forked from daviddalpiaz/r4sl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
07-knn-reg.Rmd
467 lines (341 loc) · 14.3 KB
/
07-knn-reg.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
output: html_document
editor_options:
chunk_output_type: console
---
# $k$-Nearest Neighbors {#knn-reg}
**Chapter Status:** Under Constructions. Main ideas in place but lack narrative. Functional version of much of the code exist but will be cleaned up. Some code and simulation examples need to be expanded.
- TODO: last chapter..
- TODO: recall goal
- frame around estimating regression function
## Parametric versus Non-Parametric Models
- TODO: How they estimate...
$$
f(x) = \mathbb{E}[Y \mid X = x]
$$
- TODO: parametric approaches assume form
$$
f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p
$$
- TODO: non-parametric methods consider locality
$$
\hat{f}(x) = \text{average}(\{ y_i : x_i = x \})
$$
- TODO: since often no points will satisfy that requirement
$$
\hat{f}(x) = \text{average}( \{ y_i : x_i \text{ equal to (or very close to) x} \} )
$$
## Local Approaches
- TODO: how do you figure out what is local? what is "close to"?
### Neighbors
- example: knn
### Neighborhoods
- example: trees
## $k$-Nearest Neighbors
- TODO: for a concrete example of a non-parametric method...
$$
\hat{f}_k(x) = \frac{1}{k} \sum_{i \in \mathcal{N}_k(x, \mathcal{D})} y_i
$$
- TODO: how is nearest defined?
- usually euclidean, but could be any distance
- TODO: implicit minimization (compared to explicit minimization in lm())
- fitting really just amounts to picking a k, and seeing the training data
- TODO: basic picture
- for various k's?
## Tuning Parameters versus Model Parameters
- tune (hyper) = how to learn from the data, user specified
- not specific to non-parametric methods
- model = learned from the data, user specifies how many and form
## KNN in `R`
```{r}
library(FNN)
library(MASS)
data(Boston)
```
```{r}
set.seed(42)
boston_idx = sample(1:nrow(Boston), size = 250)
trn_boston = Boston[boston_idx, ]
tst_boston = Boston[-boston_idx, ]
```
```{r}
X_trn_boston = trn_boston["lstat"]
X_tst_boston = tst_boston["lstat"]
y_trn_boston = trn_boston["medv"]
y_tst_boston = tst_boston["medv"]
```
We create an additional "test" set `lstat_grid`, that is a grid of `lstat` values at which we will predict `medv` in order to create graphics.
```{r}
X_trn_boston_min = min(X_trn_boston)
X_trn_boston_max = max(X_trn_boston)
lstat_grid = data.frame(lstat = seq(X_trn_boston_min, X_trn_boston_max,
by = 0.01))
```
To perform KNN for regression, we will need `knn.reg()` from the `FNN` package. Notice that, we do **not** load this package, but instead use `FNN::knn.reg` to access the function. Note that, in the future, we'll need to be careful about loading the `FNN` package as it also contains a function called `knn`. This function also appears in the `class` package which we will likely use later.
```{r, eval = FALSE}
knn.reg(train = ?, test = ?, y = ?, k = ?)
```
INPUT
- `train`: the predictors of the training data
- `test`: the predictor values, $x$, at which we would like to make predictions
- `y`: the response for the training data
- `k`: the number of neighbors to consider
OUTPUT
- the output of `knn.reg()` is exactly $\hat{f}_k(x)$
```{r}
pred_001 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 1)
pred_005 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 5)
pred_010 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 10)
pred_050 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 50)
pred_100 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 100)
pred_250 = knn.reg(train = X_trn_boston, test = lstat_grid, y = y_trn_boston, k = 250)
```
We make predictions for a large number of possible values of `lstat`, for different values of `k`. Note that `250` is the total number of observations in this training dataset.
