0],
            +         [7, 8]]])
            +
            +
            +

            In general, if s is a sparse COO tensor and M = +s.sparse_dim(), K = s.dense_dim(), then we have the following +invariants:

            +
            +
              +
            • M + K == len(s.shape) == s.ndim - dimensionality of a tensor +is the sum of the number of sparse and dense dimensions,

            • +
            • s.indices().shape == (M, nse) - sparse indices are stored +explicitly,

            • +
            • s.values().shape == (nse,) + s.shape[M : M + K] - the values +of a hybrid tensor are K-dimensional tensors,

            • +
            • s.values().layout == torch.strided - values are stored as +strided tensors.

            • +
            +

            Note

            -

            Our sparse tensor format permits uncoalesced sparse tensors, where -there may be duplicate coordinates in the indices; in this case, +

            Dense dimensions always follow sparse dimensions, that is, mixing +of dense and sparse dimensions is not supported.

            +
            +
            +
            +

            Uncoalesced sparse COO tensors

            +

            PyTorch sparse COO tensor format permits uncoalesced sparse tensors, +where there may be duplicate coordinates in the indices; in this case, the interpretation is that the value at that index is the sum of all -duplicate value entries. Uncoalesced tensors permit us to implement -certain operators more efficiently.

            +duplicate value entries. For example, one can specify multiple values, +3 and 4, for the same index 1, that leads to an 1-D +uncoalesced tensor:

            +
            >>> i = [[1, 1]]
            +>>> v =  [3, 4]
            +>>> s=torch.sparse_coo_tensor(i, v, (3,))
            +>>> s
            +tensor(indices=tensor([[1, 1]]),
            +       values=tensor(  [3, 4]),
            +       size=(3,), nnz=2, layout=torch.sparse_coo)
            +
            +
            +

            while the coalescing process will accumulate the multi-valued elements +into a single value using summation:

            +
            >>> s.coalesce()
            +tensor(indices=tensor([[1]]),
            +       values=tensor([7]),
            +       size=(3,), nnz=1, layout=torch.sparse_coo)
            +
            +
            +

            In general, the output of torch.Tensor.coalesce() method is a +sparse tensor with the following properties:

            +
              +
            • the indices of specified tensor elements are unique,

            • +
            • the indices are sorted in lexicographical order,

            • +
            • torch.Tensor.is_coalesced() returns True.

            • +
            +
            +

            Note

            For the most part, you shouldn’t have to care whether or not a sparse tensor is coalesced or not, as most operations will work -identically given a coalesced or uncoalesced sparse tensor. -However, there are two cases in which you may need to care.

            -

            First, if you repeatedly perform an operation that can produce -duplicate entries (e.g., torch.sparse.FloatTensor.add()), you -should occasionally coalesce your sparse tensors to prevent -them from growing too large.

            -

            Second, some operators will produce different values depending on -whether or not they are coalesced or not (e.g., -torch.sparse.FloatTensor._values() and -torch.sparse.FloatTensor._indices(), as well as -torch.Tensor.sparse_mask()). These operators are -prefixed by an underscore to indicate that they reveal internal -implementation details and should be used with care, since code -that works with coalesced sparse tensors may not work with -uncoalesced sparse tensors; generally speaking, it is safest -to explicitly coalesce before working with these operators.

            -

            For example, suppose that we wanted to implement an operator -by operating directly on torch.sparse.FloatTensor._values(). -Multiplication by a scalar can be implemented in the obvious way, -as multiplication distributes over addition; however, square root -cannot be implemented directly, since sqrt(a + b) != sqrt(a) + -sqrt(b) (which is what would be computed if you were given an -uncoalesced tensor.)

            +identically given a coalesced or uncoalesced sparse tensor.

            +

            However, some operations can be implemented more efficiently on +uncoalesced tensors, and some on coalesced tensors.

            +

            For instance, addition of sparse COO tensors is implemented by +simply concatenating the indices and values tensors:

            +
            >>> a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,))
            +>>> b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,))
            +>>> a + b
            +tensor(indices=tensor([[0, 0, 1, 1]]),
            +       values=tensor([7, 8, 5, 6]),
            +       size=(2,), nnz=4, layout=torch.sparse_coo)
            +
            +
            +

            If you repeatedly perform an operation that can produce duplicate +entries (e.g., torch.Tensor.add()), you should occasionally +coalesce your sparse tensors to prevent them from growing too large.

            +

            On the other hand, the lexicographical ordering of indices can be +advantageous for implementing algorithms that involve many element +selection operations, such as slicing or matrix products.

            +
            +
            +
            +

            Working with sparse COO tensors

            +

            Let’s consider the following example:

            +
            >>> i = [[0, 1, 1],
            +         [2, 0, 2]]
            +>>> v =  [[3, 4], [5, 6], [7, 8]]
            +>>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
            +
            +
            +

            As mentioned above, a sparse COO tensor is a torch.Tensor +instance and to distinguish it from the Tensor instances that use +some other layout, on can use torch.Tensor.is_sparse or +torch.Tensor.layout properties:

            +
            >>> isinstance(s, torch.Tensor)
            +True
            +>>> s.is_sparse
            +True
            +>>> s.layout == torch.sparse_coo
            +True
            +
            +
            +

            The number of sparse and dense dimensions can be acquired using +methods torch.Tensor.sparse_dim() and +torch.Tensor.dense_dim(), respectively. For instance:

            +
            >>> s.sparse_dim(), s.dense_dim()
            +(2, 1)
            +
            +
            +

            If s is a sparse COO tensor then its COO format data can be +acquired using methods torch.Tensor.indices() and +torch.Tensor.values().

