-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtry1.py
62 lines (51 loc) · 1.75 KB
/
try1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import sys
import face_recognition
import time
import os
known_image = face_recognition.load_image_file('Mentor23.jpg')
known_encoding = face_recognition.face_encodings(known_image)[0]
image_path = r'/Users/tusharbansal/Documents/face_recognition'
faceCascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
video_capture = cv2.VideoCapture(0)
i=0
imatch=0
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
)
# Draw a rectangle around the face
for (x, y, w, h) in faces:
face = frame[y-180:y + h+180, x-180:x + w+180]
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
try:
cv2.imwrite(f'/Users/tusharbansal/Documents/face_recognition/face.jpeg', face)
unknown_image = face_recognition.load_image_file(f'face.jpeg')
except:
continue
try:
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
except:
continue
results = face_recognition.compare_faces([known_encoding], unknown_encoding)
i+=1
if(results[0]==True ):
print('Face Matched')
sys.exit()
if(i>2):
print('Wrong person')
sys.exit()
os.remove(f'/Users/tusharbansal/Documents/face_recognition/face.jpeg')
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()