```{r, fig.height = 8, fig.width = 6, echo = FALSE}
par(mfrow = c(3, 2))
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 1")
lines(lstat_grid$lstat, pred_001$pred, col = "darkorange", lwd = 0.25)
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 5")
lines(lstat_grid$lstat, pred_005$pred, col = "darkorange", lwd = 0.75)
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 10")
lines(lstat_grid$lstat, pred_010$pred, col = "darkorange", lwd = 1)
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 25")
lines(lstat_grid$lstat, pred_050$pred, col = "darkorange", lwd = 1.5)
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 50")
lines(lstat_grid$lstat, pred_100$pred, col = "darkorange", lwd = 2)
plot(medv ~ lstat, data = trn_boston, cex = .8, col = "dodgerblue", main = "k = 250")
lines(lstat_grid$lstat, pred_250$pred, col = "darkorange", lwd = 2)
```
- TODO: Orange "curves" are $\hat{f}_k(x)$ where $x$ are the values we defined in `lstat_grid`. So really a bunch of predictions with interpolated lines, but you can't really tell...
We see that `k = 1` is clearly overfitting, as `k = 1` is a very complex, highly variable model. Conversely, `k = 250` is clearly underfitting the data, as `k = 250` is a very simple, low variance model. In fact, here it is predicting a simple average of all the data at each point.
## Choosing $k$
- low `k` = very complex model. very wiggly. specifically jagged
- high `k` = very inflexible model. very smooth.
- want: something in the middle which predicts well on unseen data
- that is, want $\hat{f}_k$ to minimize
$$
\text{EPE}\left(Y, \hat{f}_k(X)\right) =
\mathbb{E}_{X, Y, \mathcal{D}} \left[ (Y - \hat{f}_k(X))^2 \right]
$$
- TODO: Test MSE is an estimate of this. So finding best test RMSE will be our strategy. (Best test RMSE is same as best MSE, but with more understandable units.)
```{r}
rmse = function(actual, predicted) {
sqrt(mean((actual - predicted) ^ 2))
}
```
```{r}
# define helper function for getting knn.reg predictions
# note: this function is highly specific to this situation and dataset
make_knn_pred = function(k = 1, training, predicting) {
pred = FNN::knn.reg(train = training["lstat"],
test = predicting["lstat"],
y = training$medv, k = k)$pred
act = predicting$medv
rmse(predicted = pred, actual = act)
}
```
```{r}
# define values of k to evaluate
k = c(1, 5, 10, 25, 50, 250)
```
```{r}
# get requested train RMSEs
knn_trn_rmse = sapply(k, make_knn_pred,
training = trn_boston,
predicting = trn_boston)
# get requested test RMSEs
knn_tst_rmse = sapply(k, make_knn_pred,
training = trn_boston,
predicting = tst_boston)
# determine "best" k
best_k = k[which.min(knn_tst_rmse)]
# find overfitting, underfitting, and "best"" k
fit_status = ifelse(k < best_k, "Over", ifelse(k == best_k, "Best", "Under"))
```
```{r}
# summarize results
knn_results = data.frame(
k,
round(knn_trn_rmse, 2),
round(knn_tst_rmse, 2),
fit_status
)
colnames(knn_results) = c("k", "Train RMSE", "Test RMSE", "Fit?")
# display results
knitr::kable(knn_results, escape = FALSE, booktabs = TRUE)
```
- TODO: What about ties? why isn't k = 1 give 0 training error? There are some non-unique $x_i$ values in the training data. How do we predict when this is the case?
## Linear versus Non-Linear
- TODO; linear relationship example
- lm() works well
- knn "automatically" approximates
- TODO: very non-linear example
- lm() fails badly
- could work if ...