            +
            +

            Note

            +

            Currently, one can acquire the COO format data only when the tensor +instance is coalesced:

            +
            >>> s.indices()
            +RuntimeError: Cannot get indices on an uncoalesced tensor, please call .coalesce() first
            +
            +
            +

            For acquiring the COO format data of an uncoalesced tensor, use +torch.Tensor._values() and torch.Tensor._indices():

            +
            >>> s._indices()
            +tensor([[0, 1, 1],
            +        [2, 0, 2]])
            +
            +
            +
            +

            Constructing a new sparse COO tensor results a tensor that is not +coalesced:

            +
            >>> s.is_coalesced()
            +False
            +
            +
            +

            but one can construct a coalesced copy of a sparse COO tensor using +the torch.Tensor.coalesce() method:

            +
            >>> s2 = s.coalesce()
            +>>> s2.indices()
            +tensor([[0, 1, 1],
            +       [2, 0, 2]])
            +
            +
            +

            When working with uncoalesced sparse COO tensors, one must take into +an account the additive nature of uncoalesced data: the values of the +same indices are the terms of a sum that evaluation gives the value of +the corresponding tensor element. For example, the scalar +multiplication on an uncoalesced sparse tensor could be implemented by +multiplying all the uncoalesced values with the scalar because c * +(a + b) == c * a + c * b holds. However, any nonlinear operation, +say, a square root, cannot be implemented by applying the operation to +uncoalesced data because sqrt(a + b) == sqrt(a) + sqrt(b) does not +hold in general.

            +

            Slicing (with positive step) of a sparse COO tensor is supported only +for dense dimensions. Indexing is supported for both sparse and dense +dimensions:

            +
            >>> s[1]
            +tensor(indices=tensor([[0, 2]]),
            +       values=tensor([[5, 6],
            +                      [7, 8]]),
            +       size=(3, 2), nnz=2, layout=torch.sparse_coo)
            +>>> s[1, 0, 1]
            +tensor(6)
            +>>> s[1, 0, 1:]
            +tensor([6])
            +
            +
            +

            In PyTorch, the fill value of a sparse tensor cannot be specified +explicitly and is assumed to be zero in general. However, there exists +operations that may interpret the fill value differently. For +instance, torch.sparse.softmax() computes the softmax with the +assumption that the fill value is negative infinity.

            +
            +
            +
            +

            Supported Linear Algebra operations

            +

            The following table summarizes supported Linear Algebra operations on +sparse matrices where the operands layouts may vary. Here +T[layout] denotes a tensor with a given layout. Similarly, +M[layout] denotes a matrix (2-D PyTorch tensor), and V[layout] +denotes a vector (1-D PyTorch tensor). In addition, f denotes a +scalar (float or 0-D PyTorch tensor), * is element-wise +multiplication, and @ is matrix multiplication.

            +

      +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

      PyTorch operation

      Sparse grad?

      Layout signature

      torch.mv()

      no

      M[sparse_coo] @ V[strided] -> V[strided]

      torch.matmul()

      no

      M[sparse_coo] @ M[strided] -> M[strided]

      torch.mm()

      no

      M[sparse_coo] @ M[strided] -> M[strided]

      torch.sparse.mm()

      yes

      M[sparse_coo] @ M[strided] -> M[strided]

      torch.smm()

      no

      M[sparse_coo] @ M[strided] -> M[sparse_coo]

      torch.hspmm()

      no

      M[sparse_coo] @ M[strided] -> M[hybrid sparse_coo]

      torch.bmm()

      no

      T[sparse_coo] @ T[strided] -> T[strided]

      torch.addmm()

      no

      f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]

      torch.sparse.addmm()

      yes

      f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]

      torch.sspaddmm()

      no

      f * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo]

      torch.lobpcg()

      no

      GENEIG(M[sparse_coo]) -> M[strided], M[strided]

      torch.pca_lowrank()

      yes

      PCA(M[sparse_coo]) -> M[strided], M[strided], M[strided]

      torch.svd_lowrank()

      yes

      SVD(M[sparse_coo]) -> M[strided], M[strided], M[strided]

      +

      where “Sparse grad?” column indicates if the PyTorch operation supports +backward with respect to sparse matrix argument. All PyTorch operations, +except torch.smm(), support backward with respect to strided +matrix arguments.

      +
      +

      Note

      +

      Currently, PyTorch does not support matrix multiplication with the +layout signature M[strided] @ M[sparse_coo]. However, +applications can still compute this using the matrix relation D @ +S == (S.t() @ D.t()).t().

      -
      -class torch.sparse.FloatTensor
      -
      -
      -add()
      -
      - -
      -
      -add_()
      -
      - -
      -
      -clone()
      -
      - -
      -
      -dim()
      -
      - -
      -
      -div()
      -
      - -
      -
      -div_()
      -
      - -
      -
      -get_device()
      -
      - -
      -
      -hspmm()
      -
      - -
      -
      -mm()
      -
      - -
      -
      -mul()
      -
      - -
      -
      -mul_()
      -
      - -
      -
      -narrow_copy()
      -
      - -
      -
      -resizeAs_()
      -
      +
      +class torch.Tensor
      +

      The following methods are specific to sparse tensors:

      +
      +
      +
      +is_sparse
      +

      Is True if the Tensor uses sparse storage layout, False otherwise.

      +
      -
      -size()
      -
      +
      +dense_dim() → int
      +

      Return the number of dense dimensions in a sparse tensor self.

      +
      +

      Warning

      +

      Throws an error if self is not a sparse tensor.

      +
      +

      See also Tensor.sparse_dim() and hybrid tensors.

      +
      -
      -spadd()
      -
      +
      +sparse_dim() → int
      +

      Return the number of sparse dimensions in a sparse tensor self.

