From 3323448138624631cfbe36cb85e31fff8d7f5735 Mon Sep 17 00:00:00 2001 From: Matthijs van der Burgh Date: Sun, 16 Jun 2024 23:54:56 +0200 Subject: [PATCH] WIP --- .pre-commit-config.yaml | 82 + README.md | 12 +- README_cn.md | 8 +- codecov.yml | 2 +- examples/face_tracking.ipynb | 163 +- examples/face_tracking_cn.ipynb | 14 +- examples/infer.ipynb | 10 +- examples/infer_cn.ipynb | 10 +- examples/lfw_evaluate.ipynb | 10 +- examples/lfw_evaluate_cn.ipynb | 7 +- facenet_pytorch/__init__.py | 16 +- facenet_pytorch/data/__init__.py | 0 facenet_pytorch/models/__init__.py | 0 facenet_pytorch/models/inception_resnet_v1.py | 43 +- facenet_pytorch/models/mtcnn.py | 401 +- facenet_pytorch/models/utils/detect_face.py | 585 ++- facenet_pytorch/models/utils/download.py | 15 +- .../models/utils/tensorflow2pytorch.py | 15 +- facenet_pytorch/models/utils/training.py | 3 +- poetry.lock | 3965 +++++++++++++++++ pyproject.toml | 222 + setup.py | 9 +- tests/actions_test.py | 6 +- tests/perf_test.py | 5 +- 24 files changed, 5051 insertions(+), 552 deletions(-) create mode 100644 .pre-commit-config.yaml create mode 100644 facenet_pytorch/data/__init__.py create mode 100644 facenet_pytorch/models/__init__.py create mode 100644 poetry.lock create mode 100644 pyproject.toml diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 00000000..d526ceab --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,82 @@ +# can be used to exclude certain regex patterns or paths +exclude: '^$' +# if set to true, fails on first failure +fail_fast: false +repos: + # The following pre-commit hooks could be very useful. + # They are not part of CI/CD, so use or remove them as you please + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.6.0 + hooks: + - id: trailing-whitespace + - id: end-of-file-fixer + - id: debug-statements + - id: name-tests-test + args: [ + "--pytest-test-first" # test_.*\.py + #"--pytest" # .*_test\.py + #"--unittest" # test.*\.py + ] + - id: check-added-large-files + - id: check-docstring-first + - id: check-executables-have-shebangs + - id: check-shebang-scripts-are-executable + - id: check-merge-conflict + - id: check-yaml + args: ['--unsafe'] + - id: check-toml + - id: check-xml + - id: detect-private-key + + - repo: https://gitlab.com/bmares/check-json5 + rev: v1.0.0 + hooks: + - id: check-json5 + + - repo: https://github.com/DavidAnson/markdownlint-cli2 + rev: v0.13.0 + hooks: + - id: markdownlint-cli2 + args: [ "--fix", "--config", ".markdownlint.yaml" ] + + # part of CI/CD + - repo: local + hooks: + - id: poetry-check + name: poetry-check --lock + description: run poetry check to validate config + entry: poetry check --lock + language: python + pass_filenames: false + files: ^(.*/)?pyproject\.toml$ +# - id: poetry-export +# name: poetry-export +# description: run poetry export to sync lock file with requirements.txt +# entry: poetry export +# language: python +# pass_filenames: false +# files: ^(.*/)?poetry\.lock$ +# args: ["-f", "requirements.txt", "-o", "requirements.txt"] +# - id: poetry-export-dev +# name: poetry-export --with-dev +# description: run poetry export to sync lock file with requirements.txt +# entry: poetry export +# language: python +# pass_filenames: false +# files: ^(.*/)?poetry\.lock$ +# args: ["--with", "dev", "-f", "requirements.txt", "-o", "requirements-dev.txt"] + + - id: ruff-format + name: ruff-format + description: "Run 'ruff format' for extremely fast Python formatting" + entry: ruff format --force-exclude + language: python + types_or: [python, pyi] + args: [] + - id: ruff + name: ruff + description: Run 'ruff' for extremely fast Python linting + entry: ruff check --force-exclude + language: python + types_or: [python, pyi] + args: [--fix] diff --git a/README.md b/README.md index 9eb1471f..70d6e9b5 100644 --- a/README.md +++ b/README.md @@ -38,10 +38,10 @@ Also included in this repo is an efficient pytorch implementation of MTCNN for f ```bash # With pip: pip install facenet-pytorch - + # or clone this repo, removing the '-' to allow python imports: git clone https://github.com/timesler/facenet-pytorch.git facenet_pytorch - + # or use a docker container (see https://github.com/timesler/docker-jupyter-dl-gpu): docker run -it --rm timesler/jupyter-dl-gpu pip install facenet-pytorch && ipython ``` @@ -50,10 +50,10 @@ Also included in this repo is an efficient pytorch implementation of MTCNN for f ```py from facenet_pytorch import MTCNN, InceptionResnetV1 - + # If required, create a face detection pipeline using MTCNN: mtcnn = MTCNN(image_size=, margin=) - + # Create an inception resnet (in eval mode): resnet = InceptionResnetV1(pretrained='vggface2').eval() ``` @@ -62,7 +62,7 @@ Also included in this repo is an efficient pytorch implementation of MTCNN for f ```py from PIL import Image - + img = Image.open() # Get cropped and prewhitened image tensor @@ -176,7 +176,7 @@ The package and any of the example notebooks can be run with docker (or nvidia-d docker run --rm -p 8888:8888 -v ./facenet-pytorch:/home/jovyan timesler/jupyter-dl-gpu \ -v :/home/jovyan/data - pip install facenet-pytorch && jupyter lab + pip install facenet-pytorch && jupyter lab ``` Navigate to the examples/ directory and run any of the ipython notebooks. diff --git a/README_cn.md b/README_cn.md index 3ed4efe8..0069f863 100644 --- a/README_cn.md +++ b/README_cn.md @@ -72,7 +72,7 @@ Pytorch 模型权重使用从 David Sandberg 的 [tensorflow Facenet repo](https ## 快速启动 1. 安装: - + ````bash # 使用pip安装: pip install facenet-pytorch @@ -85,7 +85,7 @@ docker run -it --rm timesler/jupyter-dl-gpu pip install facenet-pytorch && ipyth ```` 2. 在python中,导入 facenet-pytorch 并实例化模型: - + ````python from facenet_pytorch import MTCNN, InceptionResnetV1 @@ -97,7 +97,7 @@ resnet = InceptionResnetV1(pretrained='vggface2').eval() ```` 3. 处理图像: - + ````python from PIL import Image @@ -214,7 +214,7 @@ MTCNN 可用于构建人脸跟踪系统(使用 `MTCNN.detect()` 方法)。 docker run --rm -p 8888:8888 -v ./facenet-pytorch:/home/jovyan timesler/jupyter-dl-gpu \ -v :/home/jovyan/data - pip install facenet-pytorch && jupyter lab + pip install facenet-pytorch && jupyter lab ```` 导航到 example/ 目录并运行任何 ipython 笔记本。 diff --git a/codecov.yml b/codecov.yml index 13c41782..2bcb1b2a 100644 --- a/codecov.yml +++ b/codecov.yml @@ -2,5 +2,5 @@ coverage: status: project: off patch: off -codecov: +codecov: token: 1e4f3aaa-9c74-4888-9408-71cc7fcfb64c diff --git a/examples/face_tracking.ipynb b/examples/face_tracking.ipynb index 06d4ed18..c3b584df 100644 --- a/examples/face_tracking.ipynb +++ b/examples/face_tracking.ipynb @@ -11,17 +11,22 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-17T12:20:46.620433Z", + "start_time": "2024-06-17T12:20:46.618360Z" + } + }, "source": [ "from facenet_pytorch import MTCNN\n", "import torch\n", - "import numpy as np\n", "import mmcv, cv2\n", + "import numpy as np\n", "from PIL import Image, ImageDraw\n", "from IPython import display" - ] + ], + "outputs": [], + "execution_count": 15 }, { "cell_type": "markdown", @@ -32,8 +37,16 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-17T12:00:44.258769Z", + "start_time": "2024-06-17T12:00:44.203722Z" + } + }, + "source": [ + "device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n", + "print('Running on device: {}'.format(device))" + ], "outputs": [ { "name": "stdout", @@ -43,10 +56,7 @@ ] } ], - "source": [ - "device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n", - "print('Running on device: {}'.format(device))" - ] + "execution_count": 2 }, { "cell_type": "markdown", @@ -61,12 +71,17 @@ }, { "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-17T12:00:44.317748Z", + "start_time": "2024-06-17T12:00:44.259381Z" + } + }, "source": [ "mtcnn = MTCNN(keep_all=True, device=device)" - ] + ], + "outputs": [], + "execution_count": 3 }, { "cell_type": "markdown", @@ -79,20 +94,29 @@ }, { "cell_type": "code", - "execution_count": 4, "metadata": { - "scrolled": false + "scrolled": false, + "ExecuteTime": { + "end_time": "2024-06-17T12:00:46.190854Z", + "start_time": "2024-06-17T12:00:44.318509Z" + } }, + "source": [ + "video = mmcv.VideoReader(\"video.mp4\")\n", + "frames = [Image.fromarray(frame[:, :, ::-1]) for frame in video]\n", + "\n", + "display.Video(\"video.mp4\", width=640)" + ], "outputs": [ { "data": { + "text/plain": [ + "" + ], "text/html": [ "" - ], - "text/plain": [ - "" ] }, "execution_count": 4, @@ -100,12 +124,7 @@ "output_type": "execute_result" } ], - "source": [ - "video = mmcv.VideoReader('video.mp4')\n", - "frames = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) for frame in video]\n", - "\n", - "display.Video('video.mp4', width=640)" - ] + "execution_count": 4 }, { "cell_type": "markdown", @@ -118,36 +137,41 @@ }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tracking frame: 105\n", - "Done\n" - ] + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-17T12:21:29.845287Z", + "start_time": "2024-06-17T12:21:23.767491Z" } - ], + }, "source": [ "frames_tracked = []\n", "for i, frame in enumerate(frames):\n", " print('\\rTracking frame: {}'.format(i + 1), end='')\n", " \n", " # Detect faces\n", - " boxes, _ = mtcnn.detect(frame)\n", + " boxes, _, _ = mtcnn.detect([frame])\n", " \n", " # Draw faces\n", " frame_draw = frame.copy()\n", " draw = ImageDraw.Draw(frame_draw)\n", - " for box in boxes:\n", + " for box in boxes[0]:\n", " draw.rectangle(box.tolist(), outline=(255, 0, 0), width=6)\n", " \n", " # Add to frame list\n", " frames_tracked.append(frame_draw.resize((640, 360), Image.BILINEAR))\n", "print('\\nDone')" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tracking frame: 105\n", + "Done\n" + ] + } + ], + "execution_count": 17 }, { "cell_type": "markdown", @@ -158,22 +182,13 @@ }, { "cell_type": "code", - "execution_count": 6, "metadata": { - "scrolled": false - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFoCAIAAABIUN0GAAEAAElEQVR4nOz9Wa9s2ZEmiJnZWnvw2c987jxFMAYymAPJrGqoStVCoasBAXpQFyBA0E8SWoAA/QAJehHU6ofSQ0GAJKi7gOqqTJJBxsCY7jyf+fjse1jLTA+21nY/594YmMzMSmbl4uWNc4+7b997DTZ89pkZ/lf/6n9b1/XBwQEAtLq9P/0v/sk//5f/8r133z95dfJ/+m//D5/8+td5ajqdnMV1Bt3/xb/6l5s7O0VVA9F8PndV3W23/8v/8l/82Z9/mGUECACCgOLkq989rRbuz//knnj+D//Tx599/tnJ2dloOvn4l786ePXKe0eERCZvd4cb25s7u4JS1zV4RmAiAmRjsCqr87OT5XLh2ANgv9vtdDpHJ8dk0v5w63/1v/5v/uk//WedvPt//N//t//vf/tv0wS7W51//b/73/z8L35xfn7unBeRunKuqhOT+NrVdTmfTYxgnue/+fjjL7/4whjz0z/96U//5KOvvrr/q1/+8srVvffff//+N/dns2Wn0+n3+51u++XL58fHx4iUZTmzbO/uX7l2Nc9zZgZBZvBemKXVahERgKRpkqapMQYAnKsNQprlNknn82lVVSxIRAAAhIhkbZIaC4RZluZJy1oiBGMNpbhYlk8ePl7MF4wMiMaavb2rnU7P1SwCAKJ/BBjiICIiQJDR6PTp0yfe14iQpr2bt+622m0RDxIGMDOwiKAgGiAgBDg+PXr5/KmvHCIBIFmzs7O7u3cFCZuvABFgYQ5fSoAGEBFfvHx+enrEwB7EmHRna/fqlatEICAMIiKIKCL6KSNAqDMAi/nsxYsX89lCBIwxw42N3f29NM3XHwoIUQAAEAEREIBAyJD3brGYn5+fz5dLFgFAgzTsbwyHwyRJiEgQGZExfBZAEAFQAAAxPBQxwfpAnVgIyxTmee11NPEHBIDmoWBtIb5joFz6hTD7tYu8+X5Z/34BELzwBrr8UQRA+Lsbl+fn+9998e4uPzvKxXdcfpxL72/WMb4KzIJAiBZAPHsWNsaISLuV/+xPf/rej+61WokwGAsgIADCgAhVXf/lLz/9+NNPKyfeszWGBH78wQf/7H/253meCgChEAEKAsJyWf2//j//7otvHoAHFEDE995777/+r/5ZnlkgQPIADCDM9pv7T//7f/Nvi9ITUq+T/uidd7udjWrpnj558uTJUyFwvkDvAPxkMprPF1mWEREiMLu6rrwAIBmTGDTLZbFcLvNWqjut3W7XdV1XdbvVRsSiKERkOBz2er00TRsRVDsuinK5XE6nU+89IOukMTMCWmsFJEkSay0R5XmbIKE0GwyHe3t7Ozs73cGgNxgMBhv3H9z/7/8f/7d6Mc2QLCWIBo0x1iZJamxmszzL87zd2t7Z3tzabnW77W631WrleW6tzXJ7fnr+f/0//1+OXr9KkVCcMYAEhqy1mbGpSRJjUmPTJM2SLNna3B4Mhp1ut93tZFmekJ2Mzl8+fFQdnR0/ePTo098sJqO9ve2Pfv4ntpV9/ttPXj5+WlTLKVejerngOk1aO5s7/U4/S1uDzc2824E88YbEYOX5fDTrDDZ+/JOPHj95cnpy0m+308xkQMN2r5e2/Hh6/PT5y6dPF4vZxvbm+x9+uH/jxuz8/Hcf//Lw8SPvlqUvvKuNCHpJjN3Z2trb3TXGzKazyXgM7IkARTxI5SovngUExAugMcYmgMAIXgRFoHSGwSJiECUq2JhRBAGtIYOEAAiCIAjIzHVVO+e89yiinxoMBtevX81SunQqjDHOl81pERFhRhWf8RyJCCG2221jjGMHIOx9USyYGZDTNBH2+qmwY/BtkgUBDel1jTH7+/vD4fDs/BwRRQCJ9OPWWhGHSN57Y8zVq1cX8/nLly8/++wzAb575x34+c8//91nT548ee/9987PxoeHR/fv309SmyQmSRIiU1VlVfn5fLZcLtM0reu6WJZV5YhskqStVstaq8LIOVdVVVmW3rs8TYhMp9tF7E4m07KqvfdEiGAAgJk9eO8EQCwmhhIwqBOo90+IQCRB0HyXsHv75PxeQ2V9vAwipkny3ZdFREIqy3K51FUDRMzSrNfrJ0nC7HQD6EV0EQEAkRCBRZj5/Px8sVgwMyLleb65uZllmT77992sVFU1Ho+LomBhEUzTpNfuDAZ9a+3fwGz8kQ68vEXeUPn/wEbzeBfUdpJYEeGaQYLOns9nn376KSG8/947SWIBVx8VgSRJPvzgR8fno6fPX3jPiCjMz549fXxl573375K5sJ3yPHn3R/eevng9n81BgJlfvXp1dHR288YuCIhQFKi4tbU53Bi+fn0KIM755XLZyjrj8fjg4NV8Pm112yACCK52y+USERObIKGIMDMH0xWIxHnvnDPGJEnqfU0U7Pg0TYlo3SjRna8HzVqbZVmaZq1Wyzk3n88h2sHSDJDmkBKhNZaMpTiMMdZawH+Am0hEhMVamySJYVHdRETWmDzPsyzZ2dnpd/tJkpIxiKrgVI4BASGJMfQD5Qwi6JqSMTrhFO1qG9+BAsLC4lmcJwFDSAZU7IsAILD3zjnxnr1vvngwHHZ7HXzj2BOhMDMDNb5CeO7guCGCgACCGl/iBVWck3HOea6dq4W9Z5ao7N/+bACknhEIM6s1h2uvhsdD/QtYhIi63e67774LAJ9/8dm///f//vmzlzdv3tzc3Hz16tXGxubVq9c3N7fqun7+4hmitFotaxMAuHX7xt6V62mWtVotEUlTSZJMBImMGp7O1cy+qqrlcnl6esre7+xsZnmrKMo8T1ut3Hl2znnPIIJIAL5m8cJ1bRNKE0tEBgDizUL87/fs/8aKenPQD1ZF3nvvffhqJGNMludvruwFFwRBAGbzWVEUAAgoSNhqtzudTrhpvHzvuLoOzOeL8XjsvQdAa+1gMOh0OkQkEj62ZrFdelwoiuL8/Hw2mzEzGrLWdrvdjeFGajP4TnMkWoAXbuaPaOB3/lPkj/KhfvCQi0gDXtphuu7GmF6vh0iz+bQoC9VGRGYymXz88W+yNL1777axBIqpEOiO7g+6H3304/F0dnR0orbvdDr74suvrlzdGW70128CEW/euHL12tXHDx57dgAwnU4fPnq6v7+dZtR47YjY7XauXLlyeHjOzN678XhsyJycHp+cHnrHALneflWVzrl2u2NtIgICTMRERlgUf/LeO+darRYhehAMVu8ysYmwMLNzzlqrHqeiTSo2CVEQ8zzf3t5GxPliqpqgeRBjTJZl7Xa73W532p1W3s873W6/3+v1BoNBq93O0sz8wRZt0PXNqv11FDoKADOH6yCEx/wBsvGySRrwMBAQIrLWkvMQVAPmWba5sZHmye7+3qDfTy45IfH7kBCR5E0I59tGMATlkkS0uk6IiALs2XtflRUhIAoikKpLYUQAEWbWDzf6fGNzwybWMSj4CQAiAAKGjHA0tQAgagK168ITSdA0a/pS1GUVYQH23nnvRAQJjTFvVTPGGmuDGeG9n01ni8VCZTo28JUAMzOzwlsikiRJr9frdrvMMJmOR6NPv/7mq729nTRNP//8s/F4cvPGjb29ncVydnJyPB5PAGA4HH74wYc//bM//+b+/dOTU/aeSNrtbl36oiwNIYEQorF2Np0evj44PDrKszRNDSItlsvhsA+AaZqIsHOOvRfxIgCeHXN8ahAR7z3FNQkaCJHordYWBiW1PoUX5RESIaDI5YW/cBVEEKnqSkAwWnkKZK0Drbrjm9+EmxMpiiI4DQDWJr1eN02tAK9269oXUUCRQdiPR6PlshARItPudDY3N621/P0nCpz3k8lkMhk75xDREHU63c3NzSxJQd4wGSJ+gIgIEo9jOEdvns6/e2P/DTT7298JF1bxO9b0j2U0W/dbHl9lxWrnf/skSbwgGGta7Xa73W61s9F4vFgs6roWEECazeYf/+YTQHrnnZtJolGzII4t4a2be+PJh//+f/qrsijU6Tk4OPjii6//yT/5c2svgHztVnbv3p3XL17P3UzFy+Mnzz784Ed7+4PGShCUJLH7+/tEX9XOeQ+z+bQqy9OTs6JYGmsBWGGhsijb7Xar1UYg570AIhljE/Ben9+5uigKACgrZK4hqiLvPCFBPI8AUNd1E/ExxhBZ1RXMbIhEwHvPzESUpllHR7e7vb01GAw77U6nM2x1elkrV3UuhMaQIRThP0QDMzN7r9vVUFR/v88gQoVI2TMAICARXlDr3z6iv6c/ByXlmRVnIASigJSSsYPNzU6nk2a2N+hnrTYYumAuBPkYbuAHzokIrEdWVN7qz3Yl6ANOzK6umZkIDenSqg8KLOK8V/ODPYtInmXb2zsmIaBwRghARAgwtZa9Zy/sfV3XAICEzOw5qEJjUECQgAgAGDX2hogABEACIoziG9Gv50H/sT7rRJTaRJWQ9/7BgwfDrY26rpMkRUQ1DxlZ4yXeeQIwxuR5zp6tTZhFGAC4LJfdbufnP//ZF198eXR0MBqd93rdH//4g4cP0ydPnhZFWRTFaHReFQsLcnz4Kk0ShYHKwjHLdHJuyFib5HlrPp2dn52383xnezs1VCxmZBJEztKs1ekYmxeLoqhK55hZwIsXRmyRIWZfFFXt6h71AI1RpYsQ7Y+L0cqwH6jxeoLFEeyO5s93jrBq6Jld7RqFDwCJTbI0hTWle+FzwTjA+XI+no4ZPJCAQJ61er0eoAoIFIbGh9XwKyGoyFhMJ+PzsQgImjTPt3d3kjyX6NMgoUgQjWrIN0gAM08mk8lk4r1HRGNtp9PZ2BgmSSIiKHreoli/cOPRHPv9x98qpv3dUuQftEf7A4esfli3Qd46bQQmIZuYJDF5a9jtdY+PT05PT73XEI4cn579x7/6FRDeu3sjTWkVcwGwhB+8e3tyNv3t55859oRU1+6rL+/fuHHj5o39dXSBCO/evHJ/b/fJcuHZi8jZ2dmzZ6+2t/tG3QEUBEHC/b3dbrd7fnomAkVRLHk5nY6ZHQmKMCmAVC6Hw40ojvTMkMUEPLHzznFduzzP0zQ1hpAyNRs1ysuOq6pi5qIoHj586JyDyGAgImMS9dbImE67zTEGrKMs66qejsfz05NRq5WnabYx3OptbLQ7nU6no15xkuV2vjw5OBTnSC4gUt8BvP21xlvhrotvAHhj1b83WPXGFRA1+mnIiPcWME+z1KZZkmQ2M3nLV5UI27wl1oiw81x7x8AazyAAw5gQJdEp/O6vl0DUUbWFAEC4ck3UU2FABhAE8b6uXOXY2yRNs2x1/AWF2TsX50CIaGNzY3NzE9ZlhAACGILUGmGZTKrjw4PR+blGFIJwFVl7MxEZwKDAEZAAUQAFBBiE1w3bZt+whPgIABChSSwiiXjv/bPnz67dvN7v961NENEzO/aGvPdeaVmKdnY6HYOYZTmiUbMBgBHh5q2bGxsbn3zy2aNHj+7f//revXv9fr/f7xfF8Wg0+uSTT46Ojrz3k8nEWpumaSufMWO73Z5PJ4iIQMYk0/EkMWY4GIgwCFprq9pVZblYLCpXDYaDXr9r5mYym6sV5r3XGHPhXFUVVV3l/ZY1ASJrttC3iWkMWioEcBENMxJaCCwiAWEKM8YizWcIQBq8TNizcyRISOortvKc0IgACnCEk0FVGgYSFQDM5/NlsdSvNta0Wq00yZVkoDe07gVHIw3Y82g0qqoKBIw1Gxsb/X6fiJhFMELwa2i1gKgWBuDJfHp6flZWpQJo7U57Y7iZpy11biVYp8peQgqsHkHAYAhL4/YirLHYAtSgWBAgXRIGK/xMLvz38qJcXiO5eD4lRHTCll7HA986FOTiNdDujQP/3f/8Q4fgJQH2twURxOe6LIXXv1+C9f1dz4iIaZqmaYKEgGKs6XQ68/l8uVx6ESAS5tF4+uvffJLl2c0bezbGdxGABDpZ8ic/ee98PHry/DkwI9JsNv/tbz8bDPr9flsBHAAggH43f/+9dw5eH8zdHAScc0+fPf/gg7u9XiZgSNldCMNBd2trYzwaMasbUHp2AszsWDw7P5/PrU1Um4oIUSDYqD1de3bOKVKaJEkAwtaMBmONOrhJkhCSZ4+I1lpEMoYQTCM2RYSBmQKK671nDwAOEYuimEwmxtiT4zNK0jTPsizL8zzPW9YmJslOz07U9VwfEo1dUoSJCMlEYCz8ibcrFALX+nZGREJDaEita8VcIQipJjiNgfjCAEIUMB8MDqUCafEEhcNPiIiEgoAmgm3CzOCRAIEMEQKC5GnazlupSRIyeZJmJkmTJAHDAOxqARJrxRjmmr3n2jEDh2AsYogWW0ICFiQwSKSEPFDf3BMRe46oMDOieZuxYEVYoHlaYPaeGZBskiZJFvS20OpRdf8LENH+3n6r3Yp+mu4KJiADkFpbl+XTx8/u3/9qNhtba4kMEkX5H5HT4NrqzwS0wroBeT10QIjGGCICQO+9q+qqqr33AGCThIwB8SKyWCyqqqprl6beGOucc86lNtX4AVmbEOluzpKk1WoRUlDAAqen5x//+jfdbk8lOzM/efLk+vXr7XZ7a2truVyen58vFwvlWwkzES2XSz0tIgLAZekQCJGSxEwm406nnefdw8OD2bzY3Nq8evUKCCzni42Nzf3dvTyfHh+fLOsCEZyrT0+PF7OZAO9e2Wu1cudFt7Hiz5GU22AVUSIFm0f9RdFpFEZES4S6mQECLbPBXVVd66EkBkRg9q6qFSIGFEJq5RkheL4o/6JPqRLAez9fzEUUwMA0zXr9vk7dmjxsEIuV7phOJ5PJWIQBsd1pD4dDpaoKXnxf85QoAIJIRVmNx6NlsQRga2yr3d7Y3M7zHAU4wPEa9cGGt0YiDUgvqs+Eo7Kl1aHAJmr9XWPtZVn7+9Ltrv3jsoJmWYvA6Xu/wwPWV75T5f3tesjSBOPjv/8uh1rll+IY3wFDA4IxptvpEJmyKp2rFGzsdrsislwuhdUBwtOTs9/85lNLf3r16o6SRgLgIrC12fmTn75/fHY6n8wQCQFfvnj1+PGzjz56z65lBBjCm9ev7O3tPn78BBBE5PDo6Ph41O3uYQCiAAHaebqzvfX08TP2DCBce+9qRCYilvro+Ojo6OjqlSuAJEqyFj1khsFRvIi1KvxCngMhraBBkJRsIyTXBOy6y6M7G0EEJJK2BBqwWp9ImKuqAs+VqxeLwtqZTZJWu9MfbpRVySsUWsL/VzsXVS0QUZDnAfAC9evYOWAxYAhFFW04gBA19EqDgKxt+vgt8pbjFsSuXNwPmikR5IA6AALACAwCiNYag8jOJ8a20yy31gIaFkQBx4zg2TOh5lCEu3IMzgtztKYliOS1yJEhNEROj3aUroTEAgAsAgyMARKMBh8iIlhlFyMgAOuM6TJ78BBsHBQARGT2zjnFbAXEGrO3vZNnqWnMcwSCYCOm1pTL4v7rg+OTI5tQnucmwOwXTheRaSL8iMEzExFmD8gcmXorq1gEQBS9986r76i8WV0a9syB6OSV81w7x3q2CFOT5GkGAHVV+boWFhD9Rgak6XT+y1/+KkyoMb1ezxgznU6tTfM8N8Z474nIEFljEDG1loypna9dJQUDiHcsQgCY5Rpfac9mk7IoXe0AcGdnxxgzGo1GZ+d2y2xvbLDzJ3xW1fV0MplOxpPx6Oatmzdu3+j0uvPZUoF9tRybqcNvlz/B+Hr7i2+8udkHgoBUV845JjIqcpPEtvL87TSq5uQAVFW5WMwhar52q93r9sNuigpG1jScuqTeufPRuQYmjDWD4bDVaYuGai7ePhExMxKBeHUgxqPRYrFAYQHJ89ZwuNHK27h2j9HiRggGSUDpEQQQvHOenWcmAmutTuxK/30fN+SvAbhd4nOvEyCVX/H7XvA/u/EdO/7tbzcCOJ/PPNfCDEiGbLvdzrJsMplMp9OqrAkQ0R4cHH/88SdJ8rP9/c2VGYOAANev773/wbuf/uYzVzgELEv39Vff3Lx5ZWdrsH4aep383p1bL168rMoKABaLxZNnL27e2DGWArBCkCR0/er+J9aWdQ0ahlMSK4pz1Xw2NYayPEOlwa4/iYToT5JaEVGRr/6iMp/XdyOuydYL5jmARvpAA7FrWQkRMIOAixIhoTEEiIiq7U273cnarTTPyRLjSsGv32X8+y3WKwICCzKw89EoR7z4rkuABq602vpXiYJFIhcQJX3XionVPN3am1RfhU8iZWmWGJK6ahFSajNjUkHDjOi5hlrEe48AYEhQHcDIH4pfg4goUc2v3XPzzPE/iEgIHH6lloKIBuCaz1rvvSZNojCLgEiapdZaX9bx0VeTHkwRYQAZDobb29v4hlAiBAJIUgKR6WTqPSepAVDfH0mTm9YD0mtRwsZyDEbWhSSWNx41LDkqUa3ZbcrWds5BxFa982mSJtYQspGwKhK3IwQnU/I839vbOz09nU6nCmRVVeWcEwEio4C/IarKMkmSJElF1PkmAHGu9t6zF+/BGDMY9NPULovF69evl8siyVo3rl8fDgdVVVlrnj55+uTh4x+99/7u/tUsb718/erg8PXJ4aE1tLe3uznYwNQWRa3x0ni0foDoj3NkDL0htRAF17bq+n5BAHS1DwRDFEFGi2SIgQFJrTm5fDlAwOWyqOtalb4x1OsPkiRpzk5wmCV8DShqJDKbz2azqUqQVqvT7w81+nUpp1XXmohQQAC892dnZ5PJiL1DgCxNNzc2O+0ukZXGilybqPDxIMCZvS/KwjnHwOonEVHM8IqTLHE+BJsd+gdnYFx8KEFaRYOQgeHyilwYvOZKQJjIt1AB/vYGRS/mP8kQCCdgpVQkej7f9hHxs9kssUmSWsV1NZcmTVNlCE/Hs7pyIOCdf/78Vbvd6vZ+1um09OP6oGliPnjv3vHRyYsnL8QjIRwfn3/91eP+Lz7KMtPcnDF46+bV4WBwdHwiInVdP336bPzRe5sbXYiICwJsDYedVqtYLIERkVSbAqJ3vtfrbW9v53mORMBqNl54XoXrmnAbRJUQ7nZN6a6p5Eg0WgE/IiLOOaVf4ZpQwdUBIGNMYi2QJZumWdbvD3b39nf397uD/iefuhfPnsQZojhRlz2qN1dF2RvK/IrTFnGu1ZIFLBvWTqNOnZ5q5sbNFfU8EZCIvPgAWYMoCAEIhiKnigiIAikTScloaZqmiZW6TgDRJpkxmTEJELB4carjrQlhCRYW9lVVOecBQYG1xl/Xp41322C1qxVpOMurGSJEovXtG1jQ+vAhHokhXtvsyKgShZlRkJnzduvHH364ubmpTr6+AQUw7gFj0Bgjwt55gEQRc4nXWoGh8TmahVSo1XsWcMwMAk2EGKIDQQDivasq3Vl6rnR52XsW8d4rG1AFnQhba7OsheTromIRICAgslZ1KgAgsDX23t27e3t7o9FoNpttbW055w4PD+fzuZKwRMQgJEmCSIR0Zq01SXfQy7IUooFZ1y6x1lpMkrQolqenJwCYiZydn26c94louZx7dscnR5PZ9Gc//8X+/tWy3Pjqi9+Nz0fXr1+zZCwlhNagASCF/ymyoBGFiEQuC6AGShKRsOVBMduLJ+StAxEAmL2yP8K2sNYktsFSwmlrTCJAZVZPZ1MvrFBMmubdbg/RqH0WZbYENkqwtMU7f3Z2WpYlACdptrm12coz5Td85w3KfD6dTsfO1wBgjBkMNzrdLhkTuC7yhnUuQqC5fVjXfjqbLBZzERAEYynL8iSxADYaCzFUJXHL//X07ipqFYa/eAZRMP7iH33f7x/NBm50kmrfb93VAuz8fDZttds26RiFRAnVlG3lreHtQVXWr16+Ho0mzMzinzx9urE5/OlP308S21yVADb73T/58Qez0fT8bCJgfO0f3H9y69aN6ze2GieHEDaG3Zs3r52cn3HNInB6evry1dHGsBuMOQFAaHda/X7v7PSMBfVQ6+NUVZXneZ7nK4bphUcJM6DRGYh6VDTROHiKF3ySMEUksvKlEQDqulZfAhGTJFGPC1ZGvaAmAVtrEmtsmmat4cbG3t7V3SvXNrd38lbe7w20tkkQLWtu0ht3Hcvd6B9AdeXX0Opv8R3Xr9K8GSBUNREGZQVdUHMXMKTgPoRNo0YFMSCRTdM2ppaZ0UJGFkqXOkjR5iZJyRCgsLBnEAGKcoRFOGQGBQELAQxWCczCEh3F+J7mLtZN5pAwQoAUr84S4K+Y4IXBQVbXEAGI0FqNYgdRioDsvYAg4qDXv3XjRpalzNxoaL1QdLI0bUvYexAwxtgkCYK7qTbUKOS1hVTxzcIxfhmXKgIyIAhKKHJe4/UrGAXCkQWAqqq898zQ6/a6nX6v0yUS5wpx3nu2SWLJpHlmNE6CAIiz6eRXv/pVludEpKwN3antdofIJknNzMIuS3NrkqKoqrIupF4UZbfXzvMMEVnYOe9dfX5+KiKRT27qqvzmm6/mi8ne3l5dVzs7W1f29l88f/Ef/+N/+PDDn1y9dt0am2cZilgy1pBzDkGKYllVVZZnFtEYS2QATGOyvDmandc4WGvbm+CiYmj298pmRmwYN8aq94CX0pcQdRuhQarqqq5q/UIAaLXbaZoLgA/7cqUQA3+bEDwsl4v5fKYCot1uDwYDY4iZNWobgt4I4ROAAIwAZVlMxueuKlVPdnu9wXDTUBIAKFiRlFDFns4SIoLUVTmZTubzWV3XRITGtLNWu91OkoSMwWau1PO9sJffMsdvzGFz2N4CwUXE4aJpvP76+gs/dLyJYfxe7//ucRlh+vbL/DUNiMtT9MM/+AYM87YhIiDeF0VhjMmSJEkTAMzzrN1uDweDnZ1hlqUHBzf+6q9+e3x85D0ul+XvPv+y1+29++5NMCtbMzF44/re+++/+6tffVKVXpDOR5Nvvn64szPIc9t8X5KYd+7e+ubBw/PxBJDKsnzy5Pm7797MUgvBg4dWKx0MBtEhFfWOPDMRKXqHymNC8BHDCU7hmgkSvFglc6/NxqUpQWwUNaguFBFmjwjGGGNI6y6sLYcQISCiITCExhhjOp32zvbu5uZOnuWEZIxNkyzkukjjBq77gTHo2WjWIG0a3CIiuOGoxXh0c9JE/Q1BwAbzaEwuCAQkZhYWAURjDEaPsZkHCRyP5nuFDObdztbe3v6NG2jtwevX47MzciJlTQwGyQoic8SZY2olBHfTew8soOi1amBUKSkRQg0/eM/hflkUFl9xLUF9PGwSVNS5V+zLAqEa7T56Uew9MBNAliREzTsRUbOPwBizsbHRbre9fzuAhgh1xa52ANDgHolNrEmITIOONibeuqJobBelFDTMO1mvIBiIaBiedW0PaoxEwDsvIpwk6Y9/8uPM5p12J0lwPp+8fPFiNJrkeU6AaZIEgA+RCNnz2dkZru1ORc0FhMgGN5RSaxJEm+eGOfPeL8tyOpnWdd1qta0xBIIsdem8dwKxWgrzYjF7/PDh4evXvV7v6tWr7bx9587t4uv7/+7f/burV68VyyV7v5jNvXOuroqqApHlcuG9zzGHsHrY6JawsnHyo3+JpPy/tTlBDYAiIbAIoOA6r7X5SSLhXAgFUAiFVvZaA1wTIIia8eDKyle13o0Sy4lMPHYYYz0Y1w1FoK7ryWRS1xWAJEnS7fXTNI0HufGyV9gOCBCQq4vR+dlysVA6cKvdHm5up2mOSCKAIBzvktRBClQGRIS6qsajs+VyGeL31rY67Xa7k6YpKiME1RVQ3iRfRMYax3h9vOmorNSoCIL41WuyHgMOxvLFj/8evnYUxHzxl+Zb3n7p9n74aGziC6bCRRgcLu29H6Aa4ycvvfE7SQtv85AuuL/f9r3eucVikRjb6XS2tjY3hsPNjWGrlVgLCHDzxrZzP/nLv/z12dmZCEyni9/89rNOt3P9ynbDVUWALLE/evfOy1eHTx4/FwQv8ujps7v3bt6+vd/cAiJcvbpz/frV88lEEEXw5atX56PZ7u5QRa2qgyTJiEjYIyGS+No5z3neMsZCFHrfIkujy4kozHpJBkJh5fg3G0xEEClwcOKvleSvVSOj4rsQ6VG1QkiGDBEBGjRJmrfbnV6S5spqBoGEEmBEJjBBv62AbJVNQXcbFVCr3YIgIHVdKwQtsFK6gqY5OYiIQAE6w5Ue1LX27D17L+y9F2YENBS43857ARYETRMS0BoSwsAibIi2N7du37zV6Q9KV7eMXQgiC3pGIEJg9uIkapcoihTOZC9iFJzDkE+BgWMmCCziGWStNojOd1xy1IUKAhtJKW8iwOHAoAABhjzgpvwFR4ITCJOmTDfWlIYZAIwxw+FGmqYAl4IAwb5hD0eH59PpGFGU7I5grEmtSVRtUlgXFnaAsG6RQVCvCIAcvdvGGtLYSSC2sYhwXTvn6pU4IBQQ7z0iG2O2trbu3r09Gc+tSa5f3/J+t9VuffP1/U6748sqy1ObGDVII1qN7Oq48Oi8RzSICOSECBEIybMQeiQz3NxstVqz2Ww+nzrnimWZZXliU2Oo2+0m1k6nk6oqmUWwFs9cS1ks5tNpVRQ3b97a2t6+c/d2UZSff/5pXVW9ThvBn5+dAPvU2iRJ22m+KJauqiJ/rRF8HOoBIasACwdUM4gohI4hgseXhRiuZL6qSADw3jdwAxEmaRJN7DVkAUBtaq1As1gsvXeIKCBpmrbbHSJ0K/5znFAJ3jcJjKfjs7MT7x0gdnq9jY2hsSaIu1W8P3xRc5nZfD6ZjJkdAKZpsrGx0Wq1gJBj/vOaxo6qHBERnatH4/FsNhNhIrJJ0ul12522MRYCQTRiSnrsxUBU5xS96G8Lf75V9Ks9fBHR+Wt6ij/wG/9zG5dU8lsMGgz+kKvK8Xi0t7d3787NTjtFWJnW1uCd23vO/cmvf/3b8/NzFjk9G33y6ReD7l/0+nlzzohgY9D5yY/fOzo6mc8XADibzh988+Tq/nbWWjnBaZLcvHn96wePqtID4XwxPzg43t4eGINV5ZdLd3wymU7nAMTg1Kjz3tXOt6mDkUSjhBQKgpoFOJJfVYwHyY6EGiIU1rrUl00UbOQ1rI7USsAqHhOR6/hhIrKo8UkiJAIkx8gQhDBFx51DVqEeNIyIVcA0g8Z8y4qhc86zbzzeeEDjLUNzcPGN9QVEg0ISk1IlItEsLCLOOUFiVnY3CYhnibFXJKJ23jKAxWQymc3q+SIFJDQJGaOSUwRYIBT5VqtF85qwdo6QsHbeOYlAL2kpIVyFA97cooFudQEDiB5GKAmyMuvthU9qnRRRSlGNKIGaJay1iz17FsnSfGNj01rrnLy1Smhd8etXx7PZQnNA1GUyxhqbKH9PQr6JaE3wlX65vHqX/60oSnx0AYC6rlztIrwTPWBhInPt2pWf/+xn29u96WTh2SNhltq9/d3RaLw53CCB5WLZ7/fPz050QUEMRgPy0ldLk9mKkQHC3Ot2b9y8qRVqsiw7ODh88fxl7dgmqbUZGb1b47zz3oM4YQbAwrnjo+ra1SvOVYbwX/yLf3716pX/8X/8H0bjc0Pw8tULYb+zu2+TbGM4nL6cVfOKjG23je6Ptyx5MKEC/oOaAEgYYd3AoJagpAiUxNcApwIAoFsWtZoVJXnaQUmE5VKPAQQCYURiL8tloYcKCbMsz7J8/Y40IqL/ExREZOfHk0lZVQCQWDsYDPI8j9aANDevCjVgIABVVYzHZ947ALDW9AfDXm9AZMLmj6IBQBBJhQMRCkJRLieTyXw+q73Tuj/9waDdbiNRg4Wtiy81guVt+/mNcUG/RvNUkxEDd/IHXOQ/zfgBCux73vD3anyb/627yTn38uXLq3u779y7Hog1UR5aS/fuXXPe//KXH89nC+f4+bPnX25u/OmffZBlNti3AoRw/frelav7Dx8+8SzC/OzFi5OTd65d324kBCHs7+32Br3Tk3PwWFb1o0dP93Z3yZiz0/FiWU2ms6Io9U7V1atrDwKEhGuVD1j9BxYW8Coi1YRGZuGwr5o02Ug75AtCAVl8rFpFgIAK8hAR6RmPO3/l28RJwWas5ilGNSV6h3plJUyq8kVQ6o/erqz/Ub0soCFPadBNWa1QVL4xMyneXriDoPWYkZmEgVl5riKo1bWYY+aPeuoSay/pbRsii1QtirqulrOZlHWGxtiQwisiCAxqmiGCAAe6NDILAntw4Bw7r84uqvsRpQ4iXnSNwhIQIjdFHmMaiKxNcng2FbYSCO7BRGJmRGDvvfNxFjTOCoTEntM02d7eGg4HIQAd+diyct9hsahevz5w3jWMISJK0tQYg0DBxVCEREQNNM2sBRbfdJshRAHkeGGBJg1uhfYDe+8ABETNNSRD1lok2dvb/fnP//za1X3V9c7VKq6TNGl3Opubw61h1yDs7u49e/pUhAFQgNmLZ48YkL0ID2jqtqgHTAZRedQgxlC73Wq1Wvt7V+7cvvtx+ptv7t+fzGb6Ge+cMQYQfO29Y2ZPZAGgrt2jRw+ns9ne/pU8vfbTj35iCf+H/9//dzodf/nlF//m//lv/tV//b/MW93ZbOada3e7aZpGu2kldyRmZxEiRKKabodA8I1lJS8ZE9HaXCFFaniFODCqr5gikgQS7iXphgDoXF1VpYZyEE2eta1N9CReenuwlgGXxXI2m+n+bnW63V6fjF3PiwgRhfAZQUDv3Wh8vliET7Xb7f5wSCYJSHPkEqhFAYFLIoKghQXm87lzNRHleT4YDNrtjgnF0OParjxnFTdNkoPaKOHXFx8/ijsBYQl/rb12OSj3j+M/zdDjjuPR6NPffmpA7ty5btMgW3SJEkv37t6Yzhaffvp5VdZFUX3x5Vdbm4M7d2+Yte4L7Tz58P13Dg+PJpOZCI/GkwcPn+7ubiRZI6lg2O9e298/Ox0xigg8f/mi+7vusL/BLJ5R+xEplVedtrIo2+0OQegio8IsnN9QOBZJ6RfIWpJIBY66kgAr+lWQfNHVBQilSmLNhaAY9SCv+6DRTlRrnOOshLxHWTuYIMCeQRCEVnIoKEhYEy8YTy828U7VNxoRXBdh1OiLYAlDbBsQOMwrN1GLOwEyEUTJzyLeM6suxgYHX1lj+pxkjKuqydm5MPuqMiyEZMgSajBNNLc34BAiBqkp8aRpT+Ccr2tmr9UO9COkqgZDVtjaros2hsayNBoYtpwEzY1BuumwEguPEhGLeFa6l7CwIWpc51hKCPb2r/zkT/+kPxw6CATdN9xUGI3mo/GYPZMlAGDNZrM2TVOkZunVfGMRSJLcq6FEpJ0KoDFVo98elI1C0MIsHgOY440hYw3XtS7lcHPjxs1rN2/e2NnbQUJ2YCwtl7UwK5NfZ9sa7PY67U4PiEAIiAXEMzvnRATRRzjUEZIxBITGUBI0BAHAspjXdWFMIsKA0ul2PvzJj02WPnj4YDKbpkmSWG26aI2va+HYeA4R4ezsdL5YJEly++atJE3397avXNl79OjR69evTs9Oj45Pb9y68/zFy+293cFgsJYqjc3Bi+uNMS8FMRAYgh8YopuximP4ePT6wukjBEEMTYqiAx0q6QRQQi5m66vaqr2vfKWVNIhsu90xZFeHGKBxugWBAFlkPJ1UdcUiibXdwSBt5ayGeIR5BYOtHbxg5vlsNplMvBcik6bJYGMzy1rQREMapzmk9gfhUhTFeDyez+fa9TLLsl6v12q1mmJDsGYsXjRgL+jOhsd90cWKu5fXMxDDK5ev8J19RP5x/OHjzemVtVXQRPqz07PffPxbAL5776axZt2kzDLz4w/vjUfTR4+eeO/H09lnv/tyc2tjc7MXXAoBQrhxfe/e7Vuf/+6LmsV5/+jx0/feu7u/v9GIvjy179y9df/hw+WyBsFlUR0dn+RZGwFrJ6PRZDqZhaQUwaKolsuy3e5KUC4h9oeIJAZEUMSEg7YS38yiLnizFfUUaMaKCkYtK6ScnpAcSEAx6c65mr3HNQwZAIWiUxd1B8UfEGM9OMTKOQEJDO417Eh97JVX/QZwGH+IoHBwcRVe19Ouupag+VZEiKYJACBAQsYiARpDRkBYHGtVaGaDRMagFzKEhMAhnkqIKoCL+aLGUjWlpeDqaqlcZhYUkiBGtA8Vrkp7IDQedgS5WBQUXE8PbdyZMCGgM8qCEf5dbdfoV0IApMFq6UECYzAR8MKemZ3z7Fn961ApiwQQGGRre+vO3evem7Cd1qNkAoDgaj48PJ5OJmmSBqyYmQgTa/v9XpqmUWaFFBcBSZKEQQSNw4qqWoV+AzLrTkDAWOY06g9ERNQ2IMYY71CAvMD1Gzf+6X/x83Y7RyJmQARjTYhxBhdFdCdYQ0liQVaeLijcw07EI1oAYPEgrMWUvEfnPFGNRGTs6Pz89cFBu9XZ3NxUy7Td6fzko496/d7vPv98Mh5LYijPjSFjEzLknAA7iDZvWZaPHj7Y3tra3d2bz2edTqfX6zHLcrF8cP+bW7fuXL9+PWu3lY2sa7wuz1fqJ+jhwE9uTFtNwTBkEQ2qPQ0Aun3WJZfeDjFaQAIQIUKbJHFPrfRumDgyCFjWVV3XWrfMGqtgcpR9IcNBU8OUa1DW1WI+E2YkzFqtfr9PxgCEHKXVBkUADCUl67oej0dlUTKDtabX67fbHc2ygtBLSgGtxgYUIahcPRqPp9Op1jPPsqzf77dabUMGGyhMrfQ1QRZnY10Tr+jNCi8HsxhDjxFoLvXtOO3fgfb9Xoh4/Ra+41bXruff/O1F3t5brrBCEX5PAOBSP2MJ4ml1N5dIZ28d36KGw8FglrPR+W8//SzJkhs3rjZ9kECAELrd7KOP3jsfnR8dHbGX1wdHX3zxzc9//tM8TyJqCHluf/Te3WfPn52engPC+Wj09OmL7Z1h03cNCba3Nnu9/rI4ASDv+fTsfDgY5Gnr/Hx6dHBQVaUKNRYvIp1OJ00sCEsj7EA9HxZgEa+ySAsAN7EWRCCbQCQZ6L6lxqcIKoFkpU+BCCxRnuXdbnc0Ol8sFgodUYjEaGqrCWIkuLBqdoTQlYKjtasFhBAZRZSZqwUoEULEk7Vnom9E91t3AoYwquAFH3iVaEpEZAwQAMaFJwx2BAIq2UqY2bFnFMmyzBrjQYiEjAHgNM/a7bZ2c0pM4p3X+lBkTGN7hE4MEkiWq92i+0KCmSLikdmS0WIEErltFGPoTcpxFNEYs/QFQgAvSEUKklAtjlCNBwVt89VEiB69mhbee+/AUHNngsAARNTqtEX9dGBV9RdtfphOy5OT06IsEi0/GYoIgrXU63XTNFkRxQS8cM0ODFrMnJAwoim0gQ9AYHsHR1ygqW8lIt47Zo+IokVQjWFAg5hYu7211Wq3AoFXzVgiRDQIBNpmkbQIh7EmzVIRAEERLRMC5EnEBMtMd4cS3yDEBgCBBIVhsShePH9BhvIXraPj4x+9936vP7A2vXXrTmLTr7788vjggLnMswyJiBJC57xjLcDqPAAcH598/vlnt27N1IbodrtJktW1e+fdH/3r/+Zfn02mn3/xJQeRh1EJRusp7O9Y+U0rGK/ODBJqDS1jjCEyElGoxmrTJ4ouboCvQAPtymeOKEoUcytjr6xKJ8FvTtM0SZIgEWClDZsjBwDz2Ww5X4iIMTTo91t5vq7zUBo2bLiCCC8Wi8Vy6dkTUbvTGQw2rE1YgIWVihiFzOp0s/eT6XQ2mynnOc9bw2E/z3MyRrQT10pMqS2+rvtXrVLXxEVjwkfBQivLMNgafxjm/N0a6xI/8Xvf/5/baDglzW9wvX1IMAlFAE5Oz37zySdJmuzv7xizmlVB2Nsf/OQn7/3lX85ms1lZuQcPH+/t7967e10lqzp9u7vDW7dujkYj79ixf/L0xXvv3R1udMJtIPT7nStX9rUiByAsy+V0MvOZPz48ODk6SBID4oF9tSyEpd/tWkMATjx5WN2wxNrgiKAk/1UbIqVvEBIKBPhFsRxCtIiBYoYxGqtuCxkkNGQSQVrj/mBIzwfVquFXcUYgAtfBIQZQCHr1hubg4bpYWN+Y0kw/QCDMSmNJQNBVwW6gmLtCK1eIwjev0OXgt6jZKyKaExy8Mw8irBhyr93b2Nja3tjsdfp51rbGmpjDAo21EFOIAIAZkIRFkALHCjz6ui5dIcZYLZ4SwGAQAVJRhRdM22bjBcxYC4tGgQJBNq5cQJTA8rS0BgEggHjv6qqsSmTWgovN9yCCsTZrtbwAa5ubN+x79nB+NplMJt7VAqzeKosHZDRq3ah4VV8evGfPAoDWWGNArBBZpeSty5nGwINYbptZNGzJzNZaQgIQROy028PBIAZtw65IUsuRE66ZcM55ETDGdjodRPLsQVDQpElCZJx3LOHmhdkgKUCkH1RCGZFhltq5VpIByqtXr0bjyd133rl9+26StG7cuNXvDR8/fPDo4YP5fJlliaHUJsJcMGtEQXFdeP78+fn5aH9/DwCSxBBhp935sz/7s/feu3t0Nnn09OlsNlOK/5osvuybBlUU1yOgUoiEuqy6m5UHIZEW0KifsOmDvkEwxhKaxq9G4OjdoqaSA0tdVeorE1GD7l44fGqxCSAgez+bTmtXA0Capv1+31h78c3YfEpHVVWj8biua0C0WdrrD9K8BWACXXHl9MRCbYIiMl8sxuNxU3BgMBi0223t/tB8TVS96j1/n5MaARNodDDHu5boJV/UiP8IOf8dj0sruI5nYIDZgpI+eH38V3/18c9+/mdXr4YeDAKhZ8K9e9ePj8+++N2XzrnJZP7ZZ19sbw03hr3msmlq33n3zpOnT89OzkTk6OTk5auTwbDTfHlmzdWre5//7ouavSJzk+lkOZ0fHr6azyb9fheAmV1ZLm1IxgVh8OCkgUBFZvN5VZVpYq2xKn9UrJdlJSx53kJjtYELCCApOhpVVsiHgEhnJjL6S/TMi8XSXeym8IYd1/Scx9U5BNCz77y7uNEvAFdvH2s62HuvJydMOuLaFzUYXnA1vERlGKpTQAyFiUT/o6qrsighgvMsXFU1e+m023tbOzubW71Ov5W3rUmNtkxYM3HU7Q8kEpWSKhxZ4TtxRTGbjH1dDQcDayxGCyAWvdco8NpUwOpJ475DQe135ZXY5QEFxINQYI2EciUhuEgxVKj9gIuyyEySpCkiKoytNDdjTZalhOBB+TaIFyEk9jKdLbXRnrBXTjt7LwyEBhGtucC7jjeMiMYaAGZDloyB4AdBiGUiNkAxAAAYZnFVLSxiwNhEokvUaXe6nZaNOh4FGSCxVv9tALyGFxDYy3QyX8xnCEyIIEyIvd7Ae8fiPYhX9rJnbdiRZVmappPJLE3aP/rgQ2vss2fPXr16uZgv+4PutWs3BOnrr74Sxlu377Ty9vb2Vr/bGfT7n3/++WQySjNDZIxJQICJnKvVOq+q8vysnM+mWZZZm5Ax1hoRqapajTREJDLWJqoUL2DCIOo3Rrtx1flEiXHBuoSgaSKxktcjl9Gai9sIsKkzHuzcKCBCgjyAZ66rSpiJxJLJ8hytiQ75WgY6oaYyFGU5nc2U39fpdFrtDjb2Mgakbe2hQJgnk+lyMRNhMqbVarU7nTX7o+F7C0pTnQaXy+V4PK7rWk0ljftGKlk8F+H4NxtpTVy86VlyECHqBkVGGq5RFP7+O6OXvcM31dVbP7baD38MDve36GCFd3TnMwAy88HB8W8+/jRLf7Gzu4EIyCHfrJUmP/7g3ZPj04ODA8/86vXR118/+tnPPzJa+FAAEfZ3N+/evTMaTbzjZVE+efL87t2rrTxRCUwEu9ubnU57NJoIiDBPJiOp/XR2XrmSIWf2y+XcOZemiTGooJRCobosrq7H5+dJmhSLhXO1NUZr75MhALA2TdKs08qITFGUznmJaaZRAavLoUkQFGOhofIGs1fXdW3rYtP7JBbao8brXM2t7iHNkgi7f933WvGf1n2A8EkVNwyVdimmlbl80XEg/SUyKhsMAZR20/Rt0GX1gaAjzlVFsUAyTpvGO+eqOrfJld39q3tXNvvDLG0ZkyAa5Vutcz503kKkmNBYq+Re9iLOLRbz8dn5bDYxBrutVruTWmvWxKNusAvbDdaOSfNIGDJrRHsoqQ4NbQm1Bw4LgKzUoaaACUtVlsvFIu32szQjIgjeqiBCnuftPA8Uc0BCNCEkBzF0I65SBxKUO4OIzntmAZXs1oLQKrlF1BJBY4xxzETWGq0mIdp+ChGBAktdCNUzAwRGV/u6qpN2liRW+WmI2M5brTRRRdsABRraZM8IhgCAYTaZjU7OP//ks+dPHyN4QhYQzRsmIidcV/VisSiWy1pKAQ+I1tp2u7NcVkme//ijP7l58+arl6/+u//u//7syYP5YioMH/74w8Taj3/9q/Fk/OMPf9Jpd7JWfvfdd1rdzmeffnJ4+EonOW91ssxOpuNiuWR2CN6z1FU1X8zTNMtb7TTFv/yrv7p9551bd+4pH4pCz2OdaomlUcIMhsSisPBESAGMjg5uKFwXC+BdFl5EIACETABAKERoVckFxhheqKKFiBJ6PLOAkMEsTQjAxxSL0P0SUTTnX/xiMS/LpQinadbr9ZMkvXwPFwXoclmMz89qVyNClmW93iBNMgzlYSl+JHix6tAXZXF2frJcLgFAtW+/31/zy1cWK70lcLJ2mNZR6JBTxCLq6QZ+aigkFzcwXr7AJYf4LQov0GQuYuB/N+MHKtQ/Cr371hGNs6hIYulKEUEkZnn9+uDTTz//i3/y5/1+B0IQAQRge7P353/6k//wH5fnZ2Pn/Df3H964ef3KlS29LAlkqXnn3u1Hj56cnJwxy6vXB2dn06tXNhsId7Pf29naHo8mAoAgVbmsiqIsF947Eee9K4qlMSYgixFw1owiESzLIs+z7e2txXzune90OmVZFEVBxmibYCJqt9tpmie2XCzmZVkxe3UqnXNNxhHGcJRqTQdK3+VQxymANipFqWkyvhZGxqamFUfgxzmHCndr3k4AoihqXngLJhsHgzjvRSLYDdCUp42HOPwSAsiGEYsOFyYEEGbnvHN6IvXYk5Zrdg48J8bsbO/cunZ9e7jRynIyCYIBQIU4ggrXGorCAmDIGrWDdD0EalctF7Pjw4Px2Zmr6yRNq2GJvT7G9bqIPAZzZ90DjmaI2n+xVuU6x0W1mHBTBdIiMAqDeEIwRleK2THEiuGrbxVIjA00wgB2NJDC6p6cZxbhUAUaEDEUjARQRbv+EAKiidNk0CB5RBN61FgMjakDyi+r0ishYs/MVV21RFRFqQ1njLGGENSpCr6bsSSiTUgSBBSWFy9fnR6dPHjwsFgWoegnAArmeTvNcyfeFRUC1VVd+AJQmL0XQWNqz+LZZmmn193b38/zlvfinZ9Ox+fnZ+/96L29nZ1vHjz65Xz+049+urOzZ4y5du1aliW/+e3Hz549FSdZmgJRmqbeu7JY1toGgQGASscVQ1vMy4PXH3/y2+39KzZJEu8NkjWhEvslr2vNLg2+shbjAkKJZwQI4Tu0giAiieYYqAqPMXhAEDBAAQpSi4ZEvNNINgKIsdRqpQhCIY0o7HUEJEFC8Z5ns4lnhwjtdqvX6xGtxZvWNrZ+ynk3nU3KqhSRJLHdbrfb7UIMnUBEq+LnBIGcr6fTcSjWbUy73b6ofePxiY0vY6Q61G2W1YaOod2gJkOddwkVaEUDciLNXePbNO76v94MECPCGgDxvTDe9/Gom0T8b9eYq4/LWnJVc/03Lvj72QTN0X7z6y698Ts+vvr2Rpz9sLv4TkNhje8AwU8AAGZ+8uRpp9P5+c//JElW3YCJ8Pat/fHkg1//6pNiuRyPpp9//vVg8LNuJ2sebHdn4969u+PxpK7deDp58uj53s7QJqR7IU/ttb39J4+eeu+VhVPXtbpAzFyWpQhnWaaHi732zwzWqvd+uVy0Wm0AYOE8T9PUFgWnaWJsuiwL9dWyLMvzVppkWZZNp9PlcqGMHRGnEGrAnRGJDBGSMUhOIz4I2nqVNIlSmqOEIUpFZJvuG6IpqSLNDgu4LQRZA0iC6DUiSygqZyJs3kw6IhAAOxeDRRJsc8D4/xDMCTsnnjnVOBovZWBX13VZcuVQG9XqioSeC5SlWbezceXWzd3dvU67DcYGppf6A9oNPRSJDMdAb88agwLs2ZeVOM9ltZhMJudnrnatdsvVtX6BqKURumWoJBAw+qRN9eW42dTlIwKvfmuQKqi+oIqX6LJqvyQP4JEEEdkzO8/OI4MNcUdNqwZCzPMsTaxubKXsYLha+HrnfV3VrE0B2SOzoqIiIszW2na73cR3ERGE2dXiWQJ6QlaLHuvqBJkogoImljqJphoz18457xs4Q/du0zZZtbcBSIlMCBLDYlEcH50cHZ/MZnPvFKBHddHD+mBQZKlN0iQzZA1ZRKprh4BV7WpXa9cMnRxNyBbB8WhydHS8t7f3L/7n/7zVyj///LODg1cijAg7Ozt//ud/du/ePWPM+Xg8Hk8EaTDcyNudyvGyqOZFNVtW80U5msxOzs5n88Xr168PD19bhMySJSRhg2JISIAESP3eNWkfdiRKYF6F1te0Oj9yWVWET6DRP3o4Qx7ehQKBuA40EaJzXvFkREwSa9MkbK6V+UwUkH6sq2q+WIiAssxarYZ+dfH6scbNcjmfTkaeHRJked7t9NMkfUPUNtsDPPNkOpnOppF4lff7/TRNoycETUF+iDBZ/EpoLishRZMhkDu07gGwMEcMKfxppHo4SGsvvf0PXvwDb37739B467fD+rfL2jb4lv3whw/8lj+/3+d/4JBvGc3rDMzIgtzIMUSsqvqrr766f/+RvxgWtZbefef21avXkGzt5eHjx0+fvmK/mqUsMXfv3eoPegJSe/fk+fPpdNG8mhi6dmUvT1sohEgs4n0tzIaInZtPpyBgyBAZJEMmVYJkkiTGGO2XICKz2Xw2mznvinI5X8yXZTmbz8uiFsFOu5tlubU2b2WDYf/q1Ss3blzf3BwCcGB3oiYqea15qCUmjUnSJM+yjMjE2hhqM4UzLbGNjrwNkYkbVfc+rAr4xzT8mG0j0Njtl+Fo0UcLGhdEmpT/yw6FYuSsxrHqTxSpq7Iuy7osvHPIWuRRvGfHbJO01x/s71+5e+/u9evXO92eoFkvnCqiiS3MDOxEdQ2SFkky7P34fHTw8uXJ4VG5WEhduXJRLGbFYuqqZUKQJYmxxtDlgq9NYQ0BZAAGZKRVr0QkodVWviSlA4jJCEK2EUAggtj0Pgx2mZ5ainDZoNdPk6RRvRSrDIpoiwRYLOuiLMqi9M4LexavzZd0Alqt1v7+fpqmblk3IIx291VPDgQpFMCMJFUR1JqU6s6HyAYAgvdei4TFzHEAEe89c1NWBdVQSBATRFXOJ4enz58+q6qqqkoA0PLFrJVoggRGzyBASZq3Wm42myt+DqHPBBqbKCUqTRJjLAixJ0Tb7fYnk+mnn352586dH3/4wfMXL776+ovlcn716tUsy7a3t3/xi19sbm5++umn4/F55uo0GQyHG0VR9gcWyDonDGBskmUtBDg8Ovz6q6+yNDEAAJy3Wp3eAIGARYvQSDDFMEIhiACkKUdqAZM0SX3fJmgb9EdJ4uu7hYi8jxiGroYWtxLwvmbtbE6QZClawxQQBwXTVgWQEefL5bIsAdEmSbfXMyY0D1+5OFo2FQkBvK8mk3FZFiKSplmv2293OhhtOIh260o2iDShX9BSWf1enq9qckGE5xsXEaNWkuhBK51yhS4EkE5EreZIw3oDflBUky/JLLn4nt/PnXzb+NtQk3+8CPPvPxorBEC1jgAQFUXx299+2uv2blzfW7cI2930vffvnp6ejMbnRVnef/Do5vX9Xr/VfHxnZ3jtxtWT8zPPcnh2+vrgeDjsYOSWbmz0ut3ufL4AhFj5l4nMbDYdjUbb29tqrHMof0hkEiJxzi2LwjPPFwvvGYEXy8X0aMbsO50+gDCLAopFsSyKMt6MMntVXAuihHJ4alQrncTYdruzubHZbrefPnu8WCwgnCCJ8CUKUMz+ClZ0c/2gS0XUr0FlLgcgqinaHBWqmtDB1W0wTmCR2nu9YkjmCS9JXJmoyoMGlyb3TA++907rCWrhAfU/BRHIdvvDwWCzPxy0el2TZQJGrS3igDWJlsBsgqYMZIzWvaiqanJ+dnZ8UhVlt91up1a49q5wrvDsiDqddtZuZ2QplNtsSg2sDcQQogWQIG4BOfp/0ESIcWVyrx++2I4wAmvapkMkOJrQWMoCiJjYJCGyAJ6BECxIU7lRBGrHJyejxWJZVRUASCAXoETS787Ozr1797IsXy4XAEEWKluKCByvPVM02BEAgDHUamEi0EauQFi52nnPCGCb3CvwnjXyQc2pEzCERFRXDA7ms2VVlLV3VVUTkTG0JlUREFjYeY8iNk1anbY5N+Cc5gIgUZamSZoo6B1bBokin/v7+61W69mzZ59//vn1m9euXLmaJvbBgwej0ejdd9/pdLu9Xu+jjz4aDAa//vWvT44PsywfDgd1Xf/5z3/xs5/9xXyxXCyL7mCwu7P76OGjzz799PGjx3mWindVVbTb7c2tbRbc2trtdvsQdYTzIpW0Wi0kKYsCRdLExp1m1P8jemPXxM0dzrA0vlosXHc5WoxRY2rzYwciascnaUZoYmQTUWIV5XjOp4uZYw8IWStvtVtCMbTcYL7QoGBQVNVsHpKI2u12vz/UbHIItSpx/c4RpKzL6XRc1xUAW2v7/X6n073kYUdXOMJOAACX1M+azxQ9qOAlXPCoListVANvfaLwzaTVSx7dW7Js/5DR3HlzWv9mr3/JeP/e2/i9nF0AuNTeWOKmWF3uDzZhRLP444UE1MeC0Wj0m99+0sr/yfbOEKNHaARu3Nh5551bn3wyLSt38Prw+fPX7394hyjwBtLE3L17+8HDR9PpoizLh4+e3LlzrdVO9cqtdj4Ybr4+PAYtUUOGkERguVwgYpKkRIYFCGJveWHvxXufpNlmq60pgyDsXF0UNZHp9XrOcVFW3vOLFy9EYv5q0L4C6I2xSZIomt3Iej3cSZLsbG/fvn2n2+2enJycHJ8iIJIhDMWN46la+Wu4NtYnUetXqEQPnvK3bzZlqXBkbYWOBStPQIKPG3OmGq86uhKNDAEQZs+w6uUgEuknrV7PtjoGTZKmYEgQGSjk+6BIU7MYQv9Za8igIUPO8+j8fDweLabTqihQxPs0WthaB0JtGjAGKZI1QpBab6wJhSFKg5+GZ5Am5YuicGnQyog6hGEvIVEiohVGQEL9FBWV7B0Anx0fLcezTpJlPqS4EIHh4E8U8/r16+Oqqj17QGFhIiJrgL0gIuFgMOh2e8ZoopEA+DClLKGpC5EgYoCgYQVoaFM6EARIjEUEBljWZahuZSxGCr7IiuKLqAcNiJCQRueTTp7MxgsSAkbhCzU4dZaIIskLAJCsTY0x7FeVlrUSOot4YSdM1jZ7JEnsrVs309Q+fvz4+dNnxWJ5/fr1d+7effz48W+n03d+9O7O7q619ubNW9Ykh0cHnVY2m03Oz8fPnj2/c+fdn/7Jn4nAaDL23u/s7rz//vvPnj7d3Bi6ujo7OyVrWBgQmV1ZFlVVWWuIDHs/mUwWSTYcDqezCZG5evUKijcgBAJoDFIULm8R0CvxGn9PkVdxgQmpUdNYGcd7HwF+NDHcEt1yoOYkAzjnloulMJChdrubpBkAhAqza5fXQIoAz2bTqqoQ0VrbaXezLGusyAu3jUIgzH42m87nc+210Ol0+r2+IcPCjexoCNPhtmT9ahiNzpCyJwjC+hvR5mgXp2utatfqIt+r8P64fc2/6bv/fdXpZZz8jfjFX3+IyMHBwee/++IXv/izbjf4uASQp+aD9+4evD58/uLlsii+uf/w+vX9/rCtOxEBrl7ZuXr1yjdfP/TCLw8ODk/Obt7aBwBBSBKzMdwAsCIsQmQsENV1jUjb2zsaGRFQIhOjgYZokKWZAtFltdRmAK12DwGdB0BKksyYELi1sU4kABhDiSVEZGmIyqRAmCGDSNYmed7KsixUlwzkKyQ0iHpMMMqHhmSD6z8DgLCyVCTq01imCmM4sDGJG+0ZCcwYxGOjn2IaX6ytryvRLK4GjMINaeYuMzuvTQAZ0SMyGkwzm7fybi9Vii42jbZRtWE0s8J9EpnEpqlNiHC5XIxGo+Pj47qqxNVaqhECOzpGiUOnh7oqC3Y1MGPse3DpRIT0ZQBY8Sso+jMYqhKFR9dc2NhpAwUA7JpVgsHg16KlII3WEWHwHrg+e/Xy+Tff8PhqO++0Oz2btwwa44EMeIZy7s/PJmXlvLCgOGAhIGvRuyRJWu1Ou9vO8zxJEq3MFLilrB2TOIhJMI1RHEFHiG42gIpUQgEpq8qzR0RrDQFqsnftfZCh4c2AHPbjowePDw8Oj4+OvK/ULCMCa0OdKTV/jKEsSQXQOefY13UtmgoFGApZCwJLXZbOecceYg6ZiBdhm5n96/s2s08ePzk8PFwul9ev3/jwww8fPXr0249/8/6HH1y/cdOQ2dzc6nTaWZIcHb8WkQf3H8xmy+l0/pOPfnp8eJSkyXC40e6079y5IyDFck4G5/N5WZWI9PLli7r2xpirV68NBoM8T8uymExGzLX3fjabTsZnSWLrqtQssqaizdtH4xYEzAcbAmRzxCQCRQ0lb61wtEnTXHWVCqCLJZOwqqqyrADQWjsYDIzRwi8YNyhE+xcAYLlcjscT7z0BtFqtbrerTRdWVww+uJ4Vv1wupuOJdw4QW1k+7A0SY4EDbNWIhIgINbv8wilqAJ5VNDj8yI1FvPbn4smL748w2ltHgy78gxw/3PHFN374/nf/tdX/+rYJmuHS6iEiovf+8ZMng+HwJz95L9FK0QgIMBh233//3bOzs/lifnBw9OTJ85989CMyYce2s/Sde3efPnm+LMrJfPby9cG167tkSAC8VsgV4FiXlVnq2qU2zbJc8WeAkFgg4DWkaozV6BKI3hoQGbIm4sRgIydDCyhFexoBRakWUjuFIaNXhsZYo55M4EaJl0hrBWnULkAoNKTXDNV7KGROYHSpvXPrKyNr2xoDih3LPEXTPRaeAAEObYyb8M/6RdZXam394j8RQDuMAQAYa0yStPPh/vWbw539pJV7D45B7QNR6RwKYKBw5KVaIotpkhLRYjE/PT2ZjMdVXYmwCDvnvHcdaaswZ6+mBgiLq+tiuayKJde1kj848D6U6KLaMahZ7VKgIHsTtYTmEdZ856AyUEgk9gNuqJkraSPGGFDbChiEPbv5eHz+6iCZOxLqb2xs7+93h4PUZiZF5+HkZDQ6n4K4sipUsYp2ejCUtbNrN693u60Gk9F7EUFmDe+GwEJT3jr682HPUCzthERap4lDdhOo3aWpIa6uxWu5NG1/G8o7MctsPi+r5XQ+qVxNRCIeCUxDMVetIJDYUB2s9rVjByJECBLexsKudlVVsTAZSrNU+zgDIBFp5+Ptne00TSfnk8PDw/v379++fefevXsvX7788osv57P5zRs3jTWEOB6PFovF/v5+UVbXrl0zZKbT6WQ8zvP86OiY2W9vbY9GI23ZZExyfn62XBZ53gLBLEu9r5ldnreHw761dHZ2VlXVycnJ+fl5ktj+oL+7u5uQMcQIHjgGci8IogbKldCMGkFLZxGSbqy1ExPgKVGDGEAAyFArbyuvcs2ODccLEYqi0AKieZa1221FU6RZWFCfVBT3mYzHxXIBIsYm/X6v1W4FvFgaFCca3ABVWY9Go6osgSXVVKU8F4zbId7ImuqLYS4B0IOkdM5wPkLKETZ6OBZxjQEeCDjPhXj65SSkiwPXTJLmRqTZ23+z428KfP5uj/PytwSCQUhyg+9CJXH1/D9grMDKv5bp8sZsRINvddiDoVYUxTfffLO7u3312m7zojF4587Vp0+uPHj4YFkVXz94dOPmtY2NLsY+ldf39zY3hi9fHXrnjw5OF4va2qQo3GS8nE7nENrsCIh4z1VVtfKWMeZCSj2gZ1JevXI2RDgxxhj03kcIE/ni42MonhjkpJbEh2gKijBZNsYk1hhD1lKSGNQkT2tDooiea2YkhBA2jq4sAAFpJgWiCPhQLC/AEKHsmxAKUCgzqydIxTCHOtMRA1bAKKBngrGnHmhguOkG/C0LvIbThtRKNDbNu/2Nwdbw+u07WbvrvHestcMCMs3CwD5yj7UidGqtQYK6rhaL5fj8dD6bVlXtva/rqqpq75z3ru0rT4EGRELAQh649uI8sAQcGIHJi8Y9CQCRA6c8PCyIZoM08D4GwYgARGjIGEPWMDgO727ygDHkjemmDLwetZIQBYiRmKEoi+V4wtACxtGinJ6NBrvbV25eH+71y9q9fP5qPDpPU+udR0BgZC/WGDImzbKt7WGrpQ4NMYuiC+o8htMbqp5AeIEARWIKMCjpVq05Y4xGajW0gLGLCAC4umKOKalxTCbL1wdHtfcmJQZw7NLQVWFV0B+BhKGu66osPYghAKFaAz+CmiFNZADA164sSu99kiSdTueCCFY1gbCxsbG7vZum6aeffvr111/u7u5eu3a91+s9fvz45Pj49u1b/X6vLIvzszMAaLc7+/v7d+7eFRZEcuxfvHoJnuuqds6lSb5cFMLCDOfn473dnAxUdVHVhfMVSwoASZJOJlPvfa83QKSiWBweHkynk1u3bmWZFXaGSIgk9NSKVZR1QjFWslD2ljLa4g4CEaCGe6ABD9GkfkQxxmiZoQZs0cPVyLn5fOE9E1G310vTdBVHbgRx5CoUVTmbzdgzoWnl7W6nb41VLG4lLuN9sveL+XKx0NqWptvpdDodQ4mSXeP5Da1E4gMEWS4r6EuichdQHCocitVFGmV8cY1XP38/Ihqiwt+aefwPZsRZ+nvt67/VTBmNRl988eVg2GuAaETodLIfvXf39eHryXRydHz89Pmr/uBdivWPe53W1Sv7rw+OmOHg8OzLL553e/2qqnS3U5QbIKApA9R0qg8SB5QUBBJK+mqFxVU5+lUJyguzKlHHxX3FwiyCzOy90zasCWBibCvL81Y7y1p5nmulW2PMyjhdDcaGOUWBJR7r7sW5ajZ5ePp1s5wEjYLepNV+ZY1yEuz70OZvzSlcC/yHJWlOnDQR4fDYAV3HJEk3Nja7vc5g2OtvbHpE77l2tbBXt16AAUKFRAK0aZIkaZbmSDCdT8/Hp5PxqCorYF+UZeldWVa18ogQhAwDVHUtLMjag8qL8+AFAelSVoiKIWNWjuv608SUiihJBCAEL621YIh8sO1BY8AQMBGvDxz6qwlQEK8gAsJAQFXlpifnLN2UEkm81Dypj6WS8WRrCf71y5ez2SRJrJLOld2sWlwgRLNVzkMTTBNEMSIUgfeAwstKNkb5G1QbJsYSITJBIObhym/WbF/nw1YHBIDa85NnL18dvLZkERFZcK1PRawaE9k2zHVVeWE0JAGcCXiNFqwREedcXdciYq1Nk/TCjg4em5ZztdeuXyvL8tmzZ6enp5PJ9PbtOx9+8ME39+//5je/vXnzerfb7XS7Z2fn09n82bPnve6g1+s7Vy+LJSJOplMiun379mw6e/jg8d7e3t7u/mQ8McYkqT09PamqKs/zbqfLwsYYEbA26ff73W739Oz4fHRWV9XR0dFkMrHGbmxuIyIBMTR8PIjlbxAQlRZIa2GgRo9FKEo9OtJEhyhMCDSa0AhfjTABAIJzvFgsJaTz9hS3gEs+JICW5p7P52VZIqK1ttvt5nm+fs3gZ4Vuh1JW5Xgy0uIAeZZ1u93EWpVMEP5DCBTer3Z644yGv0IHNta0NWkc4VWle7UWBLTlxPd4u/9Qx/c41gG+f4us/ns7gke3lmDtvX/x4sWjR7s//vF7Zq349rVre3fv3v3sd58vi+L+w8e3bl0fDtpqElpD167s/+53XxeFG00X3zx8eufuXa3ZjwAoDMyAwMzO1dpbTL2kINpWUKPmCmpxIhbApsqL5gZIk5cb4KB4OEUQwLM62S62HlGuZ2/QHwwGG61ur9ftDzc3N4YbZVVSLKr/ljlZm50LcaQ33i2opOcglgX0gBFiYCuF3N14XUEAFvYcThOuBNAaC3r1ZbL2lZGYoewvIGM6g4FNoN1r2zwX9lxXLA5CS2BgEc/svEOALEmzrJXY1Ht3fnJ+cnZUlAtXV96z876oytI759kBmCztdDqtXk+QXEhX8gDC7L1zVVWydyHiBho5pcaOQSJBrRS1MjvWSOGs6LLOlIYVkEwtTt1aAAks6GCWEAEih7RcbZ2IAIwCKESC4mVyPjpemjYlg82tHIygn51NTmez02L2+uB1WRauJu999DWYjEEA9kHpr0fmVFaKiGfvkbUgSNycAQ+EUAYOEMMEkzEiYJDEc4MP6Owzs/e+Zi/QlFmD5aI8PDipa2dTY4CYOdK01Ocj5sCcFmTPrqyKuqoRkaz1zoW0dYWD1FXybMgQ2TxrZXkL8c1NLdrYMEvT2zdvbG9tLhfLTz759LNPfvv++++//6N3n794+uTxw8Ggf+PGzes3rn3xxZevXjwfj0fvvPPu9u6uc7VFLMuiWKbz2ezZ0ydHhwd5nvS6rZ3tzaKsFqNpURRpms7n80M5NMa28s6tW7em02lZlqcnJ2enp9sbW7u7Ow8fPnxyfm7RtPNO2uoQAazxdBs4VwJZOtZANwSoVEedw2AAhap8Il4C6ELGGDSETe0KiHaPIEJVVVqaKkuzTrvTrMn6sdd7qOtaOygYQ1mWdns9Y40iIyC4ltSHAOKcm81ny7IARGtMp9/PO23tAxyD1wSAQtG7ViEX98TqVmXl/mLYb+HX68InXOKy2fCP449yxDgLBfAs6uCyrL7+6pvdnZ39/e3mzXme/ujdey9fvzo6PDo6Onnx/GDQvwOh9ins7m4PBoOiPGXm+XxRLIsszebz2cHha881IIv42Ww2m82Hwx4RRq+CEZGaNr4IpPtSKzI0m/IS8T4ANkAq/UGAUcFN8aD9G9I07fV63W4vyzJjLSIZIEsI7IW9r2rwsQMArPpev22SLoBTzVxBPDjBIn7zYyIcqz/h6p164jheOp4naVzHALW+dbFkzcE0ic2spQSSdsvmqasqFoldQVFiXU8CY43JsjxJkqqszk9PT06Pi2rJ7LzzRVlVniv2HgUT22m3B8PhsD9o2xQZFEsAAETwzi2Xy+VyURaFU0wXAIHQaHEiDEtBGNozRINdIum7sbVElJTs15QzIiAhWBaJ7gVqIDmUVgFRRDIsEwIAsHDlebKcLSuW0m3WPhmKQygcHh4dLBYzL54BhB1iCIyr4+VKpzNujFUkRH139ZO998IeEJCYwQOpZ8K6JwlElHYlzMyWtIkGeOfYe4gtIfURnHOurhkgtt6G2XS5XCw10K1tnGWlK9BaAgIGBgAGXlZL7xYatrTWCoigFxQRtiaNcD4ihFz6dt4iJK0fDrAWMBMBZgQhg4NBr9/vdh7kL189/+Wv/nJ/f//q1StXruzr6ray7OrVK3mWt7v9LMtEGEHyLL2yu1PX7qsvPpvPZqnF08ODXrs17PUeHD2czOdbW1vG0JMnT7rdzs7ObppkeZ4T0YsXz09Pjlt5a3dntygW8/mMiJLECnNdlEBkktRYu4pwrsBnigV0kMhA6J3CTehXXWIMOYEqC1C17/qBgaipRLCqKmWx5WmaJqnA5SQdtV1EuCgWRbEQ8ES21++2Om0JrTmDuSYghAFUXiznk+lY+1W3Ou1ur4uBAcAxErkWgND8Ymk8elmrr7cm6dYC3pelwNt++Y/jj3RIlP8al5DVppazs9GXX94fDPqtViiVigg7O8Nbt26enJwVRfnw8bM7t691OhkAIEG/19rb2Tk6OkYwVVEUiyU7//DBwydPHnbaqUHxzIvFwnuvuRUS/AuCpoNmU1lJAenIUSI0sdT+hRMjIAoiC2NEblBAlDsMALPZdD5fEBqbJMbYNM3zLGu1Wq1Wy1AyGY1A1KZt9KcwxlpN4RfCoWoDr52O4LgryAgR1cRG0QbQFfTDICzMzUsKAwQ4M2jk6AOvubtvWy2RcMNK82aLhIBkrbEWq0q0lw83AR601ibWWmsQaTqZnJ+dT87Pa1eKd3VVlJVb1nXJAtYm7Xxje6s3HOTttjWGGMk1WE7IwvTeu6r2TrvTqug3gKJUJDJGy44ZNIYMYKziFW6cVaaE8hHCwKy3K1ENo4BVewWQRAL7RlhAQq/EyIIJudbMUpMURtjCeDmbv1jQ+UnnxtW6n89mY+9KCR4LCwTA1hoDiLV3zgsg5GlqbRKeUwtk+dDPAggk1G0TFh9qIUAow7seViAMbTNVKWvbD2b2zK6uNGMdYrCiKEoRQEKWFUFdT6KIpGmiPCwRYfZVVXqvHwmtfiTCRUSx9AvEkIZIlqbGGHZOwAOywQCjR+QcRUShfzLkXD2dTk5PT54+fbK3tzcYDEajkc5vlmUbGxtZms4mU67r/f394Z3bn37ySblY5GnqvZ/PZ8vFvN/rzmcza0xijaur2XRsDZVFeXBwYIzd3Nza3tr0dQksp6fHh4evl8vF/t6V4XB4dnZ6ejr2Itdu3tjd3Wdcqagm2KNaFhFEK6MBogho2CDg/wIAGm3Ss2XsqkfTm9FQHwvA5nnL2mgRXQimCBGy8Hg8LssSANIsHQw2EmuD9SwIyBi6kwoCVnU1m041xmGzpNvvJUmiGhoQKJIBZJViIUGqhKOlJdK1FXcwr9fNbFnRAXX7NHDJd0qKtUe6xBqSFYsmTPLv5Ul/DwL8Ay7w/VHq33NcvODl6uKX/3nBh7l4nRCix0vvvxTSudQwmL9z/r/tYQVicaRYSS++HyDahc7VT5483t3d/uCDd4zRIoyQJObu3VsPHjw+PxsfHB4dHJzeu3dVr5Mmdn9v94svvmYB591kMkaER4/ujyfn7dauIHjvyJrNrc0kSWO2fcim5CacgsHPW00dkrHGhI2HpPk6MUQnwl78qiqkemThCJNSJjyKq2oiLko/n8+tMWmSWZssFguGGO0DREAOGzIan6J8W2HvOaQecTOrkavLDEDiRLTEkugdqv5d+bURNgOA2rnlciksqIX4VZas4sEX1m5F1YvQlCJYIsDee2AyNuRicChZIcyEaAwmSZJkCSFUVTmbzieT8Ww649o7Vy+LebFc1p4rQSbTamWbuzudwQATW2lLPUrAgLE2OumoLfbYe1eX7EMLOxCO6U4i3lPDlbqwZ0VtGJTmOCAACDN7F8PJAYS1K8AhQsMheqy/pgaBAwF0wFOp0jTLEqxZqKyK8WzQSVK7VRQFs9eKwAJeg0PMbJNECfqq0a0hox2gwoOyl9qDZ/ACRkmo7D2woKiMVKLZGlsqxsO1p68AIhlE8t57h3Xta+e0piIIVJWMpwvQulBqcOkkhh4THFGCMEmqM9nVqjyMQRHWyKjeORlwXuU3CECSJISKBTWuVWzgu/IdEQC893VdK0g+mUyMMUVRxKeQVy9fmm++SdJcCYivX+8O+/3Dw0NV/M55Y6l21XQ2cb4GdsfHR2mabm1uDIYb0+lkNl3krRaz39wcbgy7jx8/evz44XK5JLL9Xmc6Hb948XoxLwcbGzfptiGCaNI0swoARAbAh0wErXMTqPXNvmriZxo/hsQmpCEQjsdOzVxBRCzL0ntvyLRaLSJiFa8XByJq3wsAIKJOp9vK2wRGlAZIwfeNJ1OWy/liuXDekaF2u5XnLYzZ/EKi23XNjg1G9pr7qweWI9NBd4Q0eyAKu+b9K7ANV29YjXUYM/zzH7rPvP7If4h9EKyfv/PpWgN4LwwiWi6X9+8/uH79ynDYjQgsbG8Nb926OR7/brlYPn368tat/cRqvxPY29vu9/uj0cz76uz8kNlNp2fCDpBFpKpKY5DQBju+sQYRMNQ3VTwcQFCLYqrQdM4zOwERRlFznwUj0Zb1sIaKsUYb+TTKjEVAxBiSUJ6BwFhMLCN4ZAYPwhR2qW57C9GdhagwJFAgIoNfRJoTfnHSUKssUCRzBivhwvRqzeDwfomAs+Y+ybr3DdCA4zEbITCwPQCL996BoAcJLDXVDqHjU5raNEvJ4GI2PT4+nEymZV17733tysViqVX3ASFJ03ZrsL3V2Rh4wKqupITUmKRFOUaPFlAESBDYgXjvnWcv4iHmcYGIOM9GtIa2AHp18FWBxnjBxXlQD5a1LFWYSBHbMFoBWLvGqgJGFFgVzUc1VWuQpa/m5GsyTsQSzqqqnI86U1P5CiAkQwctJ+KZkdDahEgdayCtPLWCQRjRC2hrLRNPQjSDmBmRmY0JYGU0JFFdZ+9FgIxJyBj9Wu/ZOTEIAjBbuMOD8enJCNFYm/i64rByofSglk3GJrFdAAGTxKZJUonUde1EQLwQGptoY6KwxVGJ9UDWXJzo1dnmmLsW9rRIXdda3FEZiQCQJAkilmXhPRMCe79cLAzhw/F5URZJknRanXa3nSSptXY0Gs1nM++cgHjvCGE+ny+XpddAjbPT+UzQjc+Ozs9P6rpi9og0Ho9OT09Hk/ne7tX33n9/d3dn3U2IOlgTARt2dNMhJSAgMXAUNhZpbhmZ1KZEtIbZiGgHJNQmpiUzt1oxAUmTclb4vyhwtlwstJBkmqb9/tCYtVbBKBTSowBFSldNp9O6rgCklef9ft9aKxJ7lhECQdN8MG7DcJybhVCjGWK9UgnQWGOsNlzuHzouHbM3PvsPUB//wX75t47/JJMVPDwRADg5OXn8+NlPf/q+MSH6lqTm7t2bjx89mU5mr16+Gp+/t73T16OwudHb3tqajOfMfj6fVuUC0BkrgCLMVVVaa1FAFbCwoKBWHBJkAUEyRm3dkP8m6mcKO+8cACk3RSNEEAp4aPtao518CNCAgZAZGFRkAG4RjUmMMWRMkmZkEKagxRYQQFgvFVJC10zI+Ne6gyrivcd1KKP5KeBMEJrsKSlWX2leB62K2Pxy7S0SxI5End9cP0wHoHqO3rGIePbkFJniCC6F/itJakV4MZsevn41noxq52rvy6ouirKuSu12l6RpezDIer202y7YV7WrnTNoTJqJF69kpMb5jg5ZqEMUalGKgHgWpFC4Q+E3Bhb1Vy7jQ9CUwwrOC3P0QwQiC7pBINVpDkRQQ4SErDUmABDAMZfMS+SKpUJE4IXUi2K6nBknsazV2gppMawkSVBAQoMHCjs7DhYODeqbFRdU80arycS/VyXW1IkVRjUmvOeIoCgVS0SgrPjB/ZfPn7+sqhoAibBm9t5rXe7gqgI0NV9W20k4sVZrd7BXpekJCUFCy+vAIUMAiHz9i+c57trGV5BQQE4aKnXE9gUAkiRptVrtVodsWhRFt9M+Pz89Oj5yzuVp1uq0e71elmUQK2CQMXmeC/P4/Hw2X3T7g83tbfb11uZwPp8+uP9gdH6W57kxZj5fPHz0MEmS4XD73r07V67sGUM+tDBT6kdovRxD2CHdWlUoCEBjDF0Qjoghd1E1t8EAJ6x8I2au65oQ8yzPsgxjvFci9qGqXpink6nmT3c6nXarpfOzHqKGGLBbLBeLxYKdTxPb7/bbeWzsofmN2m00eK1BkMiqvctqrPA2AIh8eIALmjPqGIHfRxk3xsraL/4BKuC/vRFtvDUd/zcNoX/XtyPWdf3o0aNbt69tbgwgqqGd3Y1r165+Nb0/mUxfvjza3O7roc8zO9wYaIs7YF9WJSkGI76qqqqqCMlaCyCudsBCaA2F8u1AbBG14npdV865unZEqi8TAQFBgyQNSRZFkDRCQmQIDRmyZBOTEFFZlXVViwgikVH9nKZJlmbZYKN//fr1JLHz2axYLNcykZS4SxC6I33LVg9mawhvihJwMBAcMZw1Du0FMFoIOp/6F4umOAWIKggThPC7YCMzxtZtzXIAoBaO8oyxKnsARtULRlBhmOeZgEzHk+Ojw/FoVJTL2tdFVS+KsnIeCW2WtrSv+GBAWVailMulq2sJUV0BEfDiqprZaZkAItLWf8FL0bxpAAZGDAQCEUFaOfEYdElQ3eruRXUezI4YHQ+fCd5GU/QKVFR5FWvWoF1Tiw1oiw7EMwu7BbgUPIgTFKEof1YGXdBwwsxattmaWH45YCSemb1nL4YAwaCg98pLZonm3BqnBogCh0stFQxRTE0YBmaPALWTZ8+Pn794WZQFoUFCULZzXbP30SWFRhGun0AEAfEI3hIwknfIXnPsJIRCsLEFMbFJ9BI1H5wClgCMwngxet2sEBFWVaXecIBaicbjKaIBpMlk4n2dt1rOewCpnVsWxXK5bFhS2kGlLMvZbMoCnU4bQZyry2I5OT9HxMVizszaemixWIpQt9NutfLJeNTp9Y21QHihnlyzRWKGW2OTXXoAfWxjjLLaQ2eM6PWtlgmDAkakVquVJIk0SEC8HAkYoLIqFIrXJr7WJm9KXE2eqLybTiaaqtRqtXvdnjGGOdhDvKJsv6lMV7cv0gQltW/xRec1tHhaPezflqP3j+Pv0QgRVSUqi8DZ2fmjR0/6f/qRNjZFgDxLb92++eTxs2pZvHp18P4Ht7PcAoIxuLO9RYZc7UECNyJJDDOXRUFEYAwixcCGCHgWcc7X7JgdIrJzy2XR2P/tdlsDxkGcADW2aFBiAur4EhGhTYxNrUVLzlc1AAASgkE0SNYYayjPs43h1vbWLhlEtAhEGocOSoLemAlq9HPA+fTH+MsgwTDqmnCugxLSIpLNp0ABdC/AQpF5Bo20WGuJ3VBz1m9nJU3WjiSHEBIiEJHBlLIsFeDZbHJ2djKbTouymM+ny7KsXO0Exdg0y7Jup9XtpHkLksQRlnVdlpW6HYw6284xOO8kog4Iq+bK0pRQCa6+8JrLoQhdFJ+XHiLqr5XhElJwNfYe8oBD/gmSsLjaswgIWpMkNm2QOi0BKJ4RgAE8AqPUBgB9Kg4QQ5YpCPogZvW7rbGrQFrUVoBea0AHe8azscrAiG4uBARRXSIvosrNGgOE4KPAFUjIEGgSMHPNwjKfFU8ePy+qCoxhNIGX48VXtXcekYQR0aCyENZmi4jAs1bzCDArUS3gPXPws7EJkK/XHF7bw81muhAta7fba74yeu+YPQb+hT6yIbJIpqpKa6k/GJC1aEjpyNPJ1JeVtYn2xZrP52qtG5uUVaW9EZ+/eN5ptd5//wMEefbsmXOu3W53Ou0kSYzF8ejs5PTk5p27vX5/MV+Ssa12lwhJq5ZH6xUiay+q1Qj6Y4BXyJAx0Z4LcY8AxITDgqj3VpYlEqZpaqxZ5T5BSL1QcvJivqiqigymWZLnHSQrazBOyFdAEeD5fDabz0XE2qTd7mRZHoEyAc1HVpImCEDo2qQvwgqB8I1f28QFYD37CEXQN9/eoHHfMd7cAN893gRvf98r/L7j94WL/8bv57sv2PBX1xHP73r734JRFHYMCKIBlqqqHj96duvW7e3tAQIgggG4sr+9tbX58vnLw8PD8Wi+sz/Q+9jZ2ei0O5PxCAKRAomoKAptKIJo9OmtNewBGGpXn49GtXfMrtNuE1JVVcPhMMsy7z0ipqna9FLXXksVBP2tCagQ1AKRMWSttdoILravU7oimhAlMtZYYy2Rda72zmPoAHFhsjXRM/p5TWHEyJiQcBeN2gz5CNgs2WrtGlSpWS0UsETWmJikE5SVvryGZCNiqAgi60TGQEZR/xOlIdywGMCEDBG4up6cT8ej8/FoNJ9Pp7PxfD6tXC1EZJO0lXU3hp1Bn6z1DDUKIGpvJYo6kQibnnyg7WQQjSFrLAA479hz8FKENH4fMPMgQGL5xgbZWzt3IR9WhEEooOpAWmeKxUZTJvSwExHnnGMGAC1o1kDxEL3GRr8wCBj0yIyeIPq/EqiMXtg5j0BZnhuiuq6VOU+BCwcN2N6cAkIwBpPEkjHEpDPS7AFQzR2eTe+KWbxNTGINARok75x3brko1VUKOXcCRATCZeECH1aAkCRQGOKzhfOtPQ29RlnQEBBq1Diwdmuvpi4L2yR5m3xp7L8QNUDE5MI7Vxq6eXwRL4wKfWvlWJuleatlrc3zVl2Wx4eHs+mUBcRpkWpBRM98fHgACOx5Z3f32v6uq+tWq7WxsXF8fLxYLLrdbpqmVVWOxufLotrZ22PvDw4PW53OlWvX0zQ1RN47JAjKF0lbE8qaB4gQDThANBhhYd1uoOEniodKt2NVVa52hJS2stASwYdLQSh+RyCyLApmBoJ2q5W3WrGu1uX5rOrq/Pxc+zRkWdbtdBFJgCHW18AwqRiK9TWflJUYkWg/Nf9Y176qgFdr88PG371C/cfxNzgQVgUDNB9EcxzPz8+fPnm+sdHTeBki9Lr5zVvXX79+NZlOjo5Pt3YHYEAEsizN0hRW2wBdVc3GkzRNszRT0crCRGDIsJf5YuG86/U6ztUbw42yLLWLFzM754wxw+EwSbLpdDoZT71nDluUY4NYxcvIUCwtSSZ2HWh8ntDaCBFDTjxiqLcvFx4dINapiZ+IpChZN1JFYrnH8MG1/6wN1h6BF/f/Wh7jJQamBOV/KbIsoQpi1GgqoQkDYG6MMYhG34Ys1bKYTafTyWSxmM0Xs8lkvFjOnK8ZhAxlrVZ3OOgON2wrZYG6rNTp8yzR5FBI0RpEFGZtm6ihSAEWRkADJt6mRIGjUw0i4pkNkGpWjYWtmFO4mrMLNo862YCIEFdxzepnNQbUgSCN06MwAqEIOO8EVhCuuiuh3J/EdRAGQGasXa0aqK6qly8PjLF17Rx7z4yhZIrRi0cPSRCArDaEV1NPMPo2+rQeVllRGiAgQmMCpd97XxbVfL4E4RA1B0ZQ1IS8OJW0ygXXuscIMQQa8HpsiHyI2MQ+Qi01NU5drdXbtJl2NHkAAp0NAURpi0FXXWy7xCxuVdwc4gYlNZCIUo24tPNWrzc0Nul0u+1We2O4ff+br0bnp9FbDfXn6qoAgLqugetvkLMsq6qq1+t5709PT8fjsQoR9iJIk/G5F5jNZvP5fGtrx/QNIXEAXPTAhppijY0aFVqzS9byjuK20Q4Zq2cBdM4JiLU2TzNC8qLuvoSVAAQA77ksKjWP2u22NWZ9QvT7dcaWy4Ui1caYbrfXanX0GMS3SUz8Dx9pWA4iIsiRS99kHoXLQrNsf2uson8cf1QjnHqNBN++fWNra6AvGIPXru13Op3JaPz68Pjd929bIvZQld47B+o3ooBwsSwQIUtS7YXAiEAoTIgCDGVd5a0sSazGuqq6StO0dnXtXFXXebudtzppklhjEcx4MvF1LcKBO6gyHgTAG6M1L40xDKBpuwDrRRMxWqTqvoaOfmt4gwTti/hGiRyAACMBAAB77139tqmKX6WGAFkyFjGUqWhug9k752BVEkpVX/x/sOMv30D4PSGyUadJ9UGaJIjiXV0vFrPz8/FoVCzmZbFcFIvpYjpbzCpXgzZizFvtXq/b6ydZoilQnoEISFYHHgG0aLclY9Brdz0I6oaVq66oMWmIewWrAUQIjUNCN0QVcQGhD+Aaaq3siGgrtgtgmzcG4yoSQlXrGUPr6IKIxL4W0TG9YPFExzSuMHvP7CeTWbvTGZ+fvwR8+OjhdDKRUGPcaOxWJOSxoNL7mjaIgAGFhACDOBALgSckIMxegBFtYEEDeOeXi+VyWchaYRJoVOzK21YtedleW99RAuruadaUBh4CobGqaxEmxDRNYvlW9F7LCZPAWu5nlOzrdC1EiAHgQMuKq0CErnaOSlqWhWdhMe1Op93ptPJW50qLEB48+Prk9DhsDZFQUFGY2U8m4/l83uv10jS11m5vb29sbJydnQFAUZbz+VGWt46PjvuDgYhsbgzbnY5oMU6tzhMN6jdL1gUFDY2tFn7Qdh2N9dGcRYTwgGmSJInVqYYmlwyCui6KoigLBEisbbVagFq16vKKeOem05kCdK1Wq9fTjr/S5E8Gv1sAAChwtVfKNSSrra4ngekvIrr/YuOzN636C/b5P46//RHBrW99/W/vq9VAbITz6enp48dPB4OfWBuax2xv9vf3985H4+cvX794eTocDqbT4vXB8WK5VPCPiLSGxWAwyJIMAVlAROsRogeo6qp2zhgqipII5/MFM5dltVwWapQ7L8WiEhZAcM4rPpQmBglFBAkJbZBO2uemyW8SlLDJMRikREDU+JghE/qNHR6PZPNPXiuXEyR5KMn+RnjzLZciBEIhElrFjzVddP0ABvdaOMjl5gprl8KgqhBAhBmREmsToiwzIL4uy2I5Oz89Oj06dlXhfb2symVVLKvSCWetPO+08nY7zTKbJKjkNQEWb9CSztdadKrhM8fOcVEIYaCn4YW7W90hrKnydZuj+VGiye8jFIdCsYMDAKJdv1bYhaAhBQmwpAgAhUCcyIUJ08WOpYCxkWwgFBwLRsRiucxsMp/OfO2OD498Xce6mU0t6xU9WEQotHpq5KsuPAGSVrkgIibP7J2rPPuEDJGqanHezRaL+XzGWpBSV5GBvZeAjYfdCKygd9AlEuO1SCiojHpCY8gYYy1oZnrIhQPnnB6SJElXHrAGlKWJjgYeRTNlzSQrTLQKEghD5LiDiQqi4pPT05OzsbV2f38/+yDd3dm5eu1akpovvvzd8fFRXdcYCpVxVMPgnJtMJtYaVVRbW5udTufw+HgymdS11CwvXr0cLstbt2/funM3STOJNbCUTKXTs+4mNrtuZaVF5Ry3zapUpF4DATVpD0DIEBoTrEI1ezAeVJGiLJ1zgpCkaZbnb55v/chyuZzPZ7H7RTfPWnERg8QJhzWE6MMPDfAMsSCtmpAgqzMDABfLrP/j+CMfkUQC8Jak8+8dKghUfHrvnz9/cffu7c3Nvr6aZcnNG9ce3n9yejL6zcdf3r5zixkmk2ldl8xsjJITHbNPktTaBATFexRGQYPGe++95LHHl1r2CRkRIdIyijAZT89ORg2YaQwlSeItkUBsk6taKWQMWms7nY61yXg8rqoa1jRCcBy0ZhGQMAoTiHYH1ys0YDKu4K31uQwo6LrTEm8ggLEBxFXfDZtq8rEyo77dOeecU2cz8qfl4p+1b4yj6aKqh9gYoiTJDIqvJuMponduWSwm09FJXS0rVxd1Xfi6BLCt3OZZkmeUJIIGyah/59h571LbahxUJcWxMLCEXqu8Kk9GZKyx625sUBuhwmNonb4e39J5uiBSApgYHVbRqvShCxEi2NU7G6NDIkgQCjKsY/9BvAUvQ0DWSoHED66m1LlaQ7PMPDofVXU1Ho+FZZXmomU31nR7MEAgtBGMoHpg92vUwCB5TfeMJp2J7abLsnz+/Hl30PXgGSk4RgLOOx+6REVtAeHm15dfRJDIx52HhpRxpHnMjULVMh3CErVvuHf15uPVtKMJyVp4Jr4EAMGZbvBdja8qE1+T99M0z9KWMWY2nvzu88/de+/tX9m7cuUKs0/T9PDwcLFYUEB7EIBEtEyVL0tZLossS1utVpqm21tbRPbkZFSWdVX7zc3tm7fu2DxvumUCCKkRo9xovV4wf6HRqsFTDOXiMW6ZuEMRZNUiU7x3iqColwyBrL7aSSxSusoLC0CrtY4/X5CbzDybLeraAWCW5d1Ol8isndR1qaEmOjeocrPnAYBXNnhzXlY4Rfyv9t4Q+EGye00wfde4bFT8gCv/UY83JuTiLxDf+iaQ75/Jv+GB2ITNVnIAcbW5Tk5Onj9/GSs5AxHs7e20W+2z8fR8dL6/vAKA89msKApESSx5z0VRIKAhg2gAxBB5DqIGBNI0NYl1rlZ/Qxv7MTAhWINpknc7fcQV94WCg8KAICpzZC3wgpjn2Y0bNzc3Nz///PPFYhEkKKDWrGxEKggAqBJfe0wI0aWV3wkQgo5ImumkjI8IfAoJAQhrvovwyq9V+UCEFPiZQTBEvSABzL1Iul6TvRgFCgSxQjFLCoLrT2QQ6+ViPjt3rmq3U2TPdVWVi+ViVtbVvK4K8dRu5Xli0wSQRJ35JobILDGVVL1v9TWbfWeIrA1iEGJySmKttVr+OEoTAWzKziMAoKbRqjBvtOJqXtb2m4ZWPUggml3ygIlASzmLhNgqIIgoeYYgOPK8bqisKZUg9iAS3cQHjWUMonBdubPz8/PTM1dVGPe+NGCghISXsGNAEZWAW677jqCVOggDTiqCALHfCDjnHj16tHdtP2+39QMoIMx1XYl4AEYyRiRok0a7AEAsnaFrjkQ2SYhMIKdRqIKuGleNP5GggHkVRwy4MIg2dmQ0hkQQIU2bArOrQUQARjc8IBljjaE0ybNW7pxfLJZlVVpjh8PB/v6V09MTz/WVK3tXrlwdDDZevnz19VdfLhYzQlGFF2rDMHvvnXMvX75i5q2tnSRNt7e3ECwD/uLnf/HjH//U5tliWQD5NANjLZIkaUKFEREypLQHAYjePMcTEgCPUMUGyRqLodFQCH0jIAF6Ae8FkdI0TZJE96lOOgooT6qq6/l8ziLGmFbextAe9ILyE4C6rpfLhXdibdJpd1utNmgod71ITDi6zQFpSrTHTRXd4igKGphaoh0XbjHWSv/eEZmawfp4C3Ie33jxahcU/9/HcQnjakbjjnz3xy9Nw5uWTEx+C7McxEYkHTR9Rf+aA1cCVVDeFtpcv1UERAh9elb2VPOky6J4/PjJ3bu3er22fmQwaG9tb55PpsWymM2m1tqjg8P5ZDIY9IShKsqqLLu9HhAygjIZVc54CRV4SMggeW2lCgBAJrizoORlEVCqL4TaWYoner8y8wNYSkRplvUG/d6g70FY66WHV0woVqzNVbSWsshaqYt4ojE0mcf4GzWbLVlCE7rMIbKPJQ3iEQ1ln+IbQFv3EDYZoQDNEuuuj+ofL5cvhSg3Av0q7pAgaClUxKvLYnpyPJuepanNk65BBPHCzrOrfV1zVSEmBGgIQJDZeIbaSeXRWK0GgISEUeoDR5HVhFPJaMe8uD0IKbWptSkTailnlV4EREIozD70QdceFCLIIE1/+1jrB5rHoYDskosUJbvai/pfiAqRxRgTS/g2WAHGzhgYNL0EQa08PAk6EQCEAJk9iNf2ryLiymqxmHtfN+dY1yZGMxkDNyoG8aMpBY2g0xJdoPoX2f//2fvTJUmSJE0QY2YRUVU73PwMD48rr