- knn "automatically" approximates
```{r echo = FALSE, fig.height = 5, fig.width = 10}
line_reg_fun = function(x) {
x
}
quad_reg_fun = function(x) {
x ^ 2
}
sine_reg_fun = function(x) {
sin(x)
}
get_sim_data = function(f, sample_size = 100, sd = 1) {
x = runif(n = sample_size, min = -5, max = 5)
y = rnorm(n = sample_size, mean = f(x), sd = sd)
data.frame(x, y)
}
set.seed(42)
line_data = get_sim_data(f = line_reg_fun)
quad_data = get_sim_data(f = quad_reg_fun, sd = 2)
sine_data = get_sim_data(f = sine_reg_fun, sd = 0.5)
x_grid = data.frame(x = seq(-5, 5, by = 0.01))
par(mfrow = c(1, 3))
plot(y ~ x, data = line_data, pch = 1, col = "darkgrey")
grid()
knn_pred = FNN::knn.reg(train = line_data$x, test = x_grid, y = line_data$y, k = 10)$pred
fit = lm(y ~ x, data = line_data)
lines(x_grid$x, line_reg_fun(x_grid$x), lwd = 2)
lines(x_grid$x, knn_pred, col = "darkorange", lwd = 2)
abline(fit, col = "dodgerblue", lwd = 2, lty = 3)
plot(y ~ x, data = quad_data, pch = 1, col = "darkgrey")
grid()
knn_pred = FNN::knn.reg(train = quad_data$x, test = x_grid, y = quad_data$y, k = 10)$pred
fit = lm(y ~ x, data = quad_data)
lines(x_grid$x, quad_reg_fun(x_grid$x), lwd = 2)
lines(x_grid$x, knn_pred, col = "darkorange", lwd = 2)
abline(fit, col = "dodgerblue", lwd = 2, lty = 3)
plot(y ~ x, data = sine_data, pch = 1, col = "darkgrey")
grid()
knn_pred = FNN::knn.reg(train = sine_data$x, test = x_grid, y = sine_data$y, k = 10)$pred
fit = lm(y ~ x, data = sine_data)
lines(x_grid$x, sine_reg_fun(x_grid$x), lwd = 2)
lines(x_grid$x, knn_pred, col = "darkorange", lwd = 2)
abline(fit, col = "dodgerblue", lwd = 2, lty = 3)
# k was reasonably well chosen
# this is a reasonable amount of data
# this is a rather low dimensional problem
# could fix with: y ~ poly(x, degree = 2)
# could fix with: y ~ sin(x)
# both would have better edge behavior
```
## Scaling Data
- TODO: Sometimes "scale" differentiates between center and scale. `R` function `scale()` does both by default. Outputs variables with mean = 0, var = 1.
```{r}
sim_knn_data = function(n_obs = 50) {
x1 = seq(0, 10, length.out = n_obs)
x2 = runif(n = n_obs, min = 0, max = 2)
x3 = runif(n = n_obs, min = 0, max = 1)
x4 = runif(n = n_obs, min = 0, max = 5)
x5 = runif(n = n_obs, min = 0, max = 5)
y = x1 ^ 2 + rnorm(n = n_obs)
data.frame(y, x1, x2, x3,x4, x5)
}
```
```{r}
set.seed(42)
knn_data = sim_knn_data()
```
```{r, echo = FALSE}
par(mfrow = c(1, 2))
orange_blue = c(rep("grey", 45), rep("darkorange", 5))
plot(x1 ~ x2, data = knn_data, xlim = c(-2, 2), ylim = c(-2, 10), pch = 20, col = orange_blue)
points(1.7, 10)
plot(scale(x1) ~ scale(x2), data = knn_data, xlim = c(-2, 2), ylim = c(-2, 10), pch = 20, col = orange_blue)
points((1.7 - 1.197685) / 0.6072974, (10 - 5) / 2.974975)
```
- TODO: How should we scale the test data?
- TODO: Show that linear regression is invariant to scaling. KNN is not.