      +
      +

      Warning

      +

      Throws an error if self is not a sparse tensor.

      +
      +

      See also Tensor.dense_dim() and hybrid tensors.

      +

    -
    -spmm()
    -
    +
    +sparse_mask(mask) → Tensor
    +

    Returns a new sparse tensor with values from a +strided tensor self filtered by the indices of the sparse +tensor mask. The values of mask sparse tensor are +ignored. self and mask tensors must have the same +shape.

    +
    +

    Note

    +

    The returned sparse tensor has the same indices as the sparse tensor +mask, even when the corresponding values in self are +zeros.

    +
    +
    +
    Parameters
    +

    mask (Tensor) – a sparse tensor whose indices are used as a filter

    +
    +
    +

    Example:

    +
    >>> nse = 5
    +>>> dims = (5, 5, 2, 2)
    +>>> I = torch.cat([torch.randint(0, dims[0], size=(nse,)),
    +...                torch.randint(0, dims[1], size=(nse,))], 0).reshape(2, nse)
    +>>> V = torch.randn(nse, dims[2], dims[3])
    +>>> S = torch.sparse_coo_tensor(I, V, dims).coalesce()
    +>>> D = torch.randn(dims)
    +>>> D.sparse_mask(S)
    +tensor(indices=tensor([[0, 0, 0, 2],
    +                       [0, 1, 4, 3]]),
    +       values=tensor([[[ 1.6550,  0.2397],
    +                       [-0.1611, -0.0779]],
    +
    +                      [[ 0.2326, -1.0558],
    +                       [ 1.4711,  1.9678]],
    +
    +                      [[-0.5138, -0.0411],
    +                       [ 1.9417,  0.5158]],
    +
    +                      [[ 0.0793,  0.0036],
    +                       [-0.2569, -0.1055]]]),
    +       size=(5, 5, 2, 2), nnz=4, layout=torch.sparse_coo)
    +
    +
    +
  • -
    -sspaddmm()
    -
    +
    +sparse_resize_(size, sparse_dim, dense_dim) → Tensor
    +

    Resizes self sparse tensor to the desired +size and the number of sparse and dense dimensions.

    +
    +

    Note

    +

    If the number of specified elements in self is zero, then +size, sparse_dim, and dense_dim can be any +size and positive integers such that len(size) == sparse_dim + +dense_dim.

    +

    If self specifies one or more elements, however, then each +dimension in size must not be smaller than the corresponding +dimension of self, sparse_dim must equal the number +of sparse dimensions in self, and dense_dim must +equal the number of dense dimensions in self.

    +
    +
    +

    Warning

    +

    Throws an error if self is not a sparse tensor.

    +
    +
    +
    Parameters
    +
      +
    • size (torch.Size) – the desired size. If self is non-empty +sparse tensor, the desired size cannot be smaller than the +original size.

    • +
    • sparse_dim (int) – the number of sparse dimensions

    • +
    • dense_dim (int) – the number of dense dimensions

    • +
    +
    +
    +
    -
    -sspmm()
    -
    +
    +sparse_resize_and_clear_(size, sparse_dim, dense_dim) → Tensor
    +

    Removes all specified elements from a sparse tensor self and resizes self to the desired +size and the number of sparse and dense dimensions.

    +
    +
    Parameters
    +
      +
    • size (torch.Size) – the desired size.

    • +
    • sparse_dim (int) – the number of sparse dimensions

    • +
    • dense_dim (int) – the number of dense dimensions

    • +
    +
    +
    +
    -
    -sub()
    -
    +
    +to_dense() → Tensor
    +

    Creates a strided copy of self.

    +
    +

    Warning

    +

    Throws an error if self is a strided tensor.

    +
    +

    Example:

    +
    >>> s = torch.sparse_coo_tensor(
    +...        torch.tensor([[1, 1],
    +...                      [0, 2]]),
    +...        torch.tensor([9, 10]),
    +...        size=(3, 3))
    +>>> s.to_dense()
    +tensor([[ 0,  0,  0],
    +        [ 9,  0, 10],
    +        [ 0,  0,  0]])
    +
    +
    +
    -
    -sub_()
    -
    +
    +to_sparse(sparseDims) → Tensor
    +

    Returns a sparse copy of the tensor. PyTorch supports sparse tensors in +coordinate format.

    +
    +
    Parameters
    +

    sparseDims (int, optional) – the number of sparse dimensions to include in the new sparse tensor

    +
    +
    +

    Example:

    +
    >>> d = torch.tensor([[0, 0, 0], [9, 0, 10], [0, 0, 0]])
    +>>> d
    +tensor([[ 0,  0,  0],
    +        [ 9,  0, 10],
    +        [ 0,  0,  0]])
    +>>> d.to_sparse()
    +tensor(indices=tensor([[1, 1],
    +                       [0, 2]]),
    +       values=tensor([ 9, 10]),
    +       size=(3, 3), nnz=2, layout=torch.sparse_coo)
    +>>> d.to_sparse(1)
    +tensor(indices=tensor([[1]]),
    +       values=tensor([[ 9,  0, 10]]),
    +       size=(3, 3), nnz=1, layout=torch.sparse_coo)
    +
    +
    +
    -
    -t_()
    -
    +
    +coalesce() → Tensor
    +

    Returns a coalesced copy of self if self is an +uncoalesced tensor.

    +

    Returns self if self is a coalesced tensor.

    +
    +

    Warning

    +

    Throws an error if self is not a sparse COO tensor.

    +
    +
    -
    -to_dense()
    -
    +
    +is_coalesced() → bool
    +

    Returns True if self is a sparse COO tensor that is coalesced, False otherwise.

    +
    +

    Warning

    +

    Throws an error if self is not a sparse COO tensor.