6quq7u2pxsLImBpQHiDxU+A8IAA4QEWD7D7ZxcDzOx0VXdlHXlFZBwefru5mamqiDDvDxYRVfOIyMo6+kQLRUZ6uJmpqcrBx8fMH6fcwORdCcQYz8/O7m6XzWRCiCIELDGEvuskxkxsnFdXAN+h0UjUTiLGkNY36cX1g9badHMCwmjI5odTt7gc5DTKlteLSI6a53tG0FwzIkPOuqqq3NGDB4+ePEGk5XL5xe++OD87E4g//dmPZ7P5l19+cXe3/PjjT/b2DqbTnUkz+/tf/v3tzaVAkMH5FgWlN5v1i2+fb9r25NHj2Wzn6OignswfPXo8nU3BGO9jHz0AOOcAzM7OjlLxiYgWamMpAs4pkhqQ0A2VSMQwH9v82Ljt7htjgAafspxzAPDBe98LsLV1owr4nWMpIuv1um03asHM53Mic+9dKU1gpDjVEsrgjyAjS0yQRHJ+JZ+MxEiZPP1/cifs38c/71CLjd4xuhCRDMUYLy4vLy+vigKuKntycvzV19+E4K+vrxDx1csXfbcBmQXvb66vWGIzaaTgXrm0D3NDgWJ8DzeQgrhAJN6HnBQiBJmkIvf5SX4zqL5DY4y1Fg0JISMwAQKxiCGljyNSBI8MasImx+QaJJg9uXoEBGgYc4GwOqBZL+Vb3c6kEMrdIkrlUvKa7k1j+iFlbr7PHno3qKmThmUOBUl86Nrl7cXZ6Wp109SuqbCuHSIjM0gUkEiYmj2JADOEAEAQPMRemARQmIGByDBAFMnp5aD54Wkd3mVVwkTHm0qzciRd7Q41sJCEhxKqnPyWwdwMsyAa45wFQImcLCzIkciCVajfplrWWmNtgiAU+ZDC6KSQAievJs1kdoMBNJQIMXAIIe84adtWGS2yKNa9FSUB0ck6TnDo2FNUz4lzDLe4Zjk5v6gBratr267reuCEGvS+Dz5wudtifW/vCMpD1QSh0TK7nHKkmBEQAkcGQcq2QmLtYob7A8cX395yWDAWEITUHgFFkMhUVb27u/v06dPDo0NmbtvNF1/8brm8efz48Wq1+uUvf3l1edPU088++8HPfvqz+XyX49CNS/WMascQwtXV5emb1zc3N2SM9/53X3xxenpqDDlnLCFy6Lu2aWprbV3XdV0r3WbBuIaDhGPdmuLrWH65DbQAgHLb5mS6bKxhaXEEPvSRAyC6qnJVNQ5KDV/KslottTxjOp02TZPXDbKVzSpCEpsfDj4wSCGJF0iNy1MvSsnu730HLaXWf5cavv+4/z7+ccY/wTwPXfZw+ANltxMZY9u+f/HtqxASUTMRHhzuWkfMXk/W1dVVCB6QQ/DMsZk0yrYrwiyRh2YYWI6GqsMQQgwhxhhj+r/3WgGqLVU5akuEDCzqB0WAkJyzVV0554whJOISFcolvIPiy8GtlJyDRall/tbhIJdYcDnYkORujHpyS7rvaInyRVSBjKDRpLcRkr4YjSJY8nuT3sCs/nHoTK5PJcDSrtfLq5vr84uby4t2veLQcwggrNiBdQ4JBaJwIGYSIVGNLMCs3XuYRXmcFCrYLlgEDpHjVnGKbhJWRihFB7L7pB6UMQmNRRFRLjCNjSIZMopuFo8/VW8bg6PkOMred74VHFBUQkIyeVtKFqyFSWqAjqVMYZpfSGglMGIKSgsIS9DeUTy8OScQcQIqBhWel4oIzKhUKnlR2peKiMhonwRJJpr43vd933WdXigy910Xoo/sk+NbMgNFlCmz7ANmtsYBIAgSGkfOYM4hUgYTFALxmpSPSBrjzPecxXv2EwEgA9RaMTCYkx+G8jgKCJFxTTOrXK3Kveu63/3udxcX548fPxKRX/zi705PXxtDT58+/qu/+qtHjx8BYNd1mWBLyJBRMFlgebs8PX1zeXnpe391dXl9c9O1PQJaJBTu2/XtzY2W2I7uEMcj3RkhEjEzoDZJ0v4NOVM9q+cymTACALIZlc45g2hrCiKsmwat5WHNy06E0Peb9VpErLXz+dw6C/cHjicb0r4roEqBOblo1rSJkL9foPc934fbP/z7+McYcm9d/0m+6z62Asgs3756vVpvym/39haTyYRZNpv2dnnb9xuWwMzeh6qZTCYzSdmoqct4EskIxthUggciktoNKRV/lj3K5ph8oWy0CivSGlQ9M5FxrplMZ9r9t2kaq7WU2T8j0OQX9btBQFTl52faEtTFTRu7Upj90GF+hvAy0njjJyedSihPxetQB6juZnLb3rOe9361rUkAlR0QMJnuAtH7btNGHxTlJUAD5MhaZWiKzCEo3SNqW78YVEtFAQFUsk+QRGifCPAhWQmR799Oie+WToPJ3CBF3Q2Z3LtAJBGnISKaEg6Hkt5bLA9MVc1SmLBgCDCojwPqUxiVsKPZUgWMrBRWoO2g1alVQyt1qAAAgBBCZDbWECWCFQZAQ1JQw7wlSvxSRJgjQPKIRjitOnkMGfpIFqaAQXTOAWm0l733WnkmwmhsZG1tpB2MFGFGFhSQNIPZN40xMosxFgtWDEhABgwkjQSGEBBi8MnR1FbEJYYoAvlJ1ZmykDonqibLaun+LkQcSm81a5+IrLPWVSLQ1JOnT58ul8tXr17t7+9//PHHZ28vfvWrX3Vdd/zgwdOnT6bTBlC+/uqL2+Wdq0xdVzo/HDhGBgjxbuXD6br1D44f9Rw2/cYaq1Rf0fvXl5dKdamLu16vRWQ6nRKS5PJZIqLcHHpAJtLUZUIvHMx8PVnWagfPjN7oiwTCoi1CiYzSVheQZ1BsIn3XxhAQsWma6XSa9GdOIHzvuGcLQjICGFLxO2mxproJ3y3fh8f4wEvw4Tf8+/jXO3Rxda9HkNvb27Ozq/lsppxw0+lksdhdLtsYY9dtBCKiiTF0XWvQ2soZQ1qyCAAgBCKIWkIKiAYk5vpdAUiE+8NXJ1cVAEoLAGCQyDGyTCbT/b393b293d3d/f393d3d2Xy+e3DQc3TOiUjiqBy5sCIA2ktIuDBcSQp/DojzKBMmo+LDfIiIcOSUoCiZGAABUjJMPgK5ywACaE+W5FNBauD34ej+fZs23VAyBNI9aUQbooiRGFgiq8IziEYUsEaIAoEpChIDas8LVSzIkQWEjI0+sEDmrEbQ5rtqLWVHsIg45uQqSO7cSiKaHaWON5FJPSjyfWcMhXAr1XyYYk6doQFwpICxbBEgEWRGFDTkEIyI5pASQGrpQwQiSt4VIyNzNEQppSp1cUcACMyBI1mTPNmUzbSVjGeJErzMorS/43uFAU4BAInKQQxASAAS1diB1KcIEu4oANrVK1gyEmMIAdW314cVTqJeAEqFcN4H27txmBlCJAIyJrWgEgCR3Pw57VMFN1iN3JRAAZq+ldLE3t16GkpAQSq9NLBQc2tcsqqrx48fi8iLFy/evn2LSI8fPavr+te//vV6tXr65MnRg+O//m/+Q127v/u7/9J1rSGpakfIEaCqqslkDkQC1Labtt8wh9X6rqnq2aQBkL7v27ZF5cphJsBu067vVmFvdzadiRAgOeeyBw+GHKEFFLUfU21hSazAZIZpvMoYC6lDAmYbJQU5QoiqR60x2i9BTfRU3SAgzHd3d8ysVEHGWgCFeobelCP1J2r+FxO2uOC6LRToAQBm3clFAL0bOBitTtoZ+I6evQ9f3ztH/3LGYBr+Ie///q++a+58r/dvl6QWx+zPOHl5G73nittw3X3cBQGUWIhQWLDrupcvXz17+tg5AoCmtrt7e69enTGH3EoOmIOIWGsIjaDW4KWgqLbLNVneRAAQcM5p16+tRlwJFcccHENR1RujiFhXTZqJq2pm6ft+tVo7V1tX394uV+u1isFh/pSpCLAUfUg+AAOEkwUd5aIn0gzMTICs04FohDklX4LWaCIBoRBK4nLOvrp+AaqwLFmKEll4aEEuKUtLCfxJK3owoabZgBYQvStJaVjJ01aHXkRiSJ4uMCFoApfeCKoqiYIEZI2xlhG0TR4RWUs+aANgi4QSszmBhMi6BJoAo4yfkAwINgiY2B6VFlFUgxoi2SKzQiJgUbJu1fEEoFczKVCQMFiJyDZjC9mlQSIy+fJkjZWtQ4Exxs1mreRKMTJLwAgxBoSUP4YplRRF4d8QmqrK6zMiPRhv+AJPFBWZ8eG8VcracMIXMZUwMYuxxlqb+mEp2IsILBwiUJDI2sIv7zcBYUr8n8BROIqahghEqCdl8NiISMU+IzIgGQuk1eYgkloCDfsb070jgLDqC4DELPqevknvyAsFagdMqqoqPQnGGO2JNJlMXr9+8/LVi8ODw6fPnrx+86oP/aeffLJ/sPfRRx+9fPni4uJCRHbmC2ZGpJ///K8fHD9crTeXNzeRYbF3wBwuLs4kModYV5WIuKZppk2MgUMkoMpaJuPb/qYLb0/Pp/PZx59+WkxCxf0ZKJFS5mfOcWPICfsafTBEJiEkolzvispI6cyoJJ2D/k5TAX3v71ZrBpg2zXQ6JVKXAUZAwrYfnDbPtgKAooohac0/wmMdOHz+ffwbH2VDJSNPIIqcnZ23bWftBADImL3dXUzMAamsxXuvolMjgSX/AAEAjUQmIgRkJe/LaB8zcxTeqsAEAEy1i6j7joxBQrJAwYery0tA5SawtmpcVTnnmPnm4pq045B6Crm6X4tzIRNKZL+LUAgY0WQHOIUNVf6MnB9IbpwwUG4Or2oU81FNXgxCiksVhCy/l1kLDz7s/iJiArHHX721HAXYIhGLWBFxCKHzKl1R2AgYTp5ZbrcMhoyzlQcE9hKjIWuAMNWyAhHFlA+bTAOO6lUKaJ6pydRU+WYKUKc3Ndx++hlHEeJUO5v5XdS5KAIo6Tlb9GL6eBKvKSXM2TpPnIhmTgt4770XnVnNqdE2eYJkUFOYtMIKAaCwa2YVnKOk6Uul5HwVZFZ45Mhsm6jMMrSW1H1DiNaQs4qDZl9UOEbfdUSk9TkpooLle6Hcwxi0HN8eZCMx2QaAAkTGIhhhQdWTOa6ZLyJJ5ivELsNKjUyk94+8gAlHiDF67421hKlZNwA0TfP06dPZbPbtty9fvnpxcnLy7NnTN29ef/7r9WeffHJ4eLhY7N7c3M5ms5/85GcvX768vLxcLPYePnwkSA/bFtA0szkZuLm5Xt7e9ptWmDebzdHx8fHJQxCQyD74EAKRcRN7c319+ubNj378kxRVSkSSBPmYA1DOlpasObMhKoyI1pq0IYXL02Mi0YwA4JzbUsBJ2SGA9L7z0YtIVdXOOY2sbW2JvIzKqZKgacnBsLTfNIli7OZuKe3yEwF8ly/87+Pf7tg+lltWGhEh883N7fX1zc7ORAS0iFe1r7WmqarI3vc9kgUiVH76LEOWd3feh5QtIcwiiGKso+T+qqCn7Gzptyb3Ub1JARGJwBE5yRBV7iFy6Lo++Mo5EOAoODRSH4JcWbmithoof/KDF7N6gHzfhS2YC0my+qBY8AXQkHMusMnXAZFEbUGohTOQfdzcBaDcxpAagojpqfPN3F8mRdGdNfWkMdZASr6GXPIjKVlXCTWElc8xefQiRm0SREJMeLZKcSLMfkOx4RWuhdw9Ld1BiXDf2zSZYzf7KErehZnXaHAs9d+QGC9h8IDLtSJLZBYRrUOG9EjqygkZquuamUPwkZmFwTAzj9EFTAHUJIpT27jtXK2isThZHZGFtdC77KDk5OedhFpZq4+YbDsEEI5av5TeqaoreI+4qZ1BCSBR91/2LUcGx8gj19TEjNzcd3d0lZWcUvsKI0FKVSvgyZYFnWccQERTMH6PDoZk5jBLjByQAYQZWFC0YbIgOOeOjh5UVfPixfNXr97s7e0+efL05bcvv/r6m5/+5MePHj158eLbEON8Z8c6Z6yzzkUGstQ0E2Pd7t6ucNzc3U3rpiZ7e3vje88++LYzZCwZYWlX69lsNq2rt+vN/mIxm9Sx76hypMEFTIRzCYVSUGjYUiMbNhmGKQFKMTG1dtXCQMTKubquxjOg51mEu67VlhhNM0EyUKybYbKKGpaibCmZQapMuex5QckVioNV/cflYf3bHu8KhHdf/dc+tjwtxBK5TCe4aF9EQUGk9Wbz1dcvdnf3Nht/c70+P7uIMabkJuH1ai2C03mFxqToLwIBrjabm5sbay1znEwmfd+JiHO1QHSaDYvIzIhWy09lJPS0uTuoBuAQIVWLZPZmBCEl6nO2AkQ0JEE90STAcgJWqtcddVMYRga/s94tdPjj9yBE5lhKPO67srnoYOtXox850+hD8ljSj1mdKmKtxJlZZW/p8/trB2idq5uJq8gYKwlXzxFdlJHGFBABjkBgiIwC7Dmht9gdCaEkA8g4qH8pnpX2H1DQc8t+yQ+rKHmC4wQHIHc0HYiJpzt1rM/eipWc+pSnNxks+hujXePGz49IZJBAxIjvfIwYueu8NcYZmzBXAUUnmaMIqxs6qJ/BZxeAGKIXYJ02fYNJpEjJJ5HsPibNq7n4hgQgRk2cEmtsqkXRCYvR9x1zbBqnzZyFo/JxF3VbDuG9HyhnDL4rg5iBIJMlAYtEASFURmtQppoMoCYFT/lcvYPAiEhUupy8RALImikROXRdC1AHDiwck41SdjItdhc/qH748uXL09PTruuPHhzfXF2dnV0cHj549uzjy6vL9WZjnXv0+NFid8+HGPqemYmo7zuOnkMgAHLmo4+e1VUDgL3v281md7G7szcXZiK8vbnhGBY7U4MCEgiZkFCTIBEVnUlxLkiHWERKnhZk+0Yp60q7BB2ccj7BWJOXO4N+iITgfVit7gSkrqrZbDYKAuFoO8p4NkdI8yDIyi9F3j3L98cHX///Pz1d1PAYMfq3N/IWBciLLCKirA3pHQAAkfmrL7+qq6auJn0fV+s1MyMBEvkQlqtV1UxcVWm2sYgQEbJsNu10NnPWIELTNHd30DQNAK43LSIqdCwiyp+RfcSUdqpVUGiIkCS6rgOGKALaJIcAkJAMNU3z4MGxqd3derXpW6YU4gHFBkslMWIi79PnS03PBmc3y/+80FrInJntZLvAMgV+k/6i4VwlJV68cIZMd1haTSU0dTS7OSVIta7RXJOSSbalfbKJZI11rrLWEFoCi6JFR0RAiXebhRLRRcouskiVMYjKS4CEFtGolaI7HIcv1K9K/rDWieXfFbWFg9WClBq9JcM/FVqOHjP9nDHSHJsABBDrIzMgGsuArKUp2qtVC62N8o9uGYyKUZM1ZEzsfQhhvV4jQFPXdVU7Zw2QUdHLwpGtsSGkArIc4c/To6tI5RgwiBJVZkQzu6kFW4cspgHSrkIA0uxkFb8hAjNzkBC7rpWYcrUA32Pdv98rzdI6YUSA+jel6c7zCWKIFAkR3XAD5MyJlCT/ylhbNI3kgYltM1ldGjBAgMTznKjWtRZtDN0IAjRN8/HHHxtjfvfbL19++3pvd7dtu8mkOT4+3t3bnUwms9ms7/vLy8tmtiMiWsMQgw/BA4D3fjqdiMiGNsYYMrRZr+7ulj/6wV+cnBy/fPXy9PSUmXd2Zoud+XQ+N6TsHKJNToFBDOZ4CqVSC520xGdD2agnFmZkKT0cEJMMIa20xlzZIJCDwIk/FsBamzDqtO8JUEQ4f1kq/cW0wVOV78iZGB0CTZ4oi5ytcCiK+t4uABUatP3L7TcW+T3sHbn/+ta/3+OFbL0O35Uo8EeM3+ez4jv/GBvv73z23dRx3L7MOzj+H6S9y90OIuze/L1zWre9jbGDpiAcqdp6LynW+LNREzhHNmW+CIHEu7u7y4uLg4Pjvo+ru7sYo5YnarLhZDq11kYREKhsJSx3q2W72VR1FXxf1+729kYPdQjch1A3TdM0IQTvvTAUWggVj8pkaYwha42xKMwcur6VROGnBrAxxk4m06MHR/Vk8uUXXyQbtBQAoVYwlHQq1AxfTXcREAbGVIaqtn3UitABnEzONrJATn1O14KkfBT0HqSeHsAUR8uK2PuO2SNGQADNq1GijYRj64zracsuVlZmirFxlpDKI1k8xhHsrS/ivdOZSlYFrXYcJENaIWSMMSZ7/wICRkt0yeBom6nTIgBoCAJkwgcQQEACARACMUUBZ90s5Y8UJxsIRbOyC1YqAGB771mEjMlLhcYYkIS3Zr7pvFkFENE6K2CIgot1FZkwldKGEGNcO28nk8YCCTKIhBAQwQBYfXgy465zOQWO8t0iSG4llA2GvOTpJ0JE0HxXCT7k6PywPUQkxhBjBJa7uyUIKIbAIMwxn+tkAhaWq1wBxZhrz3PhVwk1CoKotky7VcQaQ6meYAt30J2VIVABkMSKPKzTaA5Gf3TkEvzEq6KkdUTEOUFAh6YH13X91VdfLW9vP/ro6cH+wdu3byfTqdJWfPnlV2dnb+d9Z6zRrI/gPccIgOv1OgZfArF7e3sh+ufPv9nc3f3lX/5sd3f2zfPV7c3t3d2ShX/04x8xVALSTKfWUk7zQCUtwaw3y1SVVA4VFnqa1azLqfmKr1GpU4Jcg6TP1/e9DwEA6rp2lQNMcw8ABb5JaFuK7Iu2x9A3FAWcTgyk0jgByNnWkPV9xn7e0TXjtR/98p6+/CO8w+/WiPde/SfwPsdfcV9PvV/djh78nrP4PurNP2n8odMxEgQAoOxt35V6N9bBkoVDuQCCWpvAHO9W6/mOX96uLy8uQ9/bxqmrMJvNq7pObqvqa2Br3cHRUcJWc1aECHStX6/Xq7s7jonNxpBTU1skSXwQAGCJgTiyiyLiJSSkFbIvkj0TQ866WgoLFbK600pmnFib0ubPCKoeH0gOmQCP3bPixiZ4OFmno3VWT7ewlmy7tfot6eCDAIg2qEh8WVrSqfeUd5Gefr1KmorBZRQh9FGzzVm7BKV1TqnUavSnm5EMeEvGghHQIAmS1XRlSGa1wss6pcU5NERDzRQlHyyZKAJqKkEURhCjydECA6mJIgZIpDRERbCk1BmEHKGGNO+IYtXLHgGzmhYVVXmTLakBAmV9NLfVWDSumUwl4aNag9v3fQcgpkYwVpijD8hgkBxZYqBRDFjtjMwPmJgC05oKYEqj2ZaMSShi8vyVFQRR2yZyvpbqGl1CQuSok0TZ5IHBPhvZ1FLYrLROHkQdUkalNBSG1He+vBM1mA+odhlsx5DS3YAIsNJiZKdwWwQki2D4XEmMzBplSOtI+MXwYsIkQgh97w8ODx49enR69qZt2+l02jR1123CZUBD1iCw9F0HgES2a9vo/bpdo8BkOjGGLi7ODdHLVy9ul1effvqJ993l1bn3vFjMHxwfnl9d+RA++eyzyXRmDcUg2ko6wSnpL0QBJZVk0TIkA0ODxtKsIZ0gJdPTsFDOvUqgUAiRIxsy0+mskIPCuwMTxJV2zkjQ5snnoTskbsmRtAnH/tI95/U93/ePPrbzxSD3If9HH4Nn+Z0ec7EyC83yMLfvuB//EkZ2577rDfA+x7q8TgTGUIxxtV7fLpdnb8/O3r6Zz6cCpBWizXRG5JiTB8bAQNg0TVW7rtuE0EWlTwA17tkYo+mNAnBweLjY2ctojgozAlBmZcLQEztjTG6eyVBKDzCxPmddSIA0SDUiAOKkHwkkh9VGQmPsLZRrSiotYRnerv5MyHoJksTCLLTSGSr7AYvSVzBhRBGYXxxk+GDBvtcABkAU4cigTFwQEwEGWSQDQgkUyLlgCb7IyLcwg4ghAqI+RhRBwRhCjIwxKFGHPlJO1YZcLwOofeaVGxGSf8+RgZkoywqBEgJPAjuNzDFfSr90euH+ZrMAEGOsqgoV7RcRiSwSmQXBWlucG0yKpuSpYUXEYjgyxxhjRAREFwL2XX/npakqQooxUir/Tc0Kx3NMpXXTPU2bXZnUFwLIQIqKlzOTHUqhLOhFWIRi9N57gEZS5l+6f9WPhdmjbDwoj5ezc3NtXvI7VaeiaJ4iYvGaRBDRakLj+KjjSKnDwP76Xu2r06DJCVpIILmpUQLYt/O0swGb/8XahkGstYTUdd3u7u71zaXv+7VI5dztZnl9dR1imM0mJLBercBQVVUiwMLxVjgEQnr98oUhU9e1Ieza9f/3P/2nTdt2XVdXjQi8eP7i5vZ2trtou7aZTE2m2bqP5QMSKYymKXImWdNoEDmZ8IiIUB6NRnAIYlkR9gl/riaTSVlxgBzXGWHGg4FalqCo5G3L/btGQore6+/9C1Qrf86xhV2879UtB+ed94/ipQobApeuV/8CZk6PD+abkT/KSkAEQVy367Ozt+cXb1fr69lORSQxBmvddDozxkDacToiEoYuLO/uNus7RdpQ8yeEmqaq6wqQJN1ewp/zHgYApVEySGhTq2xoN2utapYctEul+US5R17arQKABEJS+BOzn6lHLB+lcfAka2AoeVhIgCbHdoailHyiCnCceZEwHfrytnLamTmDtOoAyShSPDLghEVi8vQU6UMklcFMGuJFFouGUOkPLeR4TXJ2JcNr6VHSdBAZQQWK1eVjEQ5hmG4RVs2nNBxKZ0LJwsliDkUgskRkTkioVkdLOR/60Ft038p/AjlJTEB4mzDbwpgTFQBScwyIklseDjOfzRUhGNyeITUHCCGAJSGDHLltOwJq2w7RICoEDJhZJjKsnXLD1OulbP+nJIBhLceHAQFAmI2r1F9Xa1ESZqJgclT1DSyc0IS0sQrfE24PEVG69Mhc7ucdlynjDVp9g4hG2/kBiIQQywmEbX2ZWSnMh3XwMNR91JRsjlE/Ekszsq13MiBH9ojiKusqc3l5vlwuRTh47rvO9z3HIBxQmL3XCmnmGEPHWukUtU8jtxvS2sKjo6Of/PgnV1dX/+v/+ner1UoY3r59W1X1fL4zmU6dVUYOawyn03FvIJIx2phMN5D2VEuUQFSkQHqzoe0MLP2PMfjILNY65yoYKeAPTdjWv1PzX3k3mnpPl4wv8d73f+Dt/0ZGsUPTecMxXJDGO9t/+Ow7F3vvJ/6FjsFE3k4XuO8KJ34hAJYQupvbbrO5jewBInOIMdR1o2n8zDHx8UPCA32M1rn5fCfGgALKwqvzi4iCOSMEOMNyWmkEBDa3M6K9vb0nT5++efPm5voa1ANSnysfF2OIQJCFWAgROWm47JYqqpTCcCrZjP4WyQzhn2y6AiCRMSOmjWxZDPMzMrvHP42kKRWNjJB6sQPrEyfgs5Ts5GfPjuTAnp1VaS410qILyjkzhgwagtGeTGXXQCah7igMnGo4U+I1pq8QBV8BRaPCiCgcWVWDAAqapDBTI3FMsXBJnj8DMCNnIJ1VxyRSJQQShtzhAQDIkEndokq8GABKGZLkEo4s5VUfbTmo+neKjQLmroRJ2ZMBEowCxCCWIzJE5sB93wMk0uC8wsOyiXCMMef3CmgpCxKAVt9Kdibz8uf/CQpiThAXQaS8LYuWUpMiz7raVRwRLYxwgLEyAEgk1VIQnoTBDMim2n0swigMoAVlOoFKfgnlu3UHZB9Kt+P2xh3ts+0NrfaBljQoB2cGz7ekA+Z8cjIQQv/tt89dZdq2VWQMSmGVCBF63zMZhQqYRbOc+hCAGRFCYO8DIk6n0xDCxx9/vFyu/uHzz9fr9e3tTdcdG2s+/vjjv/lv/3dv3pydnV/GyGlHjg1qEKUliRxYIuZMSUJMTS3T4qZtRkTGWY1tZwWMAhhZfO8RqK5rJTf40FDLN2VpYjoa3wGiDvZ/HgJD8CXBTPmlZF98yDf8VzgKlgWQoCwlGm3vVpu71e7Oop5O2hC5ZF9+57VSpigOh3rAm4bxffVxBhz/oAf6Hpd9P6oxmGI0ItJ5/wV01xIwiw+dDx1CjDF0XRdCsNZmrzG5dyovWAQRqqriQNoiBYFQY5gaqMpXHp4+e2wlWdEaszOdHR0c3lxfq0tQMpsACliNCJjSjAcJUmSQ6uFcnFwQUUk5x0VlJh9Nmyy5yhijOmz4tkHLagaVVg7RSLDnb8wUjLpDckeJ7x5lbxa9XEinh+If7QJFhKTJRGQK7JA0oeSU3qzF9LL6k7qKRW/pWqExKd1VHcLRHYmIUpHlX+Qyr7RhYEQyv53mp7+QtBsQASh5mnlPpZHqwZP4k4QaSLrjwkWV75hEV10ThFLKoTq2gggGCMRAlIAogtpDkQWBjBGQEGOM4d4RU7iVY2pUk+wnAGBhZOJkxoieExjsGEmRFYDEOUyQGgLm+1WLCCm1703dKoCA0qRlj7x8RkTIWmMtM6sfl15DYeTAwVaNIPTBB46s7BKpa7LmGqSJ0oIyyZiqHhJMRXCDqVhcvvxuzJZHGupuxqiUzohIIjxC9jBnZQNzvL29JQPKFRpCUKc5Z1CroYcgEIWVwQsS5orIShcWiOjmZnlxcTmdzheLxYOjo7enZ6vV6vb29tlHzz7++ONPPn5GaN+enSNiCAFBBFi3r8ZztIJAgRZK+XJJ0kASGVsOx312MEQC7Lzve0+kCti8c3iTjQggzBKDF4lEJm34dB4TkiJQoh7JWLjn4mS5r8uhNm76Qk55GN81Pug5/bONkgqab0zGrw33qT8QYPT+/PSNtP0UwXJYt5uAMN3btalJCZYUnjR76hAy69kp4FkJCr8n0fv3jeHj5fa+tyM9nvmRrZ6vvC37h8sWKTxa4/cBVCofhBlJBAUkRkLs+46Z1ZkU1hqhFEHU1rAsyr6HIQTf99nxAhak3Fi9CF7YWpf0T2PIOYupmyFpnQHlKsBMZaytxJGzT6yeIgAKA4rB1O6IEoNC6hRRsOjkPSkHYqZXMEQWkTTBF0sJ8jBLCWtUp4KUE2CQaeU9aS+WI6aHljGXcm6Zu3pXMOYqVumr9ZdJlSXU1RBZSr17M6KQcszSLJA2jEcEQk7kw0LWkLXapxHJEAdGHDYslpbGKohBIjNI4mJQBmcQhihIgiQoQMIQGQLruqPJfl0xfVRhiWCyyVKtTOrmeL8fMEDiwARmEJaEr8Kwr7V1Yn63JMo0TilnAKjdi4RjFFaaKiUdEcIu9L32ERpdlEtThREWhIiBGUCYhoyktMW1t0GhIRQBAC0cizJe12IOju1CGe2StBFJgyhZciu4IZqoTmTIaHhBj5a2XSrWJKKhxBdaeiOW+RzpWMBMcEPvkA+LSBx8bExcdakgwRhjTOlApXebvNv0LKRa3xhTVVZAmFmZ6ooT7L2HHG7XtmfMQ2a1IQohsIhyjHRd/+WXXy2Xd/P5fGc+36w2xrhnz559/PEnALBetzuLRVVVGn8SjkAmFZQlxAEAxFpjDMUIJbMOcQgolLCGfntZEck19apBiaiqKkBMvGMJlin7Vb8vatJfXZfejjLY//BBv+beKMBPXoO0W7j8I497//zeauKfcmAJkb/HKBDQuUvghEDv/frmdm7r/nZFITbOBiIKgYzBFCDIE6LKFxEAfAib1WY6nVpr1QjUOjl+z1f+ix6ST31xhe+9rooqiwclI8Kua4kckQXAGGIIHomMNaqDlRPXadmCsk2CoGaSiDAAgUleAiSTTyAF+FiiEtdWdVXXdVXV1lhjbLoLSbqORkByStkZti+iEIFBjZum4IK+SAIyqqVkRFtKYJMeTseS1JZGBQ5HKCBkDwiyjCshXUkUTKlm8p5LmT6brzBo6w8tDdxP4xBQ7NOQsQLALImBmLJnWvQYoCTwGhUwFkRyFpXnMZmimB0QLs+VlHyJDcvgfw93odOhwAdHpbsYT1DaRWMjoyDLI0MCAFMMuCAVKNlsESHEyjkkgoGGDPPV05cXkzI55MwphoyIysqBKACaLMAiIXKGhQdNWGRfWS7N69LiII6GDSdXCVXRaxIyQs5eK330BOBeRHAAm1RlQqJlDiFgZi9BbdADwsxaMZyNzOS8qnWlbiioLmUiMJVxztg8LdkESRTiaUmVwkpPOL7rHmwPfTwFBMyoa8UAmwwtRxBzQ0YiCjFe39zoVlDqSszJEdrCDBGRzGw2cVXFQopCd23Xd63W7Ktv470/Ozu7vb09OTlxzrmqmjRTa62AbDabN6dvQUwRUn3fC0vlnNYjESJKzMWF5UDg6Kwmy1jteqNZ0OXZM+IFal4YrOpaEXiVPYOCzWCcEtMbQ9niwiQx8fuq3nem/1/HSDUg73nClHD0nocXkZjc1r7ve98bovl8zt775cpTL0Fq51xdr0J/d77aPTpyk1nbdb7zFslYI4i2coIQCZy1vaH1ejWfzy0aSSR29/f3eydUPvzSP/H4fpski7PBdJbgPU7RGkNkNptNDBGJlaFVZbiGUfs+Ioh2CyzJ/EqirmETQlKeQUaQyIBYOTudTPYP9nYWu/PZfH//cLHYtdamgqoBPktaDzPJzXC2BiKp5AKIiHAUYSxvS4QdtFV9AZBl/KBREVIctPwyi+vRAiLg9nricLn7U/kOPsLbl7u/LwQACLWro3bRUftAxps8A85y/5N6I8gIrISgiMwoDFqTmzEPhXKBI+eCaIkgyuLFHCFH0/RqI2w+5evw8F3Jl9y6FxFtR46Y8lJBNI9oBEFvowdas4VkDI6FGZZ1yns39d9TSIVjCOmOQaxzYPSdjADGUFU5TE2ayhfpRuJMPDKo1RACEiNiNOScAWHA5PwRYQ6tayB9aGSrWoQjlydKzyUAubA6E60UPyo9mWpOUlxOkrGvabrKkKE6GkkIwAo6oMo5OxA5FZuu8ApL+Uu/F75zSCqJ55h6fwrl8qrkBJeKs8I9mi8rzF3XinDBi8rxAxCAYIy11tnZ/OTk8XS+IOMq5/q2++rL311cnLEYEVb4WkRijC9evKjrmsiGEK+ur3vv+65/+/qUI7TrjfYzVXitI0NEk2YyaRpMFD2ojvv46TDDAvlfREQW6V0S5silpbFJXTOymQdZQqhVFCP7EK11kOogt+3lP0IF/77xL8TlVT1HuBWwQACM0REyEMP9jF9mWV5cUZCmssvb23XfNpPJzFW1sVPr4u3merlub25mh4vYWDZoDSBwd7c6e3VKDHt7ewJQzyaTvYVWj8wmzfJmuVkudxcLApOBvt8/6F/MNH6PgXqcEUl9EmbxPkync63sJzLKacXMIQbd/LndQmRmaw2ZiWrv5OmyCIAZYF2MIhwYAGbT6d7uwWw2Wyx2d3YWu/sHR4cPprOpcw4QtRFPckSUOMoYY6n3gbPbkIRQLjcAlZbMIcQU4MvBznRcBoU3qFdJPpqAOu7CCnEXJZDO4Rj8xyJwfu98JlgwS4JtTf7Ou9WeZoHM6Q85m1VvFqVcDwfOqJH0SyTygoBWq7ZYmFmBWwFETJnKmZFEECJKFFaSqsiRaJTrYCg1aiBCIvUGBVKGqYZ8s8IcyyJIDjzSqHQAbXFWxtJKP4yoj0qpdRRgwrZEhnoira6V0uFQOPMkA6KxBhGYBRCU1LeuVmqGgMK/SDio8hg5oGAUFokcAwozEsfIMWquc8KLgERKfhWSsa5uEiU4mgIWDTZgngxJQZdEPyYZqs6rVyCUHKIpCynZuRbGzFVJgFomVqZ4NIeYOcFB66+IyDoHhKMsv/Gey79S3UmEiCxsnUMiDoG3F1Qvkc0RdZSFmWP0CScbjXRdYUqMdzSbz62rps2kqerFfPYPv/r7V69faDvCkiLOzF3XEZrNpm27NgbuuxDCXdeHvve68YP3MUbNPA8huMoZtJpGMhDLYHYhtm8JldM0Y/V55tMeI9IW23ZkbOo0MQiV3Dbvg3KWAyhuk4CgDPT8mx0FGKHsPaBA8H17eb07mVbTeTQYEeJotxFgA6Zf3bW3wYLsUEVAGHlWN7Nm+ub5m6lzhBKv2c4mtDMxhAZx2tTzSRPXnazbGHnjw3Q+AzIAYNHMm8nZ6amJsre7ZwCiRAbwHBDJVZWem3c5iEeY1O97TCxyGvI++X0tM+7pgD94G7xHhRTnTPd513Wz2U5uooB1XVdVtdlsrpZXkByx6L2vqsoawwLK6ZZEUtZjJCksW7QhIoYQb25ulsvl2dmFtXYym83nu5Pp5PTt2ySykowa3Jckx4Tfd/OImedImA0RoaT2PoggOc+uhORyNlkaUL5RleCgGGTUQDADvUkFS6Y4VMBckourI7fgTboi0yePxV/2H7H8kgU0HJndM81P1k70IICcKoupUIrkAAxCTlhGYRTIjle+39Sal7O4GBACANQ6l+xqcvpclmRqag0oemHdhOHuEzCKWjYjGj5VhgtEFkTJEHSeoHTfCXMxWnBiEYxybiVa3wGyYNRvS/Y2giAhsSpvtM5YROLIpIUpxljnNMyd1lhtkxGBBgIAMCKwMAmLIIvEGIgQkDgTgeUUMwBAJKrqWqV5ynMrs5Ih5rQY2nBZC6LTYwIWuuYSiSwRx7IV0+4A0GiwoJKybht9+YgNcSPVNKIRTeULA0GQe+wKhGDKsqvusZm6MlsSMLqNLZlCNAShQ/AhRObB+JDc1ZHIeB9FsDo7i4A7i10UmNbN8fGxQOz79TfPv0kp00hAaIjK+Q0h3tzcLu/Wvfdd19u6nk4nqvJT02Xm29sb7/vDoyMzX+TvBtTojBqa9yu/wOS+jmXyMUEYAiBEQxI+lKK00bRxjH3XI2Z+02JKJiAE3h33bB+Aeyt4b7wHMPu948NX+zOPsRojAfLh+uWbm9en/Xzn4OHJ7GA/EnlhPZooELoublqKESIjQgQxgg4NASDzYmf+8eMnYDAQmKa6CRu/6rGm5dWNtvgMbWucs4ZiiOiMHtRp0xzs7l2endPGWyCtfOv7rppOF8+esDORICDc84y3WlOV6cKtf448GRpPafkxpVwY0AKfdNbe6fjJ/L1WcHzM700zAiASoDAhIHZtR8ZaV+mx0lQMEOl9G0IwxuiljDGTySSGyOBVAxKRYIpGKelj6sGDaIBEggh43wcficgYD0irzebq+tY413Xd2FXId4WQAKIkjVLacGK0LQm6aQsQGULRQqXsccC7O7z4gVn25UJqla7J2C1rURTlSG/lSzIIAPkuSAAQUpLtbSGwlTUvDMgMMYCwASbh8ZIbo2oMABEIgbHI4NFzDM5HdrZJcxcQ0RpNSCrfXeQ8A6QcZGtMRIIUihUelYBKFmulhiqtNRmTXGE1H8plQZ1dFMIIEAQQIEYUVo1uEG3ybaWcZ2ZhAUBjJ9O5MWYs84o+e2evbqsEpMq6h4cPUcB3niMSOkPWWmeNU8oI7XyhrmXMqGlWwECpcdSQOqRIq0DqMKXEZtmpR6ONEBOwoYRfUpYXUyI4MEQWhgwmIKJm00HWaoqa4si/3HpIZkj2hmhQgRFx8ICLvM4KGNQAUt7jrSr1HMBINsAwwwCorbHN0KUAsuE11lVlaJ8lESmGRKYyT0umMf4QmSHAet2+evny9I1z1XQy/eFnP/jBp588fHj81//hr8nQl19+2fc9GWONWywWzrmdncWjxx8dHD+4W63v1pt200YO88UO4r4xxMErp0aIgZmZY11VjXMppFwOJYyeIx8ovUdKVD4Z01JgWWICmhR3yx/LRqquqXD0MfhEwwLDwybwAhFLN48Pj2Jv/esdiEgC7e3d6uwKNv1qcxnXfU223l8gQRBJzBjRd+3a9NECIBHHWE/JIt2eXUjXPzw4mFjXc4+CU9f0fWgvbmkhvN5YAY7sfY8GffDCTKlcEGNgw0BtOD9/iSwowjHEGGCnvyaaHu5VsylY6gtP4h/+aB9anZKNiBn9/BOm8DvvISNbKm0D83Q6q6rKGJMkoXDbre/u7kQk+B4BiMhZByy+74XBGVfOb+ZL1b5JqoBFgEk4+MAMRADKKZGZBsAQGGQUILQZVs3OGkBiPsgxqTIPJIBRK4ZERCAWtSQpnW6wOcbTJ0p5jIP5GWNUvTYo3i2JVfzJ7AfDcHcCEJhZWDDTR9w7kep3YzGxQUHF9G9MeKsKC4RU4w/q1AIrPxayaLp0SuMkSvLFICKCEAIQkDF2K1KsbhyLBJaKARlTDwooiaWqezULGpX1QrjocGPQGooSATTTOWvd5DwoYiCiYXRNMCpyH0BELOn6sCLeJBA1YQyJjHNkEvMZQdYYucNb2Z3pQUZzSmiaavrZJz+IPn75xVfBRwQCbQmVcuvK3G+DHimxOBWAIjBqEblQZLYFWtCEiIQhj5zXVEWSSuLeM0RgoNAqGPgWeeSwsxABBu+qvEpIonV3IoDg6lrRf23MdP8bM9z6gdtRcGd4d3JoMDXPKv7rFkYzosfSIFMysRGNUdLUdA7KOwGJkax11tV1XTdNU1UVgHzzzZeb1e0P/+IHx8cP//f/bVPXzW9/8xsAmkxm8/kCAA4OHjw8eVTPpn3vV6t117aX15ezuyURVZVzxlRV1fZdqTy+ur7crFaVtcH3Jaf/naFzkkPxownXu1Wcv64qa60i2ETEHMuRBgBEUcxcQ+AFQ9E/aa4gx6u+7/jXh1ojohG0AuvrW/Z+1kyMAMd4ffq26jeTvR1qHAAKgqtcVdebu1sRaZq6ds4R+fX68tXr/va2BbpcrciaiLC6WraRYeLQhwYJDYoTjAEQXO3quorZeO59v1wuOUYE2JnPg+83K19bVxuzubnxvp/t7eFs4nYmMTP8/IEjWdjwPjuKSLv9CP6By/yHDkTUgj5tqNA0jXFW0t5OYaD5zjzEwDE6azVIGWMUZmNM5SqOgspulHa/OsLKHa0Vw67vur4PqnoQEQiNNVVT7+7vX11drdbr994YFhYN2DJwcl6UoJaDCjNEhBHYiYWpvlyrgNJZxCOiNoOR5EZ/4B6yTVDiIVJeg6IXt8BmGO5XcrpCATW3vcJ0b4YycyXH4PugRBNb9yKgMLMKlsIyoiFeLekcyehUpEkshYQnq0qtkQaEGGKMiVMjAwfZBgIgIutsF8O92UhKk7JhMigYyEnV6ZFtVVlEEOEQAxhkcQKMCJqKLuq7YZ4sQWZmEaNXSX6Lqpm0CdQOq2y1M98hoOf0PPqIQNktQwSCXBOWtC+IpMx1Uec1aM4RQa45khhjiLEaXEwAEMkNiNTw02S03Kx3kP4jmENnzWSEYaQds6YsOlhycUIhz9LUa4X+Ez0bYjNp9BD0vY+jlcgTDsnP/7Aazl+XAgiQ1DxqwmrKOODhSjkbOGkgIqPJZdbZTG+nio3LVqgm073Do/2DB4AmhPDim+d+1T579mRnNj0/O/v7f/jVT3/y08Ojo7/+D3+LZF88/7brws3t3ePHjx89fjqdzUzlqqqeTKfCfNIe931fVdYa0/d9VVWLxc7lxUXbbZa3133fGcTpZNo0tbXunZqrbPVsQ4U47DDQ00torK2QDOZJSaz6Utxa7e8UnKshVxunkEZWu3+UuP9XNlCAN93qZsVtbxjIkBCIQNu1d2/bulsfnDwwkzoCdt63fc/APnAFUjknHJdX19enZ6tvX91FXuwujh8/in1/9vbNatNW80mDtH981LGPKM5SIAyRIzORiyAsYqx1s4n3vamNm032podXZ+fd3bpqXAzR363uuuB25rvWmcb1KDkS9geN4qXlJ/4njO6roy9awSmyWq00QlTOslrBiNjUTed7MSwcFXNiFiJar9cb2UyaibF2wCchAT56/dThj0hJfgwiGDLOOVfN54vHj5+0my4FIT8gQ+4DTWOqZ1K1ErIGHfsYarykqmLICjl5VekBMxY4Qlfzdw53syXccPi/ntPRC2XegMeB3nw/g/hSPZdaWWVjQD0sjiF0XqI+1Hvno5gFoulvIIrCC0CmnYQYhaMIFUsDUptUEY0YWmPartO7Va9YDR7IWcqsDRoyiF2+Wp9lpIu1szPlAGaO1yLYejoFYxghamBTWzcrAZNGGEZURJLMWCWN1OBHntlx/YEIERoiZ6yzBoRzLjXncsGciQ0pZCupQFkgzULMKW8gKc0MvO+Fp+OFfu9R1Pmg1AKkvIckEfcLAamPNXwkf6y8/34B2mgQpnQfSaRl+vDifR/CuGIdMTcAglxwjMlW58J2o4YojHgQRZFYAUl7hgAgxAhQEvGVXT36vucYU7Q4nwrFuhExgQ2IZO3uweGPfvzTn/83fzOdL/rO/7/+H//P/99/+l/u7pZ/9Vc/+/SHPzg9Pf317373Q4T9vb2//tu/me/u/sPff96H+Ojp073DAzSmqiwAoKlD8HVtN+2GCBc7uy9evLi6uvzss08fHB58dXv9/JuvEOG/+z/+Hx4+PPnmm+cc+P0mcwLJy9QX7z7v1oTAGEISiYMEROVf1RMhIXjJFWiSoUKRD6Ef/zaH+Hj95m1YbkzvCdFNG9fUao741fr8zann/tHHH5N1wmKcgboS6frYO3DACCwc2QA6Y7uu69q26/rQ9Y5Mv2r9uiXm6Pt20wFRtATCaLSWg9frVeh642jxYI+9r6qqns33K/PqqxfnN9eLZoos4v3q6qrr+9nJYbU7L8Hg7zZG3/OYJQB3L2RQAo4lR2D70N77oj9CecsoJ7HvvVYeKLWfvhqDVzei23R9340Nd2Nc00Df9jGyFiRGjrkiSAiJ0RibOO1TvAVFG9SjdjoytbV1zsIZFFbCtLXCJgJyKiVJTlbOb8osRKUOuPhMkL1WNeeHwG1WfIMfoiHCeygDbinP9JkMgY/zY9RAodQAKX2bAs+Urzr4lHm97q/aCAFkJdoD7cCApUESisqWHKwaeiVly0EzTmKMwgKksAALiNFmgJLyxSQBpakRqrpq5cbEGC31RhGOUQkQx9hn2aUf2uSYJ5cA7HQ+DyGU9rwgpIWmIhJi1JJZEE23SoA8sBCgaD5qNkgFQHLHSQKqnHXWWDIKdUJSWQzau3frzgov9CA+B2WocL8IxIiYqshR6c8SjSUPZzo3kAIRGEzXLfbrwuqQ1jW7XiNcQnP/MGpKrSYKsYC2RUKwxipBC7JwjPc09QglTc4qIWr5ntWa14TxYJrQ+9YrgmCMEgNbKwCitG8leMC6u0WU/ASSXieREGP03gOIEnEAYIpoRwZEWzeTncX+4QMSOjg8igyb9ebs7dumrk9OTu7u7r7++uv+8eOThw9/+pOfzueLy4vLpmk2mw0QIU6MJWtIi6Tu7m4BYHexe3Jy8tWXX7188e1nn33qe7+6u3v48MFPfvKT6WT6/PmLyGyMTQZWpkkdt9cVlTpopBDVmoyoJYcARPPGWfdnIkpLiEgoXZPzxZLtvm0O/p4hzJHI3PvtGAu59/t7v9heQNl+6R99dJv11dtz3PiJNXuHh3sPDqqm7vqu73oWXm/u4iZgROPMbDqDRbjzmtQYmGE6bYwx9aSp9nZnZKLwdLEDXTdHFIbIPNuZM0C7aq8uryc7O7aubFOhNRGk9355eztpJou9XUQhEU3BME199OT4/NWb1WozbybWGmCZT5psquZpyj5NmqnsTd0vI855lB+WZff1wId8xDLeDTO957L5OoQkLG27ub6+ur6+9j5oXipk5iYAiSGooDJkK4ecOwrosNaZic1ZTaD1e6CSh0BZfBBMYv1HT0hkLKElskTOGAdiolai5hhs0ZxJuBUrVtSbHrW2S1h3btSWKiRleEzN1UohWCYQpVLKMC4AgOoYTKk0krObEpae0D0aJ5ZiVhWqhknj2UqSd2+BxocM8b7FzgBROOS+7youmQOIWJeCmdvHb7Aw9IIEibBZEdioVbtZ5TBHAKe3IfkvEdCInrVWSYcwUxiWCGxyYQWijynNO1fbjOKkw4oxiqQl1MS5qO+21lTCqAaZMHBMTjUiiQAaA5Qlkf6lBcXDQ6Jkg4aBAbURPVhjWVhbeWi7Q82pyXeW8n4l15wNYQwZegJmH4m0rRFH4CgIGrglEYhRU27YOWeMQTAgyJFjSISXKkYJUvBADQFCLJlcIjLekepta0qbklQn2AfVRmQAcLk2C0RiCJKnHd53nlEXS+H+EXK1tQXLnzwHLOJDMMEiDSnZySyKLKlrNCKQJUtoiIw23YwxZJ3EzBhC7PuI1gYWFoxCSG4+nS0We0pBbokuL85Xy+WjR4+csd9+8zz6cPLo0bOnTxY7O5t2s1xe970/P+WdxfzhyWNgPn3z5vLy4ujoKPo4qZvPPv30d7/7zS9+8Yvl8lbzoYjM8m71+a9+s7u7//HHKSNTN7fJdjGRJqaZDD5vBZFijPk9Sc4kNawWLiIzxighpH0Fw+xJIaEoIv73OVt/djyzAHT/+EMABZwxwn1lbDNp+uijl+Xdcj6ZzeZzZvYiy9vV3Dqydrp/4JrJ3dvzm7dncLc6ODyczmaLg/2buztBU1eVmU2osk3tQh+m1h09etgGf7duAwgaV9XNzt4+GYqocXry3l9dXxMwMKNA9IEQdqaT6Xx2vdxUTTOdTC6ur5umrmY77febku9+19h6Tr/4Qybse+yHLNeQENEgrdvNq1cvX7161bbd4eHRbDZDRO8DIhlDEAUAmSMIagp08CEzn+cbLvtRlHID0KRGBclRdq5pmq7tu9YjImp7eDKkPRlSF1cGRiSjRyDRMSMBYIza6SbBY5ISa3SaPvyExUVIPmuZT6XgLV0PUm7NMPOD0VkYr4rxe+8LRQCJBltWssObi54GVzu9AYWBC5+aIESRCEykjEZqeqQwVuGU0Ewm4FJolFdw1M0zIRkxkx4za6eI4n0rkqxutHrSRmspFa5DQIQoIsCB0SEDIhojWsukTCGCEFE/SaVMLU/EkCmFieaWAWyM0dpUDZxccmZhIVJIj8dmzQjAT4JuRFCkWdgJYTbWeO+hlsmk7nsvEo1BSwQsBCUbDiCn8A1p76AocZ4RACITOcXLY4glJT5ZdQwgoLlU6SE4+t6XHSVapax3KgACZDDGbFnTltbUgnpVYLpgieID06sCrNHx8v5BhbyrfUebawRBl7cXH3hQ4fp+1sYcHA1lRCVBHBg56vk1iAKGgAGI0DBosqNYS86ltkvaOYMjRMYQJEbtyILOOgOEAIeHh/v7+y+eP3/+zTcPT06Oj4/fnL6526yfPn3ax369WdWuOn97+uWXXxweHv78r6Xt2levXqlVuF6v3r59CwBVXV9dXX7zzTd9387m088///X52cXr1292Fwdall3MVEypmmlWNX97cIIQhRAKmKO1FCIgmF1jTnMqqEiesZQQGokiUXeDjA71fcTy38rIwInEEBtb2Rk5ImTQls/OWt33tavYx67tJiBABMY4O6/bbrLZtDfLbrXZmy9mVXPW9q5qHhwdVbMdAK443lxccWRXVzd3q67rp7O5m9bVfGabKqKG6I2gXJyf15Xb3104Msvr665tjx4cVnU9nc2X7qb3ftI0d3d34fXrR/OZuGr8CH/QuowPDoyW9Y+AlL/PlwGAivjV3erLL7743e9+d3NzM5nMnjx5Op1Ovfdt2yESOAcJhDIiQAKiBPVZAWPqBFfUj6QaoULhLoxgiGixs7jhparw8Y0kPnUEUGRbaSAASXKYdJQBK3qCSDsrDBT3H3rOrfxPSGgrZLAiKVTOHhGAKtTBG8vBznwF0bjhaGXV9NZOP5oNWhJa9SIMYBLrU/4Mvyf6h5AZfwHU8jEI1uhvAQkIIWZc12ByCSGRVJfLJOEhAswSyy7KeEL6+lRoRES50Y6+p5T3MkvAWDhwFHOVVKObLS2dyiHmXxRcyhHWi1oQqOta2yEIC1fqwiIzpPKyYlCk1oMIQInUDFCy2yJRhIUTLsoIsF6vd6Y7VVV1XTeaSDCaHA6oq4kZfsJknebo9bZxJKNRplI/FDmWDC99Q4hBNMSSY+QA2lQIAWBM0mSIXGU1ExxSrTcgotoi6mApJapA2ohqAKhJEGPExJaeb+wdCx4RRGAoK9J1ynVUoBXAOLJJdBukpHpluVKqUcqBclFkqcxGWXZEdM6pggQA55gjeiFCI9qAAXKMHwywODL7ix3z7Onp6ds3L18eHh2dHD+8vL568fy5q6rz8/OHRw8+evY0BH91dfXti+ed913b7i4WfdddXJx9/fXXHPnh8YP/8POfi+//83/5z19/8aVBS6Z6/OjJkydPnXO6Z3PkX4Eoyn5wlqGYDNuy1sVASSgWJMAv6fFsW6QQCYhqX/kucfOHjX8Uyf5nHRopISJXOYwizJv1qjbTwJ6ZW3/Hnp2r1ICjzBRGzHu7i+P57Pzb16+eP1+evl1fXkMXrEMMEjZdQPHRt6tVWLW//cU/dD7u7cx3Dg4m+zv14W7vkIEF0Tl7eHhwuLs7c7UjWt0s2TUHs53ZfKd2De3AhT0FkBCiAF5cXZvT051Hx3Za682/D8n/4PhTTKh7n/0+y1pA7xjjb3/721/+4he3t7cicnx8srOz45wTEWtjCDGEgKgKwYIoY68feSpbZ5qGtkuROaproZBOVVVVXSPebd9eVm/qY6nEHl3xvU8i2UFFAhBC0aw8bTVOjPxuHheO/yc5AzprG1YE+J1JgntPuOXibt2Pj+G9s540MW6/W507GWNaaKwlYwgNgcn+r9E8aQDNoklFzwoTqlgBycCk3ilS5KixME1mGtKCEUBEoVORiChkkIxFtNkZL+WQ6ohLJtAsrCOa6qa/KaoZ8xyK6spYGBKzu22ReeJq09BbwBijxne1FoxHmV06tYVhVJ8bUkoR6Hczs3a+VP6jruuUDqboiZQTZAhQChtX1rpjXyhFSMvrhKS3rgi+tmfInidpI968X1NTj7SWiJISljmtFyChQTQikunHU88PFew5+UtEhHJBlFospW+yemYyWDbayJMAZPuEFMQlpdWl7N/86MXw08plMGXjAID2+kn9QJInD1BMOil7VyTB48KIoDpJMXltgxTRuMphzs/abDbMjEAWbW3cTtPs78weHOx//pvfvnrx/PD44cNHj5bL5Wa1mk0m7Xo9a5q/+tnPLq+urm+Wq/Um+HB9eb5e3TLzzfUVijQVrVe3R0cHu4v52dm5M+7/+n/7v5+dX/W9t8ambqcCpYhAy6twFJsnTbjXkA1w3hXJOM2BchQi1JbZKKmV1btuUCFgzJbn9xv/0tXtewcCGDKmstz3iNht1sYYJIEYQtcBA1lrEKZNPSESIWCRTW+6LnZte3O1ujhfrtop2d3JJHp/+uZNvZhD7Vrf+1VrPF+9ehtFplVto1CMFKKrDRBFYQaxTe0Ew3JzdnbRLlezaVNX5BicICMBS+WqwFxNGyQzmc0Se+/3U6ZJXb3z5j8R0nj3s/dUctG+iPjmzZtf//rXV1dXIYTJZPLgwVFdV4horZ1MTN/3XdcignOpT5IAE2FdVUlMKCScgS29JjN7nzrcKUZZVa6u63vxqeSPqqVO2cBOukAzN7V5uYRRI4H00dL3pUQgh6dNly2+K6qaLm7WcAfje47CICSyvR4MKsOSCwYqxCSHUct3xiQD9V/vcVHUj+eklkBTfQdvS0Z8iQgZdU02RnZPFZZXqZjRAUiebc4XjtGLSZpFfVFQ3A1EE3pSqyGjaBEBEEeNuJKWWeS4ZcJhBTMOMZpmpQXNGV4K0JatlWqek/sIYIMP7WZzeHhYOde2UdWJViVp7DbD6O/Z9ZhXREAipNsnBiGxxohIjFG1Tsz5XCNFO1bAmF0i0lzx5Nel7ZSCG6KdJzjHwTXZj1CtbO38oXcqIzWGmNKMJYEkgmQBYhbrlF2srecr59Da1C0EyrIBIKDylcTIIiSJ4SQEjT1j3m+IBQlPl8J8JAb9WTgrilUJHFkXiVk0X5yzDUqSKEySw55zOpgFCbIznN9MJIIGTeqJhAggfd9rjNwaO59rQKs/3D/4wcefhK5/9e23q8366OhB9GG1WUcfVnd3x8fHIfJ6ve67LoawXPZV73Qlmfny8uKbb74GgMViMWmm/5f//r//j//xv/sf/6f/+fWb08jMMQAgoPbhQJuaQ+ucDGekbNCyI1IMOJ9cTJwckne5mnRZoAhl5CctU44XDYd8ewxZnYq2vFcQv2/8Xuk/3OT3+/j30v33HiTvXfRd13WdBRARZ2y/vuv7zvuOyO0f7Isw935ONOlj161fvXh59uJbWa/msykg7DaNsRX66IxdrtY+hgqEJbZdayo7c7ZG03btxes3wlxtpvVmNXlw4HamhKTQmN+0r7/6ZnV5XaGR1bqtnHl8Ulvn79bL6+uJsZFhMps+efK4mk8joYeSM1ligVtzUjRDVlxpbf5opXvv5H7/sV6vP//88+vrazXEj46ODg72855EogSkKQyWu+2C5FR+ZtYcF0isMOqdsfc+BM/MTVPP5zt7e/u7u3t7+/uz2ezi/HK8yBp6HHF7FQVbSCtSJW8m4tCg7bgNA2kYDcAoZgkAqkuydyBJhSatnAgmEVCxN3WOcoqv2sc4sm3zzyMsOqGs2TFLjQRz3c5YzeubKCkwvSUZPejoC9L7NY831UhILhkqV9NJA0IhBMSE0kIxXRR8UIo9o4g1ZhXALNx7jlG0DEy3pYy3TVKfwomPGTJSDTk5CwttSOKF1gqurDNASZkkt7oX0n7Aq9Vqd3dX/RKRqBmmXdf2oS+TLgMwnJYi3VJxgDmKaBNCUF4qRBSRqqq0NV5m0JZhthA1Q1ZyAQmCQQQgRlLuck00T1UoCsVwSmrPaYVEfQx9DFo0jGRBoN20MUYypL5ygd31ksaYtFcHRtP720K515M2GD0qR030ligsAn3v0RoABGEOvbDPWAXmBUPE5M4PMeBcTJPtp2LgCABqOACKjSbCilnp1GlfI6DcSTkAMKpHCKxGT64P1m8jAa1K1AzwkiGJ2nhzs16x7xukCmBa15v16u3522++/oqMDTGgSGXd29NTJOp9iDEKCBloYu2c9T7EGPqOv/nm68PDw7quDNmmac7Ozn3f1XVFhgKHtuujxPV6Vbnq5OHDuq4AkqeuhrpIlg+YozLjnZaNPN2DAhAZfAgi43aZefkkoSNSuG4HPGg4yzl5MxGqvCvf/1gF/GGNn36L2y8NluJ7x+D25L811wERSMAIVK4Kdc1x4zvvmvpueRd8P5k03kdm4RCo69dvzq6/fvn621dX5+fI7BB2yLimRkIBiBArV03mUza0e7QXLdW7M+l9XG6MROkiAkL07c316zcv/a+p2Zkvjg4/+uTT6WR2dn2xubhxgmQkxhjbePbqzery+vLsAtY9z300dHh4MF/sBKKouSppNZMiuB95gZF8yObY/Tn5s0YHyn67d9nr6+ubmxtENMY0TfP48eOmaZI0Eem936w3XdczB5UhhZBO4bgxebuak2qjxxhFwBhb15Ommdb1RP8UmgdA5ZwwymyvCpFw4A5KEF9K8clOxHumCBEI0AAZQQpRvTe+52jkP4QFPUQNEmZnCVErQe5dP0ty3L7a/cECqRMRIGOipQVVGSBURLCU0GNqGyUF71NhSsjMmvRKxhCh9xyC5skCK38GgHZJzocFUX1yQkECQp9aGCChYQmIiMZo/D6m7lQ5r0uAOWZzKj8yiLAk0mfWRsUMCChIgCREDCgKKJAuGwCwJmdJMkJS23vQrj9gEbHrurZtE7UbC2grBO9D1yuzRMLIRSgRUEhGXFN1bww++hB9CH1ABg4pgMrMTV1r7FPVT07BxxLz074OIUoIXNWotBLqxWKiZlHERQRlHDkH0HwH8b33vU/eLSILn52dff3V1zuLnWY6mc1mIqkwhTXrIRE1Yl4jgSLcRSg7RMnGATCCRsV4ZGCh7DAxctu3BGo1MEuQbb4YzOJzZJOmKQPQXEUEUN45UhhFssiVnCaYrM5yGkYZHKCYv6ZcgAAIc4zR+yBEAOiIDIARMGqLhZCahFtnBdmHvl2vK4wQ+qtN23eeQjQcu/XKd621TifaY7e8vQ2RWcQY46qqbhwAty2oxy/M6/X69vYGABHM/+d/+Z8fHD+sajeVxjryG9+2603b9r5fy1oZU/q+T/2W32HkkGzz4D2kHQd5zRK974RjpjHTPGtG2RLP99Cu73Ck/kRg8w8c90Tg/Qqo++9WlEwoYWdRoveh95ZMVdd7uzsVyI33fhV99LauGKUHpsrFELjtsQ9ff/3r26sbYX786NFiZ768ua6tM4DMDITgzOX19e3dndTV3tOTB49OwJmrs/M1iyHkuxsJMXQtVe5wZxer6vTq6rcvX++ZyfT44dlvvqLWzw/27KQSAI4h+PD29PTu8uZgdw8Rd/f3Fgf7ESFwVCM6980oy/aPOL7/mr6r1CeTyWKxuDy/AICHDx8+fPjQWgsgDBAFOu/bvgNCg0pkBIi42WzI2qpyAmgk44ParpsIknSSyIEQQ4jXVze3t3cvX76yzjnnVquViFhjCW1C5pRHINmUBdwaKz3M7dIlx6g4W7NJ7wsmRQeEwgggUUSbeN+bnxzzGf0+Jb9+P0JteL9lNOb0zfiGyCiXukhKydDmuyPl4PAInNbcEdI2C4nES4SZAyALRChxQky0ezEqJZRBDPp9ScjoxVJeOUoU0QfPPffS9+HoexHVFC7OZL5PoazatlFjKeEXGT2iNRkrBgDFijlEYNZMXBBBhXYhhRCNIWO1HUXy7VBA9aXS8Gr/6RhjVVXe+9l0ql+RTBu5XweWNhgXaikw1lpjEQuBVIKRlZVSee90IjShPIQeIGKG1kVkebf8/PPPydLOYvHkyZMHDx409STlP8QIKGSQY8LP0WRHPt8PAAhHjswhRB/UWsmbSAgRBQ2iMPsQBSSxrYroq0Qp+StfD7MRvFUALdm9GyHQCr1hFIm5CSeSAcEYNIY9Uu15FyLDyJVPqeyRo2HNoU5nUxclMlNKXAKRGPsuYMS+5xCZwcRIUSCwNXZSN9qRzhgbYwRGNCQCap13fet9b4xJNhSz914ErKm++OKLs7dv0Ziu22xaiVG3clR6765tX796rQneVttzJptlhAZ8UHQWuuvUB1qnLEESEiF1Rk2o0z+ZRv3HG6icvgImSvTB9327Wd/e3q7v7jjE4wcPTh6dIEDbbXrf1w535jMw8ygMjC7Cxm82N8v11Y1D/OgHP3jy7Ol6tYy+C13HMVYTF5jXm86LUF33gAGQrLtZLn/32y/2msnj44d9jO3dCowuOx0eHT5+9uS//uf/8vI3v+1en23enj3+4WcHnz7jed0x9+v19eu31LYHR/vIECTu7O+FGM+vLtdtN5lO6snEVRUZEkNsgEe5iwCDNNR/FuOMclDqPfPzJ0PTOooFlvYX4v7+/s9+9rObq6vbm9uHDx/OZjP1KHS3OefmO3MRxozEAWDbtiH4ZlIjkgKVCAnU0cIJIkOG+tADAHM6roGlj0y9jzECGXXi7nVruV+ro1UjOQVFversqCXHFwmJjHrHUgTce4gHtqcFwGRvISt2PWjDhGGhcN+ewOw53Lse+xA0dKo66zu+Wi+d14GLe28ESYBYmfDyiS/Ibka2JUegkQVJUiMSRGutGC37AGbWakkOETgSZjjBGBjB73ptFk750hAFcgYQggGyuQFuef70F2I2BlJRkKRnk1TKWrw/AQCw1jkWiKxOGDJLIl1i6fteRMgQEAkKIBljEamqqqZpYibFBk5wojHEEWNOU2uaRmF4LfcsKhOLZSAF2EZSGwXQIAnCCFpEyNX2KCKRJQ66TXVNCD2BUEpDEyQUlhADAa1Wq2+//RYRH588Nsbq77V2CLXTA6ExlojG/T9CCL733MTe+9XdnfcBEvEsZPMwOfFRqUXQMCMIRVYTP6YDLqDpZiSAWDioJb0muUBHEJASL1hazDQ1+oZ0xgbjNB28kRYWAFJcr4gqPRGZNXuQdIiQa9uk36x3Fg9c5fxqvV534H3seuGoBh4ZMtbVVU3G1lUzmU4n08mkabp28/z5N5dXFwhAiE5JmwEQsd34zWbz+a8/F6SLy2vr3KPHj2aTKYc+hgDCoe/6NkaOztkQegEGMsU2VCd/LJHHkhcxWbywJTGhnMZyGsbhknfGP6rT9X3GH3YDRtAyhE1/e37BIj76xWz68PDw+urq2xcvQOSjJ08ODw+/vbpGaELvu+h39vYuL66w89SGm6srH+PJs6cf/fiHve+vV6t11y+vb+rKze28C36xt++apmc5v72JiLd3d5vV5vr8sj48bKbTg5Pjy7Pzu6sb2KyrprGT+pOjHzx78uTX//UXt89fTqY7bdv2HKiakaXJtF6t1nazmRtLgB6BjHnz6tXtek3WUmBedy1iYD44PqpmE29EY3VF7d1TtEUT/Lmm/kO7ovw+AaICiPDo0aO/+du//fb5i/39/Xx4MySqrcB8r8QaCXJEDD60bdc0TdIKOUOKRQhIO7FarUIFSeUghMZaY8xms5HIao3SAAdrfCtqLaWmepVSII3+5poOTCmaZMiY5Di9h4x9PJl475dYnq+8ICAK+6G8a9PeW5jk4N77uAozgHImJdNiFGzQaJIzGeestcYkLucEVqbGBpl5MNVAw5Ymi8IsTDI0awJQ+BCUuowHZuatmzdEVon3k9BASHnjIBAVU1T7XtM/idBAYgjW9w98BlkSbRtP+em35iT9bI2rJLXdsEAmAmioJka/vLvp+9Y6g4YEWRCNcWQMkamrWquWYoyevZKV+OBZw4xkyThra03Rd67KHh4oSRORQSFAKe07sMDBIihoyAIaFuXHRM54LGeajgRZCEv0IpYsKJsYJDo0JCJrrJY4t22bzjBiifllykay1pbJEQGOCuN67U7fcWqBqKdC7c6Sk06QosmSIWBJCfwAgJJrpdX0s9Zsbc6RMEjxAVAfL+2MBAho0jvzsH8hBUQzTpLDAqSzCIQk2iVE8mQgAGf0XqSqKmWk6ru2cdbG6KMnCQRskA2igAQQYgZhBnTWurqezGc7OzuPH55YQzs7889//au7u1sNaDXNpKqcMWZpVovFzmazWW3au9WmD76P/smTJ8YQROz6jplt5Zjj69enx8fHJ49PULSIO+0BGPlAmCY2G5FJRiMUXu7cijG/GT8Ag5X5ln9iBYz3A3R/sMeGAtKFqzdvV8u73d3dZjLff7BfNc3e3t5mtb44P//46ZO9/f2vuv6mv37w4AFHaH0AZ66ur/ur5brbzPZ2Dj992tV0enndAZOrnKsr5/re19PJZDYD5wjwaFJbazar9dnrN33bSZQueHSWJnV/LZO62jvYb9v+8urm+NGjb798fn33dnN7vXr+jXtytHMwFzLM3EtkQlvX08lE473Lq+vHT5/MdnZurm67tr2+uupjtIaOqhODhkmK1P6Qrt3Cjf5YZfw9feWMJCEAGkMnJ48IyRCFEEodkeZeeN/7vmPtr4aEiFVVWeu06Z9oqCkyimgCpUGV8nkPY8pyMs5NJtNJM4mB1dbXBy3ojj52fvQsyLJk0JwPZflFpCEp9x2mZb1srt0ZzkGhW8843tYUowiykKSG8PkiaT4RAUlI01AQgLJNnCYTlK8QlaxAY9ZaRGSM6gJjLBqDRMZWVVWn5JvR0DAws8Tc7shk60RSbBG1BBYgx+ogaTxF/aL3QSQSWQWtId2sPrlqeCICsippIudS5GE+NGdTkkMFhQKkzMgw4/qrXKqDJaicYsEquvP02lxJmQpVC54Sgu+6Lkoka8ga1Dc4IqK3b8+WyzvFCEQ4Rq/QMCttByJaEgDjHELqAixJL2pZrUHNKWCEFKMY3DPVcMYYIhti4BSzT/hqftJMDaZJthJNnhJ9NOeccUZj4HkZk02lWdSQ/UjcbmanmIE6wzGEGCNm2BzzkuKwiqK4HIgQkhQOrxylQcCcH5gWQlK9msknnUXTH9IHtNY7fWHSSMamdF4UhZqLu1DQWj2L2tgMgYhsrthOO03yHkIiiExECkq3m/bNmzcusgNRuAVz7nCM0cfYex88933vfTTOaVX3dH/36bOPmknzq89/dXZ25n0Q2AigcD+dzT7+5NOjo6O5D3u9770X1G6SoHfWte3ybrlp19ba3d1dSyS5ubIo3hTzWfqQs5LqfnN7tXzicZtzdOsjoqJBnYixc/zn18f54vd8i2z6y/il9308/11ui0Gur64ur66mrhLmSV1bYwTEGLPYWbxdn2oKSt/33bo9Pjw6efgQ5s3J9Ony5Pb24tJv2qqq7N78sl9f3t2G9br2MpvPMcbWtxNjI3Psfes9W5rgjq0cENbTybrvN52f7s73jIlRTJC29V3wl1dXTz56tntyHAH29/eb3V2D2N+tkJmstU29QlhuNiHE2c6cmUOMk8lk0jSrarVaB7QUY39xcVHNZ9ODXUogmkq4LQbdIoL/hFUA2Lbn3n3jvT0jOS7IrPgVkjWRWfo+cb6mlpdChK5y7FWilOxoRExxX4X8JLWTFzLEOaKXxBqqC2LI2Kppqrpeb1bDRkAEMroZaET0WJwpzCZ5jAwp4Sr5hcUdG03Ie+epmPrZpU4mPQeQoE2jS+tlABiyiTLgrBYyijKDpIvqLRICAQf2vkMUg0nqFYVnjDVk0RjJFU3qyWidKSSLgLMXnQYRkbKBhsBRsnbIz4FCObsAM6FR6PoYWaxFzpnYklSIQHHQtWFC6g3IwnmShRAJSIF4lTSqtk2hulJbCQVzK9hca4wokIpTMXfT4ORk6m0Pjd812a/re2aJjIFl5tze3l7TNEYVsLPT6VxQ2r7X5kasFFRkLSGQq1wVo3BgAOz6Xn1Q9ZB0N1DqDL+VeiNyv2m2AKhlBAG1D6OmlufGGIiYNRWLLpc1zlqCRKMB0+n04MFB5OhDaKaTo+NjV1WGSGIKKqAxgVPYu9ye/s0SAViFvO97qmtAAgnJOCjmMQACEpJ1ruwBKZQS20akIQtSmkQmdXjv3BOAPqruCU1R0q2aqGNHeUKYk54VTqfheGHOn8RxzUCOPgAiQG5GFGPsQ7hruymQqysipOAZlLZGAJGZY9/HIH3fb7p+1W4uLs7PTt8eHBw8enRyeHT8859Xn3/++fn5OTN7H2ez2cnJo6qu277TbAnrXFVXVVVxiAh4uL//xcXlb7/4ze7u7o/+4odGoN90VTOlfBoUVICR8MX8+2E2lSlMxLzTfX10FsuTv/P6HyPP/6mHZIwHAVjk+ubmbrUyM5wRNZMJIqW1D7FyjhBWq3XoPYbYrzfoObZ9C2Cbav/RwxQsNDQBmCzmN8sVIygPzGQ6cc5aa62zUeR8eVPv7xigxz/89OD46PNf/vKrl9/8ZPdn893d66vrdnNnogDL7dX1dHdx/MmzJ599vDdfOOs23t+0XaDe7Nj5zvzWms1ybQQmmSnl6uZmurMz212AM83ObBZ6MdZNaq3QScZn8uz+PAbRWOl+HxVe3jNWWukYGtf3a4nRGmOMYSABSXJDICg4lVYtG4LqNGnSoAgQaXzSEKIhBpKgUVvUKFgKhwGCAAMTGkHSeDAkAiY9vJj2xkixisBmsxGRnBqtgdbsyCICAAkQg5In5nynDDapky0aEuOkX7cnJ0qBuItXvTWlJaRWTOHsH6OIhBAxFbNKRpUJMyyd9JIgM8TIwlI0ec67utdRjQBJ8VoEQjHAkguoIHnYuW0SFP8kQeDqeLDqQxRMTQchg8S6/xKcoD6PGuwEwIPjLykR2ZiE9if/bHujyb266fcNS9agIQYBQls5H0NgDiI+BCJqmsbVlbEWkWxd7ezuCkhVu0nT6K2SaEVQBGYBDhCDBGbpfa/0HwBgjFE9oT8UZ7d4+BkREYUUCDWzgZ3ybWuJp2ZBCemb1UlFBI2Su6qytspPLdPp9OTRiXK4GGcXuwvr7DhpzRBFZNm2uHVoKhmgcAx93xtrASGKUKbLgqGYSgDAVQ6JNAqTXde8fyBXbycrVjmkB7b00Q7GgsCriVFVVV3X+WAnC1BPLEeBrI3TIxBJqkGElHYxIApJf8lAHZJ73SPtHxz86Md/0QguLy6WqxUag6p3maeuOtzdDTECUDNpAIxaKK6qLy4ubm9vPvv0s8PDg7/82V9+8/z5y5cv+76vqno+34kxtm3nqnq9XkeROc53d3cj+m9fvbh1jmM8Ojhw1p6+en325vXRyaOPPv50Np+DSczP5eiqXaiySVjy7GjgIUEmZWbSI4/s4X8NenYY71UA6fcoOwd7+7t7u/OdqnJkTAghCt/e3Gw268cPH2KUs7dv0dB8Z6fr/dXFJdUOrAkgq77zBELQNPXDowefffLpOVZ355e86Ze3d/t7uyHG2LYU7Xq9jiEg0WJ/b2d//63EejFfdZ0XXkyaumm65Sr6EHovhrquqxaz2+Xy+Vdfy6q1YOYPH8w/e2YFAxok6wWXd+tqMj04aY6OH5xfXDSz6c7e7s7uYr5HASSCMCKP2BLHTv+9uRne9IfM5B83MJn36XzVdbNY7MUQvPTKIixI1llrLIiElCSszk6mlyl2uNa7Z/dR8UEiRC0kLR6tAlWaUiqSC4KUNW8wJMZG6aDhirWaWAqVjiI9S0ndkkTiy6Uc8/50ZjEsSgVbdqMmDmV3t9xKll/3QmrpHssNIAKX4KmaBgkhl9RFImsA2fozDE7ZsFqUmlKaNKardw1y7y7yYxfgtISRt+x1FeREpLS4Wy8IpjpRKfD89hfwMLfDQmQD4HuMdEEGQDvuA0NEpQpJWxEQUeVc3dSA0jST3b0DHz1zRDIDzirFLsvQaJ5ZReiNMcwBRrB40bhjYwpHt6EGxXQyWSx2Qgir1QoERgSoEDmGEKJAiMygjFcZp8XURpfAINkocblc0sI4axGVjUcryQqvFb87bZQbV4UQcoJ2onxBxBBDiEEQrDF1VZExHCREDrpTkJItC8ltzUcmJQjk9WbIORJFamBKYUNjjJKIoUGBVPaKRMhApABZygovwqIsb5nkwQRLLDPMwkb7MiEAgasqayz7wACIWFlnybIIMjbN7Kc/+TkjOlf/8Mc/2pnPl7fL//f/8D+8PT379ONnvu++/vILlLi3v/+Dzz5z1n7zzTchhKurq9Vq7apqd7FrrAWA2hqIsa7cerX8xW9/i4i1c4DCzFXjrpZLFvnsL35UTyYl/TNjVO84uIMSzjGrPJlZDf+pave7xfefKNzfe5H3aNzys/5tzP7xkQWsjEGR1XJ5fvY2Cnddt7+7ODo8uL64OH97trt/sLezMEQcefn2igSiRXewODh54Jp6fXv34ouvf/jo6dH+frxbX683bFCcqWfTZjJhkE3vu7slAlau2bTdpvef/eTHfduu2nY/cuUq7/vQbhDw8OhoPp/u7C82ffvm9NSfXs1MNZ3OpmQYyVX1/oMHV33kzgeDkeDo4cPr5fL1q1eB43yxoKoSpZZTSQxDMZJszwMO4Vh45/U/bMLvTfLoJfiOPYOIgLSzszOZ1Kvl3fXV5Wp1Z1zlKqepQAbJWSsaxgaj3DCoIeDkbUqIMdMAoEE0ZAIOTUslmZPZBk/6sVAWDYlDmKcr39jgaDJzyZAqganxg6T+tx96zA9sbP0WyQS9ybfPy0ZZ4WZxTSX+qr4UqFpXKum0wAxIIIzAqLxs2iktw3RZRA0mdSqC0l/GCNqFsLx7tH/yhfLcqN+v+sIQGkpNeIRTQSanBGlNIJU8CdojQzlMRJAlKzootwiUGROLiaQrPN6i77h2iKjmjLIKpwW0aKyg0RxvslXdMGhBMAAIkHHNZFrVDQAbV9WTxka32WwEkgnCkUE5rwEgUWxqTWzEBI2KMYY5AmBVKSBps5mpCAwlEiuthUVEREV7QORgd885d/r2NHAMMXjfMwAaChwxhigchQlRCHKDBAYQ730IAYlCZEFQzZeiCRnBL0VBzFISIsbGL2Sqi0SLwYKCwEgEgVkLt51zVVWrfasVQJBndghGJKxHAMSg2Urz1Z2Tu9ZLQlux2BDGmMpVAMIDGysKMAJouxKRIsEFig2ifrREASf6b2QgZoh930+bSTOdAFHw/fX19S9/8Qsb+Wh/DwFn1aQih0JRAFw1OzxcrTbTncWTjz45OT4+ffVqdbd+e/r25OjoyZOT9Xr14vmL9Xr1+PGTTz/5ZDadbtp2eXf3zVffROZHJyePHj92VfX6xXJzsAo+XF6c7y4Wq7u71Wp5c3MTQnj87PHPfv7XH3300WRSswgwahCl8A3lydT4SjZqRzjQ2Mb4c40PCqN/roGAhkSQESTG9WZ9t7qr6/rRycn+fLG5WX7zuy8d0qNnT3YPDqwxYbW5u7h++/LN5HD/hz/50fz4iBzFtr98ffbV9fpwsRt8FCJsqpX49c2VXS2RKArW0wYR29W68/3EVYeHB7HzZ29ON+u1sqVPmnp3ZzHZmV/fXM0fH80P9g8fHl9fb6ALoet50+G8Mc4uDvc3dysLKMR3fTeZTprp5Obm5vTt203fL/YPaFKDo3tK909Enr9Dy47h6PdM7oeHYmxIZF212NsPMdzc3jJ4/TKOAYCcsWD0wFEUGkF6AkCinbxZiMi6ylZV1TQqslRjkSZxju8jZ3yodWCMyd4nZXhV85kIMPEkxBhSv5kPPB1mZ5EAUkUEojZQsqPMLtlKwMq2iWjTVU03TR4f3keZBjfj3hSiodIlVtsMaA5letT8v4zeizbfE4BECMzab3Y8PTL+gVNWBRYhqFIhcVsCACIZA9aCscbZdtP3fa+ky2CMNc4aq1VVRJThg8T7pA5XYaQgxJgnKpn7ouQQAILApP4d5wBvno3sS2MmANJsHAEEsLZyxlkgAiLn7HQ2W202IkKGqqquZ26+s3BVDcLWuKaZaNIdERmDAsAUhRk5AJGw5giRRIkxojAhMrImLyDCZNIsFjttux5s26zzCtZfMoCABRHulstPPv3kwfFB4Hh5dfnixbcCgkSR2eqGAmiaxiA554oVEzmGEAUYCF1VTSZTYyxmzqWiYnW/ZDwWywZKvtcICUHARGOOg0EkIs65uq7zpZQhWllOBr1QgAFrLELJNSozAAVcAgANCSlaY4ypnLPWoijPTkrd0isTqpkGIpr2nGxkPU4DKgsC2ikSBFA8R+PMZDolIgjirGVmJKzqum+7ciu6bclWDJu2D+t1e3F+eXl52XWtTstqtWqaen9//+Lisu/9k6dPHz48/vbVayKcTOq2bdt2c311AYCr1arrNm/fvl3e3jauds6GSET47NnT//h//j998oMfkTUhxLv1BtEAFDq9UV1mAaYBCUGYhhNZ/KSMuMPWrI9FQdr4GccYBMeWFPn9457Deu/Vd66QWWeyoBjfJORffdeXIQDrBSLfXl3fXF0f7R8+ODqa1PVmefflb7/o2u7h45P5wX69mBnA5eX1zXptZtMnn30yP9hlg8wSQpyYKqy605vX9XRyePyQKwrEXdSeyqY2ZgfJVdXt2aX3PRn0d2vufb/enN3cEQsx184dHx2e3VydL69Pwqd2Njn+4ce46a+fvz47O6tfHxzOa2emQFjN6p3ZfNO3b68v5mG+ONzf2d8TkJvrm4vz8wdPHuc45f1RlmBLeKXDkmDD9y5E/gjeWwLcnu3xtkDU7fCeNPXRTlCDjwzh3v7+5eWl976yruu6EKIxqB6eCAsTayqWNliTFMOKMVpjpvPp3v7B3t7+dDZ99fLbu9s75fg1qRpDQz9JYSRgIMdWoGSfIOLIVcg8rMAc8yxB3l4ymsJ38YXxg45kkQZ8NJkLQXsuCUhkFp2oQabBkE2droV5ow/CRxJjE2HiyxAgERIGNEPQmAm5NCpWIZtMDhAQVAQ7ocGQqf5xWKb8n86dZvhSYppCMs6ausa6pqqy1kbmEAOzaEvXEGPgqClbml2dorsD9iCcWzxZJESKGBkkAiMRknbliYWtM8leUq8UU2lTfqZ8syQgEQVQbGVdXdXqdCLSwf4+GWMMOuem02lTN3XTVHUjIs1k2tQT77133lpCJQAzhmOInhWSZoiGwVmnwIGuuzWGjUEgZ6u6aiaTSepDJwlv3d4dibcBRKxx69Xq5vr68MG+Vgbpw0SJkTkIqyXqXFU7Z7R/PQAgOuv2dvea6ZQB0KC1lhK5ZQKFZLTlnHNw/9jrD1R8YmZWJmcs+LmIKmBrDWVwWZgx03RDysAYYHmtAhxv90FY6P9zTh1mP89Yi0Sc6EPBkBGJKJhyeTV8gLid1KahE8MMSFqkyJIquMSHIAJVXRljBNHV9f5iXhM102nX9yGyYEKrNNNbBKJwM5kcHh1dnp9pNuZisZhOp9fXV1VVHx0eXV9ff/v8m+OTh8K+a9fOGWsmzsLq7qbrOhE5fdPf3d0F7zuJRJPppNnf/+TnP//5j370YyC72rSbrl+u1qKBQ+dEBhKGJCUpNcQoc1xKFVLsAxHGAmF73MOmt6DO8c/fq+T03ht+r84uykNNCPnw93/318ry9vbq/GI6mT48Pp5Y114tv/rlrzbL2wdPHh0/eVTNJsJydnr229/8tif47K9/evDx09DYgGIRWQQBHBkffexDM53ufXQSKwrALCxRmCNEXl8vX7/4FlkMAgKBD77btOv1/u5uU7mDvd22a199+3LjiAFsXc0fH6MgN+7y29PTV69dUx+cHKNBx9BMJ3baiLO3N7fHBweL6ZwIgeX07CJ0fVNVyR6GLWj0e9hARTF/n4EfeueHv2hLFKRzCUiItatnk+kdr0CEEJ2tMVEUBI17sZCoDU0YQgi+D75XMCtEuVutAUkRtcLOjwAIA++jZIqdQhgsiQa/IHZIaJAIUzkJIgJLzhoukRlJDW2wpIMN208fbyiZyY5FenjNSsrMPlrsKOWdZXKyjPo9C8BKmo+SSjRBREaafFiO/JMKzLQ1BBAkCofiTugzZJBSrQQUVlUNIIlglxgQNOZO1tWVmU1N3QSdWQABYcAogjFwaqWDJuv17A0PDj2jph0jM4OS+rKUEuuEk0tBEJSmKhHipmQ7NLoQaqqwICMQgBXEZtIgasiTo7B1lqyxxi4WC0S0lbOukhiNta6qiMh7X9eWRaJEEQ49SIwoStcpUXyMHEIMkckYCIgADsWIceQcOUuGBocTtx40D9JyY0OIeHlxcbO8ChKtdZPpFLQBdWTf+9D7ECIiVlU9NGYHIGums/lkOmPmACGtq0I6QKJNfAkYOFXBk/G5eYhoprsqAEREDCH0fT+ZTNIhQYHcDclZ65zT5Lr02bLHB6R0KGsDBUvGVrkMVm2RLQhgkIwWKGgVuipgaySC9k9GQmONcliOtYaIaDVh+saUHygAEmPo2hYRK1choo9sq/r42RMDENdrNCQhGO1fyoJRa7+1L5bUzaSuG2sr9a8fPTpZLGbfvni+Wd3u7e8LwsX5ee97APC+1/pwUCQDwEcfQh85QhDsIYoTQs2ea9vWM0eBXm3RwM4ZIrCWyuOoEZ3q7pmFYs5YUXey5JWk+/3eOu33jHeC6/8MowhBiHz++o0TeHxyUtXV9dn587/7fH1+/ejZk6PHjyaLHRZ5++r1y69fTGazT3/2k73Hx7EyHrQ6DcEQWjttGiHLBomwnkzW3HdtL4HXqzWj7O3tAQB7fzDdmdaNAQSJ7ao6Xd455qmxu5Ppq9dv+tVm8vCI0URjQl03zx4+2Znu7O5fv3h9+puv/MWNmU9hWtkHILWd7+6IyO3t7cTVs2ZSW6d0OrrpGVOx/B8/P/cX6J4H/K6g/66ybMR7HwcRwZhCZUqHG3wAUT0LCAQGjFVTgpSICRUgJgIUMokut+97H8J6vb65uuLI4xvXww4CMcQsG0QS3YRBUDaOFGGlRLJhIAdrRCD6wBxFTAbsshoAABGTBI9mMA0pxuNHTZlPCXrdqjpASSUnaYJGoix7z+8sSenzhyCRJUbhKJFTAaxgZiwo1xncWclk0Sk4nn1qzOBlWRj9G7WgSIHHLOjUUletWrlqOp02e3teYNP35YYl8XWXxCIcYBYArZ/Nbn6WMyAZdVWQINWScBJ3DCnHNllRSpw8PCaQ+r7jvWf7viejgWgMsV1vWgGIgYloMmm8D85Wlat76QDIWIsAtXWNq9Agc/TRdzHGJOMV7jeCeldMZICQBACNBaqtm9Z15SrI0CJlvTMOP4gIaf2wsUTQdp1f957DwcHRdDo3ZA0ExXtDCByCNcZaLdpJk0tkShwxnXBMVVn6BdsWAKZYihQHCBFJ2TGVfy6E4L0nohKH1DcSkbVW/VZRQ1QtxWSJpvrg0bdh3jf6Nsr5eYmtNd1yMkXRGLLWImAMXoR1Q0mgGHskMcaQoXcwTBFh73vdBk7hM+UxDcwhOGerqgLtf2jt4vDAIpy/2ICA73sOkRByWS6QMYDUhxgiK6FejJ6Dr42Z7u7K5vCL33358ub26ORhVdcvz87Xm030npmNQd1U3ofI0QevjnXXd8aYuutfv369t38YGGzViCGLGDnVCIzrqtIaabSMEBA4IgDE4BMJhwyr/D20Jd/HHrYn7vdf4A8fMhRWvOfFDBm+/5aKbOIYby+vP338ZOYa7/vnv/7y8vXp4e7e4eHhfD4PIqevXp29ejOZTD770V/UB7s9YQS1NAUJnXM6qcY5cSQgMYTzs7Pr84uKadNupvu79f5RK1S5yqCI9yxMEh3IzqSpkSjK21enF2/OHFUnxydV1fQRAImqeuew2sNaru5uv319fntn57P5yQN6xqa20dDOzs5t14fgmeu2a5XUXfeXxtH+3FbOuzp1NN3398i7xj9vvZr+RgBo27Zt277vvUdjrDWusmSMEVTyV8mbCwGBrHFUs4gyFZeNpYWpmHNQEDNPg7BIyGpSR6pCVC4X1vCM5sqMHk2EQwhF8chIimbJo9lMsXTCKFFc3IqAlal4T2Rge8oIBnl1/43b5k/qFaDyXfUSZC+XMnBdbnj4IeN4PECIBImoYIx0JVsBMafuMoD2/EVEQ2Sosq52dWVd8EHj84gIWLR2Tngb7kFQxBCqhcXapxZJJCSuSwRFiIlI+X1DCMwRIIL65MPNpTWXEXcTIwxYBYiNUXS3iEPsvPfROhsiZ7IRtModnJxyQqQGzSRi6EOQUAEzQ0BiAgBBco7V8UKObHKWASEZRO7D3e3t7fUN5AaNY0BJXZk8FQipSBdjEGYMXmIEV9XWWm9Sdlvk6GNQyxCNKb6g3mteS4RiZKNmDmOBl/XdMOq/oUl1MUjGQgiRmMX7QGS0lF41gdoNiUQUUcFzyZVHKa6Q6uwADWr7gYJGYtn5BdgpjIwJDlW/XWsB1XQUS4YMdhSBOTXBhJS/lvLfUgMsCUEQRYP1xAJRJHIMwSAwBw1VCBk0ViCKcN91sffRB3VLYgwiQMZFxMDc+xBDVL8VQvB368B+TvZgNv3l57/59ttv57u7667TBAIN5xgF7QEU8ijNmvSeLy4u/u7v/utq3e/uH8wWOycnJ5WjNvYQBdFChNXtMk4mzWSiZN1E2hZUIyvggydTjm7ClVAl7If5Zv/VDVEpKRCZu7aNnfd369NXL0+//GZRN7uH+/Viaiqzul22N7czVzEYH4LVIh8VNgIk2Fjnu/6q2zRkwaFtZ9EHCNzdbTgKc9zb3TXOCmFEiSxevAFGju1qBSLK2d0u29CzndbTyY41VS9ICIZheXl59vnvrt68pM0mMDYssLdHPpKAEbXD4OWrV5O6Wd4uq7ppmknx0IYo4vdTw9/jbd/1hhGuXN58334tX6SGXcpAEOnbtq4qWuyKsCElltAjJznpJxFwRE5i3VgXElUWGmOcczb1L8cMySk4J1DczKxRikIiIkSrmLHIFl5AaEFIu9iqzsqPkC+GAAjCktmyVBgNMZlMnlUmQZnvR0GykYWE42SZBM7Q/ZYaWayqYBPhqJ5rpoJOKhDeb5VmzZg81KFsFVNnw+SnSkJ9k6omjJAcYgDA4t0JKFba3S57AS+iuTWRBZQU2hoypPCtILJCw/rcZNCgGgGYCqcMICAJaV6kRt8jxBCYo6gHjEn8A4hIaQjBqaVuASFSKIpt1UwENNiIxjrjKlM5IOPqyjkXvEelw0awRAbQgHm4/+B4vrO8ur64vlh1PUQWwc5A0Lw8k7rBt22LDM5YEmCMJBC67s3r15eXZyBiyQRmpZrPuFACzhGELGksxVhDzMpdFjkikbFWE/1V2/Teo6GoxfAZxIgcxwdbg7+qpkGQRTMvcHvzYa4v1b4FgcjqKSIyzBIj972PIaKzkgEStYA4t6WURDGnTb8EdHcmMYqZdGyEPW2BQpAtMQQh7RIdvQKtQ5jBan6WxRj0iGauNhJjCZSQS7Z6hmheP8fo+y70fdf1681a/WlGBCJQlGzTBu8jh9xWOwIyGYicABXmiAgG0SGJD+x79t4wcIhXV1dg7GyxqJsmxBg5AoiGTJDIOaOMcMzsXFXXddNMlsvl2flFVU83XVddXVVVfXx8PKmbtm1j8N2mX9+tjh48qJpamRooGfPaNBp67xFBYgST2KExbXwZZve+YJX3v/LdMvv3j3c//X53dvsNvz82Ob5E5arDo6NXp2+69frqzWkMYefh7u7xEdQ2eH/+8vXt2/PKVdPF3s3Nzcbh9GBfwSfL4FiQaVo3i8Y2aHqIWooxn80unWXfTaez2e5CnGGLQNhMmr35Dkfv1+uu3VCgPvjbm6UPAclN5zvz3V2FJUSkX29efPElrNcnj09Wby82NytB9L73MRgAElQA9tWrV5O6eXB0fPTguK5qP0T98E/j3njXo/09b3jn3ZgP6LhTwZaixtxzt3IueO+977nHnEHFSfUN2gKJUKQUMiBK6ntH1hnbk8/nnrREBrOgYIQM/qRbK8q1hJSGuxc0hgCARynQIsVzKDePLCVIKflx709IcpsQyRhCwkx0k9JjcbRj1fsoHCJJn6dsHhxPsno0KiAx3V55TUbSrxyY7PcyKEMeaUUuM7AGxBE1DMvaDxC1yCUDD7g1e8jCwfv1pu29j8YwUeSoIpOTAlCQARMEm6YOEdCQNbYikyP0OhvakJAZiq5glJRunB545NInxDXdlaS8NRHRDoaAaG3lfIw6v6ZytnJkDSBWdQ2I6/WaY0TRnFsggNrYZ0cPf3zyRB60lxfnp5dvTy/O365uluxbAwFJDDKwJRNDQC2VMyhkRKIjM5tOl5uJtpIwZAgNGYtUZnArLQBLzw1CMqaqKs3NXsEdCERm732MAQQ263UYaFTvY4mUvQFIzQa1lNsaJEFT2QqzFCgMYZIbRYyvGUKIMdraMXOIQUQ632/aVouGVcmhAAEZgQhKGQopIKExG3wPOfroIKiRm9Utg8QUti/RnXRUdAshspK2UESCvb3FfD5rJk3fdxcX513X6RkQzb/KzYz7vluvV5pznsJRhM66GGLXdqnDJZeIQNLhAoDG2MqxiLG2rmofvCaKCEcQMMZOJhNjjeJMdV0fHBzUdcXMNzc3b9++2bRr5l5EjDHWuuXtHZH90Y9+dPLoSRSxVWWM2d/dbbvuH/7h7y8uzn/2s5/t7u3qFyh3aZaUYAwJS9/1Sm4gWl5HrEl2MophjbAlPRvvi1oVyCH7RzL67O9zue7rWhFJtD/jG5Dtj4zc9BHk8x7VUT5nrf30L35wdfrWRqmsiTFODvaqxRyt26w3z7/6enl59dkPfvD0o4+8o/NuVXlfNTUGXl1c31zfTr0cL/ZWF1er0EaSpnGb5WrncH9nsVjG62ZvB6ZVT8JEhBRCvFsufej8ZsMg0/m0a/towDOLkcWsme7MBdAyIEC3ah3QD3/6lzt1/fb5869+80Xrhdm3we8gcgxt17q6/suf/9XE1ZNmRtYEPWHqBuWtP0TGticchxd1ObZCaN/hwm6/7f4YnLg0zQJbCBwBQOx93/ebzWZnZyd4X9fNzc2t9yHElBZr0GgxDxJp1QZzVGxMr5P5fSMSEVljrLWO0DAnzZHTqSi5bagsiUlGUSatKx6t9udJz0AAVOh3743kGwIiGeKolPGaBYWiHevzZGMC8CBNiXLygShdWgjRe59jJVgmKn2vpBmXsjD58YtGBwGJwoY4H4zsSd9bRcwoOgtrlryufWoFAAk5RkitfUatht6/xOr3kHFWu19vfEhkWyLCAkartgFEkDn2vSRVmPg3iMgZZ4gSQUnSDBw4BPbKTq1ExkmjA6T5SyTDBQvITyuDjkZABLKmck600XECzQ0ZlbjB+5ubG5GoGDICMoMhqoQmYmo72T88+Wj34O549eb28uvzN2f9iuZNcGa1Xm3alpmBwBmygdER98EJOLTONfVkZnvvYzRVNZnOTFUJkaTodYlt5O4FulxEtnIAUFWVJasxWo4RWIL3m3XLUVLCApqSuCOplBpJALTJBSCKGM36zvn9yqqSViJN83skLzP74Cuc+sgcOTDfrVabvgMiSQQmnD0wSVYEIjOn9h05j3GwrzG/LR+be+JDUrkRFgPWWicC3nj1gFlYIGoucFVVu3uLZ8+e7e3tXV1dnp2dvXnzZrXccAROPk8AgL7zMbLemPc9sjhjprMpOGIEMoYAGYHIECrTWIphN03jqkYArXV1VUlne4CMayUkwKKWS8FkMt3ZWRwcHEyn09vb28lk8vU3X3dd37a992G5XFlbffrpx7PZrNu0QeRkbw8iv3jx7Xw+e/ny5dXV5d/+7d+u1uvb5e3+wb6rdrIZasAIoRHhwFJs1tQW7k/ypb7n+GO85bKX0v2SfP/rMCEKsgA5e/jgwV4zbW9uV8u7ajYFZwLK3WbTzKdV5arZlFFcU9vQdqvNvJ5wiDdvzs6/fr4w1dzWm7vV4f5+RPZdt7q5mS7mewf7m76j+YQtqROwWa93Z7aZTmeTZgVw03aBYffg4JMfP3hzcfHq9Jxr24We17IOnkVs4FkziHIyYAABAABJREFU7UIQkTXB/PFJ10exNmjWfd9fX103VbW/f+BXm+h7pLr3gR2BceOZ+RNRiO89tDPJyAFMOqdoF9AmRaHvlVvm5ubm4cOHalfd3t5WdVUZkkSsSyxggQBBDMQYEZAlon6NkhkEz5ERURDIEGgPbNUNRGW/cup0q3eEqpERxVqjpKMM0Q7pTdo5Hq01AMKpHqQ8iD4XAAAhGEPe90mJgl42q1vIRkAKMVL2dFnrWRkhgkThe3IJJEmqnAslI8gtObflPGJ2apKXOjjpVPQ/wMhtLqBzji6VeYFUN/Mea1XvAXMvQAQkQYNY1fV0Z6c62F8Fv7k4h5RsHCUqUZK2GRQA0D57klEEFkEBC4iMKMig9UYxxICa2y0sIoRoDRmCIKyUTqpZc1bYfS2SAos5eq1GWdTInFNmWGMRkDm2XXt7eysArrIsLCAxBkDHkBBxZJiga+Z7ezt7Hz16eiehPtql/enF5eXrN298FBvZGnCIlkxAU2tGddNU86ntOwmxqpvJfM4giDnMCaIhTcVwrDUhhBACGuOcCz4QknNW4S+IQEjex3bTIxhEa8iCEDCCoEFi1DQUNa+AEC2lCIc1hnKfURxgsA+KgQw4BF2xEEOMcbVehxCwdEN6/yfBkFEPOKX/5QhAMe5L8b7GPhIInOhxAUt5Wco1IMyEIYioiZe6Osy8Wq1iDH3fE1Fd193GRxBVpcxsiGLwKj5EpPe+3WzAoSBOdnam09mby3PId6UH2gA6awFgsbvY3V2AFihbx5XrW3LO6Y3HGNfr1d16rdURXdfFGGPkR49OZrPZJ5/+wFj7m1//6vLqsvdsjfv00yeffvqJdXXXdZ33IYSjw6Pb29tf/uIXN1dXIPDq1atXr14FZiRcLHYwM91qoItTX8tkq8H2z/9cY0CgPnwXOIrAfc+rCQKzrK9v7y4uw2Jvc3MLiGSNAPTeB4Af/83/xtx/fllyJPmBqAn3EFelziwNNNCN7ubMcLi757x/fR8/vj08nA/vkUs1Mxx0NxoFoGRWVoqrIsLdzd4Hc497s6ogZjizZDS6Kutm3BAuTPzM7Gd/zYq3t7ev3l367aSX2CrEru9W69BtD2fTJkC/XnXb9eth20zaalKH1Wpzc3t8eioXitMGmSkGj7CYTh1A2GwTKCed1s16s+mbWM2nn50eu4ODxHS3XskWhxT7rm+cX97dXV29m02nDy4uHn756/Wmv1stE2IfgoqiqEOM68315TsHxHVz228PHp7Vldsfhf1JhAxB/Yvo5Cxn7qVDm5kPmlRBhhRVZOi6ly9/2G63IlpVfrE42KzXVVU3TT0MvRnEogKKAqV3iORuBkRsiTXOO+x6ICnbnwxoMedSQDnrox0cYqgo5CipEqtiUkhIY9h4J2mQMrUTZGhzt/zHFgP30eZdBT3s+b5FSe5XpGiudfxoFoonPQor03w6Plsa6azUqtwEs8ddHMCijPFj4un7G9mELqiR8ycoaVPMRERc+gCq6h7X7l4qOWDVNIcnx9OzU729hXdXGdorNzXPBLJip501MD5GeWMdU7CAMtAm44Xy1/Zlz2h+6Ph5yQ3K9ouqojrvqhSFMJFTQvZWoYuUoizvVttNN2qOYt+oEPCkBkJrR2jLbsJVw7UEdJGOTh58eXxxs1rfrdduSG1VkyRmmVSVkR3WdVM3LQyhqpvpbD6EEGLUkS48V3cREbFjsPgfUVPVXTdsC2OD3Z0QU4gpRMdsJUDWLv7u7jaliEzOecqQBTDRwexAYhJRI7vAzMuYBz03ngRAhF3YBaDE0ouWBI0hqDU6hLJMrUoMCkSclxqOmyCXkGe9u5eFAWVKUAFFUZMxuKkIKDv7kqkcM6wdlxJARERiBRbF1WZ7+8dvvvv+h9PT47qpNpvNZtOZ0gYi2xJWDo1EzAyIcQi3t7dbSBDj4vDAO4dfe6P/QSBQQxQECbphM5tP66YisiJI1wNst9t+uzVKF1HthjCESOyIeNvHbkirdff6zZvDo8MnTx5/9qvPmkn99ddfv7u8ct73IV7d3B4cUIhxvV7fXN/MZ/OnT58SwOsXr7Zdt7y5my3mJ8dHi9k89EFCnM1mREyUiFnSDpX6cAf/yx4f3I7u/84WycePVKDOsaLyF1zd/BRAIgCN4fryXf/+ZpZw2GyG7VaTSJLl6q6dTefHRyAaEXjTtdMpOcfOyTBs16t+u314dNSK3mlMoV2tV12ni4O59MPd20tSPDw8oLZJQAJEQ9Suu7pZaT9M6mo+mxEiRdmu113fz6aT2WIeAVKMospItfMqMp/Nrm9v+xibxcJPp44Ihi5Iurm9a5um8bUOKaRO+7DZ9uA21NYN+7yvxpf9EHn+F5rWMY6zg7XHI6V0dXX18tUL71zXdcvl8s2bNzHGrts+fPi4rtu64a7vYoialZ8pEisUtKDYAABNMzk4ODg8OgbCruuHIZbmp3sFpqbg9MOwLowkj6UfbokGlXBp1po7k12KaNqT/ztMTZIAwtjSYCeVUPeqgRFLhzm0O3OuDtmFo8ablKSxjHNDrji2p/vAADY9tKfWdr8BlMIqNLrj+V9aqJmYuIRm7duFO2LMg7W8Lk2QEkhuNpftDMq4aTVp2LsQo9XH7m6IKHv82GhFLmUUyFrnWfkyGjNXsZ00l81k5kzr9LojWR5fXbKBUlQ4AFhWtVkwADCSS4B5Nuw8ISJQ3w+3t3eqQJhVINhsE/pJWx0tdL0RTzgkjCn1A4pwAoopdP3AiMw14yRqirHm2hINLo5Pf/frr+p3r2669bYPopuqaWbzxXbbyWqFiiiWLZ1tYee8pVACABE1vum2/Wq18pUnx2iRjRBTCCpS142ZB4iyXi//4eu/q5vG+/rs5Pz45NixQwBGPDo4XK/XKoLs1FTamDxQ/NCCFeveUMK+1YwlNyGl5NhZFgAW8GS3Q7Dg2SpInsk7tJ4Qo+LYhQlyOiHmyRZUAVUQ8/tsQSKh97Vjj7ChvD+BmIFIFeu6nU7blOLNzU2UqGItlWpkRrY2W8JInnkxnXnvUUFFNEmCpDE470OKCUCBURmBAIiRgyYB2fSbk6OFqxgIVIGZw7bfLlcxRHtf9u7Rk6dd14OiZaQjYhJB5OVy+fz5t48eP3z8+PF0Ovvu+febbrvthhcvXy6X66qqReT58+e3t7dPnj55+Pjxv/43/+aPf/zDweHh4yePTk5PEXG9WocQ+j4sZjN2xOQQWTRmg4ayeQhlD38CovofhTjx0//8OAj1kznYJRT04wr4I8WTq/UFakVCxiFQSg07UF2t15vNZrZYLJerEIKGiKKr65u6qquqrryboJtU9Wa14qom7x4+fbxdb25vb1MIt8tlAu1Xm+nB4fTkqD6ax6Eb3t9yH2LXVwoNkosxJBnWm9jR5nYpCGEIyI591XhPzElliLGaLmazRUKIgBEAmIURiVJKdZKJr+Nmo0OoEtxd3/pJe3x04BnFeP9/ydD/k5TxJ7/1Y/iICUEiury8fH91BQC3t7fL5RIAptMpAGy3G2LXDT0zkfNjaBYKk5SklIaUVJ1jV/mqrqezKRF750Cl6F+E3RLFksT0iceBrGb2056LBDbNB8XnHD8tOcB7+HD5tpUhwU6XZTBazQrIHYHGkNxOKVhdjzFhQS4yUUmqCYoTjPd0jgktLQhBzroq5mfmlAVVK84pJbgZdsfiiKtqbv1ujaRG0DrrfsxaLxXwW6KktBMChLkvIzEAIzKRUy3h5f31ICMQqbtSX5PHZAmtuWoOAQEkN9wbvyv2HGKuPCpISiJCCCJJJNn1f4QuF8EUsGXnmkYhtO4Q2HX9ndwRsfMO97o7EbNvqmo2gcr1FXNUHCLcrbXrOSkkBcsLoygIXhICuKgOCYHqg6Ozp48e3bx7fX11+f7G+9Q0k8XiQAE3qw0q5torwzQQmHMiMiMyoiMmoBiC965pGis/jjEOYYgxOMdW5akKSdJms0kpOR8dXzPzbDZDQFaqqiqEoCXWS4i8q6vLi+gDBVxWdcZ7bWVbfT0i+Mqbmz4CQLYkUWkXATAV5RitJBcRUAgcggJKTm+wdTaam+VqFvAYqTrrumbyhAigRGgWkiU3eF8vFgeIkNJiSMMQhmEIKiiSM+yHflCAtmkPjw6bpkYEVGBENsQecBiCxDSCPwTWvktRNcZIzhGzIoY4dOv16v0NBllMppaK6b1/9uzZer1h9mcXF03brFarv/n3/37ohy+//AIgvXr56uLi7OBg8fvf/+727u791c3t7e1qeYdEdV3XVf3u3ZvLd29+/eWXSYbptD09PX7y5Ak7Xi1X3Xa7WW9ur282x0fz2TxmD4SRGCzKMK7oEdvPA4/7fysAjIAhABTqy3t78lN7BQBKweYneiDeOws+5vmBHfhW4m4/CpXTBy51aW6VhAFDH7ruFhgmde2QQoyHR8ddjKvlnag05Lrb5c3l+5pdv+2ePXt2cnyMhydXr14uN53E0LbNyfnZbDEX1eV6vVmvwnazjLJdr+i1H/otrLspurpuG2ZPLnbD3XrZh8CT9u76etNtFYF9PVnMK+9DP7x69fLd++vzR48OT0+IcLvdBlX0jMxVVS3mc68gm3692mgfhvUGY5q4SkJMIULtbURkb8g/Vki/TPviB/O251eU8cwMrrv5yN/LC0MJiSt/fnHx7t3lixcGPssXX3zxq199jojMHsnZ2ffKYwwpVk1JFICdA8TNZtv1w9X7a0Le9tsSNTItsxf2ytAnFh907DQ/Ojy5vZLsY9SYQ8QIOTlJx3BM9utssWVvkAmtdL68726sirEKxb3WjD4CkjVINVlGe00YFAQkqYgq7SDk7IvbGZoVl0pKxmmI2WCwH1GM5HKvZuHDyYTRjFCR7JBZoyCzOzQ37S2mBhRzI+vQ7FozYu18zb4i75FYAQmBSVNCyg9vHQktJc5GGxHZOeslk50iANgrDMvzbrnQAiUqnU3vJEmL8ZMjhzgOEQpaKXDGfpxzTlWdc33fi1k6RAjQ910ahvPTs7qqDRCwpBwCXN8uw7abVlU1n0tM2g8phD4ManVSJXeNBKz9kA4DEKMIxgh9qCPMyU+Ue/KzZjqZTDddL6hCqMSKRGBcDMTsvK8sVUEByDE7jimJal3XwzAYa0NKEUiJiuFDYOi0DVffD9fX16vVSpKcHh5bCi4WeGXcCTZrUKjCVFUhd0Qo6EhBadQSlVVVq6qaTqeY9wLkPZPFQTFP91P+sol3by41z03BKxRKCXqO1yOCJWCDAiE550aakRFQMz+QmBUUkB3VyA4p9H0ABUBSopgEieu2bSeNcx4AK+dnrnYJ+24Ytptus4YkoJpUYiETVUkpphgiIvjaJ4nX1+9ffv/d+urdYj6BxmsSVHDsqqq5W3fTxfx3f/WXDx48ePf28j/+3//37c315dXl+clx7f2b16/Xq9XZ+QPPTiXVVXV9c5NSGirnjo76Ybhb3i1vr1S0qurtZp1SUE0iMQzDMAREGvpw1V+DKgBVNSPtcjp+7hi18//845MPvF8GOh5mHQz9cHt5GbrterXedsPB4aJqmsb744szmdSr0KfKJ9W46Zr5/Iz9zdt3V5fvtjd3Tx89Wcym1A/rmxsFfTd04eiYK784PGgPZqvtJoXIGKHH1A0w9NL1YdOnIbTTSbdab7vt7HD++OR4FYbNZrPZrNn5um4xwe3l1bvrayU8Oz2ZztokMYIOmyGs7prprJm0wzAAACi8efVqc3V9Mlusrm8bdrXzTdNWdTUYfliQxE8e/5xAdMmo+PgX9pfp4AcXF6vl3cuXL4jo6Ojo6dOnBweHxccFEVCVpCkhi0iyYJEVowA4xykXGkQiiSHlC+/0ko5RqtHC5kx0RUb2XiT3TknbmbgnRvbHR2G3/nfmxMjQCoq5RiO/JWZWLdMrlqJ6zwTNtgsiKqBgiimKJBAFglzurKiaQFzm1hjHT0F3qLLdMomkmEBASfZqEDDnxe5BAuXuo8OzO8wfM1JLUo0pxhhEUna4yxDj6PuUYhZHbJ52TNH6BhnDE3DCnFsKRipinRiMBxCRqqpyzinCEEJOeFYrjkqQ7QKFJCBqhJeKKJlSSwlAMGuvIUZIspuZ++8IAM48OXPpQgiiioQxxr7v6+ns+PjkzctXtnCyHgJYr9bbuxWwmzQ1MaL3k8UMUuo3GyJ2hCoarEGHIiSzgxQBYIgq23oTvpif3s6Oub+qlFqqKl+bJZetErX4OgOi894531MAsrosH7YRAJxjZk4pWUdk5qppK3IIjOTIOfbeO+9tHJfL5d3dXYqx+U1tyHZKEXFsoPSBOtxJBF9VRudkSQOqKqJo7E4pImLTNlzQZByh6o/Eq5oZiZ9qsZdnZDRfCRHA6otTUutDfO9S4Ngxs13NSvQQGaxbBBGAWk5wNhyBVAUIVSHEBGBNQTwTKehmtfrumz9PVGqibrPZDj0ZR4rZaLmgOJNfAiB7JyrL9d3tdVsB1I7X/VDah6Fjp0TgfDWdPnr27PDoaDqfD0N/eHhw8/59U/l20qyWSxX1vl4t77ZdH0IwIrckIca46br1CpzzbTP59ttvu6FfLBaEXNdt07Qxxu22M1Lu+WIOEP5nKFS74y9VDJ/SqgCl4ccohe26+JGIRQVAHIZ+s17P6mrjCQMxUbfdppubNJ9M55O2Xfj5LKb0/u07ZXr46MHTz549efrkh7//45vvfhgO5m3Fk6rabrabm2Xow+Rw4ZpqcXQEiOvlOvXdxDkja2Aiauoo6d3yNvaDZ/f47OLg9CTdvI+bpas8Ivm6Xt0tQ4qTqpoeLB59/pmfTpQ5oq6GvouxmU59U4dh6LZbVXrz6jUP4WJ+OGy318vV5PBgcbAYGIvw/kRv7H/MdPxzHqrKRA8fPvjLv/yrvu/quppOpyklVVRBkd3WLiAkxBiS5KqkTAwZ1QBM772qhhAQdipwh9aMP2T2Yhg/31sGSMRlkXx6WErH77Gpwpi8tqdmC7xXfIPyvvYnlm/fy6ggVCIATSJBVFAUEiiiCmFMyZc0YCvFMEIos0YwP5WI9SkQHcNyGe0FK/nD8RnQ4LgPYwSGeCsClALODF7nAoj9k8dYXv6iokJKablcwpu3cLfcbreW+8JEas6k6ljjW4wOwx+ImY1Z2bBwyCyJOaq7q7j6OFNQsytNFs/lABIQCbDUE2ceuBzCcDYrWkAVC0vEGJNIXTeLxRwKAJINOFPGIWGfNrdr0dS0zWQ2xfls6Dt03CxmikhhGEKAEIZNJ6VbBwlSwCNu/o/PfzvZ4ix8/T7FCbAnJusYsD+cGbBhZkfM9jsmzm4hUlXXYRjYcW1H0xSgh5q6PT258N6z97PJ7Orq3Xq9Hvo+hDgMwTmXM9+AwCLfzHtLHo3VcjqdHB+fiCgTj5QaAIBIKURNyTuaTCaxUGDu9w/QzFOcl2JKYjj/aFziaPoZD6Ui58x1UGt7aEi15pK70RhERHb2wEC5ZT0ysyqq9RRRi5KQqrVKBkQCRWMNM/bYij0BkMDQ9bfv3itSJAJQEiUBBowAlgVmc0DKIEhADr0qpJRExXnfD+Fus7LcQJFkgx9Ebjeb5XZj4Py0bf/q979/8/33z7/5Rvvu5Oys67o3b97e3t2kqFKs+K7rYoyqooAiKYTh5YvvXr9+VVVV5Zsvv/zNg4ePmNms+uVquVqvfV2Qsf9HRHZxSsZ//6KbfvB44xLfifJ7YPinv+9rf3RyOLx9HyU9enBBCnfb9fX79+80fHG8cI0TICY8Oz+rFWoF0GExmz1++GDlfOo2s6YdFLZ367CNvsYHFw+wdsv11eRwUS2mq+UWqkpD3CzvUtd552naNIvJZrsF4upwcbPZKKLzVVXXbdMSuyGkpmmQMSV59fx739SHZ6ez4+N21oh3whhFQl3FvnfI52enuu3rpp4vFq9evfruh+9Pf/crQf+/BBZRjtHXFAR21dnZed93pj1SUrBgn4zxRSQkdo5TimFIMVl+PjGKWJ4Oee99VYEVTqRUhArD6PuOphkCMuKurgHAZECWDTSy9n28zrEEifecWARTC6Ucx8BoC22Ma7Yo/KwF9zMDizuRL5iSpJgwgZBI1ukKoHttoARUrId8WdU5ZRhArDrxXq3lveMTadB6/8juDxgBT1aX5ckL5jwGeEbzRVREQozbrqPlyimgQlNVlfehL4EANXhg99YlVQ2JmHIGXBkjRVIUQVAgzS2vbKAEVAzIUch50ohAzlc1D4FUc/dkHAHQ8uoIzhGHJIYiEtgyoRAjEh4cHbTtBEpgIU+MVbFFgSCw7SSF7XqT7lbAiEmQlYiEqfJthZNh24U+SApJBTkneXuiQ25+NTtZTY5he91A7ni5tz