-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathgenerate_dataset.py
136 lines (106 loc) · 6.49 KB
/
generate_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import dtw
import time
import numpy as np
import input_data
import network_settings as ns
import math
import csv
import os
def get_dtwfeatures(proto_data, proto_number, local_sample):
features = np.zeros((50, proto_number))
for prototype in range(proto_number):
local_proto = proto_data[prototype]
output, cost, DTW, path = dtw.dtw(local_proto, local_sample, extended=True)
for f in range(50):
features[f, prototype] = cost[path[0][f]][path[1][f]]
return features
if __name__ == "__main__":
for version in ["1a", "1b", "1c"]:
print("Starting: {}".format(version))
# load settings
ns.load_settings_raw(version, "1d")
full_data_file = os.path.join("data", version + "-re-data.txt")
full_label_file = os.path.join("data", version + "-re-labels.txt")
# load data
data_sets = input_data.read_data_sets(full_data_file, full_label_file, ns.IMAGE_SHAPE, test_ratio=0.1, validation_ratio=0.0, pickle=False, boring=False)
# proto_factor is number of same class prototypes
proto_factor = 5 if version == "1a" else 2
no_classes = ns.NUM_CLASSES
proto_number = proto_factor * no_classes
# print(proto_number)
train_data = (data_sets.train.images.reshape((-1, 50, 2)) + 1. ) * (127.5 / 127.) # this input_data assumes images
train_labels = data_sets.train.labels
train_number = np.shape(train_labels)[0]
test_data = (data_sets.test.images.reshape((-1, 50, 2)) + 1.) * (127.5 / 127.) # this input_data assumes images
test_labels = data_sets.test.labels
test_number = np.shape(test_labels)[0]
proto_loc = np.zeros(proto_number)
class_count = np.zeros(no_classes)
# gets random prototypes with equal class distribution
for tr in range(train_number):
cla = int(train_labels[tr])
if class_count[cla] < proto_factor:
ind = int((cla * proto_factor) + class_count[cla])
proto_loc[ind] = tr
class_count[cla] += 1
proto_data = train_data[proto_loc]
# sorts the prototypes for our benefit, no actual effect on anything
proto_loc[::-1].sort()
# remove prototypes from training data
for pl in proto_loc:
train_data = np.delete(train_data, pl, 0)
train_labels = np.delete(train_labels, pl, 0)
# start generation
test_label_fileloc = os.path.join("data", "test-label-" + version + ".txt")
test_raw_fileloc = os.path.join("data", "raw-test-data-" + version + ".txt")
test_dtw_fileloc = os.path.join("data", "dtw_features-50-test-data-" + version + ".txt")
test_combined_fileloc = os.path.join("data", "dtw_features-50-plus-raw-test-data-" + version + ".txt")
train_label_fileloc = os.path.join("data", "train-label-" + version + ".txt")
train_raw_fileloc = os.path.join("data", "raw-train-data-" + version + ".txt")
train_dtw_fileloc = os.path.join("data", "dtw_features-50-train-data-" + version + ".txt")
train_combined_fileloc = os.path.join("data", "dtw_features-50-plus-raw-train-data-" + version + ".txt")
# test set
with open(test_label_fileloc, 'w') as test_label_file, open(test_raw_fileloc, 'w') as test_raw_file, open(test_dtw_fileloc, 'w') as test_dtw_file, open(test_combined_fileloc, 'w') as test_combined_file:
writer_test_label = csv.writer(test_label_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_test_raw = csv.writer(test_raw_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_test_dtw = csv.writer(test_dtw_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_test_combined = csv.writer(test_combined_file, quoting=csv.QUOTE_NONE, delimiter=" ")
for sample in range(test_number):
local_sample = test_data[sample]
features = get_dtwfeatures(proto_data, proto_number, local_sample)
# set the range from 0-255 for the input_data file (the input_data file was made for images and changes it back down to -1 to 1
features = features * 255.
local_sample = local_sample * 255.
class_value = test_labels[sample]
# write files
feature_flat = features.reshape(50 * proto_number)
local_sample_flat = local_sample.reshape(50 * 2)
writer_test_raw.writerow(local_sample_flat)
writer_test_dtw.writerow(feature_flat)
writer_test_combined.writerow(np.append(local_sample_flat, feature_flat))
writer_test_label.writerow(["{}-{}_test.png".format(class_value, sample), class_value])
print("{}: Test Done".format(version))
# train set
with open(train_label_fileloc, 'w') as train_label_file, open(train_raw_fileloc, 'w') as train_raw_file, open(train_dtw_fileloc, 'w') as train_dtw_file, open(train_combined_fileloc, 'w') as train_combined_file:
writer_train_label = csv.writer(train_label_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_train_raw = csv.writer(train_raw_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_train_dtw = csv.writer(train_dtw_file, quoting=csv.QUOTE_NONE, delimiter=" ")
writer_train_combined = csv.writer(train_combined_file, quoting=csv.QUOTE_NONE, delimiter=" ")
for sample in range(train_number - proto_number):
local_sample = train_data[sample]
features = get_dtwfeatures(proto_data, proto_number, local_sample)
# set the range from 0-255 for the input_data file (the input_data file was made for images and changes it back down to -1 to 1
features = features * 255.
local_sample = local_sample * 255.
class_value = train_labels[sample]
# write files
feature_flat = features.reshape(50 * proto_number)
local_sample_flat = local_sample.reshape(50 * 2)
writer_train_raw.writerow(local_sample_flat)
writer_train_dtw.writerow(feature_flat)
writer_train_combined.writerow(np.append(local_sample_flat, feature_flat))
writer_train_label.writerow(["{}-{}_train.png".format(class_value, sample), class_value])
if sample % 1000 == 0:
print("{}: Training < {} Done".format(version, str(sample)))
print("{}: Training Done".format(version))
print("Done")