    +
    +

    See coalesce() and uncoalesced tensors.

    +
    -
    -transpose()
    -
    +
    +indices() → Tensor
    +

    Return the indices tensor of a sparse COO tensor.

    +
    +

    Warning

    +

    Throws an error if self is not a sparse COO tensor.

    +
    +

    See also Tensor.values().

    +
    +

    Note

    +

    This method can only be called on a coalesced sparse tensor. See +Tensor.coalesce() for details.

    +
    +
    -
    -transpose_()
    -
    +
    +values() → Tensor
    +

    Return the values tensor of a sparse COO tensor.

    +
    +

    Warning

    +

    Throws an error if self is not a sparse COO tensor.

    +
    +

    See also Tensor.indices().

    +
    +

    Note

    +

    This method can only be called on a coalesced sparse tensor. See +Tensor.coalesce() for details.

    +
    +
    -
    -
    -zero_()
    -
    + + -
    -
    -coalesce()
    -
    +

    The following torch.Tensor methods support sparse COO +tensors:

    +

    add() +add_() +addmm() +addmm_() +any() +asin() +asin_() +arcsin() +arcsin_() +bmm() +clone() +deg2rad() +deg2rad_() +detach() +detach_() +dim() +div() +div_() +floor_divide() +floor_divide_() +get_device() +index_select() +isnan() +log1p() +log1p_() +mm() +mul() +mul_() +mv() +narrow_copy() +neg() +neg_() +negative() +negative_() +numel() +rad2deg() +rad2deg_() +resize_as_() +size() +pow() +sqrt() +square() +smm() +sspaddmm() +sub() +sub_() +t() +t_() +transpose() +transpose_() +zero_()

    + +
    +

    Sparse tensor functions

    +
    +
    +torch.sparse_coo_tensor(indices, values, size=None, *, dtype=None, device=None, requires_grad=False) → Tensor
    +

    Constructs a sparse tensor in COO(rdinate) format with specified values at the given +indices.

    +
    +

    Note

    +

    This function returns an uncoalesced tensor.

    +
    +
    +
    Parameters
    +
      +
    • indices (array_like) – Initial data for the tensor. Can be a list, tuple, +NumPy ndarray, scalar, and other types. Will be cast to a torch.LongTensor +internally. The indices are the coordinates of the non-zero values in the matrix, and thus +should be two-dimensional where the first dimension is the number of tensor dimensions and +the second dimension is the number of non-zero values.

    • +
    • values (array_like) – Initial values for the tensor. Can be a list, tuple, +NumPy ndarray, scalar, and other types.

    • +
    • size (list, tuple, or torch.Size, optional) – Size of the sparse tensor. If not +provided the size will be inferred as the minimum size big enough to hold all non-zero +elements.

    • +
    +
    +
    Keyword Arguments
    +
      +
    • dtype (torch.dtype, optional) – the desired data type of returned tensor. +Default: if None, infers data type from values.

    • +
    • device (torch.device, optional) – the desired device of returned tensor. +Default: if None, uses the current device for the default tensor type +(see torch.set_default_tensor_type()). device will be the CPU +for CPU tensor types and the current CUDA device for CUDA tensor types.

    • +
    • requires_grad (bool, optional) – If autograd should record operations on the +returned tensor. Default: False.

    • +
    +
    +
    +

    Example:

    +
    >>> i = torch.tensor([[0, 1, 1],
    +...                   [2, 0, 2]])
    +>>> v = torch.tensor([3, 4, 5], dtype=torch.float32)
    +>>> torch.sparse_coo_tensor(i, v, [2, 4])
    +tensor(indices=tensor([[0, 1, 1],
    +                       [2, 0, 2]]),
    +       values=tensor([3., 4., 5.]),
    +       size=(2, 4), nnz=3, layout=torch.sparse_coo)
    +
    +>>> torch.sparse_coo_tensor(i, v)  # Shape inference
    +tensor(indices=tensor([[0, 1, 1],
    +                       [2, 0, 2]]),
    +       values=tensor([3., 4., 5.]),
    +       size=(2, 3), nnz=3, layout=torch.sparse_coo)
    +
    +>>> torch.sparse_coo_tensor(i, v, [2, 4],
    +...                         dtype=torch.float64,
    +...                         device=torch.device('cuda:0'))
    +tensor(indices=tensor([[0, 1, 1],
    +                       [2, 0, 2]]),
    +       values=tensor([3., 4., 5.]),
    +       device='cuda:0', size=(2, 4), nnz=3, dtype=torch.float64,
    +       layout=torch.sparse_coo)
    +
    +# Create an empty sparse tensor with the following invariants:
    +#   1. sparse_dim + dense_dim = len(SparseTensor.shape)
    +#   2. SparseTensor._indices().shape = (sparse_dim, nnz)
    +#   3. SparseTensor._values().shape = (nnz, SparseTensor.shape[sparse_dim:])
    +#
    +# For instance, to create an empty sparse tensor with nnz = 0, dense_dim = 0 and
    +# sparse_dim = 1 (hence indices is a 2D tensor of shape = (1, 0))
    +>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), [], [1])
    +tensor(indices=tensor([], size=(1, 0)),
    +       values=tensor([], size=(0,)),
    +       size=(1,), nnz=0, layout=torch.sparse_coo)
    +
    +# and to create an empty sparse tensor with nnz = 0, dense_dim = 1 and
    +# sparse_dim = 1
    +>>> S = torch.sparse_coo_tensor(torch.empty([1, 0]), torch.empty([0, 2]), [1, 2])
    +tensor(indices=tensor([], size=(1, 0)),
    +       values=tensor([], size=(0, 2)),
    +       size=(1, 2), nnz=0, layout=torch.sparse_coo)
    +
    +
    +
    -
    -
    -is_coalesced()
    -
    +
    +
    +torch.sparse.sum(input, dim=None, dtype=None)[source]
    +

    Returns the sum of each row of the sparse tensor input in the given +dimensions dim. If dim is a list of dimensions, +reduce over all of them. When sum over all sparse_dim, this method +returns a dense tensor instead of a sparse tensor.

    +

    All summed dim are squeezed (see torch.squeeze()), resulting an output +tensor having dim fewer dimensions than input.

    +

    During backward, only gradients at nnz locations of input +will propagate back. Note that the gradients of input is coalesced.

    +
    +
    Parameters
    +
      +
    • input (Tensor) – the input sparse tensor

    • +
    • dim (int or tuple of python:ints) – a dimension or a list of dimensions to reduce. Default: reduce +over all dims.

    • +
    • dtype (torch.dtype, optional) – the desired data type of returned Tensor. +Default: dtype of input.

    • +
    +
    +
    +

    Example:

    +
    >>> nnz = 3
    +>>> dims = [5, 5, 2, 3]
    +>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
    +                   torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
    +>>> V = torch.randn(nnz, dims[2], dims[3])
    +>>> size = torch.Size(dims)
    +>>> S = torch.sparse_coo_tensor(I, V, size)
    +>>> S
    +tensor(indices=tensor([[2, 0, 3],
    +                       [2, 4, 1]]),
    +       values=tensor([[[-0.6438, -1.6467,  1.4004],
    +                       [ 0.3411,  0.0918, -0.2312]],
     
    -
    -
    -_indices()
    -
    + [[ 0.5348, 0.0634, -2.0494], + [-0.7125, -1.0646, 2.1844]], -
    -
    -_values()
    -
    + [[ 0.1276, 0.1874, -0.6334], + [-1.9682, -0.5340, 0.7483]]]), + size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) -
    -
    -_nnz()
    -
    +# when sum over only part of sparse_dims, return a sparse tensor +>>> torch.sparse.sum(S, [1, 3]) +tensor(indices=tensor([[0, 2, 3]]), + values=tensor([[-1.4512, 0.4073], + [-0.8901, 0.2017], + [-0.3183, -1.7539]]), + size=(5, 2), nnz=3, layout=torch.sparse_coo) +# when sum over all sparse dim, return a dense tensor +# with summed dims squeezed +>>> torch.sparse.sum(S, [0, 1, 3]) +tensor([-2.6596, -1.1450]) +
    +
    -
    -

    Functions

    -torch.sparse.addmm(mat: torch.Tensor, mat1: torch.Tensor, mat2: torch.Tensor, beta: float = 1.0, alpha: float = 1.0) → torch.Tensor[source]
    +torch.sparse.addmm(mat, mat1, mat2, beta=1.0, alpha=1.0)[source]

    This function does exact same thing as torch.addmm() in the forward, except that it supports backward for sparse matrix mat1. mat1 need to have sparse_dim = 2. Note that the gradients of mat1 is a @@ -610,8 +1254,8 @@

    FunctionsParameters
    • mat (Tensor) – a dense matrix to be added

    • -
    • mat1 (SparseTensor) – a sparse matrix to be multiplied

    • -
    • mat2 (Tensor) – a dense matrix be multiplied

    • +
    • mat1 (Tensor) – a sparse matrix to be multiplied

    • +
    • mat2 (Tensor) – a dense matrix to be multiplied

    • beta (Number, optional) – multiplier for mat (β\beta )

    • @@ -627,9 +1271,9 @@

      Functions
      -torch.sparse.mm(mat1: torch.Tensor, mat2: torch.Tensor) → torch.Tensor[source]
      +torch.sparse.mm(mat1, mat2)[source]

      Performs a matrix multiplication of the sparse matrix mat1 -and dense matrix mat2. Similar to torch.mm(), If mat1 is a +and the (sparse or strided) matrix mat2. Similar to torch.mm(), If mat1 is a (n×m)(n \times m) tensor, mat2 is a (m×p)(m \times p) @@ -637,17 +1281,23 @@

      Functions(n×p)(n \times p) - dense tensor. mat1 need to have sparse_dim = 2. + tensor. mat1 need to have sparse_dim = 2. This function also supports backward for both matrices. Note that the gradients of mat1 is a coalesced sparse tensor.

      Parameters
      +
      +
      Shape:

      The format of the output tensor of this function follows: +- sparse x sparse -> sparse +- sparse x dense -> dense

      +
      +

      Example:

      >>> a = torch.randn(2, 3).to_sparse().requires_grad_(True)
       >>> a
      @@ -677,64 +1327,151 @@ 

      Functions -
      -torch.sparse.sum(input: torch.Tensor, dim: Optional[Tuple[int]] = None, dtype: Optional[int] = None) → torch.Tensor[source]
      -

      Returns the sum of each row of SparseTensor input in the given -dimensions dim. If dim is a list of dimensions, -reduce over all of them. When sum over all sparse_dim, this method -returns a Tensor instead of SparseTensor.

      -

      All summed dim are squeezed (see torch.squeeze()), resulting an output -tensor having dim fewer dimensions than input.

      -

      During backward, only gradients at nnz locations of input -will propagate back. Note that the gradients of input is coalesced.

      +
      +torch.sspaddmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) → Tensor
      +

      Matrix multiplies a sparse tensor mat1 with a dense tensor +mat2, then adds the sparse tensor input to the result.

      +

      Note: This function is equivalent to torch.addmm(), except +input and mat1 are sparse.

      Parameters
        -
      • input (Tensor) – the input SparseTensor

      • -
      • dim (int or tuple of python:ints) – a dimension or a list of dimensions to reduce. Default: reduce -over all dims.