4MdthpLIvAEjF7l1SVSJnrtgkpmqfftG1dV6qKUBHVzjXz+UHdNAJKjtvZZLqY0ApVdb1eHx0dm1+LiKrgnMscVQoKwMyHR8fL9aadTNt2EmNyzu9tU0RAEUkxElNd1xU7M3UBfiywh6pgGd1IJLl5MhRe4nJhvSesDQ8wlTbGOHbLjAl2UwqIhSQWGdAAI03j+dZcOhnDmI8hVb525EAVRRtXLZrGAwLBXbe2+A+gxNiLDMDMRCiaQiRlR866jzvvPRA5Ix8nHEEChKQaUupCcE0NoCQy8dXhdHo3mV5eXq6Xq3o+vb69vb69ETEHD5kRELz3GUFTiSkqKIS4Wi6Pjk/6vt9sNk07YcarqyskHWLohpBEDXEpuxH2fvhf4vhQaH60RHZ2G2QveHcu5FqFpm2mp6f//U/PE8DR6clmvWGNF0cHMm+REEQJgQUdkG669++uLp9/v7m5WVRNW7n3t936DpkcAHDFddNMZvNt7NfbblK76dHh/PTUsQtdL8MwIF5cPDg4PhTCF29eI2KH8urtm8V8hkSr9bobhrppyTsAjDGqKgu8fXv18vmLs4uL+dlxvZjVi7mr/EEzWad1v9nUTQ2E6nBxfnJ4ewaVjwSSJRV+EFr7H7el/gevIKrO+6ppQ5LU95IA2NoFKjoLn0oxxJBo5OsH+2dOLUYiZuLc0KVEuixzYxc5sl2vFiIiLgoYcySYCXMrlCIR7w9U0RkfJBbt6o+yFi0oixZpkANlmpnnsUBwo5A3UWM3ExEVKZfUHeKNu9CmqXwsK9aqay0obBq4+LtlqAByPtj9oiD7RXniTH1Qwu1axhIJ2YZuvH02VBUQrGl7/iIAVr46mM8XZ2c3m80Qo2NHSOh9giiliWABujOgPfpIO6tBd38WOCFbN7v1hljyexCRFIgJHLsoo12y887Hyzm7/R6JGjKTMQhOpzNf5aIUQBLFEAWQk8AQQtWLi1KpSpI0bADBEaLicLempuKmYu9K74kML7P3jhzEBKqV4jTRJKHTPer9/HSIo/VB4zQDEDlfWfJvktS2TR8GIHSVbyeTsS+vY0fk2FXsPYEqSNU2j5881iBHh4fW09A0buZrzQ2ZrTqegV07nz/74guJ0g1D0zS7TOysDjGlFOJADOxZRX3R0Gmvpqw8tJZJRWdJTGq0dlhwJYOODISiEtHIu0X30vSpAFVqzSQ4F8MZm46FJwgoESCTDBKHoJIkgQpA6aIFKilEy7oaXWq7bADpQYQp9/UqKRJEpKCaFAEdsoEpi8ODqRJIxM0aS6cWzbvA9q1mxoGY4qbbXN/BkDCkH178kDw183nlvJl87LxVfyGhaJIUy56tnKtq1/zqyy+ePHviXR1CYvabzebR44eb9frVqx82m34+bUEBNCKUADzuxg12Gk3HHXBvu+8hwGWk8f4Jo5F07/xyQfzUVX/+GEWwfqrgNf92Z6CBMk0O5lWCkBJ7Pz88nB4u+GDuyUOEGGO/2txe34blanV5efX9SwjRHc7nZ+fNbLruuxT7yIS+2Wr65ofvuhBEgX0jxErovMPBOgxUMcp2iBsJk7MTz+7qzdXNdtMs5u1kevV2dXdzc3B89PTZZ30/3F29xyQcUgpJVNIwXL96K++uqmnrq2p+cIgAuh0wCQGu1+uE8MXvf5eYwHtBUiBBBJBxpZV3vzcUP61Qi0+xM2R3VIf2yQdXKyr/o1kuIlIR2TXtZLPZSpawxMzJ2gDs3FAkxJQgRbEsDyImYoQ4KlAiijGVNORR5uq9m2KWEGWD5wQrMCcVARElpZjSJ4fC1o+K7H1CI5prES1i2gexzYmlbBeYRfDREkZSAEEQAFCVEAlHEBBzfyQtbPfGnJt5scrbZUWtKSUYS4TR7EnNuVhj46NRl466sATOU7L4ukJJwy5RXtCiwj94+J23jchMTVMdHiwOjo96VF4uM5mxigwBVQgh55GIQtIkOWVKRSVJqZUrhkd2xYGATPqOBtP4FubHEpEgkWrl6yiS2xWNgwAKmKfM7ScFMGe/25r8TCat9fgzLikRDSLgeTn0l91K0LesXhGUKCUEZVGNIawi9FynqZtOWZStuNdu7ZxvWxGBfkieiYkBDdU2t9JIsQHV+hZo9jlzaRw7hoCWrhbCMJm0s9ksiUymk8lkQs4RO4Ci5xAB2cipCHE6nVGC6Wxi5bD7uYjO5WYTqgpIIaXlanVze7tZbheLxePHj+eLefWuRoC6rs1Liyluuy0gEbsIgXOzATAqDAanxV5US5kvtcJUWkTslpnuzNBRWRSLTHHXoAmKqQpooXFm2cHaOQUBgXMJNWDfdYQACUFYU0QQlIgaMZc7Z38+IaxT9ExdGAKjcua2NdUuCsSMJoQMq1dAZjdpQ9eHEIz1ZwzwIACoqCYgBQJfuaWkm9ubTbdFAgXtth1C5Zipqoid9+2knS4Ws+ls2nX9y1cv7u7eG7QFAM5VZ2dnTVtvtqsnj483q803f/zD7d3dxfl5GIJVFwiwZnGDqukD8fSRzCoZIuO/4UORr3tW7f7X9yYC9vb9/6jH9sGho5m9ez5QACU8Oj25Ww9vX7+ufVVPJ7LtJUlcboZuGLbdzfv3oe9n0ykLVE3lpu3k5BAXEyKgoal8NfShnbTtfPLq7Zt3V+8qXzXHi4qmirjZblfvrzfrbQW42mxuh64+mjuut6G/CdvOYcf45LOnzfnJ9y9fNbOJPzmcOn83dKkf2nYqtYsxYuVBtWbevr+9HYYb/85X3vYVaOpDXJyenD262EhSx8kUbx7QvFf+SeM5TvE/4os/qtQLMszWUJAIdrE5RCyJu3l3cIIhxpgkurpumqbyPoWY0q622Vxkk6jjR1guBWiqDkc7DAEzP9RYrTPqsvyEhZaxuGmqmtLY5sjeKzNMwegzFJvAlm7x2XVveY0YZCbZ0vKtlJKkqDmjB/Z3emGnxA/sHN1JMBh1LeQX0t3pOzMZVakggFiqkExZZe2wG38rJyFMkjJivLdjSk1Y9tgAnfOuqj16EJQI1v2XINcJ5waBlkluNFcW4sySXFGiRQNEUBTJXoesJYwZI5YBrVn17i8Sg7iZ2BaQBRbtWW3oRdWZaLX1kT3CQjTinCcin9vtAaimlJKj6377p/XVFVVHVbNwvkFq1DlRFCFVEIFB+9tlXPcCwCULHRTIu2o+FcQIKq8uZVLh1jgiAQEtuM1Etr6IOcXYdb2CAgEhOuecY/P4Ukrb7bZpmhhjTKmqK1959t55X7etr2so2KxBuKqKBMxECKrCzCllBTy6wgqATCK6vFu+ePEidLGqqmEYFoeHX/7m147IMfUhBtWk2vWD5UAZfjQWLplexXFVFL9rtJUQR5e4WGslmEC2/cCQJbv2B+iMAoLLTYhLNULJLRRrQK1YoU88xBgRgKyGQAJrSqETiarifAXEgBg1RQaetpNJGzers8Xk21cvxBIdiZBQRJC9AnAefKPfo0FUJK37zs+m6BlUNQmIEiCLkgirWky767rr6+umbara36yXCspgPWFTUnBOAcF5d3x06uuqbpo/fN1f31wjQkqJiaaTdr1arVfr2XT28Pzh8uz0z99+++/+3b9rmvrXv/71wwdPtt0m6CARwWoT4SPavPsy90fCBPeOnwRFpUxfAXc+utXPXv8XHmUlZddhEFj1Q39zN/OVQ7fsgwXah9VmMZ3RetutV5VzbtoeHTw7Pjs5Pjl8f/UevTs7OKibyeu3b7mqFqfH29odPX3ivJMkbjJt6yb0/eWrd6tuqJErpul0fvTwgVvM+qHXqp6enQ7DEGftyYNzPVhsh2GoPDfN9OGFDvH89EQk3dzcrlersOk4BBGpXOXJSR9jSo5IVdbr9fTkJCAlp8i5EkMRqLQqy+P585Pzjzo+4dz91D2KCcmMlfe573qxcrOTV2Y/xrjZrpNEdjybz06OTxpfbVbrXgYgKEmXOm5/kzPFNysR2bGPHoBtn6L6EMC0MmCWLx8+KZjVbbSIALkZbbHGAdCyc7PXbuIiu5/5KWB0biAb8KY7S98GAIAYY6620eJAo4HtvMcZYt8s4G85xMJgxXUENXWXu87kMUBEJdTMsGFuSQYIRYTI6nJMLRu1AhMDZK+0iNPRhsiqCnC8ZMENUROkIDGlNLpfNpiqqpL7bejOw0ZQVWOa2qHPQKZzkQQBmNg5lJjBv2y+FBDTcseYQHaLZw/dB0SwfFokcnlAARHRMVu5C1qZlHXbAh0kRdTgsavobRpuuq4WoG0/Y3cyXxy0bYVMQ0IAEpFuQERL8U4qgBiTCAJ518ynk8M5Oae7pcmacwVIUo7prVarvt+IJMpWAjLvkoLX67Ux16xWK+e981Vd1U3TzOcHk8mMrGjPbFBrFpsUkdixSGJ2u6Wcm27CuLxCDEM/SFLv/TAMIYTDw0PHvNms26rSrlPLRgMQEe88M+9AMAUam8JjHnUrl2Jm5zPmP2KMUGgpocw5WKa/5I5boxuXsaYCLgGatqVUaKKNtcX6hHtXAaB9gawc3hBshEL+IoDAzreLxcHZaV1Xlc7rSQOObb2pSIhRiAhgCKFuGhHpul4VkmhCaBbzycGcmNzf/q2WdWwjyManEtMQ0zYMg8SToxNJyTU1MCmo9ZVSgBA0hIikCvjg4cPHTx4hpD/88eu7u1uTYd65pq7v7pYvvv+egY6Pjx4/evTi1ct//Vd/9Zuvfntxcf7u3eVdWsacI8N7KF92VMse25UL/5Ljx0++n5S+F5gfb3rvhE9++o86MtSNWFXBc8fgQYNKvxmWy+V0NtsMPTcVzyfzRVvNpvPTk+Zo3kwnIYZbSThrdTpx88UEIUqK08ns0aO6rivvN5stKaz7frlau+n05NnTtvJBUySMlZ/MZjUfTI5Ohr5fbzYwnQ7ewXSaCDrUlOJQudnBAhdzz3x8dDjbdt3danVzvb29g7yFOaYUYkLE5H10vE0Rp7VmRsasDLUE8H5u5P9Jh4E9owP5kcH0ydsxu6atiC2bkhgtRgJJDZrRpLLtuyRpMpmQY1VdrVZbpGhs/ojINNaP7mAqyGGmjGaVQNuIfEFWicCFA0sAeIeIfcJ0yDrDnOnRO83WffY2zeovC1QzqDh6nLCXIGVUi2oNs8QyLq2CR8drYvkWFCPCLmxuQJIM2CbRJBJVk6rI2BkOR3KoXWbR/j7N0eGc6izjBlLLOSiu8iemGjOGkJ9nz7AjAFIgEUwiUdQZq5IpZzMHaHwHVNQkCgCSkpn0CHmiKOvZHCgQAnIMAUU1WStgMmvEIH+LTDCS1RoZ+zSMuegI6HLMoOQFmCVlnd7NfssWkYgSJklRRRmldiq6jXG7De9v321vbw6ns//X//6/ffbgPFwv07qjpC7m1WEU/wLa9/3V28t2Nj2YL44OjrxzSYRFsiUIuXtQhk8InHe+4hiJwfoxK1kekyoy2zve3t0NQwCkpp20k2ldVQeHh5PZzMAfMGMz4xrCrqrqxoqBlMaiILNucoAB8yIQYq7rmojeX79/8/at+X/nDx40kwkigWqKSVLyVZ1BAkRVLapcy/rOewQ/aceWU4sUFwIl86Mtt1Bz+rRmKExEJaaQJFqoAQnH+JCqpBQNf/bsnfOAOvQxSaoAFayvoihq1BQlKkEzmx4/vMDKBQTnW6ycOhZARLDaW9e2iBjCUHkHACFGUUXH6nl2fNTW1Xa7UaZcXY5jSQU6cnGIwxCSqm+b+dEBITYvJglZhYgqa8NErgLH2xDC1WUf+s+ePXn69PFsPvn+++9vbm6Q6P3NNSCqpLdvXt9ev2/qtu+Hr3795f/+b/7NbHFAzMzeElVETNTc63ekuwG2CPHP6MJRsnwslz/45BfqiX3YGn6B//3BCThGzwhmR4uHX3y2nE7CcrVFTED+YBYrVx2c0Hw2Wywm85lvKqi8OoqIUahDcs5D22rTzuraKiDqSQ0AA4Kv5qnvv3/53bDePH7w4PjwqJ1Mtn335vJyjcqSmtqD966pFos5EAZEXkwmk8rSUOfT1jsO5JBIPbummh3MJw9Pw2Ybttt+vY3bAbsOEb33R7Pp7PSEmko8C2OOtyjkSuAfmZdRLv2yA2EvGxgA9osX9sbzZy5oYWRmBzCMTgtl6EqTcRypMHFTNaZ0QGUIvaomVGQkYksqGRuD5sfLsbbsyhmuCwgKmmRXBbIDyBCJSFKKIYLCPnOWfrhUcgkIWGcFwOyPISKi5FTkAgWbogI0WQeKagwcuyTYXSw2pVRqXwQyA+6uaiqvT8mFziNHAqpKVHEaQhhTi4uktQAy7nbQR9hHFnciylQIGiCmqCY00BBgVTA6WhgNuAwfAjiETL2d2TGJwPpjVMyRVMApEiMxEbPjCjkwkfFISWaLzAVmZbhHCmvjnAAAI0PMNodooavPMIA1iyNiJMZCVa27OQawJCwAsFivvXlKYuRkVJiRtQAUApBUgJm9Z2JNGrHvHd9qWq5v/2ri2s/PJ2dHm8vr7fVd6gWjahRGZCTLfAjbLvRDut0MN3cQEyRV0YKbaJlSVFAgrOuqaephCFE2QhhVyDnyXhHJMTLVkxaZQxIVqHzdTmZ1XR0dH1d1rVbjRbJbsSQKWFWVZ0dIxvIIsNsg2XQUYXYMBIWII8Z0fXPtnJtOp6v1+uD4OIdyk0hKiEA0ZpnvS3gtanjcInnNZaDikxK8GIR5gyGWjmZlcHB3NWIyRv6sZtDaddgexKZukGm1vFKRum4FNbeCwExLrSRQcTWdOs/eEXsGVXCu8GOqlfSJqkhq6kpVQwgKiM4lQVfXzbTtYxREQbToqyNLayDHfrNaDX1gx/PDRTufMlI7nSG7BDBfHMwODtG5+WI+m8++/vrvyfuq9i9e/PDg4vzo6Gg+n7979+67H76/Wy033cZWOaqiYNtOu6H/D//hP/zqy19PZ7MQIyBGkJStd1BFHOmxzHD/AHgcp+ETw39PAdvXflLX3pfvIxDyy924UofxY9+wtHkF5MofP7w4Pj8Z1pvQ9ZgEiQSRJ21VV+QcMlmuHSAAEFT+7NEjBXJtE9hCaSU6pqrWHKzy548fOYC2baDyAxK7yUn1qA8RK5+YraQNRmSfnfOZ982jB4CQYX/Tfuq4qitfHx0sRCGJxGhxFXJOiSOoGC+ERdCy+/vBFMD9XfNLBzKPZj4KLon7v/lFutykfF3VKaXtdqOaEiTvDD5WAhUREHGEyhRTSpaEjOWFzK0iIIL7USS0Nqh475myx2EgWbG3smIkRI/UxUGTdVQbY1bWvpB07B83sklm79aIevI63HE54njf3SNIkby7Bx1pq8ejrG3jzsuJTlkxZArJgq+iiGKCRJIkxRiTSu50V56wSEksUWSA7AFlJ1B2aWV53Zk+BvPgEQAt97sEzg2iza5blrTOu6qqmD2Ry1lPiMzOewcpkjpAzYzXxA4ZmLGEQomJHQGqdWtQkZyaqtmCy4+qEuKgllgDyHsWkqiVjwMiMbEKFN8+ZxoQACFlBbwbZ4VhGLD0obSnIyZmlhJOIELHTOQUNHESdslxAN2wrki5JTxb1G2FAfrbdVyu67qVPkiIk7rZbCT0w2q53V5ea0xkzVIs3ydFg+1NQjBzVVVVXSsidFsA7PvBV5Vjx76qm1YVprN53bRMPkbxVTWdzrx30/nCEQ9hMMsjFzlHUVFErKuamY1V2ziuREpfyRyARVRrJq8IYJFPAPDet2273Wzqti3LLUGKqEbXDI7JOVd2kI572dbEGOnRov9K4ZCJiXFnZOsUyhyPRKH5emCxcKel4zfmOnIznpJlJzrvvatMpw5DSCkioKVTOeeSSFAJAMI0OzpqK5ckMPMQenRsKLYipiTjlmXmrtv2wxBBfVUfnRzXbQvE1lNcciMKNGzAXvb9zc0QU1U308Xc1RUkUUbrcTyfHzz7/Ffb0J+cnDx4cPEPX//95eXbx48eTBeL91fvl8vVxcX5wcEBv3wRhj70ORUGVVVgu92+vXzz7vLyu++/f/j48ZNnz5xzSqTKKmDVyIQInMXLDl8rqQjjgv9Y+BbH42NB9fFp5p9hAVA+bU6Ns1mWw/3T9gh9P9Q8dv0ccgBVMDoA8MyHM4czBgTABCQASa0HXnZBwFiLiJrZNOdA4GhkAgAoqmliRpofHYGqogTUqIJIUPmqrgAwc7MhFuI8A4wFFLTk3+xpUMXdkwAyAhFWjfkKAcGaKuruK/t/7kzVH0uC+wWHSY/959EP0oPum8i7YNB4UGZ5ROf8bDadtJM+hPV6FUNypjtFQBPmIVBVScZrKOZ1mhgpt1BAIAXJ5AyFogF2SyOz92Eme8jCXbP5jYRkTcEJcg5S0bumDkcFtqtjLHQIOHaAAMlw7549kt3d0SNTtJ4KCJhrlvNQjPFv1DJbZVXvbRbMGabWNE+QDKtLxXkbETLMr0z5b1NLNEKFWY3nNTH+ZFy85dtZyppxzDnpTHM5RgaKgYi4cuwcsBOkpEjOM7NjJ6pAoJK0MJAoKGbKCYIESJpIiBiMaAmZMHcSltyZJ2/7lMY+PQoAmS8LtRAJ5udhK0axd8r00oAIrowdjYnBCmo8IGhZW4jIXFRFdrRSCDHFbtt33VZyUiC4psaa1AF530wr6LWLMQ6Dm7XbGDxVXHnYIgJAEi2VAE7BIVlijsW3JTecYmbv2KsH56pBUt8HAHKucs617YSIptPZdDrzvgpJmFzbTpx3k8kUEAcVwRxs0gzhK3om52wTkgLn6vTCh7IneS32Q8RWJWyf1HUdQpBhQFFS1RhVEgI6x5YqgaOHgaUuFgBKZyccVWW2elmRAYAJf9Qh3pMUAKaH0ugTIyIT13XN7BAxxnh3d2eG6NHREQgQMBGmaBsBrJSIiLtum0SCpChigWRFUvuBWVQRQAUENIkQqdH6hH5IkkSAnZ8fHBI7ARUkARIAC0EpaIgxiShgtx1UIcRE5IAYFAFpEBFA11Tnjx68fnepZGPCmmC5XCPg0fFJCP3V1ZWqbjdbSJKNIWPMCjGlhKirlV5eVlzxarv64tdfOV8DR40piqoIISDnztj3hvETQ/uxB3bfAy74YXaaVfc05Y960uMVAMdLoTHR/5gXNu6I+w83inIddSAAkFndUNLks0AqIU7NDCeAuUNsjoKoykgeiFma20WsMM32CdzXY3uDp6ZDDRmwzArMHOkZaSj3t6sBgTXkhkRQjNGCx/7IsT8InxyTf9rxYwbSpz61DYCMlfNYNY2qru5uRWQUBQIKljyEMAZhx2celToRE3KmpANzW0eXEu45mZzxYi05U5ChNQCbWjAXr7yIFmNiHPFye1AhBB7ptez2OX3a0lMUAMjIb1F2JUG47wbnF8kZI2rZwnnxmAgbl/LOfzO6QFBBC+Kad52vW/LXCE2tZQAAFFVQRwp1LerWrl3GbbRIYM9EgTJYUAacCu6OzOiripw3E4fYe1/XdQ0xWF9DKyyTTMmpaI4mopp3xEjMQIzAZgCBYgIQhZgkUQJAQnbsYxJQgtI+DpCsTYSCErKFx0AsH66wWuU3V+sRYbWwDADM7CpvWWciGmMMKeYKF8wIbbftri/fp6QxppRSioLIyNpO6rpBB+yUWQB6uHvvxHMgiI5m7RSimJYLkhKjVJwcOrYGd1isNjuc44rJO+cR2fkeJHr2RJYCXBMyEbXtdNLOnPNhGHIFfV35qkYAlBUQWPCfEJTIVRURoy1NhWhqD9Q77ytfFlKOiGOuy8pt+2ypmd8JObFDQhiSpCH2SUXB6rByebutSevPTMzEXBzWT1BR4j2pVESf5i7Y5NiSA8VqqsoOttVGTHVTO8eEqDGtV2sEdaaeIYPqI3qtIJKEkDerrSbFlM1gM+HKtgEgEgGL/WDpv+uY+75PMQGBAjJ7YhYN5gGKodUAihhSFFFHLDGCZKSBEARJkZKqAAqi8zWRB3LWy/Tg4PDLL7588/rVix9ePH78cDqd/uEPf3j37hJLN2IAsM7Qquq9A4DlcqmvXtaTaTOZnZ6eu8pXdXMwX1xdvhlCR+yJIS9206R7PsLOmP+Q0OoTCjuLaSVQGKNfu1+Xc1S1+CHZOyyStMi8X5AzjcUVsOvnpTdKVwDJmjwX6e1yc+4/F2Y9kq0izQwRe3AooBYumJz7YMvuAxfdRO7YPWL/1+Mg7o/YLqUqD7JJYMovdB+ShWKV3PdKPxiNe9f/aXX8i7X1L9Hr2cZlrutqhZBEAGAYhn4YALGqG+c4xABZlVJxDHfLZnRJ88vmtXcPKS051ppEBJUKHpZBObPpsShQ2KU4/ER0vJgAundIEfwjBqB5dlGUdGxDDqiiSQ2JJUwpWNe4nZa17xZAdRzHUY6ploxiHdFvVFUgsBi1KTOz3vJL7o1PuUg57OKwF6Pc3yNlj2VXSzQzQdtpBEaHIiFiTCTq2YlzCDkP31ma7gg62r1FKffiq4hdeUM0aSGgIJqSKiBzVVdNTAJAlrbMTFnNWjUa5eHIEXXdX/8AqM4aZRB6Qi8qzL7yjYWAY4hb3JZmFGB2GANBkm67BeQRfyCikodu4jirkZSSIHQSq9nE1w1sAzIrwaCyTP0dxK4iZAXNdevEzM7FGFXBucr7hrAClqqqHfjpdIbMMcbKV8KOiKaT2XQ6Z67CkFSw8jUxIRKDQhRAQW/NlNg3TcWuqipC8t5jFCRlBEb23hm9MCI5VxE5USw5swXDQQCAqqrGUE2IKaQUYggpAaIgAmGyxEG0NtsIAAQ4bZrZbIa5zdR9BVxmZTcxaGLR0ujNaSRLHERLvofMri4ghIQI3jvvHGYhrGNkhtlaGRXHCUFVFJUQNuu1SnLWSRitm182MyET10GUNIQwBZCUk0bCMJhZGoydz6LJRGM+gq0sScKWgm5iXyXb16SIwmxtvACBJQEoMjlJ4oiePXp0slj8X//X/+f/9//94fT0ZL3ZiKQYU9f3khKWmAgVbbdaLZeb9V/81V8fHBy+evXq+vrm8aPHv//qq+l0sd2y90yQVIZR91EGY3dSepSYux3xsQ+amyB9+rcffLfslOIe44df+YX6Ae/B0aPQy86H5RVy9lRVszTJmtQ0HmbfwX6pWSln4BKkgDOK+/IAAErKyp5Lh7BzrbMrML5htjm02Khqnj6poW1AgKBmNBRX7WMn3764++F/oWNEnoYQQJUQh2EIMTVte3B46Jzr+gEgIRDqTgGPCsCQf9NeeyX7mjdO1rOKiCoqhTIpe6xQHDz7az/1Kc/vnh66/9CSREVEQBVQSaOqCJXL5nTcXSujIjMAClxiqTOKiKXt22455O5B5b3GX4247H3VaY9f/h5tklHjgu2xe5cqqU9FbcEOi8LxQgV+skcZBWnxoEhRTDhhSjgMMAwk4ogGQjI6aCBGZu+IiRWVc+V3EkFAZyisYyUVipCJsoyYzOQ8uso75zwzY+6zTsRKCHFcOfdnB/c6YAOAtSOEIkZRiF3l2BMjAm223fL2Nsa4W4hJiMjiAZj76JktnkAVUoYxLOk7BYlBiP12CIvjoxiECFxdDUMvDq82yz9fv7mGHsnaeLGKIHKR3UgGyTsPoK6q2HM9nTC7qGL4PhHVdVM3LRF3XQ9AVIqLPLFX1RAZHCE7dG1VMxEjOuaaHWiiKBU5R1RX9aSdVHWtgk07q+q27wcRNZYLq8WyERjhaETsQwgxxBhTjNk/2IFRBEoAGVFv6qZtGkIezeQxjx531ui4eQAxB/M5ZwjsKKsyVMKkCEnUIbJjL66pK1s6BJq52FC95yjZL82GLYjZSUO3JSTjymPA3ILZphhRQAlBQYYQRMSqCUS1D8F6TJlzTgS5EwShgiZT1IqEzuqzk0Q0azpXJymzIiQrbEdQSUkkIQIzagygMmlbQvruu+evX786Pz+fzWZEzOyd47ZtN5vN9fVNGHoRtTSr+WJxcHjgnDs/O7t69+6PX3/96OLi2bPPYhyWy2Xfb0JYS+wNDYId7FWG/Welfcmbxj0p8rNHEQ07gXJPSH3q5E/fHMAKucu9lUGNhxgUUNWKaJNKhOx8I6CJAjQlqrmyMjsbimpeTpG+JXe0CDnIJA8EaFw9o3OM2bXP3HSZXSH7BAA7PZ+1yngOIv64qzae+7/uISJDDN3Qg2pdVeRc4ytf1THGGGUveRkICY2zwAAwLL3naOctmkbBEerbGVd5HFQVLGOnXNm29v5ixfEPUCNbLtfIXxaQknWLACixZFvv/jP4AQyBprwMKK8ERU0gSa31nHXoyfB3NoD3YOe9gZJM8lcKiYtGhGwOgiUV2BDkT/dUu/1l0E5eYOnejlGVTA1qVE3F9/1wBVktSxKIwiIcokAnmy2LYEHCMEcGmaDUtiqklECRFB27ytfoPTm+bz5kRFBHTJwJsveJua6pzDYAiEoqVJparA/ZwW7GLQiAmZtMLeWHmVT15vqm364NOwXYH/ECFKAgGkdWIgWJKUMkCgwwDAIKla8GEXKcQoqSRlolQVj2242EQ0JAJEeYGBCIGSHXQQmAuY3OV1VbVXVDjqpQi0Q1tNw7dj6pbvveIrYWcZrW7YMvfjNs1pfvLkNKrOQBQYCZPHPtPAgyqbFReOfbyaRtZyHEummns0WSO3NqNfO7Zp6a3X5BlLLIRISYE6iAJpXig+QJQGVUdlQhMqh1ks/yiBCZYD8mRMXvydrRggLOEXMq+yyKWrxo3MiV80yMxXfJpreqdWggU8oG4BQWW6tJAAVNqqIQhUCRiTQHZ8ACKSpMlNsgMoukgo7b4stoLt6v9XDetW3bbbcxJbSyYwVASjHGmLSwRQJCiDFGSyPHIYUk0RErZPsdAJjY+7ptp7P5/NnTZ865b7/99k9//EPfb4mU2c0n0261evX98ydPnv3Fb7/6wz/8gTQtFvOUIgCpakoxQQIspYelcn/P1v4gKKBI46/wnlAom7DIgp3gLaeUXbUnlUZlDB8dPwEhjt8urgYgIoqkfjAtC6ogQADOOe8YyDLEIa8jABJgUQlxfXsbhkEI66ap24mrvOaWndkx3a5Xse8Xi7ljEqsiB0TFoevWm3U7m7mmSiXIaVlnLLi8vpEQD44OsXJQdDCUOJVxGd3e3NaVn04miBZuLIOah2t8fbP88uoloDEVM4ti3f/Kj/Zj3nlEu1vsjzaMHpcNftnL2fj4RHgAQFU33XbbdZO2NblvvXABsO+DxUeZSh9fyMZ1ruH9kfn9AGO3zKyivDJ+azBURilyJFX3ARVbElnH7Ypl771zUYI5qVgt9+4T76l734AcJ1AAS16F4lpkehErFc2+Ae5gnnw3UFUxKNgIHa0XsVIOk4782GNCmGKBxzIGDmOMV8VaslFGDlSMIoicdzRW7ozDUaBpBZGY4rYP67UPyYXQxwR9KEWe+WzKRFiaH8iMUwUEcuwdV8iOoKTsKICB6DbZJW1HS4vJvUifjTGpatIkKoJJLdMLEIFRATGpgoK4lNK4JgxfNcsshPjm7ZvaZYfPzslkLgLZ09cMlqACCKZckKrGcNJ3gyat6iql6Bs/DKGPYeJNYjA7RkZbcq6q2LuYVAh95S0CbBSdhAiO2HFV1857YvJVNQx5JhAZiaKmOEQrUAbAFJNDfHb+4Hgyu7x88/rt69vtWrZJCEkihuQbJgSH0pJzgFVVTeYHbvpeQ5wcHi6OT9ddr0g2sQVgQEQ0DzilZCi/iBBRCAFGw/I+8GKuvAoQGscnIe1oxO2g+1ZkERQmTrLjy1YHnDuPKiEjMmQ2VvBV5Z3Tgl4hjEw6OaXTKMbMc7VOw0hkj4sGrgVkBleTV+TcLZQQUJPmaA0gkzOdq6oxhr7vJ21l+5UQmcjsRzSLgWi1XocYybkQ02bbhSG8fPnD5eXbvP0sc0d20xhj7LtuyFIMJUkcAgKixk57purudvX48ePf/vb308nkm2/+cHt7W9c1EQ59d7lZe0dN3a5Xt3/+8x9Pzo4nk5mIILIqo1YKCSlmdB8UP6UOd1P2y45xU/ysH/2xPtaiDX7+iwUkYdXY9X/4b3/XrbcAyAosoKrtbPr088/mJ0fqKREIAqhyUoxyd/X+5fc/rO9WIimpKNHR0cnTZ89mhwsGTAwJQEGHrnv+p2+ePX784MEF2XQiaoyvvv+h77rPf/NrAqPgyx4zAYZt98e//fthtfnrv/7rg4vTAXI+S2ZiAgQACeH5H/90fna++Gym2ez6YKR2auOnh+EnzvzZMfz5k/UjxXX/6IchhNi0beU9EYUhbrdD8RERlRHM/aGcLgRZeWTUwgiVC/ExlvHZ+TOGWmQF/InlZGUaSGUcMhmEGRyaYsx9u1V0L/hr72aN6IwsS62lr1mfVrCrasw1YlmlClZEVEKWqAIpJiwerwmxrH2hWDoKunfbUQaqqkqKwdJhLVvP9A9kyq491K0ApyNIYBfOVyvsS6qgUUWwsE9zYZjaNdNTBUkSPRJp4pgawSahgLoEDoHUVO5e0pnRSSYEVYnGQk+OnWOn+KG1h6CMwERM5JCscVsai1Hz1hZUJEXryJvLqDFvACz+sr3OPQWc+0khAkAIQ7ceDmazceHaciGj5tdRlJjZTaBqkcH8C4FuG3I6vqrz3COEGFzb+Mo7ZAdUWW4SKBGx88zinWvbyfpuRYTGSako3jn2jpltpTI7omgQPDMTcUqy2W6KGSIpRhMTDfLTk4sH84Pb5fLy+upqtUySZN35FhyykGvYMyARzQ4P29kBdN1kcTg/PH799q3RfhbHlxGQiAxZXa/XANj3fQghpbRNnVrYXz+s+s+Ls+hRU6WQ8U+EYivvgQq26mTE85jJ5zIoJbA6HKFCIUJIquqdyzi55E1gz2NFc0SoqlYqHqPEGEEtzw8ISUUvX79d3tw8fHRxdn7qIddRAWCKGoZoG88WRsr2GW4226v3V7NZKylst1sL2CioiBhtn6qu1+uYIgCKaN8PIcYUU2FHIS1SwVxkJEwx/vDDD6EP3XZrL2EYEQAye0S6vr7xvjo6Ovr888/n88nz5883234YhpvrawWJMWw32/fv31/fXL2/uXr8+LPHj5427YSIBfmeB2v7KP8DPyHWfy7PZ7wK3BeWNpPp5/3ae2p4/5P9D7H4vpAXCmhMm7vlxfnF0dExImqS0A/XV1fffv3H3/z+d9PTI8jiHkn15u2759980zbNb3/7m8l0mgDWm82rH1796euvf/PVV/OTIwBUECA8Pjm+effu5csXh4tFO5koAhG+v76+fXf19LPPmqqORQdi8UOu37+XPtTIV6/fHBwfkVWjFVGMigyAonHbwxA/kGF7DljRXB8O5AeDff/fH8/OvQ9KlDsXiP78XPzMgcRWyyhgNRGSUCUUQBEQCSDhCI+VXLzCRqlFJQMUtVgy0bKuNYt8xMw+9pslGcfqLllNi/IzJbpnn+z09+gZi4haSnI5z1w91nK3UUgV9Z818A5dF8r35pLeY4jbXhMIGDVx0b7milrGuDUkF0BnJ1tREu6oRRARgXBMeM4U3Oa5EyCIjYNo6SMt91GU/Bg2B2YpCjTsJr6e+kZF2JqGATIZ1y4QW0cbJipdCTVjLGN3og/ugKBI4I3BCtQKM0SiqqqmlIIIARvvlmXP7GIUuic3xsN9bBUigIqmmLpNN6lbLWUG47xmZ7oM+3hoTmg3h1jjkJhc33VI6CpSgiTivG+qegtYO9ey94AkIHn0kZ2bzqbX7xgymYTB05T7JRQrDBCByHnHxDbeYRhGrwIRjSOKABioce38sD2fH91u1rebzVwqN0jlPBBU4FgRBKbtZDGfE7vZfDGbz5yrbBbM5XXOZ7SlNNk2u9W6JG27rXnpqAhK+53B7IEMAjLVZXMtQjm2NtqxKgAZ1jYMx5LoEMEysfMVEFMIYPByElJ1RMyurivKlbgjeiNICCqAAphiGjRTdxk9CxAyImxW61cvXg7ddjKpzk6PQYXRmmCASAqhR1AVSTHa+jKXeuh7FZGU+n54/eptCokAIZlzSaawu64Dq78X1RBB4eGDh++vrvIGExFJKQbRzBXeddvtav3g9PxN25IqAs3mh+cPHgC5s7PzrutfvXhxcHBQ137ot4eHh5X3f/v3/3B9fe2cQ9Llctl3XQih77uUYuhD6Idnn3/hnA80hD4wK1vz67J6s+C7L+9+zKMa7aTRVMpZ6iONhprQ/XmH+KePD9xl23rmCFtm5tnp6dnDi8gUSTHKyfLi7//jf769vpmdHoGCceQNm80Pf/7uaH74xa9/XU/ahJoQpkeHB0cnX//d33//7fPfL+bEFQIKKDE9fvb0j3/3999/991vvvyycW233rz+7ofFfH58eoyOlRQK0TyiSt9fvX7z4OGD4/nB998+Xy9XbX3IYxo8AKiB3OgVMS9jRFDKpcx7GwR3Wegfk0SO59w3c+6f9pMe8L7g+qcdCDCZTIcwSIhN0xwdHiL4P26+STEiIpEKSA6TE0qpwNHsZxp3P4IFhnVcQ/enGEBzyHanlcckLMgNhbJvi6OEy2orJz9mT2cPXMvWEiiAphQLnWFJtSq6FndquxgJ2Z0Y1akqGLsIElMBMrQEQjJFZcmagnG8VUte9aix0aCADDND3o33U7o+NkZzVaRoEiogsO4c74/2bw5CKCo64tq7qvI+RAQEFUfsnAchFtEkjEzs2DlCQLbaGoSEKYmIMLoPF5hd34DM8gCICCCiKSUQZbLqM0maZD/tH+9jn3ZYjQyVtjoAWBpPACQRozncV7TFsAGLkdJeSEZERtdOBVJImnToe2QEb6ABMXHlvCdq2bXO1UA+pCqBtQT23k8mE/PwmB2XXiLZ+WayTkeM5Igr59kTsSokkWQmESPXvibEdj6v53PyHhRIoSJ/Ojt8dvZgUU81KAPXXLXsKSgnnfp65utZ1Uzatq4b7z2R1XtnpgtAw6IdOrbojPO+ahog6rZbIzRDwn3xOy6OElLcw3B2bwVlhVEZ53y2qKSUCiaxm/2UYka3rEkLMeYcOrJsckDSMu2GjZhGtG4fFtIWUMvZ7oceQZ48eaiSUgyU5Wee5mEI9qNlm4CC844Aal8dH58wcegHNrsCcp2EvXIMYbvdApTO1QAOqfIVs0MAVRGUBClpUEmERMASlJUeXFxM25YQVbSdTA+PTxeHhxcPHx2dHL98/frly5eHh4eLxaLvOlEl3BnLw9DHFBQEEQ4ODhaL+eXbN19//Q+Xl29ub6+vb97HGEOIKcUCAxUR8NHxwQ65//kul7XgELh/2if86U/5NB9c+ZNav6j5MVRp0QRxgEI4sEYG8Vy1jXMuDQMpsIATJMXb9zdDNzx98qxuJxFpIBwYg6Nq1j7+7OnN3e1mvdmTBTiZTJ49e7a6Xb178VbX4e3zF3EIjz57go1PpUsNAJIiC2xuVqEbHjx8eHx+Ct5dXl6iqLMOdnuvz1ZtYhROuJMuBaolAELdB4QKBPmJsdjtjJ+erH/2w/wk7z0xT9rJX/7Fv/rf/vovqsobkwMygFXakZq7lmBvRYDRa2TqCASk8oK7IsFyn/zXqJV0h+emlPZOy1ozY56F+PbDJWZbA/JGNgBMFUb3oHjv1t1bcwyh1Eyo6WoBtbykrM9G8olsAiDm5K0d7H3PmbatLihWf7Rnv95Dke5N+QdzmuGMXA5CiMiAaAlumvPMBM1Ms9zfMqzZywZHrvYVO2dsNlZ24dh7V1m3IUQsMb3iMo0pYvdyNnc7nYh4Tw6Ujb9LH8nDowoipGqoO+bcr0xLYiCn27UyRAVUY8xERHKcVGJKY+NDVZXRFjNrLAN7hIhJxNrvmIWULIYXUFKqpw04DGKpfeDQOeQp+VOqtsrzXruELgEqMPN0MrGiIM5N/oz4ySMxIaNZK8SgUEiSQUVjDDZDkqw/NSJxO50mwM5oVBVEwQEYP4skYfYT37TkXNfN0C9co04act6xc46Jrewv5yoCjsoYLVDtrKgJzS/E4qDfs3gAACCTVe3+o2IwFhhHaD/WUNSf5mr0stjN5opxAFS2xaZJNVlShIiwI4PlAZIiSErb7dZ0sNnOWmzR3JkAgR1fnJ8/efroxQ/fd13XTqeIGeVDxBBCTCKqyYg8SvS0rivn2B7s/Py8sipqVYkJiEW1i8N26D0SEI1plpQTaK1KToehF4lm94IoChBQ5fyoeIwZZkgps14zxZT+7u/+7vGjh48eP/7D118vl8vtdktECinGaC5pVVUphe+++7bv0+dVdX1Nr1+/bBtXVY+853bSlNrHLLk+SsL6UBbsC3rEfUfNhCUW0ymvfUZLR8Z92TLq0Y/dvI8gVdoTQZ9S5yIs0ERABUjp/eVVDGE6myEWdSZ6c31T19V0NlOiiBoIxXKaESeLOROv7pbT40MiyjKf6ejsrF9tX3//Ujbd9e37p198Njk8iARJxcpQSIkAOOjy9buHR6fzwwNX+Yunj777058fPn3sF1OCQk8x+jPWDEizgkDrU3J/BPLrlzEenYRdnujOp8q6654//GkdXJCJj0Z7r+x7nNQ9K2fvRNihqqV7D7JzzlXW5cVifooEknaXw5HuyrLJNF+8qJ0P9O74DrhHvlgcStNnRgmvJQPrI8tD9jG3D94Bi7NtzjmMruc9BViAcfs5p2oC5F4IKcaRpcMSogHYtIhSwYFGzPneiKua51rcZSjtzMdvQAkCjxktH5oSeQsSFApPI8CHXXHo/sva/4u2UgFA71zlPIeEQKqJiDwzK4lISGLUInYdI9vP9ZzIRCQW4kdLIMvbH6HUJWSyMCpUpMSlc5bmIjCAUhZlwm+XzJiHBx18eGSMd4TjjaGDCqJPZh+ZDWeTggBMUEhoCQAUum1IMWFEFXGeRUFAJcl2tW6BPdJU6BG0jmatm15GrBN0CqwwaSdj0tPI3+bYWWWEKlo9D2gyAY2qcQgSIqo6pAQiKioah4GyOw/1ZAKI274HEYgxhTAMAzudNO2Xj58drO/qN69v8VJiNwNXQfYpBUEkWRUWlPxDAkYg55zhwIiYkhSXPRsEZUGYnFdizKg5oiVMlh1oO83Mz10ufdG+GmM0KvOdRQkwDENK5phKiCHGZPcGIgOGprNZ21aTySSEcH19PZKhkzVPVKtbUAUgorqpD4+Pm6at26YPocbdNlTVYRhiCsWklSTJqhWRygZmqF1NTKKpEBeigG67bgjBNzUzRXPZSydk08dpCN1qY1rZMKikFtanktI55iXEZIkGzE8//+z2+upv/ubff/Hl5yGEEAKNQ888DEOMQ4zx/fXVMITZdPHo4cWDiweM8sOL77puO5+fOudGM+Knj1H7wn0dvIexlSnczWZeKVBMffiw6m/vvN33Pxb9P/rvEMIP3/9wd3uXYsSkILIdhvPz86OL80gkmONDMSVgBqZEEA0UNfPNEvGZUwiMlCwsZeRFTKcXF7ev3/3pm2+++PUXx6eniigqKTPrAQGwwvb69u7tu9///ncOiRROj45/oOdXby4fzaaOUEAFEBlRrdLS+gihEbFIQR0BYMww19yZ/Mfc2Y8Nlk87yZ/8ou4sof3flJlV2C9Y+ORhDgsCA3BK8v33b5zzfRhs4iwHMSsRa9hACEqIDtEBgOZI5W6FjN7j/dvc620Aei/k9yMICprLAbmsYHdBHZWaLa7S+10zQIUjWXT+FArN7ejgFs85a5KcoqWmgHfPUzT3aDRbaqrVH4so7YeoP7SWdvofFfBT2dla0D97IDESUAJG79AhsuZIOAAiMCOYm8wISJphOWZHRElTtAhcsQDzSKsQZlxCky12MbpvAWVCMCImHL3jvK5y/JAIkSSbWUYqh4T7+D2oYffEioQSBSOQasobwI2vmqVMBk0RkQk59wxCi6ErgtBe4i4iZrrDyqdBbAyN8rLbBsdOk2gCYlIEIooprTdr10yIuUV+WE0XrTqeDqFrldZIhFR5bx4wlUp1RCwJaVRm0TiJUEQkpmHbaxLTbEmNbUJTNwy3q9T3qlq3jasq7KukIutNGEIKIQEw6PF0djydX7SH/i7+19XXs8iNICuoJgDtus44Ea38d7PepJSYmJBN6BOxqjhn3XmRiER3Jj6OjrNjIDQTaT8H0mxARNpR7pdlPJ4wdN3I/oGIInp7exdCMLPW7mpxYmtHrwAnp+cnp0fL5d2bN2+yda+5lkBVUkwiyfJDgKBqa3Q4mU62243CnJgRQUAAxHpMWH13SrFEkpJIAEyICUDIOcy5iKqaAFA19cOQYkStiFhFAcTlsIR4JFGJfb++WzIUnlDilKTrulevXm82a1W16mfEXPENAMzctm3oJi9fvvz6D//99OTEV83p6elsPjs9Pfbef//9d8+ffzsMvUiqqvro+Oj6/dV0Mnnw4GE/bKfTWV3XCukXyu8fPT6UIp8IQv1zHR9cC4lVYbVcMRKI3N3cSky/+6u/PH54IU0VGATRyiSb6fTq9q4PA1cuI2hqJiBZJVhV1cWXz+tVQZpJe/rgfL1cnj44d5UfQJMJbQQWIFVMevny9fXlu+fVn/X1iwjKAKvl8vsYTx8/cNOWQHRPt5kzyEqUq9vNRssRkl82TjszaG9Y/nmG9yePnZTG3MMEQOHN28vNdjvEgIj7fadFQUlzs8FkabVGnCO5oFUVShrwvdvkAcZdAvPeYT7Z/ud5KkvGOSMCqKjgLu2peJLFtrAmaearoGZJD+bTYsmds2ubJ1rsb8khsA+HZnTls8ogq3/e4XbZZrD3FlMc4+vq7ob3rrZnpNxT2Ap59Y4AEpJzeRhUAcTyzJEIJI0vYliUY3aeI0gXhigxpJhI1BjLJSURhlK9Lgq5AgAgP7g4tKG2pGm7kUAOtuYouvE0C4CAJFCfTRyVTCuGiEjESgwIhSdxd7hPmlcWgr3fP290z3YofkaikZhZnFNEMfb+pKELTBxBgYnY4qYUJPZJtVbnnfduUTczwWVSSIEBGDAOw2qVK49pjzyZmSU3WsxusWVppSgxppQi7O1Sc0o0pm61wRgUtF9vELBpGiEU1bjtIURLGiIAEp37+snx2dvZ2xjRKbHZUEzOe+e8857Zieh6vRZVQHDOe1d5XyMSWOcMVzVN2zRNMdmynaiWzUucMaQ9S7/88IE4sbQG9HXVNM3IPYsFvlaRN29ee1P5SEwEZnMAAqKorjebt+/ekUORVMC/vFdSiimJsTlakXFK6W55Jylsu+5utVwcH45YFBLOZjPvfTcE0RRjiDFks9EE6H55NBjCDAIoSYZ+SNGi1wpsTirlhzTLKUk/DLZTx+WUUrq7u4tJDDEw5AUzzgNmV1dVNQxhvVpPJ9Oqbm3PV3VzdnZ6cHBQVf6bb75hdicnJ0eHh01Tf/fd88VikVJcrVaLxZz4F+VJ7fzdXbLruLp+LKtnH0L8+SM7DT9+63sfmZQiqprmq19/9eTxQ1F99+7dH//h682wPfFs1Pam3ojw8OTk1Xff3VzfnLVtRRRErfE9Jrl+dwUAi8VixAFFJdNBErjKoSNgFkQDHiTDHcCAq+Xd9c3Ng0ePeFJ3EoUQkdrptOu6q7eXF8+eEOMoX00UWgkNKTpAycIMrXXHrrz3I7W0fxT3cv+jnxyunzxymiiMHtCOimR8mA9Gf/eQhEbyavWH+8+CGfD6cHGoiqgQGCOHWhxVi2meFdi9JOgPXd6Pg7t4TyTvFqpKQpER8C8wvIikmIKUtvJFcdhrK46RyfFSBj2rimqM0SryVRQ4PzNhiSUBGhxrNC/ZWDD4TnJfrv0mi6Mmxt1jfyT+Cl6wDz4ZCRGjOQ1G5aEiEUriCWKJr+vuXmZYxpRiSjmPUS10n914Vcnx05is8czepsjPXZIURnxckhF1okNFETDyDdPgKUlKSjl3yEUSFDWWNAJMH8JnAKMH/MExSj3IS5TGWi0rYi6QLCKo3Q2gQkARAAZJOnQ9oUuaXOVd5VMmy1GRJIjttN06BkZF3YauoyEhANH1ze1//i//OfQDElopMAIQUeU4JKFdj47RccS+H5qqBsv3L3EYWw2EOd4XNl0KgZvGtXXrvLTteriLMYolLgsKQlXXla+iokdfkWdwSFQ303YyY3djQ+KqWgGGJMS+qhvHFYgFm2fT+eLo+Ozo+MTK9RhJrOOEqkiWMEbdXYroyiLLwFC2VTVjc1jX9Ww2Q6I4BFBlRFCtKhdj6rdbrcS53NqIihdjLRlCiu9vrtHjbDpVYhnr71SHYUgpg+pIqKJd1//hj19XjlWCq/xZfw4AlPtAg/eeEM2kTjHEEGznScotJ0Sk67o85hmHARANfR9TUkT2XgGSddZEAKYEIggJwX4wLmImQtTD46Pf/avfv7+5ZnJBDDShLCJUVCJoQsx+tigMKaZeBUFfvFyu1ufnp7/97W+Z+f37m4ODQyI6ODjo+365vO37frNZ13V1fn6WYcmRWvEndfEOWxvPox9Xwfe/9U/7LRShUx7P7CfLPgVy3jW1eI6oi4dn5/3mxfcveDa5ePyY2eXMDoWD48Pj09Pnz7+tfHV4ckIMAAQit9e3r354cXp21s6naU82ogIQKSI4LrNjd83ZzeYovH136aftb//V7/10ElETAoqmfnj+zZ9fv7k8fvCAmlrBzEFQAAHddtsUAgqpSlIRBPAOHWVp+P+EL/uTB+6UQT7uP5OWGJ5Fdp1n5/3+b8eFke2pkkZVPFqr3Ccds5zN4gEAxNy1B3Plve4HY3/s2LsdZkM//yL/0uRJfrJRp0p2lxR2Cjo/UH61olvtWhkcsX63aCpoZ8oXcHt/IMtOyX0DtajiXQYZfNL2LW5IoVYza2Y/AJSh1jI8SSRGTSmmmOW9jjFzyYlkZhQgisK227aS2Dtklmi5YEBIQGzZMapoQTkRSbnjkfntxVqTXSOo7IYmQVbM+TlAJbBocD0AEJH3PiWJIeWxBoWPrA0YPWDNjHGjVNr5JdlBz6sK8wiVNWAj5nzDXoJKQjFmrBCCUwoptdOWXU5GyMsOgZtGHHcoXRzey7CdQfKYIoY4vL+5ntQNWw9jUiFhZnZV0lBmJc9kVvwl5V8zHqGAmBBuu822nTaOyQKfIcQwDGvyvnICrCpSemwConPtwbxezO/6DXrPXBGzihq/tnc1mP9R14C47QcS8C5X/jC7+cHhfH54dHJyfHJmIQHOD7pzghkIrfjnAyqfYvHlhGdmZKegTNROJnVdMaB3LoTh5ub64aOLuvKO2RxwFXBEANYoUp3zbdv2obe6e2LnvCdmQCTHSBQydZ6a2SYqdVV/+eWX81k9DH3XDznjETEX1dieBHTMMYQYBkMmMvJBxMxv3ryxMLNISilxhaCSQrT14ZxDwqQSjRRHJYEKoqBmn2C3wYAcVU3jqgoRNWfUjy4CjDmapje89+1kMplNm6bp+z7EsLy7O1jMf/Obr4Y+3C2Xm8329va2aZqUUojDcrm8ubmZTidt2yLdn4IfP3TcDiIWxf5EuQze/2ksTCrSY/+3H6AeeO/rAJk7pfy2aGIrfVBiIRxUBtBEQERnjx5uhv7P333PTXt0fgacN2zV1F/85ss///ev/+Hv/+707Gy+WCBRt91cXb2fT6ZPPnsmjiJqnusM5UECAOewrqyXilopHpjnQ0PoV5vN+cMLmDY9Q685ucY3/vjBxZvLd3fL1UFdFxFBgArO/fD6zXKzAUJBEFDy7uzhg4unj5GdFN/zQx9wf2j/ueHmn7pgib8CwKgnRj8VCZ1z8/m8nc5++OGHMTPZNjllRw0K+KvWl05LHpIlK2WSK8tLoiw/jRkajTM048YZTbHttldntDu0TNAHH5vag11KF2SCj5zfNAr58c+d91s0nxr5rIioJEkJSoPRHWyjKqr2xBkStxEoKLSB51YI++Ej7v239+nu/XTv2PnKNoYllJYkhSFk6hE06pAImd5CRy9RUCMIVOx9C7WXOCjtRpyRitGEOpIDZhDS0IJxD+bNWxhfDcRXQmRm710ulgEw/JKYFMA5jiWLVUEFNdeAZrmACPppD3h/CWYILAOoOUF7nD1FAOcQLP2C7PKSUggRySmCbypiy4CzVAyIKkCkte8quozbtzx0vo3BGiYWg58ZicyO8t6T9xhDqTTbMWM4Zyi9QoYXIIkIaAD906sXq+ubh8dHx/ODWV07EQwCIQx9RCSPJChIpIxBhT3PTo+nJ0dvLjsgZMdEpMCggEiWhk2e2Tt2ruoagc7XlQIMIRBR07Sz2ezw4PDg4ABJQVFJ9wsYGZEBuZSP4T1WS6ASQbFU6mzyEDZN3bYtCjjvu277zTffhDg8efLk0cPHnqnyHEL0FWfiAwIkOD077cOwXK+IvWNf+To35wKA0uQrpSSqRuRGjg+Oj+bzdgh904eb27ugkkRz2rwAqOEpzpoMIrEarqiAgJPJFBFjjGZeiYhT0JhC3zvvLO0ZEB07JHz//ubd+/c7wE+z4y5o3UYRvSPHY8upvBcJsrY2znvOBCne+7OzsyfPntZ1/W//7b/98osvf/+739/d3a5W66pqVJa3N7cxhIODBQCsVisiGoZ4e3sXYzw4OEDkbP/vMe/su55ZeI2CWHML+T2ZAAAAO/qbnRUIoBlFyEhdvgYV42svGCj7imencMs/8w8WinI8Pz7C2kc06Y6uqR999llkXg3dArMsFYRBpV7Mv/z9b9+9fvv2zZuXb18TUTuZnD04Pzk/c20drP9gIXyBIvXrxfTB50+xcamQyqDpDQAlunj8aLFYhEypAACoCFGhOZh//tvfcFOnwpOhqkD45IvPD0+OQQQBidmoZJrpNGMQgGWEf8rz+8fq4HEuwLCwj8iMPrj8TszdCx7dM5sAgACrqnr69BE7+m//5b9uNlsq5++etERdzXYs6wqxeGkZF9gTrcVeyzOfYbwiGey/JHLfkoO93+K4jxAAMHNuZCVSkNTifo/QLBYf1xytjK/kXtJqwX9JWYtmpGTPVS0adHyiccyz0WGZIpS/m9VkfnmEYk+PCIKVSexfbfTR818qkjQlBPDEtfcECKIguWRZJaUQAATEMg4t/RUVMTElx1h5aXzqSUEJSVElATuClJgR1UR2vj2h5dORZGeELEdWtayn3J1ZidFXzgUmyv6p5t5yo+kGBvoCqhKO2DbmRDhyoiPLF4mS5LHOu1lt6TGbSasFvxjlhCqQNZEA9d4xISikJIholI2TaYOWMAbIzCwY+xBcaI4O9Gjx8ts/X0+wdyyONCGIYs4VJvZOU1RAdpWvKxw6zeY4kGMIYMlloGD9A3R/8yOtY/jz+7dvl9cns9n58dH5/GDCzltbNE0AgkTka0FNMijCbDE7OD2g69cI4piYOJXmJIjInuumcd4js6t8heqrSgBERZHqdjKZzebzg0k7HUKnigJZB2sCQmR2npxDcsSUOUbQTDnrYpVSArS8N8PPRUQIadeJCuDu7u5v//Zvv/nmTw8ePPjqq9+cn5+3bTuZN5CSJYnHNLjKLU6PquXEsUPnkViVENgoP733uaugJHJs7KtJMQBERPAOiMUQR2BVa0ooSE6A1l0fBZyvACgZfKxc1+2jR4+bpik0bACICbQLoXGciwsAiJyv63Y6rZoaiTLLtgIoikpCVUdcV+1sikxW/2YjL4U+YDQbyTl2LokMIUiSpm5OTk9E5P3VVRL913/1r1++fPlf/+vfPn/+fBiGbbdeb1bGnVLXdUqp7wfnqpTAOcZSm/ETIh73E0gAcb+MZf+0vZiC3qtpwT2G7/IRjcIsQxF7QhUzS+j9y1qEiWv/+Vdf1pULnONeouAmzWdf/koVgC11Lpd6CIM/mD2ezy4+fxaGAYms6wsgR4QEmgxOMA1oteMIXDdnjx8BQhoZbRVVIaGSd0fnZzoWamTdiaAIzEcXZ/aJgfsJFBHmJ0eHZyecQQMUAlWJOTGpvN3P4fn/8kcZ5NFiurceZO9P8N4xKygQgmVfABrXDcFeaKKwkhg4R1r4GPbTpXLdkY462O5+fzEgAkCKUbOLkc9BLLSWhTdq5Kn88N0wPxnmW5XeaMbkkGu3C41GuaMUe9oMdiyJ1rjbC0UTjA7rzmWWlDSKoAqJqIxMi2rRZjtbM044XhAEMsmVjqQhmtV1ScYWAHXMTVV79mztbcAhgEIwmH1cUvZfEulEtwDROfFemUETIUoSZERG76rT05NF1azfve8AikAYF6epF3vsHSqSuziQr+raEDgsJJopSQgxu9FZiIkooFHyj5hoQYpGD/hTFpbhI0i5Xrt0b8T7Z9k0MzGjJeNA3w02AMToa28AChJ6751oDMNqjZODeXV6dK1hBVVCMkmkRGiEb45d55MKEbJzzWTC240gWKcXIBBESz/LrXixNA9BBFX2rlnMutX6tu/u3r99tbp6cHL64Pj4sJlMXFUpIyAjoyNbet12s930m/UKLOLFzMZMn7MZuaqbqmq8r4HJVxUwVRbuQgTEqrKJaL2vYhgAMtXZCDR6Yk/siD0xQ269zcxJkhXRAKKIUG7AgDHGGKKIDv2QYrRY8tD3SeN6fXd1dfnnb/7h6dOnf/kXf3Xx4KKqm6ryVvCz2WzFMbFr2paYc6vLvCTVe19XVdd1qprzJgAEISEKIDk/WxwSO0Qs9jGANZlyVS5lYm+0zyJmO/N0Op9MZpSjXBkiXm/WVVNrQWuIqKqqg4PD8/NzJB7xMVujIoJEVV3NFgtgJM8Wwrcdb92/ikNj80HFMBcFNT6yqqpA4b/9t7+dz2enp6f/5b/8l67r2OF6vZ7P59PplJmJHHM1ny+YP517+An5BUWuYSnd/jl/bN+N3gOvTAlnWVdOKM7AKNsU8J5GvpfugAjtpAU0al1SIEiKquwZxuxiVKtVtLIwcoiurtranI9Q8EA13vkRBFYwrQmlCXxBU7Pdo6oRi9NraGapmzP2aTPjsbSrNXlqqKwpYwsgiGqhZvmfc+yjHfuf/5gRtve55n2RPbxsfJjEhozO3VtUIzmwAsmY7/SpdacldpYNzR0Nlv12fObdI2HRE7vEnjGfBDLyYsIe7hEr7iIjGXeCHYZs826vmVLKqjIJlF+W5QrlwrsouAKISExCkiPAIiKapDD6mS+J++DC3kuNRylwJeMOy76maApRJBEAE7Nzlau8qxhcKqQuqrlUOT8iYUxptd2uuu1ckjImJmHEhFmQKDFzUzePnjw+mc6+3WzeW9w3v91oTNkfiECIuVrZtrFYW3RXITtANsZ0ScZJAICgAmgdQcfM9WyIGQCA+MkkrB0KZpNTaEHssXAvP8uuh4BEjpmgtLWKQYzEqqoqZhKA3DjKJGjS7XZbeV8vZr3HLSTKUglEtK6qxWKBhF2/jSkys/fcNLWl2mJ2IAAQkMkyYvImyfNFikhMs8ODJLGLXSIdMNUSoF/fDJtK8dBPzqYHLXPdNCEEH9wQh7vbu+t3V6YbnCPHbsABERHJ+7qpJ001qXwLTFUddeidc2LMJKqV95WvHOe2Vnlos3eAIOoAPZJDcs5752hA731VVcMwUEGbRmIVK71PKYUQwZhgVSWGiNr3nWgkgn6d7q7f//D8+W9+8+uvvvpqs74jAo+skLrtNoKyd3Vdj8FOy0t0xI5d6PsPJIUlQjKR944MbNk5c2QqOYQw5ohYkQLY1CObyBbVmJPgQVX2iy6YPaJjEi79IkEL5GQ6SkQB2DvjtCdHkETHIkTb5AgAYzmxqvkhyJWviZxzfjadP//22//z//1/LuYHbds2TTOdtW3bEpElfjvm2XR6dHQkIsMw5CAT7hzWT0rhf7KuGPHk/etTeetylrlKNH5n5GRBhOI9m9AymKdcAxHEYFy0rjkWfESFDFYBKBU1UdA8wbynMwD8gTTU8YE0y3VVwFJGag0Asou7k/pjbsnofWDBJ0vmqABkyQDZGvxkwPdf6Li/1O+jEZ86CHbzs1sbZfFrTHlVljfMAp2ACxGgtYzEHJLIU5AzhNNovO5wZrW6GDDs1DDqPR2sJRGsaDq0mierIypPd+95oPhv5mxCKT8o1lFBecUqOrVYWjb3AIXhEjS3cxgXGOwpXShBnHGgtRSORxVMyXqpYcngHa3Oe4vuviwq8HOuY1Y17N5ICIQAmRiIgYiRd+t+90y2ORCJVCGBbMMQJSFoKuEeS6pTQkmQRF6+evmq6+PtMmmC3QjZlQgKfxJYE2Wg4sqjxRP3oA+03m8pRE0A1nBMylTAeE2AknwKuKeAs702Ru8tiJ1/tMU0ottU0G1RVUJXsJBcVzIMAuiAtGlrZBpJYhUBHVfs19e33XJVe8+V66H3kAQECCFBXdfn5+d3d7eZ6g/Reee9z0sWEYiRXDG1YTRYsiFGZmWDq5wyCkNSwopTzYPDYRi6u7ula2fzeVMxV6yqDskpxk2XtgMJEKhzzJ4poDW4d97XdVP52rMHx87VQ0iqZFlTNj9sDRQRSfK6MKMRVFMIVozjHDdV1TStD9ummU7ni3R7qymB7mk7ogSggEl0GAYyOhZAAAhhWK5uRaJhlER4d3f3+vWr//Sf/pNzfr3eHB4fz2czZb7dbqIkdsyOsqELufOuqsYQPxB/pZYI8/8JNZmzJuaQpZTW67XLkiTvsgIr5XinoVrArAjoKIcJESC3s1QAGIaoOkpnHEkORdPYjZx2AXKDRfMSNtXlMtuJIoIxtHjvK+eJGJlU9dWrV7c3dxcXF1XlF4uDJ08eI+KrV6/ev38/mUzadmLGTUoxxtj3XVX5qvL0i9OysEgHuK+wPwCGRh93FLVYdKmRy+yJQh0dZQDLqETIwekio8uvyMxw67thqX0Z3US1OhcE1FJokSc3+0Rjrj3sQnJQoP0PTP69qpjysvnDnfLEcvn811jgM44BmAAHRQWBXTD2nsz9F3eGf+YGH03cpz7eO1JpFmSq1SgSUC1UmKV/MXBArQiCdu9bcLqRAwBytb3uWtqZKlQUtQ59nxou2ysKmIyDPVv9Wro1IwCggqjGEFIKY26X7g4BBcsJK4knWowG832Nvzb38gGFgrOUY+cTW7Ao5VyzcvUkkslf82JD3M8h+nCaxhHfPUMec1R2iIxKaGCh4akAOVtz57ZirtfMU4iaJIgmRlUVAWHMCpQANXfHkX7oQZPxTGnuiixqKtfefH8KskWFSGzk/yqYO0ZawEZFJZpVNfYCtuiqZp7t3QDsiDigmMn7h70ec0lPz1GIMk4IpOoAONfXic1F3wtxJRKbWYOujC2j1Ro1vt6Crt9fd6t13G6lylVjtuSn09lXX3314sUPV+/f2Tj6Qs2hAEgESMTGkU1ErALjorGq2ShJUAEFGYERRAU0ISRGZE6I6tlN6pRkCEPlKiZ2QNIP0gf2qKrk2FnAjBCJnHdN09R1zZVHx9w7a1ps9TzF+EEAYMR5O2FJcehEc6mjDBEsoZp42jTHR0db6RdHR2cX55uuC5sNGI6EAGxhbQREK9hl4tzCEDGl1PcdaMqklwgAGELoug4Rq6phoqau6/mMmtrkalVX5EiN6tF2jIhI8U33bFfLLSBElxsWgRqLHGa7LsY4Zvrpbh3CmOVo+9LKloyOUSXvNsqEZlQ0687hs9PA7mNtp826K2RbJsbs+0xU1bVZYwBgOhsLU4dzrm4aRI4xbjabGCt9d5lSfPLkydOnT7338/ncObfZboZh6PsuhLBer6rKzefzyWTCvBeSGiXBnhi2NZbTQaFAfHu/3RPeYFbNeOxfDfcSSouPu1P/ZP25jXN+VH1ZEY+ar8TkZDeHqEAMqEiCigqQRHO/08KMkC2aotkRSsuscUazg7onC/eV7b0fyhWKMzSer4LFkbKn0uIoGHqLGZ3+eLQ/PorF/2OGzieOAmnovZVWoP49DVbAoWJL7ZC//ff56BDVBJLX6qedut2Tq1qLsHsu3/5vM9qMOSS8M8VyTapmIljdgRXZjcsPrCXi+YEruZPxRhKc3WgAKlyO5fHvT6lJCc1PHkWCpGRE/rmXX25OnGF3Y7EaVSyCqWERSUQkEqzoMRPlF/cUMdMD5jnCMjtjQVSxD7PzpuyJmUANLANQZcd78IQqFcs+L2ZFynYIIo7p5nY104KoWlf+4OBgnWTb9YpKTOAIYqYGM+UyulK7/0St02MMqe96yS4xEBBT1tlJcjg8P5AoJpOl5ZkUAMBJCnkpgLA1aUQ1EAuzxaL7ds3eshtXWgJgLTXX5iARshL4ximDWJtSoggQELCp0bthu333/Ptwu8SjVnVMVqTpbPbo0cV2u66qiogVM5EDmeoFzhOWkxdwlAKjBLTxz18xUM66SiAhE7Kr67ppG12FruuaWV1VPjhXOV/qA4CZiRmZrQciMfm6qpqanQMmckzMArrZbivvrGISCIMkJn58cX7StHfvr67vbpfbZUiJQ4IkDskhVVV9uFjcDdu6nZ6cnl++vbzZbMG6VWffx+i0QCSJCCGaRjKrTY2byCjPDJM3CJiIHYrEMIQGcNpOEigyuco75wCxJESqFLPOUbGqgFAsCEys1tYpM8IoCDNCEpGglGM5xk2b63qRIO1pcchtPkuzTyG1Dt5ERJjQsWN2IYayuRDNhhVFUY9UOd80jT1YNP0KmSqACL33vqosTdqSRLL6JxRQ572vaySsqmoymcwX89Xqruu6xWIBABcXFwBwe3szhKHvO2P0BFDV1lzqg4MD+GVHWXSfPkZ/Nx9UHHoFxDzJRhy+f/74s/EnazbSCfbOQsqwo/WXA/OAFBKogDKCoIwNaMytQQWUseJXVTWRIXEl/QYUjB8UxnYaBfEybmcwImjLmMn9V0wQEAEgmXVrpOX7GWp2KVYktXoPUJD4CWrOf6HDfC3cd8qLF7F/1k7E46e0OxZjQiCZS2fcilb6qZiKW6cffRXGqtB7OGL57SivsNi4AFAIAAvhAZLFo1TForRmQxddqzlCk0RRzKTYc05Vi/I20GsfgiiqF20RYAacRlVevFhJIlLy7VQ/qMEr2Qw7yLZkSwlYojEmFbUsY2PhGmcCRwh+nLCdDKEClxsv11ixrgBJJHvchh3mNNziWVsJliiSxWuBmQ0lJkAqQVJUUUmkUDs+mM9lu+0JVIUYkUEUhPYcextLyH2JVCWBRElR0xAjG+sfIAE4IiPEFBUQ2YH2O/ISAoz7Q+iGoS+TIkQ4poHtBjRDDWVJWQbbboZ2CImNrsQMuzCzq5zmDjs5eyOJove+bQkwrLfShRQ8JQGwrG6ez+dNY+m6TETIlGIcup7RQiyGseDId2Yr1Z6BSlt4+9nSc2zVpGKIMXHbtIiYVFAsl4uRyDkXQ4yYcQz2Lkd2ENg5X1XmDSvlpkxAtO0H9k5UgBlztAMnrjqfHp5XbXd8dru8vVutkiQ/RK/ggRpXHSwOZptN28wO5kdVPVO4Mtpt+x8hCaCqhmQ8VjBaJ46ZiBGEULJYz22QgBmZUFVvrq/7lKYHi2oysWLw3HPZ5sfeSBRUmYo7a5sDMHsqVAJXBnQjIWhK0WVCJIS8LEXhIzWkgECoSGAwvAIAEtZ1XVXeCMt2545giioqOKK2ridNM2knFr/R0sE0qYgkZjo6PJjPZ1VVFVvQlgE4dnVVLxYHk8kMkb2vjo9Pfv/73/+n//wfu647Pz+3euXb29tvv/12u90AqAWJ27YmomEYPun+fvJQGJOYd7Joz8e1CCJhRimQGH1VV5WnwtUOgOQyzPCBxEdCZFQonTfzXbL6JgCnyJpbs2W3ElERIkCvaZAQQ4hDgBgZEJJCSijJ+NtBQRBQIeHOaiJRjAoxUvEdTAVnPCYn5CkjeQEJQaKEGFOMZhn7umbvkUgQ0ygENPtlpMCC0oduGOqm4cparvzjjo+d4F924KhkyhT91BVGD1j3Phn/WZBWFVArT8gpgmUSR891B+QXl0BBCYDJsnTyjob7d4FSnpuvU9QTIhZzbG88RncTAABijKIKKjxGhfZOT5JiijFGhbE1nkUtJCvBXKogZdIAFAolhUhMUhqyKWTrrtAY70FA+5QqFvwQ1RIdgWz3IKIqogARkCJKxrmgBKH320XcnxyrNzFxQpmQOKUcnMpPQyXMDSApJSGqnGPnLKs0Se5HZE+hYEHTyvvptJXDxfrqXdaShECkCrkbXYqagwUICJKsuazlpikxaWbzLCvbbIESOiMiIxkmIsvHMm8NUn5HJzIylZQCst1QSm61Yd/JPR92Kyx/TXb4CAIMQ4oxMIBzTB4TwkjvpKpJEzK5plZCUNCUJKQoAoQqwJ5PT06qihyRZ1exU0fvrq7qzdaolG3RI7BY4bHZN5DtNy3UU/YmzvomYRz9EZsf732Mceg6Jp8VOBEiphRF2YbNew8WUgdUuxRnwj/rzMNMKaWMbVj2gyoiOjaXk7xvZkfVg/lhSEkBfZAJuoWrT/zkhpvKt9NmwpltMXcWIuRiCOYaACDK+CwRoAVTbTo5069kQU+IlGK8endZbdZnqMd17SpfVc47R0QWVBbVYRiQXF4HgJJSHAZsJxqTNcyhsgFQBVKySGLf9433hIhqTbPtBIUxem3iSBHNmUcGJU3Zxm/q+ujgcHW3XC9XBoWV9WO8Oeqcq+vm4ODg8PCwrmtmVszhsRweBmnb5uHDBycnx/P5vEwagaIqIrn54vDBw0fv3r13rhbAdjI9OjpS0a7rbm5uTk5ODg8P3759++7du+XyDkAPDw9PTk6aphKRyvL+9ohofuLIKJbZtUVKFjmB41zYACNR00xmB4vZbMZE3nlDmIksMAO7cvDx+mxukEMwYjkoop5YkULqlqv3l+/ubm9iTJX3JycnJ6fnblKv0nC7vluuVp1uYowQ5fLl63ev32joUQUR2fHi4ODo/IKa2uJBpIAJLl+8ev6nbzQlQlLChCAATds8/dXnh2fHxVNHEHn93Yvvnj83rziBEGHbthcPH50+eODaBhGiuXGaa7sZ0Im8efnmD//9H7763W8fPnuCDsdx++XHPrz/P3DsvK/xnx+o2/0fPvxy+VwELFWOCFN2AX4UEaHciLGgiT/iZBvaVPbyiI6gtbJIKWXvbpRtOGpDEYmI+3YN3lvJRpifF9KPHNm+2Hd+Yfw5cy0bmIhWA6401kkUJwigINxQiityoZGCjvVN5Sn2s3hH0p+dX1zMmh1SW7C74gvum2UjZkPlDVJKjCSi7JgQNSUar2coDiICIfHFyfGvv3iG+GTmqL+6vKrdhkggIZq3KRZBYEJUElRJqmDMKECOXeWc82Y1Z5x6955mKyAqWDcFNEhJ9zxaACcSy8JKqlFK2VZeB8WmMKs2D49hBYjF4jKCkozmhJBiiMjo65oIE2ZgwcbX+Jcj6CCSCGMSkQQxAQETo+J0NkGFGKJDqiuf0EBtJe8AyThMIL8tIiCTyyCRFXaPebOA7D0hIzqwBkbOaRpUtXIVA8sQ1bPExM6R45FTO+VMAzC2ZLuUAHl2ZTDZWpyiApdCi4RgqU11U7umFolJBYEceQ4UUsQhtsRfnD+CVRduN726WhmsIzRxnjYizUFVZc6GnqoVAnkAZHaqMUdTaWyKYStSACTFoe/w9uaG2fvzU2daiixYBAIQUyIgBWUmFBm67vmfv71qJykMRHR2fm5MV0FFIYlE08pDH2UCKqio5FBSVCOaLjayTUdKmvUOEgJIIX8GhcPDwz/84evb5e0ofy29w/AVZCKmqqqGGEIIxrZhNNd2L0BomvrR4wenp8fHJ8fOeec8EYtqUkkgZ+fnjx+fv3x5xI6RyHnPzqlC07Tz2fzFixcvXrx4//59jLGq6qpy5hZbN8P5fF7X9cfad9z8H0suLLK7FA1h+YbZBobXgq+qk9PT4+OjxXxeNQ0SgWKG5Pe+cO/KfB+Ug4z9sgJEvfzh7er6tq2qo6dPmWi9Xt8t77zzj+ZPm7ZFgBRTHILSAMjXby5v3149vDgj0pTituue/+nPy+X6yZdfuunEVg0DbpYrSOnzZ8+QKIIEFUFwdeXbSsq2NdT87vZWk3z11W/qtrFM17vb2++efxtDePqrL6hiNLUAigoMSKIyxJt3VxDTq+9+OD454YNJseT/5Q4CM6N/PI67f/ycZ0x76j+b96IJFVUl50khEjEwWsNVGE81WK5kZ+JuF97z6Q3F0bx1TJuV9mkAKmK06iIiCZU1t+rNGVU7Ew2zU6qqKihKIpTFt+bKmXzgHsq88zgVSpwL8m/MCwwxJxubijbu5xwGtmATlnHMkZXRICnU15STDRCssd9H+6o4/qMZkH9VSIa0nASldApKHkSWMKawyATCiBo4dt4588LLgBOioJIjbGr/+NHFg4cHVGFN/+ryz9+8/LohAkEUzWFeFckxNbI0FUzl+ZERHdHYLmlnOFnulCnM3L7AFDDuteqxw42caqa3cmILohERlg+t2A2NR8lmFEpUXQrMYPzbXTekFImwapwZNmWCABEFIJKuQn8d+42DnjQkqaIAATGKagjpxYv37y7fAahjtpQpRmdZ3wJmM1k2XBYOqiqipVO9sRGpBXGRGSMCYlVVzvkYgiOaNG2um1HddNtZO62ahrxTBMtAHn1iZmeVLz73qUUEdOyK7jdjMy9Oi9w655x30DTs3SAhDYNKjwllCG1Fn188PKzacLv95uqyAa7YgVqUFxQTkhBSMvyPdx3K2FfeVwDM5FWVLACcpf24bUdDSbttd3N9PZ1PXU4aRsxmkxXdZusRFFKMQ99LXTukruvWq1WxsTJNjQVxUwiSShL/LoETh6F//cMP/XLjhMyfhrJVtFhp3vvz87PZbDadTg8WB977EHvb5WhPpMrMqtoPw8Fi8dvf/nY2nV3fLIudnAVZVVXz2aRtqvlsbq+tgF0YBNRXVdVU06k/PT1u2lZiFFFE8r6iRE3T3t7e/s3f/I1zztzruq4fPXo0m03/8IevRWSxWFhcWeRD1WCiauc0oUkfQARR21N7LhXCWDRv+P/h4eGDi4vT05OmqdjRCNqN2Og+SLp3y93PGTcTYIH1tlsvl08/e3T24IQ9A4JEWd1tnn/7w+Wbtw8fPZ5W7dpv1sSJGBBJ4eL87Ld/8XskSJpU9N2by3/471/Pj49PswK2RQyLxeLZrz4n5wJIJBX4/9P250+SZDl6IPgBeE/VDj8jIiOvyqrq7qomZ0gZzs7+5yOU/ROGKyuzS1kuZ8nurq4rKyuvuMMPM9UHYH8Anpq6R2R1c6epGeLpbmaqpvoOHB+AD0nEYQEBkffIDF1fXX/+xReorELO9Mlnn5Ljxfc/fPnVVyiciU0EeMbb3r55M7f2P/27/+nrP3796sWLz85/7swNvW8X1tL2X+DIXRA0FR/Vv76eStDDuPX6rRAmC6QRhtU8a2u6gNMn5R2bxpc/1rrlFPBnZn3AjYxFSXUNTcuNhcvW1WEAfMlotTi1OPmE8YcD7tmVYH0P6/rbEALUTYTuyvZa5uWUwBWtaZYwG+KGCOjcy/3RHz6yE0UlVnjMXccvCdDeA52Lu+jLj/4c2VsaiIz/5PiK9EIHoqZIF4qvMJXIG7xF8DVvi7gwyVIER4srKELDULb7kYXIMdS62YzIwFfwQiuXaIFExEJRWsk9iheutGmSpXNsfMtiYXjUlPiClQVA4ICRU4fNHaXXVXhYSPM8u2dCMhObWWu2LObWWmuNiNws0EbAOusLWlNVtKaAk9tQRQRtGVuKdWDuOMzH725eH4vdVUxQbs0E0fLw/v7+N7/5zZ///OfwxVPHnoAeR4S0M3Hfw+COFbmCOQQsLCJDZVdiXF1f7fa7u3m2UutQIyQM92me2mY7nu3Gsx2Pg+lkwUZABU4JFRJqrVTEU22hZ9NwJMLFZomNMc9za60y7/a7gWw+HI+GptpMTZUcmzrsttvwAReWNkpclxYwN+S6O4gxDHWz2ZjNzKRG0S0olHCYZXBnEuES8ADM2zTrNG+HoUiJkHzYUs2UU1g4iMZx/NWvfvXsybVbu7m5eX97a5HE+nAfHucpU1p6uU4EZA6Hw+sfXrJZEZ7jUVZxoZjxzWb84ssvxnEchmEYa1aHqpIjMkwAEi5Pnz79d//u3/zrf/1X+/32+vrZN9++wNI7Bs5EUoqIlFI22034Eu4e5bzRGJKFNptaa72b5giLlHHkVoZhMx2nu7u7s7Oz1tr9/X1r85s3bz799NOf//znzLzZbMLWxMeOxx5qB70Wj2Z1MEEAZqJhGC4vLz/77LNnz55cnG/SO/EuA37aN+MHoizTZRggw/s377f74ZMvn0qRSGBj4YvnZ3+z/eX/8b//1/ev324vzwq4kMwgF5KhYlYV8QIDs+H6+Sf1t79//+79EzUv+WBSSwbc0bNGevA54sJEydMgLEedKDKBzQkkoP1u993059aaYEhpk8wIMNUfXvxwfnn22eefTfPxux++e/rZJ+VsZ0TNjRbyjn/5I+XNT7x70sFddn/kkx+AE0QpD1vmMIF7/AgOBrGIEIk7POt0uSc+8Vqz5i2u0d6T6QBkYCJQUvZIO0o9lqhTB0dVrc3z7P2GlnteV/tYVhngo6iA40FVTB+8BX82mAXVRaQNo4fCPdvzrU9MjL3DectJ3j2VRRsnr3v3XhKXfTQajhNxTKR/LWs08giN4iowQJxkqUHvisMdnEVg7uj3bwaYiFxdXTz75CpE72a3vb66FlRk2z2YBk0cm1O2EVQFEUvhgPEM2tTa7LBuO3GOuFtPy0aKqrSn0mVfVn2hfLAoZENrc9ho4VYZglfylF+3Wp7MUdmfXbaoNWtqcIylClPtWeKck7pQfPns7esX3+n94R23mYh1Mhby4o65aTse4jbMTOFsSqZiBZ3uMGbWkU2cEyvoFmusYxZhqaWOpI0E51eX5/szOx7pMImIHtXciVnVmupuN1xcX5XNML8/hP1RSomoAzkxgYUpwrEI6/K0kVSVixBRpMvd3twcygZEB0fd1C0XGsb5/ti0qVsttW7G86uL+rJaMStQMc/yO/ZV973YrO7mLrXK1fXl2zev0XMBAtUgODkzkYe5wQKDR8tLNXYqIgy4GthN1dyPx0OtGwoFwiAhqcyFXKmOhQ5wz3rcZbqdaGotWpzEk55sZ0et5Wx/FgZ3Yv9dewcZQa11ux1EYt06YIwgoAQFzQiIWc7Ozi+vLlmoZBV2IRI3tElNPfLU3L0UHmplZmKK4igAQmxmoKxlV9PQ7KUMznp2fq6K6Tg//cWzy8uL+/u7u7vb3W43z9MwDJvNBtHr8GOHd5n4l9UEEUVhRYBNtQ7nZxfX10+ePXu2326Ee8YZLejV6txHOvyhRxbUJszQprc3N88/eyZVjNEYhcAOd2z349nF+euXr7Zne+llXNEDfNaJnRwSrPrTYdas+nQ4WWc+Ot7d37x5U8dRCV7Zo39arU5hEaTrziCblZ2EBKYwt2l69+rNbrOTWhwZBoqxEMLtze39ze1Xf/03UuSTT55/++23b3588cnu5yQdOcyx+O+hgz9+dDv+v+WMnvoBkBnciVeFvdTfRzi7xIlSZyLO4txRhs8e6uCf/lamnhHSezkAyOTEcIXNtLWmquYmj1cULT9js0Y8LT8ASBqQubqDGtdXjmy6gML+kdnx1ZTlQ7CndmEIgxnMkERmE0byQI9OyjSukRXroZa6BYcEOLsVldh6f0pbCugWINZDAkO4BlwqwkW4RJupleoKPW/uJELumckVgc4F/OglREifP1rrJdWTsIO4AKJKUagLEu/AvEXfmeAdBYHcHGROERJOGD7dxXLyGjMyZ0taFhGpWTaHP4GcvcLHHy4josi2c/OhVgKkSD50GiQUVYGRJ/7tyx/evX331iahUqw5pNdXohSRIvM8NW0OaFMpaVOEixVW+Xo9nLRF/4WZ6zCUOnCbHG0zbq6ur/1wvJuUwW0+NlMQu9k8zwY/u74cNqPfBDyAcLb60ulJF8kImL5P+NxmRpa2T5ps7jbrNLd2x8xkfeeZmrFtt9vPv/xi8+c/BDWiUCTHAg5hKaWoIRogRLclLrTd7oZC93e3ET308Ah7uIhALFJKJSrururWDEMU/JVmyeXoBIcdD4f9vhEX4hPA1QGbxYANkMk9aHTMTDV6zJ0WaFQaRFl7X2vLxujrB8GyGRljLCXJXsKiBcHdjYpUWuLZDg6Om5RlaM3gC1ctiEhKIeawrNUsqrD8lP3Q9xiBS2Gql9dPpFZznO3PP/3004uLi//9f/9/tNa+/PLL77//7u7ubrvdPugAsRYtH+HOO6GXi5hYXBYiqmXYbndPnjz55Okn5/tdkVUiRcTMaN0k9fGXPvLbuMuweZ5V23Y3ovMdLXk1JLTbb19893Ka596GFeQObTZNdpgws1o7Hg7f/OlPYPrk+ScSZaZEgGtrr1+9/M//n/+EwpOpMbjWT7/48rOff0UisXm9J7TevH3727//BxRRUzU93h/M/Be//CWXOuclKes9mr385ruzYfPk4oodZ7vtJ0+fvvj+hyeff8Zlw04fN3n+ex+J67qfbKIP3l//lc6rRDBYm/YqtLwCdQ+muyIdlguvqJcgra+Jj6neLCdZ3Lz+GVVT6/hzT3oKiaeqbW6ZlQ1bdu6Du+9Q86Nl3BUjgGQDcV76IZx07gNIC+gZoo6onPQgrsjT1s3j+7idVrj7am0TA9k1LhFOpOHu/a6WUYsvIGGKZt5mHCk/rgq1ZNxjZyiSx4c6k4+qhor1ZcLyymRmb9++/dMf//zs+bUI/fDND19//fU0Td1GIyYWSgqDIPuIFq6OKOWXyGxjllprpNNmfD4a3gTtKrETh4SlLgmi6CUkS1nWXMrbTGPSKFh85FnGu6fPZ5lWvE9NNcSlsLBwqZJctn1lRwjbHSh8czz8+O7NwdvIXmElnTInoNShSAUOrTUHSNTceFGx7OCMguQrfZapp/yZWWGpQSrNRd3LMO7P9vT0aZ0dwKwtjBnM2u7ujjI4SXpwlP5QKYVzQTOxsFS4EJggoc2yOloNLIHHO/HheGjQUQjm2qZmquYKA7wZsWkdxv1+X0oRloGl1lqHWiTrnbhKa5FiyvE4YNru9rXIdrcXkTD3krCfIjNciIRlqMM4z3PkMrMzQeBMLsQF3Y5ubQ7vg5kMrrO++O4Hbo3djvNM7pJ7MxkALArJs3q8B5O61VmKAD7PU3q+C7uSu7tHJD3ynJkEFto03HhhZqgTSKQQcTbxdDBzqRXw1lov8qcwqdXcAS7R2tEAD1RfiKL4rxd/94il8G67e/rs6dnFBYnUoYrIbrdT1VevXv3pT3+6vr7a7/cfFYgnEeAPJNeDd08Y5hImlHG7vbq6fvr06dX1xWaUsjjQJ1f3RPfsj7/6sUKgBbJmaqZqmWYc3baWqxDB4ApXmJIbvBB0mr7/0zfH2zsa6rFNCh+2my9/+YuzqysTMsoONA7szs5+9be/5nGwQo0ApjpuoxtM5u8AIdyOh8OLH36kWmZtr16++OKzz379r/6H7eXZkToCCUS51HRz/+rb7y92+x+/+z6ywqdpevny1dtXby7Hz+gvA/H/cgc9HtHTi2nvrz7wCCUOsCleCKmqPSdmcew8S9V9KW45hYLpIWqY1i0//LpHbkwvqei3EC+ruXQLbzkxiKZUNVHcbJnr6wt6FK1lXOnDgeh39bCM2ZHNceXDXlLkazUMpFEZqjjxuQU2+Pic5HfA+w2v3fd8Kyq4EG3XjCjw7uxfQUC2/nWFV0LhkrXmhLT4nUxNtWkzWDq4y2irezN/9/72d7/9w6efPjvbbX/7j7/99ttv379/Z9rInNwrUYlObpFU2pdFAODRr7GWstlsWLiUykypfs1Vg1pKUm66u5MlVN3tGGcCF1oCxXmE9g4FbKbNVLGEeQOs48jJyGZtCy7g7h2qdE5Sj2hkFi5wjLSTQ7g40X2bGjnDZm0Er8JRexW+osFnbWoGKaU1HszdjXpZMdaIhK8PM8MC5iYHAgE+DDxcXfi7A45N1aQIyOFGs803N2/evb9/917S0KFSSlQxiYiBhCu4YMm27zQgniobZqbuyvTNqx90unu6Pbve7TalFAaY4BydrBr89ds333z37f39/V4vhlJ2221kBoE8EiYdTVt/GABEdRhrqaUMGSomIKiviUlK0IsEmuru0zQTM4tYKDwQgc3QWjPVu7s7VSXhUgsTm9qrl6/evvhRCOb+/PnzzrGfyJX3/xGRmy+U3vHiMA7PPvv0N7/7x0BoHBbJEgZTU2apUqMRsAib2eFw6IYDMYtZczMRqkWmXvIOINilTS0wsWiH6qDWW5mzSOa6Nw162HiDe1G4u4chvNluLq/OInE6wqnxNGdnZ999991/+A//27/9t//2q6++WnbBx4+Tr5vpEz2LIsARATGYwxY+Ozt78uT64vxssy0hvpiWi8AfS8F1Udbpyz6QR6iDsNDh/rA72xCBk3cBZLDmtzd3l9dXVGVxK80MjO1+8/mXn6EUE5bNuLs4l82oQiHLiBhuQnx5cfH8s08xDI19ihAWOOofIzMj/iPC0+fP/+f/+d/Vcbw/HH7zm3+YDgfk3l6KJPLrX714cXd3T4b7b/6kMDMjhzN9+913+2fXqLWbzb4k9/3k+H8wGf/Uu6efq3FdMNecTqLH0c8PbmPRsid/cZ7nv/D1i1u8uuBjq2q1s2kRZasF4A8+CyNC51+Dr6OiRAC0NTKQAEgzoF8jn9QeL+wPh8i8y/KH92l+QgtOa59JKBqgdjc3iXsi47d/kKOx18fs19CSWPzdRJ4dPRfBATNj5gBwqWd3n24chEjKQmepjXsmSBGRwsrkaFND50XsEiqofak5rOkf/vjnNrfLs/27Fy/n49TmaZ6m4k5kXFhK9hjyxVgI9BpJwFeHYdxsLGKUMc22rGsQM0uJfkbhXoTfQCkHnDw9YGTbO4o852ZmlE5m81UDSw9MErysXPc08wgwtXk2dmo6F6ro3GCnGV2CGU4AGTwqn+amNeuYyMzafJyOR2va5rlpEynNZtbZLNiYMp/IjTyYyVTNsq58BbcspWU5XQKIyGYc9TBTCWyUwaTH2TEf3r63aRImEGQYyjggGuohpGz0ZIw4Nkfm22IHpd4nmOBdO07vpm/fvNhKudxur3ZnZ7vdftyMQyViMro/HN6/ez+32QnDMI7jpgyFhd008sYoTFpkOrYDAd6y1OheRQQOF5nDNS9F6tn5+aeff/btt98d5ubMzjTNE25vdVYPRq2mZD4djmZOhTbjyJIAxdX11eefPr8/HuNhuLOpUrqr7B0YESnMmVgBIinl6vNP9s+uTbp5TrT0FAsYP0AS5khRCdXLCZ2TNZsBL0XMWpdzIMr0NzcP8Jo6kxcHGMWcibnBR1oklS5RlkSru3spQsx1LFfX1xCOuWMSEam1tqa//e1vnz//9Kuvfk4UmqZnIS2wUAbdiXpMrQtU4qUIO2aBudZxvz+7uDh/cn11djYOAkRgLWVdiv+HDu/JFf4Qjo7X4xNS5PLy8s3Ld5dXF1JZvL+nuHt9d/v+9vkXPwOz98J0BaiW86fXn/3yKx6GGWjkSpTVoz0CWwDL1oTMzORGASAzm6v2bBF3N4IKYyi0GVDLUHa/+PVf/+bv/+F3X//+F8PfyG4Li/xbAnA4Hn989fKv/vZXX371MysUBFiV5PXLV3//D795++bNxdNngcGc1M7DBJzH47DUAvlJBn84jH00iaijMSs3LMtBHp9+UpkffjX1A2B3MnVLhtm/EMF94INiQZBWX36a949cpEPJsQLN3Izh4qFgsaxPIopr98SCHmeNdh18GpMHRggRkcClpzN7TxqyTjnV1Z0Hv3iugCBIZGIhYWKQgMQ7oWR33PNB4y8BRcL7g8d7OErobFcdRTB40m0nJu2OCDAvMWrPPMCea0ZgcZHIq2YSZjLL3KPYqA5E8M47UAAiddLJfvzhjR1VD7MbWjNtjeJuBDwWKgxKmjGPcgAYnBjOQiIstUJnYwYxeSRBU/fjiEjAvOSku6MXVruTG1lZNby0gLCn6ThPx6EWd3OCFFqhZwDIzFjE++KxtFrIHa7kBlMP0ihfTX6IZc5FEjrLndyamxq5cxTgmsHcm8Ld5tbaNEkZ5tFqNSJ1AkukmbuTO7uxaSPiFZdRumhBP8u9HjEmT4ia+2a/pdlgRCzTfLcvQ2UqIJuPBpcikvwVMDMWByUftrtLdGEiuKu5UhfK4bw35mOhQ9NbP765Pfzp3csNly+fPvvVV7+oLEXZzG5ub2MbE5EIEzNFiJSSlx3pe1BiUKm2CriSkzAVcSnMEv2NSin14sn1F1999frdu9fv32csjkhbgxstsZ2looxpu9sJi5mpt2effXJ2dUF3dze3tzIICailK5mL3pPkJEIi6tZMo05ApAybMWhXI9IcRJUUYQ9hdZvnTGgY6gBEZpklY0zwGoioqpszgiqTiRlETZWFswWrh+FJpVRzUicjoiKpS5gsaOc40lDd1IhYRJhpt98DbAYQl1KKVHfUKq21aZq6r/ARbq8IBX3ooKWco66dQSIybur19cUnnzy9ON+OJS38h1E5AB9c57RmH4il1a4BAGJ6/tnTb/7w7Z+//v6TZ0+HTSUmM7t7d/fDn3/85NknF5eXb493ltX55IAxYaitkLE3NyU4yJKwMNHv2G3vbu9++PHHzW7bzFrEuViG7UbG6iktXEFa2KpM7mrqhOHs7PnPfvYPf/d3/Odvvvqrv6KSO9DMfnj54uj67Gef836jUJA5yEn2T682f959+913+8srGap/kIGLta792OGOn37z4wednNBsiPeRDyy/dw2Jk7pa0LQoMQiB6Y8yHtbXe3hxT5JPevyoD0C79ek9GcMDfIi+AA44xx6LQeg2ohGcekPgFBWRlRDpER8BDR6/4BloemAPuLtaU2/JW0p5+W5J/kRw5kRpGsq9Q9xhxHZejeXjkeIRVFz9LHdXd0110Z16X3ghVW1ursbuDmaAyYJNYQkChEonSSJYBgfbncU9RdcvRyFpimlSzNbJlyXbUDCVcahjZ56Pe1RbzOkSjMVVMJN1uRWDIlyYqQ5jqRsHzdZUVUPnZhZT+AP+uB0hOXRubZ4BEFERGYYaQCDS51OSSLktrbWwocJAsaihIAm+SPpgwYUot2YMdjM1BZE1tVlhJkTqbqoCtiiobmZq1qZ5nooORuxhYjkvXOphfUUek68s024hgkFuPoUCjrgvy2az4dbs9gDCrK2Zk4gw22zmzkWGYQiPLTi1Mn8soHSKCe1QbaSSMmvgBsJNEGRmbj57azodYBirK4tUEN3f3SWuxcQiXDiqfqO3TQd9nTKvjwAQg4VrHd2lCtXKUphFhnEUqSzl/PLq6snT3f6M6EcDEclmux3rUHoHQCJyS54SIhqHITrkXj15en5xGXV5JOIPNUZA7NphLBYJSyS3F5ETidTgSIkILi2E7QCAaZ5ev347zwZARCjzmeEnV8YJePvu7fffv/j0+VPVDFl5OqDcgY28IHPyXC5ehXccKxg60TlTA7tjpu1mKCyusS6lp5iyqnWm+8f+51oNcFLmP4gOhhTJBlIsRYaz/dnV9dXF+X4cgvCqh2m9uyH/pCD80AKg07nDtn72s+ff/umH3//26yoiIhGoO784v/7kaoJoi8pLQjTlGjfMNDEZ3KJLWEhGPz2DA8NuN7v+f//rfxERzfgNyzD88te/uhiuowmbA0o+7ncOaoQgSGOWi6dPvvzlL29ubqbWhlDA7ganWp9/+QVtxyNMXZtHKaNR4c9/8dWbd2+bKbx4gnG+evy0D9bYQMewHtsyj4fuI/5rVx0d8DwZo/T4pFQs3vNjHh4IWkHTeZoXrCUqJjolzumKD09cfo04TT5sr+V95C6vj1TOHdTrKp8syQ7ShHpw6srLfnChjw9ZXKQPSXicfnKAXVXT1HAKXq/TWNESVaST/ZgXyhhw/2oPeZkGJ1m0DEpwH34aqri4e0iqSLddNY9BZBC1uc3zbE3djbMuhKOrFEVyaZSG9IP713fcN4VHZDcocWtus07T1OZovg4j4TqWcRyCmC/8Xk8UOyFcJuHeG5RzZjm7xoBLqXXDtYLJlW1upM0tNgIHiy4R9UTfh4f2Qm8RqXU45Yx4uEF8dn4xDMP9/f3dHWDuxAAJ97xz4lJKphJ0244I7sGbpMwc0IoTVLW1OTQl4G7GJD0U3bOiXFWVBO4cDSZiCTIziJzBRfg04icwC2nHmaoSuRnUDULjbsumN3dHgiv5wZsNFbV6ExCYZRw3pVR3b62xCDNzNrIKUPG0XESkxnvxndzDkAYjJSIIbfd7lnq8PWzHyiCbGzKpmFmyvYObhpkVuzlp3G1JbnQpstlsgFaHYMaUWksZhlJqLZuz/eV2ez6OZ8wDQdwRuQixsQIWssi+B4gwbkauUsfx8voJ16Hp7CxcKsKQZAKRxqojmrUFhiNBrOcGaIR3iFi4urNpxGqF+JQxDnCb7fWbtywybrbjuOkx2lx1C8Frm9sf/vD12Xb/7bff3x/uwu8KSBvU41pOBCpcMkERvRGkiK+yoJf9HDavMDZjLcKOoFBAKZUpyMW4tZ7z/3ER9dEj8SVmZhLmUutmvz+7vn56dXl1thtKEDEtWCf9pS/4p7/XuxIibM82v/z1zw430/3tsc2tDnV3sR3HoqB2cAVcFWZwIpbnX/5MdVapHky6/TbWu90ITz79ZH++D0cpA0pEIKrbTXo9AXQBzz59DnMr2cjBXEnk+RefP9FWSlmgPXe6evqUAONAtGIoAsvhi+vr86trJ9IIQ//kkDwcPHpQwHP66ErtLR+n7qz1V+j08cXoW/7+6HVOb/RJcCciVTtOk7kJl1PbjIc3syiT1S2lJn48+v3aoUmX38NqC2ez62nqmyZ3T1zUPfr1RkkyMkq7IJMZ74td/7FKOqITLSRhcaOXR+6eeaTwLsaEcAbAqNc8AT1fzN0DTEp3pev4QF4ssipdydTF/SeGg+I6cW7n1QhDQE2jIiCSjRzonccpJF5AzbFgQomAnCnWojGBIuIdjQPcPGKYs8UlI1qgxC4CKVKqiISdACc3ghooI48ZC13WQMh0MBhchCQibcKFC9gBa8FemoEUx2MPOAEvWxQwSy1l6RaQvCCgzbi5vLran7W3797d3t5KqQDYmYysmarVofrC/+1pUaqbt4zXBkhoBFLVpgupcfyMhaWqRnE/6mYk4oAH+BntoKKLMBEJR6Onjtilhdi5dmPRwtTnps7EldnYC5lAK994a4XuK9rMYIE2Eim97V0ssXDtFrQmxsvcloq6MB6ZuFIJBjMiBYGYN9sd1Ntxorrb1GGsldTRPOhyKTBtzyLKSOf33vFi2clFyna7FXEpXKrUUqRUrqXwMNRNKWMpQ6m1DkMU8MSKzL4AoB7BSsOZS0EtVoQ3ozKp07DZyDCAxYicWEEeU5ZBdwtYGEyWtcIe65iC/boHNyJrgIiYhZi4loury2FTh804jGNPVA5kPUB+B3B+fv63f/urL7789P3tey7i5BZdyt04QycW60lYCGCQOCRyn0TSlo5aiBR/LCIwJ4cIO1mzpgi7LcsEiWSa5rDkku7pJ1wFnHQAiBZ4rxBLkXG72V9dXV9eXp/tt6V8EGT8y8eHMNHDd33xAik8RN5dbnaXm3UwTRWtV6rk8gdtLi6aNm3aoT3rmHgoWqNwbMa6HS8l2sdE4ABsmuLlwa2JQFbtrxwMcyGSquk4BWOSBxbWvCdGE2GpO2IAZJ5VKfYXx2qtyboO++kZWrliJ/SCe2W1Pz49JEOe1nPI1jkr+QKnqgNgbtneJxJW4OrWCcD6sCRKSydeCmJ3xoNsoZOe7lI3nArrOjhf1OxHtPYpVrfX7WkAFE0D+xMtnw8v4qOqrn8kfE7n3ENrq8K7JRDCGZ2xKyqH1yMPhKjv9bAddY8KwrQiU0Z3sDvEazcr8rcOjiXjHszIUURKB7c0VicWtUggJ2LPIemz4FBtbg1u1FuWe4+pZTkHYKou1Q2ugLIZm5uaqLJDSApFs5+sn/fuh5qpmrY2t9ZaqMtUMwm1hBAUEiEABqVOzNJz+ojwGIIO8Ccuz8wIIUongz6wgTAxyjhePb2um3E6zm1WV2tNdTqCnItEOqwroHCADBTF49ocUU1uRkBrltQfAMXuBZIGL+0L00iuPnmfDjdXsxY1LFlJ697bJ5AlYdZpy8XIqSoRqAobXNgH8f3m+zdv3t0dXtjhWAjCPjkTRxNidK5wJu42qoevoPAW/R57JZabE1OtBXPz1mJ5CPM4jto0iszGYdiUYXBhJ0HE6AW9fhDdlsPKYg27pI7D+eU5sZfC4QKzRIKSsBRKxjXvYHlYmqeMjAjjztPcVGNpRNG8mrVYDExVhFm6n0CxYJlp8Ww4TMxeHOtuFPHayKQA0BnB0KUdi2z3m1IDHeIuezJKtdC0UJH9+f7sYvNXf/3VJ588o/+Kzle3kr8rcbOMjKn17kld63dpISKAm3kpJQqiMiRGVGutdQgbJQvzPi6cUkpygLe9EDx72zCLyDDWi4vzJ0+fXF+fD8MjIo1/xvGXP/+hxlloqhZn7pQnGUQRQSGTfEVxTjdMYxdnLk9KMXIFZkTBITwEzSkoaetig2VhAKCgbu012qEFvLOOPIh6eqiybgrHyUtq9V88glDp5BA/Lozx1QCdRmUBscmXIcuA/JJ03dVkVnvnM/R2wt12JwpanuCrY07mqX4/Zub82HBblk2/jZWuJ+7wz/Iv1m0nl+1eeuojg6ddtahzRxoKnkUhgFs2TOjv5Fz7GuGnE5jS/6auG9Fh3tOCI+o1tuHrpjl/4i+LDImVjM3sKYOH5ZvZmunH9sw/pxOy8jGrIHR+TxxWd4NbGNrLmJuuE/jWi2CZNHLrxdNdNSwfRjjs5iCyiN5KqXWsdRQZrM1mokrmpOYaBS5oBO+gHBzems5z09baPLemHtlPPQ/SwE7OxMzigFJD9+ADwgj04JECTpssiPKZSIJ1KIa485c4ecQ7Qd3XERJHYL3TPAkZC5shfFQ4Mp2SyTlYqyyHhJx8Vc0GmCnqEFVl3hehp9+G1Vq29MejQ3aMbMZFDBkGYM+M3UAMELWtKYOZnEWl1Iuz27ev/u7PX7+8v6XNJlJOiCn9KotctE58EKGM4ANmOUyTBUgOV/dwzETEZ0Yvyh9LPd/uDjfHplpYhjKkp+mQXuSRNpMtGxLRiSBiIczs5GWoZ2fnLJ7dZCnbrBCJ8yJT1VUBclU3AxNFwywhIzjT1ObWWpixkaWcnmw8UZAoBIkrpawGUfhCqnNoNyahYEsigpOreadaq7UK03Q4bIchjEwQWKIwqnAREHXBG8EKEBOElFwp+0aXoVKXjKHvmjVfWeJrLyfQkWSPIeIi6s6lqjlzjThGkSIiZhrPGnTQ4ziandoyrgTfA6lwqoCmbiR20g0mYqHdbnd9fX1xdbHZSjYy/e9weOosgOAWpOWINr0LTJjvxhZ2j2WcIcRYvb7IbgplaVBQ5LnE9g6088SQTGlaeR+MVaQHOSDuWWDYGTt6FDJf97UdnAPk9FHh++h4NDWLJ/oXzugKZj0NDiS+2k2HB55o/4VX1t763Qerbp7burdQSCIP0iuKeCb3PIO4294QmpCV1yfVuyDPpyfNEvlsuhz8z+runXcx9pmD3LLDQagSMme3LANJk8hhpp56i2IZe5/miF52p7fHDx4N/8eG2NDJpSJgTFi5tb0nYp/d3hknr78KUPPKz0fEhC2TqGgZH+r5XCvDBNY02sAkNwnMGUGMaFG0xOROZDCzqaWy4mVG3Llz6hJRkcLELEWkjJtt2+8xz8NmU0SgpqbmFkE5pEjsm4zMXdtxsrmhKTQTg8FAgOHdd10m+8PBfAxBh8Yyd8BZRAhLYWUsFzMj8tYarUNzcIYLw12bt2EcuPNf99lFKCoSeLY5djNzRjC69HCFW5DvZQVMZGY/TDXsyMcChHomJmQDYARxJ3WwhCgdX4DgalZKrUPxyZzIC+/OzrY3l7fteLA2kFsnKiJQTLOyhoOVbOjA0pdgbnPC68yxvsiImAtLDqVT5VJE3h/vg5m0sGzKOJCIR7sxwDTgTwviKY/lQt5jDDlVtY67LVOu5ggPd3Qx77iUOpTaWou4NxFKrSwipfQaWgKISYrU3W53cXnJXILSUxNEXFnmHquNEI6ktujuFQng0TAQmQhFxlRKOT87e/X69XQ8mO6ia1OXByldHm1q7sw1atZUwSAhLsWFYxSimC7y3zwR+uxShZ6c5T27G4RoaZVV0iLoe09IomiMiEotl5eXu92ulPLxTM5HR9IxMtCLy5nCgtlsNleXV+cXF7ttpQzBgf/JC/6fOLpPk3ipdffXI0XHrCewRLmMgaJlY05mCDLz8OZzklO0RFggM98dwYu5FMuGEczrO4my04VV66Sd48Us7DpBlWEzIA2704t/6SDmPq5xox/qYPrwz0RlwwR/oHAf/vHBt1GypHhfrZHU0SnQzee5PTqnW835C/f8gNX9JFSBh8t/gV4joNhvzJf30s1ZXNp+h8s1fQlREZaShfWnU/C696Y83r/CukO86Nk+wojHd+aO5y7jdvrI6TFWajRL4AxuFIlbZB4usVKkSnksjH6FhLUT9+uQCfUi40R73D3lQ3BEqFqbdZpg6qqe6feLjiOwwAGGRqovgF6nGjNbRQQEQiHaSo26SBHZX15uNhsqfP70Sd2MJEwlKjLEIYnpsEVKNNzVWpvnSDACmRCxsAsKc3SBiNs399Y0I8yeMCWR8yMFHPcXdUyL+xHBESZxWpXkL0u8P3jU5M5zc/NxHKSsbasENSmKSpFxdVO1KKq1ZubZfgsgoe7hLugu0qwnRHUZEVSb2hw8F31dZFEy4O4aqibWaWijQDUTkOwTP4zjZr9DYWUypgBK2OGq8/EwCxMY23TP+kCFZZ/GHoOrlBBtTCgira8lAg21uts0HauhTbMQjeMwSumFfRlqi9a43ZE5rU90ZczMVSSyXONPX/A8ZgLU7fzq8unzZ69evpx0mrWpO0U5OXHkDDMLgUG82eyfPX3+7OlzkcEbwTlz6E+IYkhqq6AAapy81MIs7gGQsNBpjAGM43i2PxeS2DORD2jBJs/IUMqDo5OvPqDio1JKDG/YUKWUeM/MuoGc002JFnCcTSkbTmGkOMwd5FJKGFBShk+eP9+MwzAMnU/tA7bzvqdT3mSEKeVFcNGVUndnZ+dXl+cXu2Eg5o5lLxY8/gW08SOHLj2lbpSm6k0v1ZdHCHdrDRotw2M93pFC04msy1ejxX2hXNsrd8aRVlz3n9AThnp1IS2OMQNsebOZze5wyvKPD4j8f/JIibp4nI+LlBZ9fFI6XftS72P3sVF9qIZXDih17Zsm/MKxYNkHEN3i7covM42IWfgxQv74a9e6Mxe/e+QTLUq3r0mEPQ6AMvaxmAInMQekoGbmdM34ZIJEnzhPeJGTnfqEZZ68+yV5wk9rN0Rw2Nk5Dx0KSADo9MoKJFhMhsWF8EjcpN6I92STEdKRi1iuIMq2FlMk0rnMLKoVKCKPqqqmjTQDbQAbQZ0cDC51HFlh1BxQbUYuQAE2RUwJbgIvcCYewNVI3GBah+H5F58XJqmyOT/fn59xlVprRLVCMEc9laQFnkvCtJlpABdSTjqbhJ3c3JqZYYHDH5ieJyrK9Yr0KDcKHlFzAkd5JSiKV7lbW+7m2SgKMLPj8QCicbNhRouS/wXAIiJwJMO4GQXQTWBUdzfTWMpmRg8JBWNGjU7SLdxabbO2GT5kdq7FfEaxjZsmf2c+kjm5m1qVEryPxKcVMw6DSCcFc+MExqfWTK1qY2tHK2JBQwkHeQRD4QQzAhG4iAQEF4m7PfhC4zCQw2aF8TxPg4z77WYzVoOxG0yTmyW2WU8cD7wgpJewzHOrUsY6mDfz3Jdhb4aJ4u4A7fa786tLc5vnYxlKzhwzCwtxYR6yJ7xvd+PTJ9dPrp6MZXC1DpahB3ksZAMQDKjRBMaJpdSxHQ8OYhYhd0dhCR0mVII2hvuGjjZF09TSs3BeuT5pRsQsdGcAPbcxnTU1U7NACjQxuGwLzcQEDthaNSu2mDk60pgZE89tVnPA8yKEWGD7s7Ori/NhqEsZx4fa95Ho7PZVZOWgVNnst1dXT66uLrdbrp12Y6Uqf/pi//wjQYjlJvqFaYlXgJBsGqd0THJ2Z1vM6S5hnZq7RgfrQFyc4OxZxwgQmVN3ehNbyJQj5CgBJJFG2StkuIgTG5HCnUMKEplhtkhg6gGj7kWVzEaxf8o6ce+w7mlAQ7H0mXrg2qJPU+qVsP+xmpRHend9LNJg0d9ELFyKyDiO6Kmp7pEVFWmqRsQCjrBNLI2OMuRF+AR2RlwtOjqgDyYQ4C3Wt7l4pdCmqh8uy9wyUT3/4VKjdDH7cniA66b9xEtR7urgFXCagEZe/5Ep85eGcbEz0kTwk+sJ6uq263EAi8n36FLLCjN31WaWLBOmLcgCOZYczMHqpO5GZMwyjMWp8UyDaMQorQ1E5+PYJjWfyBurBSOlgqwWcTu/2Mvl+Vir1MLDWMYNCS/Pngw33QzP5RE8WYlVZE2LFAFzVPr2MKID3hmq08oJy3jtAXdzLP2xFvo1WqtGKnaPzMnCU7I+vZndHY5bKeN2IMlRzUyQjrmb+zzPBO6QLiJa6WpMEflYpAUxZRTpNCPw0A3kBpBpI6IiotSazWlCqmkkSi8TDVjT7vizZAvlWMUgxzgMtRYmWkrJ1FR1VgOgjtZ0hk7RsCgXWV86C0q8bG1KixVuTu6bYSPEc5tHGh3OjLEWCq4VBrmx59iul3nPdAsZBFN1l1JENRhUkKB431URRJdSLq+uzi/OQS4sDKnDIBKELaWKiJAQCLYZx+vL68uzixKFR7ljXFYbCCDJZsURNuAkfo3FR8xwhxVmJoqCe1oLxkjfiGKqMOc/tl2JSJij8AxAUFV5di3lBShbsJBQ6pFg5ispFvu8A9JmZnUY5mmOFRVsPyIiRaTwuBl3+60UWRO9dfEBoBf6pV+QioI5aLyEiwyb8fLq6vr66mw/1IKgEFmm8L/hWAEe/+Rh6gBYqFNOwQFrrgel5pRcRgFHOatP98e7t29v391M8zQM48Xl5dnl5bAdGwOmAIGEANX55ctXu+12u9sRQCBlJ6V2PL568eLp0+txrE7pRLNBD8eXP/74+s3reZoMfvXs6bPnnw77XWdfciK3ef7D3/3j3bv3DGeK5E2D8NXzZ5//4uc8DjjJXurr5bENlDv0pEsomtucHF9CyJIIbsbyO6nSEwjRx/dk/1HPt3pwCoDFxw4LstYhKGnj1V4auxgFvpwbwpMfLQAHwD0+DM+Yrrnrae0Fb0wIAf/glhZ5n04qLwV61pGfldmRJ3QoBswR7M/q4QcmiOOkpGOcu3MaCjFc2GXA+svU3d/UqJQChAgsEHYhCJNQJMYsA7s8VRef8W0hhNNcoszktgCskVijqrppeiQwtRY8TOGaqjfVOZrGqKMFmRIPvKlcpE2T393x3MbZ+DjP86TtaHPzpmrmUkbZlVJkv2PiUiqXwnUAi5pPc2stYp3hrHs6wUWGoYzjQMzW2gJaeAcP03KI9eSKnqgLJhj39CYq3ntDZQJOh7Faa3Anc1PvLkKKfHdEiw7vOEZEqA10ezhuLwYZSwC5fTv2feVQ1UYtg8AON59bI40MTGZmVWMHgYK4kHq2DpYl73ByYnK3aZrMbJBsNgBER95o/WdB1Rj4lTaNeAHcSylEJ6QlxrVzNiQMrqraH5GY1RTz7MwwoaXolzPl5oT7MZMuwYxIO6NxHOBoc8Nmq+5eeLw8o1LIraQp0Ldcf0jve8j79o5NICLuiRKaq3eOCCMC2A3MhUslCAsFvjCOYxmGUqQMNRi+DDCnUuq42Q11fPf2/eH+5vxse3a2R/JyEfqDLSIvy3GjVCHAbKJeNUqlFGvRe8SdoN2v5GzF5xFPn+dJmDlzODLBNWp6MsbTwbRAnKmbX0TJDgCQlMVIgCNqiqg1tagLX9DsEM6UBfrM5XicmYsUYWEuNG5qrRJMbuj5LIskTWnHhG5yLYewlFJ3+/3l5eX52b7WB17Vimsf/7KHO77/9sV+v7u42AfRajgpN29uvvnTD88+/aKAPDmTSBzHm9uv//G37168FGYucgv67us/nT+5/vmv/nrY7wgLaQeb2p9+98efffnl5f68kYNDC/lxmv/0+z/uN5vNOIYgJMd8PP7xt7+7ffv27OJ83O1u7u+++eYbdf/iF79wkvQcHdb05fffXV9cnZ+fgRHttI0w7LfOIbG7+Pcl2eYUL36M0KZiwSprCVj5dL44vw/NKc+Adn//g5j/A4XU/yTKhUnMtdY6DKXWMARVrTug6FVWywT5h1fzrEvKhdylhZmRmUa3MScy1ZN14CcXvxuBgasnEN0f1E+SJ7UahU8WOaS95A/LjdJipJxuOUvuH3i4y0ZYBC8tt6VJuRjcrim/shiI0XlZSZjFdZWu9vjIO+omw8noX9B17wsAPbcr8ttAAJlzJPyrKe7aPE1HuEM9OjCMw1CqbHa7WuT+7Xt7d3N4++7+7Y0eJtVm3oLZX6QMpQzDIKWGzCapkOLM5mjzfJxmNYcH6pZZdPHMUqQUMbiqOaAwdiJzVWXAV/EPckQVKzOYWMHBDQegaJ/pQE7VItiHHpagXg3UAS9QSEbEZzJUm3jFpCqbQUY2etCIq2efxQrOnGd398hzcnMhFg6e56Rn5BVGvJq2tefdWpvneSxjX7ZwR1RlxT4BKHgyQfGWwk0KUzSvtSgzpUByhmEjtcY3xibpS9xMG0k1GEgJHExp4Q+2U7XUKZYRueKhgcZhhLvNShvM2m6m+/0nT7afXL9qR5TqIsaEyNGngO8icYQBRg8AhJaa3Ymj3s+ZZCkz4eCdcQaJkYDJCkAwpTLUcTsSkZTCRZjZDaouhUmESjlMxx++/+Hlj/7Vz3/2fHySyXuLIWaZrBGgJaXKlCqFids8ff/9dz/