- y = b0 + b1x1 + b2x2 + e
- y = b0 + b1x1_ + b2x2_ + e
- how are these coefficients related
- define how the scaling
- RMSE for both, RMSE for both ways KNN
## Curse of Dimensionality
```{r}
set.seed(42)
knn_data_trn = sim_knn_data()
knn_data_tst = sim_knn_data()
```
```{r}
# define helper function for getting knn.reg predictions
# note: this function is highly specific to this situation and dataset
make_knn_pred = function(k = 1, X_trn, X_pred, y_trn, y_pred) {
pred = FNN::knn.reg(train = scale(X_trn), test = scale(X_pred), y = y_trn, k = k)$pred
act = y_pred
rmse(predicted = pred, actual = act)
}
```
```{r}
# TODO: DRY
cod_train_rmse = c(
make_knn_pred (k = 5, X_trn = knn_data_trn["x1"], X_pred = knn_data_trn["x1"],
y_trn = knn_data_trn["y"], y_pred = knn_data_trn["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:3], X_pred = knn_data_trn[, 2:3],
y_trn = knn_data_trn["y"], y_pred = knn_data_trn["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:4], X_pred = knn_data_trn[, 2:4],
y_trn = knn_data_trn["y"], y_pred = knn_data_trn["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:5], X_pred = knn_data_trn[, 2:5],
y_trn = knn_data_trn["y"], y_pred = knn_data_trn["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:6], X_pred = knn_data_trn[, 2:6],
y_trn = knn_data_trn["y"], y_pred = knn_data_trn["y"]))
```
```{r}
# TODO: DRY
cod_test_rmse = c(
make_knn_pred (k = 5, X_trn = knn_data_trn["x1"], X_pred = knn_data_tst["x1"],
y_trn = knn_data_trn["y"], y_pred = knn_data_tst["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:3], X_pred = knn_data_tst[, 2:3],
y_trn = knn_data_trn["y"], y_pred = knn_data_tst["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:4], X_pred = knn_data_tst[, 2:4],
y_trn = knn_data_trn["y"], y_pred = knn_data_tst["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:5], X_pred = knn_data_tst[, 2:5],
y_trn = knn_data_trn["y"], y_pred = knn_data_tst["y"]),
make_knn_pred (k = 5, X_trn = knn_data_trn[, 2:6], X_pred = knn_data_tst[, 2:6],
y_trn = knn_data_trn["y"], y_pred = knn_data_tst["y"]))
```
```{r}
cod_results = data.frame(
dimension = c(1, 2, 3, 4, 5),
cod_train_rmse,
cod_test_rmse
)
colnames(cod_results) = c("$p$, Dimension", "Train RMSE", "Test RMSE")
knitr::kable(cod_results, escape = FALSE, booktabs = TRUE)
```
- TODO: Local becomes less local.
## Train Time versus Test Time
- TODO: lm vs knn
- lm: "slow" train, "fast" test
- knn: "fast" train, "slow" test
- illustrate with system timings
## Interpretability
- TODO: lm (high) vs knn (low)
- somewhat generalizes to parametric vs non-parametric
## Data Example
Returning to the `Boston` dataset, we now use all of the available predictors.
```{r}
X_trn_boston = trn_boston[, !names(trn_boston) %in% c("medv")]
X_tst_boston = tst_boston[, !names(tst_boston) %in% c("medv")]
y_trn_boston = trn_boston["medv"]
y_tst_boston = tst_boston["medv"]
```
```{r}
scaled_pred = knn.reg(train = scale(X_trn_boston), test = scale(X_tst_boston),
y = y_trn_boston, k = 10)$pred
unscaled_pred = knn.reg(train = X_trn_boston, test = X_tst_boston,
y = y_trn_boston, k = 10)$pred
# test rmse
rmse(predicted = scaled_pred, actual = y_tst_boston) # with scaling
rmse(predicted = unscaled_pred, actual = y_tst_boston) # without scaling
```
Here we see that scaling makes a pretty big difference.
Can you improve this model? Can you find a better $k$? Can you find a better model by only using some of the predictors?
## `rmarkdown`
The `rmarkdown` file for this chapter can be found [**here**](07-knn-reg.Rmd). The file was created using `R` version `r paste0(version$major, "." ,version$minor)`. The following packages (and their dependencies) were loaded when knitting this file:
```{r, echo = FALSE}
names(sessionInfo()$otherPkgs)
```