      • -
      • dtype (torch.dtype, optional) – the desired data type of returned Tensor. -Default: dtype of input.

      • +
      • input (Tensor) – a sparse matrix to be added

      • +
      • mat1 (Tensor) – a sparse matrix to be matrix multiplied

      • +
      • mat2 (Tensor) – a dense matrix to be matrix multiplied

      • +
      +
      +
      Keyword Arguments
      +
        +
      • beta (Number, optional) – multiplier for mat (β\beta + +)

      • +
      • alpha (Number, optional) – multiplier for mat1@mat2mat1 @ mat2 + + (α\alpha + +)

      • +
      • out (Tensor, optional) – the output tensor.

      -

      Example:

      -
      >>> nnz = 3
      ->>> dims = [5, 5, 2, 3]
      ->>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
      -                   torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
      ->>> V = torch.randn(nnz, dims[2], dims[3])
      ->>> size = torch.Size(dims)
      ->>> S = torch.sparse_coo_tensor(I, V, size)
      ->>> S
      -tensor(indices=tensor([[2, 0, 3],
      -                       [2, 4, 1]]),
      -       values=tensor([[[-0.6438, -1.6467,  1.4004],
      -                       [ 0.3411,  0.0918, -0.2312]],
      +

    - [[ 0.5348, 0.0634, -2.0494], - [-0.7125, -1.0646, 2.1844]], +
    +
    +torch.hspmm(mat1, mat2, *, out=None) → Tensor
    +

    Performs a matrix multiplication of a sparse COO matrix mat1 and a strided matrix mat2. The +result is a (1 + 1)-dimensional hybrid COO matrix.

    +
    +
    Parameters
    +
      +
    • mat1 (Tensor) – the first sparse matrix to be matrix multiplied

    • +
    • mat2 (Tensor) – the second strided matrix to be matrix multiplied

    • +
    +
    +
    Keyword Arguments
    +

    {out}

    +
    +
    +
    - [[ 0.1276, 0.1874, -0.6334], - [-1.9682, -0.5340, 0.7483]]]), - size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo) +
    +
    +torch.smm(input, mat) → Tensor
    +

    Performs a matrix multiplication of the sparse matrix input +with the dense matrix mat.

    +
    +
    Parameters
    +
      +
    • input (Tensor) – a sparse matrix to be matrix multiplied

    • +
    • mat (Tensor) – a dense matrix to be matrix multiplied

    • +
    +
    +
    +
    -# when sum over only part of sparse_dims, return a SparseTensor ->>> torch.sparse.sum(S, [1, 3]) -tensor(indices=tensor([[0, 2, 3]]), - values=tensor([[-1.4512, 0.4073], - [-0.8901, 0.2017], - [-0.3183, -1.7539]]), - size=(5, 2), nnz=3, layout=torch.sparse_coo) +
    +
    +torch.sparse.softmax(input, dim, dtype=None)[source]
    +

    Applies a softmax function.

    +

    Softmax is defined as:

    +

    Softmax(xi)=exp(xi)jexp(xj)\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} -# when sum over all sparse dim, return a dense Tensor -# with summed dims squeezed ->>> torch.sparse.sum(S, [0, 1, 3]) -tensor([-2.6596, -1.1450]) -

    -
    +

    +

    where i,ji, j + + run over sparse tensor indices and unspecified +entries are ignores. This is equivalent to defining unspecified +entries as negative infinity so that exp(xk)=0exp(x_k) = 0 + + when the +entry with index kk + + has not specified.

    +

    It is applied to all slices along dim, and will re-scale them so +that the elements lie in the range [0, 1] and sum to 1.

    +
    +
    Parameters
    +
      +
    • input (Tensor) – input

    • +
    • dim (int) – A dimension along which softmax will be computed.

    • +
    • dtype (torch.dtype, optional) – the desired data type +of returned tensor. If specified, the input tensor is +casted to dtype before the operation is +performed. This is useful for preventing data type +overflows. Default: None

    • +
    +
    +
    + + +
    +
    +torch.sparse.log_softmax(input, dim, dtype=None)[source]
    +

    Applies a softmax function followed by logarithm.

    +

    See softmax for more details.

    +
    +
    Parameters
    +
      +
    • input (Tensor) – input

    • +
    • dim (int) – A dimension along which softmax will be computed.

    • +
    • dtype (torch.dtype, optional) – the desired data type +of returned tensor. If specified, the input tensor is +casted to dtype before the operation is +performed. This is useful for preventing data type +overflows. Default: None

    • +
    +
    +
    + +
    +

    Other functions

    +

    The following torch functions support sparse COO tensors:

    +

    cat() +dstack() +empty() +empty_like() +hstack() +index_select() +is_complex() +is_floating_point() +is_nonzero() +is_same_size() +is_signed() +is_tensor() +lobpcg() +mm() +native_norm() +pca_lowrank() +select() +stack() +svd_lowrank() +unsqueeze() +vstack() +zeros() +zeros_like()

    @@ -782,7 +1519,17 @@

    Functions @@ -973,10 +1720,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -997,14 +1740,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/storage.html b/torch/storage.html index 26dbe3dc5..0d91a09c7 100644 --- a/torch/storage.html +++ b/torch/storage.html @@ -31,11 +31,11 @@ - + - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Note

    @@ -659,10 +698,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -683,14 +718,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/tensorboard.html b/torch/tensorboard.html index f9f8ba09b..f3936f4c4 100644 --- a/torch/tensorboard.html +++ b/torch/tensorboard.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ + -
    - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    Libraries

