forked from wentaozhu/DeepEM-for-Weakly-Supervised-Detection
-
Notifications
You must be signed in to change notification settings - Fork 9
/
runweaktrainingresv2.sh
27 lines (26 loc) · 1.26 KB
/
runweaktrainingresv2.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash
set -e
# python prepare.py
cd weakdetectorv2
maxeps=50
f=4 #2 ../weakdetector/results/res18/weakfd$f/weak029.ckpt
# Training
# CUDA_VISIBLE_DEVICES=0,2,3,1 python main.py --model res18 -b 32 --resume ../weakdetector/results/res18/weakfd$f/weak024.ckpt --start-epoch 1 --save-dir res18/weakfd$f/ --epochs $maxeps --config config_trainingweak$f
# Inference
for (( i=1; i<=$maxeps; i+=1))
do
echo "process $i epoch"
if [ $i -lt 10 ]; then
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --model res18 -b 32 --resume results/res18/weakfd$f/00$i.ckpt --test 1 --save-dir res18/weakfd$f/ --config config_trainingweak$f
elif [ $i -lt 100 ]; then
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --model res18 -b 32 --resume results/res18/weakfd$f/0$i.ckpt --test 1 --save-dir res18/weakfd$f/ --config config_trainingweak$f
elif [ $i -lt 1000 ]; then
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --model res18 -b 32 --resume results/res18/weakfd$f/$i.ckpt --test 1 --save-dir res18/weakfd$f/ --config config_trainingweak$f
else
echo "Unhandled case"
fi
if [ ! -d "results/res18/weakfd$f/val$i/" ]; then
mkdir results/res18/weakfd$f/val$i/
fi
mv results/res18/weakfd$f/bbox/*.npy results/res18/weakfd$f/val$i/
done