    @@ -1634,10 +1703,6 @@

    Resources

    Get Started -
  • - Features -
  • -
  • Ecosystem
  • @@ -1658,14 +1723,66 @@

    Resources

    Tutorials -
  • - Docs +
  • + Docs
  • -
  • - Resources + + +
  • + Resources
  • + +
  • Github
  • diff --git a/torch/torch.overrides.html b/torch/torch.overrides.html new file mode 100644 index 000000000..3de1adcca --- /dev/null +++ b/torch/torch.overrides.html @@ -0,0 +1,944 @@ + + + + + + + + + + + + torch.overrides — PyTorch master documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    + +
    +
    + + + + + + + + + + + +
    +
    +
    + + + + + + + + + + + + + + + + +
    + + + + +
    +
    + +
    + Shortcuts +
    +
    + +
    +
    + + + +
    + +
    +
    + +
    +

    torch.overrides

    +

    This module exposes various helper functions for the __torch_function__ +protocol. See Extending torch for more detail on the +__torch_function__ protocol.

    +
    +

    Functions

    +
    +
    +torch.overrides.get_ignored_functions()[source]
    +

    Return public functions that cannot be overridden by __torch_function__.

    +
    +
    Returns
    +

    A tuple of functions that are publicly available in the torch API but cannot +be overridden with __torch_function__. Mostly this is because none of the +arguments of these functions are tensors or tensor-likes.

    +
    +
    Return type
    +

    Set[Callable]

    +
    +
    +

    Examples

    +
    >>> torch.Tensor.as_subclass in torch.overrides.get_ignored_functions()
    +True
    +>>> torch.add in torch.overrides.get_ignored_functions()
    +False
    +
    +
    +
    + +
    +
    +torch.overrides.get_overridable_functions()[source]
    +

    List functions that are overridable via __torch_function__

    +
    +
    Returns
    +

    A dictionary that maps namespaces that contain overridable functions +to functions in that namespace that can be overridden.

    +
    +
    Return type
    +

    Dict[Any, List[Callable]]

    +
    +
    +
    + +
    +
    +torch.overrides.get_testing_overrides()[source]
    +

    Return a dict containing dummy overrides for all overridable functions

    +
    +
    Returns
    +

    A dictionary that maps overridable functions in the PyTorch API to +lambda functions that have the same signature as the real function +and unconditionally return -1. These lambda functions are useful +for testing API coverage for a type that defines __torch_function__.

    +
    +
    Return type
    +

    Dict[Callable, Callable]

    +
    +
    +

    Examples

    +
    >>> import inspect
    +>>> my_add = torch.overrides.get_testing_overrides()[torch.add]
    +>>> inspect.signature(my_add)
    +<Signature (input, other, out=None)>
    +
    +
    +
    + +
    +
    +torch.overrides.handle_torch_function(public_api, relevant_args, *args, **kwargs)[source]
    +

    Implement a function with checks for __torch_function__ overrides.

    +

    See torch::autograd::handle_torch_function for the equivalent of this +function in the C++ implementation.

    +
    +
    Parameters
    +
      +
    • public_api (function) – Function exposed by the public torch API originally called like +public_api(*args, **kwargs) on which arguments are now being +checked.

    • +
    • relevant_args (iterable) – Iterable of arguments to check for __torch_function__ methods.

    • +
    • args (tuple) – Arbitrary positional arguments originally passed into public_api.

    • +
    • kwargs (tuple) – Arbitrary keyword arguments originally passed into public_api.

    • +
    +
    +
    Returns
    +

    Result from calling implementation or an __torch_function__ +method, as appropriate.

    +
    +
    Return type
    +

    object

    +
    +
    +

    :raises TypeError : if no implementation is found.:

    +

    Example

    +
    >>> def func(a):
    +...     if type(a) is not torch.Tensor:  # This will make func dispatchable by __torch_function__
    +...         return handle_torch_function(func, (a,), a)
    +...     return a + 0
    +
    +
    +
    + +
    +
    +torch.overrides.has_torch_function()
    +

    Check for __torch_function__ implementations in the elements of an iterable. +Considers exact Tensor s and Parameter s non-dispatchable. +:param relevant_args: Iterable or aguments to check for __torch_function__ methods. +:type relevant_args: iterable

    +
    +
    Returns
    +

    True if any of the elements of relevant_args have __torch_function__ +implementations, False otherwise.

    +
    +
    Return type
    +

    bool

    +
    +
    +
    +

    See also

    +
    +
    torch.is_tensor_like()

    Checks if something is a Tensor-like, including an exact Tensor.

    +
    +
    +
    +
    + +
    +
    +torch.overrides.is_tensor_like(inp)[source]
    +

    Returns True if the passed-in input is a Tensor-like.

    +

    Currently, this occurs whenever there’s a __torch_function__ +attribute on the type of the input.

    +

    Examples

    +

    A subclass of tensor is generally a Tensor-like.

    +
    >>> class SubTensor(torch.Tensor): ...
    +>>> is_tensor_like(SubTensor([0]))
    +True
    +
    +
    +

    Built-in or user types aren’t usually Tensor-like.

    +
    >>> is_tensor_like(6)
    +False
    +>>> is_tensor_like(None)
    +False
    +>>> class NotATensor: ...
    +>>> is_tensor_like(NotATensor())
    +False
    +
    +
    +

    But, they can be made Tensor-like by implementing __torch_function__.

    +
    >>> class TensorLike:
    +...     def __torch_function__(self, func, types, args, kwargs):
    +...         return -1
    +>>> is_tensor_like(TensorLike())
    +True
    +
    +
    +
    + +
    +
    +torch.overrides.is_tensor_method_or_property(func)[source]
    +

    Returns True if the function passed in is a handler for a +method or property belonging to torch.Tensor, as passed +into __torch_function__.

    +
    +

    Note

    +

    For properties, their __get__ method must be passed in.

    +
    +

    This may be needed, in particular, for the following reasons:

    +
      +
    1. Methods/properties sometimes don’t contain a __module__ slot.

    2. +
    3. They require that the first passed-in argument is an instance +of torch.Tensor.

    4. +
    +

    Examples

    +
    >>> is_tensor_method_or_property(torch.Tensor.add)
    +True
    +>>> is_tensor_method_or_property(torch.add)
    +False
    +
    +
    +
    + +
    +
    +torch.overrides.wrap_torch_function(dispatcher)[source]
    +

    Wraps a given function with __torch_function__ -related functionality.

    +
    +
    Parameters
    +

    dispatcher (Callable) – A callable that returns an iterable of Tensor-likes passed into the function.

    +
    +
    +
    +

    Note

    +

    This decorator may reduce the performance of your code. Generally, it’s enough to express +your code as a series of functions that, themselves, support __torch_function__. If you +find yourself in the rare situation where this is not the case, e.g. if you’re wrapping a +low-level library and you also need it to work for Tensor-likes, then this function is available.

    +
    +

    Examples

    +
    >>> def dispatcher(a): # Must have the same signature as func
    +...     return (a,)
    +>>> @torch.overrides.wrap_torch_function(dispatcher)
    +>>> def func(a): # This will make func dispatchable by __torch_function__
    +...     return a + 0
    +
    +
    +
    + +
    +
    + + +
    + +
    + + +
    +
    + +
    +
    +
    + + +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    +
    +
    +
    +

    Docs

    +

    Access comprehensive developer documentation for PyTorch

    + View Docs +
    + +
    +

    Tutorials

    +

    Get in-depth tutorials for beginners and advanced developers

    + View Tutorials +
    + +
    +

    Resources

    +

    Find development resources and get your questions answered

    + View Resources +
    +
    +
    +
    + + + + + + + + + +
    +
    +
    +
    + + +
    +
    +
    + + +
    + + + + + + + + \ No newline at end of file diff --git a/torch/torch.quantization.html b/torch/torch.quantization.html index 8272bd837..c42242f22 100644 --- a/torch/torch.quantization.html +++ b/torch/torch.quantization.html @@ -31,7 +31,7 @@ - + @@ -60,6 +60,7 @@ +
    @@ -74,21 +75,7 @@
  • - + Ecosystem
  • @@ -104,23 +91,68 @@
  • - Docs +
  • -
  • @@ -133,11 +165,9 @@
    - - @@ -159,7 +189,7 @@
    - master (1.7.0 ) + master (1.8.0 )
    @@ -205,6 +235,7 @@
  • Extending PyTorch
  • Frequently Asked Questions
  • Features for large-scale deployments
  • +
  • Modules
  • Multiprocessing best practices
  • Reproducibility
  • Serialization semantics
  • @@ -231,18 +262,24 @@
  • torch.distributions
  • torch.fft
  • torch.futures
  • +
  • torch.fx
  • torch.hub
  • torch.jit
  • torch.linalg
  • +
  • torch.overrides
  • +
  • torch.profiler
  • torch.nn.init
  • torch.onnx
  • torch.optim
  • Complex Numbers
  • +
  • DDP Communication Hooks
  • +
  • Pipeline Parallelism
  • Quantization
  • Distributed RPC Framework
  • torch.random
  • torch.sparse
  • torch.Storage
  • +
  • torch.utils.benchmark
  • torch.utils.bottleneck
  • torch.utils.checkpoint
  • torch.utils.cpp_extension
  • @@ -258,9 +295,9 @@

    Libraries

    Libraries

    @@ -464,6 +490,8 @@

    E

    @@ -1347,6 +1553,52 @@

    DeepLabV3bool) – If True, returns a model pre-trained on COCO train2017 which contains the same classes as Pascal VOC
  • progress (bool) – If True, displays a progress bar of the download to stderr
  • +
  • num_classes (int) – The number of classes
  • +
  • aux_loss (bool) – If True, include an auxiliary classifier
  • + + + + + + + +
    +
    +torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, aux_loss=None, **kwargs)[source]
    +

    Constructs a DeepLabV3 model with a MobileNetV3-Large backbone.

    + +++ + + + +
    Parameters:
      +
    • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which +contains the same classes as Pascal VOC
    • +
    • progress (bool) – If True, displays a progress bar of the download to stderr
    • +
    • num_classes (int) – number of output classes of the model (including the background)
    • +
    • aux_loss (bool) – If True, it uses an auxiliary loss
    • +
    +
    +
    + + +
    +

    LR-ASPP

    +
    +
    +torchvision.models.segmentation.lraspp_mobilenet_v3_large(pretrained=False, progress=True, num_classes=21, **kwargs)[source]
    +

    Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone.

    + +++ + @@ -1395,10 +1647,10 @@

    Object Detection, Instance Segmentation and Person Keypoint Detection

    Parameters:
      +
    • pretrained (bool) – If True, returns a model pre-trained on COCO train2017 which +contains the same classes as Pascal VOC
    • +
    • progress (bool) – If True, displays a progress bar of the download to stderr
    • +
    • num_classes (int) – number of output classes of the model (including the background)
    ----++++ @@ -1419,6 +1671,28 @@

    Object Detection, Instance Segmentation and Person Keypoint Detection

    + + + + + + + + + +
    Network
    Faster R-CNN MobileNetV3-Large FPN32.8
      +
    • +
    +
      +
    • +
    +
    Faster R-CNN MobileNetV3-Large 320 FPN22.8
      +
    • +
    +
      +
    • +
    +
    RetinaNet ResNet-50 FPN 36.4