+8ENAijrPLdjNAIW3oKFDZq+R23Q8kLvkvncUyTJuZnfPajTKGHCE7VdmSRdOmWuoTnFLRETzPKs6Mxcpic33QhR3IOxxknHcJvmJYLMdh3HEyYc+iX6kqAqQfPE/4hCRst3sLy+uLs4vtptBKCb9oS/7z/eD/9l62t3fvn3LRBcX+/WJpHr/5q08+bwias5AgB7b1//4u5t37/7m17+6fnJNxGb27ub977/5+r/85//863/1r7bnezCMiWBw+Nz2MmzreIRNMLhFTq3NLfjYlsKy25vblz+8+B/+9m+fPntClY/abo6HFhq750bACOrC8rMvvvj8yy+OPjeKmJQ5R/VMN5H+GU+9VjOLhZOCO2vk+rV6DtXyAXDUmeS5CxO00WPViwfLDBRERyKb3XaoVYqE27CwFP9UvOKhUkwd0xdPX5HhWvYaGdWmOgMrmyOlI5a4eqQudYD4tFaXu+j2YQeQA6xhRg8RLjeIcJxg7kaPHsOxvoO+qJ0yOS9THRMrlHVhc6ilzAAPNFEtGfa6W4EHqharbULL/P4Th7mbq3kzb7PNbjqb3U33bZ7ZwUaFeCh1u9luxu1+t7+7uT3cH6dpnmbVqcGMCeNQh1qFWKSOu20dRqawOs0FzjkRbWrT1LRlBexiIAC+5BFHCDtmyszVQJrPHJlOoUADsmqRh0S2PPiHdcCpaBPEi3Sy1ZHGB4g9yk8yMWGpAB93I1c2eiCDokx/qVbupcToGXROlC3nmjuJJKllX7/ceXAerRZVPR6OF7sLPu2skO2uwbjYOR+4l4p2aYqEm/0k34kQX3Ty+PMZQhMbnDNVyh2+sHz8pYNZxmGIijEiUtN3d7dX+4tnn3/24s9fJ61ct3z9FKIPmpE0oQy+7OAYQ2a23J8gJ3AppRKxRcacVBI3VzLUOgx1JEKttUhBgLGht5hB9Mmz59dnZ69fvbi/uzO9XBY5xSKI5DUgensRbYY6NjMHtdZ+/PHH77//XpsyMZNH/4x4jMh+LCIMZmModFJX0MpFjJ2Yfk8DsoIgQO/Ab1iYCVy4xCN3loMFU3Ezy4rt8Pw6VBhHa9qaiZTo5Cg1CIwcjlqrSPEFe4tOBA98IFpKhPuLkWs/7s/OLi4u92fbUlfoRUIGf3lFfHD8M09xQMEKj5aO2r/VUJxlNlFjAwHsUNUfvv321euXv/r1r84+eTJF+yPjcbz8WZX//J/+0zdff/03f/trKhHSZmESoBBVlkYkFB3gUEgYHmUuIVUE0HnWad6N200dZ2gpdV+LAQbWPpqZBNHziiirRMRt2VP9saKcEWvqztW77hRVUh9stP7Ww1cfad/Hv58+He5bmiuhqfmk2nuVOpVSdrvdZjPWWuP8aJDnhAc6rStdrHCUQGJ6bhMAZG1frtyw0vOTq1qP00060MyC2yybu3/koR7uqc7DumTkGYGE0zaKK5gbZTdf89DE3kXc6qF61m3PinfvEcEQng8HPuwMolP6dxjVj5PGERa0AZLXXCwo/yBnMeMMpyFFm3WeGzKuZAabtR2PbW7zsNlenZ9fnV9cXVxuN9taBmaZ7g+TNlMXLlWYSonihc1mU0RYKtVK4CzCoX4f8HTeEoH3JbrmBAaTk6nN80xUQglS6GY3VScYSJ3YAi02JyJzz0xoB7kzE4Ai1MGFjlHEHAWcaB8kca5CBDk+eWvkDjL2cVPpVJx4QqixmFS9hAZhVQFuUYMqDlZFRB7zwbsKZhKAPDqorLZd1MXXUpvMy0pY5r+HK8jdTd1aCx7rZQ/wspOB1prUxVhG3liOSgoCmDkxrUgQNRCXheIkmBq7ESokTDJNrTWNqT3e3WgdL87OinA0rwgrxBJjTeDA1MyTIqCZZQwBkY5uyREZxksmC5PDD8fj/eGwPz8jIiFSmNSx1DFygFlEpJhp6PCAjkqpA231bPfu/RvKur60UU+GSA+rCvMwjAIn5ve3Nz/++OL5J59ao0Jl9qatzcdJVXNbMUmtIkJZEk0MiaHuGzqr/5jE1KyZAJVpW0d24gU8pk6kbrFQsvqIk17ERBgwyRO4/yMiio7cQy0iYqppeSFDDS2aSLo7URiSS7gjcLe1kGEWlsJVhs3m7OLi/OJ8HEqQrzJywa+F4j/3+Gd/khyFhFvXvkgFTM1LwwAK4gAy13n+7ts/X19fXz65aoKJdHYz8splPN89vX7y6sWLr37xC+HR4AKwmTBpm8m9M6dRNJrOsH8sBiLAt9ttKeW3v/nHX/zi57uzPY9DEdKoRTS2voBCqN/f3d3d3Cj7RDYDBtRhlJrkJ+v0avRUnfUjP1Jsi3uA0ybtG3M9UD/h2lIXoifLG9Rx0JOZ1W1dLqXsdtuLy7Ohch1K3IxQQESBxZ08XWZurYWOXhRGegMnLRK/fAQg8cemRAwLIjuuWyaPnjT3Qo95pcJdHGjvEaIP1lE6nA6kte1RIZNTsbioec3cDqc4QFIHfHjHOE3QIs0e3YD7ygZbPc5fwow6UYm7m2GamjYwVZaqaubKLJs6Xl8//fLTz55ePhm4CqSw1BD3XHyg6OTGzOMwbDfbYRikFJKi4FlNW+uP5321J6ROMVSJSGTAD0bByUXW1HXBFbJKWinh8ejYoxYKOCSYnwIhnYoy/uRl0fhHlnUfJgeRdt6D9fCpubkPY6WPFtmHzuuIdimFQAkQpzscxll4REsyHsGJPXjAaV2lGt9tZiKCiklEsuQ8WgJ7dyjzocxsnqaAUAMhjyUaFTUMOtzdmxOyd172DDhtmgTYOlk8uLBYqcpzaIkHD9qXapHCLG1qs2rg4O3+/sX7b7777gduTQB3c4uGEQvinV09YwuBkBp3JaqjMtbMFqA/H3Ce371/X4dx5JFZQD7UoQ5VtVGnuDKHufHC++p+nI6vX78isfT/u2OQQqN73uY+DMP15SX5+TiO0zQTycXF1Ysf3kS43cwOx2M3lcG9BeE0Te5ea621EnpxYSIMARVza9rmiD9yldrlYw5nr/AGuqfSjYMwJH1Rl2vt2+UpRFgokndyYatq2E2egNKDdbo4R7F+mCX7sLHUOpxfnD95cr3fb0ohAmT54H+79/tPH10Q5l/mb398OUqhwh5EA7O9+vPL4/1hSWOBo03z8fbuq0+ei5QGi4iAwQk+MF9eXv7w3XeH+7v9UNUMDGsKNVcNEALam7tEnrtFSnzuu+1u99e/+ps//MNv/uP/6/8ppV5eXT379JOLJ1dls40mKX0z+zwd/+Ef/v7rr/9gghnehPdnZ3/z61/vyvnJ1ViFJD2jfus//4kRXXTq6ayPj+CyHBZvNMMjlLl7RKmLmSlDYLXU3XZ7th8dKiKRJLhST6GDTnKSOqXJ+hHc062Jw7pNTyvRFHr8lO60fpwQjo9Y/YC0YAJFZEavBjd3WZNj9OguTg2TQpEk/P14vDx/nExv99UD9SythKMfDTJ3j8CdsmIwESk/fWqZCWABXJd/Dy63/jOiP/Frm206zqUMl1dPp+NxOM67S5Tt5slnn11fPRnqNrq5l1pLrXXY1GETEWtK6vZSSyEWKoVLNSfzSZOjb8n4cId+aMGkQD757CFSsh4pE+49jNaQb6e6sniPnTQMZwfWEHSOy4r5wd3N1OGn4rMc3zVwEJOb9dcgKpXoIT6z/go1o9PWOtmPMSdCQauUMxdcVMLCfYmt52QBWZgZ5YGBHNrIFw5V7wQFqtFOwDwL5pyy8zMjbEHrMaTTDllGg3pGQ1idpVQ3HOn+lBYRO8pSHwBUSpVa727uJ1dld4Id2/Fmevfdi3I2SjdhujvYMZn4Lo+ySWNCFj2F8XiqNYwvSuFBoKEOQnx/dwCoFgZQhyG83rRmAETOEYX972/fvPr6d/+o8/EXv/xZwAXSYQ5hNjgLk4i6hx16fnGxHepmu72/P0ipFMu6VLaTHxk2VpBqqOof/vj1D9+/oqwZTIgPnVAgvA1V+/67H3/84eb2/d3bN28jpsDMEaGP+QkJ2EGNMA5ogR+Cq3S9W/q6oogXCLGwRP10+NLMgqiZwcksX5Zj/4nuJDGLnJ2dXT+5Pj8/G2qUVH9wrGTNv+wRguzNq9c+Kwlnw2un169fz5o5PFF1hiVUB5BTAZlBDRy1/8ymna+DTM21tbnNrTXVpu5GGgT4lhmYCYqYuxGVKk8/++Ti/Oz927dv37w93N3/49/9/ZNPnv38b/667ncxu05k5MT0+WdffPL0mQk18kbOpWzGTfAWefer+2h5glbLw8ZwnqDmMAlXIx1yPpWgEzF6IGw1aI8JMSiUNrsvXduoAx9RQctgoVKkDmW324wDz82IOIhZo/t8v3gqOe9EeWvtgq5gkk4vhtKCqS+LaFdpXNTjygF0ZUfORaQ9lEarb0B09gyh5A5kT/ju7FtnKA2QFFC4MyTCk9lUPVV5Btsooy/U82dOARiKpnALRhYrLPdif7GDlAl4w2mxSig1dGZykAFGzh17y3ro3HMOIGkJADiROlS9zaZGw3b//LORwbMpRHgcdhfntY6hOobNWMeBRDabXR02Gdbs92EcudseLdF71wLE4BGcQQuIsJINlu4rC8IayOJYAtxgTCB2FiERJ7i5qoWJF5MV16GQ6wSAyorkJQsBfTHJiNTN4FwEHE2Jo9FrKDkDIQpZ+0K3UmQc2bPeO5qALjnyuSLd3c3CREACXCTE4aZQJwCJ7vShX4mXSPdq6WWRmBNRWap4F98I4d1GbVhULYZzQyCKYB8zz3A1LaUkViHJU5lyu9sZ5JEG55YOlEXKcR2iebmUMrQ2J2S97BNCqaVUOc7H2RoKUS1zM2omIGHqycKeJGbkDAZFiaYyu1lkw1lHQrpk8uDOjwcJuh8FaRE+2+6daLo/WCnjODAnmXhuBtXeWEGEi5sf7u+qyOeffnl5cbls2uX+gxNbpIpEI916fnG+qXXcbN/c3oTEKbUO4+Ai42ZThyoRnwZF/111n+d5mmakYiaQlFIYIYRYRGIm37x59913L+5vbw+H+2AVAEjVHV7H6u7TNIEAdjCMzcicEH0ZiZIntvOT5MLwNCkdgNQCeNQ4qSoIzLGisWz7R9Kta3sW4iJlHMezs7Ozs7NxkNIbkT06wf8p7o0FvPn/4yjj8NVf//KTz5+TLFuf3n3/7jf/5R+V4Ra4PVepUur725tr/SQCFWRgJ4artpu721KL1NrcjMEZp+Sb29vpeGwFTpEzwqYtrC7vzpoBjYkK8/nm6X7zyeefFtDLH1/8H//lv+yuLj47+7kTMluHwMLXT558+uXnRmjw6DSsmcmTkv6fc6y9kOX3ZX4Xvyo+8MgCW/98pBoXnxfhMUQ0ITpuMg/DcH5+dn6+J4aDhEWJ3QP8c2QzYOtuCdAZ9B5O7+LM5IejxVuH1VIyBabZEzmp9/LLbkvk4KWbwCO45oOD0xZH733oDsoQMtLdp0zhDrO/1zcsfmikZVCX2qma46s/mLClQryP+AldJTigMIWT+9K+NUy7+AdasvmZ1nXbp8uDgWbm7nWo2/3ZQCR1Ax5226FKgZO6cy2yGeo41jrUupFay1CplJBfFCxSJ2UeWXkwh5nCyU6tncM0cIKpwcygHuB82g1+kglEwVCZTL1kkHLiqCUig0e7VJe0wpA+YY8oP6wDXq2aZY6JogVdWEsODnJPVaWoMu4Hc2Zoc7AjcKRoIRWnp2OZWlE1ELMIBDEgzFVKkWx0UySKSyNqmdlOHWBLudhNSgBB9Iol1sLCvRYrYxuB4xYWKcU5JyOjOR4gp2x3u7IZLVtIn+pekMhLl9EOM9emcBrq2DcSo8/OevUMQxGheT6aNwhxLfeqbs3H6pFDuCCexMQQSOZ4mUX/AO8knViU72p2qCMBseDv7+5u3r9/8vTp4XC8v7+vtSabXVqyCB43JhQuhZkcT588vd7vauVSZZEfYStG1HMYN0MdWApImMtmux2ljMNI4OPxqGrjMF5cXh5VL59cl3EEizsRSwiBUssXX37xxZfPb9/fhAwKkI9ZYEY9a4MIX375+b/61z+fj+1nP/sZM7v5NE2RxMGrZpPEvSiCMh9tWbZhVC3al5kXjFFEkNLN3TQIsVnYQ54uQuiB9D6h2cxcat3tdmdnZ/vttkpEkv97OLo/eThghbxW2ZeTP2SgQWbGTG5MYW/XOjx59smLH3949tkn2/OzcOyCVunm3c233313+eSah6KU0pnIt9vx5csXX959IduR4M7k4Ddv3kCYa21mxpnPPptCW2HSQCmIL66ua62H4xSsAeZUnJkoeLYdUHcNRvWT8mTPEPAJA/r4U/9TQDT1LK1HKvbRZx7+3V85raXEOGLCSymbzWa/349jEUZhhHFOxG726OJryPDRL7S4b/1/XSdi8XPWVwqPFt1lDGZ2Su0BAE7W8xDj5+NB69mlPUzjeGQnUnpkJ32OtWuzuqt0fNfqlZehW6wO4Kc2weL1P7rLtWtJ62HyfjsfXAmom/GTL79oV1ej1Iurq/HqjGshgqs5cRnquN+M280wbpmruoHImD1ZI9LmWO60qxKPEl4zzehBXypmznai3ksDJZKZkZELN8+pMSKQlFoKSQk4ImUuI7FJSmHeZzkVsJeP2lPL4ohAyJJ0wKCglCJE/pwhtHqfwOjisH7IPnPZu9fMydHmOdnzF5ABWbgWnxfpnAdcovVmrggQJ6bx4IAzIB6WFpF3i2bZ3L2LAkqttIrXMguczJRJdrstlSH0GREtq3ZJyEnPngjw1mZ3K0WWWQ3gpXfljDQTK6W643A8uBsMRHLX5pu7m3c+calWC0SQmjQpXpkLkYBYpGS32tAo61KXAAmco5SBLfs1He/vvv7j71XncdyYwZta8C2kqs9kKoALRTEm1VId7j6rW/D4BJkUsUipUuu42ckwOHNQkpNEK16qw6BqrbXtdvvk2bP71q6ur4ftmbE4iXCNWRvqUKqMo4BhFFXMyNIq8zB947mHcaiFTaUOBY7s4gyKrsa0bM61gUyIIFPUnoWiXfCbUkpIgdChbiaSzk5vVFFm1SVNb7VguaMNOfVSShnqdr8/uzjfjLUQ5Ce0Ly0+7oMN8BPq5b/pCAYrAQQrhwbGUHJlmJGRNzNnev7Zp69f/Pj7f/zdz3/5i/3ZGQNqfnv7/uvf/87hzz59jkQ4ncyZ6Prpk9+9/M0f//iHz778QsbB3F+/e//NN3+6ur6u40a91y0C79+8/f7bPz+7vrq6uIQUc7x6+QrEZ2dn6HmEDosc0ffv3+/evPPCzqRqgDfyuttRYQiMsiPNh0LcV/nP3cR/4PvmLw/zkj7U1gsAt3ql5wH2kzoulpYWEdVa9/vt2fl2GJaktBDmUaAFdmZnfFBVjBPIF71KuPNcnd7FxxTngysgQmTGIWct3ZeTjUGpBBcet+Xd5akTx/Ulup0q03sl68roof5vdZNplj4aPD/5Qb58GOjQKjr43K/u3Y1ZXZq630TLFRMfMDfKBguLKQMHmGWzP/vky5+J2mbc7s7PrLLDAseXOrCIVOFBQGJOoZngEem2YJunCCH0wV+maW0tnax5AkXgT6R7d754P45EOwzZB4eynQMLQ7OJJKwXCmGdTvTwOHnAi11iHdoFIEQlGtQ5YE4cNUgI6NnbHECiU7YW1Z4Cz4yMWVp3LRhEbE7kmCdtc2+l4BmqJmYSsZSe0UGgupuIMGVRc7Q3irqI5Z5bs804hr+CXiUaiHowKYTP3TSjhEhyCCKR8FxtTu1IHKnx3VDNqnDPVrR9ORGRmRJjsx2X9CuPkhhmBhlO6s3MjtMxOFml1lb4j69/fD/dX1xUrcWFnSMW0lGJ9D1ZshwrkqSzmQQcILc0YT1qhcPBieG4ubt78fLl+dn5bndGGSQV745CBGw8TIToL11IVe/ubyY9Pnl65YB3Kg4SIWEZKvciSGaqtUakZrvZEsmr12+Gujm/uCxNN7vzcDTDFXVzYmaRTtHKUiiiCU2X+nNEiTNYvJfUNTMwu8be4XJi+35oIPuiIynCwyJZQ+49AcTdm5owC1FUdoVjq/O8ol1JROQkjVLx5r5k5lLLbrc7vzg/2+9qjXWW2MjiL+Cn4nQf8+9+0qf7qc8RopAfmVGe0Il4mskeQylsBCPanp199ctf/PF3v/1P//H/fXl5UWs9zseb2/dG+Plf/fLs6szIEhEguNDV0yeff/Xlt3/+9rsff6jjaO739/eXl1df/OwrF9bgNHKIYzdsBpLf/v1vhlIj9KNzu7q+vri+diYK3h0iCJdx/N0f//jtjz/2tHhnkbOry6/+5q8HKWbk9GBGf9rT/UA9J2QMD4qDj53bX6H1n6llidaJUcuL4f9KkXEcNptxM1Y5hRN6/HZ9wyHiabk+IWpXtIWh5Gv144lW0+pL452ep/N4+sk9OJC7IxG4LQL4NToBkCffLr7Ouas4Qvc1l+W9vJE34/2VRxBCFHSkERM92Pp5K/iCuyZd/TtNW3eQ8NFj2WNIuNJlNd7xphnAMm7322EQwna7L+PQXN19HEp0VVB3hxm7O6lB4/ncYlcykRTxGMyV1DAzEXZn5bT1iTu/GBzwODHKtzNc4QSDUQbQF1sfyQMbtk103VWHK6JpVdRpek/L6DaQo8QAnLAC91BY7iwcGp1WiEcupKjucDcgnTB4ECibZXZFmmorcy+yM5jcVF2zJHQxtcAiIGragsYFhFIkmKHTS3LS4LQ7tSOKJM3OW0SrZZhPlFsg2D+yiDaWaEDQRNFaMvZgX48nE/t0KV92GogR0eVhqEs4Jx4l84EBDvOlFDWdWzOCwlDFhvLy/ua2HQegMaNUoMUXECd9CZ2KztJ+jTnum20RJTmpSPXvlNX6UT+CpZrixGqSdkrf+W6vX7958f039/dvr55eXl1fdHs5anUkiGcoqR8j9axAFcRUyvnFxYsXP5yfX42bjc5NagFHZTNYigOl1vPLCxmqM5Vax802lLCBmoU9BIt90o3K0CtxC8xUJDYAcXQ7TsEU1ECdrurU5oGo85Z0V57cXJgI2WYqZnaaJpATe2TOe+6fpJbv0iFsAylD3Wy2F5eXF+fn41CY4ZmsscL2/gU83H/qIFxcnpdauaut+PJxNzz//FMuQlNUq7mRW5HrTz7Z7revX7549fLl/e2NCD///LPLJ1fDZmMchb4ggzoA4lo//dnPzi4vX796dTweWeT5p59eXj+p42g93Z4Adx/H8a/++q+fPn16+/69tialnJ2f7S8ueBy0Kyh3k83w63/7P9o0gRCtwCmU22bkUsMxMO5rt7OYuZ+kTQqQBe2KAgSOxF/05+9ww8r3XWuRZDCiE0GkuyucI7S7fJIzL4qZx3E8O9tfXOw3o3DfDKk/P4YXLt4zkK3bzNxMiABXrKVRXOefM9URNgNS9WWFer6ZqUqBV59ybBZt2HVivNq1frcOKRR55490DryQlnBwurJRkWKZntLpgwkgITBDuHcTXeZqGeH4xdyzXmY1LwmSO5MzuSDSgYzNwEbOmW1PvcxSVQVUx42ginDZbkiEtJGDajGGujmyNJOCk9sjrsKAMVMpUmpprYWDKCwhJMdxEOLW9HA8etwHwllN5RrrgUXStMogsKPz/AQWGOld1rFf70/uHPieeM/Ui8dfr4BycsN9QTgpvdjIQyas1o43beRQbe7uaiRRimki7MRTa82s66RcAcsyjc0SwEm+5XAmBcLZcsKsLfKumYW5AI27UAzP6lExu3eoA33TehLWdHJOSwtxIW32HlNxAMze3JqZepgL6yNNsyXRIH5xj5Q0B4L+YoEXvBcvew9HF5Y2NzMIF2IxMIRnwkzZeUlK9K7Oth8gOIyZyVMzORzMPcGxD2a4AJRbDO7azNVrGQsVcgrqCQDuxtIb+jkxSJjMNQAXA46tHabp8vr66bMnpQgFbEAMILLiogzJ3Rl9r5UShHAXV5fb3bY1e3+cYSUqnTbj9oZvidiNNpv9s2fPx2ELkJRhGDZSB5JKzLM1A1jI4SwMmLmGMKAqECAbE8d9enObW4MjIFcYV6ljHcNribL1ZaFJKRI5bEi96pnoHIFJNJ0NYBJmXeNma4eJkjOL6zDs9rvLi4v9JqO/pyNsz5Nt2n92+dklIx6e9PClvyCTV24LEV0/vUAmh57eHDb1859/en+0m/kYrdrUzMio0nC+f77fPvn8c7WWQIrbvNQjphPvGvm/VbZPLndX5wHVBTVeSyTPgynIgCbORS6ePzn/5JpOLk+MI8xhZEZkoPHqnNJZp5PT5ATirE+w8GXD2eqb6AMYuW+mZYoevB9SAYtttRraRZf/hQFe7/fIvdrvdmf7/W4zrL9kEWnr7h39pfwzHFlmABI4ZVBoIMJW5J028CP4R3z/Is5CxWqmrCmgjpUB2s1ED+6gNAFSEEWtgRN5r91kc3aSQNIXxDUN2XAVInUnRzDd/F5XcnKBsl5rpc1XyzQ8xPVq7kllAVcskcr+85QItvjpgRHEULqTQ3U6HovZdrsJGniUYgxzMtUs3oRFfX9iGOw2ZxvH+PIsx0B4TV6IiYjhhUhYACM1MQBGjqazqemsBAh1Wl4Kli1AncNIYeJSJeJxcO7BNQctrIjRHS1yDz9Ygalsi0Yls2ko94UKKv2TwLy6o20R442hUm2tCQiqES0AXE1be5CkkKhE38Yx5GqdZTAEAHUR2Z1O5kBhOcwQkVxM4eb3tKTcmAGc59f1bWC9xWZEIrW3Zc49ucKfuqZL43FdRbre6LnNiTmJRRjOwjWaPsYHV2ATAAjxOAzREz48v9CmRmRMLkwRAA5iCDcLYpAESbqQ9aTxOun11ehSN49UFU5RskW9pPt4PAaQQr0dITFLrWYKcSpkhKtnTy4utoWUOG1VEQ5hJCKtaSTaxOgBYOHoLeoAlbLdjNNxxqu3YFJ3VdtuN0ky5RiHzZOnn5RhdAYVkTpuNts6HrhWjXZVTCBnznRlQ0AHHKGVmBjqCjg6HqXEcWfiIrGbqNtbRCt78QTrnXJOEBy/qppc4yk6Vjsjyf7SsI1vqeM4bMY6lp6NAATOt3hFXWv01e4htbnDa49nri9XpKuNnzoelFsS4aEb5kFbP7DNbgQLMAxqMIepNTOAoRGMBDk42k1ZYu8ecifComGmxf8s13Hv4BsahWDokOJi/wE4waS5i5eE2b6KPYXZokby2T0WMWW88ifH4XT1VQi364K+VTsQhWWnd5xiMYP64C27OyAtjsKLsQ777f5sty2FV3Urp/M+lKVEzr0YtNf7CQBk7Na990w5cU7BMhZ6uiatr0iJIgblezTycnNdiAm7eFpGPR52Za8th5lb9J0KsH6dRXaayaVEEJ5Oc9BuniApyoGOyY1UICO3jnef9sIyXe6Z4/2xCKjHGIVdvGCN5nHpTKnpVwETi0DYOXNxNFBnAXqTNGYukTeT5EbpWLY2q6lmm7xkUjLosSkMOus8HeGYj9PhcHec7+EQ4qEOQx3C1Xw04Z7pz8GYJpT7KCqRiACWFOpGS8Xv6amdFi/YyzTPqtpaC7IFEYmyrWSCztSlHM2Ogwbbh83TREEQ6IYgt/IPFmgfh4yfdGs2ccKephdLKlxQ6zlQ3UdNkyst414dFtH7KGeMhhWe+f0WkGJcs+sni5Bk8AyjK8kUtWZki8ihNUy7coVPFng3gaM5vMTd0Drdo5/LIu5oZs4ceruUGqZlxFMj89KhS85E8DE6LW1R+oYkEPFiasDNTWERJQKzOJwoi5WjihpmlpohN0+tdRxHJoF304pAge6Sm7PUsY4bkvtxu63bsZmRsBRprbFwbAM3d3JNNi5SsJM4aG6oRvvd+Ti+ZSkKSK3jdl/qCIYISS278/ML9bOzy4wb8AN/Moauj2T+cyCTzOFOVIZahyGNSn6wq2kFR4c2tpR9uccjvVS4znOQAUtGTE7D3IGa8CmIRepQx91+v9luhnKiPAXWdG8hNfDh03yIy8WxUEl223/RZ4+PR7sXDxN/HDBGQMQafk/S9riatR6vsZ4jkFkNoXVXVSXeg3DWCRZS051uu8sM+PqeiKLx8OKHpkRPK/nktvUcwnjM9VN9TOkuRv/yu3d4Ov5aC/TFVu4Wtq98X+qbcX3PfAoFgiJ3hEkK181ms9/vNpuSnP/dPhYe3FumwT6aHw9SH4s2R0sZ2uLKr241sNLTmFCH83yRbn56fBDgtuRsLJ9dD1Mf8ORh6Up5tUjTrex3cvIS4ARnMkSJcCTl9XKdMKt6J29wltR0lz8bOnvnxOqbLtRpf4QFXn28ihPY7u8YIHDvLeBT5xqcyaUyzWZu0XYlIHJzPe2XXCRhJQbq4KpKyAqi1hpSNRncZ52USFXn43R/e+cGERlKOdzc/vjD9/N8IKLddvfk6RM3snkOv7lrnhT2YQGYQ1i4CIlQQ7f8OBwhz9huC78L+EjhRHjA5qvcq2WhAzH05HDt707TQbVVL0iyC4c/CCGH17HWRF2ZEBEFH2OyhJ/mI6OVcXo3XFzNlixHWmqnAs95EG7RKFZJEyo4OIICm9ObMbcwJFmybTUJGbkU9uYiUkvRpiiC9KxKzCcRRWstJnYwE5k5LNvXA8mB5Z4VdoEyBbIT7EmLUeqqcAx1KCJ+DL6RKDTA4mKs/vXYV+RVCzsi4yq+TFU1mnSpmSlK0blNoQcYNJRag/rKXYKQ3cHEwzgM4yAicLg6MXKkyJlYnbgM293ZsDnszs43231YI1GVmyUazNbmhW62qao7keR2cOz3Z7WO5tD46lAJjujlcP30qZTx6smT+/kYLqICKEJC2rVSKYOUGiYLcdFEYnKMpFRiVjft9tyHxnVY9CISJK1BVWCO8OtBaHNrJ74C+uDsGHcWLsOw2e7Pd2cXdahcsKiYXLkPT009SifhkOGOsPY/0DTLru774AMu3Ieia/XBB79bxqSDsTXQJlNXI3N4pE0g5OMD3zTYsUJhg5wWQsK4W8p9l1Ak0UPFmTo1iPiygBXIEA/1r8snfTBHHwzcTzzjunYkVVRcPR2zxXT/cAZPgPQDXZ98ESfEmjLGwkVKHYbtZrffjrU3fFzGn6mYt+jN+gAYi0hsxrmoB1QRtKYWp5JkXLbDBGt0LfwnOymqxdDpiXZA96FTji7iNQIr68db1CoyXBQ4KC3TwPlkFLw4gdE6MUSIZT2UXXBR9z5okVKcxtkyMwElE7JVYmC81Bn9ADCgqfRzWINEhXopq1JSLSzXTUeLWZyamrIzwaWWoI0hBICcCtlMtbX4OlVtbXJzIep7PHiYtM3zNE3H43E6HA73h8PdvTA/uX5yfXE539/fvHx1f/9euPjV1bPr61Kzh/ODhQV3mCaLbtRsUxclCX51XK2bEmk8sZP2i6Q1WrKFXFef8zy31mqtMRFR0+NAuPAgmucperOjkx4sExA3mqhFrv2cNzrdugIuhaRQGkmxYIQl0qaTEDyRmuQaSkoPIw+vufN4mEul1mYbRiIvRfrk+vqh3IwX6kVOZDAq1btlFBV+7i0KY8I9h7uzcJ7bB5UXhCiNFWYWjoAr0gYOazHUlbYsiErO7k7Yw5Rt/oJHI2z1xcFdMFX3yEaKuGxwV0dP6qnPHWkYWm2apkN8C1MmKAlLKRHpN3cvpWzGUVt0VQ2M18NOBYGcahn2+/Oz/XG/O9tt98TFncwjXBrlL9wz1WmRsCeMgmm725ZS4iaJxYhmdw1TRXi736vRdr+/eX1wchc2B4uUoWrs4N5JLdwX5qKeeeEha5IvRf0kIx7I3w460mMjDwgKbybmORL4WSJYIYXRHyStnu4AD8N4fn62226GIRPeT7kSJ7mXGbnui3hc3ZLDO8/uv+CR6rzfCXXHN6y3rPjKLWDLXnuk+5LidNkpOO3elH99H2E118uAd8nrHRUOCWDMec3MiO4fZhAimJyahghLrZGhG9fUJZY5Za0PhTpMvimgvxq0cI6Tmlith65i/aSSqbdsAkBhtGQqDTHVWrbbzVB5zVXdzSZPIfCB5eAPYD/q1r855IOPppNIp7ytLqwSTnEni6a2amQWDUKSrumx+dMNO+QS6LjNYnrEJu0JM+jlnR7JlFyLFOEiSWUTaCoja28KkQSzWnfGPPPHV+bHgpP0JBlwUgqdsqhi4bllJaW7Z9uTdCbzQgt34xpg8ZwgUjcxK0MZNqMfoe7kXtwBgZvOrbVmWXpFoYzbPFubY1HPOh+Px+P98XA8zMdpmqbD8aitkWMzDJdnZ67z8e7m/t3rd2/fsJTNOMBtGGotkYiccJclEZozgrG4RJqyAWre1IKGQLXFY0QLEw4/1h2dX9kzQ9tL0vv1ddDaHHB0zJ/0zjRplng3JzrRQcRaTc0Cjk/y8J84CO5G5KEbYlkwjLwxWuFINygpJMJKyvznZSe7q1Im6CDaxUczL3cTif3V7cyT/R1egAXJxmmvJBmwq5kID1VaIZD3ICABS9V7TwmEJGQVezOZvsBJkGUCdiZXCGeaZTQIivE0tSJcS4HDtEVFrRLikzALYzrIgrxLxJ5ekaCxmS7/Yi5DdpnZNE1gGBRsas2a11qKFCbXNpnOzDSOm1s9GjOIk0UvmMMNICp1OL+4uD1MZ5eX42ZnhqZIJJHEwWaUCWtZ3JbbvmtNlFLDX48UzUyIA0optZQ6DGWYo64JBBYh4qGOVxeXzIIOKjNJkUoQYWFHJS7EIZ9LkVLK0j0mBE4MViTSwn2x+CwdfCQG26WSqYNATKrmbsw1OpYs10w24Fr3Z2fnFxf7/UZW0d9Hy7rDb1iE3+nwVMz++I3TB9aa+fHm+UgFx2Mx7F0H9EXe1WKAesFSuwi2la7I03uOCH14N3kSnUYVJ6a8x45s3AHFl6Z6BBEeP4E//JlZ6Dl9mVvYVWaI5tOXJZyQqmvBGtajc1K6OJ3X31oxP3iPP4GAKBYY6rAZxyhOpCUAnOCuhx31wfj1FWjR3tfApzFeBpZWI0Vd+C36FwAxOeXorW0gM0/ga51ntlxqdcn15UG9aIJCty3DwiIEEHOtMgTUJCJ1IXaLmlnmXl8gzEIg+kD3d1fVu1WxLK6udbvKoO5qmQXkZkSSH/u4TeoJSveHjOJFd4gUKZXmFstADcUJah7txFXjGdo8393d3t68Px4O2pq7zW26vzu2eVZv1mya5rm1VPjb3XE6mDVr0+Hu5nBz48T3l+duHrWwPT8/4dDgmmAiIapFRApAZtTU2GcBQD7Pk6qBmIpwkd4Au7fWWIaPcCLi6DO0VNAuAZhViKX/zM8wmxmZmTd3BUAsqzF9vFYCrQE6EJT3ALhH7lDm2UT1FREz1yKFa1yJnV1ba404qhqWO3TThlVYKIznSCwOxGme56juIibPJJ78f0wlSImdyRwtHr8UMVsUTaD0DXCRStHHK1I+ObSmRSi9FBawhktABNBxmmIXBmg7DmlXuVrUByUZYpqH5JHm8siDWsu6TCckABZ9C8OWANyiQtiO0yHw7VEHhkcVLAPCMmzG+1kXlbu4PcGoQqWcXVyeH9rl5fV2v59skVhJj4ewRVIWo2d+W2wUKYPUASxhm0SKoJrCPQq7Y1sX6Y12WIhltzu/vHwyDGNsKqa63Z4Nm00g/wu7CtSYUlZGFyz04EWEHUhKfI6iLz2TelDDeFKREkLWZMsmtY+KgFhapZRxHHfb7TAMwwP6llUaxSqMmnLvI47KTx6OzmD/Fz7wkZfo4Tcj23Kre+9PapkIkUymvqaD6EHID3VJvHjyrSN9ORXeonuClmzpMZvOzBIhy+vTIn87K1MXPVgpkrh6PoRFxSQWj8qTamNNf7YEOeN7PTYzpXb+KX2MRaPjgSgDMzGjFK5DGXfjMApLoLYfjo3RSgFT13T5FO7ojdLX3m0EZ7Mghch6fC8pzPvNJIYUd5TAf8yjL/B1fPNyY4vB9NNH+qJxOpgdEuPFkeEfBRIdGaCYinTPA/9cfUOmci/mRMIES9ZqKCmDLw2YFxHdr0KmRpJ9pdy9J2E5LR/JRbN27TsoBQSdO/VEMnPX1tCat4Z5btPU2jwdp5vbm3fv3t3d3mib0Uu35znYIKbWTJPsHG441tbUQ0qotakd3fx4PJhplFh5MDcvmHs3z7JsrRfmExgUFT7hgGvXYwGqUtgH7lnuFTK0YDHT0qONQKxxrUvx6LrHqpuZa1+CMQrmmcnizCTR4XC1MOhk7WRxFBFJSQPHF1ouYjPX1tzBUliEu1+17N6mOk1HqTXHAUBflY9sw/AU4y0H1DQZkYSc0AO4JMwaHClmbtrZyLKTj8jSQrujrRZEJOnNowek0btemJqweLi/zO4wzaplczBLLSUtTH50y6clGwuOe7/hDtSn3CEmcpEwyLW5t46LdPfBPQwOEFmbh1pP+zyYMeLrepanB3dJR5GGzXbc7sbNrpSxzS0SnmPJIUcmgKzTHHvQazOVWqXW6CaZ0OLJyEc4nSwspQzjQEWGYWDiWup+f0aQUIj7/f76+nrcbiP/YNmCCwS9VDbHRIRDnKZbxAJif7EQdb6JsBqj5TDTPM9qrpFeEUNn3gef4ewOEdluN9vtdrsZkpsEP3ksDpM/Snp8KCFX6ffIdbPS4D99+b/wxaDEIRyuZBacqIFVuVEMi1tIcEdPs3rkpeXdrJySlTZ7qNisM9enc+rx9NkCfH3ZRQkt0iPSwh89bL/8slr6bZz2R762uLJOyEsFgEOQB8O3chjSfUnUjR68m7PGJIU3m3G32wyj/IWZ9tVw0YPP+UM39CdODmOanMWJvWNn0QkmeLyFSSi7bzGLBDmTJwtkVpZK13mm5tn9EF12fPjFi3aXVJaOJdng4w51nNU9fyKEodL1KZ9SOB/AxSkl3b0T9af+XD7VxUF2DjK4ZBGcIAODTt2072MGAoUasNZIndQoePLUJzjaPB3ub9+/e/f23XE6Hu7uD9Nxak2tRU5WWkfqrbVjmyKQX+ogtTDzsNnUzZa4OJMB5qpmar20hykl0MqIdHcCwwUh3jUoGF3QK2iQ2AUCKhZ2psckkREJOA1+qlteoo997k4K2LPQaEkMc8/pOU31ujHfaWIzaZmNyIyIeBw2xEyWxjKQjDZm5pZmMNy1Ne7MEwbS1o7HqRKWbhV9QqN0mJfbcEA7SunuRGzwWrL/0Glzh8MY09msUYD2kNCQbhncIyMonB1w02WlZ1p7Cfnu2sxrDkMYk6o6zVPQ9UTjc6YCz+KWlkXuD9Z+FB11uzJu1tyUyFnggHCw8hEAN8/CEAB9uXlkZ7kTs8OCAYqleLTgqjUWSSmFyCObLFZW2MYRJaVEoyJ5eZjbHKNaavVWu/u4hIPT9+NSmKSbEJLwSYxFzHbY2cLjdmOEoQ7CwkRFinefarPdfvbllyC6ub93d5ZqhlKHUFdcTpSlCBOaYdFDD04iDlI3c68dOwJTKeVwOBhcVUVYW3Nzjr5AiTBE3kxoa2biUuu43Wx2m6GKAH0dIqqw/eEyzwHESSLFYy8U73isbpezqNuo/7QC9g8h11w1wT0XiEOiEu7s/TcsorGT2Kzsp5PWWzz4MJh8Uaje02Mf2xPrvpGUp64L7ekEWTMRIJ5+3qNhWHbjupSmO8G51LHsrCWiTouyOJ31Uef1p478KBOP4ziOIwdPxFrfL4qzG8IAvLf/A3xp2r5csZd1LZaEL19lZh/oyTAuI8KaG4+ZWLLgDrHlOdRzOq2cvnLOWmfV+MiRpirTCVnnVY3OyfPswAgWlzkwvnTiI2GGAtV+8GiLS5cJ1wEFWOTmWsZlaRESnvBymvXp8Ge15GOTIEbbo/+NzYeDTkdSZW3T/WFS8zYf79/f393c395O99M0T3NrZubkrm2eW9OmauTJKgCWOtZhs9nuzjb7XR3qOAxnl1dSizNnLYBn8pwTIZgwHjp38YM8+TPJ001ghggRSWGeHb3tSDf48uwHq7rY8pRE9LCTDPWMQfTtGsiIqqo1j9rCJbZlDoYQE3fSmT6xXbxQmBhOALGUyrlWwSAzj952y+4h8qbzNOkm+FiLGHNrTU25KUQsMp7cg+CKe/fZiGs215Y4eYaFDV63I9dORZngcmAG5IY26wyYWYn2763rx9ztgRRz0KxkOyonP9HSeNARLyPuhOPxOE1TWFKxrZgkzFhidlfvqY65J3uthpm11roLYe6a4W1yWiABNzdBRt4cRCzR+ygnOFOZPCiyGOBSh3HcRFxDonHoAmX1qSZy96bWKGU6FRHNAkfUWtshF0zvnxjyAkRUZIj2I5HB5H1eEJSlsRbchGUzbiadOYMRSEUIuKPW+vz581lx/8P3BvPCLrzZ7bgUBkotZSg96OlNFSKTtaPZwCnAF5ssJXNXIshaMyLiWmQct7EAYuEt3ikRSi3DOIybzWY7ijyAn4GuaIAPhd66EmmRbo+83ge7uX9n/s8/fPeReP/I4fHNdMpODbvfwno7hWz7byvtu4oBk5+E8APWhMVK/uA4ubZAeOGp8fPl5fGIOpX941IMX6eH9515EhwnPK07ZIBTpMhTV9JLQRitIGtarrIaxFBU1OeOQv+VWsZxjH3xcROHyNzUu47xk7W1ThpKb+RRQLQ/mWc+RL7brbLVSKAbrBQgLy1DEfKYkxmndMaCExf9WgF3Bz9H5DSnp9HoLRIXn9VhME4Nut4LFDkpK2+/P1cgZ0sPQe9JVYQIhHtfD9z5lB8+MD0wUkLtPwBIKEpcxKxpU23zIcrYzaf5eHN7e3uj8zTd32ibXA3etE3zcTKYus/WmrbkORSSUrf7fd2Mu/1+d36+3Z9vdjtikKkQqbo6OssFwv8ymLo1hB9mQQjmRpBunEZ/++ScyJJZouTPAEAW1G0ctttSEkP9KKZBfhjVM+5d9JspZdUGLyDwYrj10qUu66KXVtp2H1vAAQLklMetZr+5NJydGAJweHCx/u7v77TNRc4pSKhdmioRq6cJqu4KM17cliRFUtXsOpCgbLqBJLJAxr1rAggkJLLapzGGbq5t9qbgYLGIIQiLD3Bvc/APF/TcCQSjXm4aBzC3pmosHHST7rlv0P2OtAsfLHCECztNUy+jWpjMfNlcLAElM8DaUZVx2PScRgIgQQzjGaAlcK3DIAM5kxODCYgeC0lKlDvEVed5PvQ9EvGXPlgdF8+KqAB1iYU62UY05QqMLXCPTPzOJ+BoflVKsKphJbZCODEj0p5rHSadnFwqn52fBXg+1DIMtZRCTApvbklV3ZsxUC/+jt3wCAQW5iIFPQYxqc2qThIkux5OHnGpdRjHzWZTez1XFxofqtTV8dhYTnnzYQHS/8nj9C09ySuLqsO9XLRgykpDikk7icCAuU56KaOM6a+cpGX39YM7y/uHc8YWn7xf2Bmp5UIB0WnEMp2+t4vOVJ+TkjzlWzncnNmdLLKbPcgj+1dRD8sQRc6Eu8UnMvOxf2cmghNRAB6cGy7/46xWK+O4GYZhqNEfdhEbmVFKHZdCQHToAxi+CqLeJjf4I/m3/LnC02nJ4ViuBCyQOEt2D6Buamd4u/snnJQ6dGpITb1iavHUF0Yh0xbxTqNM+qA0ns1c445XW8QBd4vcCQWcRECle7eLQ5oP6441FhRTwuAT82eulS5k+PFQ9I/0ie0SJ/PQ3U2Vm97f3N6+fU3w2+1WRNo8375+8/bdm+lwB29Ertrm1g7T8f548F4JBmbZbDa78+3+bHt2fnZ+OWy2QzRNGgYAbT626Tibw1ozb7OSMwcZc2uk5qrdcl3SYRYd1zOrFnkerDiRtEYEMjM/2T/qbOvyLcC9MKLCkrjT+JraPE1zawCWDkXpMlMacWZqqq3NXai6w4lYmIciuYX6xgohkNw85k5O2eKmR1PRwxeZZegi4ubHaYponnlEyZN5LGStubdkd05gZb02IvOGFzY1yeBJyAmhVOEDCwXbERchnhGynyOnmdytqQd+44WDA6o7QdabO8QqWVZWhAJDCESXnghJNlXzKIg6Wau5i8gW89QsEgWp93z05bkQKzssZ3ISYZBkRJ+llGEz1h68786ee9TRRvSVS4iljsgkuBQCIcSJu85tDrpvNVO4M2ukoCDyvNy0mTYPnnF0R92dgCplkGLuMGZnMkSuUzfssuvGI0vtkV+oqk5Ua5UaEd96tr8Yh9Ed86zM5cnTp8N2S8LOFPY1ubMj1D8A6cJr8fZicMkhwhb5ft0BOEUAiIhJJJsP7na7YSz8oJzkgY59UCSYpv+DJ3qkjz+STPqTynx91dXnV6r3NFxNf/jhxR+//vOPP7yYjodEvvtWCNg5U2NWJQLx3ZQSMOo2jQycL0VU1zWtotzpODm4AHqn2eVeU0SjO+/enVQnwI3uD7evXr2+ubkRkefPnz95cg0+odvUEeruXuY3xm6iYDhaETv3z/U9QmRwcQrm6XS81zf4cKw9lKvIMAylJNKR2YlR//joYbvG7aZASIKQN9a8KYy4OIsFzgsG7LTSyeCRidMlAIE6kWr3cSl1JwIDTr/SV7TLiysMUCz7ZRTCL3IzcoQ5YoakFSKLQMp68TxUvekVnNZOjP6pG8qDoewZSgxjGCHqXTskSkSWRQin669SXGj5XBYQf2SSCBaZUcf7m5v3L1+S2XEYdtst3N/++OOrVy8PhztQU5i6ztqO86xu2+1OpGzPzq8//fTs6RMaNnXc1GFkGUDiXKyOVEtr8xT2lIPNdW5Qo5hfVZtnmJJ1ismwLv0UPKe8weAk6VwafT8RQR3N2mDRGigniZdKB3eAygPItG/Y4+E4jpOfg4S7zcKRJxcaT5u21lS1lAGLBQcUEWLyUAnu7tTJUH2JJQUAWMqAjlbEx5gFWVTjwgJgnuZgrzVVEjZkXIGSyDbc2tO3L7bJYotGZUsYxSIyDAN1oYMTYw0VlkFqVMhFw0SoT8cjtB0PB9YyyoZqmugdOQozANH09JHdu2B+TS04F50i5ceKSC0l1q4Qi0gU/DGzO5stCW60TM0Su6GVrRqxHHY4s4dx0k9ECp7cJZmuGPItrPioW+r7IsIA7sGx6e6+5Au0IBwtJbwTdrD3QN3iChICfIzty0RFZA4APwZZ072+u7tXUwq0lDu1D0VjANKeYunhZ5CVUqnUWgYiLlLMyBwkdX92UWvdbndB6SWlJBxA4O48rHy1kwAwd7W5VNHWYJBgzuoLJgn6QcQ8DMN2ux03YxRonHT0B1HcRy+YRR+w1bf+tII9jeJHBOJH//7IYWb/8T/+5//1f/2/ffPn79TsydXVz3/+5ZMn173E3br1Bg87+ZQ+gdiNpmkb3d7ctuNxv9uZ2f393ZMn1+Nmy8TW9+9yyk/d3snc+RgSdnt786c/ffv9d9+9fftWVT/77LP/y//yv5ydnyEj0+lBuYeutaVnovdeAJwud9D/Jsa5xA57sc5iFT4Y/O5NpuNOQGjJjhhF4kjWI2T3CQAM156W7MmTD4ep9yhsYkSWDLsPjvU4UHZp6ynOSYvxaL5TDYeeFJGonM60g5Q1hGy48sF66ajoyUtdNigMZAhCXO97vi9C7zmY69ViHsSjWYBzilj17/Ll5AXLPKnwaCFPDnbochr3/O8Plwe63OtCDObeWqNpOt7e3L55Q9rmOmyePgXT4fb9+9ev7g43k82NtMEMIJHNuBmGcbvZPfv0i7/+N//j1Zefv3h78/rtu6M6a9hl6ta4waJ0h4mJWczVwv4TBiMKn2xFYZ3TA2Ro3FSbTu5krt3uNIf0RN40zOY2S48uf/jQJw8Y0YfeSU1ba02bthb8mhHS644uh4tmZg9SOru88SWUl1MYE0zdSoXDWUSk9ISLVPuBSLXm5sbEUoo7gqo6pjFsjGUpw9zbLCCokXfAkYj8VPUrq+LNzN2NC0jea7wnTFUKOVKTmbZ5Ph4O0/F+u99s9juZWxlPQjWeNEy76HnHvODKpy1HBIMq1CW0WnNXER7rQAZ2CIMyiTHVbOANZiAuUoZInyhcGbzEudYbYDXuWB68+82LlZ3bzNzn1oLF1AjOBHUQ0saj3FBBjtaCBNXczTfjeHdX4pvqUA83ztlgqCPzQBcHiW+4uUI7dheXtdvbO1Nv5u4odfD7O2cyyiRqI1LAmrm7iKhzKcJMQkIgA01q5iDizXY7juMwjABgOpRSa1VNtLFGwyU3AkzVdPHRPMKilthFz871k9oIYcJEtdZhGCJ6vYKM0Bdyf+EDjwqA2uoPelAY/zgLulsyi0/3SII/ws8fvRjC+IfvX//7f//v/8P/9n+f1EqpP3733e3tu3/7b//N+dneEzEK6MiXVeNra0ztm2+++f3vf9/mNk1HUxtrBTBN09Nnz/7Nv/k35+cXQZlF6Ro/kEePRMrKeTmNU6gbbfrn77773R9+f7i7m6ZJzX788cd379/tz/aAEyzUo6+zpleRLw8NC7ZsXO2UxX5pSXvvjx7RETptgPUEPchjo86BDLhqu7uPYnZQNs4CQCI8T3Y4NAdr5hVpCqTuAneNQt5920dx7gcmekTqoxkjyNyTTenk7VKGeEGe1EmUQHEPEkRssGNP6EJ3ZZ+fVsviesYOjRz4dDYWFbqo7PVZOY/eSyQ+NqgfpCl8uB4SD0YGsGhhkI1gwEnfPnJjAIOTOZvZ8fju5avD7bvdZnOx3252W3ib5rvb+5t7PTaGFpZatsO4Oz/fbve1DHXcXF5fP/nk01vnl+9vVTV4XciMVJMSkVm8VGZRoyyAlr5jfUEF8o++3MPQaKrzNBuTmeZ89yhv2P0EuEPVJBMGPKK6rrqMVwnk9mR0BI+DatRZllKLFPcTZpI0j5Yt/HIB9pHzTMkL5DhIUToHPJALNNMIKlH2dQsrPW4gGkHVWoQLs0zTwczSBbFwv0JXkKmDfd2r+NSAYXHrF7yDhUp1kSDx8mg9YORmribEQgx1kMGtmRp8Vj1OU1N1oKmpGXPgB+SAWWTaOjO31mI52aPhIDTTRr4UScJRWDZ1iJr78Llz/MPyzdI6A1EdhlCBItx3xodmIzGzmiVNJC3yK1YKe6RKdcd3mqbw8MLhc2iUOSSKgphVgVMgVxFQL6WUUhxwRLddInAiXSRGkcCpSaclzLXCZnMn4cJi5tPkNzf3Nzc3HZxkiQumhI0onZlimlS1lVLERU3zbXd26NS0uSvGOtRSixS4os27oW5K0Wmy2YT4bLdnlnBUpuN0f3esVRza67ZZ3ds0vbs5HLOYeCU+esQqewk3bXPWrveizZUzuOy4/lKHdfsfH85Ymjq0/OXdRlo87A+U7kkhmbtmdXvcrRPRf/2v//B3f/d30zyBuLX5dp7+9PXXT64uf/Wrv6bIgzb0GqQ0yxcx2o7Tjz/++Pf/9e++++5bIjZVNwsi8ePx+O7du5//4he7/T7Nu1Xsrj/n6vEoMhZP9S10cvGJiO/u7169eX2cjtGbUsxEpE1zQmsxLOlJuPcGhXFyrE0ieMazKXhK+3N0gb5EEZd/HaI4xRmDMZ9ABGYXAaDzfHj/zm4zRgM3gykTixSR2ma/vz8ACGZm722NvAu8uC5nUxHkz0Sf9CTKe8v3B1lRcTcr1emLlAcWQzHut3usuUq645VZHpa6kpYlaZ0Sv+fTEiXkmx649wTS7jT1u6C8qx4CWC57cnaRrm9ghp527Mrz9pPyWvxt4NQtMZLy8lzqG2L1L9MDBcSO6f7+3avXON+Ta2Eynds8WZvVWiOGFNRK0nNjndy8lFrHTamDOk1qhRAESepuqkRQc3YyQxRWEZijMN8San1gbUYcIFOAzD3LGulUXNcfeAXjwz3cwBaZ4bFMu51zgqBFJFLkw7cLtSciwYrsObxRLmte6CES9cD0WgmgsFqzGjwzZQqRcKklvKe8shn3brxrv846SILQ5N1ANnc1bZop8d7b0XtGQCxKPLFk4YPMvZnOqm5WqfBsza0ozCwzsMyJIu3eY8+3lqaKqra5wR1qUsnT4F0ttVDrrQWzGPVUz+M0qbtSB+Xh4izMyyil7nkoc+NcjoZ63fAFMkIUNGaLxZSUKBHMls5hQ+yu8bGIB8aOysZPzIZoCgKOXr9pQFPPni4l7EI1NeVsYpF9eEOhN1NTFZBLFIAFozsne87Jr2dVff9+ev3m3fF4ZObCXqLUKlBtIwILy/3t3du3B2vHwzS5mTYnB1c2na21sYge59cvDu/fvj3f71S1MDEXVxvquN1u3769HevOzPfnF2UYYB7I6qtX77bb8XiYIm2PHdb05ubmzeu394f7xf5JPyjkiFkkwd3e3rWW9DqLErRTzi2so325BiiVwsm2WDZlnpGk60yFkj1tXnR2tFld/HJ0q3YlBFytLX8Qww1ff/0NnHfbXXio4ecf7u9gjcOWiqhNdBonV49cHGhrr168/MPvf//yxY8cuW/m6m0chvOz8zdv1E1N5wz0gEw79flqla6OGMs+ONTVSLcvtelms/nFL39JRMEZy6DdbishgQJdzmh0aCbOfU3ORG5KxCfSS88cyxihHjZlQvTNDC1BSOpLh4NotTcdAJMzVNt8vHnfwjWLmElCQsQihSDudHN7M+x2oeF7Nc6SpZwPyA9KMn/iCOx5NV6rmrrFZehvOqznqKehQTHCkdpj/VZXcxCJj0RObICsg65JO7qSPSlCHlgxHT/L66k29yBIkPhs5Bn1DEsyj1kJqPmDJIfFk45CndP4eOSDhWiMSHaPsK6VnsM9AhHaWhANVeFSg+20UfYlCjTf2dymecLBq5OhcGEpDm5m8zRJHUiEEH4X3F1bI1BziDZCBKCSiw9OqZWXp0qzk/uAEjP15rsgojRCLPseurtzJuwn0US4bbm5HYQS+UZh1oUBkPNvQSVEwZSSXib1xgsO986j1K14EBYXcFlglKotoiqh3EAUmTWnxZq5OUSAmypqSTcuyGrpAXdAXrM1BVqmC3lfv1D4ZG02bW7ChYXBmLXd3N6AvOkE8wIqyqPR3BBcTdK3gbs7k0iJmvCsXDebpwkmziwgqYWpenJCnZ5CTdUaEaRQuK2zqkY1cWcjiyQ24ogfKXr6ZITrwsznqMEPGeSdiB2RiRHiiyJWlfV2yV7NlC2yczEQojvSUlLcSfmzM4Fwbh13tyDqBXGRQbgUKsLFzU2NmGopQdzZWpvmCUDT6KLsPeRqTiRSRWqWpHWP5Ob25o9//NP3333fWmMqBCVQT22i7NfkePXi1R//8Cfmdnd/V0vdDNUZdVPO99vdpj67vrDj/Y/f/GlH9n/9H/+Vukkts9luHCvLpg4/fv9iPs4i8vz5s91uG/m17v6nP/15HId5cqACZZ6szfb29dvf/+73t+9vTuIQWEz41vT29sYJNzc3RWonY+mTbBlBd0e2GjptTuCB/DpthvwKSnbM2MPuaNoWiUNEwhIJELHG4b1ks8fVkoMtkgzhcGpH/fzTzwtXQwMR1IVxcXEm3OVk2F4Wdr9GI0IzPx4O1tqT6+uXL3548+YOzVubtM1BbTu3Y61DaD5TA7HCT3WqvWQRmauFhA48ZXn4DmEqsrtDhXmslaSUUoWYidpxMjNrjSIJ0QIfo8DY4unC5miqw1C3283Sk9q6yuj1h2GDMsDGfuIty0p0qFluEZHl3DZPxMSHdEKYMyS3TJ1wAfh4mA73d2UzxPh3Ldl31YP/nyy1FCcnXQVPti/rOzISCDn81ky86nAsul5frSKn9IUS/Q6pHU/LC+EhMtXOu5dAzHB0wiNe7nxxomh1nMRginlbshXx6Oiq/FEq4unh7eRMPZSUOSYPx+onD6JsbR5oQPbhFWJAyCsHmS5V52IkBszKrhJyPirT1NzMm0EcAkbGZdSMzGbzwZUE0VqQMlGCosorjAN3hkXIcPFyo2aJ0GvCov8RenpQqLAoCYkRMDVD0rS6g4mKdU+xk65EkKczJy9roaMU8Tv6b8vIp+8ZK3Q1JQH19OlJV4+Zh82wkGH1USbquANHlmzviggi7/mUgWojEhpcD8f77bRtrY3DGGlclr0KmlpwOpI7pun48uXLw3QwncmcDYPS9fZc71ttXDwUNWVYOKLypQQyEMBRLGUzd1UnKqUs5V+ebwQG3oJqghiu3kwz6YIzsoNutp9qrFc/c3Fyhk5FpGdIsrAoZoRWZgoLCeRgyjZCvT0GYR0DplV+uEZ6OMDhxUaqcPjZruGUBgLJkQBvaS6EZ83uIY3VmWZVa7NKG5hB5jBmWqL7+Y+ImQ+Hw+9+97vXL1+WUtyS6UVKTWJLjRVJN7d3v//dHwTz4eb22dX5ZruVIqXwWCu3+clmc//qxffz3VDoq0+uy1DAdDe13X4reHZ/++7Ni+/fvnpZSnn27NmszawBlZnfvH6rGoXi7JDWrDU93B+/+/a7w5P4UxMAAQAASURBVOEQ9n4PXjBAZjbP8+vXb97f3tZaIwK9Wqe5L8Lo7J3lOxjY90Ks5zUe1Ff5g7/SkO07hAja9O72dp5muBMh+H5iMS+QC/WYqJRycX5JhJ9/9fNhGF+8+P44TSK4vLy4vLgQ4SQ+aB6hhDD/1BRdBkR7Srgf7u9VVdvU2nx3dz+OI4DLy+t5nu5ub+e5AeRMWeXPScaEBw4TkS2tShzB0OcUlIdEgOsgPLWpqb58+/71y5embaxVmJoeVbPINvrBOFBLOb+4qCX56v/2X/36q6++WiKF0rPtjEiZmaM3TpbGEqXRDyLppPmRf2WdSIeSWNJV3QEhKbyG2QGigA+maTJt1I2uPrkpE5cTFn7y1fz2ECvICAUn8Dm4rsKnDDESco6W1ITcQGuKDV+OyKjykyj+CU3WXbbTgoPBF9f9tHaJ0pt+rBR7eeeHytJD/sADM+1fGFrIDDapmj8ek48eixv5kfsPsUTuUMBYiEtJBQGKGikFASwQdmIDE9yczNkhxCIUqGjDzEpDlVqru+uxuaqamoNgwgGX+gNhDCKAfRGxWMwbdzNroBoDQaDuyjiYSDjDq25qTcM19o41Ip4IZanxfXQkkxhRxggfat/1+CyDlhZZRAiXCc38K3dQpEQ54IRSi7BYtHNe1iVlTKCb2N2HWs15l0EASNXu7+/3u7lIDe0eEsIz8ftkHLSmNze3TWdtswCkvnU54/H4/m6PYRh3mXyRCF5QoAgR94zF6KAdUivy+6yZqWqI7LwtM1fTubm11hSqoGgc7dQs3FNX46Sw+AsGYKzpk6ETwO7KIl4GIyGx/o8JAhdGtWhBhGwuQURmaC0SG9nMw+Yx07u7O8Xk7g4exq0wS9BqMMFhpuJJIhKY2MkkDvYMMe5GdMe4mLiAOEyx+/v7r7/+Pcw2m83hfg5+lFqHcAH7iuWb97c/fPvN08vt5cXl2a7WAW4zHe1w816PR0yTm91Nt9hteDv4LCxSufjx/sl+/J/+9m9ub2/f3NxtqhBGP4Yg881mNNObm5vtdhdk1MfjfDgcm1oEpCnFXybMx/jS/4+yP2uWJUnSAzFVNTP32M52t7w396rKylq6q6u60E0s00OwRwiQfOAmMsIn/gk+8JG/gCL8CRQh+MblgcIXDJYZAugBp4FmVaNR+5KVe96821kjwt3NVJUPqubuce7NakzIyZPnnhPhbm6LLp+qfqoMLKUTKYW80+Js71cU1H6kMT7jB3G+pl+hgD2CgCP0MeKQ15dX//pf/+vfffABM4+SV0SE2chZSym2sTPz5ujoz//hn7/79runx5v1sr1/56Tb71mKUXJwYauP5MKci4iwSM6ZPQcES8kiBYQRIA9DKUVKEWVR5iIUaLXKfT+o6mLREpEosgqR08RhfR6v50UMSOoNqtWwMhbrhaiKEEiXiwh7QaJ+v/3is0+Zeei7/X5byqCqx8ebs7Ozx48f73b7EOJyuTw9PbVeXkS0XC2Wy2Xl6fN5zlaMUTvKCDtm0LbtarVSFlUdSiaKIRq2rylFrJ02AFSVzRPwoDC6weoXtCcBUKCze3cRzAdDJFRStlQX1+UyOjPudehtgem/8bQb49yyUyzVq/EYSN0ph8LW8HgAsAofmXjovkKMmESluZR++R3Vl5/QapiBLlQbBb9STdza05Mp4IrGkh1n75rd9vCfX5EajaBgF3bThGKMqUlNCwCkmKwZOVKxfBc8dOcRa+Sz9H0HKVHEKKluGDVMyI/tq57PmTFxvO5kcRKoFAbjjnTk1KAVDCGEaHyWIKrFtJFprglLA1CN44zX7+4BN6lZrzaBovlC9hiIYN0/LdcdaMyt9iZUYtRcrnZNlgFWeBVrAYR5RhiQarkAjvsYVESIiGIAy0gFcqVdxVmVmFRKGXJu28XR0VHO2WdMgYvxc9pDAgCAaL/vJA+l9CBCRZQaXhyV/a6QhHbVxoAqUOusKoSlqurMbb6hQEEQlFSHPAzDIFKLka3ei2Xoe1Ld7/YgzCoqSiKBUY/ZYvAhhBGZ95w2s1GMvgK0xgsYYhwnTQiEUJ1DuoaNzZaqzi6FgBgQQqBGuUe1Rr6BKKiSAjKLqCJFttYEvuBECuykBUpGIk4mxr2+yTAAEVFGKUBCJDQMWUhTbAii1QiDN7wIZt2biCi5/PxnP1stl2++8abFHewcAaDRyCAAEZZcnjz+ckF375ycoErpd8Is+yF3HTBHUQQVoBKkYEZOggghSskQY0vUrJtFIlS5uNlfbykRSsmLtsllGHJ/dudk0S5DiEOWkpUwnJ9fkRIB7Hb75bJBAmdyRCffRSAZHDwgIvOTLRwOAIU551xK5lK83lE8AcarAdUNyvEwV8vNeiYAAJRchpy59vcEgK7rP/7og2fPvhyNUe/YLfLaaw/eevOtX/7ylzc3WzvFfb//1a9+9vzZl8MwHG2OYkoi+uTJlxcX56vVsmmSqpcLAmDbNmYhpZR2+/3F5VXfdW3TNDFdXr7IQ18yY8WsiwiqXt/c/OxnPz0+PokxImIpZbfbGwCdYgohmNaxhDURaZo2pSSi19dXXbdXVWbJubhxKpLzsFxu7t1/7fj4+Fvf+ubl5eXjz7/Y3lza46eU7t+//+LFi5wzUVDVYeiHoTfh/9d//eMf//hH1r1q9LntZ7MtsEZJT0/P3n77bUR88uTJbrfrh0HEbfqYQtsuYkyuNKyONVioFCqOXa0rRGYthdfrzd/9+38f8V2o2U8iGoOx4ZmMZTNqcfRZXeDKuP4jQQ86+uVvAo8sOETt9IYqqgwaFLTW7pqgdoVY83RdnLp8fFkT1yQxHAuiawUW1OmqqsXSVkzVfbVG97Fo5ZyAuWim6qFUKU0HHsNXXdLccpOqI0BQ1Yea2FFGVQrYtIu2WQQkLRwAwHrwBbQ8m9HidTQfEQCFGUBEGUNDAUFFWYDAKzlsnTzR1RJJD8YAYBwmZiAQAFmXKFDgwkZdhRYM9DdAgOqxsFjUSWZ9zuYTEqc0L4vZOEOKg88iQojJwCw1GGx64Uh1WzW/jsrExj0qLhizCTyyU4MdNiBFwBijTZuqkOf12HYm356GzdfNCBUFsJJNb4+jCiKcC1iedq1JV1XOGQsIZ6PXYMSosB9ySTEQLpo2UDAwV1XNzB8TCGCebK+WjCp5GIbcl5KZs1s1Cpzz9vKKEK4uLpgLS6EYaBDseX9yD0ApYIoRrRqvutPjvquGptVPzzD9urSzJfS3ektB8CR3BQwxppRyyba5EYEoWFfiXNj60ht5FiButzcff/xR4U5JVfDeg0dHm9MYogXFreA7LlrbT24sCiDD9ur6/MUTIDg5k9XxmekJ6/jhjQnNpwAKhH03PH385apdHB+dkPdwJETkklVZlRcNLRr42tuvnx0vEyp3W5XMwzBs92XoUXhQDghrXC02cRkbhDL0hTkPiKlpm+Uypea4aY/ffO1q251fXWWF612/WS6eP3t6eX11cnq0WqwjURlKDO16dfzl46dcWBX/6q/+irmnYB2PwYcOCEboOJ4PRAA1AV1KyXnI2eDS7DFLlfrDaPr5+YX6P0OAvdpbVRWYWSfPyWAGjQZAUGAWZVEV5hwIVqvW6FYt4lxK/9Of/QQBN+v1u+++u1yuNptNSuHp0ydffvmYOZstu1gsQgilFES8f//B5ui4H4ZhGM7PzyXnEMLu5rIMGYCW63VIqc95s1mHEC8vL375y1+M/thoPZsVcnR0tFqtROTm5ub6+jrnHGNqmnR8fAwAXdcBQAgxxpBz7rpOVe/evbtYtItF89Zbb927d+/zzz/vu/2z50/Qo0+Qc8YJdSs594ZMhBByzvv9vsyMlRE5UA+i+TtXq/bJk8fn5+f7/Z6IwDr/KKGQQogxiJRhGMC6bPluNCVFgSJ5w25TWmYAlVIy1kV1XTPCTqMA1UkYju+dkKHxxLqvdQh1jtXZytXJMe4Unb3FdamgNbarzvJcJuvB10svVHWiFXg5BOumg/uOWg3GenMEM/Zr2pQnBgXPg3XaEhU1RVqD1FAznLGK/Wr4v2KITkMCaGCyE4uwgGhADEhNiDFGQgpAEQmQhIAIIhHQmIJa3V9EC6JZXx1v7QMgwgSoomT8+QA6EpyBQw11aBUznqbIjyoA5JJr8EnHD7pAn3qW6HjebUehFZ8hAEKE6T42W9aYoFxcXjx+/MVrD17T0eDESkZckQmEMZsXVS3NUpmNAgyJ65ocLr+CYm1zBL4TgEuJMVJABRWEpm1tyvxkGE/gtAOnnWNlr03TmPRnZlCQwsriLedUAYG5PHv6tNtvS98lIM15Q+1bZ/cvzs/jkSXrO3JqxgchxhTN8IcRenQ5oSBSeADQ9Wp1dXFp9qqNp+u6T64ud9eXP//5T/qhaxfx7OQsMvAu311u6Nt/GJBcaoiyV10ZZDDCPKoKRKjqLiVbh8Lao971th+/8Rhbzjylpl1tjlbr9b7bg1u47iNbVXvmgkRDNzALEF5eXPzkb/7mZnuuAQjDe+9/53vf+zvj/HohvAknRAEtVVt8+fjxL37xEyB495vvv3d0wiJiGVUkKWLfG5apKcRISIK7m2233x8dHTv8SkgBRQpLBuX1crFZtmnTtBFQSu77Muxzt+t3g5ZCyCilSZGWzSLEhoIwExtHCysgxBRCikkBynHCxekxhGabC+fy2w8/urm8ODs5WS8WAeFit8VAJ6dnlxcX69VRSvDi2dMvn3xh29wCl2Nwz1o3WVWxkW4iBeu56ciHr5eysCiD+cCOYY7Qm0DF5Go0pibnj4cPK2Lk8XYS1RCcdQ5AiGC/3z57/mTIe4WiAIjEosPQn5ycvv3OW2dnJ6UwgL722oO2TX/91/rFF58j4nq9fvfdd1NKl5eXq9Xq7OysbZeX19fb7XaxWFy+eLG9ujbzt22Xb7719tHJyfXN9uj4CAB/97vfnp+/cEpCQsKISKbU79+///DhwxBC1/XMst3uYwQALKUwy/HxcdsuY4hHR0dt2xLR5dVF13Wvvfbg9PTO8elpbNJuvxfV9dG6bZtSCoB0XffZZ58ZBboZ60QYYyCitm0RV01KuWR0Mhw9SLY3WDlgkxIRXl1dqvJy2YZg8cLKzYuQArWLxdHRxqJOekBKo8qVa0hVVEsuCkW0KDCAEljXXmPwwJHkwCSqH8XKZGW6BDxnbfSqb+kbIKqlHOonzlwxsN48UDm9qjXn5pCpfi/jd6ofQLBPGYsZjpLdsRh3ejzy8pJrii9pZeP0wINh2y6utN7VEZo8fp3qjSzRyWLvNTsUqqNP1QSZ62AcQ5cIllgizGKtU2weYoxGN0tecEEWeLMsHSJKIcaR8ZJIFTw3j4is0sbwGEVRBs9yFISQiCJAsGpsVmVX/Cpi3SWcC66OWWZhb1YWkJr4KcyFuYgwIIKK8ccA1JIrj1UpIkThOSKtzGppTmZvjjvGq7/ALS+/FqBt3zGKyyIDexddqGvtd9SR/xksv9/jXqa2S6mLI4B6cnb84tkiUAhITWqzR8q9QB1cqaCqclGiYIEidRNDrZbXKBgEFIhK4YvLy6ePvyjdDkXydn/arP/e9394eXm5xEZE7EFFhAsbatukpmma6twTKHkYwiw/0eVy/ejR608eP+UCAAGJgAJz2e12+253cXm+293ECPub65PFJt90V+cvlAuocWehiAB5VRCiNTFH8P87EGGWjXnkFosSlz4yUrla/lCtIGo3m7tHxyfL9SpcnIsUTyCsBhYX5lKAlXOxlJlFszg9OR2Gm1w6AC39YAiEHURrAgyqIQQgYpUimZVZOaa0WCwFBUNAChCCAIoUAKaaZVgyx5ACKCgqa8mCSJV+CINRRjEHwKPletEkkB44D1y67U3Z33A/cGGy8DtpFBrycH5x0aQ2hoCIMYXlYtksVrFpKERUlZxlGIChacLx0XH7Du2uLvubq5aoDRgD9n3Pqm3bHB2fLCItl7HrbpxDhKwOey4RVEEQNRBaLFgBANmEFfl7FQAogLEVIAScGfa1Cg4mc7jCRlUCO2znEtA4uhEVSi6DOTwAGGPc7fYff/RxKcWMV7Plm6ZZLpo8DM+ePlXRru/zkJs2LRateaLr9fr+/fuLxYKImLnrujzkMgwgEghTSm3TWgvH9WrTto2qxBCGISPgyclJCGCN5s07tAz8EMLx8XHTNADYtnjnzr0YGjXkI1BKMaWWC4cQU1qmpm2bpl0su32HSLt9P/D5s/MrBFCVpl1+7RvvlTyoMACIyNHREQCwMKgEKxpRSTEBQDJeFEIbQ6ydPes8KhKJ8MXFBXOJMRwfn4QQEEAFhmFwW000DwN4DRhzyVwJKcjzFUGNHotIVD3TXQREqaJhFm4UsAw6Z80yFModaiREJQrqQWPEW7q3KjPPjNGKYxnMbdrMznbdLq/yGN0OR/DaV1M6OE+JftXLdaoVvSBVP53GGptxtNVwtI8dKsvxjMxeL+lqMG3vJu3LgVZUC3wgmZJ2mn4dL23RbmYLbho+wQb4oXUQMHkshBoIYwiegUTkbWGtHy+iZYkCujq0yCwhoABaq0c3gkCFRYrpUeYiKqQHFovnYBIpYXWFxC7gKcyunp0UHxAVnIiyek0IALF2Layqa1bUWEqJIZCngE8UdrfmH90WCgBkYNmM7xLn47XNNKZo2+kCT3UXw7VUFQKe3T368rMVIoUYz07PLq6vh30HAIKqY0str7SBzWZtH5yBV2JbYcR8KvIgI8jCzIGIQJUZVA0AF/YcV0SMKYZAMVIMQYBsg9iqGwzQNE27aBFRvFMQElGgGJtmIcvFYpFzh8j7/T7f7BsIXkYL0MYUAB0zRggKgCSeK02VMoFAwR+yHkKDGdRSr/30jW4WiBBRuzk6Wa+Ol4sFYMi5X0KLiIjBAU9hKawApbDnuwVaLhYnx8dZWlVcLJaAEIKB2TJmjlqcz4jJMpdc8nqz+cZ774U2LI9PMDhcZyThFvqyKGkIMbi1BHnICMaYrzHESCEwRIFVu6L1kDCXkoe83+9u8vYGSlYpPGRSDEa7QdSVQbvtUoUwqEogXC2XFGK7WMQQzJbTMgz7rnQdgdxZH33/u9/arBbPnp+zakWbOMQQY0yb9WaV1ut1jMm27K0yRHNvDqVnLRo351sEJ8PeViVY3c2YFzo6LSaMPFMDp37YUFG/g+OF1QpCqcmAAAgpJW/4SAZT09B3X3z+qVvFMjkjKSYFzTn/8pe/HMUkAAR0ejgEJIXVaikSC+ech8ePv2BVYwxuUlosF0fHxzYzCEgUjafClN8wDIikiqvVerXauGviwa9oDbURMYZgQnxzBAjIKoogCsyMFFaruFqsAIz9X4wCqLBlionN8ozYruZ/VbCRvAauOqIAFmkeck9EIWKTvJQOrHpCUUTKwGPEpEgxkasAAT2VOhCJMtaE8+rm8Sz8fPul05sdxRhpZX/Pa1RzthyBxmKq+d6BV+it/7TXgcYzPTFGuAG8btHGMSPzGvek1XBUj1ZhroKmR5hBOTNPHZwDF8dZ8CtXVfzyc1WStaq47TMixvuozIa7ip+tuQay8DhFjx0GQAohgAIhKfsGRu9BgONgfCyqMFbreA9BATRnI4saBHnw+GhcQimJFfJakJfMszIYRVTRUnuJghCBiJASsVrNLQACxrqfTGEhmiOPyKIiHAMhgrCQkqWYGKdVLeKi0QNwCQJQuPrU4uB41TvVxgcAQAW1wQkAm3ccg7W7YeFmEdbrFRLGEO7evzeo3nSd4kHCkdtwVg0tbGg3zgHaaXXIa5nIysHRGLSJICECl4CYUgQyh96ycinEiEgxphijKBmfDSoRBgUSkLZp2iZ6eo5yLoOINCksF4tEslgshj6BhkjUYGghLtoGAIiwoUACwIJUwzgiFlMhRMegEEYrw5529KVsCn2jC6Ci9VgX1hia5fq4Wa7ToskMu12/2WxCQMCAyIhoZSfdsO373mSJwX1t2zYYRSCmSLXSzhAwLllL0RhQVVhUpHApzC/OX3z+xaeC/PCNN45OzxCVechlGEoBRFbJZcgBQqBIaDVdlg1kWAoiBiIECUgJw6AkpeTdfthddLubvN8hKHORXAJSAogpQiBre8uqzFkKq8h+t9/vO2FerJYhEgKg5N31Zbfvu93uwZtvPTg9gbfeAtFnF1eFS4oBESgEAY1EIaSU2hgb0QKqdIiJma1jYr4eVq+nRDTyNS+s95i+f4hH4+h2FUb1or0/vFqOm2noClCBY0VIrnWxon1mtlohm/3FDGWYeCG8khAQg3lpIp7GVf0TMRsAlTAQkOfOazDjScwnQFMEFgu1JPxgrLQw24pgTLohmmqsrnkIIaKHmQKh++u238izGpCYQRhEAK0wytNcQyBVqj7nrGzHTPZQb406Igd2ALHOhn03I1uTTarU/CZEVEsQsYM3Zq6qfZ/gWTxMoLM8Vq6Q8/R7nKSo/WbUCXNB7ztDoXKGuLilkQabjJTYofLR77VMVKwo+i0VePs39W71CRGgJtsffGy84FSjfPAetyc8pUpGVa6jhz9uTRviy4j2fDxet1LjwrdeMP7WvUMrriQAFEX2odkONweTqZb4iCJBjWhRxGhUNs4qoQo4sRYKixUXzCozK8ptxSxg0Kq4TlWpTh0Ylq5e92uueIypZYuyOlObH+/CFpELVLk3yQx5CogBkKF6uXEscEI3ghRRlRlESCEEMssPrTC5xhNGdU0EXDs9WETlwEJUf7eB3mol4QiW2zWhHGABelIEQcjMQNosk6U4nJwcd3l4dv7ceK9sY6jzg4NIefr0aUppGAacBTDGmrxxPCIqYO3NoKgUKSoMypIHRKWACKLMDvE6tYU5tQFrTROrxy/c7ycMgSwWKCLMBVKgQG3TxBBjaIT7iNSEpsUUQzTQI1iAlwWTFfZoxVo85diaJpHBtdUmnZChavQcnEJFFUXCEBOFiEgsvN/3CogeTQcEXa+Wx0dHL15ccubqWJtQQKiYsK0OEVlI//LyQkCP0x0F4cKGLShhz2W73RYsJ13npbEqecgWenfvQmM0PnHT55U+QtFSZlBYCnPX73e7axiu+t1V6W5Ktx/2nXHVkJl5KhhIAfq+FxFcYhsbIB1yAdUylG7fDXkIAVfLpQH6lxcX3TDERXPn/sOj9fJovXp2eaU1DOYl9BQoJKQkFtlz+Gf88m1GajRRdfyVFcbcMvaGngJgLNwyfhxgBC8mwVd/X89dXUmzEUG9aGBi34EZsbHWEdpBxKCjsLfxAiMYpzhZesRytXzjzbc+/fSzbt+9/sabAPr48ePNev3gtQePv3i83e0RoWkWj15/JCJffvll3/XWMqtpYtM0NcUXiSIiqekJCiFEcDc9gWteV7SIAV3pWt6M9zSFkVEJEUXRSXlYjLJfaZoT001e8X9wilGdaMYw6loIO8n1sSYQACwj5OCFZvLo5Msatjfzp6qj6O4ggOVyOyNYBalfoXCqNWBSatpGdVP5YaMYai1ArQHxIpzDkRr6IfMHqJFc4+0wJh70XVJ3y8zRVJUKOtYLyGGCgo55NaPYHmcPq2ny0mPWQOrtCajbu8p2hVFVE+Joedz+0OyrWqDj3wQsi5Yq8XUt+rJ2ZqJW6eTxbQ/fYPVxyQWa9n0e+h7Nq2zalBpTq8ws/ZBEZexc52YLWboV1kcAq0RFGDmtRAUJCeiWcSOiyvUIV2dJx+V2UikD2iGqn+T55Gu9Lw19FgsLIxp0bNrSy7YI0VoJeC6iWaw6re+IdriAgKZpIgVAoYAhBrMk6h5ARRQEVlUEbEhjQA5N05yd3UnpEy7DfNHNRi0sFxcXbbsAAMvRPdwL0+639hUigiJcOKuWftChKLDmHBECKLKgKILaCZke2fWiCiKyn8whD0+ePt9ub1TNfjL/QcEaO4PZC6BqrrvmnHPO0UodFLgwUnRuFQvVVwkyzhwiWaFOFWEVV5iZ5gBQc/NEgQkVkNGKxywPGa04mFV1kZpl26AqiLlNTokF1okZUJGYpfKLMAB3u+3du2dtDOb7inp7bRVp2naR2hAjVLOdiJqUvGTLRZsKKgQShGLZIgBIFFMkhC4Pu24HMex2F7y9KMOWtKSQtBWpFFGEiIQlD1yGUgoiaSmLO/dOTo65sLCkFErur19chUBw//5qtTo+Otpud5ml32/77jquT9rV0pjAD+eOBAMD7ofMnEmZRtxG59xr0DRNjLGUwsJSU+UBfNVGsTOeoldhhq/0EOBQQRshAyooCo71JwA1cVbVZK67v87O6GJ+Cs2girKqINDR5ug//7N/+G//v3/56Wef/8//F//rUsr/7f/x//z2t779w7/zd/7iL/6i2+1K4aHv/+zP/ovtdvujH/1ouVwsFqvz8/O+27/xxqPFoun63cXFZdu0q/U6pWh6PaW02+32+65tVs1i0efcdZ2IEBJRpBjJuiijudmkVpEiAgQEwWo2lKrRAWZiBhfvpn1REQhQ+36/2+3G1JsQQ9O2RDTTgSZwLYHUTSJVZZNd4+SqgqKQqiJPanrUkVXlTN6tEo0I1HTcyEOnlXjACoPQKzBdXmNtqTCFgN1lIQoVRA+IBBiqAr69Z17ScWoOoM+NW3paNxEieIsFc/VUFGf5oVXZ4y0JMnsyMJx/fmu9PSpj7Va3pHVUsgeid1RaPliHJlGnUzI+EFoicqAaWlcL89nzKYqSAT9IMOZSlSylWJWjojvvCuj5SQ4HaQgmxpUL8yCFS6+9KgQkiomQUJSHLBg0uI70yi5Qsj6Prh8RiEQKgBKqKLCyx+QFvI+R17AiWP2ViIMLzuxRT/KMNgwRo2NWYhS0WIQASEERg7A+ffps0S5nE+rOV/Vs3TOzzQJgGeO3PGBw905BQVKbNosVsgBa0aqNw62/aEkWCAAamxiblHMGCGd37q7Xm657MVoH9eWgE7PU+oSJbMtCceJGlRKQsJScqbCWIgX32+2w33cDai4kEkQt9wmdDJJUJedsCa9srAJkDQABEW5urn79618/efZlpKBq+V6syggipYCOZwEKlahetZzIK3xkbAIKaKEpFbUiUVP3fT+sVlzYJovAMrNM/tbHt2RCi0qLljYtYqMxChKHgDEQOT2QnXCC6turCigrQFy2J/fvb7eLXPoQ08np3VKplyz5Mwa8e3qS2qYIIEBEUhaCsGgW3/72txRkN2SXIoAppeVyaWlmqgAYFBkQvTuqKhAxWEgdQwjD0Oe+L5D6/a7sd93uBrhvAqWUgKjkgUsJIaSUJGciakNcLBcphJJ7wNXx8ZGICOf9drvf7YhoubhZLRZH6xU+etQPgxJJ5iamzWZzdno6aJxICt1ZgVLK0A+FM6kEZKzuFMy8AftuLm+RUj1+rWfTMerqM81F58xkdH67qXLmZYdATYxATc0bSxdAQa0nn7i0c95Glzg4WdjmViMGQsBhyIT4g+//8PTs3te//k2K6fs//OT7f/T91x89/F/ef3jn9AxVf/7zX7z//jevr6/ffPOdH/zg+0dHi88///KTjz7+3h/9Qds2zOUnP/np6enJ17/+rvGYD5lDCJ999tmvf/3bd7/23vHJ2W6///Ff//VHH36ojCHEMlLTgAqX6qJjQFAQdO4dsRoShRBAQLU4jideia0aiASAmff7vSlgJExNohja0Jj+A0BwrFpFeEbzqca3MBbpqQMMrwBBXfiaPMeDHWKLZfRwwgXYuKYNIYPgmbgVlwQMteOCLzoRYgDyWH4IgTlQxedNbXnTLT/OOG48Zxpn0YDGpSW16Dmom3lYExdq7FKBRYsysSaxlB/rMQDqCayj9rRJBituNhl9QE7ogvSg+PQVfi8AqvfFmGGQeLC53Sev83R7z8/Piz/ZrMYVAa0xroI6KZ9ZHmrpZ+5SKoqiVY0oUSJv1AOFZRiyMIsiIxYkCQkoBDQcS8U0Lc6GjJ7UNhoZhEGsoYsqAElFWtDILKa6LyUki/6gRzbGoDJUmq1JJcfRHhoV2zgVInJ1dXV5eSk8pZOMBhG6JefEVa7p9BWwj1a9bRWozaId9h1SjCF52Q+qqlqPWGWRUlQ1xYhEhbUAnqw3p6dnL16cj4PAum4Atn/U6oAnQIYQQLmwZZAYHZQwc2YtRa3RfObc91d9j8JRISKid2BWAiQgVRiG7H0dpn4sarUBu93NixfPch6oacAPvxgOYG3zxmdn8ZY0UlgCJ4+vWn7/vBzFnw8BVGXIXdfvmIuqhBBSCurLCRVAmwn3AIi83qT16YOUouSyXETjsyqlCItxFfV9HoZMBCEgD6IQ3v/2t/74j78PIOdX56cnd0pf/v1f/dX55aWxQ6BKIFy0LSBmEQJrDkgU4p07d9/9+ptfPP68f/IMFAIFA5ry0JUyzGokvRIZRlIxo4XLGcBbamSE3W7fXV5vr19I3qcUTo9PmiaKSO47iTFu1oumiTGk1DRNssB833egWnIueUAFy4kFgJJzaNtF04QQhlxIAQVPjjZ3Tk+eX/VUI3PjVItoLoWloIoi48z3NY0L1o2jFEQUlSJZp4iAcY2pgeV2riqK5cfIrjbzjwVf0rsHL5diOsriqrkt9UI8PDdJOqMQ8eQkRG+HG0IkDBRot9//Z3/2P/zm02+zQIjpH/3j/+lrD14TLl//5umnH3/68MGD1x49yFnO7t79zh9855OPP/m3//YXDx8+/LM/+weXVxd/+Zd/+cMf/uAf/NnfQwQV+c1vP/rBD/7w88+f3Gxvvve9P3z7na9vjo+ePr985723T++d/ru//PHQFQRid0aLMVkKS86ZRY21SgojYkAUKUXNL45AYE3kAZC0gCoqCSEgtovF8emJed5EGFNomgiozqJsRw7UbHFLxZj5tujrbF8OEtSc03HKf++KmHFMVrlQw+0eISLzgmncElPRUc2UqSmUUKFSgwxNs5D32Tocj+/AWpxkpgwAqGWouG0zwoxYyXmdyAdGPHfy880MNgukOmWjfTGD5Sff95U2It7+RXVC8dbfbI/WPpgOWr8MaNct/xUvQgjE4hxlFfvHCvAfjqS6gb7KlngLWrhYc1UzargwgFLNRMQqVOejsaRpix+DioW4kUjUEi9V1Qj43aupAxhrHaotLvJSbOHgFSmEcZEEDEwxSFNEeBiG3W7LwDXtol4Mx60srmlc3UAprCMREFaACSqYTpSalPuBYkCiaTtYfjkAiOiQQ5EIyEWGnEW1adv1el3XW2ar6IQwo4CzI+pTbd+tzbKJNAtwqsXkfYavri645BAjGV4jgtZEFTyQWWNCFoO38D4o6DB0zDlUJEOEi3LmQmrAF47OlioKCyiQArCEWGupxLPUedRWtvYiSJJzPwydOC8mxRTRGG5VYU7WPWV8SLsIDx7eiwi57082zZdBYqL9ds8lAyCCXF6e//a3v2bRQEgEOef15uj7f/BdCtAN/c31br/tjk9/88lnn4oIKRBgAA2oJWcSQOXqUYe33n339TceffHl49S0iBQICXR3c/XrX/3i6uoFKKCy9WbzyK/FlREQsAy573uiAKi5lIRWPq4hEkEIRMwlUEqLFqUEIhXJQ4/YtG2DCMx5GBRASx5urm+EOYWoqiHGwmUYhhgjBULFqpILRlq0bQxl3Ce2jU1aGnCJIIwFD13e0aP1n9F8DU9ECt4xvp7A6pf48bP366SDvQ/QK90IP1jou7QSs9fBjNzG5gCjyf9AwZJ3jEA0WWVOjBSIKCIiYXz+/PnD1+6//sYbf/Hf/nero+M//R/8yfX19tnTq3t3Xt/v7hYuu+vtyclxu1ieHC9/9PTJb3/7Qdf1f+/v/vHV1dVvf/vbt95+89Ebr+Vcvnjy7MMPP/rud99/9uzFdrt97713T06OF6tY9CQEbJrl2Z37kpkoYAzW4JY55zIIa993Nze7ruu6ru92+6Hr89BhIZCcVSgAqEYALgblAolAUFUhgcVi0bSNKWB3jWdrVIs6RIS32+1+v/f2TQqjQ/nKIOs05e7+wMvqBT0lBIRFRIOHA7y01dqiAQUlUhUMASy4N8GybufNLunFDubQA6ASKaJAzYeaAbm2zeoZdwi9Prhr4EkJ40HFxMtKDWtstMrP2dh0FgSub64K73CvVu7C6Z2ze83fq/PB4Pzt45e/7ffYPkSEgbjAWIxsQs+c4FGtQP2rojJIhEQxUZOUsBgqogoKIoIQR9RBZnTFB2P0IHBNlpsKwXyqBEZDC712yZZiXB1V1bqxFMhwH6dZPJjPiESOhZo1UPErVUCCXPKu37HxOlamT0Wp4BhgoJon4KGnMhQpntdQn2dcO0LAEBOEgCFYdosbiiwqHCmgKIh6bnQR69pIhBSDTt01LOApVcZV579WIhklETOrigIjyhiKASMOVxF1AXdxcTHkPqYEiKqai/W1tfC/VCcHxHajhX8oKJch94ASgw1MxMFww6q9ahkr0Q6LlpwBQJgdLTSmRlFwpMMz0QxX0pqdZ04BEUY/sfaYBqRJNXbJVDKqJJAGIJK0AQJIStQhiLBtp/1u99vf/ubOnTuGWDCXm+3Nft/1Q785Wj1/+rSwxsp/SYiJiAC73X7f59i2AqrArByb9P63vr1cJBFYrdYhRCyFCLtu1/V9t9s2bStcABhBWdg0CsZgU8rCVVAiM2Ob7tw5o6O271ZX589K3+e+uy65SamJMYYgzCyoUQLSernqur7bd1xEStne3KhoSgkRcxlEitXLL9cbY/0FVIBCkiJQjBRTohiAEJ2AEEFBCotwQPeloFbUw+Qrj//0xB/mapWi0li5aULfABOdZFL1YtXc39/vb81W+fbb/NAThEgxRSJKMQaqGciBAlEIZNwnlksFQM+ePXn+4su333n3449/t1xv/vwf/sknHz7+zS9//fabD0vfdV335MsnyzapKGn+z/7+n3zja2+B0na7/c533js+Xt1/8ODFi4umaSzKY46miLDo9fU+NhsV7nq5vNqGQG1IIcbQNBQtDMGAggAs2u97Lrzf9zc32931dre93t7cdN1+321z7j0WiIIhAAsQAY+5NVC9DdDKF6tq3RgdUbYZ6/u+6zrP1qjegt5WLfOfPYPmpamWKnBN6IMIAgTQoEJEirWnENUfVIECKRi/kEGOo36c3DVfXD+znuo72m+3dwKMVXDVtsNRj4qiZinWYs7krTmdCqDzxoA4/Tc+5AjHGDMTjlIUZaaIxqmrpUrwio07lS0f+NsunrDu5prJgHiog7G+pqE5Tu1hcqjpLVbEAhWhfGkg/nEBEEIIASgoIY8PUcG3AN5lbtw2teWee58OTaAlXImIoGXZEBhvA1o3v0CTa2/52KieIU6oXoypEY1MVABNlx+MPM5XG1TBGCesJpKiiPbDgKCKIs5G5TAvVeAlBOPURKQAxqwnEMZYwrjxAACQRWJqUtMAYgwJagqZMKNqY/a7UcGJgmigEEO0xvXsLRbcABR1/iqtkLQLpwruaKUD0zGXxQ+AgSFWtI7n5+eXV1f3NkeIqGIhFwFEReB6coz5esQHxh2GNahiV7bWGohaTzV55pRNhOt/U9YKCFyKB22kiFF21x7UoyfETjNc8+YdoLZggI7LppbwMZTu4ppJtGTMQ4P64OwECl9fXwIAYFDhPPTD0GMMjoWqAmgpg+ri9dcf9UOGn1R8tTYrvbq83O67o9PT0DaWnLVar97/1jd/8dOfcCkpBhwhg1xK12thDrl4u3vbLRWY8/Jsub6+2u/3iqhKMbXN0YYGgHKTYsIiQy7dsJMc2+MjIkQVBTR2w83m6M233rq6ur548cLYtVJKOYuCQsZSBi5lv9+fqR4fn8aUhDA1FCguFi1t+6llMqGdCAbNRltDYLaagmdDObkejDvHA0/jBvBFsfbeiPXsSF0dg4JwRPuqJH2Fch1vMV587gePbpOFDmOKVqeeUgo0xhQxRKofoUDWF4h2u5t/9a/+1cPXfv34808pxH/2T//lZ59++umnnxGU73z32zzkzz/98Pr8qajsd7vv/dEfnJwcffH5l3/94796/1vfPD05+tUvfv2r3/766PgEkfb7/S9+8ZuLi4vdbvfzn/3q4uLq4euvv/bwbi68316nRIliiMmSsEyQUs1F0PXGCHVy5n7fd7tut73Zbq8vr84vL89vbrb9ftd3Xc6dI60oznIEU9FI1TTkAoVAVY2vaHQTbboqu8ZBVLLOfI0Tf/X8wxQMRu8TbAgEIXoNR/3rhL3RlG/8sgfqLwEQ73xr2LN4S1CAl6k2xk5EUMvKsVLjqKgUzlzbQYLLDhQXbej+tEBNFTC88RUwcJWpCrMUIX8GcyHIUQStLYbnZSxf9VKroIVqRxEgmrdmzDrOukEINAZHsXZ/MHTXPD1wsAFVgRmEaUy8qFqcnMOSAAMgUYgYEiAZjYx5wAZJYi2iEw8Z1mo3tDY2Pj9IZFV85jKZmPU5RWdksnxJOUxVr/LBVkyYC1LUUL1Nxyr8zXHaiI7UA5In/RICABttZu1UDZYRHQI2TRNiAC8iMNUPADVZuq6frTuosdyHXDjEuFqvY0pNSrOwtCJafxIPKgQg8rAiqbmh6rAPCmiwerRgGHjNpK9nprZSKDwIF38+cXpPBVIFay5JGJ6fv/j8y8ePvvGNpm1BFQE967uwWlKb9Tm21spQsY7R1quVnOjcOsJctBRCOjgqNQah1WkdE3k8t1aYrVeoqqoY7iqlADirg061dL5cqqNRgUaC0O/2Hzz5IkK5c3JUuv0ihYf37+y7HTwuqgRGzBxAVAIEQ8nLUB5//vl2d/3s6eOzs7PLq+325gYQgdAIYcqQd9vdMOSh6xdW0QTKPFycv/j800/6/a5pWhCOoFEVhHPuhbMKMWcr3AlIKaXoiWQGzWO33w99r+qGLquWoSeC05OTIe13hFpSMDyaMMQYKShoKeXLJ18CUdu2m/UGRA3pLFxYOJfSdbDdbmNMA5cY09HJaT/0YeibtkkhNJU7Ca1QBggAFm37R9/57n5789lnH5eS1XKgEEa5ZhP+6NGj119//ac/++nN7nqug71JFaB6sorMgnAwWhyHh3OEKCehb3tjzN+ZSzdECjFFMvqQkNoUY7LE+GhsyzZLVBvtIBBFQrP1SVV/+h//5uc//amqAtJ/8y/+KSIyy7/77/7NT/7jjxAwF04x2R775JMPjdhVRb/44osYo4hghOcvXoQQYoj/8Sc/aVIKIf7mN7+JMXVd9/nnn1s6SBNiDBojxARef0QxBCLEQAEJVcyyQWBEpWHo991ut72+ur58fv78+vLy4sWLq6vz7fZ63wkMmStCOR5tZqYx080Lw8CQJLGkRqBAQRhAxSL3UAlr5ypzPLy3DKxXvg5UEqKAslHBmIyrPvS4tewHGyrogVr1G3qK7HQHHWGteh+jZqrvssHfdpHHD5hzStYamGpCVBX1ON1m8oNnQtrvB4de8uzZq6Q5/OtXzZcCWup4tZnUrdBpzGMAG5ydAaZ8sPHNhiy652/OFoBIEWbF8aTY2CJgRKhfGIEixQYgSPVizSAeA/RapWoRBgpQS5esNi7EGGIAskR3BLAKWfeV1XBaLSpZRqAFRjktOEEdwBaQHUOxVvyNYn59nCZlLjIAiGi5WqaURITogLXHvlOgEIIoINbOtIhWpVcXU6wTJeJoexIrsmpsmxgThZHKT401JIYEgsakREABo8zYwOt6mSNv66JftQ1s/XnouWTHzquedh5zFVRAouvd7snFC2pTs1wIi5SCoiZQWHWkIh8HMN3YbZd5pQOoSO4H4Ow1Bk7OxMhaSsk5B0kWruNcEBcAYIWTCiQonrRtfD2ZSy5kEWPVmk03HkKsvHHBIJEYAjMPw4BBmIuKpBBiwIAKUECDSkGILOxYBxGC3lxf/eRvnu77myEPIppZ9l0/qoFSCgJur28Ky/Joo6oBEZVvLi//2T/9p48/+2Tou2g596rAEiMExJq8KaDAuRAZNGocDo6li2UzAChoYd7vexyGNsSTo6NLgG6/LSoAAQBDCE3Tbjabtm1DCIqw7bYKsFouTmNIKYjwbn/z/MWLi6srK1JFoKGUEFIR3Xb78vzy6OheB9EGY2eDQiAFRDw5Ov7z//J/c/XixT/5J//n55f7KlEV0HNgTC9uNptHjx797sMPrm4uYQZRkDf0HCNRWPNlwLMjjXzOBQnM5fX8TI0/uL9bOZ7QyvkNq0RgVSzCnCkoERWSEARACZUIamG6HeEAMOl+z9oYU3YxmDgyBqva7woUwBQwAAQKVhiJhBRD0zRt27ZtG2M0qNsWNoaY3CMPRAEpxBBDcCYsZg4hNE2KKQWMzaIloqHjvstdv99ur/t+Pwzd9c319fX19ubm6ur85uaq67alWGPgSuJTmxsq66hWC5dRRIiYusW2XZizzszX19f2jBXAmJ+gv+U1quZxgUzE3k6APFDeFnUmqA3iXtbrOgZHq/4cg7J24Yk1Baia3Qd0bKN8H1FT+/crUZW63HZDJ/iZOxKjyzcDhw9gHnUYcabw6w6fPf5IgTR+avr7K4Y1fVXf2KR0nRnzt6wdCgp4Ho8fOs7CzAyiIBZixdqnKBBFpBBSYz3fggDwPPfdc3sqDqkwFt168hCg10apm+lY2/GJBQutVazYXmBlMO+uLq8fcJhNJ7nzfZsVQCsEfcvwMbv+3r17i+XyZrudd0SF6qGCGlmOopkJtpNowkwcI6rboi4SMkD00nwnK1GgwjJir0ZW4qCKt1cinI8RZ5vjcF113NCiwIKhZngRkedE1TCEilFIDlweP/ly13cUA9fegjU7ZwK+iILUIq6xTnaOOIGpRM/K8cguQEBHlXUYhr7v20CkEgilWkUpBhK15B6BIqwsJnZDbVJLDqTXDE5wKqVQkSCvj9wcr0+PF6s2gAo1iUG3u23Og+c+Aapq33eDlBYTEQQALvnq8vxme5lL3/VZRDdHJwEheE0FqUi32wEigCCBtZwULRcXL64uL0DV0svNJqQQU9Ngt3fyNlSRwoLmtQhztSgtoI7qlYvSDQOVEqP0Q98P3b7rJA8am6ZRVchFr2/665uBpRyfHMdIinh0dLxIqT/ZlJxvtquciygeH5+IyJMnTy8vr1ar89PTO4S0u9kN3TNJK6FmDkgamHZ1ff1/+b/+E+6665vtuHGtnk+9dgJF5Be/+MWvf/1rfgW/YM0yAyWndKgBLEKwtMQynf6RYWOmEuZbyBbXQU7CAMi9ZvunNbI0GoEQEhLmfihcRM0eLypCRMwiLHboRfnW9dG7yVpcoG4wAAElQhENgarXoCUzc1HUin8HV+DumNo5rUmj1eqv3dQQiUTEnPQYY4ixbdtA4erqerfbq5NvFQRgLoBQmei4XgksEjfGzgkJ5HbC8PhoMcblcnnnzp1hGD7//HMRyTmnlJh5jjeMuvTli8wlyaQ79dbLTWEinFWI1D1VobivcqkJbWU8iet2G9zqPwK8QnPpbOg2GwQHLCLjEs/+fXClgz/duvitovTDv1UP2UvEXvWer5rS27/EsaAZJhNnGuDMRTdN59rf+PhBWXgouRgvSlUUNioEoBhis2gXS0dXVaq5o3PmFq3PpFB1O1REG1RBkCiEGGNCMO/XtAGwNWcQEZZccqkZUFg3qCqEEMSYQhCAFC2dFdySsikhBUSYk6jNjGVEEX12/uKoHI3177fmcx5eGVXszMKuwwqADESgDGoFOeJLEFPEqmlZRBVSagAxiwgoBqQQqtvrslI979mBCrdELYSCAqSAjveLSGFONdiORnHngAUSBYCiCkioBE+eP7u+viZEI19UQgjeN4O8VN5wbhRUQKcbqQr4YPeoKiEWBWarSzJeS1KWvu/7bpcTCWsAzSoWhhiyUdMyawE1rlwgpDa1TdOKqvUBUANvKaAPVOvMkCWuMUJcLO6cHrWRpPRpteqH8sUXj6+vrslMikAskr1gWgAhYLg8v/j//Mt/+fjLzxQYA92999of//BPPKYral4YajHOeLJ6B1AVvry8+OC3v0WAe/fuPXz9TcRIlgVq+AILAiChCBcBJORc+m4vUgxEME3m3r/ikEvDoIT73T4O5X4uuc+h55XioigFjolV8cX5i6cffb7ZrOjkKO/707tnx4FyyXHfQYhv3Ll7enpHRH59fnlzc3MU02azYdCrbd91nRaUxUQyYD3lEalw+dUHv0MpIUItWDaVooggg0tYI3S0P9VjqrPvYMz8pn2tI2SIURVU91Jq8QjUQoVanvSyAkYnvUFCYsOW1L3w2sKE2nZBGEVAIbIIoBKGolIKMw+1u9fk8+koQavjjmPydpW6CpOw9u3tnqfVWRYDBQjUGBXAvbP68QrBVyPGD3dVF1VY6Mz3snYA4JauTzsgTb8AS4/XOkBRNlvSLzqqKr+mIOJisbA2KiJixWmW8lqn+iu1zCThZmVmWsEuN/iN7WKaTxiRjMqNdljMYzEsK5W11FoyhsLa2aEm1FbGD39WVRjpxLXagjW4Mamol1Xeq/zNSUnrLCFm/obRq371p9VR41cUEk1WCriN6btNFWrY76UrohcWISohRaCRw6pWeGEAtTLmscIJDQhmleLteURBarBIECzZJKS2jW1rgUiqyTsgqlTTzGvkoaK1zt1cs+ZNRyACEgar9FUFMlbl6m6qceMfYAH14RAJSUms54yJkkNDyF8RRlvvNkkJ7Pf7pmnWy9Wt36tlfE0n7WAtzAmoLCC1DE9BFVjGF7A1MCBQ9oVDAGOoKFyyCCVq2saALhcZo3lSIxm2GcgTxuvEAlvOmrHlj4cBPe3GMtGMkk4wBKJws93u9/tIFnYHIDRnTgG4CBFKYRevXgsCYyM6AB1ZbHwybE3YOcsQIaYInHMe8jDsy74JCUHJ++I4pmVAnxSzrAMirlfr1XK9H3pEZGFhAcCxBRupiopbXixqfSQpabOUgBASpKUgleIMcLVzF5hnjTVtcr/bffzxx89ePCHjbU4LEyUqaqZUIHJCAwBEiDHEmABgv9++OH/GWUIIzIwxjXRodaVG2MN6ixTnchMBZTuY9jCBCAqTACkBhm8+/vIf/4v/yrRVRYx9fUVEjKAVMXjo03/PFbpAxD8tRVV+/r+91wMoC6rkgZUJ27WOuAUCASFAxECWxKCq5N6HdT84OT7e77vtdjdCHWR5APXIaQUjVa0+DtH76IQYE4XIIgqk6F6PwSHm5Y6fvfUaZbdVw42agJxHnhBCoCallSJSLIA7Ir1z5zj33ZOnTyEPNkTCg+GNqk/chzNBqUaLUc9OHYAqKATz1MDqWzzRAsZ0Jwsu6ZgiGzznZ4QrXVNYVqXtBiPqciNt/sy2xDoTZ6bYaExYRTMaRjWKdU/6tYks5Op125NQwgN3tMbs/5ZX1egKxnIn1nnMuaDJpmJ6iCqQDhd0pvZG38ZSmXD2kVHwIjqhN0ItjbD/xjwDl+1IhDFgQghUqVhmxgWOA7LfTTvNqy2mp5y9q96iIrLguK6/zclu3QBXrZlN4xPreCjAWiQaUdUYQoBqlxFiGAug1VJ8au2Wk7E7D4bnCNlTg0lfHTdJTSke87AtyErULhZN21KoTBw4e9qav+fgliVUi5d1+uRjTa0yOmjvn+zl+GIm6LgLD/yvaa1NB1MgoGCkOqCKxp05KzuOWu0L++jM7rttm2t9QU0mtNje/N7o/TsrNlVllVRtAW4TCwuj+yCAI8GYARzMwmy8HFXCqunSaehjyoIqmn8/bSHwBHBvocFmm5oMQ9sRgizAqiFGU7cOUqFnYNmyif0DScF46lHIs0imMy3q5czqZcT2zGwM4CIUaLlasXYAyCy7bhvXx1YNipa5HQIFNBbogMm2kqpSoHax7HK2c+PQAU5BaBNZZjUqgAhst8NQLmMMiXTXaVpsXn/z7c+/+PTZxQUGM3jQaJkRDEn3xUmWsgNgTIc1bQGUEEMES0YDUdAQ4mKxBETCEEODUJBQ1VIvMcZYclbLClBQBQpRoRQu1m9DEUSKsnXidLswUgBRZFUGIowln2y3OcZdu6iYihX82Bh9H5pYxKlWkgA0hBhjbPc77Lo1hb3qft/lPnMRgEIzEgxVNTTBQ/KSoSIk9vcQ4t179/e7/W73Cda0HVefLlCsXunWERyP+ZiCpwIGpfqahUDWYb5wqaH9V/sf4y+r+2ttj9vYLNNiBQiU+9z3quXunXvL5eLq+qbvM5jAgMlHGuWyqhmL6BsVSXFMTpwUht/U9riFydCFkDH0TY9qh9G2s78fJxFvliUCGNG8Oc+GF45vqXrURzH5WJP8GW39A1/WwvQuu2k8D1o5sHCkxcDRW/q9tAiHL52h0MOQc85INRxYhQ+ANbmpHuJMn82n0sWF909Hoy8UwxNIPeIIgICeK6r2LqrbYxLSiOaWBZdmUNHNGggGN5puT+PklKs6U0hNJrffjoO1L5fh4qpVbOtYd1sdhdDBGtl8BwoEAQWlyEzX2KUJkYBQ0Li9EBBoFGYuU6vsOMjIrhCSvarr4U5PTSQ3cZAWbVy0lJIoCIz+m+J8HgGq7vBSMNtGQF79LCI5l5JLxV/M9TV2adP0ASqG4SLBN4DThQOamLQGrIoioONqgiIQQJQZ8/Ct160AJ1TJB9WHqEHc6e/j78TLZsHqhgAFvZMNAoBxJtd8tBGnque6nq+a3l3tLHVudpwtxGgWjFbkOBpmrn4GVJfAM8TQKcIEo/HKKQZYrBYhVXPeFLnNA4IiFhGL+hsoAaKIqCLGPkNkjQUKNM1ovtgwETGlhKmoauGyu9qu2iUgWOGprYRlnamo1OIpRGIU78fGPEbyxof1IKGxn9pJUrq62l9eX8QYj9aL/R7b5vj0zoMX1xfeZMVZcvweBgGAkWiguhHgctR4NQWJQgw5q6JYdwS0jFYlh0BlmrCYwttvvf3s+XMuJaTGaV2JlEEAYtOEGNT0uGlLSyAHIGvMILLfd6q57wcA+ODR2//vf/CPj49Ojo9PF8t1u1gfbY5jDKkhBeaSu912t7sC4cVi2TQtAITUvPPu1+/cvZP+D/87/K//K6LQ97nrBqQQIxVE62tbZQFarQ7WPMGRXsfcGzNOlstl27bWG3vcZpPXhQQ1pUVRdJIjWHed2g7yWUICwJSa5bK9vr4uZSIGmblck6cD1fU3qLNpFovV5uT07OjkbLFY5jxcnL/Ybvc8FBY8ObnTNCvVmyoQ7FIBVGvzeBhtrjHT1IruoNoXVO1vrHkQjpubh1HV6XTqXVZb8lkVcqO4t6uKiTVb8kMhU4+yTglLRq17GOitrkFNeTP7KcQYkbAwkzmlSF7a6vq41gsduBK3Xi52xpkfD9o482gZXsxJ3Z8AHYc+PqiK2IFwFLZ2NppuIzrLwsF6cCaCLW9lXz0NryTGWrpWe/DhZL3UKVe3slygzhbH6g7Mh6tPdhjC1Vq07jp13n+zJiKTZZvOZb3CbCSe8mD4UH1IP+m3X46KgSCEW0bnLDW88hIBAIwMXTYB7hv74xkDpSqAKXVqmma5aFfL2DQUAkwl+XVNq6k3Rpfdo/X6f382Zi4l534ouVT7ys1vdJ4GmW+Y+UKbVKuGKKJDd1wZ/wGrXRzhv89rLiPMb5gHzCcveFSDY6x0gudQHSqAWkmGCCgsXjVr+8Fwi/psL7sY0w8KwnNCk+nYMjOAWqaVLZ6zd3rxsBRmDASohQsSHR8dxRDBKv0QKzLu4Wa7JiHpKHCw7rM6CwfUKiNMgWBKyzbz1fXV/XuvEZFqsTq0UVfbGbayMkIc8tD3PTMbo8ho0EP1GMz0dx0OaFV6LEgaVBJAq5ByQWECqCTbhydCVEN0MqU2JQEN0RrJJaKg7udG9TPjzVVcDNfHV3CUe7PZ/PDv/MEXX37+5OnT1Aq5WwSqnlSPSM6fLnUdwN0a2/hDLixDLhkAcow3p3fC8R06Os3tildH63sPNnfubI6Wi0UTU+Scry8vhn6vqjHGxXJ5cufs6M5JiASbIwDoB95t+1Lk+OTOfuAX1/uxSbmqWkJTrVjzl6PottVVU0rrzebZs2dd140biypL85hQDS/5jgfXrDFCrD4KETqz8aGfBDNN7ICz+i/tj8vl8s7de2f37p+cncWmGfqBhc/Pz42+WxRS06LnVQl4ZXzVrS5kbr+0PvJcOxwOiNz+nwPaOtkx4whvyWhwFN29W3c+qhvnOk9ZxHlSdYz2zaycqginvTvOOREuFwtF5N3ON5kfW5BK0lO9UgSven/1Gr0sRud/HE2E2zPnxTGemjmCGTB7v6sa+2M9hXSoA+c3n91FZ/aJvY9oLID2OXr5QSYTcDQD/ZiNR/ZVszBClrcMEQBjJkMA70Nlwqrev9oolhkxuqQWeLg9YwC39ztM96KKEFQkZSzfkhlHph3MOmvT5dC6zljvtZTaxTKmhBQUdcreQJzdD24Nr2r82cro6HirSe9qXVp2sJCFsBFrWMGubnt+sgJrIPZguu38xJnON+hVtWILCApivYgn89CZQRDNvpu8z1GcmCmhoOKdHJlFmFEJzSsWAULJwzjTaHFZgpAiEgiIWnYGju7KbI+qTzuO2VeqpHVPz6AtUVFr6w0OEXF1cBRBLA8ZEQhF+ObmemAFEVINAhQggrUvwEAkIYxk0DpuJAQFKCoIwcgtZ5NsHRwKiIAQIoYYTPlf77aFS0gRSvFcOh7TZItfRkFVcj+UPIi13QAIRDGGGQ07CFRPVhBIBYBCUAwKpBiU4s0+/+aDD6+vr4zq0pwPyze33VZLKsBBEsuyBggxIkWnqyBCa+bK4PUA1q3TGX8ArLQshhDD2dny3Xff+Jv/+BNUCbZpQUSYQtgcHYUmmIttaVpYUyBCoNVqpTedYhCpYVgMoVmGZoGpVUpFcdsPqyGvYUOppRRjWixXR1DDB4tF264TJgB2+7kfOGdQTAqBVQprcvZgsEcGQgiIKSmS1opNrxoHAMIhD20pTdOYvhQRMF62GeXC5OpVHw5rEdF0rqt7gSiIVEre7bSUYnvZ8tOrz1GzMcbUE9//hIhc8pB7JF2sF03ThhiPjo+tzaWdyhBiCNEPSbX7ES1KIVAJueb+5SjDRodv/tLb/lJ9jZUIM4lqdqFXaNhHoT4Uklp2laex2CwScdE8zB7z0Ei0+OGYbjnTTyZvmqYtzvcOqFA7osutGDARqQZlhdmN6qUmp+JQ5fuLCIVVHbZ1EeMxKh3FidZFMsmrCDXldnQiBGoEXWdfZohYC5xbWKBb5OPDEgFZ2BQriF9nuNoot5a0Pt/vsS5eXtiDd5sRUGEu8qomAoBDMH90NnwlEJBQdXKCHSP2v1j40QxSJXCyD/MYnd0MVbXGew0VrEi1qlv84FrLS3CQMKZoHaitKE5UUIMIjFiqX0vnS3PwIof+LfeWiGg6KFXnm5Wh4Oe8jt9j3MYL4ykTJpd9I+MsgR8BFBWiI0Oj6aqjMgaDmq1nwNwQmzzgGuVGv7thm67eBRxEcSXt9i0YQ9nQ9VA9V0S7FccUIKA39asE89OtpyEgHkJGBzaLTzILM6AH4MZrCCIAMkIkCCkRK4XAKl3XKSWwpHEBUA8NWqFnNSd1MmUQRJVVGHRE3G+5v1YNIsH6S3t15m636/s+xKAFxhKrItZgklW1pg1oKVktem7AbwyjZDfxxcw5CxcWw8PBI0N+aBRy4fPL633XCdDo24mM3PWqVdyYRqlgFDZNG1NjtafGnyHMWPEMG94oKSaEBwAQHj26v1y1BtmJ03gpES2WixBwdkck6zYNGmK6d+f+Nve7rmOtpFFETbNuF5sYWqKkAF0/7Pbduh+aRSOqBNjEhsALUhVC3ykWJICogACL5apZrAqXfdff7PquH4I635h5iM7BQ6pkCMMsdonKoM+eP7+8vLJSFuv2AZ6NHCZLNDhDzSgEJ/dj5nGM21iUOZdh6GU6inVbA+mkBvzTliNRA0sw5L5Iuf/g/nK5Oj8/391cV1dnrH6p5fXGhjceGCQgRUBCEhGy2NghIoz1FI9PoRWT1/kpm1bbn3HUivbJiuiAuf2unaqYqvwx5gxaozdBF6i2t+b9Kg5uOw5ttA5DsEtP6tMbI3oOl+EBczNojknMJn/2s46QgKdcuCJ0plKdxqXu39qGxno4Zs6TXdwI/AUqI8Q4nRUJmIGIWrG6ekqn1JyqbxWpEtge7KDbr2m0dfbq1I+rOs7wCG9qXVJHTBDHtXoJsZnv9sPboheb+DO6SQue9mOR+en94NxSNb9Yxhx8mwMQQdHgym90GseP+x1jTCEEpMqRoqjWaM6n2BS8VDrCcRGnO9VC5EmY25G2/QaKJJhqjfvh09v/fNVtzSqvE4wG8a0JjCO+4sPAg9PhXF3m3dvnLUMNACwDZcydr/aci5X5HvO1VxFR1KJlAQEUYgx2HFWFpRTlmKKxdFpvWtfoNe44uw24wVTnbsrLQFBQ9rIeRpoGYQfWZ1wEQAORxYBFlVnaNoUQDMAyCgiAOdBfC7YtJuQHxB1hxKpabJLUOLGEWai4HmIRBWDmPmfTo6PqAhyXwXIeEECZi5UkuUA044UFEFAUg4mPADC23iWT2hgIEGtrtlC9VqysmNPhFu9v6MaorxxCbFKMySncvC6RRjhCnXzN0xuF2a5LIE2Ahw/O1qvV5dW1CXdREWYAiCHGZHYrqipRiJFyKUMplzc3l4+fhZuBs7LCqDVCakNahtSG0FAkDFi0ZMmAigqFixarT6UAwEVBiZRigKCKAGd37n/arEu3WywXWePldtBaKYK1fQ0Q5JylVi3PUSkR6bouUwZLEqzpP8wyP3YEqIo1NDmKrgPo0E9xPQfeX8sWHkL903Sax/1cM2oQAEWkcM7D0O33OfftYtF33Xa3nXt7L79ctLsMQOdPRvCcgwM/3lW33X0MdoCa2zrj15wMi5egW62oFox+KQKAJxmhi3MFYPCW6uaPoGowZXTg6bpEG/1IlRGjds9zpC6300cU9vtulrVuYkQcvflPdgYP1bOFD0YYA7TSZUC1CQDAZH14Oc1LoTrxVbL/3lHY0aq4tlr2E46rWDeSV2VWcQsVhXTyI6rBztm9EIHMqq4C3kSBjx5GCLnqYPVooJc2zOcPp/9bZKfmLKjBAEqARFL9OQWwlm1av2zAgCighOIgUD0kKjo6TqgqnIElQCAYCbDM4zETCBE0ALYpUYow7gf15XGHFwkAWYSYg5ijqpMCBJfxVL0/AGCviaWA0YzghmgRm4jBai8qU6ELaJ8tMyncTqwF8i+ZLooQoZbCTNbnDAABi6TeDg6hmw9VABEAixrRtXrWgF0ItYIuqk7KL5ZjhGRM+9Ab5WJh5hijIysMaNUpI83jiB2N2AGioDJIARFUQVESIB8zIjJLpKCWKgmWcuh+6uS+ISgCM+dhWK0pICk7QuvsOURqrKoGuVdgb9T39ct2qYmxakqCMgsRcxEZsjogzzlnWxoBy3vy2oPpXKL5osJcJmzCtHgpIlrTsxHQc7YAQAkEvDDZbLwiRZEUo0A0IYo4Gs4KAKJiUaWqDcjc+jZFj3aPLyu/UQWtfN8K1T/w01qGLJlXTXPUtld8HkDMtimSVbnvO6R2ppl8m4jqzc3Nxx99cr8NbQLCABQAoGna4+M7bbtITdM0C0srHkq/73ZSjhbHq67rc59DUIVgno7bQBZ1AGjbJYVmsaA3333n4urm/OonzHZmACyUa2mAs1AuAKmYcBAQ1eBYgsfRkAx6mbaPnSwvTTLEkFAki6AwhsBgTDl2zo222GoOPR2sriSNenp8mWgMIYTYjORiOZeLi6u//uu/CTENXX9zdZWH3o4t1RZrLlJHFuWqhrUq2nrSYQYkqlW3IADRYQImQg3HvSqGPButkbhPaPwkSgBrggve+pBoFVcgXkdyS1Dh6Oxgzd2bpIGTk6BLWEVVGIYsUuoZrNNcpwErSF7fANM6vmROjO9xyqn6QVBDNUdnabQb3F4YpYwtMVcEGmttDdWvr3rV+VMFq9QM5hdOhl69OXhh6gFOeVDscvgs46xOkms22XMXU4VvJVLVMIXFSFy5kIPJWAV1nc5K8SyHFB+jufnSlrepHVVi1UcWTOQZFlsNGvSkUQoYIsW2ac1zKCxB6vz5hIhzEFtnunoVmLzP6TfjM4wIkJ2NGMLxcr2MqQwFEc21YBGxziGIRKiiBAzoEqaaQWqeZk1b9eM9S8KqPiciEJF68y9D5G9NUq0DHodc3W4Y4a/Dk6o60QIgIHPp+x4AmtTgGHgWoGhr5pvJK0D1wHyoy1JhojERotrmNuwYI9QwGoAbXkBSrzHOvL9fCscQYgilClZrsDMeyrrBHJFAL1+ZsQniwVNrlXclc9f1wTMjkVULF4+kqqtDrK7ObKNPCNP8lyY+avKtuUpIhEgEIDTFqRzHYQC2FFgdj9XoopgBqPNT4Pwevm9Ua167EUk6JiHVWKsmtAgy883N9pc//6wMnfZDYLXEWysKEZaLi8t1Xj54cN+Cxzz6zYFSSk3TWL1cwjZSBICUmsVyEWKkGGMKi2XbNCkP3Xa7vdpen52dhhCu++smphATBQwQyAVAfSAMRE3XDZ9//nTf58JAoqXwWKOCo1Y92OHThreippxLzpld4k7rNErtad2xOomjY/HSC+uJAMu68LWYTMzxyvZGotC2bWHuczZT9ebmpssDUgQAKYUrYFu1+K1bTTvHPIvxnURo6Zno5TqUQkwpikjX7dEzNG49xm1pMOpZezMq3jr7dSg48tcf/sVUNc2MhJc/jONJeFlT2sidkar6qV+NCpgOvKVUbl9zNDunj43HxIkcDj47vmf8YVTwcztkYkXA2edvwbpfgYq/+mF+rzutzl/sAnl0XdCnuT7Q7GqjiEMFj3/hQSjbxjUzzKt9Pnq09ZHGfW6NbOxf4JJu9FoO9xaCwlRTOm4VRaDwlZPh0VY0AudIgYrIkAcqWUS8Tr3KUp3jKa+aUNfNiIogKiUXqayTgBoCtikFIAEPvnrSO4ISRKIQCRQZVBBjCJbv4kY7CFei+JEfNI4ydJ6LgWgoPfnuUR3L4VWFWSwbxadEzZD1yKKNnwjLYZ5fhQwU0GprBLxdq9uzqmL8scIi3lSoOh7BwwmiavQCFUqGlwy0iUTXXJm68hVax9nxqhFVVSilBIUIxFqxA0Ixss/KOkKThKh50JXF1LxXkXH5xukUFt3tbtrQKCiFoIiF2awh9LAKgAJpbcrhehLGMzw6NyGE1WqlNY2AWbxfoZIiASKFCIgIpO62V23kcFQ9jOCl5sosNcvUp0wViUCRVTCBoW1zwahW9Th6SGYjqSJik9Jr90+efNZJNwQGEBQBUTBjruv6lJIAUEAFESnofUkwxrjZrGV3PfSlbVMbF7aFKARRtRBsiHG1XDYnGxEpuTw/f2Ed3W9u9iklouMUg1FUVm8EFGhzfJoWi8vrmyfPXnT9sNis8pC5FKi7mhS0sHWk8VJAi9ooAWCT0mq12e13pZTZVpqcG6h+6q1zPJ7ncWOOmYpEGNEqzKZNC4eO3eGOhrZtte8xZ2ZGLpAzhIABo8eiwEKetR66ytcpQARV5FnrCLACe1Xv3m0ur4o2TXN6fFyYj45y3/fb7c101up4bg9wgscU6lbBScVN4n2y2F96QqrS/5WvuWMHkxmqAFBKCVPnNaheoe3rV87nq68/NyNefoM48iTGAzZqDsQA+rKf+YrXqHNe+r3WnDUhPbh3fepXP0K1R17x59lEKjgxivOuQN1pVcbATOKMVzw0Rm85ASZfJkXruVQjSGk/emoSzI+AeiL4TG3fejp1s3RaBXMb9aWaroMByYjOqPEOYkABKVJYS7RKn1uP9arLuHXih8ZTMbkUG4eoGkFrKRmUpDAmnOlNBVTLwg6IQcVyjQHRz3kNLVtU2FSHIkaDfYyjo55YAIAYa5x5UgduPrMFNWdZD+qWGKoiq5NzEQJDRaHdIwPVKVu/moNqEjxzWYQQxkik7R7xgp+qfx0TCY68G7X2rUQS89LEN33dj9OSzzbKJClFUCAoBERQRw9ETYEoKqGKGQtSAxO+4GO94K0YyaiboPR5J0OPhM1ioRSGUizxxLqXOB41ogcA1v0LiFgskbxGygwYICICESAi9OZJWMkHHdmqjhUCehtmWyRE8Pi5oGYp/WAJYvU8er2ooZ2ACGTZ0zKG9lEUBDgXNOtv7JSsioQnJ2vId2OwyHQtN63lm2brGA+XiISASEgKCXDZLspuC0qLdrNabQAAgES022+HPFxeXnz5GEBLIGzaZpHao836tdcexBCfPXnGzCml5XK9OT5qlouQ0oO+2wAQ0dHJ8f3Fg+bZi08+/3IovDBjkbnkTAAJMQACGy0XqTKMggW8CIAQA1KkUJP6J6BlXPrRtAEY/6Wg6uzt46+oxoQAPEow27evVAAIgGYklAJO9oQhhCam2LZN0waEYXtTyHB0qgOwCx4cCqJASDGElFKMcbFYxJRUyazMPPSl5IB0fHzCwqB8fnG+33dBQC2ER7NMi1tCy//hVkk1T8wbBfdx4bbfOQ5s5t++yv191Uf83gAWzfHD7rKq6pi5319lO5ircgupms38XG3PflaWKaPN5vYlQi0EuK0jqk5CdIV0Swvo9OVmY43yGlog9otXk4fIS9Nle7Hahxal9i93gV7+gAH0CGNV4O9bAy8no8p0PsVNap7qqIadv5EOkPCq+PUlvX8wKyZy/dIECkb/a9dWp9QYnziIklj5NbBKSKFpGq9oNV/Fc7Bu6XUvFQJztWtWto3Ls7SpJot5XEXLMOy2u5YiilWMTHBPjVNVf7w2XQJwL9FRx5r7Zao7olKdDtPNU/7hNNyZSWLOYbWLX7b8teSa8n24QXX0u1QhIEbEQEYFi2NOU7XTx72C9WHIk7MYCbTG2PlWKch8zA4bVMDdcGaLvVUfV3Es4/HoNJmEA+uCR6IKXp3iC+hepaJ3p6lzoHUTCwhAUVSMNedTdOi7nLVIDikqAoOESFafU9MRquSHCivZ846SXMz4KldXV1WT2QpobGKgCJBUdGKZwOkkmRWC7vlaC1VWUBbu+36ZYrX9zF7wEyu1g5vNrXjDGbEArTm1VcgBGl0fQGE1WQMiolwTAjxzOIRAlohhSfEUQJhEWsFFTOn0bkTYnGyW55/7yBWGYbi8vNjuthcvXuxurkDFXOGHrz14//1vvvHGG6WUDz/88IvHj7t+WG3WD9989Prrb2z2uw1AiGG93gDA5dXl1fWlSFF0CMh1iSJhiKmxEg8vFUC2ZVXArutyzgBQnEDbhmXlht7k7mUBMnmdWHfeKC0A1SlKxy2l6FGE294AAFj6DVsFYqD10dHm6GS53MS2xdSkmFD58tnT6XTCLTmrAEhEMaZFs2hSE2OseCEtmmVKCzPhSh5KyYiQmgbzMAzc9xmBYkhICMqFC/r13a+aP9X4E1deH62xlcqFQd7JbXQv/DEtHKAAivSqpK7Z0UZERRWs0TFr5NxbDuI0htm6KFkp5pijfltrTnf5KnfZlmlsnaOi1YLHUWbVqX5pSv72F6KSKIgLbKrq1o13FfUaTaiMu/NxIkAAYa9hqkptPJcwmYOvvPesxMxKh2Z5KIA1aIBIatxVOCmnus0d2gT/C0plLgLrj65sxTf+RvUDqDDBpXX6qmMDhBAAQ7UIEJz1QlVFC2s1bWuhsXFaerpGCNaVa8w1m4FV5oarijVi88M5FbCa+PUpNAubjDp0BAxhGAaKEJEQGiLyQCmgpXdaVqGwiFFI4IEhPLmd9ecIwv4bk9PVzZp/V1BwTBwq07hTS5K3IcUKrlMRYYDaRWE6UFi1o6UQsUhhVmBb8ECULGpLqKqFZZHMZ6Jb3rbtLvWclIkfatw07gGrMUEHW2nz83MeShlIFUCQoAjbOEspeRh0olZQRAyBAICFFQAIrZkEjGuDompEZ0SeqUXVjHQR7VWBgMwcLHfJ3FVSr3hWFvXUE7f6ZjtS3L0GQqyzrn3f+8N6+Fiwx0AppqUDTdWYnVlmIswSMJI9V1AVUIYKZQMQ6IyVDByxmEUlSKR4BUU1kyvgCQBYm4eBkFqfSl+v0U5AbNs2poSI1g3RtryqWl/CdtGenpxqKWmRmnZp1w0BF23bNYlL8/qjR218c7VYPnv+7PGXX56fX+733Xp9fHpy73q7v7i66fqLYchQjSeoiP2LFy9+98EHuWQk8IyGmYsz92IPkkxBFYBVylBmErwiMyOh7CsEt6rTvapaXq5xwTucr8y5cKnMKv+JMKkCQNO0m83Ryclp0y5D02ogRAIuVBtw4aGLZWchpcaaujSpTSG5G606DLlpynod88CiGilixFzyfr8vJXMpCBRjQ0SAaqsvUIkIDp/WtB6ogUQ+g7btzJGwurPxQW69Zh7wq5780He5NV2llALMIuFV8eXqNRGgEoVx/95WloeTBjN5Yn9ES4txleGiUtEzOHBGJkpGBO6MGa94+SfdDMFaSeC3OoRSJhQaD65Grpy0OgCobuuT2SbmypnPTSGomX1YORd1tpH/ttfBPPj/CBUPCGxq/vT0T5sUPjBQbi3NOJ3Ty9esuskwz4mvbzDtazoUwJidvFW9iLAqYSRLJgIy19ml6njq6whqUo87VIgTMRfWIfhuECVSq2QpClmAYrIYmQYcUx2Zix3ywkXBOQdktCuqxVOPjBJQrOMZjTmtlt6UZz9t+nHsqqoTF44iukFR9f1cks0/aopEREsplYigemaoIQYkKkPmUhBv70WdX2iW8XRL+46W37iuo3EswsxFlZEZfAmRiFg0l6IigUhVmHkyJvXWYXVTmsBZ10gJFQJSqGTKqjA5fERSyyLNhRWVEMPZndPPnj/JBgk4MQWMZefjovhDkafbVd9X3TcWEFUULKqlYOFSaWTnL/efNSASUKDFYjGRgFpOupJR3SCCByMqXDrZ/tO6mr0w8UChF8RDLlmULT16OjB12LXvrIM/thURiVUKSVwmQAIm5rFqXgHg9OT49HgjzIu2vXt6tlltnj5/9pOf/STnfHp67+zszqJdfuc7dOfOvb7vj0+P7t6/uz7abNZrAGiapjTNF18+/vizTymG0CR1yTdlMqsqTEiazlwwAgBEAqpolT2O2Fl0z15QXxmbmgTKwfZXYwlRnbKg/1PkoDoXNFnDXbKSU5t8MLDL/QtQPzaIgIjL5Wq9XqtqyVaVnVW1aZomRnB5gaqacxYphTmXnEvHpSBACHHURwX8pNwK9/jo1G+OQAHjYrE4PT09PjpaLle73fbi4uLq6rqUjIiixn09zpjAocp5eRqhDgIP6E3q51VfnutXvZA0GNbnoZnRu/hqA2gUJrObqPMa1YSjSX7CNEgHaGdq86WHqh6kjoGI+SnD0ZGA2Xa153DTHq3mEAORAOEIR9X6aJwu4mfdir8Ugplq4+mswGtVdgCmYm2bQt1L9Xkn3al1/rBuxVfMYTVnD39dVemrl80f95aDbN8Rav6KCrnzWj15V2KEgXRSBKozMO/AIFAXtepFMqSIQkoIGAKGQGE6oaoqwqSiimz0DmQcIlSDD1VZW8QQkUHGpiOIiOLtSifBDpWK0tStMQJa14sxtqqjqHV/2gxtr9My6Uv+K7W2ryaxXp5eW/Y6UgDRYNF6BVAQ0Ridb0hEZkp/OoQH9Qd1iseeR/YXIgrkxLDzk1ndaMUikrMUGcsAkLDkLKVEIGCWwuMA/NTZJ+tqEOKibZfNYr1cddhzKaiiyiMHQqjkHQFJzH8Vz/oBBGZOqTEqJlWw1s8vi5BqyqIJ3FH66HgqApKishaRXPKY+en7Ch1UscMUkEC1ifHNN17vur4MOSFBKaFplm0TquIJqqFwEAgUjPW67wdm9hwfRAhk3RnBcDGF4O2Klbl0+wyFVUSYLXSNAEQYQ/Qp8cxtNVIkUe1y/uLpl93F1Run907alWE5YDuCc1y0d+8+WC3abrcngJyH1WL55utv9X334O6DVbtOKd27cxdEn5+/IKRAYdUuAwUAIMJc8gcfffTl86evPXwIcAAeWtDBGhQrqqeKK5iRUzcZhUBm8AjzzImxI2Mzq68UPQeiw+Al+59M+3lcJrNCX/1x2zwjOSWoqnIubP6WqnfQAU+UcCMCMca4Wq4CxVyGwqzCYyJIm9JisbCGEDkPu92uFKOzLP3QAYj5i1gdffJ+GPKSt2qyCa19FFF88ODhd7/73fe/+f69u3dXq9WQy7Onzz7//PNPP/nk88dfvHjxbMidsFMbigfHDGI7MH/GU/7Kf046qaYZAEwaZf5+ImssejtiOvqacw/0q15V9oz/Hn+e326yGg88gcOXS0epnQtFanU+uiabFaPPLQD/jWGOYUa0VtV8VfkUDIQNt42VaQQ4PcLsoQ5uNL3ZdlNNUsGaWjLm7n/Vvv2KaRwnzSTvNIGmg2a42mwUMCK302Eab6yATCgAETBiICKiqOpM+iqoAIECJZg1oQcUML6X5Wq1gLFbPKgCBAJUCmATOplYnmYsAF4UjzVHTNHaB1MIAVSooIgCc52k8clVEIz4XwEYNY6xPXHKJ2+QjmqMVNaV3WLRM2dZRYQrCKLOgF41tM2X4NxUBP8REESDAg/DIsXNcvVUq0cgrulNUAfCEIKpHiAkaz1XzwvWPac6GQr2kLaE40NrNV/NSSUBFEVRzaz2mCoawiBFWZMSSlFWMOPSiDzqyQbEmCLFePfs7r17907WR0dHxyAy9N3zF09RZchDIFJFZqVAJvEXTRtiA0VStIaH2PX9zW6nMDb8Qt/nMskXsLpMAMtHd5I20H3fqWogQtUQKCCxNZ6rHZEsBxxphMh8FmwvgWoTSIlYuCE8Xi1Oj1fffv+91SJeXp5vd9sgSizEquZkKeRhEBEjPjPrWgmVEOxMokWTc8JIwMSqrKQQFElIsmDA4K0QUQrjLGlOAZDo2bOnv/vlL1988fgPvv7et772tdPj42HYA4CKlpx325vVYnH/7tnDBw8IsO/6588uUowxrI82G1MLbdPcv3//9M6ZKMcUsJ5hRXxxcf6zX/68G/oiHHH2J9vBYG2zTOYJglIt1bRTTwQhBFVl5brTFMDa0tX8NyUYUZZDo10ro4+oaI2bTv6OQw7/CSg0AhFx4W6/Q6KYOqAIRkFijYotjlw5GACAkNp2QRRVASEQxqIlpRRDKCy5SNu2pfDFxUXOZegHcCc7pJSGoS+lQPXnACClBhH6vivlgO7YEgrMGFsu1m+98eb3/vB777///tnpWcllf70FoLvHd++e3PvB9/746fNn/+7f/+Uvf/Xzq+urqmvHA+3Q4986G/O/ugulkzU+19D2g5NfTo47WVrPyM4FpoNfrSy1fkRMOk1vRNVpPaVWuspo4dl3UxeOFoeZ+BzRlwNXomLSLz3F4Qw4IZWxxFb3y99v5GBIAWt7KCLEQII48rypCYaZPTF7XveFp4eotuGkPeffRkByPkIAqAoSCUFQAAnFLzd5VqAwN15HuwWdF1rNcgILwWpl8ZxN2HTikJAAEoUmNggoAsAiLIqwXCy/8Y1vnBwfqbCInF+c7/Z7FQ0hnJyd3Dk5XQDy9dWLi3OPHmDNsLMkWQRT1zC5eX6oQQXUuIEtnSSmFIl56G1kI/jg0rsSz9Twk0ocd8Q4fdUBrWXg6gm3plfHd1rMG2Z1ZhWk+WqDsioFBBQuXAoBoGtPz6d1PU3jliITmhZpRiKYEynUQ3wLq6nJS4CzGle07sqAoEiKwpL7oUmtgAKhAAhzICK2CD+GEBWth7EiIRAtF6u79+++8/a77779zr17d5sYQ6DYIKEKDy9eXHz4wUcff/zR8ydfXnXbtm3u3bt79/T0/Xe/drrZ8H64uz5tm6ZZrvrMUxscAiSxCP/cHhwli6qmGKVwIOLCz589ExZEiETHm6NF25TCAgEhWJYAiogW1Wi0saIaIpHpThAQRuHNoklaHj147e7pydnJyZ//5/9gv9t98uknP/7xjz/6+LNlajkXVYwUUFVYUBRCtYzcBbStOZ5YIYAg0CgGoFXRRoAEApAZdiIyDL2CeVWkooECghLRk88//+DXv7o5v7h4+sVPfvr/e/Tg4f0jjwELS8/97uZme33TUGibBVHs+64MuWkaKWyGuQIEJIoRqYGAavFKgMvrq//6X/03f/0fftws2tM7p0fpuMLnzv2i1ZZUUEWZk6zMZR8RKcn4TlIV4Zq18uoM1dsb3/peIECN8xsY5hoEPSgIUI+tK1IzUQg8K05uLi/3XbdYrUNsQ4wBgwrnIUPFhqxtLRHGGBftwuq5YwhN04qwirTNAhCHgXe7/dB3pQyqSkgxpUXTxJRKSfs95Zxtfpg5pRAipbRsmphS7Lo+5+w5mK4D43Kx+to77/7hd/7g0f2Hy5Agsw4lCKmgKlMITZP+8A++99Zbb/+Lf/nP/s1f/EWfB1A1TuPRvvVLTvY6aBVhaGX3E+U9qD+yzAND08nxpGtVBQzo6RVkMXfzZ6ejhtXgetVrVBejkJw8kQO9g/7NwjtSk2XmymnMO5riY/WP1X54tfFRFfroEPtIZp7x2EjYFDiO768gOwKAqBrQ4JahN1wdB39rDskY21AsB94reicVgLdnwK0CBXPjcLyzC+Ma1oJRFZsJPeHqSAHN47PIClmWEY4Q3dix24+OapgmQpEoxDguJTOnNr311ltvvPHo9ORYhFnk8uLqw48+/uzzTwH0m++///abb8K+e/rRR5effSbBWoSLz6ajy2rbUhkJDnSlCYrRrB8N1mkdVRTJ8qXMYB+T1hCA4LAbkk7A/oFdU2Oi4OfDXG9RZjF9pgoqaHj3XCTNlAmoujIDta5wOPSDHmprrPm0XAQQKkUA4lhV5qPCGv8I1uhCBREIlECBC0PrDyEsKuJsvQjeZh3A0n8KF20XKopGUMWFAobiWFiMERBLKQwQYjhab956863vfOv9t15/6+hovVhQShADUIAQgXDx5hvH33rv0dPH3/rNrz/4m7/5mwcP7r7z5hvvf+O9h3fvS9cN2x31Wgq+8+7Xrp48RyHCMNZYuk6rsyEiNosmHJftYs/7iPTNr3/j0YMH2+vtdnvTDV2kEALmUvaZmc1ilCZFAIoIMRAhRKLQtLsQHbdhkaF/7dHD9eLBowevHW1Wi9QulsuU0g9/8P1/9I/+i5/99Fe//s0Hv/zth1xyQFARQi0gFIiiBbk9xYkqbOMYA7P2+dlvP9/0vL7Jq6yiTFhb9BH2/QCIIkoYOLMw89AP/fD4k0/zfkco2/3N1c2L88vz51972y7LpZBC3/XXV9dNTCq43/XPn73gws26qTY+qZRu34kyhYBEGGClCgD//J//8//7s5uPP/v06PgYQ3j73XdPH/S2G2fyEQwnP3wZnGPMFRpjDEjdvrN1UScf01fCZdOWd/fptlA17MYE3OR9TJ/DSWwBWkMQE9QhhKZpYtNEQkQBZgYRZuGC1R61oB0Rrdebtl0Yym4wrTGjNqlZrY4A+uvrq/1+V0rfNE1qFzEGBS0li0jbtovFouu6UkopuRRWgJTiarVaLJbb7c3YSNGs800If3Dn7L27d+/2/enFixPQ1DSqCgwlq4qEtglDl0r++p3Tf/zDP/3008e//PUvFYQwiLo3OqV84Gwu6o+Ehi3WznNVPbvlTWS6u0KTiqhIqN7Rb6Y0K3RmO6cu1e3X6MKO36VmxDgnr3eS9cuZx0DWLXhUk6BTuvBcr036ey4g648603DVpwFzRcByG1W1dpat9I0OCIMndpmOMrGpYybkeH2cnN2DzTpzvu2O/sHq1ohRHd5yeG9N3QwEIkTCKGCxG7Xxj0Y8TvFyz0/xEdi5NsOANBCkSrxcp0qUangUIBimIQzMXAaQUsldVZlTCA/fefvBw3uBCBAohqOzM6GQRQDl7a+9e/fsznB1ef18TU0DMYhlfUBt33nQkMpzMR20NHpOj7i7Wa+qwuzHWMf6ZTS0xNC2yZKCl9sRzuEllz8GEQu4+RZASQVLZmXxBECZJg4qmjSuE067z/42xj/4lrds2tbsbgSHoGOIBJgq4ysginFIIRIFLqJO9wCgKqx5yLBSGFmUva7auKMnAM1yhchok5VLGUQ4xZAGtE1neB0ShRjO7tx57733vv7u1x7df7BZLlODyyU0EZhBiiJiChAR2lXavPPgtXtnb7z+8Pz88s7p6SItlIGlICaK0sZ47/6D7fMrUAIKhhdMTQk9ComiQjpmXigBAkubmv/Z/+TPHz7YcJY+c5YyZO72w77v+8KPvzj/0Y9/TgBnxycpxkAaYggUTk5OEPTi2VNSSUh3Nkd3jjav3buzWS0XDUVQBCl5oIBt295b3/mTP/nhycnZbj988uUT4Uxeti01qx/Nu4pxDHO75YACWvjjX32Qnl3p1T4xZLPVqHa858IlKEu3213s9peXz/e73c3VxZPHnypnQmFSxNCXYdt7813mMmQGgKZpIsVu1794frHf7dfr9Wa9aZvWurMI63a767p9alO7aGObzAP+q7/69x/iUlSvr68++YRDjHdfe4CpoTEkMzN6pr2vVn1JgKDCSrRYLJxoCcCJPxGIpksc6lisdux0BGY7/GDHq84huFvvRKgtsBaLJqXm6Ojo7p2766MjJBLBvh/OLy4vLi/VvMDZZZqmXS5XiKhStFiOf85lYJFhyKlpKKhKpgBHy/Vms2nbJQCVUoZhQMSUEgAUjzJjzkMeBlWJMcQY23a53e4BRq5H+LNh/3/6zY/DB/+REGsKutu5rm5M4CAg0ts/+Hs//sGffvTJJ/tu546fIs74dA5TRxzZmqVf4YGQAlcQZjQTuO+sFtenKVYlIn4775uHL1/q9yxExdVsBIfT7YrLdKG1xgEwVnxLxkXDRwEMgTRzG0fJqiCCDrMK1oPvyIABj0ijEDUkVlUrVFiTC8CZQGfW32gfG0yIVoQJI+CAo78197vqxHq+jitLH44oko5rNHfKjS4gqPfnnbodmKhGt5FMBwTLchSFAB54mEUQoEIUJoqd4K+q/hE2qPRpaEIcVKUMkjN5yIEIdblc3L13tlimnAsShAY2Tfvgtftdv18uF3fv30UABhAiIYJRhYmpvMMhzaZ2HBA5rZWVIXEppQzZeyiQYV5AREAgMjnH9nDyCgV8uPfsndaSdvytwd851yYDKk4XXvfLuElvHZRR7GGtmnoZcVEAEen7DgBDcDpPRLAE2oqNz1feWzPCFJtmq2xRFUCqqXxgR/uWy01IWHnVUTVYcogKWhA+hNVqdf/+/ffef/+dt97arDcAosAxhRBABLp9EWbglBYEwQ/i0VF6//23nz7b7W62yiqiA4uyoEIT43K1srOvtVTFGbB8+Pa/GpdURYRgZoISFIQcFiG2DfQKqTFhAgLw8fHJz372277rOx6QcL1sETSm8PD111IIH/3ml6Ry9/T0+3/w3W9/873NahGJYq3nUxEpmWMgDk1Ib7/11h//YJd/9KNsZZQqANYxXK14NcRINayLVZIRYorx/hsPe6Dhk48YAANS8KJ9JBRRc3qfPXv2+ScfX128GPpOZRAeBKzrpYfNrq6vbXlYZRiG3A+ExKUA4PmzC2HOech5SCk1KbVtm3Pu9vvn58+btllvNsvN0vRlP/TSNhCwSL7ZXn/66cfLo/Xr774bA5It+kvMEnMfTBWYRZHbtpXiWejmeZnIUFUdc2JvS/JbpmX98ivfAn48mbH+Sc03iDGulsu7d+6cnJwsl8vlcnlyfLI+2hBZiSS99uDBr37zm6vLC63trcwoapoGLDbMwsxaSskDcynC19fXTduuNxskXa8Xd+7caZu2FOn7wdo9pZRSavJQVBAUY0iEtNtzHngI2RzRKkMAAAOFsxDuX3ZDiLt2YbKevNLY/DBP38NuH66ebYb+T//07/7oP/zoV7/+BcAoTb0NxMsK0UTEfMZwnh5cvYRbXuPsdy4nKhhTJ/z3vkbpMnpsZt67QqobdbZZXv657oIalUdEAY+Djs6fw+H+jCIK4bZM1ukN46/cMUXCMEe4X34qNGbH6hI5SdLMjzaTxVJ2wniPaeLQKmb1cJJn179ty07v8X85v5/ZSM7ugyosiIwUyNXHKywh+6B7+Orh/OnW033QmjkKcOGh73eSNxQjEFCgpkmLNiFCKRkCoErTtEfHy0ePXjs9Pdps2r7LhUvhopVwECtoXg01O9/mtqtR1xJQtLykSn6kgMyCmq2vgQIgCNZ6SCRg6wEjzq7iHvC4z6qhNH9+ByrUgFw1JnSbVCil5JxLzhZbMnNJQYTZPjXaqwCO0RMigAoLRAsocA2+WBokBiJV5VKYCwUIofaRqG57Xd266mBVM1KkhEDGGSdShAs42WGrWNmiWHUEsGarKJmzCquoTapNt0IM8d79e2+//fa3vvn+G2+82aYmgKJCSqFtIBCUXoduIASmKeXJzmhMdHKylJJ31zdcuGgGVKUghKltLC1YCVlZTXdpDW+rVQIBsIAoiCJhm9o9hrzvn3/+AnZ67+5xxzyQnt1vRIFECTAMSoMEIpK874cURIAxUWqb1aINCE1MX3vnna+9/fZqsWhijASEaJF1BRIhLkpoCeD85uuPbrbf+uUHv0UVFS7CpFxUWj+XqKqhOsWqrJxVRQlfe+/N5u1HP/nwN/3zjkjZzo05czEQ0ZMnT54/e3Z1eTX0vQrbdtTqddqRu76+hip5GbTkQS4v9t0eQbfX24vzi91u17btm2++/bV3371z5+56vQohNCnlfshtjkMQL4kWCGbFKAtfXl38+te/vBn6k7M71vbD6ygAEQgEATwqaewDI6JTSpGJ2tDNv1fKo5ngqbWhZpXp2Gq8bryxTffhiRNhIoohLNr29PT06Ojo+Ph40bZIJMzdvkPQ8/OL3W5/cnr2ta9//Tvf/Ob+5ubpk6dGTWApe6paSkFQ4eJso+R0CMxlu9237RKBQGHoh77rc+ZSCrMiYoqxSW2gphQZ+p5LJoptXOTSSwGViRxKFQhxs1rfaSM8/fhXD974f/29//Hd07PX7r92dHS8aBcxJMS4Ojo6OrmDTdv+t//84f/xfx9jfOftr733jfd+85tfsUwxCrO0J/fsv89rgvTMLQRPoEE/XQG86QhjvcfLev2VF64ONY24LgF6a1qcSzgAj4sdjqe+YVRfY44VIlJla4Rqjc9VXdVnvjUmjT9LgxuxHPBOfoKHJUOIZIX3qALCit7c3R9cFSaItd7UYr2iICqHlNoTPO5z6LYI1vxt9fSbGapkwCyhqV5/KLeByLEE88HVASE92AGGoAm4e3qw5D5zlZNMVfu+391cHx8fN3EdkWKg5XLRLqKAKBQzBpDSahUUl8dHbQjAhUIMtiCGoagqegb0uF/A8lxJKKAPhQAjhrFaxuBlAG9Ta3ZHgBBDjCEwAmJxZohZAsLv94BhdLvNHKh+mmnJ4qrectXM6TcOQ1HvFThNpIzxGFsgZRFmGqUsAyqklCiQcFHVmKhp3NWCEaUYN70Jr/pNx5DGWL5cp84tBhEEa6pYwyHeWR0VNJecS2aVEMjaXaloSu3Xv/b173z72w8fPFikFBBDoCbFJlEMAAJ9X0ouTQxgDQzVjgQgABIsFmG9WQ3d0Pd7QaKYQIOEAKAxYLtIIaKKIjkzRlAUsa7ppJVe38yaFENABBYeclLUPV9dXtOm6ddNKQzbcrJs91/ucV9ee+P+a++88duPPr7cXlMkQWDUPg+Zhzt3H7zz5httkxA0IAQKIQQKkWIEJEViBah9HEMIb77+xtPzc/jgN6VYHwJlYfHcGz+7ZiizWOUWZ2WOGFbLYUE9lkal67vMIqVw4SYlZn727Fm33yNhk5IIDLmwHVpPkkQV3fcdmFEWAANQJAHOZQiIq9WSEGMMpRREiYmOj9fHJ8eISCHcbLcpRq1c/IhoDcEtXjSU7uLihRABwHqzDiGKOFzmavJlXJECIuScdewr7u+a/K3pnNxWHa8S7qPkcmUBlrcCXgIFRJRSOtocnZ2eHR8fp5RU1LOUAbFoENleXj7+8km/3z988Nr9u3e/9tbb/XZPVc8TiHIRLqBqFXpIIUYUYxFVKcy5FCTKw3B5eW34FqLlr6RcsoIeHR0R0cXFxdB3pZQQ4yKEECilBCBEsbZ6hcVisV4vAKDEdLk+gmaR2lVpV3fv3KNmKYrdahmO76T1Oh7fAYBAYbVav/7ojdS00uVJ64BpJiUhC2ZOeOq4HGAhqjqXlRvSRJJpHS+1UOOWGbtTYHWFFVDMIR8/Pi35geJ0+WKqgb2Pr0UALZUQAQig1v69tNSjfhod6bphjGixArQvjwDxpZGMj1w/5PJVRoAZZrtx/gkjPxBl9LDxTMdXWigS5630pAEhFiZBEa4q9vAJpu2sokLTBWum8vilFe6e7357kevu8WLoDEJuqVjmXKBgnIRVoIMKEoQQIiKB8eEaHiXMpfT7rtvummZBLaYQlsu2bcOuLyIMBKQaQGNLIS1Tsjwv2zKEEBS8eQI6sdJsYKaig6VFewtCQ/VKKSoK1rgshCDs28bbnkI1iGzDjHXwiIi/TwFrlbFaIQnwRiLq+TxawDW6qLIiI4ZSCrNAonHnI/rHMKAqGD7MXEQkWnRdnDmSKDSpVYCcOQZqmtaSH6Eq4HGfVrYnW3FjIwafksocUXeIfQDMmKr2MSBQoLBoFyk1pd/3uWfOyRw2AEBcLpff+PrX33rzjVXbRIAYqIkxxmjszWXQ3BUQQKvHrgbBCJNEgvWq2S1Xuz2DcddoUAFG7MrQD32kEKRECikFAh2KqFIB7+493/JkYpXLxYvzu0cnKHp6sl6cpK6Hm/MBzvuA3H9yFbf50d2zv/8P3nv3vQf/5t/++PGTz5SEmtgPPQS8f/fusmlVGFUJKYQYUgwhYggYIlDwTA4mxJAirpbr1XIlqiylWr1eBefnSrweTsXhhcwZglIiDKgiues/+uB3H3z4IQEOXddvtyIsoqXvIyikgIgqOdsWmgNXiABQmPshA2FoU6IQkJC1CWm1XD169Ojk5OTBgwdnZ2ebzYaISimLRWvW/fnVxdHV1ZlfDcfoFqrm3L949iUQLDere/dfUwVUJZExufZWJarVXIYQMGLTNgqgakwaOhdIiGNu823Xpx48cLqclzC86qiBBfU2m81rD1979PBRDHG73fb7LoQAISJACHHVNC3RKjYN0uWz548//uToveXr9+7v3rjGkCreCLVKQqVwapqjzZGCbve73X4fc0GyxsYoAkPfiyoRxUhWPopIqtI0CXGTc95vb5i5DW1KabFo22UqPDRNW0oxqGCz3iyXCQAAVZRL4a7rNqtNAIohAFCkICVz36vx2gOmEB8+fH21WOz3V7WaS9UFVQ33Wj7Z2JwGCMHKni0B1ItTXkIRzE91TMnTgDwahqooUhNkKrro+uQldWcshJO88bThufeCdQnRhJhdwzSjNVCvAVQ/zoY5Gx5spUv2nacqKZgd/bEOpbIcKlcP055dLOBmxcRCpACsHJyhHgBARHLJuQyqrMpetTRajRZCrISBIipSWCgoiZTCyiBub+A4G3P1qwoi6ASJXhKqwmC0gcqWHEs47nL0zp0wo/+rXotfvYJhpvfGcB243aIKTjZIVCM/qiqkAszAhUveb3dNu2hX60DYNLFd4H4QVSVQEogITcQUkkXvkISluNsvtbkwEmqdf18rw3hJgEQhIIkIM7PRZBKY9XzAFYNgGcpcVGpvUF/26s2/WgFX9MOsjkq8qSC3iNxGw0fEkpcxYM59KQwQ3Ypx077G82Wi9RdRLzECd50DhbZdEkZgCBRiSIhkFLETbALgR6imMXg+vaK1WbLdChOuVU0JAiEVhIAkQCAgWSJSDEEBsrCAxhDGJT06Olq0d5vUeL2JpVArkAJaJyIu1Z3X0ZDDei5DgLbFRZsWy6XaIUNSVkHKitfbThhIAgDV4jDH4cfYmTsGCKpSShbSew/v3Hv9BBibRdMu8PKJPPvocrOHjUi6zClzQ5gSvv3OyXevvv6r3/2SUlgfrXfXJaS4WC2zlJwHgFX1BhApGBaGlj/MGghjUAQJsSCgqhRhcTXmFBIOhIBH3+vPwrnwflisVseQ2gIXF5cfP3/y+cefmHoLRkoIqpwJtWlSSoFQ+35PSEjBOvViZYvJOe/7rokpEMWUSGG3317vr5aL5fHxsU379uZme7M1FCGERBRKKR988MHi2bN3rJ8SAUt1MxAVpJT84sWzjz78oGkXp8enlkfqOTweibXNKoqABNaVMqV09+7dy6ur3e7G9jvYlqrBkXrkRnRxQgfd0K9RFIBJkFV56NSni8Xqj773R9/+zneHvvvd7z78+pPH93fbtmlDCADapuauDJvVstP+aYTn55fLX/7knf315dFJ9+h1RmhiCIEChbZpA1EuGYnefvPtt958CwjOL86fPX++23V936u1R02kBVEZFSM0DTVNbJqm2SzXx+sNEKnI9cUFKMQY27ZtF4vj43WR/OWTL40CMIRwdnZnoXmUB4VLt9/nnIc8IGLTLgBUuJQyqBTb1gR07+699fro+cWTSZ3Zn5AIrHcIIFrIdHbw66FGJ3gyUA4qkzZN+tuuh+hsdDWoOV5k9LrBHbVaXeom71hEGwCAgDzveBbrn6hJqqy1KcBZpOFlHxbdg7d1n5y/SZB6f+pRAbsMNu0rBjDK6Ge6FkBVIizKIMwiUdlAv5HwozAHtxFBcJKnLr90PMTC/qVAFsL0MIFLwVfEubX65fUXh5799JAwrbbO33lotI5naDy2FYqYrAezZzw4DGJnG7zBq/Aw7Le7zXEmpMWiiQFSMho+9th7AAhQMbzR0wSwwSgBe/Y4AgagomRlPgAKQUcvXlUs1cUPOIztYBVYjAoTEIuKKLJ11jPnsO6jvxWC/gocTUc6e1M/1axByH0/9AWP2unjavVmbg96TyQFYUWo2lUsLA9g8BEQKhAQenQdWHViFkV/SHKty0bVNOpOrZEGF3JYI3EIghoIjV3ZYnsm8Jk5l7IgRADzy1NMIQRmHoaMGEJg5QyqhBADpIh2HCCA56OPu81PDRBBCBhiTE2zv9mxckDSECCgEQPaaEvhIrlwFmEWA9BwFo2AXLKgrjerN959cPJwodnMQB263bPHXwbcdDrokIPaVCkRnpwsUxMoUrtaDP0+NSmmyMKsbHQruUi3vcrM+74LMZ6d3TvabBapCTEGoFyYuoG93bQKYjagUkfhUimUVSrIgDzkz3/6wdHR3bMXw+p6+Czf9NttE8g8CEARFRARLpU9JSyXS8sxLlnVGi15JAX2XXd+eXG02rQpEWIAKjmfP3/x0cWliK7Xm3t37p6endy7f+/evXsnZ6ftgmKA88sXP/npT970KLKhPu602MaHgCLl8uLFJx/9brNcr19/Q2GUdHNxAapqlT8G5KaUjo+P+74rpVRDa/yav6Z/ujkVAwVSfgWiCPUoE1GMzcOHr//RH30/xvTRhx9dX9/8l59++D96+sXvOZsAAD/99//ha9/61T/6X53dvRtSatu2adJyuRRQZn790es/+KMfvPn6G0C43W/Pz8/7fb66vr66utp33TCU3A+lsBX5xJRWq0XTNqvl8v79+30eut1+uVhKYQJyGswQQ6TFYhEC5Tz0u75JDRUGACtpR4TtbvfxJx8P/XByfIIUAXG5Wp/cub/JGQCUpXR9orRerWEWA0VXwK5BLT8RiYQt7dzs3lfBsr5YrwBgCXGxWASEvuv8N0QhhNoR4PYVTPHbWqSYiELTtJl5wCwAg7eEnq3dK4WjHgAkAC8NTCtCJ3PPREEVvDfNaCgAVK2pqt4yRotIEGEVtqQac4y02vHMRYz4TMwxNJxQEC2PZ8zbGsF8rMMaQR2cWyxV481m3yF0h4R9+m7jR3Zp9EQRBcv7pRkmXb35g+CP63n0En+sN7fWOM6ciP7LqYoZEI2YT0FL6Xe7oe8RIMWIZP03UdQNMsMUTVxSCIQRMbg3DhZMHx0+jxD5AqF735WygwAIzFzzKUGohrVHCSbX8RWdK3+vAlaFOqMyWys0pM/bHNa5rD/nUowTf3YZHZ9IFdRKgWXWqghAVbkydtoM2JkMsTZidpRPxw94u+jRxa0G3biuBkZXDBCRUBXQSjaIFLEfhiEPBBgEUJWZWQMQUowxBFEppZQSAjrbZfz/U/YfvbZlSZogZmZrrS2PuvLd+7SL8IjIiMxIEVlZ1dVV1chsdlcWmv+BAwpw0hOCIMgRCbLBAUGC7B4Q4IjTAgmwqrvRpbuqGNkpIkN5KHcPd39aXH2P3GIJMw7W2ufe5xFEkQcP7k/cc84Way8z++yz7zM60yrTQAhGoyblUCAqwnvMf9PF1FoTOaUValov14U2vrfg2YMlGbTRU3tcYjgTgciukGRMlDjem2b1V3/1A4UC7AjR9u7V8/OL11d7ZrKnS+f9Mmw8eQF4+vTkH/2X//T1m9eAUJQ5uyqPhQhzWZREanE9v7q6al0/mc3q8fjtydsnXzy5f3z/W9/8pilMVJMP3nVtiwLiA5ME67zznGDnNOYRBkAMgYSBlVyenHz59GR1ftlcLyz0KGxMJqkxDywc3+X73rne2r6qyslkIiwNM4j4IGFgJvfWXlxeBBeqouDAdVHWVWUODu/uH49Hk7Io6qqc7s7Gk/FoPCatgkDv3MXV5fnFeUpubjp/Q+4ceRaIfd+fn51V5bODvb2bPQRub3/vqMlGhnBRFMaYEHi7LQIgDrn07V12u/9GuutAVrn1sAw/F39YKT0eT95///3JZHpxcXF9fV2WZZ7nAPDk4GgxGhGiVmpUVlHKm31gkeL6aufJr2L8Vorqur5zeDi/vjbaeO/GRfm7Bwe/PZtOSAmIFLXfzwlV4LBarZqu9S6SMDB4b50DkKIokLDru1JR56E0alEU3odYxSuty7LywYLAhx9+mGXmk59/ykG8S31QJCSlgfHq6qpru/c/+NDo7PLyqqpqlRXOWgBwzr5982a1WpZlFQG9CBHHC4qISXANUESc8yE2p0RRCsBD4TtcwYgtv4NDDNsOEc6mE0RYSGxNsQhorZHjYNJthlHEZ9CYrK7r3d3d3d3dLM+yvGi7drXajMeTwMF5j6hg24YB2OLMQ0iBLUosQ9jc/krliiTAT4hT7i5pvuPXTiEhfLEvAIMgSxxZYvFxrAghMc5wyEIkLmlmAHULQIgBZdB92caJW2s2XoqbA9hGXrlppqTpdUlROBrFDEHz17H8GEVx22jZ9rPkK8/CzR2VOIwa41VCNH792YlwQorUUcYj2ushAAdnfd9vVUiGn4dhhHLoGWJE5jTiDQccASCSMQEx2rlGKQ6ANBY8zD4IIhARKUmwjYBIJGxKUsmO6B4JDbdFblHnfi0Ay83tiH8QTIrKX5EMT7Vv2rr41t9wCLZ3MIRuEdiakHBg8WG7EJ2zwJzSDeDAjAOfLU0oYRwCJsG0kcU6Rg2HEY9oG6HhVp9YBjehiJemjS5m2XFxIjj21nv2gURQgEWssORGFznSML8UQaHE6MA4KMQBbc95lmXaAIOg/w3JsAAAKE2kCAh0ZrQxzvqr62sXfN82YAxmhpAQNCEDCoNXyIFDAEaJFnixx8qIEFiurueuXxXEpaE8zz54b/Y7v/1wNt7NdPHy5emrn//SEq8a91ff/9GTJ08ePHh4cj3PtO6JmMN6s7lEXF9doXfIfOfo+Gsffrh7eEBKlXn+sx99/OKLLx/dOS7vHCokMWit7bo2elsn1ZLeRQwiLS9CkcRCB0RmBq3vvP9wx8LnT768Ws2XrrU5scIkBBN7KSzeB+89AFvbZ5nZ3d3JTPbWuc6GJGiACgC8d1fzuVYmNizzLC/yQlXkG6uRJvV4NKpzU6g0zAwg4rxrbU/GaK0hPUCQ6m9AAkIkUAoQObCz9ury8vnTp5vNSsU7EJ+ytIQEQJzzSllMCWccJNVKhfhQKKXyPNdaM7O1lhOVaXjzsOtg0idHjHVOKhYi2TrJLBuT7+8f3D0+9s6dn59fnJ/fu3cv2ir/m2//3i8//Eae6YOdnQfHd/d393JtbG+t9cc//uud/+J/DwBI6H1Awgf3752/Pdk0GwJ8v67/p//6Hx/8i//nbe71ttiJOyHeNBRSnbMFkAAghPB/+eD3/1Ux8cFHqJCUQlZEZme2953f/Y7veT1f9rZP25aQ95KpqGDq8izb3dlbr9aLxeLy8uK4awEAhJ1tizw/PDwsi9p5ss4DotYGEJUmkxkiFXc6RAXiJE6+3XhmpP14yNcBEIatQxBBKRJB71kp2tmZam26rkuNHsaiKOK48/Z6YAqjVBbl1z766PHjx9PpNM9zFrHeAWDX9d5xCNxbS0QhpCwfERP4GKl8AgIQgoQQCDGKEUuU/1UqevikgefYNh06OPHQB2LWOy9OfrZJoHDrpc4cOODQHBRKJKIoQRtu10XbuIrbLAG2vKBb1zNtognGjwM52/H3X3/FwmErGXTz9/JOCInaWzAsMNkKdQwhbRvOh7cnVDVepSFXEJGwPfch7EAqWggAUIAIVJpeQPQhOGdxGFGigdCnlFIqkU5SqiIC76DgIIjJIQeShC/iAC+nMh4geiNEusLAFRCRECKEn+bNIolEGxUQ0FH68NhsBBRAfft5+40vjHvrTcBLT2+IVkYpFRqGzyM1K7yrsCFD+sLMEmIe59n3fZ8pVERDeS9D+ZtuDnPAoT/PwkP+NfTx0xLaQrV4+6H6jfjQzeaKwCI+OvfERYEQEJCQRyUVhQCE4BUqSL4gwt53mzY461xRFblSqJXKcup6R1rnuY6Y8+2ORzwYJMUASuvpdOp7O96dYWbatiFNpDIkrUgJaGQBFEYgFB95TSEIC3PwLEEooL774L0PHh3vlGK4efv66abvPvjW+5P9A6F89Ojg49NnAdx60375xRck8o2vfQRPn7Fz4L3tu8vLy/XZ2fL8rM6yv/1Hf/Nb3/jmdG+HFSHC3YM7V4d35pdX7Cw7T5lhluVq2fd9XVWKtGeOrDeVuh3ALMZkkZDPAIHFCwPi7oPjjx7cffbLz7725nTatp/axUtuRZCIIvbhQwjeMzNL4OCvLi+jMcBoNOJ1CF3QWqkBnG+6Zr5cxKc6N3pUlJOdGY1BkwKFoLCoitF4TIpcCECYFXlR1dPdnawoACDpFDJE7gdFewlQiISK6rI2iJ99+gsCrus8cB+8l9R8lKFmZud8XDSxL6hIawVCYox6+Ojht37rW7PZTtt0n3766WeffdLbLpbZ2w0Oh/2MCQeK6LB4JSXQWuu6Kvd2pgqlWa9Wi2sJPngba4AiM+O6mo7HB7s7eZaBMBEVeYHS58bEA8uM0Yo4hL29/b39/c3zDSKMymLabIpm3Y1nsTIYElXYiufdeswh4YXDI0SLa+zasabcGECIAqKEalSP7997oFV2sH/n61//5s9/8lPlmvhmUoq0yrIcEL3zGlVdjY6Pjjtr9w8OitNnAKAUHR4cnM4vv/Od39nZmz57/sX3//ovJ5Pxt3/728ZoRVgWOQIyB22M1pl1IYCcnZ7+6tPPetttAdGtbrwACAIpVEmOCvM8A4C+t0RqOt3J82I+XwJQpPju7O2tliu8uNx2i5kFAfO8uH///uPHj4no9evXBwcHeZ4v5vOyquuq8i5sNg0AlWUZMR+IXK+kEcECQojDTEhgF4J3hMBhIBdzNEjdQokRPxZhjiXmNqAAbOs2+cr+LLcCFQ+Su7H+lqEiJwGEpLIQYwDSkK8QAgpFHpsI3lqQ22W5hYC23dbbPzJg1ENDJ+2oW1EwQBQSIeHUoUWOLTpGRmA1tBS3mo7CktyM0zYeA3YgudlNOYFuN6d5I82MGAMMIgnFcU4kpeLsrGwVywA4iJCgRiFIs48CUb1RKdEmqUhGmc6QFBajrU4SlrmJKIO8Gt4CLRPqOjRnZcsOSW0ViR5TQCix6gQkRD3I9sAt3Ri8SYSHevTWd2y/6BZCl0CReKVvIPltK3ZYRiLCgb1AQARvXZYbUMAkQBBABAEVCsb2NTAyaUKNsaUBICpC/smKWQYy9E1XJb5IKYE0o/+VXebWAoIgiVUWd+kAorSq6pJM5pkhAChUwMQ+2LYPVrwNVoO3xHVdV6RBGyxQM/CW+RFLxO1dUhrKwvS96V2PinSW5aMqGNUjGJFs2+3gQTwOEAjwljZifEwCqI2D86W7680ERFz7+tWTZy9fHdw/Gu8fMBJkZAoFJIVB4HB28oaD3ZmM7abhznFv2TltzGwyvXd48PD+faO06y3HRkaQ2WQyKcoyz4Gla+3pxcXJ27eTyXi33Xnx5k1ne0lKpsAQQvQQUppJOSDLZAUUoSPoMMBI46w4PNy/X0+z/lpfnVyeXzVd55mdD1ERYtBXQdv3r169yrJMKZVluQ/snYuXMuOw3ze5cBlsWZTGtVr8aO9gZzqbjseT8aTMCkVIdtPbnvteK1Xm2Z5rHxqqU7YaN+rtRkKIikApZfI8H1XTPDPNeokoZVkB4Hq9avsuBVAAEGKBEBiHGQ+jDSlCL2VZPHz06Gsffvid3/nd9x6+P6pHr9++/kf/+B/91V/9RW97AiJSSDqyMxghiu2JAKFQ1AccTMYQsarKOwf7u9Ox7RrbNNL34yIriKK7fZmX47JSAsv59fXlRWGyg/3D/d39tmvn82sA0EpNRuNyXHsWo/XR0VHfdW3bTkZjJOpG03/7P/pfdtP9zJiiKIwymdHaGKONpDIOUJFSFNXNSFFmDGq197/7n5ff++daqaIsyWtByLI80/lsOimyIs9zDgCIzKJ1FpeqEiizHERs3xsydTmqqiqEUPtQZkWmDQwYQmbyR48ev//he3/9g/Ljn/10NJkd7B+xczu707tHR+1qc3l5kVf5ZLaLSnkBpczL56+ccwghKstG1u0AkQKAECIzE1GWFc4xB9Q6K4qqKMq6HiFi3/chuN29/aQNcjMRgnmeP3zw4L333hfm12/fXpyf53l+//79qiw5BGBRhB4ghFBVNSllnfPeRYwsHUWUSQBRBAjsvWfnkAPFtlfaNLdYgwyJGSKgcJAk7UdbhR6WwZVTbpDRGDIYBvXUd6J1EmcWBBEGCcIBRCdRlGELjCDgrU1RZNiik6LhsGenqHO7PZu+5RaHeTiw4bNkkNAdasp4sIO++bbcla3okAz5zACxJv0DkSTcnSq7wUYFQtQc3Uo64HCYggikVZarPCdyQBTr1xAPlFAZDcMgqkBKtIkoy4zRWqmtuNDwVUMVla4GEQ59XESJXWAG4RDp/RCSaMlAkYuso0hhT+gXRdB3kBAFfetgftPrJu7+xn8esqRIogqBA4uK2p4whG9IcAMIgBDCkBCKD545miwNCFi01yFh4KjySUZFGbmoJAUpDYmuI+FmZSUZkFtIwm8+n5TJpLVOqIwmo0WTQ7HIeZ5lZYU69eEhsG1bxwEBiWg0GlNVWPG9pjwzcbsyGTn/7iUZWgnxopmMyiLzzgMgoiKtgyLLggKGABQIhxCJZHEMFwYJt/hiRCZE7UVvnFlZvY+otBlPJra37IAgQ9RGKU1qfnX15Mnz6Xj8W9/45jc++pp69hxCIJG6qAgQA09G48ODO1mWe+eBFGaEooLzILK3tzeqa+fci1dv3p6f51k2GY3btt2ZTdrz863CrACwBEHQWVGPp6CzrMiZNCjFIJY9EIAmEajK8oPj2eT48PztWWPtRofnJ6+e/upXIXgRYAnArJSaTqdd17VtozQZpRRgxgIAf7C8/C9+9v/GISkkxK3FctLW2gKqKXcGQDwM4XetLZp1XCUCA06DJABIRCbLirKqx1lRIWFdzwBCnudaqcVy+erNy3WzjkpOgCgSDUAFAIiwKMu+t13X7uzu3L9/bzabFabQZOpq/Ftf/1b7J+2LZ89fvHwebRwxWfghoZBSgAQYZenwZupExBgzm04P9nY1UbtaI0CmMNfEzobgAUApMkWOzKiQgz89PwsCuzt7i8XCn5/Fj7F9xwhkjAp6dzpzd44uLi5GdY0ATLSsx5tqrEhVRZllWWGyPM/zPFdKxSqBNGmtg9ZxHomKHBC5KABAKz2qahs8gxRlUZRlkZdZVty7dzdZHrWN9T0AhMBt01Z5Kc73bYs59LZ31vZtm2VZXRaRRRqhJxQpszwf5VVV5XlGhFeXF5enpwf7u7XRwOz7Js+U763Ksq2WCwAMI0YwsKCjQBLwVs9VRGtDqESEUGmlCSnPCu+dUsRMpHReVqCUUFzUQkSHh4f37t+zzm6aTXBOGxP1TEajkbUeEZVSgFopJQKj0dh6JyKbzbrZbKx1cSv21jZtI8BE0Gw2vrdVWRdZjqS2eD8mPSwcdqlUggOAGhCKFKUR4rYDsQSKMOF2WncoaYb9OXWWBWWodyVqLA7bYyS3DlvU9rmBG5aQSIp+gAypQgNBxpv9KNWqMuxyMjRtUp18K4wQ0YCbxlmyJN4QN/CETLMACTMrSY4ZkX0HsN0EcYtxboNQHO4fIne8tEBIsUWSF2VR1eidyrKh3gJFVGS5MgSCHIa5p2GPjb6/27QMh979bUQABzoZpE4NJIYJiDDHyByYMbm9pbsQJ/PAWiGKWn/wDoPhpgcsv/abuBi+Gse2ZbXcpGbpfZHlAMOiudX6j/Vxqql9EM8sAC54ET1wZAOz14p0dH+LFSGpQWY9UaNTsYrbAxXAG1IDDE6rcSELDyDgUJSqdFWSrj0SoSaTGZVlgdAqlHEJVc7ACKJEwNmu88E7o3We577rJDdkNLJ46xSi7RQiwq/hebdWISgFWa5NZ7rOalJZkSutAzBHbRhIHGwfgVnmwXHqRslERLTSAMSgW4u9V6UeHR09mEyeud6HzkNmkFEjkvCorv77/8k/QKK9w4PTi0sBYoU6M6SUczZopTMjpPoQJAQVkIiRYLazm2fFpu1evnp9fr0Y78xyZl4sP/roa+9/471/8i//29enZ5AKpvhI0O7u/h/+4R9lRd47Nx6PbNuQl7BsYBMqJrBefFBEk72d2Xj2+PF7D7/zwX/9L//5//XLLxyQyQyLtl3bW9u03XQ6qUK1XM4BJMsNC501+dBRiF8bKXcSO524hbuGflVq7MTnValNUVnbd9FbExL3ikhpY/K8KMqR1jkAEqmqHnHwxmgkOji4YzLz6s2L5XKZ2jiQwEYkylQ2ne7GcdCqGkWNxuGZIKXM4eGd3dney5evIuoUH4R0ErEUvvUEDdAhFXm5v3dQFpXrnbd9CL7vWwF2PvlG5EWule5d0246F2wAIcS8zE1mYouOCNu2tZtNVpaTelKX1WQ8aZqmLquIHwYfAjMIxN6nJqW8jzaLEnV9t2LkHLxncgQIkaOU5/lsMrHBew4mywptZuNJXdV/+N0/1Ln6b1br1XK1gT7eJOvdarUW169XK9+7Vy+fB/HRDyDLiqmkK2qbzU9/9IMew/vf+MDZDgEUolaIEE7eviK2O5Px3u7OncN90LkTsBxDB8Owe0X8bbiWKJDc22Jg0lrH4TFEJFJKKa21UgZRAXgkBUoBpdl8ADDG7O7ueu/W67VWmVJqf28vml0qY1KfVzAErsqaiJAoz3MiyrOMkJbLJQDM5/PPP/98fn0dggeUzXLRte2dO3fu3bs/2903ebbdGRBhkO4PzEESp4V5GHNN2+aN7GkcNNBx9aTtcIvBSmwBptI3IfJAABR1V3D4q/j1OMBBkbYbEdDYSEYB4SCieGD8bHPc4ZBugq4MYkjv1Ga/Fi8S7knbgjidKlHibAsPshYDiDlg+rFTmopSeWdmC+DWVUogBsUKFXWWj6azXDgrK0REBvEgQZJClUvGPfEDwnAdAwcRjj1fuGFCiKTs5+bcbiCBBMS+4+mxTU0AooogK6U53DDe+XZ4ANBD7hOrZhyAnRTaIS2Nbd2dvGAFQSCwhK2aTNwN40W85b6Z/jFNhaMwiAvBBY4KkQASLTBibzhmmpFoD4iAamBPYXQBwKQkklaDJBxEts/eICd2Ux0hJsc/QiiyPMEViFrHyTDUWZYXpclyMMZnGjWF4Ijlm//i/3X45SeRyrUtv0xm4htJDfs+IBBEVRYAwN09/s/+t7K3l/rjCFqD1qR1UjvKs7yua600IAYGzxE8SNZvklrhIoAhpaPixUfemLXdarWZF6ao+fp69fbt2dMvvjx+8GGVVZnWRpFWam82OzzeVxoCi0bxzEHCYr0ISHtlaUNgQsq0EDJInHpWisqqmF8uXrx4MV+uJru71lsX2Bj16MHxvQ+PLxeL//qf/UsIIaaesfo0xhwfHpkiR62CdxfNRvuwfH5y0Rvzdpk3TosQQtBoe/vyzaun16/+4r/7Xt91SpmdvYOyyDer1Xq16Lv+er6uqrIsR13XKdI/Hu38j+/cy7PcKJ2ZzCijkBRprU1dj6qqMsbkeZFnZVWUk8lkb3dvtjOrqsozXM/nT188/eSzT370ox/+8vItYLK4VIqMycqiLMpaaTPAvwSkCci6YG2DAON69MHDxxfX103fMUrcvAEky7LxaLy/d1Bk+f7hUZ5lzNA0XdN2fW+dC4gekXZ39/K8EBRNOvbLiQgItTF9T+xla+YW1yeRmowndTUSAdv1tm+t7bu+VYhGqfioG6Wm47GeTEHYe7taLTOTIcB4PFajEQBkWZbneb9pgg/O2kzrsihG9SjP89iliu1HVDiQw8WHQM5t91QEZAocTQsQrPNAaV/NsywzBiDSR3VdVPcO7kwnU9+5tm0U0bpZXNtNOiXC3vah75CwruuiLIqiqOv66uJ6vVonRo+IbZovP/3s519+svPDvdFkhMwoUmR5keeUmxB806zfe/zo6M6RzrJl251eXQdv4y2LAQeG+JT2xZv4so3NcHvvQkRFCtOYKCIoAGQRFNFK7e3tGWMWiwUiOOlEsKqrPMvyLDNZppQXAUItYuuqruqaCLMsQ0TMcwBo2/by8uKXv/jFl59/icJlWWRG265fr9dlUVbVlQ8ikWUWeYvCIfjo6H1TTybllDSpty1xh/9A3OMGwPhmX42dOEhDE9udcNAGTp8CwgKKBwg6BfYk7LBt30kaVtkGlJjkboPcb3pFEaIUOG+Q7psh5m1kvV08R05JlCx8J1gMYXr4IymIHrJh0I/YntIQeQccHCMfhQFVliNiUdWolQh6B9aydV4JORdS9i4gAkHEuuCdB4EoafKVyAUAiVRFsc+czjqqT8UjvQXQYAqj6cxjqCEkEhyi4DuRC7S8ozB1+9zfrYVv/ekrZfFwgROYwSJu67g+VHJbeoEAsLAL3kvgmHGkm5KUzqOPffQDJ60AERiQB1rLO+X7TRq47VJj4pgN+NQW6klpMwQQhRD1HrVSadBcqzzLjNaakCGQMLI/+Pznj370F/D/50vu3/f/i/8VTDHdJUg9F1EgUYdD6dF4orOcmaMFASc1qdvXOxpeRR0gDOx9CDmwsO/6ZtPka7TLZXN9PT87PeXgIQq+mDxKTxAIITrmrm11XnrhzlkQzhVm2qzb1sugF6QJFXEIl5eXv/j5J+vlajLdcdYFANJqVNW7uzNN6v69u1WeeWcl+HhxWSSEsN6spdl4DqPRKNpT8rJ7sXh2dbHwWgeDFPzy1fmvPvvs6ZOnr5bnq34TghT5yGRmPN0pq3oynbZNs9k0tu+0UkRGhHoyF0WtlVakM2MKUxid5VleVdXu/fuj6VRrbbSpqnFelPl4pCZTm2ee9GbTPru8Os+K16C/6FwLFF2zkJQxRZ4XWuukxjrwV1CRIFhnN10fghMoRmXx8MFjU+ZZnptMo1EAQEQcvAYNnmezXQTouk3b9peXV1UxIdKTyXg0Gv3xH//xxdXl85cvTK5BqRiFWUBYtDHeO2QZ6mMWEVKktTKZFpAg3FvbNo3SdPf+A6NM9sVnACDMmtTebMco3bZrb3tDKjh/eHBYP3wIAHmeG2NYkiaDtS6EoJTaPimRrQoQgtax5kJh650ARCU6JNoKjwNg4PRhADAajRDQO0daK8FxXior3bq9UJez3dl77z1GJRdX5/FRwyi2YgEUkdFt111dX0fG1LpprLUAwByur68m0zECfvLJL6u6AJC22bx4+aLMs8ePHu/OxiRMWlnb7+3vkzH/3ff/6le/+tR5mxQpovaQJDBM8YAmSgBISnYyTDTJtrcak6E0tCPIQAKAmGXZ3t5emjPUylrLLLbv+r6PtZBWiKQQVAimKPLpZOJDMEbHzltVVYrUy+cvfvHzX6yXy7osc6WQMFOKGHxvvXWr+bW1fVWWeVltAePbr6F4GAKtJKgZt5zh25utvBMjh9Abm6LvItQR3Ug8r5iPDJ3qQUnwpvbcdlRliIESPVjejQPDgQwyn0NYSXv7zZkNEj032qGxeo9EJdz2dOUrJzjQsDgdS6ylOEEB8Rcn1BtxuKFpSpUlWNt3fa/zPOIEXri33LWd7TvyiCBc5FppAGCAzoW+d03X984mq16R25TjW03O+C/MhMxR13X7UwI3LZHEmo6hTzBJtqVYsFVuG35Ex+nYIQj+5lRne8sl6fYJAUp6Bga9rmi9K5y0MW+RyeMBYlImIiQKzM5aSWIUkupURETQhgAgeIfRKSJs+UgpPYMYkRHCoOM7EPTTeUlcZ7zVK0oXMgICESdHFg5BfMDIQ43TQlFrAAUA2qb1zgHAT//Of3T+6GsxE1TaVHVVj0dZlmlj8jwrssJ76yUAQdU14//DfyYM7UawjaNLA3WdQBAZRZiV0ZPpLCurZtPwAHCmDmZUfUvLaSjiiV1w3jsFwaAL/bJrsg0ElRf7h0egKIAggbAQoVaklQaKkp/crjbcdK9ev/HOekUuBC/hYn59tZirLNNFboxBkMvz65/85OOL04u93V1hdtZpQi/++MHdyU4dgjx8eP/rH33tV18+c7YP3qOAMM/nV9///l/1fWfy/Btf/3qdZ0qrnQd3HxwcX14v1u3y/OL0y6fnP3vz5OzifL1ZBQkYR29YtDKISqtcV6bIqqJou7Zdr5YiLjB3bV9VlSIjSAwKyIzG04ODg+Ojo7t3j5RSzjlmyfMyy/O8LHRuhLBzbrHZ9NatV+2rl2+aTTus32gpqUDA+0DkjTJRZ4eZKcLULD6EEIJjYDQhoF12XMr03uHkYJ+0vrq8/Ks//wux/ujgznuPHmeZEVY6y1hwuVoDnLHIbDZ9/N4H+wd3rpYrk5kQmQoEwXPwHMW3AQSHVtxQBGOWGQnBhWCd73o3K8YPHz5WSpU/LgFAAPuu7/teyLfr9fzyuu+sMDx8+GiWZwDAzIvFYrVYjicTyQrm4L0DEaVV7O4MJFxRSkUhaBAJiMysFUWTwWErFEJikEHfDPb39susXK5W41F5Z+/g4eExBX779u0UD2ywp6cnves46iEjAlHUiggcLq+vqnoURCKqUdcT5x0AOOeeP3+mtTo+PjqdnzTNJsuztuvenpwcHx0xwmgyqfK8Lsu8yEMIfdd//KMfvXj1sigrGfYiDkEYhEPCNyKaMfQDcVCPv2kB4A2YSjhgU0KIOBmNq6pqmiYCWwCiFHnv2rbp+15pEhGjM2NK59binVFKhEkAFYSAxmgifPbs6fX1NQn4tqnY7o3Hs52dUFXeOZzPBQHtpN00eV6AvBNyZJjyv73TSpyY39b4v2FHvpk6GSrYbeBguSk3ATHeyxRIJNkRooiKxCCiZFUzgLm3vxK3W/dX4sGvB4h3KrchWIgMb4+qcpDmTbZnuv2WX/s0iNjvV6pAwEH9cJD2iCV8bLcCBw4+WGv7Tohc8IGDdVZa2TTrttkQYXBOQjBZFhHuznPT2U3bdn0Xe7xxAGPrWIQIEGWhh7yIo/omDUnLwDqLI8mShpNIRIIwMQuLAgFBBRiAkjvyUMDrNL2NIAABBG8JlG+vEQ95lYgwR5hUmJNFXUJIQOKz5xl9VP8bLApu6vPbc77Rs0i2FPyk9aGVRhEIQQFoJEr+RQwYnWpiahdFlW5WTGSNb2/8TQZ4c5tTn0shEQQR9j70zglSXY99no0mUyoK1soAMrvF9VXbtABw+uiD59/5Loggksny6Ww6250VRZHl+Wg0cnnurLXBoiZZLUb/+f9JRPremwAiwCGmRNHZCFkkBFYIo+mkqMpV02zN6iPRjG5ag5EozyxekIN4561R/nDHPH64v1PpUnk8LMd7U2t7F6wPloWVgihzEaE+FMqNeXty+vyLz73tucg9B8/cdN2b8zNd5FmRG6vPT05+9P0fnL89Odw7IED2HsgySTUdHR7tMfO6sYeHO3/6D/7jnb/+8fOXr/uuFWGR4Gy/WFyvl8uyKl33gHKNWUb74+KDO/bH9affP3l9df6mub7u104CGQ0BgEPE4ozOgBFREyGiyUUj5gBaQHVds25apc3+fpmbwuisHo2Pju++9+jRvXt38zwHkM1m3bYds1dYmmi6yRy8F4EsK1arzcnJWWBGldZxzAqJIv3XECYPrW0DnkNAQRSlMEcyTdeuVqvcqJ3dnf3dg3IyRmO8526xWel1s9+53gPgzs7hwcFxUZTrTbN+9nxvb+/y6vL8apkV47KuHDsfYsbXxzbI7Y4JDAE4NhqiV41n6HvXW5/lxc5sJwpxIIO3fj6fa6JmtQKhsqyd58Vq3fcOALz3y/m83azzTK+FuR6RUnmeK1IAELx//uzpcrSs6/F0OhVgQqAsV0p55yUAYhYz40TJRSDEaGYBAOPxeKTqsLv7+7/7e4+O75ENm8360q7fnr350U9++L3v/ev58ioGvBB87zrFKCBFWSpUo/Ho6Ph4b29vs2n73gUOAGCtXa1WJjN7+zvaKBs8AhCRADZt9+btaabV3aOjvCw9g/VhuVr1XYdRQz5uHxJAAjN75lgA3DSDIt5xq8sO2/A8RGW4FY8V4ngyidewLGuttYgQKRHwIWw2G22SEH2Rl5nRXdeul4sszxiEQCOiUpTnZij6ZNJ1/+fzN0cQtNaRxhV3zV8++ugff/h1CCEKWsq7YXgAz1MYGwJiPLtfm8SN0feWeRIIxy0xHsMg2THUoSEMHcZYg0bQTyWzrwQpiPBN2IZ3jwxv6Cg6Aqy3fwHEsBGbl7+5Xr71YoAkGp0CMtzoMv47X1v+xJAhxtiVjoUHPSVvPWqnl/PsPJOXtSMMzUpFSCMzPs8oy4mUAGAAbFq1XGWnJ6rrfv1AMCphDYEmdeQHJBol5dPp3sXkZkjwWETYCwcAg0Ox/pXXV8WbvoJ4QOoB3GJtpuzk3TwuxpkY/KJc2lc/JsEluJ0qjnoWIppoK/rJcdI0zn4MkpAEwzoDuL2FbUPrrZUWEu77zr+IpAFMQQKtNQTxIoGjTRvNZrNxke3t7+dVIQjAYnt7dnrSdS0AKAKVqONx6hrYB2edUgpEurbj4K3vFWtrXTyk3vZaGICc4+A5ipYJMwCGEJjF5NloOjm7vAqD57NSBNHm7IZgNqT78aQ5aALg/vz01bVYcV0InbXt+cXZDz/+ZDTby8v6zdu39x4+ctbZPuRGkYAm9fzZs/VqjUQA0jsbhLM8b9vu7ZsT11sI/q//6vtXp2eP7t5XgLa3msEoQyLT6bQaFVdXK0+gfX50dPSnf/8/fPr05WdfPum7RoQVIkVUiz0HJ8J91/3iJz/76V/+8Ad//v3P3j7b9J1lz7FLQkZYCEEIJ5NpkRfDdB0RkTZRSICINJHerOfL1Wq2szeZTOuy2t3Z3dvb39vbH43GWisACME75zkkmFErLQAIwShDSC9fvlgul6mvIQEjIAAQm/dxrURJFQZEZGt7Zztmr5Qxxohw39u2ada+Ozud/Zbg4e4eep5klZdNs968fPFyd3f3m9/85re//a2joztVXS0Wi/Pzi+v59duTE0AqqrqoKt82hIEwfo+GwbBy+4gRqfF4rJSy1gXrvA+bTbNcb1ab5cc//el3fvt3Iq4TtxrvAyjJq+p4PJlNdybTGSCEz34BEKGdIN6xcy0zC4xGY2NM3E4D8/nZ2dnVWkSqUX18dOfe8d2jw+Miy/quXzYrRGmaKssKY3SeZzozShtSaWfQRON6tDedPTg6NoKL+WK+WWw26x/8/Mc//PEPrhfXxmgVAgA4Z9ebZalzxaCNIiTruyA+L/N6MlmtNvgibVURBVea4twLACCSCPkA8+Xy7CIXgcVqNapG0+nOZrPBpM8KccseAg2n9B0AhVEQUsKVNppf2+tu9iIaejxR4zqaQcVWOiEyi3cOgNuuLW3uvROR8WhkDHVt3/VNlGU2RZlXlSIajUfj8dgYI85lqA7YHUhoy5JMphRR36vF9V7064k+OYy39zBJ0tYSb6SEIHGVxqefORKNYTvJk4DntC1+ZU8eNsOhIREIEgX65mrBQO6VhCAO1dUtZhemjp+gMEq0m44RCLejm7fq5e2GBb8ewm/CRNwfvzodmjqlQ1L0lbf/u2Iz3roqiU8GwXvw4bv/8h9+9OyXA7qTQhKmMaMbKlXsmHMIzXf/9FPEm/MaIOP4wCpEQfVuqZ86jPLuWotnGQlmEFCiTQci8A1OHS8DwOCGtE0Y0ymgbIXDAJLFQYLHhz5MgnkB5PbFi+fCSZEYEYbmg8Cw7oEHthEzBs6ANIuXqDMVV4vyXhhEaQ0JWoLgPIdoKJ1un6RKNz69yTI+3s0b4HkLhsS+PyERJXOpiDQIFGUt4yqfjCk3ENCHsFqvIiM3/hAAkEIEjA2zwD5DoxAQxHknIXjrUIBdiBeobVpqLGWq7V3wDKBIaQ6iSBFQ8I50Np5OdWYirTM2blkA0gcMpP6YpCsVbwEC/uhHP/7ev/nXq/klQWDxSFLXo7Kqq3pcT6aP3nt899F7vXXOBwJSAN71F1cXTd9GKMEzN027Wq5t0z9rO2Hfrpfe+vt3jjVqZ71opXNDOgOk/cP9IHJ+fVWOq+7SC9JkMvnWtz58/N7dRw/ufvrLz58/fYloIJrGiDjnTi4unz15ulyu7bq1zEERS+TjR+oLAbDWZjQakaLEE8GoQ0xKKTCGsMqMEQ7zxfVm0905PHr48OHu7u64GpVVnedVkWcijAjMYjtnUGnSGWUiKJpadk8/f/LFZ5976xAk+XICaq2MMVqruCZloCUhBuf9er0JIRAqU2SaSEJwfcfsCWk2nY6y8nC2/+D47r++d/fq7CIvit/7vd/7+3//P/rd3/vmzk6tDJEiAO670DT9ixdv946OfvbLz3Sey9VFZ/vRqFotFl1vBZSAAvDbJ66qykePHk0mU+tss1pdX16tlivrrPf9D3/8o5cvX/6d09MPbx5zAADn/Wq5bhrbdm46HcXMOITgrW2aTVmWWVHGvEIrPRQ9WBRFrnJr7ds3r85O3zar1Wwync1mq9Xyyy8/Pz8/JaKqqvb396azaZGXo/F4b+8grnxF9OD4OFcGOqcIiizrr93l5eVnn312dnqqSOWFodYDwNfmV//pj/9cE8WigYjKL6r6J/8mzwoiYpbs8gwAnLet3ei8mC8vu65VRm8dpMbT6cP7hzuT8WQ8LsuyLAogmkx2/ui7f/Tnf/Hn680KaJBEjMXuOxt0TLO/smVjCMKDvdj2ym+7wpPppCxKRVDkmTFmVI8UUtM0iFhkpirzEHzTbBAhsDVZcXm5zEsFUIXAnkOWZ2j0qKqPjo6yLHOBJ3WtFqrJqn/+P/hPxx98dHh4uP+DP7/7f/xfa62KooidaIieQbdeqSLEuGI9sLqRd4BkXSjBC0elhaHQFYkDxPGPCCBCAuGm58CBA6FAdM4AEVEDZ0kgpp8RGoVET9sGQkzmE7GkS9SobcweGHpDUfjVoPhOOIoqY+8Erlsdge3gUWBQDIMF4FfktbZvFLmlnJVA82iasJ1OjjA1s+SbVXl55qc7nBdyOzsQgBjgoh4Ws1kulO1U3wGb3/y9qcGiAHA7RBgnK3gQOYk63rEsv7k622Rvy3175zr8JvnimAZtB6WY2XsXXdjgdmo5JGLbz0r34tcUuZMInKQpAhQJ3gMLB48+FEppwBDA+yAAREoQfWAGVDpLpo+SfK5EOKYKfEtTZpu4bRObmxD9zuoYLIcAIuIWAgcOQpAVRZbl8ef73p6enjVNm8DyEJyzSmulNIAQggLJjS6KPPZcPQf23gvIQPLs+171vRJjre06B0xEGtVwnwDyzJRFWeR5b7sUTlIFz8wBAIFiix9YOAbguGTv3Dn6gz/8o5M3r5FAaySlZrNpluVISmdZWRWBoWv7vu+RhV1YzucgYr1FRCAFQE3bvnj53G661WLB3h3s773/6HGeZQCgtSmq2hRl6/p6PJnsTS6v5+u2CQSttfVonGWZUtVkWn/3D39rZ7Yzv16ORtOut/u7Mwh8+vbtfLWyLjgfkICJQFAoGt0PzqxIeZEbo9hbEUp3IimuAxGSMcaY/YOj5Wpzfb0EoEePHt85PCzzIldZVdSZ0T5YROQAVvVG5YUpclMIk+vkxZPnf/Fnf35xfi4SgOKKjSBhphQxe9uz8845ByLGZETKed93HTPnWaFQEMA73/cdhxCdJ9umff7kWTWuSCkgvHvv+O/+3b9zdHTnyy+fLRZrF1hnpqrKvb3Z8fHBt7/z4c6dQ/6vRqvNStXVfDkv85wZ5vOlkAagd0A6xGh+sdlsVutV0zbMQWtFlHnvT09O27aNyxsRtdFENJ/Pn375rO99WZQffe3DPecBYLlcvD1564Mfj/usKLMsy4wxJjexBSJird1waLuut733brVahuC1xjw3AHJ9fS0iBwcHiORd6KRTyrixjQdqtLl7dLy8mp+9ebtbjcrZNK/q8WScaaUQi6LUxmDXAcCB7Q7OXv/G/ev2q+u7zraq49dvXnvvdGaiyDOhFJm+d/d+XZUAorMsK8oyL3Odfff3f198+OnPfzqfX7toUQtpXOIrtdTtP8aBiO2us92rZKCdIuKorrXGuipFWCtdFkXw/urqKlbGo7p2rs8y0/Wdc70xurfrk5P26Og4BN5sNkrrLMu01o8fPzo+OmLrv7a/Y04+8SKfXS0hPzny8Lue7wIAYFmWFFN4YBHxQZRXEfTmobCQJFuR9HpFGDgKb0RdSyeQJYmOofyIb8fhN2naBqL+VgDREDuvwgJMg2Ylx4kTnWttTFZkeWGyPMsLYwwpBYLMiIyIhigLjEICpBiJBrIQS7JViKEPB1Ahhhphjm5at5Y7D7FBBgWaGEHiuHFMoIY7eushAYTID99moqlKiZJPEQQYuuHxCpAipVIIf/0//J9d/82/Z7uOgxcEUkpnWmtNWgFQb33TdN/4z/83hz/4M+AQNyyCqCYmNKjJ3ywpQkKKnJ04/5jQX0xXAgWICEMSPA6DlmXSxYKBkzzo+X41AEc9F76FJLAE7y0LRyGB2ISJ4fZdPZVIxWMCGgYGUs4ROwQDjo0+MEGUSmUR1kjECIIuBBjcF3wIIpJlmpLqDSSPFGZEQUKCLZx1q917iwuNiNs2yLbQj360BOnTAgeIjeXoKMyAAtb2JycnfdulphFzt2lMluVlSQhlnhVZrkmp6NSltTATkfdu0EMRZ/u2bUqqvPfrTUuitQ4RHhNhJAgu5EWe57l1/fDghIHid5PWD+5VwsxxSvhv/s2/+Sd/8ieffPLJxcWFSOj7bm9/v64qQCyr6u3btyFI03Tr5cYa2zXNxeXlbDpddY21NgmiMnMAQ3T38HBUjyaTcVXVWV4XZaVNDlm2tr1l9/79u5TrN8/Oemtt8JumMca0nQEFpSpGtf7WN+/Z/u+cn1389Gc/B7GX55fW9h17DiBBRDgklbeYXDMjgRCwIJBzNtb2gqSiKyekbm2UWMnz7Pj4eH599fLlCxCYTSajelyZUpMiAusyBuAA4FGRQdFGFYv15ic/+tk/+2f/4umTJ5x8Z4UIUJEi8s5Za0MIXdtb5yCOt05ndT3SKlMo1jqjlVJICG3fBe9AglL6/Pz0xdMnhvSXn/+qb9rRqN7ZmX3++Wf/8l/8i82myfNKmTKIMlk+mUwPDva/87vfmt3ZLcqpE1UUNuuCUji4biMAChIMsvld35+cnsaOPRJoowlBWPvgoBP2g9N7WtqMiNPJ9MMPv+a9ZJm5c3RHzU8BYLVab5pGa7XZNHlZOWc3m81sJ1daAwARjcfjrPXOulFVk8a9/d3d3Z2oUXV0dHRxcXF1dbXZNJeXlyAwmU7qui6KInVJAYrMmP0d32zOLi4Oq/LwztH+g8M3F2/OT98IitL647z+n9T74v3udLq/u2tIqzgGrfVkOt2Z7U2m00wbY4wm/MGbE+9ss3ZX11dIEGMSKVJKedcvlqsiL/OiUEpFQIsljCajv/3v/3tHRwc/+/hni+Xy1eVp6DhIQFTbp3zYIQd8DyPUMcCIqUKAoVEFIpJlph5VIkyEIhSC77o2hOCcU0p1XbdarYxRewf7ztnFYnF1db1aLZ1zxpi6rp31y/nVdDxBgKOjO//gT/90b7Zz0G2y7/9T9qEsy6W1y+trCQEAmqZZbzYjreOTDhhtzJOTmKSln4Ibg7AEjl0y4AG8S8PDUVL95qzTmO8AQ3Li3g7KhjCQsnjov5KAUiovitF0Z6ceTerRWGtjspy0RiQfuGs7FtFaH965K0wnJyfMPQMQo6CAhMhoiTrXkZyDcc5VtufAIBK8F2YQYOHk3puS7RvQdOBopfPgdJKMQiniIcbdFSVafPkocpYq9dSjjhM1ECQEZtJJ1g0AunLUTA5s3gUJAmIybYx2WpFWANj3rss7znIAEA4gBBAQmYUlBLoZZwWIFQIispBEUr0iTYwINIz4b/usafmlVUdInPTIoogMDncbdSxD4tQzJAZQwnbieSGoGCEABLfz1DeBN1GoQggSL4XJ3vn3oYkZL3NAkBAIVex3Bg5aSEXLXxZE0BpRAUNqjgqAj7qHKjWLmRkFmCK77x2y1ZaHxbea1vgOHSNNOcepUlLKh6DzTFdVQBRm8Hz65vXzJ1+OcqWJAEAReWsXi4XJsiIvvHOj0aiqyulsNpqMRSSqM90wsQW4bcN6DVqjD7ZpkbIQApAQEQmBIAsqrfOy2LRrSIlIasMkDe8hSU+NHB9EhIiKIq+qwjnXtq33jpmtdaOxqeq6GtXZ1TUH7lrbbjqsIDJvP/rwa+Wo/vTTTzE6VxIpkaIoRnU1rsej0Wg0muR5pfISlLpeN2/PTr/2zY/Gs9nZ5fLk/HI6Hs+v572zs50d6612xjjNXmcGf+e3H8//4z85P794+eJJsL0TDpEIEWJBH22NhvOKLDngrm/m84vxeJplRYQ3RFI7ZDs+hwiz2VQrevH8+b/9t/861+p3vv2dujJGowjErZkd9hT61q6uL371yYuPf/qLn3z8k2cvvmy7hsEJBsQ08i4izabprPXeSyKdQnyMA/N0MtnZ3Yk3TilDSqIvJBKVVc1Bnj15zh462ynUx4fHeZadvTmDgL/10bf+1r/3t5jKn3/65OT83IXw/O3Fq9M/12VhOZjMSMhzM1HkAZXEOoEkySAIMrPt+/nV9f5st65r8SKerbXMHDoOLFsd/Gy9Mhdn2ugsz4AlD2J0tjMd1SRZswaIu2nOHKxzvbXUtCy4s5MeVK31e48eKYfz+Vwk6Ey9//i9w8PDuqoVqYcPHq2Wa2Hp2q7bdGpPPbz/6Pj4eMvhYu8lcF1WB4eHKo6wIORZdv/+/bqqARiITsm+ykZCfi8fP5odVFmhySBSXtWHh0fHx3dns508zyejUd93nyy+x83m+vpqvV5Ht10kVEqTMovl5peffHZ1Nb9/9+7hwQHmOhlOE+Z59rUPPtypxm3X/dM/+zdfvnqOiYI0BN2hkxrDzXZomAdxnqGyEh98XGN1XeW5BpGubTm9naMcTp7nbdu+ffu2qkqTGyJarzd937dt2zadyJs7d45RQNHau17nxWw62d/Zq8vSnLxRpJSh7/7Bd7vZ7tXl5ZTbmEyH4JPiSSJQYQTv0vAvpsCVpjnlhjkFtyC9oVfLMAhjJRpU+rFhvxUBkVhZRrw7XpbAAErV1Xg83q2rcVaUeVmbrBAkzyK9i8LJPqCIIGU7s0lZjnRWvHn1UsQJ3JShmCCsm40eWZCSKQWIgABhmnmCf8crjmeLAonzeJQQU4zrjRN/CXGoHOGm7oo7OyAO84UhgIiiNEbvOuvaVjjE0jEEjyBKOHAAEPDBSIizKiQxAN862qQZMYhgDSVsmiQkxJizkxq6n4LMsWuewABEHAAXGCjIN1nh/w9+wBJLyVsh7Tf8TEp7tm3Y2y/eAt9xbYgPwZNnAA/C0UIq1qbCgBjZH1HKgzRJFCsBjLEzCQkAbPlJEWlJi/UmORg62FEIiZljYZaa16IQTZaRUpRn9c5OPp0CkojYtvn8s0/evHr64XuP0wUiKjJzeXnx6uULERy/HJVVOZ1OH7/3+P7DhxcXFwBQVVVZlt52aUlY59abDkmyzFrrvS2KIlpm5SpXGHFIyfM8SrfE5RNjlsRRJAAWiSxKRHTOaaW0MUphWWaj0agoiqZhAGSWru8dByD0IUjgzaYdjydFXgKz82Gs1eOHD58/eco+cAgwKNsxs9a6rkd5WQagZd8B4uuTtz6Ee48fMdHzly8ZwBR523W9tU3TgFbGZMAlM7CA1mpUGbuas+0lGkdAItgwBx+Nw+WdFwAHFzbrlbN9nhdVNSrKkVbZcOMScMLCCFBWRd+2P/rRD85PTr/8G0++/Y1vP370YDoZBY/LZXdxOX/58tWXnz95+ezN4nqzWK03zcqF4MEF7IECqIhtJR91rbXWhgi9984559x6ve66brmc7+zszGazqqq1MRI8EZjMCBBRHpja3r5881obDYTVaKSUyvKsKkaE5s2bs9bDxfX5erMCbUApz9I1vSD2NhBRUYy0CpkpCTWCQlEAlIZtAQjAdX27aiblOCacOsusd30IvfcQMxaAv/Vv/6n/83/1lTl4UooQyfYA4Nm33uZ5no9qk+f7e3smL7z3DtOTM51M7+Wjw/0Db3tt9MO7D2f1zJgsV0V2lCvRO5OdbrMZj8cPHjy4e+9eWZbM0akQIoE8BJ9l2XRn5kTevn37yZNPfvLpTxFhb2+vs7ZvW1ABSSNS9DchpQFJKw1pzF2MMWVdn56eNm2LhOvNJoSgMhP3NETSygCpTds9ffr0+vLi3t17jx8/3t+dKcok1tOKsiwbjSdHR0dPXr9IOySi3Hru8WbodNtZfveFIuIBWWkoqyIzWXC2bzsAQEXGmL5vRbgsS2NMCOHy8lKQx+NxKtwEEGC9XJf5oqpGfdd3bTstyzzLggur5dKfnfvgEaBrO1vay4vLq+vL92PdEDzEuldYIrOYJQ6oIfB2zkViDcexCkzWdUOvOMggWCQiwFtP7mFrk9ss1VSfhOA9+yBMQECmHE1mewe7OwdGFwFQSDHqzGQAYJ0LQQSQSPkA63WrlKpHo3sPHvoQrq9O2TexWZz6YxhgkEmPm/a21IlRmohS+/RWqPjKTUlHncq/7RIf/jzs5pGHRwiKCAGD8wPf+ysficF739uQWZEAAM52XdckTBQCBAiESqdyToS97UPEzFLf+ze8cMiPJJ59EudETjZs6QYgbZ9SiOdCsTNMihKlDW53QwBAb1m3kSWW9IFumaUQRcIo068pLt4cHgAkyFQBD6NoKSMbvI4gRb/AgZmCBC9BAJRRSCjCgT1IUhCNLK0Isiejx5Q2Rk5ZZALEb9r+GibC0/XA6DTCICjEW3YYISgk1IbIIzhF0/09qMo4SnH69uTTX/y8Xa/EOxkIaHmW7c52gvOddQDAgbMsu3Pnzt7e3hdffPHDH/7QGHN4ePhRXb3nHBFJ8Ov59dX11ezgTrNaLVftzu5uXuaAiJoU6QhCKZ1BEle+5aIYBsQIAbVGBCKM46og0nVuuWy01qPRyHtvbd80TVbkk6rMsowUeQ5lVcx2pgcH488+PX318uXnT77QmQkclKKoydrbXoSm43FZllmWK1QC+Gd/9r2z8/ODo6Nvffvbk+lkvVmfnJzcu3c3yzLvnHP24vJyyjyqR0ixHQXe+6dPfxUuL4LvIBqsSfJXiwzzIV+OKyCR+Fi4621vm/WaFovrsqjzvDQmz/NCGxNxjmH9cpZpYXn18uU/fPryn1T//PjOvb29A0W6abr1erVYrFzHwMaogjBHbCPKpHScEImlT+o9l9pkWQYg1rmm2fS9DcGHEFarVdu219fXeVGMJ9P93f3ZbFrXlfMiQtax6NB73wcX+dq9DUoZALy4vLi4novOglIm05QZVJogC6BCNGv1XisyWlVlXWQFgkJBGWRoMVl/w+XFJQJmWb6/d4Ca3p68hTTAEFYmW02mqVCKOapEMggJgONgneMsPxfufL935/Do+MiQmUynSOri/GpEwMxKKUTI8zzTJhhT5MV0PM1MRqgQpDDF/eN7s/Gk2awIcTabZajA+pCeTkBBYsEgo9EIAP2mIcRnz5//+Mc/Ho/r3b09HzyCXJ1f+d5GAgeRIkwu5a53tusJaTyeAOCT588tBzLqerFgFo0US0GlVFmVOs998N2mvbqeN5t2Pp9/+1vffPzwfopWgK3zptZ3798vf/HTpm2j9D3zwPRATBsIxEAbw9yW95JYMCF4RCjLfDSqlEIIFBtezrrReBybsnVdE1FZlptm3XddVdfeea11pg0RGZNba6sSiJRzjgMrpAA+MqsAUJivrq6CUnmuBRgAvHch9IkVyAyIASQEYtYxlKatK5UpQUJgH9SNB942BjMj37irb4vLrRwGhvSbbRiLIBQIaVOPRrPZbDQaZ3mOqCIvOu740TwocIikK+9d33cCARDzPD8+Pt5sFn2I13yA92VwFYokMrrZjREGBs72ACNNB+F2QTxwkrc/8/+lVh7YuRFI9d4HSUIxw7uGvZ85OGfbVpGKTRzbd+vlcr3ZOGcFOMuzoszzvMi0YQlt116enz9czI+jkjO9mx4klY+ItEQm7K0O9S02lCTdY0IMNxUoIiIhKVRqyxiUIYeOLy0DSh1v4TC7doMAb/+YPuDXssqB+iSxwPfOdY31IUkusA9ROEM4CoVFPgCLcBAOJKIwxMkuF4QlfmlK/hFIUxzjSV+Upp+TMUBsyG+HgAlUvONxajihFRyAojcnhBAAEZQCFGU0E62d1XXlFXGQzfX1pz/5eHlxgSEEa9MQSAh5lj28f+/Bvfur9YaBWXhvf//r3/jGzv5u13Vv3749OTmdzxfz4FmEEDXI+vLyyfMXpq5bUY0NGB7vHhyoLPPgQVPcGoIwKnWTusb0hJFF4l1k3noxR9ZGuL6+btv28vJyuVyGEKy1nl2W71dVURSGFCiguw+Oj+/tKIKLi6u2bSk3PgQBCImHDFrp2Wiyv38wnU6j/cfOdKYQ16tVPR1V43K+umpta4yazSYi4n1w3q9W66KsEFCiHVKgxfXmyy+/vObWKyTPwhBCTN8HMQZmkXCzTaAIx1ZX3DLF9iFKARNprU2Wl1U1Kssqy3KtNSEqoxCJlTTr/nJ+fX5xpTFTlClljDaZKTNda1NqrSHYIM55S4Z0lqNKSrMECkB0pjKTxel7rYPSWdb1zlsRts7avt+07aZp5stl23THR3dHo7E2aC0751mYAye2mCJSuQthMikOj3Z3d+9k1cQBBQAb2DMbUwLq+J75fL5eLYX78WhSlWNFGgBBkAaigiFtSIvzdt3ce+/o69/8Zh9ccJY5tOvG9u7/8a3vXPyNP9KAwuyCP7s422zWWpnDg8P9vf3T05NPP/vscnH1erl0PpR1rTJjLbe9864/v7iaFFl8fm3nuGDvvLOuKmutdUzIrbfOBQIalaUS9taJ575pEZCHDY4EcmWM0kqbxvabtinLoiwLBBAEnZlCFUbrTGXXl1cRX1NaG62Myauq3pnNZtPpZDLVJv/lZ58+ef4iK7PO+03bojaAOuX9pBSprus2mw2HoJAC9+7tKSJqpR7cvZ8b07Tdum337tz58L0P7h3fffL8WQTnABLEisn1Fbdb5K3om/bD+DQZo3Z2duqqivJtAEhErutXq9Xh4WGWZXlujMnu3LkznU66rlWkilGBSLbvALAocmMyY4wxGYs45wkpz/LxaKL6Rikym+Uf/sP/GxQ5EU2bNQCkMSt2DF6isypjxCohPi4DyWgLJwIHBpThn2KNNES7+N+QyNJp84ijuBL5VtFSj8iHEAAZEcuqms1mk/FUgrRNJ4JBAJXqrSWdEUWlGh/lzKzrY+S21iKh1kZr03DsAgJQJPcOVvFI2zmmG2Y3pyf/tupXDMJDoE2VMyJK7GVizNrV7UAsSYAptbolsLM2evXSFvAYfp4AgrW23RhCCB4A2s16fnl+8vZt26wBJKur6e7OaDRSqJi5d/386so7DxFVEoWpfEvHl6LMrZnr+H0EoCKlTqLeBcRVBAjCPilkCFA0Icdk7hJ3wdhhjOFMb62pkg9v9FLcBl2RKOOOcDtPGdKe1NiNgTq9yznXtr33QoAhBNnKd7AIi0bkOGlktCAwMBIwMMstJQ2WyFwwhhSplIYAAiettiihtg3/wfvgvUgaaRtudGQyMHMQD+CZgBQmxR8WDoHbptnYjrI8J7W+vv7k+z/48qcfo7dFYQQSWYMEqjx/+PDheDS+Wixevn7Tdm2ZF0Zpo/QH73/wH/7Jf+/NyUme53dR8v97DiC1yS9fPf/sZz+/XK3WvZvs7udEVVWWaurEiWDyvUIkRUSaB8wgJsexek/JRZJrZxBUhHt7OwcHu+v1aj6/FmHv3e5s5/j4uChLrTUCKI3TnTozdPp28erVayA4Pj5uunaxWAAAEXZ9D609mO2MJ3WeZexlvVzW4+m9u8dvT0/2dneVpvnietWuIqOxazsXgvXBc0eajFHOuTw3wPLJzz//+c8/ab1nluA5Rp3kRy03GwQMMmfhZqXhkD4PTpfB9bbZNMvF8jIqjFVVXZZVXY+1zrTR43GGrEIQ8ApYiVBu8iyrjaoATADf+W6+XgTw2miTG60xMdxJxZmYWF4DAJIHojwviFBA1uvVarnsrRURH/ji4pJZ7tw5KooahBCFACGI1kbSTItYaxWOxbnriwsqu8tV27vQe7bel2W9s7eHiuq6vnN05+Bgd71aXF/incPj1y+eLEPS+UMRBTSt6lwVEAJaP8ny4939ztuXZfXg7j12/vWrV0tt5vUo0zpuqpJn1HdlNZoc32sDf/785QuG097PXdgnnefFetNcXs4vr5eK9OtXb/JxHQkTy/mqx4KDOGsJaX49H4/GxmQcIM5AayJkhAChd531cT+LATgqxnrB5WK5XG9WbXM1v766mivQ9+/ef/DgISnFge8cHp2fnC3m89yo0WR8Z3f/YO/OeDzTxpRlVVX19XL+i88+2fSdqfKLy0vrnTZGa02KEJVz9uzsrHUW42C31iTMwq9ev7XWdZ396IOvOevOz8/vHB3tzHa++Y1vvj5523UdAABRYvcokCBJK/4G5xtg6YSrpA7xZDJRSL63zlqtDZHqur6ztq7r2WyGiKvVipn39g+ePX3SXFw2bdf3/fHR8c5sd3d3XyutlBYJlIZZgDlY227OT713pXOPf/Wz21VKVmhStm2TILaIxH152ElD8u7CBE4jYrQj8HFoOrFXGGKPlANzAFBD2LvZm+MZxhmkEBySBHbMngiqqijz3HVOhPuee9uTNibPkYio1zrLjOHggxdEEmHS2mS5ygxpDRyMMQIkIJRYQmmqNOrIEYAAgZgYYmL8haHAlQEaZ9n6ajACUDKwFUrKItsKD0EIEJP1zhC+cYsXiiALAXCynohhCEkg9H2/XhlMC9i2Ldv+zs7YVZoBoShMngfnrldXJsuqsnz44MF0MgEAkxlyJAxR6hEA+d0E7isvShVqbAhH4g6hIpQgLlKwZGuOMZCg09rclrI3c8CJEIEoAwFqIBIPwptpyChdjBACpznLiFpEOgGHEJx3MsTjEAKLBE5t82j4hGnQO11rUsTDmSKgCDjngSXq75MQBiBQEqLaa0LjcbDIkMTxEUFhSaS8kNwXk9SLMCOZ5CdPiKg4BCccguRAemNf/+zT1z/+Kc4XFVJZV4jgvQMACQEdlyrLUK2u5tfn53lZFiZTgGy9+PDg3r1Hjx+JgD47ISJg7prm9fOX529OXp+eds5fn53vTyfTcb2nUGcVhzT+X9e1IiUiIUSKEqe+jwhSarJAYOEg3ittlKa6LnZ369GoougvgQGRy6xQqIkJGZU2VZFvmvDLT7988fI1osb0FSFi+4gIBPW43t/fBy+brlkul0V9rQiLPD8+OvLOvj158/LNy9V6dXV9NZnO2r5dr9dlWWR5prXuun48qjbr/uOf/Ozk7ZntvQ8hhPhwDVONInFOLDIpUleDiYFi/jz0DlLbQxKFXrzrne2azXK5VGVZTaZ7dTku8qrIKqW1ZiVKBU8gye4PEASDF3u1OG36JRlUWmlN2hCJARjg0IgFIYJAVJxWRCZTHFgYOaAxvffehxCXX9t2wpCZMnbgQmDAQESBebFYiu+mVYktd/3cm/L19aJzrPNMkJReLdYrATBa13U9GU8e3L9nkJrFajbdO339SgEpQM1okKamHOe1661v+/mr0/nRm+n+3m5Wt3nIPvxwfnXtvbfW5sYIsCCPx6PDO4eT8aysxp988snrk9OL6/n1fMlEJq9VVvVdt2ybi+Wia/vVYvMwz2PZtGm7tmglsLP9qlk17frs7CzPi4P9w6IobdcSCDGBZ9/1IIyEMawCwLJtXp+fgjI2+LZru7692qw3rVWqePDg/Q8++AgRQvD9ptnb2VvM533XTOrq6M7x0cHdLCuJSJsMNV1cX/XOHt+7a709u74EpTKttNJRA67ve+9ZkKIpUtw6bAjeuovLq1988hmg0iIX19dnl5fjnZ333/tg9uMfnfanFC3mUcVUL9KZkhAcxHycB/AZiHBgA2hE9CFY2/edHY9zIrVcLnvnqqqqqoqZF4vlYrEyeUHa+N5V1WixWAFglCfLi9zavu1666akJIQA4EMIc/L/7D/504kKfbtC4Onu7ODOYT0eOW0OW39+3jODCA9hKYjo7RxHqoBv4unQtkuUzChBEkOr14O58rYmY5FoLM7MQhGDCkqI2YtINKDse9d3HaAmbRig0KppNiyIiFU1KrJcK92slt576xySKcu6LKoYNPK8ICQOgYYKVlLRExOKNPYw1MGpXEx83qHyA+Cb6Zkb6DidbqqcIL0nBfpbfxORNKVUcnO4efOAbTMH55y13tp4lGzt/mz3+N4xQPDMoLUXfv78RdecaaXu3T3enUxHoxEA6CwjBhw4vLGbi8P/YukeL0VE9pzzHBgQBnI0sqBKBK1EAR1o4QFQDWfwDs6ezBi24TAB/NtrIsn/WdIbZRuBQ4iM8CSwvF06cX0kkFGEEwMwDB1CltgCZubA3gcxABTrcxJGpQ0COh+CCEZhJEQJ4YZWlQy21MAoi1r3HBlwg9ZQ4BAGZD6dESJoUlpro3VOVBsz3dvNi9woNb88e/bpZ/3VPA+clfl4PFGoIi7hnXfWrpbLzWr9+uXL4MN4NDo42C/yQjyvFoumbY/v3SVUXcxWAr98+ep6MUeCyahy1/NuOX/22acH+/vVeFTNSAJzMHlRjkYjpfWQqyb7u+FRBEg9dWbnQnBaK5Hwy08++enPfvqLX/zy888/D+yc6xHwi8+/HNXTvb2DEMJ7H76nlW5b++Tp0/Ora0EajcfjyejZs2cxZbt792ia5Y+O7+/Mdq7Or50L682m3myuLi92d3f293ZZAiFcXlzE3K3ZbNqu9c6ayXhU11HlO7C8evX2459+bK1nYR98VAFLSqNDm2d4mgasgogwGtDytkLBQXFkcOKMvFUM7NebVdO2Spkir6uiHteTuhprygUViyAUJq+L3IDSvWPQQWWMSvIiy0utlOIEJGECgRBD5E8AZihx40bkPBdE8t6H4H3wRpssy5Si4LyQQ6VFIIgDRgEipuB918ni6tqM9zI0nsVaGxgM5gLinDW+UFpZ6xbzN2d0Oq7qKssno+ndo/tPPvuUOBSUFYQ56gpUjRozbZnccvPmi6fc2lpU27dlWdZ1vV6vz87Odr72PjAum0aQ6npEZE7Pzn/281+eX83nq03Xh2w8Gu/d3Tn4mrN8voS+bcFbVbSOE3XIhtBZiyAM3Pddd9o452az3czkxmQCsFqtFJNRmkSAg1JKGR0p+RfLxafPnrBgluekqOnal29P5qsNKvPZr744v7iII6e5Nns7O3t7ezt7u7lWaHTvHJKuqjrLTQBx3t5/eL8ej/76hz/YtI3ODGAEutMojqItg0VS5yKwMKiGLi4vf/bzn1d53jl7dnlxeHy0u7v39Y++vlwurQ9ISkhEvHOOcavyPxRew5aekj1KqizM7KwNPgBAtDbqe7varF+8eJFlJk5Fr9brpmk++ODDy8tLEfHeN2375Zdfjkaj9957bzweMYf5/Go6nWZ5JiJGwf79gxP1bVuJwdA0y3C4r4+PN2WBqA9/+uz5sycMBUv0E0sVjdyMb0Q4d/s3iQa8ZfXE3mtyhLrpXA2dXgkkNAQ2GZQb0tOXZVkIvm2Wfc+KMlOW4/HYO7dpOxbUxhhtvLMxDsZGeBCQ4Pu20VoXRb67t7/ZrJbzK5awnWPldH2HqaRbwWW7lcV6GABQmAbXY3gn0MT7xMIsxMMHRyeDlHTEAxsYq2k8SdKHDNBamkVmiDRREQAIPihSOzu7eWGccy6E1WajANi70Ns6L2aTiVYKAHwIHDABv3GQa4gchDQowAxtAmH2nr0TRdvLLCLBAw/GTe++tl35Le0KAN6dA44lwq3a9N148I7kVtxh08XattpFJLD33iWinwy0nJiLcvDWcmCPPvgQOPgQREVXEowsXa20Usp7DixKK+Bovh2/JX3jTW6YRGW2LAYAia6WzMERxqHq7ckhIIxG4zuHh+OqnBTFdDITJBv8ZrNRghUpBpWPRru7Bx37bT7Rtu2LZ8+bppkvFvV0UpdVVZSRLhSse/PyVV3X48kkeAci3ru356eMuLe/rxia61Xr/eL8/NWTL3cOD7OiMjkECU6psizqqopYUxzagaHjnqjrA9keQDiws/6v//pH/+pf/qs3b9/Y3kZZzbKoPvv0RV3Vk+n08eNH73/4PgJkWTLCy/MCAbquExEE1EZXZTmu6jwvMmOsdc45571zvuva4+O7SpPSpIjKvHjw6MG9u/fmi6V318KSm2w8Gq83m7qsF/P1X/7l91+/ejXsE+LZM/MwHpfm5eLiHfpbAICktKAIh2QriXLLE2XYTmJbRUhEQnA+eGvtZrNeLpdVWZZlbXSe6+LBh8d/92//8fuP3yNtPn/y9J//t6vlL97mhd7d3xEAzwF5YDKkBxMIEIgQSQ2D7AKolVFFWjIi6e85hEEeN+EnBBFfCZGlulyupsWkKnP2XkKItkd910XitVIqsLfWqrxw1ppRnWX58dHd6WTm1ryXZyPwygfsfN8vCSk4r3JuFoszZiuhYbdkmxmTZ9liPiekosq7vgdS49EIEJ8+fX5ydu58CIKoi6zc3d1/PJ4+tE5N70y1zwRQid2zF/DxfxmtUAN7RclbihCyurz76OG9o7u5yVbzxfL62nmPBk3M9JlhUJO9nF+/PnmbF+Xe/n5u8s7ay+vrsirv3r+HJE3bAQghAmPTdXq13jHTsiy74ObNonLOM+euX2yW88VV17cvX794+uwpKoWKQrjVoUgOpxDxqXQLQghB+p6yLLu6vl4pvbe727bterN5sHv/D//wb5ydnz1/8YoBhBJ66z1vH/eb/6bFl7yj4/5mrY1aaMYYJOTA0UL44uIyBN/3/XQ6qavi9OTtRx99NJvNTk9Pd/b2Vstl07bYYGf7EYyKorDWXl9fTmc7IjaoUNZ4fHfHNqeTUXH/0aOgCJT3vlVZlRnddK3WGjUJMgMNT/dNacEytHFT4StpDjjaAkXAb1DhSKNN/OtM4JtAGP8fIbeu6zebHliTYsoypRQEyLVxzBK8s/16vYy5alEWo1EdBJFws9kAgFI7k8nk3v37HPxqNd/aIqYYjBJE1ICBKqHbT7QMagagIz/r3SAdnzMUTERwuAk4KbLKtpc/lJDbZrngkJ/QEI1jU5aGK2JtH2xnXedCn8BsZyF42zQaoFmvm9EoagNE+vnttC3GtajogqAkuj0BCCJLappCLN3T/iAi3gc/eOamGp5FgGNJH/9atrFcQ5KJF4A0JCxDl04S3iHDUNOgSSosaXo9dvzCre2ThYP3jkVUvFjMSf0hMPtEiR+6CAiEFI29WJy1YSB/RQFxrSgNWSdeDwcGASGSwCzsQ3Cxth7gTByyJxZmVLfcgyPRQylEYA5d3xNLUVTaZESKvd8fT6CqoGsms93dnb2r9XK7RLqmXVzN+7YFRc1yffbm7f7uXnu0qqoqOP/29Zuqru8/eOA7KyKB2QWe7uwcTHZyJ9cnZ2wttv3q9Gx5fr57cCczeUAMwSudTadTrTSzhHCDyMYvHZr0acCMWULgUT39+ke/fXznodY6y/LMZDuzw6qqAruLizP20m163/Z5mc/qUU6alFycnV8vrwGACIt8IDdpRVrFnFMp9eTZF723WZmtm3U1ri8uL4oif/jwsTE5BxbvxYcyLwBgvV7X1ej582c/+fhHm83Gc9gqDTFzCFGClHKTRwGvEBJOhRhFdARQpx5wUr0ZKEmICCAoIrRNsxgZUQlDCL4N686uaXmlVJbpYjKbUObf++jQ5MXbyzfOt8rAbHe6s7OzWK29S7t5vPOw7dRECRYYdnsSFB2TV6W2OVwIIeCt8mFgWALEzBypafre2WoMOrq6o6D4rm+LslYKCUVnme/txrrVcnX36E5ZFpPx5HD/YMV2onzpWojzIeIcS4jaW8xd1+nMsKZ2s8hRTUbjvutAoKrGXWdNVkwnO1fXq/OzC+eCtQ4Ei3Iy27mb5/uLtXMSpNh3vQ7B5eSYmzgZwAkoAkSqqmJ3NpuMp+O6yrMMOLCwEAYOQVgDWRImJpSAAACL1WK+nI9RKtsyiQ19UWUH5oAI41i5RkJEhQDInsPF1dVqvc4UTavRxvRms2EOlt3F9eWLVy/PLy/LstRFvmrWgQOpiH0lTzMcLnbcR6OtmlI6Gqwx8/Vibl23d3Z25+jO8fHd99/78O3bM88hIAgoxIAIN7YSw+0c/hdDGHgfyeSp0gSkru8Rsayr1WYFYKyzr1+/evUKvPek1OnpRx988OFyve66bnd3dzqZtG0bQliv15nRWuvNZtP23Xp9DdI/erg/mRoUbf2GwRTFWJAEFYjq+957rw0qldCFLRyJQ63yTtRiJqIIO29t2mOSjhIh55BiQby3t+wFb8dipVSW5QDYdZ13QWtSmvIsi0wUbUxnnbWWOfRtCwJZnutKGZMJKgGMsvzOeq3VeDSazmab9XL4ikSGTse2pVZtmWQwJLDCAjRwm2A4QSGVAtgQdobC793G601NuP0HBIyjuBGbAuABIY6fvb3/3tt2s14vVy44o01Z5ME78UFCCM62681qvfJRQ4mFQ9iS+LZ3I0mqRWf51MaWW/cqdtwFAORGFgZvLbyUVkjMk26xoAVAJ/rZzQn/hjPHdz8v1grO2RBi9sJDlpN+H0KIlzSkvqZIYAkBOKAIB2/Zub4DYZMZk+eoDIgKnkOIOtJD6pH0qjgoTvz9KKOfBtoT405CEAlxHjDmtwwcJMpgx84QBw5apCqqdr2+PL/SAA+Pjw2jX67zvCgRUVw9KpCnx3fu7h7d55M3FKszZu962zWutybL0Yhtu26zuTo9p8N9FOg7+/L5K0Qz2rTxyS6m+/s7+9j3Zy/fZMHXEhRjuJ6vXr3u9o8IM5pMUEB8yPPizt3jq/lF0zchkglgC97KzThXhBYCT0fj3/nW72Ymy/OyrkbT6a5RxatXr548+zw4HI+qxdn1T/7i5x+8/1B1LvfsfWhXm27dELMizI0ihCAcBfdjVmYyc/L09OHX3pvuzgJKa7ur6/ne/v5sZ2e5XDrrYothPB61bWsys1wu/vr733/x9EXwKfoq1EZnW/pzPOD4eEfrwDhUhoikooSZigGYB/VNScBO7FDLIPcDRKmVASgx8w/Aztm2W//lD7/36uTFn3//737ta9948vTp2cUbk+n9/f0izy/nC+Y4HDpgU/HhgW1dnvYJJIVp54ojDVHfJZHwTZTYQwIghkTSDMKBJQR/en42mk2IjCHwwH3b9F07Hk/jFyiiqqraTXN9fU1EdVVdCe/v7qr1vOhX2sfNNnErommaC16Ex9NJbkYlaJOp48PDpuuUMlU5WtA6BLyeLz/++Odv3pwGL8FLXtS7xx8ePP7bMvnw1dqsGrdoOXAAVJzr1iXUjlECgHNuuVy8fd1ejOv79+6Htgfrsiy7Xiyts4oQgRlQRaMKSFSsru/7rg8yX23WpMgFF9iTJtLRXjECxxAHgBCBhTtrRZv5pgHsIlM0y4zK8+neripya23TtkpT4BB8cMkyChw7REy6EpF+wywiitAHFzXzneudtyfnZ+81GzLKJ8kzilsmgarL0c50BwcDGwF2wUUOMKZhYk2kEcjorGs723VBuLP9bDY7ONjz3q5WS+ftYrmwvev7XhA+//zzr3/9G977i4uLqqomk4m1tu/7zBjvXD2qBGG1Wn72q0+9X9fj36lHM5Vlrm+vr89K58azO0VRtx2dvL101teVyk1lXQ8CHIRVyj5vtt+BDCzAEbK5vSEPUGdCWbeSFyK8/dF3wq+IUmY0mnRdZ20gpU1eVPVIab3ZbACxKMuiKABRAWlSKKhAERABCZAAklJExAzWOiIajSZZXrq+GZAtRoWRdC2g4mM7VLLxeaPYH94GrNgEZhAGZhm0qW/HqZsgO2Qot85eUhTDiBHGAWFkBNg6AzNuNaUBhNl2zcX5mQu+rqq2KXrbA6g8K0HEdv1muYp8W9zOVQ0pIDMPRSzcHFLaO0QkAd23d2lJuHU88Zu7kKZCQEiSYEi8zxpvf8FNVzymWCzClJoyg5EWvqMBeWv1pMAvA8da4Pa4msAwriccJFl5ijZ6d/9Av3gNLgBD1AVFxBBYWEwyNA0iiigisgEgnjYyRwvXIMFzmqEecsC4g0cm+BYhQIwWbOx40zbnDKbpR1k+OtiTzWp5dSZdMyrLw529vZ07y6ZLpFlABLG97bqOma33o8m4rurgfbNpWKDvbNteTCZ7mh0IAFA12x8/fO/61at2uS69yxUAgmrb9vy8vbzS5USZHEgjMRIdH989Oz+9XlxLmtMeqAgCIBi2ktcIiGCtnV+tyrzKjEVRDx9M7hzs16W6unj9vGn0qOTO/uLPvv/0337f9v3I8oadqQtFJMKKVFnmCoGZlTFe2HNAgt71053Z3/t7/4FlfnP69mpxjYiHh4dFUaxWKyLsrR2PRru7u03T1KP6i8+++OLzLzfrzSDHjYSYGcPCEeuON6UqK0SM5C/vfaRpxRKHKFkIIqLzwTobpb4EkBAVioAgJiZnXF48eKUJILP33jH712+f/Ff/zflsupdnFUaSZ1H21nNImzISDYEdEAmTnVVcmBzxHCJC0dumDUIaVxMA530c3EYU4EBKE5Dn0HurUE4vL47uHhfVNFbWm6bJtM4zA8wM0FqntSrKYrNaNKt5lelucW36fiRgfIDALMN8OkBsP2ujnXPeuUI4V1oY9nf3dJ5VVT0eT8/PL68Xq1998fTjj3+2bnoXQpGX09290dF7+fS9FvbaICvfOwgq06SoY7toXGBRFDkj7J2bLxbX5+fXmbk+v4xeQ6PxyGRFURSzesxKS0IqOLCPuZS3VoJnB8wekASZVHzAOTXHYpaTPEVIAUZ1SSZFikgZZrFBdFHuHRyNJp1z/Xq96rqut9b2vuv6vnPW9oTKey8QbrayWFsMGhYhBOcACRfLxaZpxpNxRL5i6ze6vIzH453dHedc9B4C5uD9IGEEiCrPckTsO+udbzZNu9l0tsuLYnd3lufle++/RwSnp6dPnjxx3ka0s+tapVU0Tbq6upqOx9ba169f379/vygK50OWGa3HJtNt1wOioFJZLcDebdo+wMb1vn97snr1+hLBACijMx8Cs4+PQ9xEbyKNbKfnB+zodgQYIvQQjdKOzSCECbPFrdssAiASkdbGu40wmFwpTQiw2axDYJNnJs81qTzLtDIKkAQFyFkrAEJaKY0qsThD51LNrDPXNcEHStjsABTfKhhiVTvAeDj0jJmBaQjPwMPWzInffLs2lFu/3zZk09MLW9W84RWpbbFsE4EQhisEEIK3/Wo+98K+60Eb5z0LT2ezrm2apinqKl5hQlSEgomtEkWoIYrY3YqvxOnPWzgZRQC2DJ5hbGyIxSzsvWeQ4AOHqMRyc/C/SQkrUdaihmeIThzJBhgAMUBkXg3I87BU0tdDqlgwynrKUNMNcTgeIIMmQeydXW/WHD3EvRNhJEWkQuAQxGiNgxVI5C+H4JAYIXXloq9wZHpF0Z7APgTPHsUHMSk1RkSFZJRShLbr5pdX8/PzM1Kno8njg329OFqdnPj1UvWdKnWuTJlVk9leXlQAYHuLXjQpbRSLrBbz8+ury6urO8dHj997b/fwsCgK64IP3HZJQPX46G5XjZ+fXXXn84IJMWdQEtCu2m61KZsWR9YbwwjeO010fOfo7euX3rYyyKHcrKuEboiggIKd3cnR4Z293T2tsizLD/ans1l29+6jvYOqHpnl9ZVR1F4tF0/eHlbj4niyUVZPRut2RYhlVWZZzsDWWZMZz955K8SBw4cffXjvwf3Ty8v+lVuuVvVotH94ELtlJsuD8M7ursny9XLurP3sV59eXZz3XROC37prIaJWOj4gIbBzTpJIp4qIoHOOmQd1BCJURKi0MhnmITjnUpAGuKEeikQ9+C0EhYQQ2Q/BheCcZed5vrzOsrauq91qR4RWq41wLFsxJbLpQ2DINTHmogjRVRUBhTCKjg1tKEAW6a1lgIwyjVlklmHslYj3znbNerlcVPWszLPr9WazXu8c3skzE1Nn23ev37wCDoc7O9w149m4vzyzpyd526J1gRmYCQLG0TN2Il5rQpSubbQxmdZt10Jvf+vbv62you29Dzifr589fckBDw/vdNYC4s7B3Y7MfLFq58CkyRRZliGSgPeutbaNpJ6tmul4MpnkxaQo6npUldVstqO1RqXaruv61iBBnocg1ruAELGoLMvyPENSgQSAGDjWksyMhAK0LXqivj+ZPMsLUjH8RvcpjM0mACmrcfAuL8Zd13nvrXWbdbPZNM2m6fpe+g7FQzSOhluNrYhwcky/wHl++erNYrk+ObloW+dCH8QpBADorbK2U0oRxH091hlpA83z3Gjq2r5t1icnJ+v1erNZbZp1WRaHh/uTySSE8N57H945OrqaX683DQsjojam6/sIIC/mC3fXVVW1XC7Xq/VoNCryUilDpO7ffbSZTcaTGeqcyBgqtXFBYL7yl89ePPniZL3hLB9Fod2UCw6mTBJXo/DWvW2748NXAnCSl4nDSltiT9w5klBo8gVKBkHCIAGCY2ddb7IsBO+DhWhBpjWAsARSihQhUCxqbOOg64rRONfkvffeF1xopRTF5iCywLbN+5XoEcsful0X4hCahkFlGKJF0tTavnV71pDGYbZfkSJ5pK5FPaVttBo+DuJ5MyAzbS8miHBwwbrYTI1jOcJFmed5xiJN2/oQACCEEFKBikRKAKPT6rY1MMwPwfbGpaNNfk8icfpjoNTFM2IJ1lkBCOwFAt3WhvkNAXh70qmUTGnWzWMQxbpSnIchAqfaMzADMDvHgUkr+MpNukFVBSK7IHqlu5BkJbwHgDiZIMKYRpY4EveJiENADkjA3kO0xYpa9iwgwXvvnZPUaw7DaKwiQGDerBZvX79++eL5/OLcd11PWm+acHFx/fmX2vbBWRLuu65ZbYjUbHc/y3MA6JouuFDlZV7kjFBPpjrL7hzd2b9zuLe3l5flg8ePzs8vffCr9VqYlTH7u/tvApy8edNumt2gClJB6U6Ua+3q8rra3yhnxaogYG1n26bUam823azmzrGwCNysLhkYgPGy3Dk6mI1nk/G4bbrrq4XArKhGeYkPHx788R//nR/81fe57XIv0roDYGzw3IBVOqpeZ5mhyFVBzvLMe+eD6/oOFd69e6/ru8ury4vLSxf8bG9ntrPjQyAiQijK/ODOgfXWe//y5cuL0/PFctHZ3rlAFM0EEQE1kSayLMxsrbXWRvgxjnzE9Q0DMSoEBlDEqIwyxmRZFt8VIzGzaK2UVokwEyfZaWA+Dup3IUjXWe9DlmXf+d3f/vf/9t+bXy2/970/ExBEdWvbwnj1JE3hwqCSlvAbvLUNSCS+QZScD+J60qSUvunQDFluYG7blhAyo5fza2As8lxHtW8ArdV6vRrl+Xv37z86OvTL+erkLayX5Kywj9ujEhZhL16Cj4gpCjjr1vOFKUsCXl5eNcuV6P70cvH27cnT5y+B9O9/9w8fPHz47Pnzs4srVUyaJiztqg3BmKqc5HEP8KG1/Wq1vGBmUBAxCRBRRMqY4MJmtfK9y01+cHBQT8ZN1zabZm07I8xIQRgIgwgABOau7xhEFImAYNCGlFKkFESLqziDEYMDBwqBvNegRYBEYlkcBROICIGUzsuSlMqY2TmX5XVeNnm5Wa/X1GjnOu8tBxdhsPgzAFEAHBAosGw2zaeffnZ9fX11ddX3PYP37AOy0RoRtVZyo9ITUUQEQaVUXdfB27Ztl8tl1/VNs9lsmt72IfjXr1/v7Ox0XfeX3/8r59xqtQIUrZXWprf9kydPzi8vmr6H0J+cXBDh/Hq1WbdN23/9618vu6CVyrJR07Yf/+STslJlUZZFAexXm83ZxcWm8cx5lo8VlVs5+jSuMsSbof4TSPBsUvyLXEwEAGC8KesGbjTGhcqKboDMr0DQIsE5Z51l4RB86MXofDLdMVnugQVj9ZxS3pjw2xCsd+Vkkhd5u1yu1+vAYVSPFGkBCIFvfG1TW/BGbGP7zVtqdzROincDIKpp6m1pliIxDCMTwrBlWuGtz/uNL5ToZhhRaR6G7N8BrhFQKyAgTOgvEgqDybJkvxIt6uPgu8SCPgT2MugZxBLjnQ8ccN80pnvrcg8N8RhmE9tFJHAs+Yfkavtxmlgo7YvRNSmG22hglKQxb13ceOWZBaM1Y2JAIyCgikuHxcep3JQrpLSBRaJDDgDgzQQ65HlujFbMHEJ82GIhJQLJnQ0JRCj1AZnBA4AESnIcwpgq4cAhBPYgDOxBPIoWDj5I33Uvri5fv359enLSbtbB9iJcaMNeua5b9LZgropMRWPXviWi3Z3DIlbAPtgQ6qoelXk9Hk9mO0Vdj0aj8WxS1bUT0UYL8nK9nDgbWWWZyULb2E0DEpRRijQorUhZ79frxaxZZ/1GVHCebd/bvlktFwpREXVxdGpIdWCQlYm7GDNfXJxdnp0brax13vNkVt27PyNFSuNsd7S3P71+1Y4EtFC16kK2pKrt25EIVGVZlpUxBpkRKC+z1fWq927dbKrRaDKdvHnz5u3bt57DaDze2dnJ8uzq6spkxjmvlTk4OAwhbNabJ198uV6v2qZxzvkQiKPdtYoEU6NNMoZCdM5lWRaHi6J9AqHn4ImSAXiqdxURkdYKAIk0KUvWpthPOloFpxgcG0qDmzMhmQyNYeesMfob3/jG7//+73/2yeepyMVoV5cezndBvNSkiRBOxFxv2cWmAJu0M1nYe9EBMADFST4kRC8UEFvv+uBAgrCfTHZRBEFIGQHJc3z48OHf+u7v39/bffPki89/+NerN2+U60hCgCBRGQ4EALQAAROhAhEOAOh7661jo65Ozl4/e6aq0XVjn796Za3/g9//7rd+61vW+cvL6+WqaR0yY5CAAIooOEexE+udbxbt4kwkIJqiLLs8886Ld0IoiHlVjUZjULTpO+g0EqHW1vuub1nSnhUr4N71q2bNIkKolGIMmskYYyDLCBkxgW+IEL3/AgTnE0eGiFQixuNAjIoSQSkRIzSZLiQjAlIIyNaSc8r7yE1BEba2Zw5ZZhC1ImLmzWazWCxWq1UIQWsdRDz7uFOVZbm/v395fo6wtSKI4smiiMo8bzkAUVnWAFdt2zlnRSSEcH5+/vLly69//esM8uLFC2Ypi1oppU22Wje/+OQzz6EeTUCwtRYZtMkXq+XlLz558/ZsNtt5/70PlFYnJxevXn15dXWOiJPJuCpzk2mT5XU9LaqpUjmAEhZUiphCSqxvBji/8krg8i3POUl/GScyGYCH6RhJsTxuyGkkBLelZqxtFCmO6nogSmltdNc0TdPWo7HRudJaWIRC3MkNiCJiFlIUZbG7rmOtaeAZJ994UDIcaXx6OGpSRsnK6DKXxO/ekVnG2KNPhxibCZxC9RYyBYhDtxJiQxy2aNi2Fk1LLybWGCEPEZHgkySkIGpjqrJ0gYEUkg7C3gMh5VmmSW1XJhEpUpp01ESJQiKQxAZEgEmEUg4/QOssfEPzTRsNihDgkA3cROttxhEjV6RE6zhDmwZ5iWJCNNy57W61rcMiXTEgEkd3A5B4CYgAEAiGkH/rsCI0kBg7RBClnQEAwPb9YrGIhxlZ0vGxZM8hMJFSSiukqPUlzMyewRMhSwDhEHzkrfEg/8DBswRCZGd7DpvF4vLy4uzs9Pr6qmtbCQGYQTyAsBdBg0LCnjl4JwXkRiFxyIwuZjt5UQDA8fnr8vNsVNdVVU1m09nOTlHXWZaTIkBsuq54ezK9vsrLeodAOwdZDgR914auL8kYhQYp1gyIHPrWuna9nrPLrHPeB+v6i4vz07PT9Xrtg1fRqT6Ofg8d9HhnRfji4vzpl0/G9ejo6AgRr68v2/ZeXWqjELxt1ot2PTcQVKH6nvu+UQXbzQrZjcqiznMF4H1QWitSTdt0fWdd/+FH39jd3/vl55959kWRTXd3xuOxD6Hv+/FoZK2t63o0Gl1cXLx6+XLTbATEeS8SqfXMjFvH4ljrRDU29p6DE60S+YUIQRECc0AUIoqjz9Z7RjRkiFBlxhACETjHgWWg1A1PXFr0cbBIkAhJmxh64MWL19/73vcW1ytmjuXysHTTGo4o39BIAq2Vjz7OIpjYK3FbSy6ZAslOWJL+S+ytRDFbYgGVFYGUFy4Kc/f4sGO12axRq8nOntaGhR8/fvSNjz76/Mff/8E/+yfLF8+Nbw16BI4sLwQkVIAMQAUSKsqjzyiiUkqIHMjy8vLk1et67+D15XyxWPzB7333D37ndwno9PVpu9ywZ2u541wCGK1JKWYmESJCEd+uDPeEmAX/7Zefr0zOwUsICrHM8okfj3mtWy1XKemw1lrnUtWCwADl9RkA9N72vmcQYVCikAC80pFLEeT/w9qf9Vq2JOmBmA3ua+3pDHFiuEPem5k3M2vImpKsJpukGkKr2WgJ0IMk6E2QnqQ/oH+id+lJ0IugBhqCBkpNUiJZZBWTxZqysnLOO8d85j2twd3M9GDua++Im1mkgN4IxHDinL3X8uVuw2effUY0RmZEKgVhIIPs4ZQLWimolcmpb4wnmoIdUCWwGGg+ayTPiYAZU6KUBizTzyQlRYQQCGtvGBE2Tey6PJ/PKczv13eStQZqNH3cRIgmxMAsOeWcCeHm5vry8rLrOlHxtjFV/eyzz7quOz0/W8yXpqVHSNT2+97gbrFcMkdEFIOmaR+9+/7Dd95NOano3Xr7Nz/+SWxi1+0Wi0dte36/vltvOuTQLk5PTs7m80WIcyRWBTEhJlYWzcVteAVxUtSYjDkcYc0+TLCMupnKeiXLoZKj1cmABXWvq2029L2p+jASYs4prdf3CzkZhmG72TCH5XIZmBUtE6oqM8R2PqaxX2cgiE0EAElpyGnWtsRUG5bJtEyMwDeSRHAFq0kfwsrxc8cDUFyvg1EGFSk3ECjdPmpmClqw0Drr3ctQjEiBg7fsFDdnaorgOhAoXqAyBQAmjrENcZ5lRHY5WEBkYkaKGBjAK1YAxEjsxobZx50UbUV4Ezd2L6oOkhmVaHKquTuGVMMLKijb4bkd169DIbvX2oMDfFolRsGVLNzQOtexEOIdKtFDjccL5IejVfHxN15YI5/yuJj44cXFs8tr68eckooiIhCNuU9ZiWmawkRVx9VARVBUqQzrUziCKkSzSTaB2+urbru9vrm5vbvzOUUV6/DOVc2gmRKEJkamJJJzBpq1iwDQNnFxsvRt948//xF8/iP4Na9TgHff/EperoxBVJYaVnG10mGhOhsxEd0h9GMahr11u5T2/TgaQtcPz149//L5067rZrPZrG3rjqVp72JVT82S7u5uwPSJPUbDFy+eP3/27qKZL+dxc3f39PPPXj37coa6+LC9yZBB1wHHfhcY2qZpGUFzGsflfAHMm+2mG/rH777z3d/9nWS67ztmbmazBxcXi+VyHEcEiCGKyvJktVgsdrvdJ598EmIQzT75GAHMQMSYgbnYjNL+oZplkNxAo1CLuFZ8dGns9pw+V4wxxsjMnjQ7dxqsSMxMSXDZa8U++ZZDQk7j+PLZq0cPLu7vNjDpgRS/awA0VT2mLjskjhEAwPtbJjCwwssiJl7lMVNR4WIU1BQVjAIHarlpFOH0ZDWq6np3f7/pt+uG9eLiwlRnBieY5f66v3oZ044tYRFmU1RoYoiEINpSsJzErCHXhcUYG26iIOxzevnls3C/ux7G3/rd3/veH3yPkn76i49//vOPX2/uE2jCmGEZMCBTTpmagISAkNK4XV8/wUwIi373P/uX/82v28D/wZfoOGhXtx9yiKpBpfBrSuZqhEghhMANhmgQiRkUyIiMoWQFh6xmQtQKCd51ZFWbGMEETRmxwxBCzHmcjLgbMdFMgojIgYgpxLBaLbu+63JStc1m8+L5c0LH6HAxn61WixDYZ4DlnIjw6uryiy++GMehFKfMAocQgqo9f/789ub+5PRsNpsDYBYFROYmNDOkkNXniTGQOlOHZ/MIMGbdbXey3Q7DEB4//sY3v/OepJubGwQ7PTuZzX0wMyJCGtPkjZgJXSm4UJmh2nAo5QhDKjP18DBr4fCrGEY0RKApMkUq2Pt0TMpcPAMVyQaMTChdv1e1rHkY+t12u5jPmxCJmAOpaUpJujHtO2SOLpmiiqIBLZCZSr1kxyAFjdALurUj1IEil3+Y0GWoM4WmHeBlU1AxrM2H5QiqklOk1U+gTtpaBoQUiAMBFrHIw4iEitjCFOf9o5/8hVy/CE2TpTA6rW6nki8APPz0Z+DYjFdUXJIZidAVUY/IZVABbyvFXJ28WVEIYQqq2bD42cP/mk3t05M2GAQ74jOrqusCggGgughJxe5V1RCAoRAgywMuVBciZEQ2ywDe1XcI6CbDWZYYCySNBnkcx74HLfod4zioASFmyWP2gWjeje7G1H8cD0yvQoXHsqBI3oe8We829/f73WboBzOjCsa4E/drz2qdpNQ0wAFVMEvOOY2JkB8/ebx88qT//b//xdBrTmPXjV1PhMRe0WnbAAEAAElEQVREwbtrggHkLGNOi9XJ6uwUkGLTNG0rZw+gmWs3zDPGMFuIziAFImGiBi3QZrvllvcg45jGnG7v7z/97NPtfmc+v9qkbWfT/I2aARfLte+6V5eXr169SmP+8MMP54vlfr8fxzwLvN1s1pv11WaDpKexDbOgCMZEkSJhSuN2u1ksFsS0OjkR1ev7u+XpyX/+X/7jd9792p/95V+OImIam2a+mDdNlJzb2YwDZ5Gzs7P5fN513TAM5w/Ov/jiMxEhQiWQpGagqm4p0MFoAPUmTsk55xAZsQy5MjOP6IouJpE3IqWU3L+GENwTE6KKeSfYhDm9wekhRkQTUzPLaqLBO3LrN0OdMWWFUw6IYAo+hQwRSz+mquciRxg05JzFJMbg9aFxHJkaik19HABIHALFKGCKenK6TJJ3t7Jo4nsk70bLJP3uZv/FL8PuTvd3lPeIAkQK5IhRG8MsRFJAsJZ5vdsiIBKrQSSctw2HuFJ7tdncbPsP/uB7f+8f/Pdiu/jpjz/++U9+sb7b9pAhgrAAIVEQUQHhGROxVeQ8Ef3lux89YUPCivXZZEoc442xqYvst+V1HumHfr/fZ5GXTRTNIuIGS7ICjJwdWyZmYmPPfdVUzHx4eIMt1EkijAfxo7KbS3eienHacYg6AI0dHQkxBo6MnIsyLhGRewIRYeYYY4yp/IVjj2Rmu93u2fPn77/7rj/QJ0+eLBYLj98cu76+vr6+vjK1tplRQMfOprjOu5cQCTEgYBsJmThEji0yg5KBEZGCgYqCeazgPQVGaIR3m/V7KvP5/OTs/Obq+vr67uHDi9VJZKIsut1uY4yz+Ryw9ORVjhUi8OF319AtSTDVamtFoGsI83bOWX0AVAnHuqXRzIZhUFUVWyxWzVnTNoHZhmEATf1+fXOlOY1NE2NsDKzrtnkUbuYmnFLvfKiGmQPt99uURqw8DEePD2HBm2livfDDa3LFXuR26gACciUSlTSL1FzX+1izFg4L4FuifunIMyIQMAFYFofiP7h8BpfP3l6oX/XyXYnAoEUs+aiwfnjVgMK5Ze7oD+gLFtFK8bUBd+c++qw8uzLZzyOGMMWk9SqKmXRVRx8eW8C3WiSfSGgE3jRwSE9c4agMFagB3QG0N1NxUMr73DTnvNvsJCXwdoIsWhMXVQuRmKlwz1xpUs0mzRQtI2hhSo5FZBy393eb7X3qepEEdUbhBCEW7ANB0PY67iWeYGwQEVHNxnGkEJ+8/875N558/r/53/78P/8f7++vu5vbL3/5cR4HYACEOGtn8wUA9WPSwL/9d//wvW98U5DOH148eHghKffPXg+392FMLRMbG0pP3BEMM97YsL19Pe7vbvc7Yh5Turm73W02ogKASbQnRz8aM8OqrcpcasCz+ey3v/vbm7t127ZFs55JsvR96oeURVQl9b3QSDEoGhIag5hmybFp3m2aNswWi4Uh3K3vv/3t3/jmd779+vLm5etXhhiahphjiIFDN3az2cwxyZOTE2ISkcVigYDb9VZVJzdnZiIWwiQzdCAHOn+SQ+MVQADIolomn6CjxMHIyTbugwt6CMCu/vaV8i1UJMpjac1Zcgawtm1n7YyIqzT/G7t6CmImCkyRPWRmJlFTVe9SUpPKRFHm0gWXkjDHEFvwHQAI5sRpFZX90M9iOF80p+9ffPDw4Te/9s5qNgPR1A33X3z86Z//e+x2aMneYJSUARVMSIiLdjZ0vRoRhWxKqgFs0URUGhpdnK7+wT/4RxePHn/6s09+9Dc/uVxvlVACIGEmo5qjAwdEMkACNDQC2DWz/8Nv/g+ePHoYQwATyLVh7yDYYE0zY+b5fD6fz735Qixv95tffPyL19dXkkYA77MvcuLEwbFOEw0hmIFrZRBhESUiLIB/celAXpdGNAVC9Fg+pyT1VfqdcjYzAg7YZDTmhjkSM1UTDKAAhUDglq5p2hhjjPHs7ExVhrErgpSqjqO8++67y9USEffd/vWr169fv97v9wB4enpBjAaSJYtkVSFCIvbCxG7fq1LbzojBFEDUMFEd6go+utvpxk6TYnJtS0l5v9v3+y4gRo6LxcnV1eVm9+z9r73z5NHF2PV36/uT1WqpKw4MJm4YPYNF9Apg7ZlyVNUIzPxTCY5S5V/3KpMNoNRrPK0Co0BZ8n63F9GmaWJgH/pqllTGbr+9vblaXF81bdu2bQjBTBB5iYiEWdwVWLtamcF+3+c0WJHJ1CqtAW+d06kHabqwqiWsxy5TVbFqfx2RpwpZ1wqnqDgkLUXh0gVcZMCnhiR1g0keIJvpH3/0vb/62m+0q+U3vvURtc3V3Z0CrFan89mi7/txHNu2jaHZ7Xa77TYP/ZfxVJ+9ElOH8bAIW8IUVVjNZ2ssVMO3t/20Tb+75SEX9y+FsCM4A99kQXvu6yMWQHV62L6QBr7gOikuE3OlEsDb7wOHgvnx1xE8LqjZieiYRhMFsJTGMY2+zf1YEoVS8auRlKoT7BGq/gfUhn1V7ft+s16v1/dp7NGFdd7cFVZJ5A4H9Dlv+u68DQ0zGrKAGuZsFEN7yh/ER0r5y8/gycMH5+enN5eXTROXi/n1zc1uvzfAeQgX73/t3Q8+bBZLIVqcLClgv0/79ba739KY2dTY9oAbHa4tXe7S6/txF6gz3Pcjx6AIKWWTMu7CkMZxoI6apsHpIUHRSTaz09PT9/7e+wR48eAixnh3d/vy1auANAvx5YuXwzj6Jh006Ziza6VhGU8U2tnDnNuIxJRSGlO6eHgxjOnLL7/c7nYcA4dIgZsYXQl2Pp/f3t7GGBeLBRiISNu26/t1t+vcYhIRkYlIzinGwEzBS/Z1oKRkSeMYm9Y7qomIMWgGpxe6HC4REbGIO+uMiDFErHl/DXJ/xcsBg5xyShkRZ/OZ135EpbT/To+8vptH3g5O1o+mEIKofzQYonotwoyR2hDBIJtJlnHoZ83CGjYMviFVpd/tu/3OcqA23r++PGvCxenXzhdxyRQChbbZPvvi9vmXmPvQhiOyhhooIpSGB0Di0IQ4msUQSMRELQsBEcWHy9NH3/2t9955/Prly09+/ovhbg1EmSyDCHA2FUxmI0Ak8gHZPqWdGCm2jRqIKptSnemmBfsyA0NCBQ0UZvP5bD43sCR534/PL68u7297GcCUTKHgTL52wkxm5nvSw26PuSrHqkjxMJMqoaKSUQX+1Zs9XEQx56n3rKZHdWK9IXFo2nYYgmjyXMhxF0DwUACLSIWlJIv5qu/6nJMaeAOJK0g0s5aYur57+erl86fPiWg2m/n9I6LnPDln0QwAgZljGMa02+4553ZewHMVNRCFHChW7ljwOgoCiMOtTCGEbrsb+17GNNKAyGen501sn798/sXnz0IMktN6u/HDxSGIJPDyIxJj8AFEFd85/lV8V02UK0ZdTfJXX8c2zyHDEAMxuYpMltz12+1+N/Td3e3N3d3d/f163/VNM5svF0+ePFmuTsBkMVs6GyIbonNxTpdMNqZkkmHy8/imiT1AHb8yVKiJ4/GXip8pftRczdsLoQAu+KgOZdc3PmD1xZthCa/9x2pi8OWDJyPT/OED/sP/ZPXw4sXl66z24MHj5fJks9nc3tyuVqsHJxfXV9fPnz/rNvd6tzZ8rY6s1g82cL6Z4+SmAGQo5hnudB/HZYJyxp2grmhWCm9WAjhfAyREQ8BQgpgjYKqo/ahgSTu1pMWi7gE1CxKoSAUE4XCEoJT33hJwKTTzOhPJNUPLT4mCGiOCSk6JQq0ni4RJ3L9qVzr3ihTA6iguMwJCAEnp9ub6/u5uHIZSuj489cPlHV+WgG1yusKBZ4s5AIMpct/tttc3j+wb81P62jceD+MuAn707Y/ur28aYkz5pz/9SR5zMludn33wnY+Wj84FeN62y5MmZ+12/f3N3ebqVlLqTAxkLf2zYft03N5C2poORGKmBiHPkNlMGajUJQhUYeiHvukWyzkAeHNleciI/ZCfvfjk7OyM2rhYzm42t198/MlfIp/MFyml/dCXrFchS04+WszETLJIiwQAxAQGXdcx88np6avXr754+iUFbtp2lBxDG2cztzsxxomBZWAppdvb2/X9fdcVB4wIzJiz5JxSwhgpRGoid4yQ1ARUc5agWTCaFwzNkNkrx9lMGQkJufSLesehImpgZg6Tds7bwXV9lKlacGZum1YrKidqPgCpJr6HoNtzdymt4saMxMRMLpmpYCmnYRhUdDZrfWIoCICCpJxTirGtI8YQ1Xbr9c9uXl88PP273/3us/XV7Xr9/un8yUmznK/QsB/T55/9su/WppkpIoYsQuCq6G4vbCLrMlFUa5iT6ZhdZtCMOTCfnJznffrsZ5+8+PIlJOsjiFpGFTG1BNAF7IBnGNBAVQQIYmzmJ6fMg3FQa1WJCubnY/4MwZAsBJ7Nlov5YnGyQuSUUj+m27u715ev+r4XyX6xVjv+HZwA0MMUNQAmR/4nbFTVMhqqugMGyd4jTIRUWBvV6ULBWqHgfYAgAAFEszLP23aMTZZBJAGYSDYDIjIArTprACBZIBxseu3gtJTzx598nCVvNpuXr15CDbmIWErFlQCNkTCjmhFx4Bm20RRDiGYO45mBIRgjqXJZB1Nw5MFTWABAYOZxHIe+2++3JhmMlxgIw3vvvX93f3t9eSeavD0v5zwnpDJUodDuiMhMCI2wEG8L/fZIprCky0auzlZakSbZjWpqS4tx/REAY+b5YiZ53O+77fZ+s7k3g/X67tWrF7v9PqekWuaLvXz2+Xw+j0388IOvL9qm64eu70NsFquThh8+vHhwpeM4utYxooFPa38zbCh+RH0z6ARQl21iZSsegdUVfq6FkvI/xV9o1UCcCASlsnT0Kh2GXmlCKgQ0FZE0jAY0my9Pzy6y6myxCDEYQMopp9Q0YbVazubt2LH4cnnqXebW+3Uc+VpzH1zLglYsNxxFFQaHGun04ArMgVQLuE6DxqB1ot/BvpWcv/j0ogct6teVHYyyqSbnkHgpJE/KV8d+bzKah3+ATSOfXM0LAVUt5xyRwAzVTNX7QAvyQOimE1HUUCT78wEwIlPJ67vbl0+fdtttuTVVv7j6QVbpQZXvgGQEvdlL2aVRnsQlxGCAV1cvv////een33ly8RsfLM/iR7/x9c3dLhK3i9nls1fDbm8A3IR+SKuHF2fvPsY2oMDqdDab0+Z2HIfh9urq8uoy5YHycKe7T3dXl9Lv0AaGhJDLsUUA9WhNQAtV2JEnkd12F0Jo2rbkM1BKlq5e//Dx4wcPH6jl5dkqWX754nkIgZnGYchoiKRoCuI72LONMY8UopmFwKq63W7n8/npycnNzc3d3W0zawEs5zSnZYiNKAAREHfjeP7ggpnHMe33+6urq+12M8ooDv578YYhpTwMXYw0m81iE2PkcTRwbyBpHIemaQgJjRgIKDqBUKUQ9ZEIGWJ0wVWb+q6QXGBaj33w0UYtmwqJGMnMR7iUydIGEpumnp0jKKxKpUqW1PdmqWljjE2gonkyDn0ee3BqtR8eA1PLmnMaQYWYiwNGVs277W61CDc3l+Ow3+/WP/rxjx6tFmcffCOGeH11+eLpU8sZaglfsyhgKdGoqHJJ4tRANTC3IbhYjgApcibaU9Nfbn6+/dHzV5ebhBIbZUrSpzQgIzGAGjVNy43ZMusAYgCIxKcPP4i5xcbHYFNgH7QOdTSNKmg7m88Wq6Zp1HAYx932/tXrl89ffLnZ3WsaQMXHhEwQgjgy750ixgCKphgQURFIxbyfgwCYJsE8MBe2M0UAN9YuBhkoxGXwqn+MAZEki2YZ+3G93VxeXw1AkSMbqTIqGpq6yBmxKZgiBgYjYmQ6MEPdm3v49emnn67X65RS3/dN08QYPdat5RMCBCRCRnJVRECOzawyo1S9MwYYkcElBxBUDcR/0kspgOhlcNXU9/v1+h5OQRWb+RKIOPCji4ebzXq/TwzU9/1ms5kv504qs8oGImKRBGjFUhXNf8ek2QXCKq2mwjkOgHvZp4yAMq+xYNF18pBJDYwDhybafvf61eVmswGDlLrtdu1hDXgmKbgb97sthBAYhch2u33f9czh4uHDdx+dfPD+47PTxW63FjVmqMXBgkNjzdYVXGHRr0hLMxLW+u0BzS2zT6DM90Mz7+HW2gV7EGSeTr0CGIIiSMHBfbGoUr9LuzkAiMgoicZRqYG4nJ+EbNLOWkTKZrvtnpTsPWsWzXw1k3EuN7eouQy7wCIU6yYKsPC8pls+eGCoq1fANu+/IkT10SxIh8mJCD4+whnkQFCU6N+sm3u1ysqyap2wri7mjK6MJcQMUOK06uQrbuqpSI0OCoCvJZkuKbAVXMXqGMmc0zAMgDR9XCkdmfeJM7FHoKpK6hV682Ni+91mv9vttmszeQMVeaMWePiyr6cSqqmY3qTOACwsGuS+u+/+5F/Zg9l/9b/4nz/61gfL0zYb5FGJw/1+uHx5uUs2QAgniyff/FZcniQFA2iagNnSut9fXT//+Jeby9c09prHl+P2lQx7gIEoI2qpH7l6W4E3vlrmVJH9vgvO0/WvlEYsa5v27PRstVql3O938eLBg+3d3TiOw5hTSiAa6MByt8NSY6m3iW42m1evXp2cnJydnT57/szDtZxGSZmJEDlJ5hB8ZU9XqxDCOAzr9Xq9Xg/DIOLzNcBUHJsgRJWcU7KmIUJmlwVU0UzCYxrHcWBmM0UMBBA5oI98roGZc0q9kDaxbBARkZhxIgkePcr6F0QiVLPrm5uLm+shjQZmomPOABhjU097SQU82nRcBRGGcUh5WC4XITCAiYzj0InktvW6NSKiKiK4XkyWnJkDEdcgHAPHtpl965vf3F6+xr6/vr3965/89L3zx+1q9fSzL+6uriOy5mxi3DAi5pS9id5RJgMFH0hggEiBYyQD0AxxwCZhvOPYXd93skkKio0RG8ogsNt1TEJhH5t9Q9I2zGGZUbOklCkpzdtHq/Oztu2bmE5mYTkTpi7GaYK6qAkQAzegtu/6u/v7q6sXr1492+3vx3EvmosQUZ1UXQgmoAqMBkBmSkAGihAAArkGr1MTvCPczZPWFwAE4sCxibFpmsVsdrpazheL1XK1WCwAIaeMQJu7+xevXsYQNOVut0MDJvKyQg30S8kppxxj9PQ5cDhKLyCE4Cnpzc3NdAH+KarqsGBJm4wQgg9DNyQibtrgjUkpJZXsYxHt0IrptBgyUENUUA6MhCmnLCIq4zg6HSXlkUPUJJGZKcQQmUIe026z7U5WbRsms4Slw4bqlPuJSTUpMJJhKayU+gmyy7d5NagonZfIFZGAiSIzMakKWk5Dd331+vmz59dXl2nMCIggClqVNLxGWeRrVNPLl89ub6+dKoeIr14thv7+/u765OQcwBnvhGhcBHLebkSyA3Q+VX9+5eutr1dGsKtt1XTw+LsL6cvbZeFtJN5F9sAQCN2L9H0vJhyblmMwDQERQMW6bddiJKRmFueLtl+XSdQevBghkLk0LgAUEtXBkrwF89e0vF4FgocDduCr1MtEBCzCuohmYUqy61sD1LlKhqWo5lmUqUBB8BTJUhrrpx0wUiitAjKBD+pNHe7GdUISbLqrSSM4ZxnHMYQGEcU0q6tf+bsWMNqfjYqJiJMhHFRcr9d3tzfJ7a9V4mBdnree+VvkOQPoQDD3jDijOLINd1f/7f/zn9xtN/+T//X/8v3f/OZs2fSkpIAxvri8uluv73fb7/7B984fvwvcaM6EhEC7Tdrc3L36/OnLTz/P3Q50XEt/nboeIREIOaOgKoGV8RpT6eAQCPnjzOOYx0SrZYlskMAsEJ0slqvFIjIzNvO2RYT79brb7/3nmxgJWaDWuh2wMvMK7Gw2a9t2HMfr6+tvfOMbIYTtdoPoWqWGpjGUvnCXplJVZ3vt9/u7u7u+7/u+JyIgyJpTzlDtMgCklLquyzk739JUyNAN0TD0TdMQhhKfIgGwCqU8mAkgMgUkIjSgQ0UfKwvRabFvbTYAIKLA4J3pXz79cr3dzOcL865Ew3FIhOwKiNPa1n4uIMIY45hwHIfdTmezGTO6OphoVuXKVAQkMPBS91h1T9mpMkhETE0Tv/GNb3z84x/hOHRmP/34lx9ePP7eNz96/vmnOo5NCGMaTISwiTGklMWEfIdLzgaN235AVCPANrQcmtycbHnRA22U+lEzEFAwCgZFrSClvN7fB8Z21qzyyJCJYDZ/LHCS+6ApZFjmdi48a07j+Vl7PpdIXdNajDEENpAsqRvH2/Xu7vZmu9nc3d9eXr7ebjdZRpGs5kPG1FRUih91y89Q8ra/0+//V1cv3eq76XcBysJYLqaxwIWl88K7d5i986eJIcQYQwgcSm4JkMbU9/2+71706X93+rWbEqJ6n6xTp71xs0Rm7mvL3iijywttwp2oHygPQJk5i4pBwIDkjTMKdXZIeaZI0xsagJqiuRK9mrdZT8OLoGgaMPN+uzdVER2GweUORTOaZ/8UmkgpnJ6e3txcXV1fzZbtwwfnbus8VbFK4MeaVbvOmFkpM8OU5GDlahHh1IFZ6nTFCRERcZExub+//eKLz7744ouXL192+72LMpXkyAUgKmkRzMy1VQCz5LwfqZIWh6H7wV/dffyLj09W51/78MOPvvnRxcOL2WxOYOQEX3Q5G/Ak3h95JTP9x79qvlS0kFFVS2/qm99T/vZ2PbmABJ45i2sTj0O326oIxwbBmEFzymno99ueWHKarRbLk9Xu5h7JiwKAPizcAAkokOssIrzpRzwvf4vCXJ4EHl+R1Y4xUy2refRWob5VeSMErEVfdfpFdcGVewU+KB69QP0V92YAIJI1izA7l8oXUUVBFNWowPiGRIY8aBY0JBdOTyknIxCw7IUWRAVwYg9iOQaCqkYEnlirmvX7/dh35fEBKHi4+Gspg1NIgoCApmC9ya0MC8kZFADvb+++/0f/5tE3P/yffuNrsW3UOCg8evIwLOab168ohg++8fXFcjmAIFHgQIibu93Vy9e/+NnPrl+/JpW99q+0u0PpGUaa9E1qJQC5ZGQ10p2gev9DRPquEzmZvg0Qv/71r5+fn5+enpyczolstZzf3d7+xV/95curS58KToEVSUHUSyFABYA1jByb0IQQc8opJWK636x3+72qopVdPpvNnKET42wYBsSSzm632/v7+4rHYIwRAHyWsJuEydINQ9/3vapgrUxYIWONzJGAXeUcGS2CSFbLqgoibrIRkeu28UjTW4CZ+RiIhuqJCxppZmZjSoAdcnBYcUg55xSagHS0C2rdURGIKISY0jAMvaq0bfAZD6p5TBBTiE10mU0wE9FxHHJOjcHEtnBnMua873sNlAnPHj+8vHr9/e9/v3/1+urydQhM1g5d58JAIQRiTENiZnEBLclCzEBEBAYgGmjenqy28+Udxx5xVBMjIAbgMlfRshkGbkBs3+27bt3tb+bb25OL/uxs3y7eOYmnhBERJS93XVifzN9fPV6uaMV9O88x+lxIyTLSZvfi8u725lrUuQLZC2ceAEnOpk6rRahOFwAsm+MTj4b+H99e/ZoT9t/B64P56tH7v/XpthnHAaBAR4ggKpazjw5zn0pFvNYv/FCzmDLvyQF7MJdEkYmBK9mTDMrAYMcyFVXR9ahVxYLLcJqKaAjg6qplhqiCiSJiGkcTRYBx9AjGVJISqMFoulzMKITAeHFxsdls7u7u5m1zdtaUJa372gwQHEEtzDZPiGso4yew+M5KAbbaBqsIRuSaSLbdrjfr9fMXL168eHp1dbXbbb1fAEs45GlQBePKp7+RqnqfCRaZSTCz9fpuvd5cX199/tmnX//ww4++9a133/8gNk01Ym5PFQ6J71fAvV/zOoIBa7iMNSawknda2QS/2qj7w5csAqQAgsBKKpLS6CERtWgGSKimaRh3my1nSH1/cnYSm2YSDyim1gpjmbwNB312C1llFx2AOKxc45JRmauYA1S6tP8GMJUQyi0bwFfbkAyKU3PkYUJvjr9NVQsDuzyZKTQDqBGvurKYTpBRkR8EVXQ5A0NDEoRes6Cao3wiKWdwnoUaMiJjltxw8JIGuLS4AkAd+msqKWfvl0B7s+B3eH71nmuQOH1TITOSGHQ5u6jtzKgx3O/2n3z8yTCOy1kTG8gdYIzzs5Plg7MPvv7ht37j2zxrh6EzxPmyRYP1/ebzzz//4rNP+35nOrzOu1c27BgzFyEIq2gTARdxetO3tigWIoKZmdeusggjIXGW/PDxw9/+ze8A6Dj2BjKbNd/7O9979vz5mBIzMzEgqmgVqRKqbeVMXBIFxCyZYwgxXl5ebrZbdU6UGjMHZj/pMcbdbudlMzO7ubm9u7ur3CtkYgAome5kl0sIXznmhR2gKqpZhqEPIUYMiOpNliGEEELKWnFFK7qFgFD1MQzAXEQMcKKCT0eViKYijGv/g69wuR5JaQwNvxUkI5p6ox8BhtJamtIAlr1oLZJUs2stYdPUfkVJafR5IW88L+bNbteNPTVxn4YnTx6fXTx4+YvPf9z3LQETccCWQiciOXMMMQQRkTogNaskzoTRcwcRlSba8mTg0CEOgFKHfDGq9+uaoBmFOJsvloiSUz/sun7f73fd7vbq5MHXzh59cxnPASUCaGqu7uzLRTNvHjar02Vj84USas59v+nX693r11evLy/V8pjGLLnG26VaYUejT6FyScAo51yVPuFvlif/l3c/5BBjiLFpOQQOofYAl04FpyvF0Mxn8+VyeXZ6cnpyulwuVvNFDByYvasbANKY+6GXq8vv/J//9wT45MmTk93tzc2Vev+DmYFAFkUvphsaNjFIG4ownwHUZP34ZdU5A4D3nce2YaJsecprAYMnkYpgYAJVzr/uKPfWXhBz8SLNnlhgCGHWNKenZ123lzK92ETEp9L4wPW2bffb9dmDi9XpiVqeDv6U/9R8AbHSmqatPp2sg+0v1VNzX+VkEc/ezNTFRp5++eXd7e0wdJVO5H73TVmJr7wOvuDt9E7NwEC7QfrX+9v768vr17/1W9/9zd/63bOLR4jNUUvQhK3DW/b4qwmx1cKqp3fFYxlNP3mw6Va+d7r18nFYMuasktI4iDQhGJsoqeVh0G6/FxFyJSAkyTIO4367i4KpHwGAmJHIUQRnBeqkFD8pdpf2m+owjhFUqCBEWTeFUuXRSRrzTed7eAUxF7KoYlqGVYFYJwdsdf9C+aIUdW0vw04hgAMyCBNc41iAaqk5eZOlfxARAlE2G0VcoE9ySimFxocMW5bsivzlOHkLgio4hCKqbAYmKe3322EctIx09WQTC85ilSFQCuBvhC9EpFCK7oomCtkAENkYBaTPt69v93fb0werPMLten/f74VxdX76m7/9m+cPV72CDgqBZouYk97dr59+8fnrF58l3W5kdw39jjUBGjIZ+HFWDzmRpqkAVFXVYdpkYFUvl3b73e36/vz8ARqPksY8jln7ob+6enl9fd31Xb/vzPAbX/+mqO73O0Lc36+DBUDsJTOSGjo7JnKIMSKCms3nc0S8vLz0rCIlUTAXGQEAn2MzjuOsbRFdmiWr5pSTiDAFNApMkePeUFQKf9WAXPyFwEVSRY2QCVS9NJlyDGoMxSiBERMpZckApQ+40EEBQoCaB4NvUDyyC0eGCSqUIJ7E+CUYqvr4L4nEpWGm7IHaRIfmVR4AMDeX00YFtZxpTD2SgaH5KGLJ49hnycQCiGjUIESmYdhf3dwul6skOl8sfue3f+dHr+7QWTDIZBqIIGfNToNCM/AZyYqUzZJIjBGZEcmAMmGONAKKoXpZ1cr9ewc1GCEGxmY2W4HJaJYsZ+m77fXY3e/3t313284u5sszXl7w/FEazp9f5qbBpn1yQjOOQjD2Ce422y+fvXz+4vV6vSWUIQ19P2TJopJVso+OMRC1yukAA0BRrLbehQ5eN+2/fPgkxrZtZ+18gcEHBQczmyp1iEBM83Zxdnr24MGDxw8fPjh/cH52Np6czmdNE4Kn1AbQ9+Nut5MvP9f/5v9IKZ2drx48ON9u1/04FFsEbpoMiFWVAFUzgTEV3os7WldVmzylv7yQkfOYUkJb+LZREzQq+TE6rOEu0Ed6CAeXmXFW9BSI+PeJl71i5Hfffadtmpubq2EYck4AqJKLRyRQs9i2uuchydnJiZkwkR1lvgfsS83UfOCUOYsHJgSa7G3MESf1BURC4JR1fX37k5/86MXLF13XeanuqMj1FczyUKDESV3rV3poNaf3eohC4yBPv/xst10j0t/9e/9gPl8gTSh4SfsQ0AdL0DSjCUwNUJXI6ZJerXB9B9AyH/lwceR6pEV42syMHSnOglameSo5qQkMTVRMNZsGasSSSs5im7tbyWlOlFQBKCXphyH1Y2/90I9IPFssFyerMJtxiEQEAmZqooXfVtTF6kVVNegaE5UFRCredrLiUK9ZVOVA5H4DQn8jAzYAf8JeriWmgh77D6v4Rsk5EwVXzzj8rNlRlDLBqWpeTlcDUZ8EbAaueg2AopbrnEPJngGnnJJTP0LgpmmghoJOvrWafyOaqg5DPwy9iJQikwdFWKECxAPL6c1dRUhAGDiIWk7ZRIwsi6lZYI5APOrts1dPf/75Ox++o4LZjNoYZu2T99794Btfmy1w7AwQZ20MAbv78enTL7/45JPN/XUv/f3QdZAFEYEIDBAUCVCxzOOYDgQWJt8klFKGe4ABilrXwd3t7cnpKammlEWymoZADx8+evz40XLRNiGY6TCm/X64u7t/9uzpv/h//9N8u/3ORx8tz09ubm9++jc/3oybPFHqVFXVVRd2ux0SlR6zIuhNasoUHFJ2LhKA9X0/jMM4jiqKgT0YCiEy8zQ4FhGziMcStVynxgLIACaqOWVphCIUoWbAEFiVVTWLZhDE4oNDCKroaKGZT/g6dAL49xznN1qkUivkgwZoRCCSUhpbnk1mBY8QkgnRIyInKIhmVQEQA1Mv+2avNYo39qWcsoxsDRhy2YRgBldX1+erk8ViQcjf+94fbn75+f7lc0ZiIGZqmobyqKLgY48Rcs7JlbLNRrUGACggszRNCnFkGhQEUWxSOqgAn5thIiOCEOfzJSNQr5QhpSGncXd/2e/umGfNbLY6fRDaJ6ePvwXy/heyz7sb++bjefuAMG12u9eXV18+e76+34wpNy6f5QXfEoa4EgB4L07drehJwsSOnB6HR05lR5tYLtdJzC6DFmJs26aJoQnMxIjAVIgdFUAxAyRGDmRMnnycna0ePrx4+fLFerf1Oc+AaoYhUPkrSBp60GUTwpRbOaocK4fxLQDP2zqgFkj8C6UHnYiDQ740pTVMVI0sTPxO98CGmEUMQCS+evni/v5+GIfT01NEzCnnnMgsxAbERKSZte18sdtul8vlcrECzVASq5oP1G06mWjHhrCIhPtylblZPreHmdHDThegMdjv+k8+/ezp0y9TGsGAqTTjVfDasBwCOE4ha1ZZSqjHtZ5fkbNaMV85y+3tzc9/+bMPv/nN+WLeMHvYcvjJN9xNNXol23etK57+XffXESRQltrvtpSWCdFEBYtvAzQX37Cav6KoZRMfN6ZqamO3R5U2BgAQ0zFnT2U66dIwxhBbhna24NhwiCXNU9f2JDQqgCWSgKghV1hjWiU7ACVYiyBgpdmjbC8pBCA9yIqiImBAhZJwV1oywIQ5VUTAuXCFGo5W9Ae90l72ZdG/957lUp9QO+hn2QQHGziRoWxqOfooFZGUJAuoadaGqG0bZmYKTOSjFuGIp62qo5MsJtbgRFGrq8NUjbV5llPCPSIMMYYmqMGAQ06jSVY0UTWTBsPMMF/f/eDffP+3/s53w9kpBW5ns4dPnpyenJxeLI1BURF03gYa9fKzp5/85V/tnj2llMc0jimLGXC5lCp/Sc5qhF/xsrc2ekHMUu62u3675xVZzipiknfb7Xa7vry83O12IvLw4uHv/t7vnJ0/jNS0yH8ZZ09ffX76tY9+74Nv7Z+8Dy/v7sP96+4eY4tqeUyOhjFzzpmJfNRFVvETbmqImFVyzov53LPL/X7vw2esjF9AAAghzNo2y5hyYUmoCVjFn2vtTVURBTSPY08hcBMZuWg2BQ4aRARUVCFnBUghaIhhApxdt8GjuYoQADgDK4RijIB8tdQNJwIScuQseUxjiJELf75s8uOXx+zFxBbyYTlNbpfBefamiOwyHUGkDKJHdAxovV5//f13Hz16nHNe396jSgBiIy/lzefz/TAMWQRSRgNEBUsAidCl3LMhMmtodL4c29kecQRIAGKgamTA6KUKQyQmNM/4IGBo2pkSCg6ASEhJ8ujqJGnYdes7o1ebzXYY82u+/fgX42efnN/+J7/5+PHy9vrql5989urmpht7kCQFpC3+19NBLAjWwXtNRGhzAS6czI53coOqsPqASoPSwO/NMMgO5KmYiGl2ITww9ZL2ZG8RLDC5eCUiLhfzBw8eLBaLV1eXWYWImCFwiDESYkbQrOM4ap2IV5BhVa0S9/7COnLOzLIrmSOWMkdJ7wuy4tO6qqs2U0AflKuVhnZwDODJWLfvGua7u5vddve19965uHgoIqnvJeWcJYRGTcZxmM1nMQQA2Gy3s/kshohoJYyRinZPXXPeGf0mo6dGBqWpB4EIpmEnCIDjmF69evX8+fOcMyKVYhCgmWtbGAIaci2jGFS/Xk10/fpxyfkNShHWJ45I5PSk169e/fmf/XmMsw+//tGbFuytouevfP2Kb5hqcDVEMJtmGxSHZFSvyswnEjICVSo2oprlXMS01Ia+7/Y7M0PmPIwp5b7v0zA0wYauN7UQnDxYPOjU/OQ3z0RkZFbJcs4u874nqxcLBoWy54E+gJX4hoym9S2G0XMhRAAMptkqO9cHFTkzvSS9HvuXISSKYGikUo21b+4SJlsJSnyN4M1SGU5ZB1ht1HO+T5IsZkg0Eab9PXISRGxiE0IgQuZAgKA1vQaD2tB5jMYjGLn0M5VDTVXf0HPhnJOfRH/2zByZEbAvdE+nz2mINAcOo336Nz/6/Gcff+c//bsUmAM/efedx4/PQ0uO3IJKELt69uqv/uiPtz/86Tu70TLeq0ktyQNi0XDxNBewVmOOzhRO61Mf8HRHqv12f/nylT0BMBj7AQAuLi4ePDibzWZ/+qd/+u//9N+fnZ49ePj4yZMnr19fNqIniU7W+epf//WPf/4yPjqdrVOLC6W8b+ZkZGqE5LgCETVNk1VFTMFcebGUHkS9RotEXde9ePFit9vllMyAKVa5N2QfSVJ7P1TRc2yrtWErBTlFkpQHHKiZz0Ib6wFmDhokODRDRGaas6kKh2IXptMOFT1+K0AGpw0aqKiIHDoxEAHBBcZnsxaA/LBAVUkkqq1GJTA/vPP0+2S1HUc18xG2wuTQESKigW3W6/lsfn5+1q833/+TPxlubhd1Ro2ZhRBWi4X2+95UwbBSoAUBALJqyrnhaERCYWTuDTIQKJCCqokJoCEBAnt3IjOBBaVoCmKCzRyJQowxp5xTSiM49pQlS9fvtoFbbOZfvLh6+vnnIabv/cG3vvjs41/88uN916OmhpMqSc6FMSki3vtbNHMmESKASY77K69Cd1IBAcZgdSIVlh4bBDCTPA79MHQpDR4oiGQVVCb/HvcBCEpVWyIGbpu2bVs3KohISCEQoQH4lCqQykRwI8UGrlw9XZX/039PKaVxRE8qzWejged83kx/OIaHBhg0lwcX8Wje6pU0bGg29N3OLBA/vHgwn8/3u633mec8GLJqNsAsKaXERDHGru/3+/3JyYoLzcpPupkBsMGk8HckLmGTs/HrOXC0EAwNC+yz2e5evXrRdx2is7jdj3JxCVB45qWla2qCLOfMg9si01bFUrG658mQH84OEyGSiD19+uz1q9fvf+3rzIfOSXs7k/7bX8ffOcVNVsFcLUk8FpCej4SeCiltOo1gAIKmBIZEIDYMvQuUKsI4jn3f7Xa7NI4CNHRdTmOYz7mJFPhQZi86HrXprfjZ+i+YQBF7+wbqo0IELN1uvriHR2nV6gNgUJuEAjxYwiJvrzlnKu7Qz5gpKpCZqHOgq5LGW1X9apiOFhXf+MOvgL2bRXoZva/LTEVyMCUiUem7AQyCc4vMG9/gELUBmmkak5bGZ5ye98FwH81BQ0RnopK69qyZWU6JAzcU2lkLpr0qSPL4HBiD4VJBXt/+/M9/+NEf/B6JMdL5xcnJ+cwYNAOILonHq/UP/9m/ff0nP3jvbuAcbgGL0k+1VDiFgog1AjroAtes/de+cs63NzftbKYiYz/c39598MEHCpJSUrU8JO2TRsZZAzEY5JXFD2H5bhfO9/Sd3/neF/u7H/zNXye0AAiiRujCzrvdLoTQzmZBdRiyAsQYYyjnRyQ3TdM0jUr6/IvPf/GLX+z3exExQxHJmMFcU9D3klUXVmyEVmgEwAzVUB0tEMlpHELTNLGkTcAhBHU6aT3sJfH1EN6/WC3SoRr29vH19nRRZAns2GeR9c85qcZiN4++H5x8UQep1rChno5y9SXa80dnBmlMOWeiqKiuqQpqm+2eY1ydnO2u7u+ub3SzBTN15QuAQNg0zYIgj13SjAhqOqZxYeoIUK+Z2hmGkCnsiToAQTKDqgcrpko+vhAAAIjQCAAIMPBsBkKNtiLzlIaUR59xa6qSMiuG2JycnK8uvrXd8f6++dZ3fncYNl988fTu7k5EAgFFCchSHoLKpLxRA/GvZinTc/JnnVVQCAAYgLHUfcwA2VTVNTlKuFy0l92QSV11qQkzFI2kap8IMQRmZsSDE3I/XX4CCZC18mTMDIBSymZGRCmlVGcs+u9OiI0x4mFyjhkgl9jC2c4lh57u18xyzirq7UnOQfNR2JJzzuM2pzym/X6X8ogIT548CRx3+x2H2M5aoACZhmGYzWYxxjym/W4/a1ueNb5Qpbrs8KADfIeCmdVKR9mKasDVdEyZugAmydfX1/d39zGEwFxxUg8cCxfIieT1rSaz5LbaCUYezFitdUwNvlZLCkylTBSa0BAxIM0Wi6KO8RW8+iuvN0CEX/nV41fJRupaUJ0CMSV0Tk8+jhF9F3lFkhERbbfd7bbbNI6JaRz629ub3WY9Dl1GHMdeRQP7isEkKlJkK1ScZ2cuFQI+8fD4bkqaji6FjvUJHaIlxxGQDEjhqxTuoKUUUb0soOPWJQTwJuBSITN0PlSB8kooNDX4lgABjBCcKIulXxxryltNLEKMEZlEDUzMO60KY6tsjn4YtS50Fk0ppzGhmVRDP/ZD33dHOaOHbFDAOjN/YIFDhVIIQIyCF48dzxj60RCXy+V8sTS1MauCDaYZXVNKadN98YOfXH35av74USCcL1pj8Gl8zDh2w0//3V/+7I/++MHL29WQ92DqyiXsD5KmNaksq6rac1RCw0OcazCV+KEwmxRtyGm73++6Lon0Xdc0mDMF5tOTk3nbLmIDYGLazJvNbmM5nwk94dn5g4vv/P0/fGdJP7t92X182yKKGqgh49APwzAsFovz+VINRAbiuFqdxjgTVIfmvIR2d3f/g7/8608//jwNZaCziiqqmeWUHaH1PVBPTMldDMCJWDiNsQIRzTknyVk5BDYAYCILIZtqKuQa72GsrAfv+8zuF7k8RDiK8I6Rg6ry4soeSIHZQ2MRYXaQHCasz5e6CDKUi37j5HilBZwNgwiAqpLSKGnE0ACRmmcfcLde/9lf/uU3nryzXW+29+tmHIecs9Zis2k7m1kgYoYyQBPY552BAaIYDmDAYU8wgEktsngpWiXFGLmQT9wzZlUBVCQgCMCIIhQiN/NGc8qjc8/TmBoD4bAbhm88/lo3NpyffOtbv/On/+6f3N7dY+BCa1RTA81Z8qCaTcRTQxOZqoS+Q1HNwOdJHQp1qjqOo7ExM4pEbUiUSZiDkgUOoaDUHBibJs5ns/msjYHDFBm/CWkg1ocMiEDE7G0/x2bLSn7FxNQ0bWDHVHiSTXF4G0rVqQhZD8PgkQliAwDqdE81A8u5CP64ggFUwX2n4ahqTgkNEBoVBYPMGQFTSpJFsqiqpNx1fd/vYxMAIATe7fdNO0s5Exsyp3H00REpxpRy149N06jjMaXj3ao01MGk+c5EtDfu/uiFBZ+U9Xp9f7+ezxZt01hVCXRmiR2VArXs9XJWrR4iLGRimyq3/tigZsf1ITIRs6uphDaEiBxijLvtfrvdPWhaRKMqxfUrAOZSW6geAY4P3GQ53BHW/N9DwApcFWjiDVemUDoEDragpFtIAW3cbu9ePB+/9jWazbqb6/vXL3b31yDDMEDOoiKWpcxdUEM0Q/W0u5RJvGo5ef237geLcBraUUhU77zsNyVXVCF4ExkGCFMYUj6Gqi1zzM4sV2wKqjSJ9986pPMGiaK+KTEf6kNEgAQ+6AO8flG+XmEiv1ryCFaz+HLnnBQAicQUTcWQKBh4vV3Hflzf36ZhqCmLU3vwQK0phD0sQtJlCA8gGZQqj4HPX+/7GONyscTl0saswzDmPEjOFFF1mSx9/vKLH/7sW/9g4XdRoAcDQLi/vP7yz/56+OLLuB/R8t7GfhySqgYtIESJmwCttACDkYM/lQI00bTBTMB7+7EqZZkpqiHdb9ZXNzcAuDo9aefB+jyfLx5eXFw8eNAYrV9fjfvh8vWrzdXlfuwXiwhn57MP36EHJ7OH8+UH7+4+/UnDPkZNwaBLPSAws4gSN4iJiWftgojFtFCfSPt++OTjT3/4gx/d3axNEJTA0zJSRBQV0Vxj9QORnqpRMHNM2M+aIqGpSk6SknIA5DoWu1RJUkqmmlVyFmeEudTPZHz95AEAM0zUeNNKtAcrY8EcjgJiYsFMBGDiSJ36zLyikW4ARhwAWXU0nxGhdd8ilvJg2SlQaCM2jn2/aGeEBMYA1LSzfdf9yb/9058ulnEYg+h8vjxhbpAJDEzHvhvHcRwHZbCcNWUyi8QByNCUKDNZ5HHeboONqOqtD6XRT0Xzg9X5anWy3e41l1U1UEJkLkF3kaUzM9OojahKzhyy5NSr7Lt7ATt7cPHBo/c4xOubOwNq2hmomXSkyVRURpVBZVTNHgvDASgrptEtANQSXTF3quM4KqkXLEQyh8hOuWdwcQZmapq4nM3Pz04fXjw4OzlZLZez2SzwoQBpBQ51/cVSFzAzJvIRPaPkCYQ0MyRjZoTQNA1zcCKYWQLLCOLjTZ0A4/VgF4QhQqnDnVLOksVHTKQs8/m8aLzVQhcaIhOQpTRmTYEiIqqIk1E0Std14zCqqKWkIm3TEGOWLGqG1PUdhZDTyBaQWJhTim07CzG4inkWi7H4CyR03qhVcozHkQZGZOSA9NHL6gsRvcx5d3OjSUIIpmiqBqYg6A6gjv/SKaSqj7QidYiutoAGeFTqtqkO/UZnFyOZgYiaZRQVkVevXj1/9my5WrWzFg0IKBBbTYwmtteRy6g5bCkIFn9fy5MuRlWULbGymjxv0YppOGBQPSEAYgET6gb1DrC82bz6xc8+evL45NHj/fPnt599sbu8RMtqYbfb5nGULESkR4l0SYYnfcvDr0NgUL6vphzTAbQyYMKfn6kokRbvdhQ9ebLlJKxDdW2SwQJVoMKClpzRyTUFkTeclHHgsC2qF4FpDb233ZAA/Pa8a+nw8P2iYaobq7IjbHU+qO9IV4BFJkXHsjSNff5qU+bhKqabfCO4LhIxzJ66+Y2nlLuuiyE0Mc7nsyHlnGTMSZsWVRsD3HavPvv8ne9+h09OVCELkIJm6zfd8198cv/LT0+6YaYKJn0eU0plpqcjS36L+FYvwPEJeDusMjM1papF7MlzGsdnT7/cbdeL+eL2bnd3v3796nK73jZt0213f/Kv/ygjd/su5Ezd/tEiwKPzYR7ud5vVB6cP3nmMMXAIWRXBsuT9fh/bZhzHruvmi0jEouaqvOZd5Iiqend395Of/vT168siR6oGAP5c6kK/cfF4iGDrdlQfYsOqioBGmnNyZUoiDkwAFgJ7aBJCk1Ma05ALhKgckRkdSAAwIj5sGR8dU4JsLe7Ku1fpEKtaYYHhFI6XoqApkRFRjIGZDUBqyaeGRkf7E0ppySe4dcN+kRYtBVQkDsStwbDbD3evbs5ic0HUmDEQBoxICNg0MwQKIsB0OifKdptTI8AZMmBGiLPWFquOcEBUj6cJCelr733w5MnFp5/+wpFYLErO4Kk+spu2o4QRAAzZyCQbQEAC0yD59vKzl68+/tq7v/3O40fj0A/DMJ/P0cRM85BsgJRSLv2/uTzAiSj7lc1pRY6+dlyApTxkTJAQEZumaZo2xiYwYdDA1MZ4slqtlsvVYnnuzncxXy0Xs1ms/UelqloiHXjjwM7m89PT09lsnsuwIPO+FaiiWk3DBgpIbduYpUrDMlVxDM5Nsoj0fed97U5wF+/iFVEFgUnK42g/Izp8Mo4jHMocImV0Me33+5QSOLFLrZ3NGmy7vgsxGhS21zgOMI6rEDxSibFpmsbMfFq2KasTaN7wTZ7iyZTdTKYN39ibRVYzp7zd7vp952Cpu7Ojsu0BzkYsQyCO7pGKqXH/RsWVHZ9pPMj2FZ9UiL4IiNltat/1H//i548ePXrnvfc8MoaaCr1lIv5DMLXH8J52OwPa3vjPaSeWL2AtTU1qIFCvzZM1zSr3N1cvnn3Rp+H25cvtzXUeOrERlXa77X7XtWepsvHs8EYGCMDoeYCrktkUSNBxcVfEOcda8vPJz5Y6TqHKv7G5yisUV10BihI5HAoQpqWluMA1WEoIZavWhHNaFjArDS2+nahM0q7QwfTGR3n6G4uqxsQIIFlq6g+KhWOGiASU8zD0vVWVFqiud/q9Ji0VfqmXiIg+DsxHoUGFK1JKwzAyUtO0GkcdelV1ZVYjNR1vrl6h6XzWApEIGIKOcnd188VPf2qXlw/AAugAedAk5mPkBQtprgZHjgXV8SblWJWVQHzzVLgJoUqWcMT3/ub6B3/+52GUdbe/W6932+393e3dzU2WEZpmtlih4jIETF2OtoLt1xt9r8FF5OZkxe0stDMn8o85dX3vzTDdfs+hJeQxV2iU0BDEIIs8ffrl1eUVEx/Xw6aVxNqbfRQeTme+RmMwibqQs7FUU059DswuYgUhILhMpohp0zaprYPqsm9aVfNrMxPy3VRiUIcTsSoGqiFmGTmwD4F3X+veAh1No6maqw75eJvQMJCz6SdYrjRklCTD78rAVMxypn7oODaIjmsQYlitzh6//42zpt2+eJl3u96UUkqgDNYitLMmUnD9swfNbLM4HSQB8R4ghyCzeU84AIhPdbcShL737nv/w//RP3718g/+3b/7/ueffynlGGJtFELiN0aG+/Y3s0AERDomYgxou+3V01/8xUdPPli079yv77v9foLODCkbjuOQ8pBzUW2sFSVDg2Oyi//hV4B1SoqqDuMwXYCr4FkrDMiAi7YNDPMmnCzm5+enpyer1XJ5crJsm9jEEEKxa77UVGYqHPYPM89jaJpmNp+NkswMIFdUFoiAGQFNNQPgfD7LeUDIx8KlITQp7d0cea+RmZm5sKjHhymLAcVj1WKvmXgJ3z2uv5vvKC8kY+lDK0iFdx5zIBVpmlZVidj1Tc28qKAqWXJu2tZlTHLOIlGZoYrnThBAvX74219uWsc09N1ONblOUa2FeyBlePjr9NXjg3z8l8nDTKf4yBnX9m/PlCZoGAmZggHeXF/+7Kc/mS8WT+ZzPFAuqkepwAnh33prb471cyXZQ5JWm8qsBn9UvUbNDa3iN+pN6KpKBnm7v3/6HLtxvL0Lm02TxtEyWOp226HvRHUcEyIGZlQ81AuLlvMkFlaL83QYlIE1P4eC2pSi+8T9weIGvpJoAYA7YKtsT790rBMaHQb3gBLgiItRD0yNvfGNt4SiVAdVwboonJij6SWE0ArjT3CEVlFBN+0F767FRaPiUNXMxylX4uDxZjr4gK/GGuWJEsUYffq3ltYVnFxyS9w0LXOez9pmHkGhpxEUz9EW83a5mneEYmAAY5+efvLp648/PR2GVjOCJkuDJZehqrudahgAR/6pmPhfswPNA96SZHhlyMDMun33o7/+Ib5ab2XcW96PwzAM7APKRIACGBEYkL3u7vqu+d3f/69OP3gnA60uLs4fP57NZoisIDk70QZTkv2+V9usTk5DCI52EBNFAtH7u/tnz54x02KxOGrYAKgxTRGc/fUje+uG8iQ4qClikTuTnHIYrT4oZHOxgwokmohkycOwU3O1SxLH/WqdeOosokryV1OTNI7GHLjxq3NatTprpuQQHqKV/ByIbDZrxzQbU3+cAFUrA2ZGhz2PAKKWUxpUxCiIZOJZiO3jR4+/9zu/u6Lwwz/+t7suifTJnEhQZrYbGJoR4jLGk/OHajAy3qjkyBvizTjCLJapWE4UAPj0s8/+1R/90btPLr797e+8enW5Xm/VfM6jE0PIDEpjaA2JJj4BMSNistFMo6T7V5/fX34Wf+ebfbdPWRgMydUR2HVji9zs0ase7JppTH8USUgCKbXVNI71+wkjsiIZtZzbZTxZLk+Xq/Ozs4sH56enpyer1Xw+b5umaaLn9HVpy74q++GNTYTeZYzeZOmpgFhLZIgKkEVyTpOWs6m5o3VSVYyUc6PTFBkROGhEg2TJOY2jxJaZyQspxR76oHgw3/yeJnrq7HE8EaVx3Pe9iLRNi95SEQIC5iRI2DQtAJhpCLFcHoFpNoueTY5pGHNomNSKQf8VKRBUezCVAyrVsWx70W7f7fd7zYLqFCEflq4Fs6xllePD+7ec2P8I9nL1qGBmhgrGxhxU8heffTqfL87PzpZN67HgG0jn4VmXNP8tA/6rP2z67StfQCzdcFbzfO+7MDUgr+OKmAAQptxd3TYCebcPQ2bRAAgGuR/GfshpTGn0LMkFvtXLwd6WebhomgKByQaCSK2auAFzK2WuLwUARMBECiY1mLCqTWEA4Y2AwtQECq57bIwmftu06mYmztUqIIVfoP8EUSBXcDBzDQ6oDe9Ync+bOIevpO88b55CMIhOy/fABwEISHXfd2kcdNKJ83dz4s7RJis/ZvDVzeTtN+50vXZoaimlzCFGatvZ/JRDjEnlXmWrAGRfX8xOH5xQS5DAHcH25u7Vj3+Or+9a0QCAiAlsUE0qaofcngAqQmj4xj0fbv0tX3y0KYt+PXg9WfT++maEZbtoMJISZO+05lBmxahmAGG6BSEY5dEJnsxUoWma2XyO4HPgChrr5ZKc026/JaaHjx4RQc6pDTESd93wwx/89Scff9yGZrfflapwFdzQqt73Hzqonr+XHlOk4ExMj3WiGrCJqFpGNkTxMS7uKYmIjUOIImAmTBy4AVPRrOL+wpiJnXSL6LMTVC2l0bX+Y0MxMpGPGc6lq2qSRtLaD2YWQjw5OVFNOY1akyf3z/jWE/E/Vc0ETNA/UTSEJjQtt7PT0/PzR4/vXrwA02DAiIZGoJKMkRpEZ7C2EBiJzJrYjjO467qdyLydEzl0Vip2t9dX/+pfPl0tZh9++AGYmoyOrYqMZhmxRUI4mMt6sEucgU3TmLViOUbc7e6efvEzxH/Iwc05Ozxx7G+PAuwJsnzjWQKgI5wqZlicmdOt/VQHZkQKFE4Wy3eevPu19967uLhYLRYPHz5crVaL+XyxWLRNE0JkYgJkYkAyLoa5QsA0YZcIBEghRFd7TjmrJsdqiCiEFlVzzrvdrqDEAFbpCL5FObYh8G6385jbM1c/+2bFoYpYS0gALllk5fwWOESyQBFggjIUS9XDjt12hwSL+YwQq0qBmdl6vTk5OZm186EfkHA2g5xSEyMBe0nPh7FJzuOQBmJQrZEhYun+qeDSm/bBL+343A3juNvt+r43lZr51sZRK5XTtw3Or/x7yRQQportVw+zmRPFp3S6fkXBFBD6bv/Jx7/88MMPv7M8cU3qok/5Jg5dke4yN/BXvw7mHZ0Yc3wdh7+ja1DVBLnELjqJQfm3BLS02+y97DCOKuJj5PM47Lfr1PcmycosQjUsBOjC1Z/CnRr7lAp0eToAYAfpzNL2yrmMry4gsZUxKnoIXgAAMNREdErOQAu0YAAKKgDBXV1pyjreDFYyuVofgHr2Ky5YgWewOogcAI55TMf7wLEfdJfog5jMBbO8ON+E0IDmsVNJaAKotaZQiveVYlb8OSJNEPSxbYKj9iQC9BZ7gZw5Z+SWMDZhyOl2GCinGGK7WNF8Dgg+W7Pfd+vL60/+4gfP/+rHqy4HQgQyNQtxj7KNoojsGsxFv7vcZXmGpclgyv6prI0BlOcFUBQ0sW5VBAAy4JSvb64+gie0mBGxjrohsUBz5kCYJIPqOKYhjbd3d//2+3/6zY++dXF+stlsoQY2SMQhtG0b2c2epXHo+t2DB98KzSylITTISi+ePv3y888Dh81mc7u+lVq/sCOtg7dC9WNfdTjYCLUjqNCNHXdIKbciEMh8vHNpNy/yGpOPL2L0ZlMzHgASkhammBbBxwKflcsZx8GTc383H4EuIiEEZwQBgGkQzS4wzGxMcT5f7nf7lJOKFbEDkwokwYRkYBH9ENUE0CKoaUYOKeV9P4Qns5OHj0YiVYoEhBrNsqmgMpKRlzTcP+hdg2vWuzzejfusGFWiiZELlisiA8LQ96nv9rstB8x5KPQLk5Iql4uabA24glj1wUTcECszoaXd5gYxxQZDiFDHIYqk0icGZkgKaCbVahazBjp5Z1QpCrcANBVxQA0QA3GM8WSxfPjg4fvvvf/BBx88efz4ZLWcL+bL5XKxWETmNjYxMDMWwKLulhoZopedELjkexjQgCkyU0p9ysllQgwxpdS2EriMQvJtJuW5lN2AkhUghLBYLBBxu92aOXTcOGptRWoK2iYiGIiCFIDKnYpInvJ7sywiOY193+/3O1HjGJerVWB2rww5NU1gZssiSZqm3dxvtt12sZh3XXdxcXF+/jAg5ZzdWorZMCYmigyIaKVedxgrSIA0xe/25kkDcFudcu77MYuVmmQlAJFjsVgOfs0JDpBVxYO4Fv3rTgI4KjwUlLcaeJ8SBpMFm0wBETdEprrfbZ89/fKjjz5q28b58tMFl7BqYsMcjq2pKdVocPIuvsFd4sqfctmEXvqelgWnnWpGBMQm2ScRGJeQjEmj5rjtFIBTRlMBQ7Bx7O4uLy/ee6zjaCmpJAQBzaZZJalkX3A89PEWfVWplRrv1C3XORn4UkiuDxAnUWyscZU3vXkNGKagD9xp+BTBorAx1f8m24rVOSB6FO2eVc1UDYF8SKzz+6263gOG6SYGEQAUjJxyAKDg8Wd5UjmrGKI3ERGqCitwlpwGUKmeF8BlpbFIxx0nwVhzZH+uiIen6Me10kwNQEW023cyJowtmEmfY5bWrOH2bD7+9Z/+xXf+zvd+/x/+/UYJtt2zn/zyl3/2g+Hy5oEIEfk+EYOkIt4OV2HBI+T5eBWn3Q0+FNZM3jhYpeQNDhf5HkPDOYaV4rLTgCINmPJOR2zUAQcyI5EmW5Oh3+6//8d/8nd+/3v/8B/9vXEc+r5btA0YZBEzm81mIQYkJMZA2Pf7/X77zsmq63vJoRf56U9/mlJ6/PjxTy6vhmF449LqkavHAabuXNA37m0C7kpcP2HFqjmnlHJsy+hAP8s+rOatrHoKm5wLo5oZwENeAMtZASCEuhkMACBn6boOEWezWRObgYc66TLE0DBXF4XoWVHOQhOhyUHWumeOntdkl6eDJ6pCFFwArO9TP4zZoF2tjGMCkAJkuXgblEjXJKsNpEa0Y9yadGnIksVYRaaIxkwRuWkb2pGkcd8lAEUUJPBlDCHWiON4tcryTqvNFGJsYzAOutmsh6FfLBZNbFIavZdMD/YOoJInDk8UcTmfr+bLxXzexMjEPpLSJ1+t7q5hW5o3ONCsbS/OL9558s57T955//33H148vHjwYLVchhDaWduEWB6kWrbsspcpJW9NM8AYY4wNESpYzLmYolohVrMsSSTbER1BRCxOER7FGNU058FLByLeKw9N0zgQAqWjrDxDqDM/EIiRQOuIWYOaqcg4jlO5F8DGcRiGIaUREVarZTufx9g6ScHMfJwbqFEgFYuhWS5Pr2/vzPYpDSmlJs5mijkbRQ4xgsKYEiJAw1AkqXxzHhkI+ApqZuVcAICq7jfrvt+byuQ137Y4b89fPRwr99f/Ea+3r2DaZmqGgIykJkQYIw9jevbs6XpzP18t3YC99bn/MZ93/APeDI7MEwhbku83Lu6ApgKSEamRAIiZgpH31PkQDwWPNst0oDRs7276+/usOQ2DTEN9QE3l4PLeSuFrI56qVn9Y7o4Q80EjzuvH3t9VHLDrMVF93AGr3oiHElZyVlVVtIMZemtVDMxxEgOxYxsFZYzq4Zc5OOrNxN4qhdV/AyLqhBqolEiiYERFEwtN0DBt1unqCrs9muIR+/yrT9XMTMQ/GM1MxfWY4Qi7sJJvUgjBrJDak4nkLP2wN23FTjCcU2SR4X599fHn//S//r8+fvT40fsfXH325U//9M9f/PSX52MGRkFIYgSQxEbVw1LgG1f3q5axFBRExbXUwUXJAQDIyS4AVlvxvJsHGg6SUuzoQmMWNhlhHsDETEyFFL/x/ge/8Z3v/MWPf9g27XKxQAMmBBET5zIpAMTGRZ4BAEIIwzBcX1+/8847kpNkubm5uXz9erlc7Lbbq8vXKaVDm2/dHkd3NEU8xQUe75mJy11OeymruORor7JgDpFD2XACpV5MiAQ+ZRnAZzhhCKFt25zHcRiwgEFea/FRhkQEAVBLhG5d17mIaRPbfe7GIccgoRg6iJEQObA47qSWs8qkLYOHrVtvsPg6/59S5xFVRDFlAMs5p5RD05w+vJifnGy3a1E1VkUrrVpmwREEFEHOkXeBtuOQRMxAVIZhiLMlEU7xrbewS2m/USRDBS9nEpFaxiJshIf1L0YKC221rFvTNoqIw5iwiaGd9WlnZMYTWeEA94EdrPOsad9/771vff2bX//gw0cPHy4WC6fydl3X9f173/9j+BdPiagJYTafn52dvfPk0Yfvv/fh+++fnz84PT07X53MZzP3jqzlyFe9/9ImLlnHIY1jyilN5NHF/d13RdVst9tvTHa7XZXv8A5vNEJVHYbOq7k+Cmz0Ml7V4w0hzOfzvh89GpvCJkTIOfvOdPy5iaHwv9y2VOaFu3CoYY1q8ccA0LbtarUMTat1ArGZ+UMUEYCMM1itVmcPHgxpGMeOGWII49AzRVZjbJEYERAoJWGEcBCZsOm8lJTpK3ZjMl855/VmnXOCyvKsNYmC+QFOue9/lOfDAmQehWWHzlU8uMAiTFF4KuqxsOlysTLbrzf3r169ePL+u8di0P//et7jA1hGSBObTZhvfdfaKn2ojCMiEkIAYDUzQpUiL5lVqmcAdSm1nPZ3d9ubawNL+92U8kIJghG/sm5Yvav7KdCCflcvbW7G37qXX/cKJU01N/1ecKxQQG16gMNalN8LBIBfiQ6c3nuYfVF+yNSyiE9ecnlwJ7KXWwIAl9xEwFJcpCxiakwYGbrd/ec//KvNL3656PsAmj1K8bHJhEQ0JQJW8UEEqM3Mgmboor9HbnCiXIYQ1VjrGLYupwSWkGIk4MAZoRuGq5vP/vqv/+0/++ff/oPf/8Ff/NUXf/M3tN7YMNybgI0rig3SfRr2Jr6IBChvJ74VyISaFqMB+NQJAW+ugJrsHuAGJw+jgSpCynkMmiTPM0eiWRbSnLyfcYCh71sMT9599J//F/8FBLy8fN2YrV9f2b6nLBTUdb9jCCFwieBEOERmvr6+vr29dZW6Lz77rOGwWCx+/NmPN5u1ara6N9AFyzSL5F9Bv6red6oWhxDkSFh1WgcDyXlMqY9NEziaoQAoWpY8JiOiEIhiaeCuw9KdLN3aYmGiXdellOo5pRBCYB/CUC7A1b5Wy5O2nY2jDy/OIkrkkw0LtceUqvrEVEfyfFWN3rjByTL6zXg2pmg+wERErq+vR8mnDy9OLx7ev3iuZmKCqArmYr9KmE0VJbNapA6tU025eMBhHBZl3UBFDIJv2DLQhorKupl4pbwsMsBU5qtoAda7QEQggqZt2lab2AzjuF1vYjtPa0I2Q6XKDqqqGH6iDRHbpnn08OH5yVlA6na7vp2t5ovT0zNAHMdhv+/ef+89AHhwfv7d3/gtETk9PX388NE7jx6dLU+W7WzRtG1sGi6EI3bBQDk+9UQUmCWGRrKNmvq+33XdOKb29jJLVoWXL1+9kPHq+nq/33sKi2VWUVE5HcfRzAiZiEUkxIOqparGGBHZxbC8DKHq4Vr1qSKg6NMQCcFJLYBo5uPJ89R0V0xk3QPMHGPkEMYxa9H6UFGRMYO5rmcWhbPVg0cPv3a/viJMgUmySB6Jg58SxCICY0YK+tVyKJZo8I3zBXVuCiL2fb/b7cDHKf539zoKPX+d23TNY52uSi133X65XJ4/OOuHvNlsK+gKcJRwf9Wf/dpPtykrPNSZqLo9qyVFNVQgIEetAJCMAIhQCSAAkZICqPM1RDAbCIIQKAGCSR42N5fXn33atK3t96TqaRDVBLZe9mS5saaWAFXr1MkiaHSUgaj5qNlfkXeVFxp4cbqWgMttFYRjWgyY2INlIqfDODrmJKpF8Kyucolyv7qm9boAARWtCj6bgbtdRQCfs22uhYSSsxkwEPV5+/MvPvsX32/ud6ezlruNAHgBn4iRoHCKjqRfTTxLqGFgTcSLppGXVImwKsQCgAUzs5yTpAF9aBMTMLEiC8A4yM3tH//f/h9/84O/pBBDt6fc73d33bDnyHx6IYwbzR0dhJ//1pCz1Nhqv4c6Bo6VTUDktRYEJY9MPK3rbFwP/WmgBjAQzY0aw1GT5ERmeRwgDpiHJ6fLv/udb//Tj3/5/Mc/sZu720+/lG2XKUjMQBYbF3Ce0OAcY7y/v//0008fP3qyXCz3+/35g/P7+/u721sReWsLYW3GCIHYxRYPmNfbu6165ALbYhVTNNMsaRz7tp1biEhEhsykimKqItmQEJgJCxiork+DiIGYOBBRP4wiopLBiNClGAKQy6lZzrnv+74fFovFbDZzY+pNycdXqKqS1TU1iZiI1QQmMkQhjMCUdlToSXLOWRISowaXwb6/v7u+vv7mhx9++K1vXj1/mve32bENLewIU8gASpAJkSibJYNsoAIAJinlcZjPhVGzWRICRARPfBVEFMRQgYyAAKKIuKecMLDSFUG1sxPQDBCRiVarRdsswfDy8ja2J0gRYABAChxjFAkio78HEQFYQDpdnTw8e7BoZyi6u1t395tXT5+fP3gwX8wRcRzHi90eAM7Pzr73e7+/3+1jDKvF8myxamNkRDIjU5igUSUzFZOcVUS8XOVRUc6aUspZwCwQa7BA0Qthu932ttvd3d3tdnurvL8yu5AoxqZp2hACuuQeEZIB6ORiRaRp2qZp+r6vZ608QgefRSRw4zMSVISI1FBUsmrOmlOaDP20+f3lYowcKGVIuWDjbn4RwSu4KSURWy3Pri4vCSUsuO/7YRja2bjEB4DIAQMxEsXYoCZQmXzekceCr1iSYu6yynq9TuN4fDYBoPRrvt3vW4z0V43RVyz24Qv2xuGf3mHK+cEhOrfnXb+/u799/PCd+XyRRk1JTI7f0aZ3ofpruqHidQzIgCbRKzcgVbvrKJ2eLg8NGEJEImBXa2VGBCmt4SFG9NMFKIiG1qsOZFLJQmA67jb3L18+eHDegkRyONgHnhwRm1ANBECJ7KiIXUwofKUSdOx3bcpVi7aH1GeKABjU67gVhD5ecESYOoX8/8hTA1EAySmJ+rC5IpwJULALAnaJvvqR1buLoAIaiIp763LlBGY25pQkN2g+KMJFninr9Sdffvmv/yw/e80ymmQ2YURiBiJALA2boKXfRdShbGefHbJ5/x5H6b2YVyF7rHVKAIhESiTjCDkBGJWSjFrOzah0fa+xOX30kEQoGwC2EBpsT6EdETJiCsHJEARAEKwQEAwcSAWfcvfGqSAE0RLtAU7hgk+/QXM+X5mTAT3AddqzqaIFDTGEd3X+at0ZDboANOA+2e367pMvP5ifzAf55ff//O7dd3d36+Hu3hpq5pE5cGBDMJWiX5+8AS5cXl6F2Dx8592vf/Stl8+ff/HZZ/v1Fjylr7z46WhO64rAhKxmdfxGee5eyXIqIKKJONcGp3hI1XyCnjYzomBoyBwAg2kBf8wlBaUAuGpgxEgGYEQcwox5HGToe0MTA0KMsWma6POAwCiwuhpwCCE2wUxEc/BQy8reGdM4DIOZqBpjYGTz2zmCfI5sWfG+PkFxHHvmwCETABqncfjii88fX1x8/Tvfvnz18tkvf9IP0AqyJVNhRUFP9AFiSIRbkb1Z9r1rBirdfr08OWmaGYmOKREFIgsBJYuoU0KEAiAHlVEFERjtMM0eEACrsBFWDioAgAbGtuWGCbQJcDaL85z2akTAxm0Is5QHIiQGVUIzpniyOHlwdn5xcrpsZ21sEECydNvd2PchBDBIwwAABHi2XJ3MF4jYxEiIpqZZ0jDsDWQ2m89a5oBkziLO/bDbd/t+Pw7jdrffrO9VrZ0vTs/OZvNFWM7mZmEYSrJEJGJZZDzyhf4ygFrKN3K/W6ASNhVvWxqHAYCapnGOtEdUtSBQQCYzn+KRfZKHas4uz5FFc56QfX/6iAQERByalkIIITKLqqSUtCYvROg6q13XbbfbhxdP1uu7u7tXCByb4O2joLlMqssphDhrYh5FK0o/bTwzMCMwF3Z2c0VIZXLPdrt9/vy5TkrRWNBHqEUrKyHaMXhZzM50DD3xP/yXOytAoNKGd6jATN8AULhGaoCm6n7BTLXb7/aL/WIZJI8yjqbZOUjVwFLtVGZDMJAyG9EOr+nmXbTAC2eFaV9J5tNOMASmGBYLY+5NBYk4EAGIiI6qOGsX57P5br/vs+6ZgHRnulcRUDIjVDUZhm6zvlst2hAIXRNZnQxctMneevkDpDqOqK4n1MiJCRkpH0c1Lu+BQMee2QAMIaiJuflxcKOssIMd1e+Wh1TKYAY2MUvKt0IZmgQABBQgsJGqok6t21Pv3TQ5p5o2BEBQhAwmRECAJoAmZoQ4XN388J/9f65+8KNG+i513dALohFx1S8s9wdeai5iW3C49sP9WuFFW92MNdKsmxIAgAMjMZiQJRNhQg5zQMp5JrAADvcbyxb6oUl5FeeB5gzUYHOpY686EAr4/F+XkTtk5+VKaeL3TjseS8pnQGXUqiuGTjxULIG9mSBc4ZDGFJnObBaU3mtP8ibdb8cOAdXIFLfDq08+b2ez/Xaf5v347HXY97zt8sOlmXBoicgraQxghuMofZ9m89X9/f3LV1e/+wezf/if/cN/+k/+29vrm6HrVACLkPvbiLrVTrg6N62yQzzIJSLCJGLF8HnqKUTsWJ4K4NiNY9fOFwHbStJ2U1O0f7OWorUnta7ODGYhBAzMyCFgDux1GANDoqZpvTeUOYQQnbq1WMxjDOM4qmSRbEYHa04EiKqggDHEzMEsm3juaNUOvnEOrYz4TAMSEc+JkQENU0qvXr7c7XYfvvd+u1x2CmioxA0JmcsroABhnFmc7U33osnK8AE1JbCh74d+N2tnMXK33ZsB1pOFpipJIbMZgRqTZESIoGB8NKSoWASomYaC+uxAJcho2oRZYJ3F0I/ex+sNK4hoSDplekRESIzEhPNZu2hnhAjeQpaylcfhbUiGaoxukUhF+r73JcspqQiZ0WweGgYkMkVTy0mGIQ0jqp4sVsjczGaL5XK5PAGKKQvNN94udnZ6uhSZz+YhRMpFeLP4UULvLvOn6bzhGAMhjGM55SoyjmOMsW3b8ZApluTDpv3qI5VKXT+LqvcWe9h4ZDCB2EcAIYcw4daI4CVqdpkXKjIGfm6a2L733gddvxnGPQeczVoKERHARI0sax4HwhUzWS4nyw2aVn2kshGraG1xxIi31zevX78qYQHUmHLyBK6SY2LT8EEApwUde45DYvpGHoz2VXbWURtMpQ1YabzV8obeEjabLURySgOCUk0joXig6l/K70dWpTiTknj4zVjh8dpEvnPgFGsoT0xtO7cmhDwiUAixEaOcxzErUGhm83mTkLq7dWOAAHvS3lTRjS0KgihoiVT8EllAijOpjXrHl1miv68uGhaCAhdglrwr2wcZIjqe6UlLjZYAQiUEmqcdUMGF8n2HtbHKr6LiFir9teYGWDy4IRVayCHYrJVzm8CLOpQIKk2+xj71L1myqm6fPV1//HOSfc79ut/djt04B2SyI5vv7iGLeJcXFF56QT6xAs7T+x+v2jG4VDc3MbXIYFkyGoQwA5phYLNWMu612+4DUsTQUhOAGJkMxpz2OeVQAreyUb76qn2ox//tSRWgqU4ESPILPQ4MDUBAMwJAvk7do7xoABqaPWgWowzDKAqaIWPO3W7b7Ts1oMUCMYoN5bAgMhO4rmFRf2yRmv2+E4GTs0f32+1+yE/eeThbrp6/fD0ktdK/pqbmWS1WtN8O6JzV+KwYJKIQAoXA2vcqMi2zvcmgFpUxDTmNITSEFAhzNquiKKoamoiMbip9UKuoahYAaJgBgZlCCFmSv3E/9FrlWRAxhJAzO+M6hDCJAE8X7wTatm1TQlGXTAiq5BWRY8Mw7dBDd51KldVssCUiNtV+3w3DkCRd3d12IrO27RHzqM1Q1OEhRJrN+xhTTt4DhR6xuYCCaL/fnaxO2nYZyfphZDRGX//szcfmztQEVEwImNz8lc66r4RK02ZH1JT6yDBved7Gfp1AR5Axp10at2ns8jiWataBspSdfyciBoAmmrNKAW8lJQBQlTwOwITEZfoa5NHHACMOw8BETBxDJCYOIYY4n83UNMbGQTRADDEu28XJYgkUxqwwX7pK18XFgwuEm7ub5XKllsuDBjHnS6mKiJOcm2ZGRBo4huDP3W3JNC9kwqWnfVjAQwercxYRcIVzM8miIljDyToTCInY3QljLZofhklMIT6YQcqjbDeB2osHT7wI8uL2cru9n82a07PzECMWIgyMw7Db7drmaJDfG4QbgMKu8mmxpU9JVS9fvx6H4YB9+Nk0N87ePAtTnDFZucnQvWUA33r9+trlMS59AIr8T1UdhmEYh0LjRcIiNu0ryLWvqkhMl1cBMwnUSyBM5k17JAXOKcLMYEYGDjgbEyCJ15ByQX/MwAwRA1Cw2Ehscmiwaamd5+zDwinO5hxoNJGcMXusyc59puOiu9uU6oEP1esDFnZwZ46VA/HUDgzVx2LJgA8UrePFDLWa7s18AER+B5NEN7xRSjhefQ/0PBShgid7GnMo9VUkBd940gg+SpZswjSmezZDwohIu3737Oby44+h22Ia+jTcQbrmnJEi2vEPmpmq5VSmRvgjVzUzYWY3u2bm2knTR5WOW3yjzx0BCQE5AFogYWQiDEgBLSI0yM61QDMKXFSLELLKIHn05ig/A4QIXwkh/QGgossiFcZ0raEbALoCJfpz8wgFC1BftqyYJICNjDdDx1kvMDyYLZMQpXwVVAGkH3e7fSb6jT/83m//5nef/c1P1/t9Imq8OQwJAEIIxORr8s4776nBz3/xiVLgxerV/e7TF3dPX97cbrukZmIpJZUEgMQUOHjF1h9xPX/1OXuLqCEinp2dEdEwjgzGdNjWWiNZ/0pK4zgMTTunQDVkUjN1pdyScChQqf+BctnApopMSECMIGqmIklVhrGPsfFKECKGwDmnnHPTxqZpvHt5iiE8cYwxEuGYVDJzCJQZBStCU56a61Z6qlEPhXO3xcwH+ZmRichuu727u7u+vU4mq9VqNlvl7TrbXiGBQmyiNXFAyAh1gMobh2uz2YZ48/hJO2vblLLlxATG6IifiiIYgZIpmpgSEpm93bvlj4UImbgoBKAiyjjuCIgxNSQoWYchjbu+2w7dfhwHzWrkmCSYWTqSa62QJTjK6wcqNg0AMHPbtMBoJW1GRFSzlHMMQVDTmFPMKecZR+9lik3TNG1KOWd1EXoims1ms6ZVYg6Ai7nneWcnpw8pXF5fP3z4eEjjuFtr1ekjRDDUnDMAM3c+f121CSdEgSjUjWKTkCQeRbRlxapD8meJ0yQ5MwNApslz1282LMDA4VZ9GhxYcQ6GbAagkC2vN/cvXz178uTd2Wxxcnq22973w4jbTTuftW2DiGCYNL169er0ZLVatG6JyYc5Vv8E9a+E7iCYkFVlvbmvLeUKviJqis4aI6hoX+239Lugo/ztV5mnggfCMYXqra1ldTw8HIHbvmBmNo5D3/eFpFaiBXfEAL8yJ6kf+Oa/K4ZTlpmQSjszWAmniBkJVWW/3ewJUxMttgllEDCj2cn56tGDxeNHuQnNfLEbkdZ7MMggs5PTk4cP+5SvLl+DDqBoCOJ8WLOiBn10RVbSTir9iTghAPbWLWDxYMWwl9T5K1Iox/8IWAYMla1XCyM1BDIffzBFiwWxr9GWl5YPlAEAT7N48m6+aAX5YNYJusCS8R8TxQzMQEOgpUH/5fN//n/6ry//4q9wt9t228thf0OpjwjePex4jEHlNzoVsfIUrUh1Qs19/cvug/2jAX/F9qpZPxIHNggcAoYmhpaRESygU88QSQnFQX3ErLrX1IMooL4NWP4HXp5z+9Ny0WsAYK7LX15qeMAjFHFv8jLtO9TWZhfUPojzNOyuRMaor/Jw/expl/Nv/KO//zv//f/san3/4vrFBvUCwMUpmIh4otGiJ6yffPHFwOGD3/iNz+7ufvh//399/9/86y65FjwTBgUtirgREZEbJGZCmrzp4UpN0ZCZz87ORTPfkaFRwUS+espQ1VIezUSV1BTAkCAQG4SizXf4iGncKKqpmjIYwEF3Qk2cXBECo9spMte2FBFVYubKaii7QkvLLDEzq4PWUXN0X14KAfXc2yTqZTr98gGLbds6QJclP3v6dL/bdmOPkRdnp9/+9tdvrl7ePns5rLc6ZljMIYYRUYz8pFnZ9n6eMee82ezmi+1yeRpjyOOIaMyoAoqlw4QqL8zrEuyUi2k7Hc6iEXEgQCeJoeW03+92lpVgzwSWxzzsxnGX0k7GwdUQkImJzHDo+6HrcyqzbwMRWjk+vqonJycA0MT44OxMEEQtq6AVPFzNkgghieg4pMBjDA1ziLEJIc6aWc6SUuG5+dkMMRoGBYTY+PmczWYP2tnDh4+evnyWkqQkgOBTNIhC47IXzCFEAyQitwZQysNERAzgVC//97Rj/UHWlXxja5qBT6f2OBW8TjQle+inxykdlfU5JR9YYlwv8hDRMHbD0BGG+Xw1mzXj2KvlYRjGcQgRXIFE1IahX80bN0DFbNcyLcDkEib3CKoqKjUGdnOsVpRS3NZV0bcjkW046EwfDuG0IG+dzbe+cvgvACS3dHUlq5AQqAGkcRgRMNSJK1nIVUVKQ1oZaOgjvyaZUf8GouBUSGYODESztg/spBJAFABxg+8RsRmo5GHIBMoIHDPYqMQU5xePzt59pzk/Gxui0OhmTJ0JZgXC2UlcnUtKsN7q4APSIIsPsiyMKStF7YMigJWn4ZH4RMysQCAUutPUu/t2k89huT2UJUNDgGB15plvTQrgXNzj1T+ys9V/1iwbAADIrYhvcQDg4E3TBhVoICIEJgxeSSgAfHXQzswyUVQjhZitFdm/fvnxz36+2mwl5dfj/tW4u2stIbGriyMiksOAaUxS5vsW8Nn9sIsGOzOOiTzfoCntrgPX4AiHMfXRTS4xit4rqsQ5WxqHYd8LGRNDoJEhlQ4C60F2mgZG4aMY2gOlX+Hmp9DJH5xP+a4XUEpcLrOOYObTxHQyuwgKtgORvL+zYYY4m7XzZnYeZ6+7vZKsh/F+vd2O4zc45iY+/s63uh/9YK35FNDYQcBI6HKPAZCurq432+7py9fh7PQJouT04vL1/XY7m81ZNQCDWU59llznwICIEulUg/fonJyhJ+q5UTtfrNf3hsVVfxXSmvyEz2lnDgBWejwRYyAzyDn5RGmAMgjb8QA1lQxIBORJMKmpZlVTBFQVNQrEzAEAY5RxHFPKxQzooQwxtUsRIRHHEAhmDKpW5sZP3Ip6EHwKMKiKEqGhCIlkM+cySs7y9PnnV3evLdjsdKGRoAmzk9Xq8cOkkLvBZjON0QwM1YhKc1yZ/eA5BKU0brfb+WLZtrHvAETxoP3uV8uIaKaoQoCMqUzphIBAAYzJEJQZm4iRiqtghrG7Sd1d3495uCPr0QbJfc59zoOaq6OXFhdfnCx5GIa+79vYRGYfD1kN05HJRmTX9VEoKCISgknOSqSl7TsNw0BEkSEwQ2yaiNJOb1JxUQ6KjF4lRWw4nLXzdx8/+eL0bNa2m41XBtHlKg2AQ5jNZhxCmUBgtTqJVOaTgh0/aE+qVMSVSrjw19RDCpxk11S9RwqZAQzLeGYooF1tcwLwWXyHDJuK1wQk8OpJyqOaLleLu/vrGMNsNt/tNn0/xNjNF9Q0xBROTlYzT4hL9z9PZ+T4xIAjsZWl2LatmQGogT8vAHRYxlxXwGdgw3RMv2KJ3jqPbzzTIx9cg0TDt930AdJ3mydmBphzcgNrphxilMyBOVAIgTgEjkQcQ+QQJ+lZDoFjCLGNsW3aWYhNEyMrpd1258NtixHQlNN+37XzReksMDNUd1pACBiUA81XuFjmpqUYjRlny3B+QdaAGoDgLGZgY2wXp90uiYyGJAYkUKBjK8tdqFA1Jz2+66N/ai3O1v/TwuByB1MHrFhpzEVHhL1jG8IEy5RyqZrx9P7l95LaWt0ENUhAF/ioCbczdhGtaQIRSn2K6NgnOjk/gBkTEQZAZASp8J7kBKoN0jhkXG/t+eu2GzDn+2F8of06QiKvgwIRV0oC+jTs4nO9ZbY0GxwkYQ3MgBnBIDOzT76sub7hMTAF4FJjiCYACbA3vR33vB9DSqoZA8cGETSajBQAIZPdm9xrGpkyghZaX10uqADzoViiJZ1yHn4dQZ+z+iqbHdkLRJyGsLIBMAJ6apZB9pJ/tr0WgN84e7SKs3et3SbSbux3O1i0Jw8ftg/Ov/uf/uGf/fCvPnv1fC+iIWCMFBsFH5MKYxq77vZuvRv6kU4LxzIwRw5huYxibIwGuFiIppwd5h992oSaqGWEDGBURMwREA3t5PT80aN3bu/u1YgIkBjKpI2pSIFMgcm3n6aUYmwKVlEGj1qwJqU0DiMHqkhByXfNQFQsJR/3TkwqzgYRMJCMTGjAoWmYuTZ8JhfNF7Daj1TcjKr41HcmDIsZ42q3mz97/jSlOrOyUBnclBsAiCQ/FITsI58B1GsF3Zj2eTvklHJaP1u/ev0lgdioDcV5bClE4EAKSOL1MCz9cjgdN1Xp+27f7ZeLk7Ztcx4MoGTpehALU5edVCM1CMCBCSITt5HaNgTiJsYYGqrNxAD66unPum7oul7SoONeZafaiyQ1URBRASYuCTOKZkOkEAbJQx4jc2hiIDaVIgVaQDMQUxBAIkYS0rILAMpKY86ZxzER9VamBrXMgTlOmDXYAeZlcrlQRIDAPJ/N3n3y5A9+7/e7fj/03Wa3OYAtqinnBXMIwbtavI4LiGXONiKCeQbvT5w9UFQlnLANZOambTw/Nh987rqQPsDD0SdEI0Y0eRN6nEifhMAUQohInBXEFFSy5H4Yur5/75131/f3V9ev54tGxIaxFx8tBwQBlst52zZmWQ2opjMVaS0dZdW2S5YUrWliWK1WSCRZvLYm1WSrgYoaCDE7pqjVnOOv98JoB4s/uZJiP6dRAPUjprwc8dgHe74gaRy7br/dbIZhcHUlVYUMhIaIAmrGfpkhkFXdE1VNOTGHLAKUkZEgkmvRuIf3AVwGjBxCYGZCVlKfTQSEwNwuTs5OH5yfPVycnvJijsvFPM5mK1icPtR+JFdcIjPTbhj6JMO2T2YphhwC+1PXIubMxMUBe9bqIa5npy4H/ZVG5/KIVMRES+XQid7l+kvuV/F4BAhwhB5CzW19khPVCIAnSPTwcECLrBHiIfjz7eo7B4gL1usezdBJhIzquwsJwYikOiY0YDDKWTdrur49vd8Zynoc7lK3YR3qtflnMRIBJDVXjoYpr6x+rrR7Vuc33aCqNy0cSFBVCMt1diCDOfFkMBMc7wweZbuAZokYicAsqWgGMGvmkZCN7GbsblO3IxN1BdavBIp/2wuZeTab7XbZjmjvJZwvbc5m5Di0upNTMzJQ0F1Oz+6vzyl+NA8Pm6Va3qWEzBnwputTpNlsuXh08f8j7c+6ZVmS8zDQBvcYMnNPZz53rEJV3RpQKAAEQIKEJJKSuNRL+mf9H/q9n3pcUq+W2FxqEtIiCUGoAgqoCbfqzvfMe8rMiHB3M+sH84jMc+4FiLU6UTh3n332zozwcLfhs88+G1UmSe7BUklmCqIl624/3mx3N7f7IkLMxBGQQ4ht18NUmmIgFUwhwkAhNmrQiiTXI3TBATAlJCAzcSYyffDBB++99/5Pf/rXdohCcMZZl+IEQoWCLaXUtl2MoaquI4AqAXOIKSfNUncYYQg+GRcBQEXADIh8OzpKbqKBSFmN1TObpmlUZRizW2cidKDS5thLVNlqabxtuG9D1zU3t9evXk1mh6LO8qdqUQVVC0EJw5y8gt+bgqpYSdN2u81pAiwomQTvXdw7udgQkwIBgBHrPDF7Tj7mxw5QStnvdn3X9303jjvJabGNHpzNXDalUGv7jBwoxiasOm7bGIhCCExEaKpimkpOV69uU0rDfhApueRSJpViWidtOMxmYGpKQGIqpqFtY9d6FN+03artEMxAc8pt2y6HC7xKhjVVqTQbAy2SNKlYKSqipQgz51xCiDG2McbqYJYyNhKQ8RyANrFpY1yvVg/u3//GN77xyWcfX99eAdiMrZpIlR1t2963GhOhr1K9KY0xesEl52zwenSLLhgefWS1matpCCLyrDINcKjVq4sK6tfPCwohNE3DIQ5TzlnMhAwRmmnMROHBg8fPX7zYbscQmu12ux93UgrepVW3XsyFzf/7ewQi/bKZw/nZGTNryQaK1YF6dcZ19DmEmcpz8J1HZKJ/+AuXDsOv+V2sFcuDxcs5v3z18vLqCsAZJKqzvBKAKAGR8/isFHFXyiwgxEHBiMUoJRo5QoBpyjkTmHl2gEhEbdt2bdc0HWIAVEVQQkNer0/O7z98/Pa7Z2d3IISCiG3TtWviAGBkEIAAYSpTSlObJuha4iDb62iKXYsiVmPiGSr30AsObrPi+GBzUFt3v9WwZHmAB0SzIlt4yKyPlzHUnzuc/jc8x8y7ozp97I21h0W4riLNZGYhBEJgRmKCee4FzpKt6DTUmlSYG2MCbUCbMsHTF/2vPtk8v0pSvoDh6XjzdNrvepHj7t35mkWKy5DIUeemX1nTREDK+TBJey74gapzAg7tv4dFmMMYj7D3UszgrOu465uCsUjJeUxJBTS267aEEATttkw7zZm5IIBDYUiHyzm6ruWbWDlrhgR938d4Ukoex/3rv4JOaPQLql53eRMDMtdkMMnZKG2a1S2onK771fqT65s//8mPf/+P//Dh3fPr7e2YppyLL1fRrEU0Fyk2DPvnz59d3+4Ei5gU0ABGFALH4hmdEwtcHVUBQIvkKU3TNHlXj88PwbqYQISPHj7+7R/84OXLy2G/99X1nUpgs5TNEs4roiGqp9YhWB1DCWAAzNy0bU5TKdlXRRXGcSLKMcYQAjpPrY5xE1WRUiSXWhchRq6Vv6ZpqxCSmBt9IpKq1kKmJqIzFw4QsWnb+/fvb7fX05SW3Hd+dup3VL0OOVcpMwkRL2EdE1erXYsIHENo2y60XVG2bEQRiGs7xVFnSP0NFRFJOXVta2a73c6VE2dy8lH6PreMk1EI1DaxaUKMITLXYwcqmiU7ljxM0zhNo2u/gAmiMIEQCqLNA8w8ESSm/TBst9vzs5Pgxdu2Wa1XjJhLjhzcAftiVjc8P1zfwugTt7TILDWmqiEEVXNO+nIjVdkWkYiBWF0LuoZETbHSNM356elbb7316urVMO0W92lm0ziZmhRt23Zh1ck87HdKyb9TqQAih6sFMFOihjmoCCJVZMXMe3ndGsyPB9Cbj9WsTqdWMNdlmPvViEKMIQQ1NEtmyByIKOW8G8bN5vTBg8cff/xh3PTn5xdX16/2+6Frd5GbcRz7ruMjMSus5UZa6sFH+7Du0s3JSde2eRrRKnI2h+2V6h9DbGIwO/iDYxP0hvX7h7xcuv/4O3gwcgazpS2lPHv27NNPPz05OXG90VmxwSUnfP3BzEQFBNENhymabwlRQlRSUC2lvi+hEXm3mauuMDMyqZFWxbwYYtefbE4vLlabk2xmakiBkNhxlhmPRDIiakI8o7han6CmqAV32/TyhcZQxZ2dODbf6+tRy2x/vYHHH4oPvbAF+zxiX+EbHpxmD23wNRmw2cztrb9X/Sp6FFS35Ez39R+go3pw3QMIEBhj5JyJmUJgjiHGmKs8s6AaijnJyz8vmNiry7RN7fZy3XGy5mp389zGS0ipqPoie9OP74ZKma0mqV48IpiFELt+VUSyVyPqlS3Rutms+rtk1R4cADiS4UdBgyEbcNtj21OSFslEdtttRii9rro+hGYyuU1jAlXkYxJbDRrtqDzwd2TGMcbT09P9fpfSWOuOc6iEHn0vPcVzrg9QMV1F4DpXAVqDRuyajSPgmn7565/9X/+f/5cffPCdL58/iTH6/TolWEo20TTlm+ub/W57fX2jTZNKQsVgHApQNsuuuGJqIlJyTiIllzSMu2Hae4kUTMB0RtF99fA73/n2t7/1nV/84n/IOSGQZ1aOkFGd2HJcf609FbWT0nU26plD7+D0HNSrdF5KzDnHGANHYmY6BJEiKipeOaaZrOqDCPt+5Tq9bqYdk/SXB+nE6ML9d+5chEDn56c3N1dffPHFcjTmxzfjRwBmlnO+vb0tRVa9xNi0fUeBwLnBbataAIwRAoQQO+BAoWkwComAcQ6CjBgQyzwyxWoECGompRSLTdd1ueRSEkLN6VVltpwICMjUtF3Tdl3XtW3TNBSDs8CNEKyoSC6SpnEYh92URimTufQpQmBsYnSkimaqR2VRqY7j8OTJE9Py/jvvbvoVElMIfdf1ZlKk6zqYBdWX0YTwFU1Ez9TnyEGIKOfim3G5h4W4GELkGEGKzbYrhNBh99Zbj+8+uPO9H37/3//Hf/8//L/++/2wYybmuTVAdBgGM2vatmPuuk5Up2ly/sfSfubvuJg7nMlfRKRm6Giampkxh2XUpZkV1WXCzUzAgVIKMjvEYzMw64wwNRLHSGIgDlllt981bXv/4aOb65ubm6uLu6dN043TaEbeO7tZrzFWspTvNzWhWgyu577CHrXqh6cnZ5vN6e31FcwV9OONal7KtqrPNYOBAP9gn7u84eJcD6n00c/4FwtzxUOH25ubL7/8nPldMDWTOlMbTM0C1F5lrXwkJfBKFfqgITOjqoNgBMhEIUZkViYLAWMjajlrKWaOXxBFIuamCSEieaKAaqwQiIPNvEVCQyxakmoxFQRum6ZrY8CgUq6vyn6UEMX5ZURAsHCsDos2Sx26k11os2/uefcEr3U1QS1a1/1S3yXY0QvnWu+hUWveDXMJH2vLog+0VFhKwku9AAAMHTqtgm1eX+/7lqacrjmnxE4QBEBVH4eFAI3Y+OVT2I56fTNI/si2X4R027HGliSpFKfYEIflkXv7/Bz2VdeKSLFtu35VSk4pafFJy7xc/QEMRZoH/80Rx/IXAAA2xGJ2W8qaco+0YgLGnYxbTZlhpSeoeRS5lmkiF1p+c38foeJvPKLDc2EObducnZ1tt7fTNNVfWur1NvdyzT7YUYC5uQSwjdhGiUSIEW3SwTjg3XaDza+++Nvn+2fj/kbZS2KQUiqSVdSKjOM4DMOwG3JKGBo0C4A90C4Llmzi7bhpnMZxGtztmYmhQm0T1SqhBs7gQ0RYrzc/+t3fu3f//vMXr4oYcy22L/2RcxFhObeGWIew1jrA0b8iYoyN6z4iEXOIoSHkcRzTlIWBWBsADlQ1GV0QTUvO4J7JcRdEDCEiohNi5y4G9rAcC4qKmsUQEWgckzvOu3fvv3z5arcbcI6Jjm1cTdfMck6qNg4ZkDabzepk07QNAJ6fn99/cN95dATUhFY4ZEIgioiikkMQDpmCACkgEJkPdnDtVy0iWU1PTk6atnl5+SIGahtPrVVrQoaGoAjM2Laxa2PXhMjeIlZMrUjJecplUhUO2PexiVAKFclFchVlY0LgAJFUD2YUyTVM9rh9+lQCEhsGDkzERKuuDxxCqFFdCBEAHc+wQ2hQl4mQCNmFS/3PuTelxmFmJsUbcZWIKIb25sY5Tlc3169Uk+T9tE9lAsJHjx6fnJyN4+gJM3NgDoFDTQkAQgjrzWYYBicNqkrOdQZwjMHBhfk4HfqD5zABDIyQAoa5XgeLhfGpi4YIYjNsgXMygohLZzmRQoymasgYIyNhFhFTIj49u7i93d7e7B88urs5PS05u/VyLAPoWEN/SY3Ava/zq5mrxkbTtKv1GqrRqz4YVE1EpSCSlKKERGwG1VXgMrKsHrJ/SBK8YI44w6cHnGO+zPlqFQnMZEz7p0+/ODlde+j/pt8++quDpwbmrGhEVDUyNXPZLB/qHJvV+uTO3bxe9zFS0425FMBmtWFVJepijOvTk5PTdYicUrm5QeKGYhu66N1kkRFRAAaFMWctGQEYMBCxIgERN8DBiJ1drT6k6KvetT4Pp8jiG6b9YChsOQEEQN5XBgoV1JwrcAgQluimrunMpcaZqeXv/HWBky2xwIFPDGAIoupJOxERhxBi3/ek1gNPN7eap9i0/abnhsfsILsiGKpsry51Nw3b2893l5/wfmzIWiaKXQ5TmlLKvjhOPFMtItnM8FCuNnASEQdA46ahwFIMVI3ANycgLnipqNC8cZcY/ChGRAUTgL3ILqep6ZQYQhObFSfAEPdarIyj2QBWwORoburSeL2Iz85uWOeFq6UZQmRi5rBardfrTUpJVa2qJikhGXjUYGACyjP2YEgEQAY4at6hZFQFXYdwt2niew/1fpAWVHlIOA08sSqoSAEDM1GRlPJ2tx3G/c3NrQIxgA+itjzdXL4oaau4n9JuGqZxnJz83DQhhBYJREvKqZSiQrWL3FRFDe3eowcf/Pb3C9HNMBRANKAZdl666zwx9cflTb8q434fQghNy3MKWF8cQ4TOIKmqAYYQT0/bpmmHYchZzLQgIEREYKDIDCqeIErBady5wnbbeq4WmP1qj9uRzUDceQCE+w8e/u6PfterNbfbmxC7P//f/sybs2fvK6rqPGRE326ROTJVFus0TpKlX6+/+73v37t3L8YABtfX1198/uUwjExIgYNa2zY55ZJShuUwIs50cVXLJU/T2Mam7/uz8/Mvvvwsp9KEznxIOIAZMGIwDVYiloZKpBI5MJrP4iulpGkc01DECzEWYmgCifCYUCfJOWWvnOuBx1u3ppmK5pQnZNPhs88/H3fDi+cvuqY73WxWq1XbNN/54svf9nL1fpgHZjjKVhlliD7xktnPpAfjHJjDcRBmZrnklPI4pilNU0rh5Ysf5aJgP/npT56fngDBlCZX5kk5n51dPH36HAo4uhhDE2NTdYSAVpvT3/nd3/vTP/3Tcn0j4ll3mfFtxEpJMQAgxBCbGJuqVgQIdVoMgIGKen1tDgztuBmkkrQMACwwMrlfslIKIoFa3zYiWhT6rjNszYCJ26599OhRLunZs6fjkNabFTAy4cP7D5oYDJaZpL44CAjOsYfaB6UAFiKHSMwoIimNNbb1TlkzAxMTAwPTIjkou4SAl7BgYdSiLb9y7IPneeQLVrd41gUJ9ifLDn1VUvaCElX2nRSxV5cvX7w4e/jwgePnWkXvzeygpYyLacAjH1S9nKkBqpkBU1ifnT/+BpnUyVFmtjo9b1YbMyumSmzEDQTejUN65pzKtlvZetSuD6sVN9En5DYi/Zg4Z7ejHAJFb4wiNiBFM0RFrVOO6hhzPxROmkNTNCQgHwFxBGrWZ1QRYEebPTRz6MAUqryV14oR3qgBL1/XvnJTMFAAb1Q9bD5AA3D5U1r2izOcIZvVZhWbM57ALCFQ36tRbGLsmof3713vrrmJsq+S3KzQAmIupjaB3eRxm6dBIDRt27Zt3/s1FBE4MFBq2ArVJQEAMFETYowxcKhbzFF/MzOp+8b39zGc+3okc8jAAA0gEU2gGUAUA/LF6iSGqMwpF6OSEU1do8psFt+1A6rmTeszFuEKlXWDLattqto0zenp6TAM+/3O97g/0dnuu9PWuQhQicFmMKTpatwN1nRK3MXHd+7xWw+fdNsMyYpZscKqEWMTEMBcBr9oyWW3203jOE0TNa3W2AT329snX36+H7ZgiYL1q9h2QcQQkIhFSkpJ5wEcWNt7SVXQsFv3P/zRj956792nT19lLdUEVzapb9CK9s8FOQUDT1P2+33btm23MnBFttkiUGgaAqBSstdDYoxuzPf7YZrGUgoShkDMHGMDYCm5uRRTFsnDsDeDGKPnrK71VIoMwy6E0HYxhDAMe//Mt95694/+8I85kJjmnJDpww9/c3N9GQI5SzbnafZQIGKEKqDM0HXtarUiDilrSunk9ORP/uQ/e/e9dx2e/bf/9t9++JvfZMkdQBUYD9A3saSQmF1DyqXWAaQmY6I5l91+R0Snp6ebzebm6tJ3QkVTARgJQdGUwGKgGMg7glWylJzHYbu92U/7JAnQmLhhIgTzaVZFU8opFZ/G5LU1px3VwgeAIRQ1Uh3H9OTZ85cvXwXigEREMUa4fvGvAPb7/RdffHF+fr5arULwydQzpOTUbWQmDux9oe6mlwlXOCt7ACHnLKK6HfZwc6kmReSLJ1/Cpm+aLiK6aF/bat+t3GWakgjMEsrsydPde/f++b/4F7/45S+fPnsOR6O0AFSqI1PEqkXqLb0wC9NhJfrAkp3jUZOIzgiB/yRD5RjX6bAAJWdHwhG573sAEZW26Zr+LGcx4tXp6Tvvvvfo7bf/+qc/vX71ApWa2J1sVicnZ2kafBo6Lq3JtQ6sqoe6AyL4DZnZy5cvr66u0DVO52vGSnt1wjRKEMJgXzFxNauuo7yWpO21+aFf6xqqZCzMOgwzTWTO0Q0pAIKpjuPw7NnTs9OT1Wp9cOSqy3hiXPAweOOFMHcIOBaEzJvTs369FiklZ8klAJ0/6IkwjePN7W3KWUQt5TKkZIJgMXKKvGu60HZdvwl19ngtTXVVekq4Ddy1HAPm1BiwKiqousrqUmOthdVKZzb09sEDPnE08qea9jnKwLrMr41zBbM5qZodMBzhGHb8xm9CB0dPog4WsrlJsVLUTCDnImJuW0spaUrDbj9ud3k33G63eZpeXr4ahsHJxo64tDF2oSHneRFQF0NJVtK+DMMwrfq+bWLXrVKeiqijiFg76xdUEGu+z6H+K1JgTjMVZs57cHkdR3/H2+CwFGCGmE2TlWwiCqFIC4yhnRAmUSnFu1DNRBHEHXDdzzXSdEksA7TaMG1ghqZQu/fM9XWJab1eX1xclJKdO1ZP4fwc/S5wHiKCCxyCuBv2lwOGVprcxDFFZEwGohU5AymkIbJqsSoaJdvb25cvX4xDKjnH2IqomhXR68vLV69e7nd7mbZcytzXiGBklpY8IISAhB7UohZXm/ytb/zWH//jf9q1fWTu2o6IOXCgRZilLrib6dr25gQTtJzzdrttu1XTtaaLGcKZJyxmKGoxIgAxY9etXMQg54SA3rzEHFQlBHGbFUIITWSe1bPmGZT+QsRxHJs2uFh/SmNKSRUAGInJtOn49//RH/y3/+0X/59//T9O0943TM7Rr7zmKOask3x7eztNqev6LBZjfPzo0eO3Hp+engLA06dPP/nkk88//5yQROD0hLqupxCg75y77Ug/GDliYgsFwOssIiHy6enpbnvj1lJnKU2lsOCJHtaQSzaDgUjJaRr3w7DLkswUXFSFCNTEtArHiQgYInFg13SsdlwNDJgIcR6EjoaEIQRENICi6m1aojqltBsGDgGIeHYFVLu0nS4TjqQbPVw/sK4IuW1RzWLfdyfrZr2SMhERqsUmtpuTbtW7aJaZ7ra7nAuT+3JG8BnSUpUxDO/eefitb3770cN3/vInf4MQiC0wA9g0DaVkp3+qaowxxshVz3kBIfyWAREXsvRiEuc++Ipd++n0xM6fSMYC40jEXeeBiIjosB9OTh6EhodSLm9vP/r00/PTs83Z+TDsicNq3V/cuXNydvbyxQQCLnE04yvoIYXOkm1+JTNxQT788G+vLi8DV2GDgwWzqo1lalJKDO3fZcOPkNKv+ddqAJfs9vUXYm0e80kCMEcMoOJDz0z0+vJyt9uuXNes5oI2T4T02HFuF5tNOM7dhkREiuJhUAz9aq1gRco4TpxL33Yn6w0B5GnqNyfjMEjOWrTknHJKeXIrJ+M+TWnaDYiMaFSHSLLTxFU1Nk2zXoW+BTOU7KpyQIzINk82rXntTL1ylTKoPkXraVUfjmx2AA+Wlx5ByG+uZFjW+rDwM9pgRgAEdWAFGuJxr9h8GplycZb/ImEyjVOaCofgXCdQQ4QYY+ig6zoocufO3cvrK2ZGIgM1AGJWkSlL3o+3w01BaWPbMEkpKaXbnGW16vueKagUmCVeF9frTg0Rmeuh8gCCnZhaYT11nU2zOY1c+E7VSR/Ke8dfJ9ERbMKcFViMFRsjQBIp6sR1cO4GGoJqVaLxXegJxWLxa6ztf53Tb1fyck70arU5ORkvL1+ZKVQLDzqXDdzrzlCNeUXBkCm2qlxUQxZIBYowQCiSEcD7lcCAMUsBUVPLOW9vb/fb3TjllHODNdkvKb168XJ7sx32e0kDlWLFRaRCG7vYNDFGXzsn3xYfs5vMLeAH3/7gnbffRYU75xfvvfPO559+GoBiICL22odBLRHmnEV8qiTNaIQNw/Dq1avzOxdN07I/HQREXBh23vcZYwjITNx1PSKO434JmJgAILoegBNfCavyDswWapYAgxhjznm32/lPus0dhmG328XSGCoHPju9+Gd/8l/8+Md/8flnHyMC15bT6vDcdtf8QQkARBUAY4ybzabvewBIKf3m1x99/PGnV5c3IrLbjQ8f2MOHD5vQxBhXfe/zmqZxKMUATHwiLdWNqaopJcC4Xm/6fgUqTh6HOQZiIvclc0iKVOfsSJpGKaXklMokWsysKhgbGICbM1H1BokYw8nJSdM01QyIlpwRCQTIwL17aGLTdA2xn5sYw2wxpKQpjzESQzQkqgJS7olnitAhanntrBEEdiwlmAWzRkXWayQClLOL8/d/8P3Veu2e7/b6+ic//ssnT57MVeTq8N1FhRAZ+ez0TuDuncffIGhKmbLkhBMipjSWUryD0HVjHDVxmQJYeEyes7iO/mJBVZ0QsVz2LL4xW2HTUooTS3LOfb9StZRySglgP6W8Od+MJU+57KepXF0HxHa1YrSmaU/Pzvq+d8RgaekkYs/pax6sumxRd8CvXr36+OOPREsgRpd0cVjTEJFclqRqIlhlp9sbjKqaCxzZ9KMerdkB/6dfCzDghkHUiMFlWUTLy5cvLi7OQ4iHvM4bZOuwiRmbrTNsPJI4SKvOoY9OOSNRUSMOgIQxWmD1Im7XdquViJgU7x0Y0iiluI6zmklxVFYJTNVCchDQnaWoKU1jILJcAoWuW5lq16+Jghq+1u97lOzWv1jtdvMU2RfbDutmX13C6kUdgcAjEhYcvSsAyPwAFhqQRyo+lUMQiLgNASlkFSAMRKkmNHr16tXz5y/uXFx4RxoitE0bgKRQiE2MiRZ5yDmaUJFCJSWV6+vd7ia1SKu263oGSGlK0zQMwzRNTdM4jbsUKTlDjTgAABwW6/sVUwDDkg1Jc86+Bx1ZmTViYNmEs1EAW6QA3nyZmWWzVEpBBgOfJdQgZeBCZLVxFWpRc5bIcdq4v7+oASIfbSq/lPnDD8vOTOv1+ubmuhSdd2pFlrQqC7At+AOQIRZE7NqmOaPCQJQnkRc31OXGBMAUEFIJagimoi7rsdvtdrsdMYlILslMHb2chuHl82fbm+s0TShCqgBGhBw4NDHU5h+cw38sITKlSU2K9V33wQff67peDc/OLv7gD/7wV7/6293VbWBEn0XnGwprRc1JeIRsB3zPhv0OzU7PTruuiyEC8JLhhRBUc05pIqS2Y59Hs+qbJuSc65vYPN3ZFBENMBcpmlYUAodqiFw9CzUEjTGmPKkqM8XYiMhvPv7olx/+bdd1WYqCMMEv/uavnz97UUrx3bL0hopICCHGGJgPw8uQYohN01xeXj579uzBg4fb291HH3067CdVmKZcyi3h06YJ5+fnnrD2fZ/SNLX9oJaziaAhMKL37QCimKZckCKFtqSxiCE5MxNdnLvvV03TOmKGvjdUTYvNhaQlgaukfK3GQlVFVKu4LN25uHN+ce4RholO47jdbqf9REAMSAiBORAHjkxICJFnPfAilktJuXAKAByYEImAXmexLC4YZ4CXiNQAFYhBZzlDItK5I2dzcvLNb3yzX6/8dHz2yWdffP7lsB8JA7rwBXqnPLqxbWK/WZ/uttO7776/WZ8+ffqFaQEogOZhme9eIuLArldMROgkODMggtenAOncdV3JYnMGvHiIOXczT7kQS86plKxiOWmeFCy7MlTbtMwcYnN7u22YGbCI7IZhHKcYahiHAE5z80zG5y8c2ShT1ZwzM19dXe33O6/tLL4Uqu53dbc1ITu0w3xNsltzg9eR4K9Ned94LU56dsCzPnE1VTXUHoYhpRSjB3aLYzJQRWL3XmSLSr8H3fNPAQAAGUz7oYyjk96r6XDNf0KnWqJ3JgEHNdY2au+j00xV1KdN1+AJAclESyliakAcAckZLEDUn2we8jtgFpoQuzVQ0CO/YMcqw7OqyWsAvdPG5uzI/eXfv4yHNiQ/D55J+mP0R7oQI+UIx/b/ERNziBIQQRiJAUgNys3Nzd/89d98+zvfvrg4W3oAxnHM45CHcdgPn3/+2bNnz1LOAEqeOqqiSARaNf2YRsxjGRNyGyJR08QYVaTkXErNts3mORUzh5Aj37l3d9Vvbm93vifSOE3TdLhkVAT0fgNcJujNpIR5V8GcPR/QJwZsYmhD7ELbBQQVICgAImUiyAjoUylq/KO1fdYUAPToMCDOZZO629QMCGIIgQ65+Pyk63fmAKUWn6jiUYAIrreOYvZy3G+wKbFvCW+++PwWb+M3Hq03XUAbSDUXUBUvihqUUqZxzDkzshkUKYjAHMBwd3W5e/VSpz1JIUMChsBESBTmZjSq00iZmJi4QYpEkUITAl3d3E6jSqLQ9x98+4cP77/z8fZDl8qCGoWTL3ngKs3hgOpsYtQ0D/tblWmz2ZycnHHoFHFBXBEh5SJ7MdW+6zE2xBSalkIUKc4bNqQwR/5iIAKlDCaAJxxDXBIdIgIMMbZmVko2xKZpNej2disiF3fujHkygKdffvY//uv/9/MXz5tYZ0GVXDwO8mfqjVJt0yOyaye1Xdv3/X4YPv30067rXr68evHiBSJ2XefqJbv99sXL52qy2Wya2HnUKEURaZqGlLGUpKIOEnjT1LwCPIuNE4VAIca22aw2m37dhjYgMzKYqZRSppIn8w4xBAIURTScpavsGFZTMxDd74eXLy8RqV+t+q5ru77rVl232t3edqFdd31kCkAoFipsaKumd/vIxQCL8JSJ6zMGQvQ6C/r0EcTFldSmZz+kZIgGDCxmRRwRn1EFxNVq3XZtCDHnnFK6uryahvHO2Z39fp+mTMZkQApYQFWzldOT/v6DhynL3fv3v/+DHz5//qKUBAAGZfb/TIirfnV2dt51HVEkDIjEc7KhWrurl3zx+LXUgG2eWAPgUuduklW1FEnetle8BgQQYxNCk8GYm1W7nnajioJJKWmchi+ffjlMGwRDdlZltTxEhIzEpFWH8VB6uL6+/uijj3LOALUMUnXmwBaov3oEsLmQ+fU13Zq+2JIIL2Bp/ftShVwWZHkrb986JG+zifNl89CkadrA0WtxtWVdzdw9z8X4Q6RQ78FnbEI1M4SmRYqK60+BAcA07HbMLn3YtN2qX3EMoGJgxIyBEHxuFUSDpmkPtQNAVHEdKaeUiFlOSUWV6d5bDzWLqYYYVn1PqDBzGuptOop5vEjL7dcGpZlSNj8bWIrkXxfWvNkHDEudbP42ETVN0zRNztPiEggMQVMakbSUUlRKyrlMKU3TNOWcfvrTn07T+E//2R8ToSGknPb7fd7tp3EspaRc9vu9+TxCVELoEE8o3O36e/35yXqVdq+STt557DRTRATV/X4/F49rzwrM/uz09PQb3/jGfj/udoNfZ8rJ5+xWBwzOS/M79s6EikWbHVUhYNlhCDOPjWOIbTQOViAYArMAkBBIAf+hBVN5k9dlSyFXTeZ0d3khEbZtizhniBUUmgsNCI5FV7Gj+WVmM5oI2ew2TR/r1as4NDFe77fDzZP703jv/bfDSYfBIIupiZmYgsKw3++225yLgRfphUPg2CjA1asXu+tL1EyowdNTdK4pM/oFEFFgij5qJzAQN8wNxziN+3/zb/7np8+v/+W/+Fc/+tGdGPrTkzsnJy+H/RXMDBeozs/PZ21mck0M32kmoirDMIgIIp2cxlk4q7a0OQQ3DKOp9T3EJlJgYjYAAwkVW2xMpRQJiGomIimV25vbk5OTpmlx1iBE4MARW/TOVFULoRGRnNPJyWaNGwp8ff1qt9+LFAgNGNkMtITAZibiLTRQSBDqA8m53NzeQKDNZnNxcbHdDvv9npn7vt/tdimlcRyvr6+rMP0mxtiuVisEbGIcxzbnlPI0DEMuGQwW4BEAmqYhgtOz1Xqzdk7Zxcnpg/O7bYgAUAXPLUlOJe81jSYFvc+1lIrzQeVWIaCZC3eaCz6M4/jll19eXV35YW/btmmadb/uYhtDs+pWm74PSC3GYAAp55RajgBABjELGRhyxvHIchs2jc9EVpf/O/43m9sIUym694ahMaXdfrfd7e2LT0ouBhaYHGHOOT979ny32/+TP/rjD775wYcffvjLX/5qHIdSBAKGGF1J497d+48ePxaz0/O7/+Sf/cnf/OznX372GwSDAwsGzCDGpu/7vu/NiCiYgbrUqsis8X/wN8fh+PHBVlVBIHDVjpBSMjO1YkIqaUqjw9TM1K/71Xr98uaaAVbr9c31dSlTSqOBEOr29pqorNd9M/cXAcDc3OTdCap1JnuVaHn27NmXX35ptnQtmZnRbMGoyrV+vVwXHtXXDrfjBTA0AH79l15zDcdvUr/4ennLGUtGPD097bq+vsXxx87FTnzzIw5f1njJW66hIhBSZ/eiqvmM567rxtW6bVvC2pXna8jMDFU6fFlQpCqID0jAhBgUsWmaIgUBycBEVI2ZYwx52lvVnagmvI5rmN9ruaeaIcw2H/ErIL4ta+BZWiW5hKN/PawCvl4waLz4BzNvFxSAES3nJFambGIqOau52AL7rLrnz5+/fPny7Ox0HMbtdntzczNdb6ecVDXlNAyDzvxFYjzV5iF159Bkgj2DdS0bMhm4cjNVSQWPAd3HLwqnZkbMjx49unv3zjQ9We5GRJxy4TelLtK8eNrFk1UU5xDfLSHkvJksSXm5uxXd9lWmlozY5hq2L+usSfTG67VVhderAk5+cdBv/o7NFwZmDjaC79PlP/5xooJE1Zgi3Ei+1QKTpTKVSW9+85udpHvvPKaLdSjqYKCJqep+GG5ubqZpCqHJuZhZ17YxBgS7uXy1223NdIaBDqOT6vgSYkSGubEBEc2pDRClNC9evvx3/+5PmdtHjx8VyecXZ9/Ab3zy0YfDfjffOzh/xTcXkePPckjyZmeccx6Goe1TaDoAcFU4otbp0znnKaeiurZNA86yZiYEE79WRBzH0cdPAOA4jtvb7W7nTKVDYyJz8LsLofhuGcd0fX1jBhgYmGPXrE42++1N20QiEp8+Wop3rMYQQ4xt24cQVHy6K5pBTqnrukePHnVdv9vvSylt23Zd17ZtzllV9/u91yz7ftO2FGOkNXVtu16vVQURt7vby8uXiLX+b2JoeLI5vXv33luPH6/XG2YS0UDYsYJmL1OVnE2yltHyJHlcmgWWUkvNd/wP59eCusS+qKhMjqt7rNN1XV7n881Fi81AI2ZriQRDb9QqNEWaAgDABl1x6k1RxOzcBjGISoAQfLaAw0QkC2MYUFRzKSnLMOVhHG9vtrtx2O73u92enn4hIoYwjJMqlQlevNz+/OcfRQ4X9x6enlzcf/Donbff/ezTzz777OPtdqvFKIS333rvj/7oj9ebsykpAH/wwff/6I/++H96+WzY3wKyn1EEcXc+DAMRhdDknEvRkqWYEhGR86cAHD4/MoOOXfv+nKMiUzBw7T+inAvN/dOI0QxCiLGJgcN6vb68vdnvt02MZlpkSmmIDKENpeTddhfImk3vFRmoFom8mosGoFabZLEWvKs/+MoL54B14TP/w19fddmHIvHf9ZpT7TnpW+r9leK+Wq38zC7LOJ++JW8+8j7zBj28PQCAa8mpmZWScsr+AyJScjED179LbRtCMKqDETyFRDWsG9ykFDWLIXRte7LZcIwUQwgNUvDo38fGmAoJEDMgFiAxWNS/52IsvH4vy1odOdg5uPjqzyyNqUYIPoxhXrKvrxCAB9G4tKsfFg4BmDgEYAAMAU2ylCY2U5wI6eXLl3/+53/+rW/9VhrH7c12d3Mrw2RjtpyHcUDEEEIq6Hul7/oeWsn68e3Vp+PtLUgKKIhTyWUqAOACnVhb3b2Pq24aorBZb+7ff4QYXDfczEopUsQ7qY7ogXPNAyspaGlImJ96Rb98TcBMgdSsDKOojUitIpsFDqHrY9d13CxMQp8UUHlnrzNNjhbzNQdsZmaac+bAFV95feVNYUa6YE6RK45ngKiACMRkRFVVSEEMRWG83X3+yecY+M76Xe83N5dqzLLbbq+vr7uu5xBSSmjGhAFBJU/7rXNJZglZJHYImjxloXoinUXh5G9BMGJq21bNUsl//bO//Ntf/+7JySZEePjwfmT4+c9+VilXx9IHFVITgDqZeLl9t3EppZJzbPtZmKzmwWbmvOWc8zCOgBgjMLO3LQAAc4gxqpqIF25hteoBLKWUUup7l4+gBUgz5hhjKXXO/PX19ZOnT7AJFJiJ33nn3e3lZSBqmqhq0zSVkt3iqAECE3ITG2xY1VxI1tDef//9vu9fvHzx85/9LKXUNM16vR7HEQA8Vdrv9y9evEAku2tt2xISVx8viHiyOUGEYdj7cDlVa5r2/Ozi3r1Hm/WFmeWk3phTIKO56oLmnFEmSaPmESQhUOUDMrctl1nuxEtgWOvZ3sjp24yOrYGHQQDAIcTYBgpsyAKkxmpYzNEJBuyNxeUfRGQanTGP2pKBBtEo0QAAhKiYqbBXNKxuMeQQ2q5VQwiNIBlxky6IKEt5dXX58vJGIX74my9+88nT7373u6vzUyhyeiHfeP87kfjDX/38f/1f/5df/+bXq5P1/+G/+e/+8I//WSmWy4gY2rb/k//sv/j1r37xNz/9idaRNeTH0/XUmHm1Cg4CiegsAFwV8VTNZuVknIvWvv2OfLCRi9zXXe3yl5TShBAMQxubGMhUm8BtoJuX1wlRy1TSCFqKKVhmZiadBt70PUYGF4NDVAMUU7HFbCGSiALA+fl533fjtPdmmGVwsc2k3eWa8eAgZ6D8Tc9BZvI1vuJ1w/W13gFqXrAEKrWER4QA5HTuUIU4wAc0OSXYZpUphENbx9e/avjhjVVWimou/mEqYiIGIGpJDUSsaSDUtt0qPZuKSe2MdWEhUe2a9u7du6v1imMkCsjRFRapwi3AIbRMxSzPcw/dYnhM5pVl0wpx/30L97U3ZABwuOcDC3p5VEsqvHxxnBAbeoirIJJz5sjoQ7BE1UpKk9vNNA7b29sPf/W3q9XqZN23bdPfv8tit6+uGqTvfveD5y+ef/H0i1//5m8dHLiZhqdmYvppun2BKatmwVHU5q5ZMUsiSwyINRtDMIox3r17/2RzumDzbr7FR6PU0oLNLKCjfQW1R/f49l9bK6v/CWoN4Cq2hCCi2UpEBbQGK03InRQxITjYVlM6Z0gu7//VV855v99zYJ8dZoChabvVekqlpj/V9S6JOVWJX2RzCBvJJYUJ0NBQ1EQRMO2mq1dXq7cfuBKbgYlIGsfb29tpmr797Q82m5Pf/OZjVdUiICIylZTN510jkNrSQemhg6qqCEJA9EFsCgDz/HYMIfR9H1REytXV5WrVdV07F0hsBn4PDtjmMaWqVj2rmlYIDLW+z5Uh96tVLYsourhgYI4h5FJyKs5JOUYIETHGWDeA1QJY3x/y1Nk21afMdQpUHZynqlfX19QEBWOyrl/VdAQ4Rg4ckYA5ukJeExvmiBWPQgAsYkjYr1Y3NzdPnj792w//drvdOq57586d9WqVcxKRYb+/vb394vNPb68vNycnXduFwAAkWuvlqsYhmhohhqaJMW42JyLl5cuXvhFijJEMmkwoAFYki2TKY5mmkrPViogLLFUWW0VQ1DwpEZViqt6cY2a1lRPnzBnMbJjGlAsRd81qBSFkaLK0VhAoGgNAQF41nTGkyBODImjOgj6AxVjnPg1TQtCSiZgpEDFQsIWkgkBNpGxIwVkzZqaqNzfbV5c3+0l3u/zNb3zw/re+d+/hg66NLz97evPk2Z2Li/f++buPHz7+v/0//u/n9+/8sz/5z9enF8+vb/fDtN1djsMkpfzgB7/zxaefvrp6CkBgtCC0IjJNU4xN162aBouou45KobGDt65YEJF7X+chLixonNPNEELxRmb1PsmJGQAEwUqeht2NScrjdiwlp4Sa2oaISKWAFi2qmg1Nq1TIojEMiOhON0aaDxGenJzcuXPn8uqVqiIgH7S8/hOvxX4e/TDCLP/yd9mor3mTpTFyboetxgkJKkWQXAo7hOiUncWJuBg0oqkZLQVCmLPfJe02m+FpEKiNLqpaSsZaEZcKCqIaiGguxczVuc1KKSoiY5KccNZRKSWL6D5NJnm1WnX9imODFIADB6YQcs5pKpvTs7ttCwBFpIgAAuA8l8FRVKugPczwEszW5+9nXeHSXgm1UfW1GvACbhw/S99PTlG0ml0rInlCBZSygIpqEZHkAkneViE5n6xXP/je9x49fhSZIzGK/Oyvfqpj+v73v3v+5LxfrQAQDFTxxbDbTjfCMJJMDAbBANgYEdjH3ZiVnF14YbGhRNx1q6Zp15sNcZ0e5XTEnJOqeB/srNKxvA5BxlyUxTnQeS1yRERvoKRALYfNatMZ5mHc7QcbppYjUwNIZrWzgRAVKmh8FJDO1d26cRcx7rq8wziEyP2qR0QDZA6bzUmaUk6T1WqULoQ7JELy2cC20Fpw5naiQQyN6G2RrMW217vr55erzdpZrKWU3Xb76uXLaUq/9VvfOjk9/Z//v/9OVcdpkv0emn5zftE+e26TBTRmwCq9buBi4/Ba/FI/ERFAwQxMmNkQJKVf/PznJSUQvbp89dFvfp3SVKmdczvj8hg8lEJ0SWFyUQ5GQyVTy2na3l4zYtO2Hv2Buo4FMfu0dBbVUgQWURAwm4WjERGwii8gYuAos+NfLsFvBeYUAREv7ly89dZb2AQi2u9v0zipmIKJqLe0mllOJQFEURXrOgohmNVjXlRNNE0TIrx88eLVixfb7c4/HRAqPquZGEKkUtLl1curq5exaULgEBoA7rpV3/d+j0bokHDbNhybIiIlgTON2ZjAVADEQECSaSqSi4gYFoBiHvabjxyvJrKGnbMckQGqq3uZIahoKaLVGSmTbvcjwbVmnfrp7urshDoWygXJyMfQhhhXm00BDZECw6SapaiYQQHAgEChTiLCKotRlAUhABXkIIaqWrRMqQxT2o3ji+tX/OqFqCJABL6zOjvrw/2zB7FfrS/OVpv1yZple7Z9+nJ7swuwevutd//L/+q/fuv9d+49eGQc78auH6au3wz7oZT8R3/8T3fD7b/+n/77aSxVg40oMBOiiOSU1+sYm26eJ+4zPcQMiYnNtGLMpj780duWEBHQdeWQyFtGmJiJvAE3l4KUAVhKHobt8+dfqpZU8jjcpmlCgEAAgKYKJqo6ltI2PPdu1VkDWIU9HXVarDciUgzt48dvf/75F9Mw4HyUXrfzFW1yC3aE8NVw4TULb4AHNPuQwwD4uafFvcyGEZe3WqSgPOCbQejDJzmjTU0QiECdXQUOR0ANc6p5NADVue/hteIpwDxxyVRN+bhz2BldpiYlm1pxc2+mllOWlCBn9/yeP/isu2G/S9PY7Pdtt2q63pC4iV3f3d5ut9sBiM8vLpqmCSHMhKrX0t03AON/SOiz/CjirAaKAO6A5yaQWYFonlTkd1zbz/XwGf7ZUkqaRjJNRXMuUoqqeNqhqsMwTtN4snn73t27q/VqKWXGECVoKRIjE5IYKBhkuU1TkawiZkqBQtMRV1FbqIEren1lISICACDFrqMYHan33VYxIlByXcLZA5KPgQMFRDi6n9dLF7g4iWWREbFTOGm683Z1YjQJwW6KxhuhVikFrAJYRECVHXvw8YjIbIt792T0SLtVQbNMuwEpYIy1Zb7v+zsXFy6/nEuaxr3Vsr25vAHC3KFQJUdqlQ8IDYG7iEM2tHFMl09fBMSGGA1dJc3MYgyOP/sM8qJWxgkxfuPdb12+vLz8Yqo7ABV99K8aERIsOr4Eszc1M1VAVFNQFQIwLT/9yY8//OUvLs7Pbq6vvvjisxC4bVuiSEwIgHNANIdABFVclZBYJasouz4+YowMKGZ51gs0FUKo7KQYopaiaj7njmZb4R0m0zSqkxZrMlFHlNuMeLum43z86yNar9fndy4MgZmncbfb7SiEEBtEUm/SRaLAIjJOeZpyzqVpfDgaeZ+ImqY0rNddzpOUPOy3OZUK8zLOWlcQAiGGcZxSzuM0Nk1zchJOTk6amg2jb1IfoOkWuUhRlwC0omAGBGAIYlYAMlgWzWJWgARJwRsQShGRQ3cNqqhobTMUURNXvXWdGjIEREUsAGyai7LqdhrTvh9TMT25c6ddUYiohk0LABQC9WssCcmYLHAwL5aLFRMKPCsV1vFtdWghACKjoQJVhSEyI8umRUXS5FhbuMn7X362vvfw4t23+XRN61YAdqOOKanq9Xb36uWzpqUf/M4Pf/B736YmXt1oltR0XWi62PUiZXO2/q0Pvhf/9N8M460BMlJgiN53YOZTvWLbxya6JSRTLDVHVFUHtGrLBRGqM2CI0Dz5g4oczHm+Y0WmuWRRELWQiqrt9zehacY0TMMIKn3fdW2jJmhSciklXSM8zNI0TBQ4RC8qz2bawFtuqnViRH786O3z8w+f7j+3WaljcQNLyX9BxZmdqnKQ4H4NMfJaXJVTd22ZBf5ErGbzUPvEOoO2Nr67TZ4v1udxVCFtZi6Si2b35AooVtAI0WbIrlblao0VYOHAz59mNs9Qc7UPH8qL1YiLik+5rLfsmuMuHqo5WylWsvNnSilmKiBOQtFccslTSk1KFJpW2qZpEKGUNI6jlxt87PCctVJFWB2HQLe7c1EO5huwhe/lzVjg/Ay3G87EgeU+YK4BV69mpiLGjtQvTQpLvjijRcYAOI7p9vaWm2bKJeXifXg+mi3nPAx7EXnrrbeIORfxKaxWspjlXHIWVUBCdYqfajETABETExItOsVgFKq8gNtslwsQKQunHGbgwmEHZkZirdNeX0vXDi4b0blLM4Dg25F8lY82bv1hFzPOKMYckVfAq6brzu6IYQQKAPnIbeORcN28ap4eHz7ujegJKsaQU0o+otz9x8nJydnZGSJmSV989uk0TehEI0QinJvu5o+eBeU9MPSN2rdd3KzvXdw93ZzYmH1ibojxvffe2w3DT3/6V9M0mWnXtpLLlCQIdjH+zo9+/zexffrFpyaJloq1uQ925k5BA1CCeXe6PqwiIajHM6WU25ub7c31fr8tJRsoByYmUmKqMCBUeO0gMlDRF21t7s83sxCD1WJkzZMBCtS/MDJGij5JyXu8feUdgn5tqX39F1lcByM8q59hEG8/GcZxGkdD5EA+PKrtur7tfa6EmccJIUvhImjmo2RTToSspmrZwKZxvL6+fvnyhQdbpWRntDpCSURt2/pwJxH1fH2z2azX67brAbDkpGYqniGAU6IqFqXiPatFMFJQMQFRLWpFTUWKMzV1tl/+W1kWEQk6RiDNQBVnLlZdB2+aVLUStJj6EHhF6DYnZwH4zslps+6Jz4YnAECx6c/ucpomTUgKJpYLgCfioLN2/3ym/IzAkeQEBwJjNAy5cGz2gME7HgPzWb8p1/vNg+Z8fdKcr3LEvdj19fazz58MN1vI5fL6Vbdq3vr2ty9v8z7tsmBRC5FSyi9fvUppLGm4vLqeplyKemlyLoIgAKjobrePTdd1DquwuwadB6ypigGo6VfNCVZUqtbZidlZ9OppswGAqyAMgFJk4MDjNA37nRXdN/H0bON1JzOVoleX48sXL07Pz0NsmqZdmPbe6YSzRJRLrSDiyenp40ePnz/5UlTwSD3DK02qYrPWnpiQOXfyGNh7I6Hy/68oPdSaFxylfbPTQSQkqAUXczQKqsQCmAmgdwBpjOHhg0erfqWznMARzLzkyfXNX1tZ7yYBUKvuhzkgmKHgkVRn3dtSRNx7GBGvN2si9tZXMxEpWgrM8Z+ZKSqAMRO4zmXJOY0BTIQApInBs16b5TXgsFaz+wPzHhBww4vzSTv6CaylXrV5hqMLRsIbL5xZ0NVOzYXeekQRbO5KgvkSbMbdpzQ9ffoEA7tKuh+1GqSrjdNAiLe3t//xP/7Z2++/+/DBwwCAqinlknLO5cWLl7c3N5XOoEqAhmREpmSGoKBqIFUkawmOiKhpmlJExVQVeX4efhjUvFQpUrzHAeoO9ptFrE2KcGCSVxv9mk7evCTklSytekyKYg0AKnBoVEBUUQ/qqcu2mDGVg7TnYYURwUnAWHENnRv8c85dp0t5HolCjF3fMdPu9uby8lJElsRxeZKHp47zaEWDQIQGm/X68fvv33/rQZK0T8VV4EIIJ2dn3WqVcxYt5xfn05QNrAnNw3v37p6sf/C9H/zB9773kx//+V/8+X8Yh51ntwBukoqolVHRR4Q1LXZdDMEAfExCCFFE0Myn0kspKRUzUNFpmuouCj48B5h9lE3trXwj7oGqwlhc+WdGEygE37IGoMzeasAhtN4168dWtagW0bLoSdWSL6LB8nwPH+QhkxezipQvvvjio1//puk7Bb26eplydnGAEAMjqUEpwkyGIYmUIqaKSGp5NknWto2I/uJnv/zy8y8JrAlhrB9rasbMrTM2zRDJO33btl2tVjFGACulTClp1eAhAGQmNyilZOe+EoIKQSBVQahzOaWaXjUEQ7YqbnFIQFUPmF+NuZF9T6JnGkCL9ck5iWgxLVJy0wDCkxfPJImB0YN34+oU+hYAQtueP3okUnbjbixjyplLmabJprFIKVJKqULQy9nCOXrkEJijGIGIqrYNh6YxjtytEKlpu+/93j96/KMfPX7v/SHEYa852G4Y/vc/+/PPP/zo/uZ80/fru/dOLk5vk+w+eWEA3arntkHA/Ti+ePWy5IRazKyUnHKOwc1mAOCKviBO07TbbQGwaRoOAfBg8dzdwAyTIKJW6V0wRHDAuQ4ZIqLQdYgI4zSpqbPZRRTAdvs0TTeImHOWomCoyqsVm9AuJTBr2n673V1eXn6HQ991Xde1TeM7hAMroquFuwv2i4khvv32u7/+9a+vr146UQ/JTbeIZjFRUPPBduAlbfbMlvA1e+UvQq4+ZL5TRJ4bxav7mQM0WhpHEImZm7Ybp2QqFTZFM9OmCe+//40f/vBH29ubIe3nqq260oSTugmglo1s7r1act6jFxNjYDPxVNlxNy81FRGRolp8nlqMNaQzg1LEzEdDyaHIamagZsQcfMu7mAUhe2stE7dNy8T+u0tyvlQAYXYfilCXF/FodebNXQMXRfMQbXHkiICzDwU71oL2354TuDkY1pk+d+TGqgcwY2aKDUekEJoY+65b9SviEEJQkcurVx9/8slnX34Zu+bOnTtqgAa5SBEdx+nly1c3t9tSxOcwI2IIgYHMQo21XBDVC/F+tQYAyMRMUcgCh9h2tfG8JlWGgE5rdMdGgMtMxhroVcjzaLnqfw8Z8OwcawTIgEyMgCIZzEgsGHhb7dKwf9jK8+mlWfXP1N585wX1nn/3kLXPL6tRKAVuVquT2+2+yOjD+wC8O26RsMXlV2bKd22xvXdx9/GDR0+ffzka+EMkJr/1EELTNE1struhKJxd3Hvn3Xf6gHncP378qI1/VMr0l3/54/32Zv4YKKUAalEDFEL1ucJNU6egu4GlCk6RU2JLkXGciDEIu+aiN+Q0sVtMXJi7yzxkcRTGT1SNoo6enZTCxOYkC3OhVFiYq6ZiZrnkV5ev6i8eRdfHtYbDOh8tupmpSErp9PR0c3pyfXvzF//7X1xfXbHPDyAmJFADkFIECJumLYBaSkrZi4hNE9er1WazXvWrzz777OrqCsG1TCrwHphCDEw0A3fEtQ8qYA3JJecspQC6cGlV6SulxBCXdN3MTMWUtQ5Hqs0WClZURa2yMmaiHM2CPu525wUHcIYeVYEzBAYE14hWNVFRzKqmAmisBfKU9tN4dX3z9r0HZ1cvAUDMRlRuedWdNmWVci4i4zjxfrfdbqWMecwMBGYWgwoJY+CGAntG4Fp/VfseEUK8+/jtdx4+6P7qXzdN+/0//L373/vW9U158eJyItiV6fMnX/z6b35exvTe47ffee+9swcXOofSAACECpRVt/u9M71D4Af37v3wt3/447/4jzmNzug46n1AVU0px5iqleBZ0nfeM8dx+XHaaHVU9/wNACTquh4Ax2mQuScNwHIWyXnebMgcYhNyzkPJdbJ100iZmHGzWZ+cnMXYMgfXMGduiAiZDNHqlTvbAB8/fvtb3/rOX/z4OpeMakSVcuJb6yiXcONQQ45ZNPuNpNODOJ2rQgfrWA9mrdKYFBNEZm6aBucvQgg5a7VaaiHQe+9987/8l//Vg/sPfvwXfwHqIrFv5NzgG/sNGvFrV+3gJiIBlixlnLQUptpxz4LELrpVs6AQAhE7bCvq4xYMDlbW7wUVTAXI+ascODbMgYm1KDi5pHYHuA9epMLfDFx0cc6EoAcHCYvz8B1eyWQzlvh6uh+W07hcIsAsrGKgsqjnL9pmfmytbdt33n335OwCiCnGGKKLqGHlLIiKvHp56d60lFLEGCBLkVKmabrZbsdx1CJmwnMLBBECBjOaRUUqL9xhSzNzwcgQoyM+/Xrt/ai1VWaeXrJ4XARjF1t/jeh3ODiLU5yT0mOXjOCzawxaxVWMPTL6YENyfR9SrFKwx8qxx0Q2g7r8y9se7XlAAKYqbUjzCObDTjUwg2nKw1hKATOeL9sAwKhWJGCZu1EVo/0+WUT3u/3li+syCaoXXQjE4SBy4LftWmIqaqbjZ598+PknH334y5/fv/dwtepOzk7O79zJ0yh5snluiYdwDsqB6n5f+ym9b73ruhACAojYsB/3+10uBQBLFhVFtJzSNE3jOK76ddf1zNGxh2OTZyZaiTB2DB4gMqICSJEcMQCiSFFwCuehTcLrINttqV756+fDg4gsNWyAOXXwNn+1Bw/un52fXV9fffLxJxxiGypJHQGYqOs6j4IJkfveVNOYipqZtW2zWncnJ5umab/48oucS9d1McbtdleKONGMiVRFamiLS9Rb9bGNSs5pmuoYHyACCwiWcyFCESScl19FSkEhU0AhqrbGV89LQXagfHuEioimIkjkKk1a/4WImYkR2Jw6Q55Om4qqSbEy4WRqompbyFL2afjG9UsAEARpQt93627FiF5s2+33N7c3gV5cvnqWhqRFuHGBRQKEEJvYrrjJjQqGKMZFLBUZU8YYvvNbP/jR6ab5P7fMdPet81dD/vzLZ0MWiTyVxAg/+P53u7Z9eP/Bg0cPsY1JpVKlvOUfSURdMg9MEezs/OJf/Tf/3bvvvv/zv/mrZ19+YpYReO4o8U6ySoB3/v+REXjz9Xo8h1RzsaoA6ZBsjKEUdkxiOcjq08eBEJFDJKJxGp01DQA555PT04vzixhj1/UhNEtbERzSKUIgmwfLK1jbte+9//6vf/2rp8+eALgQR+28wHk4hyNuywXDPOIJjwxgtUSI+DoBfkGOAMDMx2hpLtnM5vmeBIBNg5vN5ubmOhdBpM3m9Jvf+K1//i/+5QcffHe73Xl535eJyC1YrWfV7o7Dsh6BuVCbbfyMoIHkPI2jmTJDbJo6Fd6UAMp8ikPTGKCIplLEVFQQEThUOqwPqBAVsZSyGcQYfX4BMQNAysk9JoWwUGhhlr173YbUcYU418PxAHbO4ZodNov7nBrZ6WsxTvjarbbIOfnTWhgBi5EzAwrEISCSIimAKKiaolYJRtWUSi7SMDMFyapFpGiesqTy4uXLV5evshRAlFwAgP2eEV2Nrc7pIMCqwlazO8+BOSAH6Ps+Nk0qWVUdV0EiUY0xrlar/aCq6oMS7Lj3Ct88XbZw6N3lO/Nr1iQlgGh42rZ316cnGNtUSFSdTAO6N1GUDJI9M30jvAFAQEY+UBjmMYWIAnVP1ObmGCMudX4A8KGwueSUb25upnEiBiJ2CkQdjTH/IBj5OKBacQYmbkqx66vbrj1BAlTH2QGZbO4UVFXXwuXaIzeVrLvt9avnXwCiAoLBydnJfgsyZTOAWWVfFUxr1YcImDEEijEiETKDAQXo+rXN5bacRvdt6l0aUlLK3Th2XR9ju0BPUNXNlJnMKjLq2tcwh7G17qM+d6dOGfczDuBoj0vyKh7r286R/DF8f3Dw5vqNeZqmlKbb7c1udzsO+z/7D//++dOn/WYVY0Qx01rX8QHO5qQYL/5R0CNrpQo3N9vb2916vf7ed75zc3Pz5MkT89HizEQgxRbH7+ZSljmbCsUDFlNvjwrkPeJeF3YSqUfHfuKE3K7ON+j2wmU2DLzpkhRRwOdMCxKCIWvtcrMKATIgI7GbPWb3FupSE6re2SQihcAFh/TFzSUAtJfPH/z5n/ZN28UmhGBqInKSpvNxuLvb7fe3w7AHsDpezncEB+KAIVAIGIICqmEWSUXulEJ//Wft3Ts0jbhaJbEnt5e3006JRTVLvrhz9u0PvpFTDiFaAGQMIWQR80FGpgAmk4zTIFYYDUwp8L0Hj/7k7t3f/73f+/CXP/vxj//3Z8++LGUyE591opK1EAQSmWWklvNriiqo4lwsz7bMzNA8vDOx4padwIzQlJibpqkgzdyWW8Fjl64rOZeM81SrlGC9pm9/57vvvPve9nY3DFMIrWsfIaJI8Ra4ahiJFFGJCkBEPDs/f/Dw4fMXz0oparnmi+TCRTyzrqh25QKolFQmrMa7hpVH6f7BNR9lW7BUusyy1F5QL9T6Z4XTk7Bar9t+9ejR4/ff/+Y3v/mt+3fvU2hUtzZDji5dYGBSGTvm/SmLobQDT/A4TUQnuEzTdHN9DWD9quu6tgksCdAgMhFyEUGqAUc5xO5IISKxeU2+FBOZee4y+zUOISCRAaSciypixGXohaqT2xHdb5BC8RjXagWnOt4ladM5gCNEgaoGreq9GK/RtfxXwhuU9JquQR1NXV0IVzT44NCxTh3wA4pmRQTMBH0oh6lKLqrFJKhknYappFSGaRymtB8++fjTZ0+fazYELEUMLTIbLgBxjcwr1e61qztArjE0hARfr4UGNLcE2GJz7XDjX/HBOu+Sunx18CMAGDBR27Vd36OxApmHV2jFIJsVMDEtqAqLta8fsRjZo/ho+cjFARiAs2z643Ky1WH1ZgcJeF5q1fCae5l/YV4hIoohlFLG3b7jNsSmpMHpyzhDCTBnRbzM8BOVRlWdgKOmkIsG6jerdtqPNzdbEfXYkIjMwNTRy9oUxBQQCYEoUGia1Xp9qmdpHHPa73Y3Nzc3w7ATLWCzK5aS0tR2nWNZKj4o0ZYI3ZnMMRCRO/tagzAFKYasFAKgOHgGSnAooCjxm0Grr9DrC+ZvB2CgRaZhHMZhv999+cXnz54+AYBf/fIXKhI5tLHJJfnA5BrH6symxxpBLW5dRG9ubm5321zKu+++81vf+tbHH33kwUvTxBDIrDgZW9VKzmqHAQ+IaKbe0Vu3MaAgNW1s2mCqlckyFyg8iTW0pS9zeSIHO+o/7T9a96hjO14E86KV17LI7HDoENnUSLOogpkWSaIpZyvmjRO7YQcA9z7+1b3/0//xqwfw//9X6VavbtMOMUeitgltG0e8d//ircfnOcmUNGXRuqvNzICJAEE15zROo4gQgYKiWcqKCJuz8x/9/h/e7vZPnz/z+NJMEEmkiJBZEwJ/nS05fjloAUtvChBgsaxeJ571hWN0HPi4ZQMRZ+soqoaGZqgK9+7f/f1/9Ifvvf+NrlsxRySOseWZIuGtRyFEnx3HIXCMFFz5m4lZ6ugXgHlQQZgP6bITsI5U8tMhrmQ7gyK+62CRKzg2K8duWFVDCGpVxwZmN8PIGMK7jx//43/6xw8ePGxiz7Exs6Jm6moNrpjpx4RmXwVLpjHvXlz+mN2+MgITZZFht7+9vpaSp31ztu679XpfboftjQuOA0BsCT3TRm/RYGAEA2NDMBBjYCQNQUUEAZAIjDhEDkGtClCLqKGIaEpJVQGBXBfFA15cSMkHZg/ONsQNPh7dlHcdutlSmFs559WtfcCvdfUc1t2XqNLqcC4DOyTvRmcYhhcvnnO3Ag6gwhgCsYGSWzQ1KZJSVrTbm9vrrp92w7jb7W52bKZiDAGBTKyIALPMXqUu/1yLwNnuvmFP0SuaRMxkh3lRNdXx3V8hYFN4LVj5GlWXZdvNVZC5ADcfuOth96zAaNCkBDmrCDARkQYuTTy+uK9HFJYYEwDnQOD4RUQh8Fd/1zf9er32NkrHYw7nig4zvJaKMEAdPj8Mw267kyJtG907wqw1q/OMl8XlzwxbVeVF6KdzcqMhnJw1bff82QudR5MSAYa58mo+68GYmCh4zMrM3DRt06Ct1+t1jN2LF8+mae8uc4kqREspsWlaqIEfLqmD14ZVJDB7Pcxr614iruCh2zR3M0ZmKs6KBCTEIjPqV7svvgJQ1KejDtj6yLnr6+uXL1/mnK+urlZ9H4kZSZnSlASRvOChdgiG+AjcmwH1nFIu+fr65sO//fDZs6eI6EMPQyBRRRWsQb8aIFHEw/gar95WB6wGArjd3vZ9y8w+33K58DnhNj76Ni6s+BnP+4oEDVSv62EcBcKAyIAERpWnNsfuCAZaYO6tNJN92YuUjclnRP/m7KFHe6uuX7V92zSRQqiyBaagTgTLTpt0rVZENS2iRUQBUs6uSSlqIUaOzZRKzvnug/t3v/uDL/fD2FF/cRr7vl2v9rvd5nwNjLEL2ACMNuVq/MSzVyJDGMcppaQqtbIMpmYEUAAICZm90VKlqBRJknNummac0iqV09PTOd/4mhfOLf4EdUOpuChQ7VZa4mBvG/Naz/K8AMH5aKWYiDLx/fsPfvg7v/3bv/3D1WoDSMzRA9gYo+tLI+F6vfI6a9M2HGJo2xijS7s83+2ffPmklBwCP370WLVcXl5ija/oyOLVCyCipmkDhTg3mCyOxMffLttm2SbL9SNiCGzg87DBp3i4DQaAcRincUJANdNSwCgwvM5+IQIkJEYmYK+tLkJjNBtOQ3DtYQQgqM0pplJSSvt9mvYyhunhPb44M8m3N1fiLZJMNI1xmtq25RBsvjic9X+MwAKDU7hkVrQIATj4UCZiQrBc1BUDc84VOjge3Fe3QB0bOdtyOpJ2MASpq+pp3HHM/3V7Knw1UYAjhwQAVSuBiAjNyFkbzJxLvr29PRsHCBE5RDZwLXz1ir4I2DCONtlHH38sKWsuMibNpY8Nc9N1K+amFDFE58MtrGvEmgO5+MdraYvnpGghUIyMiJGDQ80zwxVVVVRqydu30+tNzPXN58hu/ob/e1XJxmrSUQ0zQJ4GlO2N4RqQRAJTQC97M5qRGiEIgH7FxL+O5MCCrnils54NRCSyrzwf94Jt2965c2e/31fw55ivXc1LvSEAfzh4stl43V1ETKVt1j4KzX+FK2eK5/Xw1iCHCuYMkggAqqot0Pnp2cOHD3e7/fXN7ayo4LhI7W0wAwAOs/CcuUwHMiMRYdeuzs8REa+uXk1pr1pqKIJgIjmZqbKn0RyJ4kLLqk66FOcozQ+LEOt4J5LcNJGI1cQMvQMTTKxQNsOiQIUQY6gTcw8q10evmQNReQCqOo7jkydP9vv9Mv4hBJZC0zR5huGmeDFwSxxjWrXGzXQYho9+85snn3824+rR7NBzr6opl4qSzXUmR5n8QKuolzbnd9uv1+s5SzAAEwWpFYzjbKIGYnWHAxw6+lUPtXwDMy9YxhBbpojozbvwRkB+fDbAyyKaZMxq5T+sNj95/L02tpv1+vGd++8+evzo7sMH64sT5D4ERsyWC+ZJpu1utx/3U54o8mqzAaYhl+0wjVK2abrd7588fXZ5fXtydv7WN37riyevrm5v//F//id/8I//SZ7KnSae37+bShYQCBBbAoYsYAzcIqgjMS74YE1gMPSKipnVcd1UQ3pRy5KzikNLHAIzQUkist/vDYbdfsg5nZ+fx9jUipe9thT+kHFuLfdo/7UfQDTz/hlQz8VmH6ZqzNb3/Wp10jQdE6/Xm3ffe/vhw4c5p5ubK+bIsXGRN5EGEW9vblVK369CiDHGftVziOzOuGmaGJ8+fXp9c+Nn2XmLB4kef+pUH7eTeMDMORM55wNMArBw4183PzORZQaWFLwdetbkqgUvYuZpSr/42S/bdnXvwaMQCWEmqVWDtWB2vjs9s6+iOtUGzglEddfVzZEhZq99mFrJSo5lWSlp2O1yyQWsIBhziM3JyenKZwMbBAouZeOnQMnAjJCI6+cJUyEDFQcC1RTBCFElS8nGBKVU860uNOGwMKIhUQDAWVjB7OtYPjNOghUrs6/JdQ9KWPOyH47cYteJKHBY3pqQmRgMciklZVAABmA0AWRGBAUgtaZt337nHWQ8XZ+YQQjBuMhkIoJMIcQQgrc5ovdCVKLBkT90FYVj4tJ8nz6wxSuLxwYCEbxv8avJzrKZFrv5upXR+UsH3p3pDmaoiD4oILRNwwFLBjUhYHLxG599WU0cfMXAH3+QLS1eS4M1GAEUkVxyE99Mgn0p2raNMc7hwvKgPFhAWpQN5o9movVms91uUypZUtN2tOfZ5jIxhxCZqGkaouijcH24OhKCaZGSUhqGYbvd7ra73X7/7PmzPJUpTy60ggguMke0EDqQCMxYRPxdqBCTAhIQATdNR+ccQ9NdvnxR8uQTLFSlQDLVnLIQNQ3G2Ma2JWStnEwzVSnFx57UOoxHx0S5IGYUbUIIfrBNFUDBRy0TIBIoqGFSA4AYIyyj149Mq79n17WuyI1EwzA8efJEREII2+1WVZsQmxgXULFpWqawbKSjNMJBovogdvvdOGATYwjeX5TVVKykkqV4hSnO76HgQaQZmXElurleBhLRdrsNITD388N3ijgYBqr179f2c603o6GJTwCGqqdrDpTN/OvYhIa5QSIzkwI5l4WVOT9ZOjo7AGhiMoxSRDYisAIa8MWrlwRIRo0FbntGaGOMMSIzalQgINaBDG3Vr0/Oz5qu56YbSr5N4+04ffn06SeffzGm/N57759dPNru93fv3bu8ulp3681mg4hqOo5TjMyB3L0BAhFEQlf5cuyYCUFBSsFa/ySqcHolAjktH4g4hC7GGKpEq5Pq1eD29hYALi4uanA5Q4VL7W6pDy/+4o0DC57/hhBUVAUASL1OYgj04MHDd9/9ZhPbEELbtkgwDPuck9tD5oa4aZo2xFCK3NzcIMJqteq6vmkaJx9xE0MIMQQzG4eBiZgiAuz3g2qZaXczHWi+wuo4AU01WwGd54PWvbp0Xr0BlNCxXyYgt/6OxHlZWgyYGCk8e/b8Jz/+yR/98er8/G4I6IteM6t5PDAgATKSs8mOJI+WDwQEQFo6kqmyscBvSivzVH10ZSlpmibJg+RCFNvOAGOMdfq7CRghkLhTMDUwn9rtCvcKtk1jYO66PgaKwOrwmZQ87FFKQLI6hfeQAs92COu3v/KqrfVH7pbmkPerCFw4zggPbzGfNwCHWslPPAD4uiAAKEgqpmqiZuJtyUyoUBvEzi4uLs4ukCm4mn4RjCCU52StBjoRAwETMDpByRTRPF5DfC0r9LzeEDnG0DTIVDsg5yaWGtOhD9/TeT8dkOfj+3ptyQ4hyHx17qedroIYEdsQV227ogCAwzgUMY6xBVSzAqogNYNfkIPqXl/Dvb1wfrS/a5xaStntdrhmR4+PU/OllgPH+Laz87y0X7shvDseBKAgxK5tunY/jrtxtznbPHn+5fWrrR8cmjnn5+fnV5fXaZr6vh+G4fnzp9M0cUCXqk8pqWsYzjkTc/T5Rc7pmrH6JVbjORX2AoEfFxKfW8whULOhlrDd3l5PaQQwZsplGIZbVRWDIlakYMbAwQC11hEUCWaOcsGjdmFmYiaVgxa0qvrCM4eOMXIkJjPKAtM0lVJibEOINKeMdT8AGBIxdyEwY875o48+fvbs2TRNXdc1TTOO483tLZj6XCgA8AHjRMSBYWbTmFPBEFSLlEygaO5mjTmoFJGSihQtIo5AegRHhx1iAHXbz8kWGAAwAoKOw57R4skKXdKLgIiR2KhWFXxENCAAKhJzaGLDSAaZAAuIAqopqigSUYjkkIOPmvS9FpGIqpC9+lOe8dWaPpMamoGAWBl3IxCRaC45G1jg0DRdbJgxUGj6dd+QRVOOTYgtchyHfd5POUyrZr2O3dnJ2XkuA9ijB4/ffuv9jz757Oc//9us9N3vfa9vV3lK2K2appEiOeWUpr47ASRXezEFMGACMtOibLUxKBeVXAISzsCYubYAASIjkBaDKqSKTYxd1xa1aZy87SqVUkrZ7/dt23lxBUXJwNRojl0WnR3n66vOiu1HL1oUC9T1vzxUx2GYVDT0AQDGaUQ0Ii9ApRACh8SxmdI02wc4PTtZr05ibF07woOrSIwGaZxO1uu2a6WkGAJiBd2XhMwTYsQjS4Iz69ZqbrN4viN60DEQjUuU6e4a0Ai9xnEopuEMtv/yl7/s1qd/9I//yTo2dT0O9cxKs1kKhvWq2DUEeR63uhDH3NuQERtRCNEZoKamRQgwIKEpaAEVlZIVjXCaBi0pNBFnrEgdW6xFFXLJVQqkiGqaRSADEG02m4aDjEnKpGAJEVSoiT7HFchQKl3cwBSrGT9uflmcCcIsNgmvkZYQnWxhS/yPb/QB4xseb15ZOvR/v/YipK5tIDRGIVADbtkDGfjEZST2ko+oGpkRYvDmiiN/76y9Wq82U1gGBh75m8NEenPv7s4Yid6oEIuoSKlG1QN4PDQFvdFwdXQNywfVb/oNEBJ6WA2IhC3zhhtSBJsmzY1Cx3GAIiCiWYV05m8f3muWc58Dptcq0Ijoh1dVp2li2odwuvzAcmwQUeaJuccPZ/mvgc2KcWAIRYoiKMKQxuvttYAa4s31LQC47yREJjKzp0+ej+P+wf0Hl5eXP/3pT0spTRs9M6oYMjVzXQrBEEgRGIkRA+FM8KgPsSbDlaZdn+f8HBAQKMTm5OwCOaSXL1JKxHG9igDmY39K0WlKYIYNeFBvqrlMS8Vaq6p79f3ee+ZkTpgTUH8xF0ICoBChbfvYNi4JUUo2g6Z27JupzjqVdas3TbPf7//qL//q1eUrMJ3G6fT0ZNWvurZNKZWUVTXnHGMxBRFhZe9LBgADc6ZEziWnCUxj4JxEpahkVSslJy1qlZXJMXiDn29PT3cJDrIk/l1EDMFlNi2laRhws9lwYA4YfeDpXKLyvFbMkBktREBibZUa6YpIKnlKqVRVyjrVwgk7S9AInhxQFHE3DACoii6fSej8FgfZQbQM015V+7aTLut1QQ7UthSJ28Ch79qGAFA1ApuxKGrS3dXtuMs56bjPq5PTDngTY6QWVuf60D578nI3jqKWUkYpt7e3iNqv2putmGrTRMSjZMS8NcdABFUhK3UNmE7TpFmCebHuCBgAULVxGn29RC0XCSJt2wWOrvyK8wDmUjKClzTVnC5VD5i6A55JDI5na1Vim+uv/okhoArNHaQGSAB0fX2dUvbSKRH6BqY6ZzoAVmCTiJrYxNikSTg2C6WKidu2RaL9brfZnKz79TCauXBKEZyt2ZxswFzjqoXLJSt2v8yzzuKSAb9uIWFJYGZTowfG4VxQg5ph8zhOf/PXf/3u++9/c7UmIptrKBXenG3hsQ2z2RdhLalVH3QoqTAhB2rCXNFCImIEU/EOPUGPUMF7CUuaGmaniApIlgIurc0ESByw7bq2a8FgGIa0G9OYCPDuxZ0Qgqnu93sz6VM6ObWGEUyqP/JlqAkuSM18DjmtzaWe+XatggA1ZVV0OpWLd8wClW8IccBx+DO7yeoIjmG72bdhiAE5FO+HNUNGmAeKABASx1jbsEhNKdNYpdR8lanyqAKia/2YmiIehmcdbYUlpnstKX7t0s2maUwpw5KZ+bSe+VfoiPL9hjM+fhO/RTNQdbkbU/9owFaxg9g0KzFliiyYDAMxluTJ9nKp81vha297hLYsG8wPMyKO49i2Xdu2X3ko868ivoERvYGAAYCBTTmVuW76/Pmzn/70r6YplVKcG+iX4OxZQx1Tarr20aNHH33069vtbWAOMVSmFVAg9oIN+QYAJILZdNTRaeAbCqyORj68wEXY+UjiipjX63VK6cWLFymXk5OTto3XfLXd7ly4A8FCiH3XhBBES85tyrnkPKdlDqPWoT3ulY+FLJa4aj/spykjhb5fb07O26aLzA71T6pt2xC8Zp7dvpmBiO73Y+SGEVRte73NY26ahpmbVYsA0zSlKTUNquowDCklv4AYY9vFEFCk5DyZGTMLodcjnf/mZWCaR985ZKPqk4vMqvIGeD6BdXoBHRNqpmkKgU+aE2+59m+K6ywCEjGZEhsbIyIzgiIrKFoHkHJOU5Zan5kTEY+Q7LVwfhEHJXKEto6vcdGPxWGXkp0frVCKlvIKJi2jjBOUx2Qjwkm/6TjGEHruVv3pxend66tXwzRlpdvdNIyXJxiQKSGMImU/PLp7/9Hj/uHd+9AEQQC1cb+/uNgQYYyhaw8O2I91XVQVM825rKTzVoHGGSIuV4TmkubEXErZbrdqAGLZBExECwD2/TqEkEpOOS8BHwJQbaydlT3dzWrVmDdPwwEAjAjMasPIHAWy958wurCDIXG/PgHk6+tbEWEmIo7RZcJotVqt12sil1MFI8yKJigychQfXB1jxIbMbNzvP/v00/1uu95sxmk/jPucRyYKfByj10N3ZCq+Yi5mv3uEAs8IHME8a2EhL8PccWMAaN7vNiufNk37wx/+zvndey6YStTY1xi8N19VWcwJNABoxq9bdSKOsenbnpCsTk4jD0mDN8GSBTKuXlKllJITGBlaEcmgnvISkxJZYNAQqQcAAZtyzik1ISAAExPg9vZ63O+6vmeyVRsrywAUUGuuV62cAxvejXUUEh7fWjXaBEBIAHKYVLs8ka864K+8vlLoWOC+m9vbZ0+fh6bD0IbQtk3rIxXJi84usRMCEaoURFXM6rrlVnUrCShSCC5EYihSvNhPRyZ72RCqSnwgDuCse6zzLI9Sym63nzXf/WcAqxA2wvFePHLGb3hfe/3xg4GpKSpGRMAg1iluYu8t9Ulha9JiiMDFmyqPmwhrYRtfe7v6/cPnLJfhLFxvy3ntEo4Q6SWxr/+EtcuZYR5MjEgEamW17s8vTvf7/S9++YvNZt22LXGsRZ+jrAARQ4h3Ly7W6/Vut4OFxF+j0sqiAACnclThsZoLcZmVqrBGXT541fXQheZ09XBHZiGEi4uLnPPNzfU4TefnJ+cciJqbm2uzUoqlqRAOq9WKQ0AmDiGHkFPKOatzMKpV1OULnTVY/K8iwqyCBlamcdrvp4uLu13fey+Hx6r+ZFzzGOfqshmu1xvmQIhNqNxinmEbt4BeIPfvhBBc4cuz89hwCI2ZTmkk8r6Yqsbc9z0gCgAqBo4xNjFGAJAKG+rxPiFC4rqRiICDd1GqAYrIMIxt2zZNJJekFJUiHmzaDCW6Ta+KibN2OnNoO1Yx8bRczcXDHDFbOi6OoBcishmCrtmMB+IzuGGqOZvsBpe9Zbl8biZFJKumqeQzuNhs2m617ldtbELgB2+/PZa8S+N+GEtKKWVS825GIjrbnDSbs1XTFsaEZmbXlzebk1O/+CX18sUKBiiGKeXra2/OpyKGxmgcqnDBkk25nJmZlVz8BKhqKaAqN3IzTbntOgrcNM0BgQeX1T6ElapL1Oeyt5XSD3OWyXMC7XGhN+EwBmfXUQh9t1mt1mZbGQavsaiqF57UtO9X3o4YY3TiFbP3HVXSMjqdHumLLz7/8Ncf5mlsYvvW47cvL1+9evXcTI4tRz2TqvCa/OSC+BybxK+pyv1djnO+X//SpwaAI5J37tz50e/+bmw756wshJ5qHI4z8Pm79euj/kpYcHD0ahc2bdu0LTItdjCE4IaIiAIQG6AJGqOK5qJUiBjQRGCySi40MEEsCN16tR0GNbVcdMxs2LUtMbtlLGnc3VxNw+3Jurfz87ng6h/M3p7rcg6zoMJrrte8FZjIu+znE1MFGY9Svnrc33TA5tWBZe3nxXrN8wGYKoUmxJizcqSmaZvQNk1DkRcNRgAsRbdlABNwXknJTlCWUtyL+ADspmkooJmYqciCNh9LStXrZQ4wW/p6MURQJYxkmqb9fu+Fq1r5gCpN8MZtLn79dSrgwQHPY0F9h1U0BhG1WkoEAyRkxMa4JY5AE3jJmOAIxvnqa96Rsyb+McWjKlF8/QV/7ddf+/6+mc/Pz9q2+fTTT/f7napcXFx4mjjXVxCAiCmE0LZN13WzqCTVfTB7X58kaFYxeZ9Wjug1Xp2XDebTSKICQmAAgYCMjyJr/w8ANE1z//59M90Pt6u87lebpu1j115fXU37/WApF0lFu65p2kCeStQ/liLKkmovSIYfac9FbPYZqKpTuk1J1pt1v15tNifmV17Nnz/autmqgJRZbJqmQsQ0q/cBIniy2zRtKa7/Tuv1ZrfbO4qOiCFQiCSSnLyoWjWcEbuu6yg2qsocYmzMIOcJDjvcmVe2KLf7si9Cm77UvnP2+13XtaFpvRPGjwyqT1itD48ZjUgKAKIPjnFlCBFVd8CiqqK1n9+QKByNA8HKnq0if6rFfPDVXNJyjNHnBuWcd7aVogR2s2V25ocSKOg0lm61je2qXXX9KnQtNk0fm9XpOQYmQstJiwwpnaV0OkwZmdt2myefexUC73b7aZrWm3Wlmy2tdwayHb/8m5//1X/831YnZ9//g9+n87NCoMWT9plEUvWbmQg5RA6NjwE0FDBThVIkpbLd75u28b1mM/bKy8mEmgOIFl1k2RdgEg8exX0qzC45hBi4Ddw4IXG1Xn3rg+/cv3+vjRENRSrb/9mzZ6+uLr3BF1wGhwg5UAiOruAMbscYtcgvf/7zn/31X3Zte3Fx/s3f+ubDh/c//ig8efrEpLxmDQBM1XA+IziPl6/s16+xM0s88TW6Qp7SVM89r8wc9JqZB6Pder18/Fc+YDmny0/MRV/Dub0YwNSIDCotyDnd9WcRoE5Ewqq/BN6zBGSG4sMyMwUzDqBWcholZy1iqgBCtJ/G7XbLTAjYCG26TdP15kxbA8kF/CGnCcxmAIo804MFJF/ckB1JXs37pN6bOU3tK6Dl0Q99TQb8RhZ9eB4wpw2GhLxZb7797Q/O7twvqkbBG+zmuKji8VaJl4XU1IRmaXgRQUKfq86EHBgIwIyIrbhNVQLUuet0dgY0F7EdDTqAdR6bpjSlPAFUJkr9yTd22ewFENF7OOaNdWidPCyU1THIbJqlZJVskIE9ByAToIAGDXEkZlD1gO2QXiMeWpTnsAYXzMqv/KhmU7tr9Mjg1hO+QJD4Whl4gSfmuzAgBcnlxbPnTdf6vTitZn6IOMcPAIhMHKM39nktio4CWzQkUzVylRKzg+QegqE6+vQaHoFeWTVV4mhmISCH6IEQ1vlaHg5C27Z37pzry1Ry0qaJIdy9uNs2zeWrV/vdbpymKaX9PvR923UdotUxM5Vb5w6GcdbjNfDeYIPXBLqxht2EU9qPL/bhJt67//D09BQRShEXaocq2yKiOg7DNI4xhhhC0/TMNFNplyKCqwkSEAOia+QzBwAoJYNBLoKI8zxXm7k5agZEoQsBEJmDGeScFmizbj2Eee6OLRf2eqZSfz5nSSk3oTGfDlaE0HixU/MxXByVlzlKFhErIq4T7ZKNy2wxJGQqbnBcyNDJf4jOd2MzJSMTrJzzIxzbJTxHUZOS0ziOQ8553I6vnr+8WJ+cxHbTrjbd6cnp+fp0052s46prVn3sIsYQuo6Ze7WTIpuUd1MSgDDsr6ehSHEiugCenq4JUKVWE1Fgup2++NmvfvW//PnLX3043r0r3/mAshiBD2XT2j9Z97upMlPf9/fv3//s4w+zKqD6bBwAFBMsqCUvftT/DK4HOr+qoTnijixJiR+uupCvTb82ZmzaiMiG1Peru/cfnN+92zddDAEMVW2axuvbfdjuS1HEREylaolmZgohcmiIuYmRQ0DE25ubX/7i57vdtemqlPHm+tV7773Lwe3Sm0QTqGMT56i6GiOYjfubu2v52u3XwrSyI48959ZVZ3fWbDcVGcdpJYLoqijzpy0Tx6oL9vJ8zRaqn0WEubXdHEubIxoQ0yIqCoQGUEpJKalZpboDBEJWFwYAAgEpbiAAbO45l1KrpCCCKqXt2kChAAmBhaCIPkAADKoaohoR2vHjn2/haGXBqXFqx9jnDLDVmrH5Ms7m339K3QqHxb9+Dfp6eF51j7np84AvcOz7tdeGzT8E5+cJ7oBrGBicviZKguoN/4ShiaFrMJKhKnt9F5XIAXX0EGjeTMy12UcBAYzNdBaLWGwNEeVcUhoNpFKS6qzpw6p53us3Y2Bgx+nvwZMc70UzAzM0HMWuczrlJvrbmqKqm3tGaohZXdquMvtr3KDe9+L76QBYfO3LZkHghdbrwaE7YDgChXB5QU2WFgSa1CyXqZRhGPz6eVafV1WfcDdHsOQJov8kc3BTheZwrqpasRLQZe3qTRGRGXmA5eHD/CDUzGOP+lmmAoahaZw5BTOSga6IQ3CyWZV0MgzDNAzQtjHGs5Pz9Wp9c3s7DmPKqeSckojsw5z61HCTEACleP7lEHFVjDPzSQRavaBrTQOpgYimVF6+eGamZ2fnRFShKT/kiCWlaRhAJVDj7AT0yHceiXoUwczpjoghENHJyck0jUhYclEB5mgmJnYwXgBI3K5OYmhzTvv9rhQ1A/HeNadYLhv16OjZ0VHyr901qloRLSlLKaZKaKY+Y9fj3uqL3RhUYZzstFzRolabkmewwDFZVOe1WW0H5xCc+ldpGQzB1xahmONtRxWipEmLpDH509tf71+tXp20q7O2X4du3W4uzu8+fPz49O5Ff7JpUqY8dX0f25ZjjVZjjGukUkpYr0MTb4Zbb0Jbn14EDJor2Z8U8vX46z/7yad/+Tf9KP/4m99/MtxiFsgllzxOU1FxqlhVDISq+cUhnJycwMEs2tGwozrhhGpzajWUdkRvrmd4LqyA4wCek+HcOUGIWLmBqoqVh2yAQIxN04xjSlkC++R4NKSp2M3tdsypiQGLkSEzAjAUU0PRQjkzRxee1yIf//rXT59+CSopDdOk11Lu37+IMczqthW3mFMXQiRnA6FW/Vp8XSLia19YmUSH+BDga3i/qpWdU4qklFws+gDJzrvL/yAnoqECcVWGMpohXThUUABgPhBmruYy98QDSNFpykUM0JU9MBCZITISMxmQGqrOMPGCc/kTVFWyUtKE2BAQFARsI0TWYqUkwiUts9rITESIClTT8TmodRdylM0eFxW1rh3YkivXnVRDoVrC+ftqwAuwWB/GvPR+btFHQrrLrMJ8FCjEyIFpmUHkl0FqqAVFrofJPEN1l0rVPviPz5yeYyLPPFmhbok30/mji7Xt9rbkDEemDBe88utuzaMEd2RL8HGUE9fPRQRUK4iDyQjWgZmIWSFkQDbGQNSFJhQrZEfypsu7zLHQ1790SSNsnkvoqhFfc8Hzj/r/aM46Ycl15p9s29YfvJcYi8hut3MmN3kWB7VgmFK6vr6+vb0102V1bR4jYpVmDjMChkQIRqJFa9B76Kqa9aocRXfYduSJESxwWOpxaC64KKUkVUupjOOYc+77vm3bEJo7d+6LlJTSNI1pGkpJKmJSEG02Z55qGzHMZxsWXAiq4A3GEJmdWco+/KCUsr3dDfvdatUFZteFhTnRdIYzoiv/hTr3dB7ZUone84BbxJm3bDWsiLFhNrUSQmyaNudJxUstICI5l6ajGNrV6tRMimgu3hhEC/8JweeO2NKzv/z6chiX7WpmOac0TVKSicTILmmrc5efL4UIFFERK+JieoSIHOu2bBZyuahUPUUwQFE3hSZS8z3vQDMzZnfPHosTVE6KupsrKkUhq5VUpt0wrHbp5Ly0JylmFaWA/W0bWobAhQHSOO6G0HXUBNeKDiEgIagxwCpEbfs0TarWta0UAwA0RANWePH5l7/+y79ZJf3Gg8droO2ztLu5NTPJYsXrTn4+6pQenUf8MnPORUUCVzMLNcoxL3iHwEc2481zexT0v5a6+LYnb5tYGrfcATJziIiBAocYU8oiKqqC6vMfkVDBxmnSkjMBsc9cCHVEBgfmEGOby0jE0zj95V/+eL+7YYJApoqAICV3bTMXeV5LIRZEgzwnXQDk41z4DaLGm68jDwyLqcT59KsPV3DbNY3Tksp9vfLc/J5HmTYc8h8DVSM2NeMZ2FfzPkFarlVFRbwbnBk4UCBTP/YBjJ2nuWT99df8sipnqpSCkNsmoBdYidQqJMaGRBicXO0zLQ6486HXdL67mYpkniGpwZuCGx7K1N+eV8cb1P8TJKwlQn5z8UyJqI1N4KhVN5q8q8G7M8lzQ4cmVEDUSvGeeTUdp3HY72ti5JeICM5DI5onuADUTu9FIqMmIV6e8PYLNG+LITPb7faqBvR3bSOPYI7XBRYff/D0uFjYw1ZDJAOdTCeEycxMSbSYIpsSE4YYI0rCCqos+wRmRctFj3oJPPHobC8B40GIcYE9bSYZVWbynBnj0eUe37CCMeKDBw8ePHwYQhCRzz///OOPP97e3IJBG3pgBCDm4N2viCiil5eXwzC6lKnHeWavxciL0THAGYezY7xryZnmjKG2JA7DTk3apg0UiIgAVGQcx+3t7W63TWmc0oRgqWlySqv1ul+vOARi7PuuaWLp+yJFSs55UhUCWEAGM9AZc7PF4qrmguaZB8cQmxgbrjKffuVFRPbbG0QsRX0t2qYhZpGspm1sFwbTMosaEd+wFEQMYMUzDqsYjM/oALKm7QAsafFFKEVENaUkRUOIbbvpun673b26fHF1c2mmhgouq76kv3aoty0ssznVKES03W4JUUvBKmpvFAMALiN4DMFARaAUETOgEGLQYOQKnnUHKRiAYVXoLqKzKKnV2BCruSZ2dgObGatImYN73wN1c/j/qahJMSmihRibELoYJg27tL3ZXW1OTzgPMhkCp3HCaYpdG4kJsXj87v2MZphlKHsOjRYdx2QgIVAfIwqM19tNaN45P73Xn9xcvroabvTVyynnyQQIAwREJFxkGKt4lZmdbDZd21ztX3m4s6g/I84dLngQ9nQb5cGZK7/69tZZqa1OGall41q5Pz6dMbZtM5yd4fnFXZ/DraWEGcMgAkTlQOd3Lr588vm4mxANoBABI/tQQgd4YowxNgbw6aefffrJbxAtupIXiFX65xF6fLBmLhw7X08tPh39Mf/8csZf/6b5VHmbrQJYhdarVzBQ1ZxLjI2qjtPkTcwLWvOV+OXwlQM1s/37qjGsPhqB0Oo+XK4MAMiAfCAEUqDQIMihx/WowwXBZpI3eoPNfGsqoiWTKVf0w1WLFdC8BdPVAmsZ5pDnIM4WeH7/Sv2Z7xDxgBss6dVX6+EAX9MHvARH6MW0GnofhUw1WgSY6+CGR4VMLUVKNpNiVZNZHHIwKZoTqVbhp8pjwFmcCJmZidM4iM3ps9XkwgUQnN3u6MxyDpa1mHUTEY3k+Cm+8bLjL18rluhRMrd43/mBgSFmtWxYjNiqsJ9aNgIIEIg9dfnKKv89MeBXLm0WKjrsnjknPj4hxyecvvoOqmZ2586d73znO/6T6/X6iy++2O/30zB2j5qu62vfDsBms2a2tmlfvHhxfX3lnyyiUDOtN6/fDFRknlZZHTC8eXSXzEBd6likiLBJ7QjOYx7GoUypCw1XmRhBxOK86DyuN+u27YiIAxE1QYOEGJvohUYwWMg4PlIK50fmcRLnqMXbppk4EgfvGEZEM2qaZpqmnFMp4rsuIPhOL1J8rJPP68a5TrVsijeeV0Vr62gUJKLYcBYF5K7vRZKN3nrAAGCKhAEAVQ0xnJ6e3Ln76M69B0+effni1Yth2AKKiVfVXDzg/8fZf3VLciRpgqAQVTOnlwZDBBDgQPIu2jXzMDO95+z82u3dpz69Z3f7Zbp6p7sri2RmJa9kAAJAkBuXOjEzVRHZB1E19xsRyKxeO4E4gUvc3dRUhXzyySdFvwoqiD0+XPfHKSU/PEzgI8UzAnGog6HMDFRB1K0DhlArVogEVMF5QQAoww0NmpIpOq8bUMcaNAAQIlgwMzZmZnWVlmJvyAoM6zR4UJMhq2g2E4As0vdpnmRAoqaZHjPPADhGIg4xmKh5v76IAigI+FTXfhhUuSHJkvusqc+WlUm3na5WdxbzfHPz9OJik9PxvdP50TKn3A19VkWvR/i9AmAVnWCid95+59HDhxfnT4dhYIKRNzy2RbzWADlWfi2JOnVAx2ucvePnxfSVw+Ae/eZmk83uxYdJtgCMhprNUEWSJFHLd+6cHhwe/P43v039FkFj5Kapvb9EMUTXVk8pPf3yyXazdvu7Q+hEc0qmtT3VR7BSYbI7caQob5RT7Qkb+iSPMYZ+gw+2okbo9+hfVy24nYGZWs5J1Zyr2Hed5IztLtV75bJivLFWRxwj3YHVbsZKlulxNRCqua572XDk+k5oZmjYNvF4Ms+EURGyolY5UCt1v1fP8IgPpWwiuOtuLVJnnhYTkS+TIkih6u+QyDea9iJWUjLFAsvZbZ2r/evVDNjzBI8FFFStkHU95VA1Y/cT6oQ39nmhaiigQhbZWcCgpi4JqeoKyaSVbAmoiiLOp2BA15LE2LQc4mp9Y5mgRq6xie8+fvf73//+wfLg/OXZz372i2fPXxhAQ9wQJ9Xs6n2IwzDklIioIgB/2vNhvfYdHtSNWKI3QgVgA1UbAG7SMKGGABrvXSPvDjMGCkAMkvF/xOXeunwIlYqOATUYgK8zVkUOP5B//I48ibm+vvZmgKZpHj9+vF6vj4+P79+9P5/NYgghRmaezWYh8Pn5+d/+7d92Xed9f4SGRQYda6Zu9cV9PAMgEnFQbyktIVpJExHAqUSOHZGJSc4DilgWJUBNggCzyXQ+m4bI2257fX2dJDFzkpT6fgugWSaTSQwNAgORE7aZxLQUZvxuDXdhU3mUYE2cmEgaBqsZgBen3V6E2AwpI8Bk0k6m08CkZmkYuq7r+i6GGJsYAo+tR38URiNEAAJTDYHv3LnTtPGrZ0+IMMYGTDfrtRmKAiJmMWQStexydxaadn48nc2Ojw9evnz69Kvr60sZepSEKmiCplTyj4IMV7S4GgiX5EQITG0TsxmpMSIYjVan6rkhoclYDgTEIjgNAGpjbZ0QDJgDx8Ax5pxNBSqe5oeCY7Fd7K5HlSmU1sK9GhgUyycZpBM8u9Su608Xx4jUTmc3m9Vse9C0beDoM7SIGZnB5cPZE00zkYAcwRgAc5KV5O0aUr9erX/z058uKbbZnn/2eWza029//P3vf5uOD6SdwvlgZpKF2PPCAkQ5LhWYDw8PH77zzs9+/pPUbxMIwq2wmwhDiONXlAkFVJLCLjb2jqy660v1Y9dHZl4mrhE8EKJ12+2LZy8eP/7w3Q8/OTg8zRpSJ+7fVNPl1fn15aUImOFm3YMKEXIYfAMSUxPD8fExM11cXF9dvsySEMErDqBGgE0IgdinHQACM2Pgnb1gQvBEuA4j2gFxr2e9u79tRKjNEcgC5tvuXsEMVCXn5DThoeuGfphNnWpZKh2lGL33XrRXNdvLUXcfxFHDmmOC+QiW8qF8ZAMRgCoAQeQQ5wsNQbY95G5U2yJERiYTrAGW3w+CBx4eXQEUBnbBQGDMXx0j2jlPsz0o87UL953OqKDppNM3yEADwjgPeM8DAezR060KvoyMPgUVUATLKpIH00KnhJKqGzERmo8FLUulBclhZv9tQmpj04QGgBAF0QyFY7x778HN6nrdbwkUUYn5o48++nf/27/73ve+N23b9c3qw7ff+9k///P5y/NHjx7dOT39ze9/97svvtgOuTaHKo1rZ7ecx+6mK+ahCGBGlfludY2wRoHF0pUuQDCFZLrGYR65ISAjMPSRHmYWDFqg3nRHbrC6QUsRdfdE/YTuorH9nwWtNtcp1eAT7EdEqz6a+us6PjSzalPNbLvdXlxchBAsS9d1p0fHJ4dHxLRe3XTbzSi+41a1bdumaaC4K6gsBNwTERvXEKHw/oCYAtGQk5oROWRr9ch4FdNRQNCsQ+7TIGIQQ7h7evrBBx98/MGHDx7cF5HPP//87374w9/94XciMm2nHAKA5T6vupvJZOpEPyrUPRYR8KFOVpZjl4YXnoAaGXBMYgCGThkDMCMANLTYTBfcmFmMsWlbJur67Xq7uby+SjkfHx9TYAyMHHCPyWIGDqrXin45y8UjIp6env7gBz8QlbPzs223JQLiJoSJRTTrVcR7RtVkyLk1S6pZFDnMl4fz5dHx6f3z8/O02fTb1fnzLzerS1RBT/Jh917qiDECEfkAeUYiRCUWChkZgLBUrUfSSnGuDs+QlTqWH0kF25HGC9uPEZHRAMk0uwbW6GERgVkBzKABgywmkoFKcADgmBQgajXOoKBJ86brZrHbDp2ouFCAo4eT2QzbJrYNNV7pjHVMiIHYTPUUkEOEIXf9tltdr64vr9bXWxuwHy43nU7jnY8+ePTX/2b64F6nshlyl7KoGpiIjNJUCKWLORBRCIfHp4rUZ4nkGh26h+ZY32938GEFBV9JDcedMJrN+pM2djD67/uIb1CYTqaPH3/w6affAYpYy0mMkGV4cfbi+np1uDz8q7/6t0PXDX0aIT4AVZGu3xBYSumLzz8/e3lmpk3ThsCSM4AR0enpad/3IUSFBAgcI4fgFREqsybLqmv5bKWdREBvB/Te0lvjDCcdVUgenbh32xL5WXAyvpltt916vT46OoaKvPoftyxvWkgDMKw2DM0KM730djn0q4oqkMF5s37wvaRNAnXaQo0QiiEzAAXLoFJJWAqlMkylP80RZ9O676l+2cxUc0XIrWrlQA0nSq5U/Sbupyh79nkcUTsW3NGAzJQQAckQA76WHRvccsDjRtyPYKx+15Paav/905FTdZgVvYpmJjmTKYkMeRMY5/O5mIUQ6noVOzaZzZCpZJ5g8/n84cOHZvbixYs7RyfTdvqtTz+9szj46quv7t69++jRo/ffffeHP/nJL379KwELVOfowR+7ii0DEygcO4d0vb0E1aigC6Z7mExxxWYJNIFmDExYYBREImwAGp8scdtAu1M1c7rZrsD8RkTCHZ7vcA4cQzTR1Kc8ZFfGJKAaKX7jXXqn4OXF5c1q5RCZ5lKpAgAfg9E0cRSdXi4P3n//vYdvP/rdH36fU/JuFpf7sKq3YGoj2F36tRCZeDJpL2+uXOkJwW7FeaO8qPqIQJOs09n8ww8//N/+l//1r/7iL+/euRObCGar1eq9d9//9/+Pf//rf/lVztI0TdtOAGCz2dxcXaHBdL5AJPU5CeXNx8CaaT+wJif82jAMQMjEyGSAQKhjTa5tGkeriVLKV5cX2+1ms91su87VrMboBHeMPxy9YEXGbLQ7ZnJwsHzvg/cXB8uU0sOHj379619vh34YekSKIZppdu6Qqqmpkz1Ukwhr6BNMJtO7947fevh+IBzWN3//3//27OwF6EAgCDKebQBQUGfU7GJiRCByH+KT7StojuAormiRSS6trEW3xwNjB7retBWRiRRDgcSdaaSKZkTBzGJozIwIM4mJGKkPHHTQDnY1Ox9rw8jUp7Tabs6vLheLw6PUTzRFzUjeDOyoqCZJqlISfEJy4X8fODA7aOaxWU7mcufuw0fperNe3TQU3vnOdyYP7g0xIARQn6u2l4iUg1ZMc8rZzJYHh7P5crW6NDIyqWBTPVqvuYj6CrfWB0ppAPd+ZXfqx51qAGgWY3z/3Q/eefw+UpRaz/NmrxCpbScxNNN2evfu3SbGsSXSU9aU+idffPb5Z7/78snnL89f+owQrw3nNPgqe5WqaaJiEQlnDkRUDNCYatalGKPqV28Wy2c20EKAftVSlV8osT56aGje0mZqw5C3206ycUMAZDv+EiKU9tDbaXd1Wa5e7JMIEV3HGJxUYAqoWsYbjmUvz6OMHJbL2dBUhUCLMS9+HcYn5C/8ytMdYeWyRoUcjIgMxKPWWc3qCFCrSyg74U0bpuL9sH8ca44wXm/sA969xh4c4dd45Iv/JmDChjgimhoxcQyhaSftJHIYAZskojmTZutTxg4BirJ+znvvBQYQY8uxMSBRZeajkzuT6fz587Prq5vto7dPj0+moTk6Pv788y+ePXt2587dR4/ePjq9886jt3/2q1+er66GrocRI/imm9pvSYNa1CSy2n/AXrFDoMKRNn8qhgVTEVVBUwBTMyt8CkaqRhr3120XV+8KKLeusfEdqr93WcrT09PJZLK52V68uLBsAWPRNhh7R6DEKfv3WyBoz1n8dYm4IYZoqqairrFAdcq0mYER8/HJyXyxuLq4xMp82GXlNZgoPqCIyyMzTmeTOGmeP3/ukoRF36zsu4JFiyQVFrHZdPa9737vf/tf/91f/flfHB4eIjpVCpfLg//pf/qfs+R//3//v332+efDMLgjnEzaYejPzs6m2+1iuWzadmzJLVGRApmTk0tsXVoZVEyMkAMHH77ma+uCZj6gjZnFLPU9gDYxmDSWE4cYi/flCqd79WtUHCzhUVXgM7Xcts1HH39078F9iqGN4fs/+MHh0eGvf/XrL774PIuZoWEANHVUHxEMvMogYqCoSlkxIsV2MmkjIXDTZgNTR3B7L2CXgKAWqHCvJOGBVIzx+Oj4YHkUOO4AMKKU5KtnT2/Wayj0c3+NQihVd/AjroKKWiZbIQCW4UyoMI66VSh9z9iAZSSk7Bop5BvMG/mxALaIGDhGbprQAGLS3OX+antztr7MLQ1kShjb1mpVmoiYCIiEgWIzmUza2axtpk0bqQmTw9nMTjzW2642m6E7mM7axcHAkQJzwGA2XcyJWW/rUUA5YeASksfHJ4/efufly6eIGQD3FmB3iKp9sFf+8Y2GxUb/DfuG1mPZw8Ojb33ru9PpPIsgc82sCvwZQ8TSGITqmLVTGg3JUERvbtZnZy/Pzs6GfvAYMcbgJgPAVOHq6gpHJikiYuGL7aDmMTArscg33E79kZ2FeeX7+GYTWyZKqapIt+2zyIT4tq+5/S67THEsHo3QYR0P7EgNVFFkz5cAoM6SgzJ+xLJKt95o5KKTW285AAQo5TR91QGbqvIe4Q48MhBvkiLmyKExVSAusdYtW2vfsCUQd4Qsh6us5ghWmuFqOvtmBzxuINwL9m+/wZhxAwcCYDVzweCRu+uqiiklHzBiOZMIDslECCkNKQ2DY1b1MRgAhBAODo+fPXuRskAMJ6f3pvPlxdnL35394eLi8sP33r97eHz5/Owf/uGfum6LyH/+Z39+vDj+5L2PLs4vr2+uWYHs1jiEcZ1wb/OVmNBdooF3MgKIKQJaGeAOBAAByeEXz5W5TNmEEEMw6NO277u5K/v7nImhtB7vVuy2yOrrz2p006MPdgrMdDqdzWbTOJ2389lkdnh4OJ/OAfDy8uIPf/js+fNn235b+sadnUe7U+WzciM2XtUrQQB5f/lOJcA/pBOyjo+PDw4Ori8vsYrN7NbPnZcpkQ/HHSUOEME+/PCDEMJXX39ZShWmPFZRzMQgZzPREJp3333vL/7iLz784IOmaVJKpaPJs9Im/tVf/lXXb//Df/gPv/v971JKi8ViOp0uFovVan12dnZzc7M4OFgsFtGZKegr64W9MoW5dMqZmWkI1FCoMZCZqWf0qpJTIed72wkThSbmNDRNjLEJIYYQieiPVH5L2OIOBuCtt9765NNPJtOpZ6Uxxrt37374wYe//e1vf/nLX3z+xefXN9cZEQGTWnQQjVgMDIkoELMBCJRRSpttt95sAMAUTF1jHYuOPVZ8qV4jSYeZm6Y5PDqaT5d1jl6BP1abPqWs3hGvKqZFudYMcXc6RkcOYLYb8YnFrAMiohYMDgG8VBYBEaX2SqiLHpCZiomImKor8wlqVgkxGIMES8G2pC0KQSLp2sFAAUQJiQOHEKhtZBIs8jBpuG1p0lgbMYbYhpaImJUonhxMQWIGC2EQYABBEMKmbaaTyXq9oqKPVB5aLT4ZAMzn84cPH/3i5z/WlCtmia88YsSdDdynZ75+hMd/IO6gUxjLn4axad997/3j49NhGDRnQ/IkgIiaEAnNuYpAZJVlXS80AxG7vLo+P79cbzoAMlMHaFIaoLrg8/Pz2WyWVUYfIQZkpRewGj+1vU/7jft7fx1e7fv9pt8yl3sTkSwypGGn7vLKcgHALfu8R/tC8OGDVewRAUpIp+WLZlqiAslZtWTXBGCqfZckcQxNSwxmqjlgy+h0opJTjP67xgTVFZaAqBQWnawYQgxNRFHmUPluZWOM4dXrK1kDh/0ie90PhKA7O28IjPSNGfBrftdfbHf4/X2zSBKfWmrgRyPr0A+gllJS8eYKNVPMgimzKrOJoshQmoBrKEGITRPbdoLEWRWRJpMpIa1Xm2fPnl9dXl2cXbYhvnjy5ZMvngDAT37687cfv/fBwVETm2nbtrGJIfQDyt5Osb3bKbdQM9FRYQgAeUwNPNAiEuRATEyKu3lGPqMycJjPZjO1vNnkoYM8DYqIOA1N7Ltint/ka79pqcfPCBXf7LvuyRdPTk9Ovvut73330+/OprMYm2k7m7QzZHry5Ml/+2//9Uc/+qcXL5+LZkMtWm2ICoZmZABgBSO6peSiUFQDHNHm0Y5PJhMHpT0oMVBTq5WUW5eHVgCgqpvNhog/+ujjrtu+ePG1iEbmOyengfni4rLreh9oSMSnp6effPLJw4ePiLnvBwBgZi3rhAISJvHP//IvOPB//H/+x9/85jeb7WYymUwmk5OT4/Pzi/VmPQzDer2ezWZesQ4hhBAMa+uqFbAKwESkaWPTNOvVygdT+lN1hzQMQ9/3rlrVtk0bo6oMQ0+EMcYydujV57IHadbyi2+qEOO9e/eWi2Vsoo2uieDevXt37975zne/8y//8i+//8Pvv3761Wq1YYreVYujtJabXATkgBwU6Or6atttYgg5p7rznKJi4HBuae/3mIqJHC9ozPD66mazHogCIiCoqfZ92vaDiGPPaqJgXuGy0fRYxfmcMuvBit8mAY3ArAEQoSmCE7cccyBGNUQBEGQEjK6UaUqGqCBglrOKpJw1S86m1oe5pc7SQBrZOhIknbhwBRIThxBpMsnzdrtobdJSG7WJoQkYOQUUpkCkhJlBMRADAhCB+UDQGCbz2fxwsU1bLvK79bm5MIcoARDCyckpc8i9szjesM93T7y2Kb7+Lbe2r3zLoKjPQ3Uk9+48+Mu//Ov58qDv+6yWxAdz5X7oDazfbq6vrnLqDw+WIQZvxXQYzE9nSvL8+dnF5bWIN2GX3rZCSgIAgH5IIaaqYrSXXd4Cn/c/OsC4k/GVb+Ctn/pTV7lRl1qTrCpd1/VdZ4tlTTD2XwxdeQNMAXj8HPvJ5QgP1Ex8JyxTzt0+G3F8aQUxDaXVtKgJMTAbRkNFy2ZImHE0/L5x3mCXfQmYiIlVxvXc7SRweAzH1Hr82AWgGr1aKfzgfix4a0He7IC/CW/xYNHK3QU1HAYZ1MQzDCLzqQCIPkKlLCCqmYC6IzYFA3StIjOTSqcBRJxMJrPJbNK0mxV23XB+fknG5xdX3EySwu+ffDlsO+uTxtY0X6xW22HAwE3bcAwcOIRYRD20JIQG5jRHdNknAy9EFDkYA0VDg0aAtLANGkJWshAEqUdLWMEDAAPLhoLEGGZMODsIqhOMjUBGnQFNiYMMyiBYhweNetyvgVr7j8H/8+8Qoomk9fb40eLjd99/eP+tnKTfJo6hDZPQNJ98+K3jg5M7J3f+y3/5z0+++nzICqRmgIVAUyKs2g99O8asDkTVwm4YNPosNm9MVDMDMQN0RR4D74dxpQ41GYbOO0dXq9Xl5cUnn37r029/+2Z1s93cLObL73zy6fLw8L/+1/+6Xq+TqBlOJ82DBw/u3rsLZv0wbGiLCLFtxkOmICLSziZ/9ld/8eDtt/6P//x//P3f/32SPA3t8clRjOH8Im67fui6brvhEJqmiTHMZjPn7BQte6fjg4mImoikfugcDBixFjMTyarJTJsmNm3ULJvN2iEHIgwxEDE4Tl2Ar8pSKpEVGppLVwBC08T5fL7ZbGxjqgqEHJioKtsyfvLppx999NGm2744e/mjf/rJ2csL02yqXGjmRgTMvs6aUnr+8kXOw3Qy6XLKxiq7pkav7gGQKYKDxIaMHLkpGMl8wWFCHIkITYc0iN1gUlWUbOrVLm9KKDrJZLWfU1Wpku8IqaKyRiPgZQ4Ggrnl0dLiY8yeQvgaeWBHEERiYBFXEDUT1T7lQW6SKbcTaBoJtLU8gAxNFmwaK7MjYttiAJ2FPlCMRBEhoAVCRmE0wkgAWOTGNw2w4+MCJoCRwqyZnx6db64kJwKINQ2FEnYHIlCRQkIEMmMoeZe80eh907Wf+9bCBDiU7u6ekFCtic0PfvBn3/nev7m43m5Xa1FLaej7fr1er1ari6uLy4uLbtsdHiwfP34c24njM1KkDVHUuq5brzYpC4K3KZOqNk1jKjnnUQ5ZbBfBgykjEShUFvgIv+43HQHAPm+j3lFpKS6JBO7Fn1j9T90TWEtNACwiw9ADWBqGvu8RvZWWEbkaNtprSo6UegAAblFJREFUHd/FtXv6UjAayYKBl2SmdAU5raTo947NzTrONdtrNyIixAmHo6Ztt93KrDcTQCCS/ZTbgLT+MSAwrqxrUCnx5q0gAmtN3UUUCMBP6J54BezWzMAUFEHttrvH+jNvdsDflK7dWiKFnJVc96+KOqoagBc5Sq+olulHQuq9Z5ZFQh0lBzuGQFF+vnfv3t07d1Y3191m/ctf/erh/UeLxUFoJiklRZ4dHEbknFLfbXkyAWaOITSlNyLEYIhagw0yq1YCyjwyA640KwRgsBmHKfA0hAjYclzEyaKZBOLrLF9sb57jQIRWgF4wwIS4znktchyb4+nBPESRQVTArEU7YD4XHYD2fOwOzPuGuGZ/qev3xdDsztHxvZPTSYhPX1xu18O8WYCoZUGi46Pjf/vXf4MA/5//9P968vUTFaHIBN7zhyXsqYgi1MOGe29iNVjzqkHXddvttv6g3fq5GpAWhM2F19XMdL1eP/3q63cfv/vg3oN7d+9/+WS4c3Ln4w8+mi5nf/fD/55zyqIGdHB4+PjxO9NJ66F/SqnrSRGQfPwzKpYdHJp4/+GDH/zFnz07f/Hb3/72ZrNaTufzxYJC3Gy26816221FpO+7rrP1Zs3EIYbZbObj/RDBnJdvxoEAQLR0bQIUkcW2bdq2ZaYQAgKubq4923Ag1z266ShV75ZCzLCIUxVU30RybOL9+/cXy8W230Cxuqa9L7ULACB7bYb54PAoxpaw5KyEQcRyBp4EDo0PTh9Sf3NzDQBN09h0wpSHfnC8v/4plUKs/f+BY4ztcnlwcnw6mc4Ag0EgQgPbXl50/bDZdMMw1EXwAcP+QMGl+ZH2zLHH7+bMWK+37JckStrs80IB6qAkRFA2MGJj5hADh1h6ZUXMrO/7m9V1GTHU9efn56q4Wt0c3b17cnyynCxuqJliCMDM3M4XsQ2BAGLIbRxahpYtEnGZG44GVNt+MgEEMAMjwACWAYkXd474xderixUBBDG0euQ9Xolkql98/sX6ZsPEVTLpj4HMIyI9LtTIBd5fOoDaRFr+bUx0dHT6ne/94N69t/r8fD0kNmvaZj6bHx4ciul6s7k4v+j6fjqZTGfLITlQIAAYAhNht9n8/Ge/fPbsGRMRchqAiWIMh4eH60DD0EslJahbtqqeW++I3NjbbUMzfvg3M1NeXYI/+s1qZ1Q156SqOaV+uzWnu9f2GXjDR7h1jYtIe0pG6O1DZXYnMyGAVdYngIEiEDiUmsAQaxu6l4kJYR4bFmNNm2xdlkyoew54/EBa25zqZzF3Yc7GfPWjvuE+bFypCpSXnM2qvPvodutvK8A3Q9DfuEhW/xubPUv6SuRSR0S+iErO2PCgiQq8bwYIITQxhPHGPHbx6Hu5XN6//+D85ZmkPqfsPiJnIYp37h4dLpcM0G23/Xbz8OGD07unAnZ2efHsxQvvBC/iSH5KwULBI8AMyGCqNDOaUIgcWoCZwUkzmVFomqbB0EKYYmAiU/sa+peqiOJ5eskTEARhq3mreZMTJJEhqSSfuMwEEYFUjawAiwC1MrkDVv70GpuJCCE+uP9gPp21FId1lzaDT98lNQOLFA4PDr/7ne9+/vkfvnz6pO+6oIEiElBAHxglCIqAsmcgrNZ0rHJo/VLV7Xbb9z0R7dWkoVCNxprUHhLrlqfv+7MXL54+ffbJJx9/+vHHue8Plocxxq++/PLi4mwYegUACLPZ9Pj4uJ1M1GxIiYiB0Ur46HKo7lYMwCjyO+8+/r/+7//7w0ePfvWzX1ydX0hOiLBYLuaL2ZBT3/d91w0pSc5que9TSn0IwXFpcEljrD2wFYYz54eHGJs43oqartebscuLiFNKMU7eEIDWggxaIcgD4eJg+fjdd6fTaZYEAGVmi6HVlUbw+oCJaE5ZTQ0hxti2bWiiArmGErgVc/EoUUAIMTBMM2lgyzmVNfdNvW83kCjEpp0Qx9V6u9kmLUGmbDbr7Xbdrddp6DV1IOKdOFYBw/IUvS5Vt8HobOoOGQ0HAIyA574/Vh8soaigSoRHx0ez2TzE4JrTpgKm1zfX2+4m5wygOdlmDQiSpBtMhr5bt/PlZDlvJgHCYj4Py2XTtta0OJvgYiLTJsUIxITIBmSUDT1yQAaxUjI0b8BiUIB2Pj28c3K9vk591286zKM4GDBw00RmPDk5efvtd148/zIP2QB2e+WWsSs3ub8fdizIPVDU1xJxTGxK4kQhzJbLy+v187NzIJq0E1VDIkJ2aPLo6O7Dtx6X/BQyoopk140OIRLC+Yuz3/72N/3QB5Yh9eI7DXm1WqWUiVgqIelPXvthxP/fV73HV7/oWFFKOSc/o9vapTN+sn0fbN8Ms77h2tkqAAAVSaq5yLWaA5o7x7n3Dw8AlZgmwAFiA9iZqoG+egc29L1sB28V2X31lf1e78MM1LOsUr94JYly3/gGshqWbGiUMdH/AQdcwYjqwBGJKcYIKgoILioUQoyRidiZGWruTlCF1CDkYbMBgOl0mjU5Wef2W0DbTh4+fNh3WyZEUw4hZyHig4ODk5OTpolgEiItDiYfffLhnQf3zi5f/vOvfvb12dOCgZuNY40IYGq4sKYJMRI1AAsNR9zOQxuJG7OJqncis5WWi8bMUARgYhgNMIsBaWXD+uomhA3kG+ktS8wZRIDJJ9cTKKtRVmSQkisQONHuj263fZjH/382nS2WC0LsNt3NxXXbTAMyWlFfFQNAPDw8+vDDj//2v/6X/uoi50yCFIgyMQcZ5SkA4LUKViku1WhJVbuuG0np9ZR464qqKaqqy4ub6zMG/7eqrVc3v/vNrw8W83fffmfeTtLQdyn95Kf//PL8PGc1JEI6PDw8ODho2xYRUhoA0NDA8V52yMLzzUKmms3n3/r2tz/66KNnf/1vf/jf/+5nP/3Z06+fMoXJtD2aT5FoGPqKmatV8c4xHbl///7jx49//etfX1xceMXDEwMxGXRQUe/ANzM1yXWa7zAM22232XRHh6fHR3eaprEi81sHFvriaJHYWSwX77///t07d3wtx8WGXQOOkznJFBQLeyTn1PVdymk65xCaDNBvO1MLHANFU3AYadZOmukUbJr6eddtu75LQxrlh2p/dumtyllublZ1pkNQwJTTZrMehg5VTLNIGrGoigeC96hQ0cMyNRv7wgsM4rxxAqjL5WnHnu8pZsB52ipKaDE2MTYAEAIzA5oaaL54kfIgmswUSPvBAEBdAUAlt33f9MN8sZjN5zznJvKkpSYmQgqEgYURCQMgKiTvG0ElQAby5AJrVMIIjKBI88PDg9OT7eVlt00+Vb6GODIMMJm2P/izPz89PflP/+//+NkffqsmUEdJQU0NEXQU7BxpOgCAKD6MXYt0tsFeK20FTrR8HGRR+O9//w8vrzYff/qt2LaIpOraKORACdMYVBGiEkUEJwGFvlv/5jf/8vLlWdtEzy9NMyL46NUY42w2v8k3Ph3RoQjbuwC84u9SRfCvSUN32xgQd6IJf/Sna++zYydO0txuu5qnvjlb3EPaSgJbd5ZDoahY6VDuXJBwl9nXNNdp0ogKJn54io5COYICtpWsmsmACANTa+AT1XQ/tDLIjkeVj1dWSU2BGImgLp/TMryFQEoGevvW9qDGfbpZjc8A/KyBKSLZa1rQY7qz/yjKUcSxMRq8c3kyaSaThrLmGkSHECZNO5m0hOY1OVVLQ69D0mFwlwxgbvKyjyrF8a3B1R2Wy4MPPvggBrq5umKMOefDw8OTk5OmaYah77rN0K1Pj4/u3L93dXP99z/6x3/48T9JzsvFIjaRmOrEOmyBHkwOHtC0bZoZhwYpIgUgM0uSk6qRANJcMGRjMDYkEEDMAU3UZQ7BqDRkVLg8g63y0AVaNCESaacKDv5QRArEZkMdYrDLff81kafvGlXlJr718OHx8TEAXl1fr27WywdHDUdQyJIVXH4QifjunXvL+cHTF09BVBOaZEgQYqsGYGW01O2N75HXCJEiAAzDcH19nd1hlg6WEUIZKYIF7iBk5jIDAQGy6osXL5588fm909NHjx5Kzl2//frps74fXJQHA7AHaggi2veDqBlaiAEDATCaFpAfjYiqOB02k8l77793//79v/zrv/rHv/vHH//4x2dnL7bdejKZhhBms9m4dXJK4sDXMKjq22+//eGHH56fn5+fn7uqcIWRzMwkF4qva5emlBHRxR9UdX2z2q66q/Prt956uFguoU5oHsNOF8kLzG+99dajR4+QMOdcEYYRf/SEZjQ0/nCRmUXzerMK1xfT2Wy5WEw49llTztu+B0NJQ+DQNnEyiW1gtEbbljgaMFJKQy+qFTcAQ1S1lARxkGwGoKIuY5DykNKQZQDJoNmHRrjJk2oOCEeM/ZYVGX2wW4H9yKaakj13VCxLAb3M7OzsAuDc8RIzQ1CRfLO6cnDSZ347zAIbVLTAxIpkOJtPqGVoSNiy5aBZRcDU0HyujQEoIRpEn4lmpmpSDCMyIBVFbDCGMGmny6VlGS5XlqscByFFBMSccwj84MFb3/3O954/f7rdrgFgbFjwU1FnItVCY10iVQZIey2Uu7QSx94wRABiDIeHx9/97p/de/hOO1uWZIoYwdVT0MpwotKcAkZFGdKpk2iff/7Zr371c6AcAqdeCFXrU1NVZo4xrNfr8oxq36uf8vIHKtRRxGRgV999xfgUV1SjR9fbGWnH/7rLeY4e0Pd9v9fDWPkeoHXrWUX+C3jrFqXg5+VXnONcBlyUIBZHOS8okTSAOGsUwKACSsVfWjbJqg0W8d2pkmke0ICQKRSZ2Dfdi/86ooMvpXo+7nytGloeOZWMtlj6ChK8xuzbq1Gj31+oS1OiHtgt1vhcEADGdys08RF19qekogZESAADmEoSExWRlF39HrJYytZnzZkIXd3JdNy73u6vBuYG/ujouNusu+1WM8QYZvNZbOKQ0nq9vrm56rbrEOOXXz/76c9+8ZMf/ePl5cXJyQkyx8mEOFpWAGODkzh9GBeHGliIRAfIV6y9yWA65CR5mKA9bpcNN04MQ0RQIkMAG0y3oOIdoQWYLbcvBtep2yD3xIimgcA0giHAhMI8the9Z2SgsJumgzU72u3+cjSKdRvjEDNj4Lsnd5eLQ1U7OzsTteXBAXPw4eFu8JJISjnE+NaDh2cXL1fbm5Q7NzKMjH6Y99DCuqnQn3JVmgQA6Pv+q6++2suAFYoGPVBt3vC9RYTMHCg4ckqMgbTvh9//4bPZfPnd7373YLlcX11v+mFIwqQxNE0Tm7YJTXHABsnAiCFLEyyAmebSxx8jxxiR0JzWraCAs9nsk08+efz247/867/8yU9+/H/+n3/79ddPCXE6mU6n07ZpmAM3jYp2qr2qiXz43nvf/fa3ry8vnj996v3bSFhqw3UkDlQRq7t37sYYVbTbbru+12yisNlunj79+j5C2zaumQa7LkRDgqOj48ePH08mExcfGK0W3vJkUH/PrT+FGAnJTLebzfnFRZjM58t2MolGRVpZco7MMUSf14jQIFBoLQhk6EjJ0lChLQRAU3SJrQxl9IXre+ScsvQqGVXMXAgI67HXvXgSYYcYwdjhOe7JWwCi0yAc99uzRFZ5NUjkBCIT70bJKaWch5yTaHJZeICSqyFCzj10tm04EqFpWBE1bBGtbdpIE1accpg2FJlK7YoAAiMoApVKCkBRqC6mS9yWMFmMOYShVrJVpGx9dIacmWIT23cev3d8fNJtN0zMThLSMtRov0YDewP+3EG4IltZUTDcXczkg784cHvn3sNPPv7W8b23MpACKBCYAaqX5iqmVvbjuL8QkZjWq6t/+Ie/e/b8y7ZlU5XcgQkCNE0zm802m9V2u22a6EswpmhOu63JYm1fM9y9YTXrfxICRkTAW/14ZUfgzqCBVdtY9gx0fTfPIpI3281kOvFdWfaXp/zO36s7bC/fG8Mdt1Fl3oGamjMYiJCQnYo11oQIDcSsyl2pQRHS8FCeFMkIgILPVZ4M2bKFUrLgPM7tLt3GfjYKJgSIBkjM6Fy2MWuv82r2bHhZ3j3NgFJ5Rdy5D9x9r/wjmKHfWg30YIx//bX3GgR3DwLARPNqtTJgJ5W6oZEQ00BEJCYpDSZqLg6uRmIk4hGLquZcMFp/QURTFZFMSKogOa3W65yzKYQ2hrYxwu3Qb7abbru9uVldXlz8y6//JYug5rZtKAQjDE3EwKaAhiwwh3iAYaYooltLT7rL55zWDSiTgTHmoxAeuwg4gQEKQgY05BXrpegKTJmL4BmYWRmLYWoZ7Gropw33BkI28ZRONAK1QN5F70kmGEiNyTw0LhZsZ553IaI/PzRbzhdv3X9r2k77fnj24tlkOp8vZ0qWRYGKDMLQd30aEPHTb33n8O7JxfX5y/PnV9dXk0nbNM1kMkUjP3l7T+52Hl78AplZ3/clDrPdp0XwZMvPDKBPxUBUDkiWRU3Nh+Rc3tz85Gc/a2bz733v+81s+dY77z356knKedo0B4eHFGjQIdJEVCQrqGRIRmZkzSSK5iQ5Sw6ZD+KCgLMMmjRwaEIENdUcGv7okw/f//Dxd7//6Q9/+MMf/+jHT7/6+ubmKhI3TVsk5wnRLBB8/tnv33n74dHB8vhwuek6vxUzSyLOw2qaxonTd07vfP973z88PNxutp9/9tkvf/nLr796drNa9f0gkl4+f7ZYzqfzWQiB0MDQZ1C3bfPuu4/v3bmLhAMAhhqPIhYJi9uEnWJ5gABRzfX8ZLvdrlZrjpPpbN7Ehii4mNAwdCJZlcSIOBBGChJiE0XNxwuZYMmwEQxzymClmRsRRSXnlPIgkkAFVSqHfWdW3XKguawaERTp3FL+vZ0NA1I15rDr1dmzBtVWFM9NRFoHN8GrFdPR1IoISh6QoNtuUDEPoqCbPKz7bQI8IJhGbGdtYCbNPJ82bUOhYTaGSr8pS4tVN7VsXrfuEkKObcccYiOiWs2lq1QGYjARw+OT07cePHz29deESgSBQMzMYN//7o4Dop8XIhk5WL656k8TEzMFMCLidjp/8OCd6eJAABWcCAtqqiAouczVJKgSefWNDAAJVX75y5/96lc/BRtMsOuHPPQASsyBXb4QhmEYhi5Lhkpc8vwRSxM+mRlBAbr3cPo3X1Y4EyXEKhH3Toy2Gv59mtluT+GYvA0p5ZxEtev7dtJWpzWCKO7qivhz3VE4xjB1LYqOGBEYaEpD13UANjKfVcv0TNffwUILcKSq7mH0TnPKrs2ACExCCIAsRevPf9AxfEQstF2oGl5Ehmi18UihTpCAcbENK4/VqgE30zqnzesKAKZqCGqoNa5Fdd/3jTVgrGy6+iSQeb9pyjUNUkpDVstqCoYOQnGgOlvRRAGKioUDDFwBKyjzzfbfkMHcecnNzU0paxlwYCIaUtp2267vum673ay2223OwszzabvT5HNdDbAJ0N1m+vZkeY9ajNBp3uRhjbIiTTEOCCYwMTRFLWcDxOWnA/YMLzW/kG5Lplwekc8U8dNhBGK2Tula+gVFR44CWAAISIVxX6V41ZyzU87wDmoYE0vcbXe/iOjenbuP33msop/97g8X55ff+dajyXSSNIlBYHbVAz8rWXR+sHhn9s4jfiSasyYA+OrJl2dnL62SM/ZDp2Ksajru1N9xADsDIoy7h95wXCtbGNXUUFWq6JttttvPPv/83oOHDx48+P6/+fNuu3369Msm8HK57PphtdnEycwEyNAUNMt6s1aQBcw5kIGaSUoyDEPTRGZar1cqcnRw2MZ2BGUo4Le+/cnjd9/+m7/+tz/8ux/+5Ec/ev702Xa79j5mohACIdJPf/rPm836k08+OThYInPTNPfv35/N55vttuu6pmnu3LkzmUyY+dGjR++/+/5sNmPmv/jzP//ss89++Ytf/dM//ejLL79cr9fD0F1eppTT4eGho+5qhhzuP3zrw48/ms5mokLW4J5SVTVSewYVStdv3yVfZzRDIhG5vr5GDsgcJ1Pw2TXMkqXvezQEM2owhjCZTMorGYiKCYQQ2smEmSdNG0ZdFaKUkg0gIoP3X6viq8+/hvgAaloyCd8Luyd864HXnenGpfyvmsGbLr9pDmwgZhRCMIuIkMXUiih3AeZNRzmUnPOA/dC3ELrNerVdr9vlNg5D2Pa06aGJFgIgEQTSjBzQ9Y/cf1HxvuPHRkcEGUMM7WQynS8lxCTJmXEoClZEtxCgadt333v/57/4aRo6BHTX6+2pe0ntDhWoUdbY04n7EDSA46UMiAhhNp3fufcgNI3LSYiBmBlgmaRWV4wIoHI7PIGbNOHy/Pl/++//3/X6KkYzES/9moFn6n3XQ4FwpDJdtRSecVcu+SPXGyHo/UTLbkuRjF6gCEObgReM3MAbjOw+ybnvhzQ4taLCRnvbY/8tfQF2idjrO8oAzERyzs6QIlAAFclZTR0JKVOVYJf3A+zqfoqgYINJzmZmHeREXsMQUjMih7zrr/kT9Ew7IIfdJ/N/7fIm3AcYby3t+AueR6s3a5l5Mnr7+hMkrNcPmtUygTlogigm6hqH5PVpcwI36JjbAVYubdlwxaMHJlarxDMHkdSGpFdX1/2Q1CAgM5KJDtK5DNN2u+66jXN5iIgDemey1zzUlADuTmbvT45PqG00GhkDiFKPkHy+oy85UgbWEERZnCxAkFReDP3X/epp3/VsBW2BXQxczw30IBtJkZlByXQwbYgZsKEQgQYToyKLsYuXcHyCu7TU9tG8nWWSzz7/7Le//e1nv/vD/btvHZ+eiEnOCshQVDABGCiGbe6zqRICUYhNpEZNIbBUyV+tXXPjQdqP6d1tjPlTTXTKTe7/FoARGJbGEiBmBvRGUsdV+pyfP3/+5VdfHh0d33/46H/5d/+Xf/jh312dn01n89VmfXb+sp3MIsc2NEhoICkNsNXQ4Gw+QwRmUpXNdm0wmc1m7aQ5e/Gi22zu3rk7m07Bd5CqorXT9sNPPnzw8MGn3/rkn/7+H37zm3+JMb733nt379796quvfvvb356dnX359ZMPP/7w029/ShTu3r378OGjxXJxfXPzs5/97Nmz5++8887Dhw+9kNy2LQAw89HR0fHx8ccff/rBBx/+p//0n371q19dX1+nnFarFQAcHB4QkZnOp5N3Hj9uJq34xDTT0S1ZvXaG2//t4t5MMUZVLTqzxGkYVjc3sWkXiyWHyIGxaZoYc0qd+FgqCsy7grcBIIScZ7PZYrmMTTOdtA0SEzGzql5eXuacQRVUTNQs70PI5SSOsUGJ4b2i5NjnyCYt6htYJ5qUG4Rbd1q3iu2DnYhmoBzYwCIy82RIhEkNIiI4Qwd8woAQlR5FBZCUU8hZcpKc0IANUAyzQLagRMaaNYFaNOAS5TKRSUl4xriWEAQAEZhw0jaTts1mri+Lle9Te7lQc3r/ww/v3rv/5IvP1FDAeM+njvt/7zy85kX8XRG8B78QSw0RYbE4OD29C+TCk6Vb1Mcy0UgDBBVRMFARVXHO4GaV/vlH//jll5+HwAFRVepuAkT0kEV2YxCBqCg1lZccsVD7E7q8t28NRwtQ9sAooXX7J8d/vfqtChWmlERyGoZxjure9SqSOrqUvbcoWpQIpTZYf9Q9rHp5E8zeKKNx+yMBAAhaBjBN2TSBiU9FKoMfKKhkM/XpY34P6AOCiZA9LAbXp64tz27breqevHKD7s6LWXTgB8xdAdqrwWsYV39Xf9jbdiO0Vroq9mglPm9w1CjZFcZ3XqY8FR/GAa4VD6gGXOZrWDEre08ki3R9f3l9M6Rx4rcO/VZMTfOQhs1mPQy9qDBzE5nZ231L5R4NGuRFnKDZVe6NNCANJmuUgUwBR2gfgBLSBWBm57bpdugv++5F321MtsTCoWySAvGX+dJmZqoJbCMpZJwAIWgwEDBSnYQwD02fusFXpvaAFWBohBZ2oeX+oyvXv/z2txcvLyZN++D+W//2b/7ndtpuh04UAkexYiyVoc/Dtu8ymHiRx+NoAxVQ8TVx+cB9q1GQJfe7TIyIKaXtdjtm45XDaTUKthJfI4hKt+2IyzRDIlATdqAGse/7J0++vH//reXyPQXG0CyPTt57/K4gpmEYhiFMQsndS7GfEMFMiZmIzUBU+r4jwul0slwuvvziieR079696XRKxsigJoTIFBfLxQ/+zQ/efeftn/70p0+ePLl79+53vvOdH/ybH/z4xz/+zW9+w8wc6NGjR3fu3Ds+Op5MJk3TzOazzWY9m8/vP3hweueURrq814eRYoxHR0d//dd/3bZtzvkXv/gFDtT13c3NzWQyadrYxvb+/fvHR0e+XFA0acfCzSuFtrL/fcEJSYs+HyKU0XCac05DzkPTToh8IJoZqEjutuq6qJ6sT6fTGGM7nYjIbDFfLpYhhsiBwRjQzDabTd/3Xb/tC4gtBrpTYjRFBEAePyDWe6/bo+YR33y9HmeM6zcGlqOLCiFYaW0CRFETN0ajhpGWPmEx1tJCKqKqfd9vuy52HaWBUw4phaxNUjI0Qs3iiCICmWv+YEWLCcgQGVVhLPSo5JT6XAWNSAEAuForUzk4OHz09jtfPvncXLbiTWuwd3z2Q9I3/ZiXBwgB8ej45ODoCInAkBACEVkhWY17z6WJSmIM2SHMF08vP//st0O3mc8aADApdAwiQsaskiU5E7tGSv72xfKPj+uV/OmVYGLfCu19/VZU5YTkN70I7mHRxVYYFIqAmYlIPwxpGKzoUY+viWPwVj9qkUque9W16IvfsjJL1zdeKe6JKIhSjaLcK48fv7wRIpWZR6ZoPvVLQAXMZyabGYIiGQZupi030ZIpeou7/00uzRaZXZ5slymb+dDbmmbvLxC4tsmeAIoHu0BvknoJVWmWbscmuxfbrbt71nLQoDYZGfkkgz09Ny8rloZgJPbyko+/zGaqsWnbGJnYQ7YCzfpcyZS26/Ww7RwKNYKc0np9owZDSqvVTd/3IgJozMSBsYDPCGCSBdWaEAe0i2G7VnuJCIhZ5Dp3HZohiYGiMaKCDaZf5U0Qk5zF8k3fXenQm4EruLg6kYmZIZEW8f0SFGTGdVYUyaSGwAADKJI1gCdxshn6YV/Cf+/E3s4e6nn2b9Vcs+u3Z2dn77///g/+7Af3H9wb8jAMmShKqJNUEEXsen2z7rusYoDklEdzIozV9gxHHPfesca4NdAiQhqGYbPZuK10+cBaQxk/Pnk9WNW6YUDMrWlsWiRiI++Ub5CSyOrm5ssnT+7dvfvy/OL8/Ork8ODe/QftdOaqk6qSswWKIVKMsZ20dewQIBb1EhUdtkPAcLg8vFleffXVV33fv/Xw4Ww6xQyGRgTGLmlEJ6en77///vX1ddM0Jycnd+7cefz48dOnT589f7ZarUIIbdvW5N5ijB988MGjd94JsdlVFIDULIkoopgGUSL+/ve/f3Z29vTp05fnL7OEvu+3223TxqOjo0ePHiHiMCQ/8+omYo/IdEuFBQCVwHU3UUXFQVMiJERmQsL1avX06dPTu3Z6dGKmOXWg2TSbUd91nkNPJpMQQgxN007VNDZN004AQKwI5OacLi8vLy8vu36bc1LNagIgXne8HX6Vr4yYOWJRM9oTMXyFv4kuUQkVoRmz/DFZ3Nvpe+/IDGZIHGObc3YuNmK2Wg8WyUPfB6RAJBpSHlLKq9UqP3u2ETnlcMhhzmxAkLSZzyCympILHEPpoDZXPaJCPlalbJr6wfXoteuGrkuvOeBRhIA5vvfuB7/42T9vVpeVKGz7ZvUNKe/u+ECt5pTl9X46Mgocj49P2sm0OHREBGD0+uIO0CazQsQlI47MmIZ0dvb84vyM0Rh9/GTBC/3xlZlv6NiKjSxl/JMB1Gu3MBol3LugjkK/jZYBvBJ2eA/F+IZUfkVFsvf29YOqVa2ocYdgHY6AoxwwFDzX0BSBq8vxFwRAQg5IAfYa5KDwxs3hVSvLYJVW7WHfHhm8OnXd8bo9HhRECjGGGIHS7q720Syikmfu7r7CDGN/al0UGD98AYore7MkxSWXG6XZXoeg93ceQO1DCCEUK1PiGcQ6+Y5IUcUAAnFgHhku3gdG4GtrJlmHIa87FF3M5m3bTNpJVfAq7kFEUt9tVtcmiVTVhIwk5zwMYrrt+9X1jbMqGxdtZy4iuYiMROBKY3aTuk4Mcsbq4pTAOAipmpGWteslf7m61jRIyq4FPRAIMwBEMAIj4qIrnxOVcVk+7BgUqEdhESdINogDKINGgSMML5hZEjMmLLTb0ULbLkpFAOAyvaOaDzBA48ind07/5m/+5tNPvsXMXd/3fQqsKaWigwgwpPzy+nzbba2k544lUt2JBasYi1n1/NyyrGaWRbq+k5wd4AX0EXgIpS2D/MAgMiIDQxbN0iMBB4rcABV5Oa9EakrPvv7q7O1HTQzEfL1a/ctvf/Pxxx8vlgeEBqDoTrHh2DQxBuYxUAUEREUysqxDN8zn04cPH3Z9/+LFi9jEBw/ecoEnZgLMgdCVWq9Xq9VqNZvNRERUJrPJW4/eCk347LPPVqvVbH49X8wCBlEFRI5hEkI9Ks4A9sZANUlqpKaEHEPzF3/1F//ym9/85//8n2OMfd+v1qvTuyePHj08PDjKWcfT6LP8ShtzXVO4vcQAUGb3MlMR7UYkFFHVIXX99Xq93nSWpQ3og8191qi6RKfI0dHRZDJhQiQ2o65PN6sXw9CbmI+hSanv+3XXd6CqkkSzWR4FGD3rNmAE1NLKWCDZvYz9teR9z83UoHGX/o6WYSxwjLlRdcwmIsTs6tfMkdlHeoylOh88MvQITEDMQ2pC13Fo82qlTQMvng8iOaWh7+fLBDnHSRObhmP0w+J8R88ajQlLxmtZNPcJhqRpSGnImrOWyaxuLxwzA4AQGJkevPXWycnp+vrSxh5T86B6f1mwmBlgBKp54QgO1kbwGovN5/MH9+8zkwD5glnNzsaYu2JOfhETMtrZ1eWvf/nz9XoVCENgAEBlVTRzOpsvO4TARNT33ubuEork0/nKvvPhX2xVFVerlXklD74lAXbrSbpDNRiDFTel+9ajWm8rsZ2Z5JSGTvKQh44A/BbqAgIAumUFIwB2oS4XOCPvjvS819NfMkQObRvbNvjMm2rE/FcAAUH3PkCxeyUKVGMkNkIjxwpqXLHbz1BJx4jofMMaU5mpaBYlLjqjHm1VFBpcXP3WYS+fgZCkfoaCS5THX2dMWCncEb7eB/waZD8iFWPlyL9KRLPpdD6f5yxZxQAYKTC3TTOZTDiEon5npllkSCYoUhsSVT3NqqmvP2lT1e12vdmuARRQwVRNdMhuW1er1Xa7SSkBQIxxuVx66QtKhMiTSRs4ptytLZEBkQXE4IMCiRQhmLMgy3Ix4YxDRrrWjWBRhyBneJRSPCKSSBLJhBpCRfBc3tpwC0YiATBDUEQxY9GAMG8mq21WgrTbebssF8ZthGg6UifKdDlVQYR33nnn7bffVtPrm5t+yD6iEYkMLIuklLddv+o2hkDs2JvD0CiaYeyLAYBRbB92h9+TmPK32PpmnfoBVIxAvfnOeX0K5hUmLDqup3fubrfbr796kmKOkomIOCIiVA9kIuvV+ulXX7/3/nvvvP32s6dPz16+fP+Dd4mU2YixbRsMzDHEJrKTqsfhY4bEmFVUcxqGnqmZxHfffXcYhs+/+CLl/OjRoxhD3/ddZ9PJdD5bgOr19fXZy5eTyaTruq7r/ETdu3ev74ef//wXq/UaEAG9+552AJKbD9dDwAJ7KUIGJTPNNlvM3//g/f/yX/5WUhbNlvTo+OTBw0fMYRC1cUX9sNZjAljQsNGGudQuEalZCLHCDuztryJKSIPky8tLSfloOU8pEZHWgMnM+r6/vr42s0k7pbjXG2OWc9Ihi2TTrCIEkFWqQAQgWM1k3+Bc/+RVsqFqcIjQhzpYEZGFPctA4/WKfS/3rv4T7H9cowcM1AxVc87brgMjCpNEQ9/3MU6GbddvttysiUNSlSypH9q2mU6n7XQSXPUsMiGR833VIBuZghiLhm6IXYpdEhRCIywmFvdAVkRUUzM8PDy8/+CtJ5//QVWZzFw2u4wLGzGDilbtL8/rl+dEiJPJ5ODgAADFXFOiFMgMXCLAdG+FDYARySgP3R9+/9svv/xC80ATDqE0TfmwP09RVIUZvaoiIsOgPsqxJHv7n8V2YgQABjuV3v0fsZ0HKl/aOyBvSv7H333D3QNYmQCehyENw1BcUq187Q3BceOKzsX39aHailRSPMTYNC0s9HJCRdgFHUs2U/RJhKWvSYF85ECJdkwN1IiBiEgJsNYCCQvTvT5FEUnDIDmHERYiBDDJOacB0DnSDm0hjF17HmXeWpfRsyCOpqaWWJ3sAE7D8pEEiGj/4ySsMRoMxE3bMrEx2G5OqqloTjmLpJxzSj73w4ZEpjAkE7Es15cX29Rv1hsbSy7mkJR01cW69REVyYNXFDabm5wH1cxMsYmz2ayIrdRz3raTEMKQIJlxgVOozIhAJMBYNNsBwNhsxuFumK2h3zZZUdUPBaCVXHfsqQdVNRD/HlOZ/GdgWa03C0AD4YAYzAJAADqMk1XXqeSOdiHLnut9bd9aiW5KAIZwdHQICC9fvlQBQKLQcAiACGZJpdt23ZCSSZl9UWAuYMLtZthue0BqJq2JDH0nKeueyg8RA6GM9UjkyWQWQ+yLkgECeGfa3v6qWc6d0zt375yq5MvLi5SEUBgohJ3ZNQDJ+ezFiw8+eP+9x+92m41qms/nsdSM0cMsH5/HTIjqT6kIE4ASqWd+XdchQdM077333s3NzWeffRZjvH//PhFtNpu+64c+NTG2k3axXLaTyXQ6tZKWARHduXPnBz/4ftO0k8nE6zcqBgDEXNElqNALIjNirYQoiAgQLJfLJjbbbquqRyfH77z7HscoPi5+RGv92daO9hELg9vQpZmBaggcQkTiEDjG2EzmRihKWVUBm9ioqZqFEEQVdy+CKaXNZgNA0xAX80VsIjjFxlRT6vv+8vxstYLNZiW5QzLUGg58c11pdJ9+BovOvRX/VE3v7l7MHGwqCYen5vUTkvd3uQ9m5sLqsrpGiEBUswgmFCyMCDXNKiCIPfRIK0LC0PBkbimnrs/90K03FCJhQFHMLeUMw2CTFictWVPGtqs50ImqmBWS4GYD3Ra7npmQyT80IjJw7eh0AooBQGya+w8exKaRbjdFuDZTjXne3gPF8VffeBECL5dH88WBl3iLOq6bfVMrvVLFarlnNwMVffHi7Jc//+lqdQGQY2iZy+KOrVzjU2vbdjqd3tzclA9E5UX+yGW2B33e+vorEpW7N3rTdWtj3L60bB1ENcsiw9CrKwrs3vTWu+8t7FgbK1/HMmsINttt3yczLONLzVTUVMmMKtbipdtiOvduAgAZiBHZ0KeWvopPqaaUhmHIOQdzdA3KwVE1K5zTvc9vgOqOwVeh4neKTpGzEvfa+DH2PtOe8Ei5XnHAtr9A/sBeXfoSDpKZpb5fr1ZDzgomqqAWmJsQEVHB+jRoFldCIFWUhCljyiSmxQG8KoDeD/16syn9CaZmmnIWHVJON6vrIQ2AigTMNJk0sGdE/EEyc8FOrZb5vQJRPrgD+v4MLZgdUDyhBiBFg0xkTKguawtwW+AGzNQ0Z+Pgc7BLa5WAbNUQYRKsQY2AU8OAODc64laSrVFfmwz+ylXgd4LRj5qYvDh/8fTF00mcgVKIbWjNhl4dtJOsZuKtU0WJ3NA1NYn6vl+t110/zOfzQaRPg0jS+tSJKMaGYjBDogCAzOHO6Z2jo5Nt17k+INTkeLdb66GbzWeP3n549vLF5Y8uSq5mAIAxRhh3rtlqtbq+ur537/7BwcF8MVkuD5omEhFiUNWcs6p5vgS194O5YPxgBW3zqIsCL5fLb33rW7/4xS9+//vfN01z9+6dyWS2Xq8uLi5CCPPl8sOPPzpcHnCMqmUGCKgi08nJ6W7vInBk144LzDoqCNTEFQHKwE4kQxORxXxxdHR0fnF+ujz99FvfOr1zB7A0iozmyUpU/SfyS7dxgUOM0bemmREix0YUI1GM7XTS9JsbQohN5B1WsUtHPCPxR8NEBSTLebtd9/0250E016P/qn2s7hMAitz3/vbGoilQcsQ33kLN3WkMtfdsdImZfJ6KM3fKi1r174hEqEbMrMI2wl6qpqX5crNZq5phaGcHkFPuurTdtm1rQ8p9lxkTIhsSACMKkRF4rzsbRheuE5EhDamXTad9Z6nXrFlNSt2aoM6yGNcFTALzweKwiZNtt3n9rkssgzvPMNrBV9bY/awCItHy4Ci002wgUhxwPVDmz94/AZsfBFKTPuff/fY3n332hzQMkbydE1XUM5NKXisWPKU0mexEy9/waTy19Qbob9if9QFZfWqusVgq/W9O8W8vz2uu2l0TSs6acxqSFU1cKxnjLqLbpbpu/wgZyx/y1BgA15vt0ydf6svzIOJMqIIHe9BR35mIiTJWZoK/slmZzRoU1RXiTMcgxT+2mnZd5wp6tZjiRdrif6H0396+bUTCESB5dc6gvzlapTTX+33jwQqm6NPNdiX5sq/L6tjYbYy8I5sA5JyHYaA4DFLY8wSgBhmRidWsDDxSRRRR8xEzZOMj9vxrZypM7eb6uu86ERlZAKqSc+r7LuXkBSREnkwnbTuBGhu+uicUAFEJCUxBsxmXtmo0VCgAA04Vj6g5oNgLtooDQ3FiFadyQr9r5DKzU/9LQ4kL6pqYmaJ1mjoNg7FRFEJCaA0PwmSbM0LGUmj5o9HprYeDZvbkyy8X8+Wjt96Zz5YZLHfbnHNWncxnbj90bCPfgc2mZsAETN3QD5KNEENgxFilfZq2nU6n8/lyNp1NJhNAnM/mkyYcHx8/e/7UN4xPVgdzgE7NxipOWfCu78TMckbEEErg6q7F0+fcDxfnF3fv3JvP54v5dDKZhMBmJmIi2XJuh9j3TdtGREMqNcYCfTOYxZyTqqlo3/U84zt37n7/e+Hnv/jFs2fPFouFjz+6ub7pui6l5PH/er2eTCYcGRBdkQnAZ50DE3EIaOACCuoambV93swIzNUo3WghkebMzN/57rc//e6nzWQyXy5DExV3KUvlIlk5XQVm0xqi1qNXzyQSxRAILFuZcJiGgWNsYqNIqrJerdbXl6DQUAONs4TMkJCImQ8ODiaTWTOZhhhDCERoqptVf35+vl5dp2E7DL3k7ImDvTk/++M78E3b8VZAfssH375BKyBR6QhkVRohgf11oNpHDqYixaOogQ2D+aARM+Iwny9l0lKaSEogiqakSuppP4KRKIgYZAUkNaNslo1yhqGXobdha+stbLequZM05OywvJmXamCHqwMExDa2i/lyMV9sb85f92WvPEq4jW3s/Xv0JkQxhuk0qUESnwDthTYn4+zDu1LTTSIUSZeXl8MwEDERsPcF+Dwv55EQibjX1L7v3SipqpOxGP4V14g4lv/z82Gj93UEx+22n4hvuMZcc0RZiqMF52GlnHPWgpHsfmnP8VaIp6xbvchTVvLRVy/Pzr7++usjVZLkTbUVzUZAVPBiPhkwgGtM8PjAzIwMWgXxMWAASSFXgH28DTDLpV1qB0MWFFtKWfKVDWAjwLQHrRu+2pGEVtjc7tHfGNCUNiRC0lqVxN0iGdR6IVJhy/ivORjgzVhYzqkROkbv+I7P8i5956hm6kGcukgFIkZiAlLvjSMysNXqGh0EdHkMMxVJ/ZCHAdQ0CyCEGL3GXMZwU+G6KVgScadP9bGqFqAR0QgoICmYmJHZMcS7Yba0MECcK69BylgNKo3lWYYSMqMRlVjYJ3EwKeD4IM0ANmloiWfMjDgzawQOOMBk3g70lWxvUITARyXdtoI4Eg0rRQ4BGAnOry5//utf9iJvP3wHkVKf1usNxfho8T5Fym5QsFScDApnUA0ODw8fPHhwc3OT1e6e3vnoo48mk4kjwCEEZmYOzAEdiwZqQmyYHj9+7/e//4NIT0SG3kPoR9GKGoypK/5cX1+fnZ25rfHuEW92J1TyPgkzUHn57Pnm4duL2UJ0UNUhmeRsAE1smnbCCGnoVAYAzTlToCY2bdNOJhMO6GOfQMAAUpKuG6ZTPjw8/vijjz//4vPnz58/evTIBflUZbtdi6Ztt3n+/FnTttPZvJ1MPegppHU/U5TADEvcCiP3etTb9yVykqoaZFNBe/v990u/L6LX0NCQofZgACABVqY/ALg+8QjMAAAZj28XY0Qik5wl55yJZMi55cYAhj6DZElCSggBsITAyGFxsDw4OJjNFi7fT8QhMKBdX1/d3FyLCjHH2OQ8AAyggLAr4lvN8F+tYO6ZkuJNizRFsW1Q72/fWu3zrbzTYfwulm3spagiyVOzdkSv9xaUgciZ0L7DoJi6lPpgRmjd5ub87CkhHLdTUmODoEgCkAF82hmSGqgCiRG7jI5Cys12SN1mGPq8WfWbteZESRJlKeU3J4yPOb4BIDIjEwDEJsQYERhMAKl2XVaNMLcmtrt3T8XqXfsX2QmVpfXQYBgSBHONBKi22krT2pjEsRFrCU3g3cePf/zj+c0wcDAzlgySdZw1grVZ1ABSHq5v0pB6VS190TuPUC1JKSu4PcYx493tBAMwUDEiMDNRL6ySs+jRgIp2pr/1vunaf+671M0pRyI69MN2s91utxw9o9014IzvvvdJ9zan9ydijBxzypcvX15fXywnLVoCzWYCiBQ4NDH3Q5EMIiRgViYFz5IJiQCIMAASBAQjywlklIuuywLoiFAWFCMF1DJQHGmnKu1AMFnJeQrQAQA+UBChTl4vnrA2Fu2Wyurfu2yzJqBhPHH78fEYoYxnDHfhAZSdU+q+vpsAAdWUFGwnE1N+y6wUqE2Lt/Yd6TEOApgrGAcSSUSoIGbFW0vOaRjS4GKFmUOIMTZN48NBvQ3fANQs5bxar4Zh2LtH0IK0UmvEouAEAYQW6GEzP8WmUb1GCuAoWVUR8eVylRkgQiOiEDglHeFZxFIyRAIw3OZM2E0aisBzIzabQGRuDmMAsy9MVpjdVo/ncW+FbkWJiAwIArbuty+vLpBDjA0ZbLfb2M6RAANDLg0IiJWYVy3gbD5//PgxIsUYT05OjpcHbjBKXcMUkAzYrTsiA4QQ4/vvffjrX//6q6+fEKiRMrvabT1XHqURiebNOq/XG4dEwMBMVE3UcnapzsDAArzdbrfb7cHRgVEAYkQITUOIs9k0hghgaeg7TV3XbdYbYj45ORmavu/7xWLhilEA4oWvvu8BYDqdnpycEtPXX3/17Nmzu3fvIqJ3GTHzYrGIMaxXq8urVdO00+msbWOIBFAW3G3PqGE0mk4/PM7nb5omciQKhpBEBsmT2cwIiiIuIhKajbKtUNeViEN1TcXV1KeLVXoezezLL7/sui6JAnVEASmyaGwapChi22039KkQNdQZCRYQA4cmNjmLWUb/DMpqevnyfL1eG2iM0Qi6Dsco3g0L7I68xxm3sDKr7Jvbu3H/H29IYf1/eayj79VHsWDmO37W7rfK8iEiATJbYHEXrNV6m6qmNACAGcHNFSGFdjaZzofptCNCg0CROUpWzQogSgJMqhLUqFfKQn3CPtuQpBPNBWBrgJmw4M/jx6lXIA6BmWkynUxnUyxiF3sLUtevHtW6ber6jBEc+dgcb3RiCk1UExMrU/kQwYBKxR215CmornYIiATMeP/+vQ/e//DnP/9pIDGkMf1V1RCCJ6b1ORSIcXwQ+09uz2SDt1aUuc57jwzGb6oVth6aAQSfa+Ed2/RGHtbeMlaPpLXw4cFNznlIqeu6KU9uNxLv9sYYy912yQiAgTkQd8P2+upq6DeZvOfMEEFBiZkCQ3LX4R7cYtOoCZVPj2RIwAE5MiKQCqxy8lZ0hNrB5ulL9WyOkRYyMJi6lhx6gclcFFsQ1IBqRagouzh8ZyPpodydW+gdAc+juFraczSkDmOw186e3dpzUCwuWmXYqqpkKXIcqqpFTMqKCTETURFQLTGDeZWaKxd777wDIGLkQAAmWvu6fMKz95T5LDZgZu+JfPWEm6WULi4u+r43Vd9sbilZ4IT5PrYI2vVdHvKibe/Ml/ea+RSMENlPwGhWPVx0jraBK4kToaMFZag4lmdWghs0VehEtioJyQhZXAscY4inML0eetHcvVos+NPXMAzXN6vFYtk2jQASmBqwIQJhUYEbgY/iSNp2ogrvvPu+e4dBLPW9FQjEOyYjM6AiE3gbrgEfn5w8ePDgxfNnphmcqmK2X6Qv5lW067uUhh066S5HMecBkYw0NLOmie2kRaL5YjGdt00TY4xFdQvRzHL2yKrbbLar1QoRl4uDwPHl2fl6tbl3754XlaXOThiGwd3t8fExgD179uz8/Pzo4BAR+74PIZycHC/mi2HIm3XfD4OK9L2KEiKWR+a3X1G1vTNfTGpKKefcxpY5Uggpp5QyOzOgDIxzA7Hj+jL6RiFE8pEpzMTh9mOW8voi4sJAzCHGyBzatp00bQwBKbSxWWUZhsFqxVdy9th1u92EEERN1RCBGAOHnNL19XVKg7n8Sh5SGor4kZ/7wv7zaGAMpG650l3Zby8CtIqEjU9+72Z2pnPMgMef9PPja4XjchXeDALWeQY+tkiLRpjoXm1MTXImREmwXfH1+dnhwXGazQcf5spT4AmSAQoGsJw1GROCACqglmEbJk6H8XXCKZMzm6HYxFvuiomJKQSezWaHhwdIJNlJpX/6qv4DxpwYK7RNRNPZxJMPl0sYF6TmsD7dBglQAf15mWKI4aOPPv7qyy9XN5cKATSpOu1gd5Ef2YrA7XnlP3GZ489/nKkFNq5Vzb/+6M8XUz1ms2Vt1NS1dybTBva6yq3+KVo/Xkcbo5ziTUuz5+XlxeXVhanP+NiDvN1F1iwREDFQjAEQyMCQQIrnMjOyUheRlGBv3cYLsXBAb+/0As47jEzjBy/irv7d8gKlLOVPttC8K/TsQPDe6+69A9g4Dem2Xvtubf0GaxK8xz3xecNmkkVUVBXUaf1WoRKTLLrjSQJ4yotGVORGmKvuG0Dk6A5YTKyWyt0BO9XZ3V6McZ968MqnrcpnO4QeABhgTuG0mbRI3Ey5T1PmJTaNIhBk0+KWyrO5tVTj+wIQEQMAItc2DLMiwuBvY4qQTBKFTGgKBAiAEekwtocpbqXv6RtPdj3Mr0mF1tONRIAoouv1ZslcHsdYDtk7VsyxaSBlKHtVs+OuUgTw0O8qcIlc1TDltLq+vLq6Mh/ShYgIaioyKnIAEYJZSun66kpy6XSiAnOB02cDc9u0bz146+69h5PZYjFfLBbLZsJajSMiArGzB1JKfb/dbDbb7RYAbm5uTk5OROTly5eqev/+/dg0gAJFKt1SSojoahgA8PLsZdd1iOC/nl1CGamdRCLMOQkoYmEhjKAF74gRFeCpYJGnGjlJ27QNTPq+VxHYrW2Fcvcm9KE7YDBAc3oRIGi6LXcjCAAhBN/GIUbiwMxcVLhZUgJUzVlzJgBkBuKs5BqLTQyoOnRb5AAARBw4mOp6vUqutyuDSracch68UFDtvH/IW+lr9ZJvSH/djO5/179emaev2SzaebXdYSuLVZd35/kNkThEM1ETRMd0QLOaZaNdRuIS8z5IbHV9cXN1fnh0HIkaCpSNM9CgRMJKZFmyIBgbiIGYsiTTUnT0hhcOITIrvZr6jx6LibxiSwSHJycY+BWxonGrwN4hLSyhkrrtus6wTATQJobFYu5dYZU25Za0BO1YHKF5NgUAJqCipnTnzulHH3/0y1/8rNtu2cTUkSoAgMKMrH5x1PWsy/6mywso4zM1hj1e9y2XU6+xsVNHLeF/7bW3C1RFpYLnnkCWFxsh3IoC4+7PHqgwdN3XX3+1Wa+bEjm5Rn35hDJO+DADxBBYmqhglqVgAFZKn+AScAoohvzqLY97uAZPJRaogLFVAdE3rKz/jVhC8r0EfvcD+Noa13NXHkG49Tmg1o3VQG9Ps3slQMBisHZjHwp9aazqKBO5XBE4Ii7GBjDkoHCwXFLk6XRqNado2zawS9WDZ8pm5pbaOdEAEEJo2yaECpu/viTm6UiZnVACbpffRFhQPArTqYmoBOdMkgmVmNwhCBjLZgij8R75up5BmRFRoUWMa+JQZlZL5KRHCOCi7LjE5iRMrvL2+nXaN5Tbd4v2ytf9HsepLO6EXr582Uzawo/wkYOF/e/lAODALQVxBRTTPPRg2USwWkY0YxMGODk6bOLk5uJidbP6p3/6h88++1xFmR2sRCIyJdvr3zez3Pdpu160UY2ZwdUoAYEZQ4ghtE2cGkA/9EZhtVp12z4285xlGBIixBgTwNAPnm6KpJRS13U554uLi3fefvvOnTsi+eLigogevPXAO1vGLDalBKBN2xwfH/uLAFhKaTqdur8kIqLAgYmL/j5Weke1WVLjrep+bn9XsyIQUtis12bmxauCNtVN5o+d0OcWl4zGBZ/VdFTOKw/XGBGdwZdzbgIjRy8W5pS2m/VGV+JkEh0CI8VIYIRZZJjNZovFwt0+VdVuU91sNkPfg6kjhTlnLRDR/5C5fP302H7MjTi6nxGHxNFzjzsW9zDEeuOEhaSGRTjVjDCACiCpkolgQMAJoCKCKgBIxa5VNIMwEadhe372fDJfTKaz5fIoBAJUZ5iRKWRDMVVNIiYqKmKDmjlvNVJUNCAQQrltKrwpeTxifviYwnK5hAJ14B9fSXw1tKnGupry6WQym04JDQkYcYdqY+2YRwhK4NKxI6kcTE0mbfvtb3+7aZrf/e6352fPRcXbbUQkJUlZSVTZf9h32pu86O3neisKu41bvPbDZSwE4p9YhFfXZD918fZRyVo1CXbpXXE+uz9agVuHyaHy569vVufnFyrK1TtCBXBLSF2FgZ3olLN0JiTmrVvVkhdAiFxe+vWP7fFUATAqULHrm1LziX5/ZCVs57dHsBiLpunrR7ImNPUVw62XedPCUsXfqkevsDvzbD6fzWbZVKSMeIwhzufz5cGSiU3VZa5FRFLSLDbk/mZlXTo5OZ7MZwcHB2ZqCDGEGOPeRywhW0opV81xV96YzedEbKPWZtn5xTs23p6vUiOq4lB7ld5ERYMoAzF5e0dBQgJQsDL3cgxEyjaq7P+Sr9eve9yplUEI3gUG0IFcohySNYGiaISMiBH5fjvvdZB+fYmyrftvfxO84SHBiCbWZ4MIgCkl9yLlJ2t7pQc/rrbkD7cKtZSIfYeYgIEqKqKKybBeXf/sn3/84x/9Y991bWi8ZEmAjATEZTRqnYy0urnK/fbuyRExxkhAJAau2mQGIpZFNl2P69WSuB/6fujmMEM1EadMh+zYbs7O+w/EbYjdZnP58vzZ068//vjjt+7fS3338uz5tG2OTk45BOCyEGaWs5j1iARmZ2dnbdsAQAih77s0UIzNdBqaplVVJEw5V+ZEzXdv93QWK1N3kqpkNVUZhn6z3fisJ8BbXNDdIak1GQcIoLoiuE13RPVqjKSUUk5N04YwCbHlEJhU8zZLTjlLVpMMLBANA4Q2htjyNPI0gpKJipmpbvuuW2/TMJhmEzFTjx5lNBE4fkYDxzxugVh/7PL1caC75nYeaYwSgCV9HP8ubrgmhnVJ/Tx6DawcK1MDYgNl90siAQFxQoQi6iGtVcUDMFQ1ySlLf31zdXlzPT3chINljKBBM2YSBQE0QBXNKiKkubdBwDQ0ClA0zqyWzvZPF+7u1z+ydzpMJlNGkld1efFNf+C2Mb+V5xCG5eJgPluEGBD29BZ3H8B3nS83egXPTAG88A9HR0ff//73Hzy4/4ff/e7zz/9wcX4mQydZUzI/uOKE8+KvAJEBecwsoWTce7nYzk/b3h8vGSDedpE15No9U9spj75W3X81AjAwNRAzlJxycp5UdbAGalbpAwqwYxJ4PEHmwg2Yc3r58myzWYtmYEQgwCJ4D4amKNmrF+yMvNznTT9sTZvAbeBCnUM0Qghkok4THf3YvkBJYaeGQFmqbMSoWgZFqXrseNoPxX3SETt7CPd9EQACvDFvLltnPCYhhOB5P1QPi7cuIgpEbJK01BzBhYdjOzm+c3pwfJJyEhEVIKIYwuHB4eHRIXPQLDkP3dD12y4hCiQTy8SJstuq8Wl7AFIfLQKgKgzD0Pd9Tsk35cHBwePHjzebbS8CRGpYJgDUYgIhL+bLi/hSktWRzQqmYtipDGoZLauoO+AS3hGiReaAQGo+q6KMq3BTJHXq5F7aVI2RjQhn2V2EGwXVPCOZIjMAm7EJok0CvX1wRDeGq+scIPt8XQB3mQCwl/7uH5tSJxj/EOLyYEkAJuJoRTnhRccDi7PULDn7mB4VdRpIEUEnRB+eZNh1m77vfvHzH/3kxz/s1tcECGgYCqvCNTLQCyTg3p22mw0iLpYHTcMh8HYYtn2SGsRmyYiWzZJpmMQwCRhITUBV1ZhBJGfNvp4+YCAsl/nwcLlcXl1dPfnii+Pjo4cPHz58+PDXv/71s2fPsujJ6WmMUVH9BkChHwYfYfDs2bOmibPZtIg/ACKCqg1JEMF8qCfonv/Y/V2ajswQxHY2UdWKLI/mJJoRSFWtDIAHIBpDVyMyP3l1M5mpGu1r9aHrMWYxM5+0eHR0HEIkDqaaNRsYBJ0fx2ZCMUIzbbBtmrYZreWwGtJaUi+pTyml1dOboe9AS/+F+ZS78uZeatUCiloRlBk/yW0LUI3IiEXvdCvF5wY602pPCt/MQESdlTE2xjAzETUhsIuZII7hrxW9ZguAVdLPwT1vqiAiIKKcxfU0FbNqLjYd0RDnB8v7jx4e3b8rDdOs5XnLsUEgy6ZJIEvIBqoo7upRLAv0zgR37ospVjnl8XwVNJQQncACaoFQFRG4cl/8RxEAiXgX79Y/Ix6IRdbYLRp6Nr1YHEymixgnaKI1LHEWGJUPQ14XIUYIDvYKgIhmMUXEeRPny/cfPnr40bNPvvj882dfffn8+deb9TrlXDQpVXKW0rfBgSiYg2B064Pt+wsAKJJTVmdRenhiUkua6MISNaOrbTR7dIFqAGtSYLdCWzPD4nFFNafUeyhcQUXwON1HViGREiGSqpB38hSmlWzX2+fPvuq7mwDCRggKaj4byWF8ETUp6YXrXwWHW3lH11CwDCbBNmSbPmUQxSo0CoAIakamIYTpdNrEiL33O4Calrc0QOIQGuLgn8JJZ0U3aAeiIyKWSoPVkkx18WYw6rWW6ohJIeO/LkX5r7hQVQEphDKOJUtmZqpZtQOLrstRBhjUIlw985pypjRkzcRsYMyMVZBy/JnigHP27pfT09P5fL7ZbAOHor5OCMyqQhWlbZomhqiSSw8lIAApQgc2ILoKrWPJwKSGGjxwIUNUVcVb88NHPud+0IcFFnb9Oy1rWrBlBHOdyJQ5GpJCbZJSaxFPZ4uLrrvSAQAy7tRwXoeD9sIf9M50MEDAGJuTk2P0geZYJpciugMmQmKMaMQU2hizas4ZoJBeCkimvgNFs16db548efLb3/xSczdtCMynbAkY7X+MEAIHIkA0RTBX4g0xeH1cFAw4xIYYiaWdzo6OTg6Pju/cvbs8OIxNYyKA6s8re6ymBght0x4cHBwulzHwdru9uLg4Pz/77LPPFovF4eHh/fv3v/7q6+fPXxjA6emp+0s3PDknb//tuu7s7MWnn35ycHBwdHDgg8pFIYuKquXdE4S9yfBQq1wV0hgfbtmAqhojDcPQ9x0AJS1oLHg0bLtKAYEh+Wbwx++50a3dgog5ZRMYhj51fRMDhwiAAgYGIcZ7d+8+eHRyfHe2OG2bBTfzeTNp/QSnIa+eX24v9Pp88+LZ2bOvnrlYMUdGZFAVyyBqKg5hV9gNCq2l1JB2swXGCPebrooQuObwDqrdOwul3D6K0HkslYIzy8o1HklXfvZRMkakCqpmJWMXqlbLrVMGcHVrT5UGkUHl8M7J3UdvxeVBuziIs3nkGMwoKW4GSVlytqyoSmYQFLxyiYV7pgZrSYaAPgWwnjWXo/U8V4AMRYmAiEtXO5bCHnlnBOKOool1dWumU30zQhlgxxRms3kTIxhKBm9jc0wKwTn0OxlhRnTHjBQMvPl1t3+aNjx6+723Hr4zdN16dbVZr6+vr7vtdrvZbLtuu92u16vNdoUmZtlyfzsXx1cetdWEzt4UmVktyPpVlfK8xvrNO+b1LQQG7tpMRVwhlT0XAIfg3ZsSiGSHjJRY0YL7NLOc5Pr66uryQvMQQF1mk6ymIcVVwBhLeTZGgIGZED0QUTRUHUyu0rYD2+TtxnJnoIVd5e21JSrykfMcmHjMA4s2MqKrfBAUAzGi01BPhJmNwx7KEtQIdL+Ku/vmWAeGN84DfgVkgBowjjjn+Ca3aiUICK5AlrddZwXjdf5NvtWcgCimWTLVkJmZHa0aOQUp5b4fchYzI8KR/DxfLMTAw24klH4Y+qDgc1Tj8fHJi2fPttstesaC/rBMADKiMEmwjlHZFFGQk+GgsgJdk6QsAlBnbNayxC4geHVNdj6SWbWEuQYooF1OCUWAMiJ7IgaIYBPkg8ksbmWAPQqdo8g7SGQHPvj/EhKC678gM8cYYYT+iMH7i6CU25lDzgJITdOwKjNrjKY5J1FVFQHLAdG2/fXl5Vdff/3s668ag/tHxy4mnJMkMVUzKuiHX0wMlfjnX+2GRAjT+eLwZHZ0crJYLpgopaFpprP5sp3MOARiRqSxoDL6P89K27aZTCZEmHNGxIODg6aN6/Xq/Px8Op0+ePAgpfT0+fPzc2qauFweuL/MKYnm65srNxCXl1er1arrur6d9NYDACArmH/3lfhv3/v6riOiV0k0oCmltm1FZBgGUcs+H6M+HNtzwIzgDrg8LHvVAQOAqKioZdhs1iLifslFdpj54GB5fHw0m7cUAIJCwARdTj0imFrf9UPOlSprfeo4Es/a+XQ6m836vr+4OCdG1dT3eY9gsPO+WsPifXjxj1x75lirGmZ1Wj46sNAsyMwKDcJbAySlPHhCHJg5hCY2njv6ZYCAxISqKkpqYoZIwuDesVRVHMFUVVETyX3O19v1MeT5Yt4s5mE6CyGwQciKFMgArWfSqIaaFbMiCoAoqKmYKlh26bJCxy6JiRXwwwxIUA0QGBbzg9lsvr46v70USMijFAMCEVJVsqe62v5v9j9E3DStp0Qub2xWhKDUFMwHehe4WM1o3IEIPvC7WgMENCCNsZnPFqenpwDm7KOcc9d1OeUhD6vN9dX5y5//848uXnxNsON5FoXlV0u5O9nnEhTswUJYPsSeVrzq7ea1f91VXlNyziIZd4IeBkUAnEzBSFVVUTWLoZXuF7WUhouXL/tuC6CuBlCxHPd+CJ7pmqER+ggKNVHJZiGwEiqWCrmAXXebjeTOG3LExGCPNF5BaTM1a5iJqGi9gBbk0PyA1+1TH/ltz2pmamPvQMmJSMcwYf/ao2GbU4VMq0R0+eL+E7MRq3WfsP+tGlKhaBUAAp/Oks0MtCAY9QSW3wHvsS3kenRxiP0X9e2VUh5lNJqmmU6nIYTlYumt9GaAgZr5AhEm0/nB4YGZzWazL7/4/OzsuSOoiKDgAjEogD3RRZCMqc8poWXFIclW81nefGVdVyq7pSts1G/D11oXRmPtLspUPb4fbzObjCmJd3B7eDQhPmxns9x3MuSdD75lrxGLQtPrl1mZoQsGzOx0WSR3JBy4QaTtdrvebJrYYODYNBEAzFK3HTbd+flF168JldS6m4vNzc1mtW4QZstFJGDEwKQK2z6tu3S92WyHHs2QgL0oQiQG/ZCyyMHh4cHh8Z07p8uDQ55MZ/OZU7e8zkcYDUh9Ul8B8WCM/LBSeCbTaQhhu+36bjsMwzAMOQ/90N/c3KjqgwcPTk9Pu6Hfdt3ZyxeAcHh4UEb/5Hxzc+MvoiqXl5ez2QxUY4iIhMhQxgyXeG4k0t/auGY1S9ul+8wGgK6S4fvQyYhAZLZ/AGtC6UfcBKFIyGLJAMp3VSVJ1qyatOu2qgoGKWURMbDAQURubm4EN+0KwjljtLhoqMoVp2HoLvu0km6dN+suEB0fHUKSGOKkbVwMLaVeJPkMH9tvJ/wfvHBvY+8v1Lhc4xHwqSeIZWG9fpnFXByGiQJzjNHUQojukl0G3F2RD1cVJXfnBIqoZFp1fkgxZc2mQMwhRgUbVBLqhIkCYwwcOCiG0ECM0HYw5Ciat2vLQxZJTmhXUQTx+IOowADj1AErkwnUTKUwNyeTtmnKfEwOzIHRO/U4jDyzUYLDFKtsnrm6FxZiNIUQmxjLapVftHKoEYp2E2DBQcss83E2wwhcVsiaAACyjI+IiTHyhJo5IpnJHUjbuw+efPbFxYtn++WP28/2T1yj+fKf1dr+92ra8fpL7wlQ7/sV3y1+WkOcqCG5WA2WPjXEXYJeQsRScrOu684vXqbcA4j54AXQoilsaj56EpGYnZvi0bGaDcOgGpsm1tmIoCJgkCULgIChGdou2hg/tmT/pGNDFxbb5RO6qUxsK5LvVp3YLWTAdpGN/2/J4nbRe30WVsItREQMYOjeHhxZrSrvJeEHcwkkZip4lO4K1CoVWB4BZNdMUkXErOIodE459wlUhs0mdR2qXl5fwQq3mw0iOHK1554tpb7vtyKZCRGYGRaLxWKxmM8XCDRCIhTYg8oQGsdkXLHSgcoiJGQgYgD5K7tatT3klHKfVTpJkhQBFLFn6xjGXmAiUo+IUJGQ7Jbiz97OA6qT1WwvjTKAbNabDmwNogqAAQNGBTRYcnPSzIZOxZIgACKPiqZUQc69N9l/XzcfVabfu83RzNzAHSwXbTt98uRL/1HXhQZEUD2/vvnRP/7Ts+dPcx5ChDaGSQBWYcBJG2PDLXHkEGMwg1nWpWC4urxaXWcRDiHGQE1D3CA10+ns4PDg/r37R4dHh4dLQxxUDShnYyYAyEmQCEu3HCKaqjEV7+RhmU/aYw6z+ZznM8mLru+Hvl+v13J9eX1z/bvf/e7y8vLuvXuz+QIQN5vNxcU5M4UQzBQR+m6bRRAspbTdbPttl+YpuBJCSUnB6gwZqTw+eK2g8IopGYkIOWdHbgAIKYCTKEtW4g5bAYD83zWv3wuLi1BlSrkf+jQMOcl2s+mGISXJYiJiACy5G4aXL88xKAcNRBwZW8RQeEMI0KDLyzUB8XCxtJl1N2vJ2UBLG1IasgyuaLHrvoV94Hn/uvXFW77WbUM1xKMl8ZsbAUm/iMibEXzFPF+tBsjULKXkIsTM7Kk5M/t0YHOGDDMhOvvKsQrEAMCGgzGTJMvazKaLw4N2NqUmQgixbWLbxhga5qDQYGAKiizbwYZBJGSFnEUEVU2gtK0olmS33OTeNsSabFJh2nj3BIeAHNzokg8GH4mo9X7VrLTSjEARImFl4XsHDjUBEclAPdsk9NywhFeVRVrRM/dI9YlUefEyQgBGu01q6MASFCCTQ5iE2Ly+pUeX8KbLYJSnHpPmUSdE1cwIeQzovvl13vimAEWZW3NSm9bou0hsEjMTlw7sQFzZA4BoYLJer1Y3KxMxFbVsFvZeXCvOhOhVd1edqAVmETFwlYiRhVd/3NBwbM/bXSKScsqSY2FNIQIZuHbp7kS/8U7rCuO+nAiUUlBN4aysdX31W8hxqC/1BuntXURTX6ssriuOqa7WK4whiyTJklUNmF1CnACg67qCQaSkWQIgiUQ1BuxT36fh8vLSkUBPHMuLq2geTBKDEBcAjZk3m80wDD5TeBj6ruu6oU95kJxMQQvPFrabFVh2qMdlKzRrr7LJw7PttZmYKpoK2khvQ2BEJmRAYGZEBjNDMxC3PUV1y2f1IoJSGcm7dybHNBkAVqa/7661nXO7bJlMMfhcToQFwqNm2qW+T8NAkBDQgCufrD4C81YsJ3uX518DVMlCiKLKCGDWbbunT5+a2d2794+PTtD9rmOwiEyUhuHLJ1999dVXXb8BtCwmCanlQIjAwsgWEpIQitd5kTHSAg6b+YyYYjtt2gnHhkIMoZnOZpPpdD5fItFq8F5jZF8sUSRUdXPmaDWokt1C6tBMJYsZpJRi07ShMdC5mWecOachDdvNZttthySTabtYLIahv7w8J8Kjo0NmDoSShm67RVNJqR+GbdelnCetv2cZYuXIs0tbhBAQcfTEWMPEEML+rkdElzf1DNghBzcM5RzfRkEqZuQ5zu77WjjL2vd93/V913V9n1LOycmbmlVNbRgGcSYlKAVgJgrALSKbmqhqAGoCMxFTbDhOJrOGI0yazTqLapIkllPuRbOBjnTnarphpHruG+I9q7F3I3uXuoEnwz0X7izl8df9ZzzyQ0TvHaolhuIssmYSdvAHFZlRS0Wt6juWCjGZUxOIQkAwy55MsDaT6WyxCG0bmxhibGLThBA5NEhsxqCBGGOT1XrNEALFFlxDUJOzPQTcuxfj504WBCq7EUrQ7YK5WWDU3EUmCkSBis4GQiW6i0jKg6EgKnrZl0bwy5FbADP0EbQl/UHniexnmdWRUEnI6ZVMycNy8xDfY2qvAhaSesFkGBEohNF+7j9ofVWy21e2ZLl+T3sakaVIbArmfLRdrPnqi/hHBJ+HXXIQGw3V/k+m1KMLnhAEDkhQfG4IHDjESOgVWHSnDAhdt+36TnwOSbGqBjVlVLAsWU0DBwxcXauCKVqNVnZhDAcKTIEQDHFQE/RH7wEmGVEqSbZ5nOReHcENvhT0G0vHocusYwlddqieB+d+shz8Hh/myNXycK2M4gXztqhXa8D7z+/21/dTMUBEFd1sNsbsbdEqLvuIjpIAQN/1krNHFaZqamzKe83QDk/BnoMHb+DWbCbkosKKZnZ1dfWLX/xcVcFQBBysYuLQEDOGJkSOng4O/UZVwBfJPzebmCYR1HGHIAAa1ZAViTC4ktHItvB1BO8iB3BZ4TCiJ1hTDSsrth+sCMDW5CJ1izhZBDYrE4YZYUJ0x9pLbm6GjailOg6zfirf1uSwPUAZWDQ+Zqesi0oWTb0p2ND1iOhCjMPQMxOHIKJ9GsCDG7XT09O3Hj58/vxpSh2RBUIzVoAEZMpoAUPLbYttE2MMHHOW1fAiKSwPlpPJvJ1MmUNo23Y6i00DhMnUxCCbawRQFjduTAEZDUd9JVOALMKITH6OUESHIZvZzWqds7SNUxUAEZu2nc1nZXepiohoBrDj48Pz8/OrqyszPT4+QgQD3XYbb13zgkW/7aZNyw2Pj3h8EX8opYScy2wqVc05h1AIrvsPUas2feHgEAGiwvhjxSq9kmGOeUT55CJ936ch5ZRzlpxES8hHY12GKBCYmohIpNjOWmBTSwBGbEzKgJJTn7cIfQwRALExBCSilNKQUs7JimDq3id51d3eOt2lJPym3Gi016OTGIGy0RLW39JR7bZsVMYxNbQanKoJCiKgoCTE4IwjYiIUQ2ICJTUDNSYjJMGySwCwQW1C0zRtaCKHiIBuCzArgVFSELWkqBYoQIyk0wykmDgL9J3l3un3YKa1Om6OVVXw0/tiyAgR3GYAADqpAtlH9BICc5HdAABEUnAaoRd2MRAHim6kDUBVU05iGmMwIqvTx3flvf0tAztHC1C7gepnrctLFZMGhCopanXzISI7gSi87mvhTdcIBSmoB8Ruv3d7ZsfFGeFl23/ir7/krc/tMag3kYgMqScE162tAEPDTQgxcAyFMUAMQDGGGMKQ83q96vteVah496INAUjmatta9DdGEBg9BkZj74kzMDRXMBrTa6e9Yxmz6rkpevtTaca+dUdaQYrds4CKUFawvFz+FgUg23vI5bxYDW3AxqUaH+CfZEHX47R7uqOnUckyUjNGxNsLYaaAZdplAamJjRRIMCD5kEhP8LHgHrB7Wdl7WbCmaQ4OFk3TIAEiI/AY3JuJh95ZkiZV1ZyLGBZWOjwgIBNRCYFHrRPacYyImOvwX/QgxQBu72f/bIXVOeIKr4rpAozRxUblKg/HPDEi74VBgKAwo3gcpy/W11vLxEWh05BqfwLu7XvwzubR+06n08Ch10HMwCzEMD+eFXFsYhcgiSEYZFY2AGZumvDWWw8ODpbX11dD2ppldLk+KDyFwIGYkAMGChwcMzw8uZMkN5M2hJY5AIACKTDWappVpXLgIDVIBSvasSXL9HDER2qKlXZMb8w329ysNjfr+aQI8JopIOWUDdRJziLCgWIMrkdxdnZ2eXkpIm1smqZ10W9E0JTSthv6XnNWjoDK4+6+HRg5cDqiqTln1TgSheriAzp1oKR3DEyGZUgDAlQzRKOmYDlpBj4IRLL3vQ/dthuGvuDEOWXxjV342D5tDREDh8lkslwuF4cLDJgtA1loGExA8np1dbO6ZOQmNBwo5URaKpEhxpFe9vqhLXfyr7jMHFcfc2WrHh0BIASezxcxRhsH56kQYdd1z58/99Hd/sOIZVDS+Hl8aKmqlhHoBhwCqCFGQrZRSkp8JhABkZVSNgEoG0kSywbZIEnuBuMGI6ARiWFSEmMxsv9fZVe6G8lxpOPIrOpukhrOwZFHWiwMY9fAYt//CQw/hLUajNfyDFaHRXLYXVdmRvhHRGZVk5SlLQhCT7OqqyqPOL6I+AJCiB3GmaLyTFKACRMuy6Q5a62G3+zPc0WnBt1hSmnJCVoClJ1MVfsiAaCoLstsHY48EIZIxOYkgtorg4jkUs5KCx0X2BzV4MYauVjpH7azg56Zgqv+06aS7SgiSCxeq4jPSqX15Te2pm7VSONBK0Wh1DHYthY4Nzn/9aGqqqXktMy5pEN/gagxBg4xhkghxshkCpiYiIk4xp4pzItxrM5aktM10AYiR8+U1modboazfd6owO2r+wUNIVrpmUE302M6UivY8PTNgASEPcXE25kjk2Yb4OcG4/H3WEdIf0UBr4528/zWlhC6sft9jaxKDJGJCamWSgmBAggrBuKioEmKlHouNVMjl2LtkasVpqoyTdOyLI6oS9ONRgXgVpIJEqMmMKsJwJatxRYMdEb0NF5uT7qtmlgFcY1ktHVZ/2rATc1i9HHdAvjWTqfMqg+STpJeEzcQggVKxC+6/Yuw+7wcZwVWsMLYOlNt5BWRLg4XV1dXrcIyxrCkLAqx63b7w+FwsJwsVbX9ae9BFm0hDswhhNDF/W735s1rQIHaFAYRza8vJedSjB1eREVKSjn2e1XD6jx1AtV4N7VSjalJZKwkYVApB0w4oYhaq0GLIIISxcDUh4gK0zSWlD7f/Xyx73e7nQ80SJGSJQ/DcHt7+/DwMM1jSvNu179+/frm5ubdu3cmC7969/Wnj5+OxxMCSpFlmYfTaTpcEIUudA1ZwRrNyjmbu9ykj9Vx2fLebmMyFJ1wt9sxHxFJibQV9KwesJPCrj6fxRVzMQrccRzneZ7n2Tm/xJqIi2lGy8ayBUWIXdddX19/8fIaA4oKBuVIxJjG45JOOCAxFs0Pp8+SBFPFXVow8vmdiy0F9rEh+Yub/dmfwr7vLy8vTb+GwERYSrm/v2dmI3+1LWxkL9hq5dX3gqLnvhTJUBSYUZgDIXNNyzJuOxARSrNoQVHQDEXmYZpPwzKMkAoW0VI4doTEKMTMKoFAS3Hitn6XCSEnBVUCUSAVKNlNJQO2VlnYxDCACiKO45DTDI52GvJMSOy4hQtNzw9QrybdAGK+gbFI+cs331x+cf3H//pv4tgQZxviJ3Z9RW5NE1d3q52yus71dk+mzV1p/52NKQlPoY5zVdDU2VYHG/E+EQGoaCFAVamRDT33d588y9mGUlVIOaeUmDnGEGPg0DEzMgViYzdiDkyBKQbuCGle8jhOOScoCUACIGCRnLMT9JsIRmswyoGB7bFQBSpY38yMZkW4BdQklf9fgdTg66KGu/vFLFA7uLSuCJvD1DZW7/RZtYvqdFzmcGysYdVNdXZoM+d/lEY/jZWy1Oe3Odq+EgVQCYWMSq4+JokiAYL1ZvAguHHDFyQCMUJwEFUrqmky0TxXK/9t1MFMRqiYofLeOdEd+i1hk/ztYrw5JXWsyZJUPRXI04YrpoSmrVqzRa3atO6ER1tsCwZA9YMJNmU2ACCICfGh5J/LdB1iCHzhroKi6CHE6/3lT2UeRDyP59EqruJ+vz+8fn2DNWa53190cccxdH0fYkcWsQRLl7MRQUGhQB0FUK/jlLqJfbHZRvZrVYlFrTDRARlAQopmGEq7BC1vxhvwte2K1W5v44SbbDJEIEYG7gLHGELgWiuK4zjc393u9/319auu66CW+RLR5eVl3/fX19fjNNzf397e3n777fvvvvvu1atXNzdvuhD7vn/79u2Hv35ARCnWmziPw8AcQr/HSu1pCti8NLsrVK38aL7anjSfR1StsC1nU5nktAW++hERUcXaA9tQeL1dzqZ9x3E0O9Jpv1RNAUMdujoNEJC7rnvz5s2bt2+FtEgGUgzIDJ/vVL6XXFLOSbIs0wxJMaNFE3PJqkqE1u7k6VEn6Ld6Lc+eWUq6u7u9u7t1Ohd0LjYbc7uKnErd96FpX4MJgYzW1CWHiBgtWyDu+h0RV4EJAJpzEs2O5qLmnHOa0zTmcYZcfL8jAhMwY1EkASyUUUVQKQD0ni0HVrqSUadxVpUGI2KVxVUjAiGN4+njTz/89dtvp3kEeJRKjivtsxKweqZehT+fKGBVKT9+//3//OWbd1//+9X1S8sbQkcVjC6/PY7dwdzgM/Nn/UelZrRDpJzPku85dF3jq/MXPeBzwfjoe6gBFNFNMAJgUxkFTxTwr6yunPI8zzHG/X7nhFOWhRWDaVBGIgpMXQixFE1LWuYl50wqCFpUhLJKcY6Mektm7mLHIZyDBvUEm+XqJp+NVg2UAsAjuuX1R+zqOoj6nM2xWSWItWeDYYCARv5jWX4N4Nhc6mAnAUBgRsKoml0Dnr3DeqVNBjm6boVExZ3gTW2Ze6Ge9+AsnbadUJREVaRgKSCn4SRFYug8u8H4kkpZplmyJWJbZjFTIKsohXNB30bLC67U7iva8h7crFTXEh7Vw+bv2u+7f7kiPEiIomLtcq2cD9ELBKw6wLxwVVUHNAxfRTCWElBAEsBJ9S7NP3d9iL0q7DKwMCPsEF/uDpfT8ajjYhY3uMvgN6qveXFx8fXX/0ZkgId2cRf7XfLOylqKULOIbG6r+cxsoQ5Q1fIIk6n2qfVWVNcNbrYIIlCwdiuoSrWWFsntT7QwnrXOrEkmAMaYZeOMWElzLN1x18XDrgvurUs8BAJNaZnn+ad/3FLoXry4ZmZ1txliCH3sri4vFeHdu6/meTydhtPxYZrnu7vPOeVxHLJACB0SFilFcpG8pDnnxZ63zbLpCYNGWxOtpjKbnGrixht8E4UQd7v9OC4t61LX3hNVFMkZhGelw/M8m+pt9XiqYJ3jipFH2vir2o32u8Pvf/+H//jPP+72O7VGkUGBUTUNw603g5rncZiGhxMU4MLmAXusThGUPOscQH3XNNH5vHw8NytbsAvrLlbwHGHLf561llPDefsdXLnhbGlgczVbN0RzR9DZSqzyFZCw73umaPmLdekRjEcFrCajlGUpKec5ScooYqlHEkiQgyJF5aJUrBke5aIxTRQRGZWggLIuXdlRmXMpLRSxlW+M1MXww+f7P//5Tz/+3yctS2RvfLLieR4MtvdQa2CVRQi9SQKiUoPC1LuY3N/dnk7Hq+trkwsWZFPXwxsLoJGJN3n2SFyLttW23cTtLQiCCikwKFtGFzRJ4m98ruzPozMG5Vnxi+XrmDAgX/O2qnCD0Z4/oTv2q9dbvzaBJrnklFKM8XA4hBiIzRJnCkQhsoEM6CQkIvk0nMZ5sBYD5mJaPLCBiIbehRhDDABqOKhW2mXXi9Z0FQFUjUOP0CqejZzJ36CCyCAIpZb/IJhbrCSKlhXB5HnWNaMeAdA7utYC8Wq+o4Il5q1BIBMsPiyOfYGzkUGwAjYRAjyLQ2OtyqjNsNzUskGwH1DRmj5UvQf0oikgEbUchNK8Y7QcNi1Gvj/PMxGroqiL/5zzPE0lFxWp5pz/aP2BM/WLqx8s6glcvqqwGoUtsvJE+zo4t0J1PkZoRLKE3IpEdbtBANAaWFtFUHNmDJytTWIUIAGcSrpfpqt97Jh6QQQMiCJwoPii339e8sJghUjPQoVE1Pc9IgFiScWsQJeGoGiiis4uVM/yBVxxBahLZN0kquDxWdPmUPMHiSwNHFx5FwI1aNvWN6Ezm5vNQeaweJ4FAPnJ5IiFmkhW1Xmel2mMIVweDrHrDofD8Xg8DcPxNOz2h77vXXiIMhKTRyV2/f7icPnyWnLJOWULr/740w/v378fp7lkQZaUJqv/RHLjD2vFp9RjMwgOQdPKftrWdzOIseu6w+ECMVq8T4Ecg2l4n5Sl5FYLa8xcwzBM09QgHBG1iLMUl0SltMwEDiHEuL+4uASFT58+ERNHhh4paNY8Tce/f/fh4fiQc344Hm//cTscT6wcNdiS58AgpaX5ADRNplrjtc/6QfjkMKSK1vARbldO07tOb/IE99YNGNseo2pj74jiGxFdZCLbTmxsUyAipMQULEJkszaP43w8pXGexinnRaTYbisEmZBDEAUSIAVVDAqUSBZAIghBA2fIB0opUS5FzoPBtmMYadd1r169DAHneeq4omJAm2Ba8y8BEUMIIQRZEnqrDwUUVCt1R38Roi+/fHtzc9OFWFSlQGlcj1tvGUCfgBfSsisAnh3t7UFIDOJJtWDBIfMCZKMUt1NlKt83CFRdLarcRIfZVRtPbauz9TEgq08fr3qO7hykZX74fB9j7EoXohbRXCgUhiJEhEohFACOMSYp4zwtafEWUqoWFytFxKCjuiCttbxlnZtG9Los2jisZpuC/x3qxquxSLDcK/uvWIUMOFslqqAWFFFbwiiAgtZOTrSCOtbwRs93ja0Wr4S0pWQtRMQtCA9m2Lb7rVSUK+b6+HvTCfUcV2iGQjUveJ0YQlDVZVlOp1ObQDcCRYoLqaIrZdozbYLareFXkw5gRZ7hjHLZvqGVxui3Hxsn9dF9cQMW2TGD3Of5dTlcIQMRVltyR/yy3/+cx89wphseDbCCppzNZhMRDphFikpp3JfgHBBeGlL3PwC02qj1x5/oeDcytXZWQYByjqWDcHVrLc7e9rCNhC/uhqE1e93YtAC0lOF4vJ/GeZ605NcvX/YxEnPXdTF2WcTUVQ3cailZVCOReBWQuU5oiBUAiO4B9cOHD9M05VLQCUSdN6DkTY+2BqmdN0xt/py449/MzXUG7Ztd33tBSQ0DQ2Xk0FJI8jAMWiuOxnGcpmkcx6aobDrtRt7uMJea4bfWf3z8+PFvf/8bMe0udmEfIciS52F4GE+3pWQAIKKrq6sXV18EZSoMzuajyzQ+3N83Yf1onepZ5GldovDkQMSqC/HJ965Umpcva7ccePRhe7l/9s1XO666Ca/zOORlMYq3UirPJWouhm97VCTPS5qXNE/LOE3TtE+5cpxpARACUhTf2owCzBYimRQJiRGEJ13S1Ei7Hh+qMYQ3r9+8vfnyf9+/Nzkt8IstgXWVV+0Eq2xuql0BNIT4u9999eKLF4qMUoCxmP9lVIi1MKr5SNshN9t+84D66MP56VUrYRvzX5aE9Xf+3xLvXx5PxGAVEFX2lJxTSsMwDMNAISARMoYYMAQkyysIRNz3u2VOk7UBXf28VfmLSOVbQLFeh02l0br2zjzxc3+9Yg3YDHR9drhMh0upJK9uDKCJActrqj1a8DGe7yZKDWhq64jUPHDYPNM/AYc77DZaFYL7AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" + "scrolled": false, + "ExecuteTime": { + "end_time": "2024-06-17T12:21:34.859475Z", + "start_time": "2024-06-17T12:21:31.763267Z" } - ], + }, "source": [ "d = display.display(frames_tracked[0], display_id=True)\n", "i = 1\n", @@ -183,7 +198,21 @@ " i += 1\n", "except KeyboardInterrupt:\n", " pass" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFoCAIAAABIUN0GAAEAAElEQVR4Aez9Z5NlSZKmiTnn3D3Cg3hwmjyzqrLYDGZqerd7BNgRCADBJ/wbQAQ/AR8wgsGKYAUQARaLnl1ZzKABrAxmurq6uyoreWQG58zDOefueJ7Xzr1+3SOSFOuuri7z6/eeY0dNTVVNTdX4af6zf/m/ev78+c7OTkdX98T583/yZ//j7//wx827zf+nf/Nf/rf/9f+9aXezp7e9o6vlyJGx/83/9n89cuz4Fzdu7ew2LywvPXr0aH1ldW9nt2Vvl+Q7u+tX37z4v/xf/M97urpvfPFgeXH9O9+53Nra/OX1B/NzC++//0Zzc/O/+d//X/8P/7t/vba+0tq63dyy19vXd2LiVEd3z15TS0tbW1NT8+6uqPje29vb3tx88vDe8tL8XtPezt5ub0/P8fFjy8vL2zt7rW2d4ycm/uX/5F/95J/95L/7b/4f/+W//tcbayvdPW2j46Pvff/9tY3Nx0+ftLe3vXb1zUvnL9y/e/9nP/3ZyePHvvu997p6enb2djY3N+fn5u/cufvpZ5+vrK709/fx6eruWFtbW5xfWF9dhaGWlt2WlhbI2Gva3dtt7u3te+P1N46NH1tZW9/Y2Ozr63v/+99/5713zp0/19fX0drW3NzU1NLUtLfbdO2z2//Hf/NfTU3Ntrd3NrU0k11za9vE6TPDw4NNBqASmluaEQFJ+Gvea00AUWtza0trS1Nz8/Tk9JNHD5r2tpta9ppbm9o6Ok6eON3e1r2zu7W3p4Campv44lPhQ75NTQixpaVpdmbq/v17W9sbLW0tHV09J06cGRwa5inSJSnwsMQfDDaT0x5PDK2tLTs7G/fv35ybmwVtS0sryHb3mo+MjY8fO9bW1l4wQK1SSSAp1BFPDN+tzc0rqyjGw/WtdRCDvKW5bXh49OjR8bb2Vggm1NNS3HxI1gpU5IJodve2Z2dnJ59PAQl5u0173T09R8eP8h3+SM8vkqvEmCwkoBlRyMxuS7MMbu1sb23tIMz2tg6gm1palbOJavLi8lUBcRQ6g24HkCrfVwF/TVyoDMP1Ei8MN0HePg0RWyMaHu0/bXxw6NoySCkgpcZH9fgS2UBGBUXlaoSvXxds9dtvf/H1CeviLAhlr0jl22XwKuQpResAlYACKrqDXu0WZpEKJgT1GTty5Jh6S+Vs3trcWl9bXV1dW1xcXF9f39nd3sbS7DW1t7YDP9gz+IMffP+1105SkXf3mtR7MqnRubS89u//4j/cuXNvt6mdGtbe3EJlfffdt/7pP3m7o4NanBLLdwpv76OPr/+//z9/ubq53d6G+jX/+Pvf/ac/+g40UJ+2ipY2NS0tbf63f/7vv7h2o7lpG8u3ubk+Pz+/traxs73d2oK16UnVpPYVNkupqhhcUf/ERv1EWa3PxBPRZqVobi72E0gqe5N2rKW9vR1YLuAUoVHzJXovaoMFkk3+sTttzU1tu1THtlZzaW5u7+zA9LS0tu/sbC3OTTdtb7UmbWtrB7ajuRXu2ns7e9rbu9s6O7p7e7ETo0fGunv7O3t6ent7Ozs7O7qwgq1zs7P/l//q//z80cO2ph2MiPU9aFspm7b2trYOsmhr72jraO/u6x0cGCb09PV29/R1dnQsTE0/vHlz/cXM0+s3Hly/trO1eur0ybe/+y5O4pNf/PLJw4cbO1vLe1tzG6sUf09371j/cH93T2//UP/YaFNv58rWxpragBTalpeW+nr7z164ePv2venJF0ePHu3r6Wra3BrtH54YO7o2OXn34w/npycR1NkLl95+/33SfPrxh19e+2RrdWlrd7NpZ6u9qbkT5tvaezo7BxK2t7cX5uY31tfblAfS3NvY3Fjf2sDsQyFSbOvoauvohD+KZnNrc2dzo2l7F+mjY82aggbrwM1XBUpuY2NjcWlleXkVFRAsX/vw2r5m3FIbLlf1paQ0NBQ0wrYWUdBcR0VMFXjVKNoM6VzvY3vpSkhA+S9gSc6tPBZKkpoS7evvO3b8+MkTJxDN559/9vnnn09MTPzkJz+ZnZv75S9/ubS0BG0U++DQ4LvvvvdPfvzjkZGRzc0NXO/mxiYIh0eGu7q61dImqjHVoQrU288+++zza9eWl1eggar80Ucfraws9/a0Uw8qGmALFaba4UYx+r+LIJvaBgRR0H+93H5VEmz/4KT3+cErt3Z0dCL7b5MREltZXkVstXybqfwoakdHRy3ma37NAeO4uLAIEDcESgqlggCuk5Lv8nk1ngJl46KmnxTlq0H/Ucaq2AfDP1wxREGqWnCICx51dLT39vQSj+Gi1i8tLW5tbVEx+/v7u7q6NEQNgceffvr548czVvuXQndP15Url2mkJ5VNV1A9fPhoemZJM1iS5Bv1I+tjx46i84gZWW/v7DyfnNxY32wkFDDMJP4JhI3x5MwtNa6m7a+i5iXyDkUcEgtkUCupkvneqRX/oUS125hoCNAzGtq7Orugkwi4qQH9g/lFmG3t7f19fYMDA92dXRoxJI4DoFERPxUzX9jRQ9VDEZrdlYNcK1vLzGKuA/+GFxJUK2+VibzRglBZeibiJxKXc/fuvanpaYqQ++2d7XipimrcLWp9auIU/U7VC/2m60TDA1LpksQIEg/aoAvNccyY+2iMTqWEQo9k6Mgr2sqjJPMLrGiH/j7N2yreZlVLZye93O6JiVPnzp7TB1+79jd/87dA/vN//s+pij/96V9OTU1RBJ0dtNJ6zl84/957742NHaH5OfliEvi333r7z/7sTycmTqqvuqMdKtvWNt2prbm5uXv37j14cB9RQA8u+T/8h//45Ze3dm1uVwF+u7tR2S64NupAORHzmxcbYimfffQQk6yKkPwu0iuNAARZiRGwSNWUXxHgmYbI/sO9Jnwn0kNfv4Z2sjPXlhaGFrB0Udyq+PoHBvr6+n2asI/54FUMVxNyRsgrq6tFYSB7aGiI5jClXMBVIfAcTLt/lwc8p0Tig+09FFT7MH8nVwdprBdZveAgtP75NQmqZ0Gru/HTaEdATdGU8LsTRZ2TcvFr8vNrJUMIKAmB37pAwMQ1XSqUlqpKPXXYjJ6lTckOXOORI0dQaceZEiS7uXlycvKjjz6bnV1M8vKk+gb9hQtnrl65QmuSKD3w7u709PT167c3N3f2BU71UuBNIyODNPrJDsmT77Onz2bnFvYxps/Z2dba3d3dSDMJS0kdsGn7yb7VFQhLCLSX4MSIQcb2NrVC/3vICACDAKAWq4iDIndER8Dv8g2Rfb29Xd1dkfA+Damw4t+P+oorTH7h7Cuef0M0BJNJySnf35xjI0Y9QhetiK7Sx6tpi/yiOkIGqWUa0RThcKfIGCIpJRoovgQnQc0rNWbkdfj050CorJDoXxUKSUUXk10hyQ61oSSBSOh5QVNuc6OUIvTxgeo6zlOnTp05ewZjD5mUpO4LH1z6a0DpjO0PEQUpNj2iGXOzc5OTL+iAQje5QA2Zlm9UgZZYqCiUyL9pbZXs8RQPmiSMcsk1ouGCUZ+EtiNHjp45c2agv//Fixc///kv6FrhgwcHh37+87/Fj6KUtBUYKbly5cqf/Mm/eOutN8GBb/75z38Op//Ff/Gv3n333dJvgxgyJl/C1uYmFZXkMzMzEHL37t3/23/939y6da8ucyhj2IQWADRAG8koV67lRbZk4eUgZCnjqFodgPhDep9HlcyTqkKYax9Gq5qRPSiTI3kiUsVo9smo4G+8NmEerdNW39zkGuCgoz3BcEu9A1qSHv4u8HwvLy+hIVIRbGj+8NAgfZGgqvF4OHXumx02XFxYWFxcUmZRBqwk4xOILopdcf3K1HX86BzDjPZ3FhYwu1ysrKxQ1urH30moi4KLkiG/9U809AAlgB0M35ZKtPFbgkZzvy3wt8S5D0a9O/jZf/RrXRVq699fgQOZoWKoaPkg4OqiiIXHXCwsLqAAXKD81EFUmp5PsRsMPw4NDhFP9azXOaZO/vZvf8kQF6JtlC6y6+5qf+ONq0fHx8UcmmiR37p1e3Jy9mXJUt0vXDhL/ztc7C6vLj9/PlkQFqXY2tqbn2fcDUSVknAFMOYFtFyjxkRAWLI6/FVXmOqB2cCHI/DE8F2v7FbjWq0PMRpkILiuI+U6+llgYyLSU8K6jo8fvXz58g9+8IOLFy7ilhV48pbs6qKO5isvNCRYbAj8CpAiEx/uX+2DVj29NPEpvq8QyT78oStEIcvJvM615iWORsbDDNQRmT8RIE7dV0pByyGYaARIPN/eEoipIecJpobvGqfBXaBqUf7GA9aJqfoWASt5mCEjFonZ/4JETDNTKdi1ru4+MqqjoCwY8ceTYW1LAlRQUnYsb6Ym5CFzDsSD3LsE6F1dW2XUHHEwx4mfQF14gtQITDN0pNqYvHJdJgVnyZr6BLe4NggoCPmmgmG1maddXVmlTXDu9NnF+aWPPvjw448+ev2Nqz/60Y+++PKLTz/9dHZ65u2332aygOHNiZMTR48cPXv27LXPP79z5/af//m//Wf/o3/yne98d6B/4IMPPlhZXYYqO1VhGSHg0fmGvaGRkUePH9+6fffSpXOFckjt6MD3H1laXFtf39jc3mrb2WYuCl+C+qaSVMTXCY4m8wWH6kN4Kd+5YeYG5a1Dc6EJUAa59AtpJFUFxDVi4QYdwy5BGMIUrnruT12jSlw9+draOtjCi+CUSG+P3d8CoIa+HIILgK2tzaXl5bq3w9QNDgzhv1Vt/sNbKbg6DlLJtzw147mZe8YsAUNNY0CFcqR0SA3DB7IOJyQBspQ8EYUyejzzczNYMaZZwNra1DrQ36jh5kxCfxIO0VOLzm8w1BAfeHLophFh4/UhMG5BWfJ+SY51krh46eFLiOrQPEn1fwni7y8Cff07Ccog0kYNuNZ/UEVL1sTTfaHtRRu69OQ0KJnRKC3jgcH+8ePjLyan7z54uLm6ofc2+TZt6+Hhge+9905XV1u9HNSX5qYjYwOvXb00Ozu/xjRcjN/c/PwX128eHR/u6mSENiWbgkGjJ04y/Xz0zp1lPWNL0+PHT9568ypzh7heeuPT08vPnszMziyVAc64T/upqyssjmnlgtZy2hb7gix6VVdXbhNTVQy7OqwjyePqUUqBKXIgsKmICAZL8qQMoTJGHKB+Q4aZpr1CA+XkyZNHj433DzICNbq8gg1s1cpUQYHYAireXflYvfkphS/1ZcXFPgdfd/UVKgNFTHATSOt/aR2YTRXxdTilEM51KIIriAQKBMLpjsBKhYZfHvHAHwADX7LkxrvEaFcd0kDh8FXGGvg1kDJTd9GMPCJn+kHlKXAFdbkVXo582laMNY8JlD0hbOsFC3agYALKaKBt4thWV9s7uysimUdmDHmvaeLUqcuXL5IkqFnyYtMSn8Vta7uKUajjVvdh3l4Cw9x0Zhq6yXtjc5MKY683Y/Vk0aZHbqZtRwIEViSE+LhIJ0uJOKkfL6M6NDmEAhl0Q3E+7e0dLMMZ7B+aeTF9797tDz/8kOHNy5cu0fj9+Jcf/vXSX7/9zrusTmrabenvHfzee9+/fP4yMF9+ce3x46eTk89fe+21N99854svPqdTBU27NEoogyxkWFhY2L2/u7q2NnZ0fHZ2gdEdSA1TsNXS3z900jHs3TUmzpcXWYLUNzCwvr6KGGRbseYqTOXetiXEF62G8UpAgsK78KQraaPp1BO9ch2sPFKnUtKRdlwbzeEIpNBmWkpeTPvBTEIVTQpmtYueh1SLxsE6bFPxgsrdPEsuXnAn3Ui+eXV5hXUuKHIQNrMAo79/kJUdaEhyjAombcmRpIUe8t/Z2pybm6atA088ZeCLRgytOhJqXiOC+GoemqjutiGA3EG9sbVBt3d1ZREdFabVtSeDfYMssKNdJ1ryM8tkW+NeyEOhgiMTK1UdoJQdsGpZQwCgDlOi65DV7T4wWRsqfg4UQ/XIh98UVMECl0SHW8qpJnUc5GV2DeHATUN8/bLQDx2FFERQf/SKi0PYXwFxIOobcz8A/cqbZjiWLSqMA2suZyGgmqWwJJxQ2ssAbm1v6YOxC67NaOvr7RsdGRoZG+zu6Vi/fL5/aPDzT65trW6Wst7a3GClR39375tvXrZGRwqlvJtbmy9fnHj06MmdW3e3N1nloLW8fevupQvnzp8/ERqiYLnq7em8cO7MwwePNzENOzsvXsw+eTI7NDo8M78+N7+8ssTA+BLzWszSMdjZRP2Aod1d+r8MlWo4drFhuDCIMsBOueBbVsNsqYnO88k4T7D/WF1spotQNJnbLUyOJV6JkFBj6i9IFFeQSS5XtvMJ4Ze+79jYGLM/tF5oCgOpvCGQcUcwaIn5LibLylg+GcCu6mYsca5JWMglC9AQRz7SkJy4k4jQL1Whyae1kGuIhwzSUhAUCWOcLU2uMcIEihC8rAoGiU9xPUIXkvQILa0+U1FkQ2e1C4i9+aJAhRrIwLyLEgw8YKWd095lKBGeW3bISKKYe41MHZ22XMiiyNaHwpgjDgnS6LAJ4JI++eRJbhVIEQN5EeMSQYLppROssgJ7REY6Zlxyt0+7vU1PhTV7rHzGDQqxu9vZ1X31yqXh4b6iqWRAzwnc8Y6ueQOrzQuw8AHIpa/BKgIWIrKGrpPO7vrOzub6ukP2Tvu3Qp9VBlRNRTZkZiGVoNkNhZ2d3RhbHL1NQKVn4xdZ8ty52N09xH3p8iVg79+/88W1a0uLi2+9+eZP/vk/+5u/+eCn/+mnr7/+xqVLl3tow+7s9Xb3v/fue1evXL1+49pf/MW/u3nzzttvv3XmzPkHDx4ODw3T+2dFwtrG2uzsHO2g5ZWVraeTW9tNTx5PTk0u9PV3wylNh4X5lfn5BQhl1UZHdxdr5ghQniK3sYJ0VQjLmhsIjrqGn8KUSooKoUlpRFFwyKtWfHBfCiZoSrmlICu5WHZ7TKZatnEVtGlKq98SUF9oFpP14QD41sYWA/XWtyQGHgGW8WdKmWjlX8uxpDeTUIq2LS0u0ZgjhsLF2LH0geVsYJLLWqrIoXbDr90DtXN+YW5hfs7GXHNrV2cPDXBWyEdK5CPRQCIFYhQfGrorL8kK2bjQZm5uZmUFArajY83tHR1MNwz0DpBYCOWfxIXub/g2nwOkHoQ331povK7F+fuq+CqVEk4OgffqQMgq7v2Y1JH6bVg5kKTgqgME8/6d0k1TbZ+efdobwV66rmfyTfB1wJdQ/I4iNFw1PYQ4OONWMYRHlaSQhMpubm8vLi1iRliJMzKCTxkaG+nr7uwAFMPY097xzjtXUd0vPr3OeBUowLG2uvHRx5+OjA6fOjUenHBhjqhff2/ne2+/PjczMzU1TfeCp4tLy19ev3PyxNHOrnSCa7LCBZw5dRwNfLG2tbvT+mJq6aNPrp86e3ZrB1vWzDaN2Xn88LIVKpWxDT+xs43rpL4V5aIqQYx2LAEiAuw3foE7ja2dHD0BsHTpiKBSYA+7u7oYAqRRqtmlw8AfP6Wusb8FaSWPSIlU1CNjuOU7DkSfkR5UEaQQ5hsjRj7AAxa6TJmPaQ0i4SlJqHFWOmKQMK2QwIG4BDBXH/Pl2jv+awVbIpHCrmu2zQzjmK5ZzCzWnjZTBW6mwcCF7k8SS1Tygm6NIiE9N6y0fRLaEjhKUCjAEkiD/UmTnqXuFigR+P4YU8nnX0hSRVANQoBfM4VaoOBbxKbWSUKLSUpCd42kQym7AukbQqY04rmQFd5lcz1zvRlqEWmTPVoHoBNYdU1X2GKnqdZCh69/fPwI7ICJzPiHOx6BjFJl2J42itlu7a6wCJkektTxVRUqXos1TiTH6SIcZ78ZfG5rpzNL/wn8CE5lrwUIVhRhgB8cjBJXkYMaHG0MPWYV2PYumGnN4NRPnz3LbOb9e/fu378P/e+8/c5//p/9Zx98wFrmj9lW9M477/X19bJY4cmTJzist956e3l58S//8i+Znz5+/DhdsdOnTzNMPjQ8RIuFgQBzh6c9smqnxv7bf/vvJV5dlsrZuUW2zdCqZGF9TxObrJoYt6eyRHXY6qOEw4JabGOSkrLYa0ylrGGK+7BtPHpgFoY09nhQEphhdCM/aQq6/8BxASlCqkwCiMGyITF/NWmGBiuedYpB4I1NikxNqqS9R08UZa00RBApA1O9CEocxQ6DSExIGl5NTV3tXSyfYoMBWmDWXxeaGRtg8BknChTyZMzLbnfwQDE4U+XNl6odgfgFIZCKeaE0FxbmVleW47+tgRQ3ubNzDJ2K9bFGwJMovnWQ2YZQv61fNDw8cFkHKHKr3x4A+uobtLtYogJSkBwAr1XYKvIgnQcgU5DgC/eRnGUnCFTVMf+qFB7K4u/1Fmb4wB9MVOWFqYNjYoseY7FYsXHs2PjFC6e7u9kMty9d2sCs1njvvdfYsfb551/gzJpwEy0t8wtLv/jg477+fzI81Bf0kZ8iazp5YuTK5Yss1Kepmoim+w8ePn9++czZ8Yi10jESjI32nTjBKPcM9pN2wNPJF/2jY61tXZQvs1PTszOMxkEKOCEcGKoe43asfcLuUfed78LAUloOK8IKixtWqSOAcW3FzLYWGteSwaCoVrCjHYPT3cf0TUdH91Lz0truusZ7l/560FEPHKCibsUt6B6wUiQ0YGntvWGIgzBVnXz5VIKFwbiR2B0FHCTGGv1qNSiVjmzKc/I3YQlckFUxZ7nwi7zKd3KtlanEFJ8nBOaMDVrkWbgoGE0oVAO1Upaci0pAN0Eumx0ew3Gw8CQ7TmWZyNaWDmSoz21htxQ7srRdQcCPimDVDM7CgPLShBcqNVP8bdf5q9j0R/+vgwobB2XlCpfkEndqH1c3y/RlscNkj0suEOtugdUx4z+YJC6UQTmjhUNDA8FeFZYOWK1SGLhQ+NxY3WbdPuuoY5H16XqF9KvoY0Ei1h9gusIoxRYrgRhMbldRlNcezSm7PLUQOYdoEtqawQEXtp3macf+oqY0u7Z2Nm0j0IZqaaFZeOLkSRrCbHqenZ7+2c/+6tzZC6+9frWnr4dBp+npGTYCjo4OTU9P3bt394c//MGPfvhjlu/evn3bFT3sHdzY6OxoZtEW40jgp/CY3aQZSqXA80xOTum6dJk6rZ7ePv6hkhKzRUNb1HFRxsRxSLtU3QKMcrftOSuehofNNmpSUSK4gVluCF74k8oQdY0e+KiEIhauuTDGnHRUlUgCRGGV8lJnlauxEGYmjBEQtcdeyQ3MAPE+zzCGy9yCB9ZEV6ULxnzxFILRhrnF+Y0tVm9JA5S6ja+LtN6VfPfTHLxCFKx8Zr0UYI549/ex7plhJstb9RGFxEZ3i0DSXChRrluZn59bWnbpNeCtbJzo7hkYHGRHIHSw0TPchEoufxsBOiHpt4GpjiOF4Z1oqav1B6+4sN1XRQOtQKjZB8l5WeC1FPv4GmHKdfkGU9XGoXYG/CDufQy/o6u6bBspPJhX6kAVFf4rSmtR+hWuAVO9+aLFTK2fmz3ZfWJM76PMSp+ZOtDU193xzttXUCHWc1ADEDD14vGjp59++uUPfvBeN5PBKReFze6m9parl849uM9Q9ONSP6n+t+88OHFijPmuII6wm3GGrefOTHxx7fb62hoVjAlpduj19oKthVUpbB6lbxDDjCFthUIIZfMshoW6BhFl4xBrYdOV1GgwrsbgIO0JxsYxMgwWbm9tM6IOPxgZGKaB3tvTz45cqjNGcbB/uLtzm2w3WFnJDtTtTWYRQ6HeQAFRkcjM9bb+Ihndr+ZUXxwDjWeC9oMqUOolcQpSQ1Hk40UAkRLBDAgUAlkaijaVWB+UECJSUFWEP0CbJrDcQsw2ktI3ub+RAUXaCXFXFUxgqQrSXFFl2pBX5W503VnCafYZdzOci3mGZ/pK9vVYo8RQBsOxWI+2DnYtI42wBU2Ft4qjWE4JC43mVXej3EhP2Mk1lklWiBIGdUQDkoBIbpG3ZGeQmHKn+pNgm2ZQGQfeTJpA7q2tM6fpGhkWLW9v6YBB2d3TfeHCeXZdh19xkkKX6JZwPTAX+LAPP/z01p3bL148t9NCMj4mgAU0tau9oxMjjudv3t20TdfEftC1lq3UHjDFwISj8BwnUXKCctwhy+ZTZPaGyz4/FHqb8ZvWbaSK8PDlDHVT2xiDGh8ff/zoEWuyfvnhB2wO/u777zPg+Z/+01/+v/7i33/ve9/hRA50/fbtOyxcZO4WHukT44esPkurDIWPb2wMDA6g67R+aEag2MiLW1pU6IQlAk22JzjPY4VHcpjN/m5lYoGxExaaWCYxKHCEjRukT0qbzCJS3wkaViXIBfUPdNyAer+ZEW0oIqiU0LSVTHJFttwSh7Imvv4lvipUaIhRZ4oDFk0ETksGxtEEyhF6QkctYe2XrAgwRvMczaEio0KcfUEpuPgZ1qh3RXfJopaq8ZdBEfaAoaIw2MGq6dERWvEACC0HBk1AarL0miE/VAGaNZuzLGVZXsSLE0lfv6u7lw60Uw8CJb3ClEFjvHglH+by9aHkCkz94uvhvzUkjGqbrJiRkCXx1SEc1B4HEPivS1CDrf++gn/l+ZUB9N+e5a/E8qs/INOv5KyRh0q79jMo2qLdqpTGRjybF37607/+8Q+/d/r0cSsWLGOmcLak22s6Mtj7g++8zbDf46dPzdSZ450vr986eeLYxUunIvMkALSpeXi4lxm3F9PT7t1I/+Tuvfuvv3bxxMkRuwm2XwTD8B07NjY4PLC+sYbSYJHWVlZ6O/uWlpeePHywPD/vOi+qv+cNbOPFoYmeK50wkjNGRt8MG8sMLHOEGAzyYkJnaGiQukbNZkobozM42M/xFXFL5kivjkFsOxzpcmCU+vq62HaFz2bd6OLiPDWi5ghDJAWbehFrxkkVBM7EcBJZCRHikuVlP5Trko5rbxXmAZh9aK4QJxYP4+C8kdmZgG8EVNLSMWxVYq8KDbpHuRBIWai1Y5W2agwomdCXt+AaKFED+CQdTzAwGlfJhS97wJ2Ce/JJ8VetHZ1d/XQlB4dHjxxh8o0tqJjo4tIr4sy/DCcaAQmwVj2SN1kjuxIDaDqYqAh6huQzFybjB2yQy5wIoROj5gkefBzCYP4SwkCjzOSFtUgb6xukpuVFHxi95MHEyZNskmOYs04HscV37LAWlWTsTllZvnHjJjtCdPORilRmRJ6mBwWuaPBVjoKyyGuFJo6CamnCwsKvn3g1eYdU5nVVgNj2NIigrsiZocvz588zPo4ThR4dc+cu5c4sM7zQsKBzj5oyqsw2FbwsfxyZxIkcf/qn//lf/eynf/3XP33//fdZKc1+pIcPHz548KCntxv6WI5LDvhgkqunGb6gRi0vsXvKoiTfLk6NYXjdnffba2tsfdlNq3aXrtgAC72GBhcXF1xjjHjlDZLtLluEgOLJHc2WbSqwAudZ2oxcFwtjZEMwvl7UiecuIILprSOUklVDOmKJs1QEU8YUVlRqb1dpo9/K3sSdVG5XIlDMqpT/hQSv9gNJ1tZWsTIenCX2lp4epr8HgYavpKkSkBpcVpOKrGbaJPRfKXSyo+LTskGSqpVKDIfR6Vq2CkeSy1cLZoWRQLrOCBzENIFoLnC+Cg0yQBBeeobkWT4STEqFeZD+Q/dkUpRtn8PqygflsvZbe/AS6NdHHCAhxCjksExC2CwFe5jMICWyHl8Ug5QHs6sRWYs99LhEV0AN2Grgh9HV4//uLxB4EcXBrOu0H4yu3SFIlj7Tl7HBm90KweMmw5/97G/aWn58cmK8qDwpYqCcsDpxbPi7773FvqXFpSXKFxO9vLr64SefjY4NjQz3KxS1yjyoIBcvTNy5d/zuvXulc8Ny6Ju37h85OoiRoSI7xxO1Gxjo4myoF1Mv8Kgs8llZXuzr7p2bej794glLBbu6+qKPGL111Bi7hP8knVY75swcrQsZRdtp6u3tdzpJE9hM+wALTD8YMwI815gpDBMUUi+Ki4LrYtvpSg0ODjKviHHFQlEvkKrqpoVppmOC+cX3dzl53Mf5CCxMG+jr7wE7KTv1Aiz4cTg2g6yqTCkVZaJAQAVV5OYXwTgDFwKakd8B4DtCVM3z2NpuMuGr9MHhlyGYCqRkG1W6JhoJbRn9ksoyFMSSh1kTaz4VAtPFm/EYRNhd0tL7dNxAy+XTPrtWIxzmNTI21tndtb5K9wkkUi9SMdFBoowlmNzwgg4ZQkZjTkKRqOTLDx8GcOli2X8KLEa3uG1RMiRSBZ6akc6gqZeV9RpxO2B0azJtzOQlpc7KPZaEwUN6Ra0tJydOsv7IPl0phrAeTpl7dxV86fjTpotHsfRLEYAA7nBmeDA4UBeoB81Nmztbay4ydLHA5taG2gi7OGiHoRF2GwpJSrwWR4HYAHG6ebtUDpwjKy1ezEynxPVDiJVyIheu2zeZr7WjxgQty7bJkHOyCFNTk5cvX7l48fz1Gxu379z67ne+x6A6Cnn9+pcP7k/2D/Sjiig8B+KcP38R5zI8NES++E1g6N2i/Qx7ss4ZEXD649b2GouZaKxw2qWNypaW9bUOd8QODjXvzRFPylKYzNTS0sX9wOlOp/uS2XVVlBA5MOaScoT5SjVhKpe2liypSg1iRLyxOtuW8ny+WjAn1Sv3FlKUtbS3UCQeR6ez3IPStaNthhTHXhdrINnIY0amp/ZZnVB4CkTSDJgb9qbNzk6jGuqLC9fbR0eOMJcFrEkYKKmoDbxkAmgWFBsDcSxdhmAy7e3tHhwcoLygKGpqdvBUkplEQiK57Eqn34zzZp4BXMwc47lp6LDlnhRmmZRg4ilVT0rhyWzTlBNp8pGjPPSnBLWtdr0f1RBDElNFTiW6iskNdFbCqZ6ptsmlPDZHqTPKS8UDMi9qYAoncYIUCrlKEEgu9kNJX7/XZeV5Vct4cADcvEsoAPWE5aKeL9zVAA+BHL79esBD9B9O3CDGV0KC/HB8nYGXcRmDtWodHhhhGoJGIbO/jM1EJIi8dWZ27m//9oMfNL9//MTR2NF94dA5Ojtx7J03Xv/lp58yR0v3Crv85MnkJ5/c+PGP3u3spLe6D8zBta+/dvnZ5CQbh9BwGt13795/7eqF8fFBpK9TiOzYkXjmzPEbN69vrG0Tvbw8x+De3Oz0+uoicm5p7rYvsevpbxzayMyVI6t2yptbXFqTsTDZF4BA1eZ03q2tNdjB9BNo9zJcyi0BwwhHjHsrMbQGy7INctcEoUw0pXGn29vrDFxqNfd26TZkrqyPo3IYFxxAXixa7Bvq6uIISYYkMVldLW2d2R2qOXd9jfYXZJghyoAb1bRW+sVwqDN+kIKKTZ0zd3odmH0XZvlcTx71Dx7sekkjukOBJ2mvEy2SsHMIRGWgdqd/aSXisfxr96no3hZiouxmJF0Ese3sdbSwoaevk9MyW9p62TOZkbO+gf6u/h4c4wZnFitEoOOzrFgyTDEVbhF78MuNdNgZxx/hqWyq2NTx5E6Skw5GNAQJghMdH9e874DzDFnp2miNme2Oe55Kg4mnPNHhmZVejcy6u7qPjI9xhiiEmBH5KBGeI4BWVIRrDa5Bm6MIwVAFqcdD2cJKWpEgiTYW4nvMlnuucoKaSNJkld8i5HgIsoNNmm20dzWvrBHf3mGsxm66afxS4hE+Ei84AsY8SuvoKKuEWtdXl+/fW3z86AHzu8MjQysr2x999CHbz0dGhseOjK2tU8WW0H7oPHfu3E9+8hMaFCyKxo9SRZjo7O0dmHwx1c6shM1SjnWlCrUyp/n06dO5mXkA+nt6aSfRyO3J+a6dXR3MpMOWfWUdMJXXbX9MflMm1iSLGUVlsbLcWlB8OFJZV57SqJRX5nRWPA6n5YdLBxkiZLHokRW9kkhJBta0YsYq8EwHxTAytZtZImLJBT/dwiImptRVI6oRXz7yx1IOFtHT/V2mVbNm3UpkFweReQSBgARTVWmJCWMqr/nQw5ifm0v/lZOu2zEDNIwEChjfUJ67isLqmrb43jaTGgS9PirEUFtv7/AQY9ed+HzUXKb847dOfagLWTV64ENljcIW3H5LNPGFmUSXlHWIxkf1yJcuKv4T73U9WDshkVxV3xJCVqTHPY2j3zBYWDVsX4UKkMJ4ndFvx9dX4fstxBcCkM5viCsTefaBOzpp0bbT8WWAl1qGQuCPnjx/8Vc/++BHP/r+xKkxlHY/L7xUe8vrr52fW1q8fpPj7l1MQ0FxbvCpiRNsNNKSloBFa24+derYiZPH79y9Z9zu7uz83L37j0fHmJwCLjrvpGPTxImjfX09G2vrxLrYcHuXoWCa6RBpCbiQaosmAitAGRFFc0uDFc2n7Y61RBo01+nUAolFZESKgWjqDx9NIluNdnNUH6NBi4urqzppEqXW04i0LhR5Es9gHkNsMa2MbBPh/9Ymo9+rO9t7zK8tLa72961wWjIVmJpo6B1gRJuJIYYSyNGJKYXifyRRvq1urww+th4WcAmx2ge4CCg33HMnN1wkVMgaksqFDoGKWUPBtSGw+YlASuvaLCAqmdgJ4Ao7AazWkAuQOBzs6w86uunq0spop6nRvrvVjTSxxbspHQZHN8k19JMkfgsy7Svjs8ik5J9v87BCFZ65kSuDT1UYr636+wCFds7JiPx8JJPOdNNFg852siGZXFcusxBjThWaZiYY6Hlov2GXjGpKqoq0tmxs8NqAaoGA+auoBpIDzzclohb4xgLbQRaQPhrKeEbXybYSQdFCkJc0KDTKXlV42K/FwEzhgrHQNaZsabbwmDRyrFg8xguvTPedOkhqTqnr6+/F+cEpj6hsOEh4/+733iHV3bsPPv3sEwZfTpw4zupuushzc5yTzgzOCqttOd59gX1Ic3O0EMNwMw+WlxapDbROUFqYnHo+OTM1PcZMwsgwu2PZIru1xXLKXRZ8dff2wNXO+joT3voeXLFum7l/pn9Yi7HF0STtne09/X1FMhYqqKvx9lKmSrIqtaqYq7JMpOVtcZQiV1y1VEZSSkovcQXES+KdVWBawfYKEQwItzIipeJUuJOCdAAQE5SWxd4eg3akTLFgcThrd4DGBEgoIBFJaw1FuQ318L6wME9Xgzu0uZeG+OAQU1ClxRnKSJbU5kmEWfq/t7u8uERBYMVQKOwIDYWR4VHOH/Mh/3wHOjSmVvBFjM/qlORGtI2R3jSGPAeynqrxYf36ZYB6jAmVdkOAKUJFDgyp7ZJRBytc11E0CC9YCleNQj2AvpTMN5HcQM9v67JOfyXU3wZeUCmrUko1hPWM6hE1brUMwKK6GfFysnCwc4DKRWuY5hp2t/RDJqdmPvjok86u7x0ZG4rZj2KlSOj8fPe919kj9PzZpE325hbOUvvii1uMJLMHyRyL/Jub8JhXrlxgzniFF9I4brd9996D166c59RhrX0ogZjB/p6x0bGZqTkMOcadNzRsbK5mVpSSp3e1A2HAMm4UF4T50bRp361b2CeXxmBqMCwwQkM/Ftn1hnEILezhzKwo70vArlg3aeFhOqiJcbFg0pBU9DRh1TvYrZls2HC1vte80bS0jISB4fRJ3obA9hMaL10M+nV3Uyt5Q09bZ+eTJ493dzYxngDK24GQAqqpZXT5wOPGGwRSAKP0Zot1U1S15HE13hSasfFIgSaptQAJpioBrVo4korgCdbusM7jVIaCL8YKf0lnIgVvS53i5oYeGy6Y1W40SXhbBKdqOO5G19VN2BrBDPBJK4jN1QzMDiAkRduIvaWQVD6FBOlQNSUlH1PzwdsJQCA6nNbuE0n/QX7CkUxlJxL2lGvaaFkDJjz/IcarXJBC78NQrS5HzMEvoDc8Ii0OiT7V3NxiPLqqLv5sXCs5Fn7CnTz6IYd0kxWwPrg0OywPuS0QhdUwRgx6SV4+amrifIwvvvjy2InjbMAtBQsCEoIJP8dHGe7t+aYOhod8VQ7nobOWioVwroAbHR05d/4CBv369Ru3bt188uQRZ3HwGijqGMOdvP3pf/gf/r/MB7sJYWMdBVXF2zroda2vM72NO99lxSOLLZaXlkeGho+MjlB5OEmKIt7Y3MKFLywtDI6M4WvQcU5dZG04xCBtWEA6bFhkOJq3trAYsru/N20t2xD5UO7wiJ4wzpFFdRG0WgFACtYywl0qQ4RRK+00dKoCDGApQgssZRWJmoIV47Z4kpBv+w6+QcEC4bvks482uQNLvxm+EKr5uSWMl4QMpnqXRhuFkGyq7wBxvcd6Ag/ppbVHDowbj4yMUitSwQrxsmHGapnDUFxxATbFuDC3ue4WDrSCNYDMsHd2sOLa815QZLuYIjJNcHHh8BcYCBkFICb4glbxNgRwEhoivuGynprcBbXGFaHVE1ZP9u8dUKgyrSevRUjZoXAooqTku8QfenoobVUwh2L/4dxSgofF97XEA89KTAKmZnuH7T+0urepqnQiGcdSPfRTTc+eTv7ig09+/MPvsuWtEmBNmiMj/d95763/xKzsAu9asDvw6NHTu3efvvnG2XR7quwxSKcnsDTjt+/cR9exIWygeP58amDgdFRPVQMlpnp8fOzO7bvMToGKKr+1TT+VZ4yBsQBi/tnzpwwAo+VCo0IwEG/A7k3tsR2w2H/RaRpVaYYc/ba2o20YrmwV5JGnL6Ba9pC1TUKVCi3qUi122eDkKGZqiJHghCXgiaH5u0EremW1pW3Rbg2o8ca9ve6wR60rnTVtQ6jkZ2R12fAwPJmNSVKBQ5JkhbJ88UwauA5kDX14gW8tQKUGStpo0EYy/CYzRBRMUGC/SzqSgY2wZrbkUO23d7X5tEb29pjoZkdKFwzClMO0FIZo4JFFyS4J0+4oxaq9AT5witYJ2Qx3VqySLUBV5uKoWTzkip0GIYpoSe1wsiNkRBDQXMg2QYagJV+MPGZIlLNjyBv7C/ISKSDtAl0MfQ6Y1GnRTmI1E60yHtbHzYIFIeAXWzc3tu7de/Hxx5/iwBAEKExby7rkSMGXi8g+YlC2BFw1F661VqO0tnTIpZMYQpEHETpgnRN4mlgNND0zPTw2QiuFHjx5Uf2UKKLVm1sewNO7pU52da2SSMZgk71PHO568xaVJKxRhdupHjdv3hxlGcbQkATt7T179oxXa0Uy9vDwGaxcQkeXlxfW19uzNo3JlRa3FOfo7MFB1lSvPHr0GLQcSHlk/KhN2u3tkeGRgb6ByWfPF+ZnkAgy4ByJNUa7VzhlrGNobIjRMycis/85JMKdZaGs+ERFFbXzu2m7eK0MgNO8pwQUVqkTlcyTIpBqAA/55pHRbPLGQJSqTrK9jk7PshdAxPmvkBhBEDenFrCuTLvmLYF5WM5tp6ZaQIVMDUIte5OYLW0hhhBISlFTesw+OfubkgVToPX4AlubRM81OBnImJufcS0JYyEctNLVOTg01Ml+MN++VXFTcZT0kqj6B0V6m1RblBhQmMNng7YxmFeIbIzk+pWRBUYJ1hg0xjs4CBOgSgVMTAE/9F0kI3ffMoDbv4Ty8/WNBcX/K6D/llT8CmB10X21EA5gq8MfiP0WNyk3UrfQCqSK0ZZlUoXKRuFRmWk309ekgqUe47eaHj18+mFHxw9+8C5LWEBfFXvM/dmJ8RcXL3zy6TVGaHnAnswvvrxx8sQRtvZKiFqlmvb1dJ4/d/bho6erLK6kabi+/uDh4/MXTtLTqrCxwqmt5eTxccaNV7dcgkrtZ9opXoTNe6zhn+bA6pHRERS9Vqj14i3FxkgeC2Ws/nTTqJLFYMJnKpYzi1VCldRWprf8VxRwAcfUbE2rNUETbP0s4iqpyzcxPOQAQbKyFcDyFjqH7e3s2Nncpvv7kiIVFMZrdl5utUqQhNLs0IxXOStBCaw+WvJQa10BU+4E8Z4f2we2PXQK3hOE4VOo9p7nfiOM1HWFGTwsDentH2zu6uCEvO2VNSbaGTDgVOFuwOg6IRDcORls7vly3OQHxSImU2MY4VdfzCB5yxFsBIQ8w1xFZyirvgCuiK0olmanhbkVdw0dd6xfUQCInsMrmF1jRoFlVj5QRzFVdS6JKwupOOzMIt3dxWjiU1xFTQKp4StX3sFgy+TTyXtLuJ9HrJ7HI1Ou+BqR6w+1rGRtamYX4N6yKmWv45S0iMQujdt7UC7SsBoPV8oLFROBUu2kYxQWyJYiYyiVdi+DuXbgPDxkq4ODy2gxpOQYW8E1c5YXaxTwuFh/yfERcy2799lU//hJ+poOyLCfBY1ngBkiOUaHKVIqEJzDMik4M5N972SHmGhdb7dQ25GXPoVhIxw84/N4eTYA0AhnvARvffLEydX19bmFBWSNDz42fpR3E68uLTNQwEES85yEvLX93vvfO3V6ggGEorxRtkq7VQzlUgXVToWN4K1dwiIXfBM6Q0ujwClmS189AkJuS5FTCib2BsQbmxoRxAwGENMBpgktBjNNjS3o+FbvzAtRZBEyQ83aAQYi6P4yh29Tx0QKQ3AQlkCq5MZZfMyEUZA8YsiadYdUh8IbFJQCSamkHhWtsvewPTMzPb+wgCOGQpZrjoyOMQePrm1TumQoUSXImfVL4Ui9S+ctO3VHc5D6ROkLJnNkJKCtZ7PniytVhtCANrehLE/8Con+FrJNWzBgO0q7+iAGM4PVWrBA9++M3b9N/OHcGwFqSL7mN+x/zXOIrbJ3wuBV4TABqt1+ILFFepDH8riwWU9ev9hP/GtdfTUeaaEkWeyLWoYijQrj0XTlUGvcMJH0a+WYXe/b27du3aW9+N3vvdnVyZtepQaNwUJxDNDbb1yZmZ69/+AR5QvSZ89fcOLVD3/wFtWiQIIDSk6dOjE6MrL29Cm6QufkyePHCwtvjI4O8rRoBAhHhodYK7KyyPJP+998gVILurPN2sxz586y+okabs66yaoc0hHQnmiZpVgjoIKWUGLkQ2tZk4nKi06XEtkHVCHtV0AhXJpXagrXiEUzIG5ExRcdPFZe4rnaGSYcGho5evw4h4fduX3r2eMHJIUFJKqd8BORgapMkPmLqBgJtNtUjADqDaUw68pZz5ySPGmIqPn2sSGocmsS76oHoV20XPCAT/FK0FyYoKYKnErOt/uWrcZUo2Z676NjR3HAG1OTDC3iBzo4YYDXyfOa3uYW9rcw3i5xWARsgpJBNK34FDt/VH++1HYplKTImSidspK0O0eHlUe0EXgeipCjybR0JoYspUx7JuQCpWDCnWLnXjPN4xg+G0sUMq4LcBxSJRfzlhAhVRSnbEHD8nwaRxIYmfqYZwBKMCd6NU8+eUavDtlZuvlwoVmPywYpfJARwKaMAHhKM+8APvRVPgJUCtteDJEgRhQQmbT+GCgeh50428Y1vZLKfvUe3qzVycZqJwHYrwJncIC3i28gY/OGNCZiyZ0N78zFIlz6ytElz/EgIC4GHzJxw2QBqyKhxtpIU4rD/wkgxAcjN456Z0Uh7nlmdpoNiMw1jx89dvHiRRY3IPXpmZlPP/mY7aqXLl06dfLk7NT0c06Fn3oxOzN98uQEgwpMFDM/DCU2WS0+PD6Uu9NLWmua6aVSqe7loehAREU6S38fONKpHkXgRlh0BGomLCvdPIFIVlciERuChqStoeLOj+tHOI9zGacWNdtlNQOTRjyhXJIvFB0OCJyyobtPB4VK2t7exa47To22AqUaS4MokqXXhSa1ngF8PpQISDAQA5x11dfvqbBFEFG7SvkqEqmy1kX4oFXGW27oFEl7i1ueSOTIXZoOhcqUsJrWSHeYb4w4zFHKw4paF3W5KNLK94HktadVZPh8CecfI35dCSDe1dVlOhLMTbAMizpAM4tA/eWXNR34Qo+SzYDwxtbWjeu36Ui89tp5JvXUPIrFTnDT0GDPu+++PjNHa3mFaKr1rTt3z5+jgo4JE1jihwd6z58+zXl51AWUfm5+gQ7xyMgAFUtLSdjjsK1O3sk2NTldeMJQoFTgYJcUSzI5OgPSVHlgizakU4AHA5IKzsbcJLQJjXHD7lmxrX9EcKFBLkoVonTgoKoHYOkX0CUgYBcRAn0DBFIASKJBBhkjq77AMfPnnZ280f7YsRPjx44fPXasd6B/8vlzqk1NQDXcjdlAfELhoAbBb4mwYZEPt8aUWLNFTPYOjBd/A06eAanz1pxQk6xjCqk8SI4AaJcDqUBEw3CYHQ6MPYfyOHk+2O9aYkb819fad5paN3c4KRsHzCJvevo7QNrHBq32FgySQJ7bO4w/chqWx7IQk4x9Wnc6QFFA1UMBJCBFEjoTgXliSbv08VGAGhxQJZOSBkdia59oJYTFxVfippyTt0R0PIqLrMtYRvqge+7AOX/+AqPqYikBxAEtTRBWIEIHg41QCAF6MLwX6gAlUtCYiGtSRox8wQScMV+rYOJfA5vHconEJZSQDrrpiLF0DEZnmBeFM6eICf/Fant74LQcaKCYgKNOXCskJZLHxR5ndJw5e/bp0+cMkKKmbDdijGjqxSSHxjG5i0cnHasYMujNl/rqgimWNzvN4AJy9s5L2B7OjMHVNl62uOQahzYc1dT0C5Ly/gbeWMCE1I3rX26sr73z1hss9ZqemWKdCMJkwrhNwUMY41RWrQQv4Lqomgulwhc5whySi+ATZUkZeFSAarAlGnQKWm2rVVoeIHB6l2hcMFFayof5Bb7rxQTeOiouCBQnx3vxUfCO6LLrv4/6S9aE5CcxSVjo8ZbyWeHISmZ/2XrU2tI/iGnqB5copAkC44qltOQYJHtNK6srvK0BPwoOdJN+M58qoZnV9MR0YFFikQvfniJEl4jhR3KRcg4SamNJC7UvdJrkpVDFlZ+6GF4CqyIi1Cg1zcVwb8JKDBXMPpKafPaxvYqC/adff7WPN3C/Caqvz+g3eNpI1CF6vxkrRdYI9LL0Gp8iddrfrMVAu3DA/KGoLLFgRIcuHYPIKOqTJ8+vXbvBIAzdR5bif/bZF8zC8v6i/Xzig0+dHH/jjSs///knW1YN1pcs3bh+7+jR4Zx4pX5hM9n1c+HcqS+v35ianaP8acXev/uA/UiclUcSrVdLE9ejY2Ms7cwSUnnR6ezuYqA4dCjNPtTSsyd5hO7KIFDoFBYTmlBhnzCSi4lh7MfRUeOi4NSjGAqfmxhEViVZCRacBEN9jAnSpHdXq6tNJIFARdP15lrjzLCsObaxJ7h7lM2wR472DQy1skWnlVVKWSNWsCbBy1/BW6F++WmJ4TH81OwK0gljqfZVSh9r5yoMPBcEbrEcBRgaIRsBlhgj46IVC4kDzm8r+6g4U2907AjbmoeGR9v3Wp89fsg0Kg6V6VgcmyN0elA9hlKuhZKXOHPQMr4QD0qmjlxASByMRl4fRcPMUeoahcUl65UTKU7S0HuARAvtVcGTFupPAgR1LBhrQW9oIqSYKVCHlN2GxH62vIjixPHjpycm8NHQV5KHd7OzcaUZ15UrvqgPyVF9CCMGAouIYw+5NESD8PEcOmZDD8ZYvMx19SCaCf+MJfIRCdMzOWta2QWBgjMoOH7SxzJ/HGQvaxbb6e6wsYvNXW4wQKDUS9p7lHYpM0A5JpruKdvjUFZefkyPi5lgDD2AK6s64NCDZLoZSsKT7u6u7S7ttS8u9g/2M8FApgxsQzl7mVK/mITaIhsUZnFxjqO3zs7PcLwlq7/eeP3K/NwCB3P+bHHu+997v7+vF923wd7UwnJ4CEInKVz8Prv37AknhE1ZJaMULbKpaI8A94s3MJb9SwF4xYWA+KWuCkONRWSuovQh2oRQHLVzFCNaDwRwybQgTHac4byOApYYxvcYckdRSwIj99WqooRUzHAwFYfi8phBCeZ+XUwee6IdqRgis0K7iscfFoROM4ejgZVGT29vjwdNt2eNGLmQSo0gjVeG3Jiy2UVbbDXOKndboigh0xA0iylZAcNUhqy4k2qkkswjqGha7danrwomE42tbkNwcl8PBUCI2tP6I+OKx65HAVSRkiiwNd7WweoXDWIuCZTH14RfFf5rUH27R5BziKJG4Xw7HL8KFBJDwWhvMV5VTpcY4jyq/n5WV/X1suiSFwtyXmPHLz/8mAX8ALPH4ZNPvujvfX9wiPeL14jFuXLq5OULjx5Ncuwk5Yv1w4levnR24syRihwUjLUdo4McmDU7v8DqSFrfz188n56ZmzgxTj2KYbY0OTCStUDbtsstTCobFGIQaeWntNUcDBGdV9NwQYitxLiqAFEvVMVqm/voto7KZ/oi4o1Tm8AFIrIpCs3KZypztpXa04y3q0iLdbVw7J1hezxkAqo8wb6nm2OhuKW1C7KMz6afWsP5igLJIyn9NkFgPgk1Sg8llangVBqF8zRpKrCCIFVYWVVdtUgDhPQH+vt5pxMvtmL2cZvlJtvbvIIDMeOesDc4RVbI6rqtsNR5BK3UeEhHigES5EDLhTXr+s7AWHSCawnxUPVAloRSTpG+t3UZcOnockqKp42PCkwZ3wAAkEIHuKDPwfQibTXBbDVypIdmxjE4vpGl6qYyTyisgleAuYdXtcCThRh61Qa9dQkBi40mxvR8BZGMEIJT3w4heV7wG6M4lEEWGwGp9jQQAIiv9vQgKrLiSKYrl66wqY+zqDj0YmqKUzpmMbEc9YUzoB6mbLGdtIia3NC6tobLJHto4Eyc+tA97QdYoKJkeVl7ErQytsMByEwz083d2eH0Y06NsUFDRQQP5Wi5RiJccxLWl198zg67U6cmaDgDfeni+V9+8MGf/9s/p7UJbjwTBFC2K0vLnsnOxsG1dfwEA+GMygNQcCkrhB6xFllUoolg8xDASiC1CxMF7JA1V5DlkRqegMhhlZZwua8QlWcFQOQOh7DjGjmRBTUXl0Ywu+DhoqKwlpAYkukOmfNm0AU/2scetn4VHXUJeSElGaprNYp3dxcX5unCkkr3yXFxgyxS6+J5dEMSuLZdZu5c29hEBBBAB30e77u2GjotQzZu0xqjRSU9QoUBlErqCJUQalS/4rfOVy1JYCJIHuXpYSQ10b4CW6K+bdZflf5r4iHlsMc9CF3yPhj3D/gu8pcnPBwDLUz0nD93bmy4n2Elh13DLb3i166epq388cefMTHBJN7DR08+/bTv+99/u6urmgxWMZqahga6337zKuNYgNF14HXXN27ePXKM0+DrZpPj69tOn5q4cfsux+RjFpZXV548m2TsVoPCjN/23tQMxzgvoSBqV/wf5hvr5D57CEI51A8vYtvSONYGxyajZKa0TyFAswc7gJkUPHG9NEgT6mWWKO7U6RLpghvg07AMW6EEY38wAJ5aRDwjUnSWyNnODowztZaqUSFsSBd8ipUkEERa0MRVByjFkaTeVsmlPCEgYLAiawGiqS/nAbmFS0WYxwc5ttFC5goirphfrCXDzzQidrc2WW4yNT21trjkG47aeNmCUoNXXYiGR5dCEgRt5yGuFWYwFswp7m3ROcb/+ZScI1OLJtIvPOzTm5IDlueClFBKF/6AboiuPaa3UzxQWHK/LDQxqsFILcPX9Lss/WQfgnGqu6gxvRaWHmAN0zoQMx+JquVJckYaFUgae1xkbqEjS8+UoR9ZolPirDMIjCr/uo88p1Az0VoyUN1aWhEJ2AC0i0YDjdYZBGcAhzEU4h0FdRKd2T5Hn06fPnnm7GkGnU6cOsZWuhOL45998gU+gGOeOLSqtCGkJRToytV12w5QjiPftj/vywrIwSFLAFuzjp8Gckf76OAwpPAWW/qCmxss71nv6emiW82xlLxUgPlg+l4OiEOM7ZC9zXX2sHIg5Spj3VeuXB3tG7l05cr1L6//4pe/ZGE2G+BnZqfYU8zWfbbSDvcP9nR2MejEVi7Mh8qVli0FkQK2jKG2UB7pQyV3DFs4Z6y7VoxUVwhPxYB+dEmxG0/IBY8oY+s1sPnQy2S9vqfi+UggFVTelTDXQpeDO4ywwcOoQA+pggTCqm6xedQCVCMJTgBlDTPum+4vS/NQpMJMKDc/mixVo8V8yZxWEduvFxhD4x7Z0rDlTYVkqkAVBSAKITLhLo1/+GBt4ybvKJxdXVuN4vN+Yo627iY5eqtWq3XapHBF8tovV6AWKTBwW26NMTLx5UZhGmV/hd8QJM1ceusjARl+8tp4I3LtfQncyqSh9kRZB7jEKnBlXyITd+CrlqySwoFnr7pRZo0hFNcjxHYQQFkl1AR0mJA6AXUk1UWVDmYOYjx4W0N7OPVX3R+Cb6Smds1JfRYcbmNuZpqeDi8Hp7DrAiZ/3PFrV85xtv3nn3/J9C0rRr68frOnt+udt69WI8z2Riz/c6ePPT535tq167xZjeMF7t1/cOnSudNnjtaxgfnUxDHO7Xn6/Dms8rqim3fuXLx8npbi8hIauPJiemmJ8+8sfQoR0lpYK4J1YQ2QtVN+LFwCz+wtYXtgnniCmoBJNgJ94942o+yVqmY8oCV5rlj1orRjLmAUAGBNJIySN6mXXFnU1u9SgtF3bgD2gEZ6vWU6hQTWxQA7vaiiYUaYrExTIOh8bBNByPIRvZ6f76aN9S1MYAFPbuYeSjAdxQN6T3oNV+anQ2FFsUkUEwTmDwNtkfHqNv2nI0+1jxAutNzBAjJTyDKfRYYmMLnMeW1sdrD3iJ6MfWBlivCllVuoV8SIXfnwwfuxToixUjpO4R3CpNBB+xxjGCZDEoYIwiDQ0gsPMWKsHNYVS69Lm02tXGTEi5gW0zM9WaDKN+6f9UQQhQcyaYrWnAnsHnHgZKuzlbfNDIyOjtIt0/mVpxVIyHc70NbU9ExcO5PZaBvbWnwrLbavFAlwyQDGkDkLzyxByIcgmdDvQiNCcnQ+FopHALbhxSC14t8TPKBJcx/XomG1WcDNLk6r+eSJE1evXqabi+lH5yncwaG+4yeP984vDvT2z3ROsf3UNVk7nEUcVVf1bUUV+YCW3C36qCJkgZ/uWpnnxK0dHR/v7x9iaBT3Sd/u3r17vBigk8UfvAgoI882OJgQ5qVMNCElCr5aFudnWXVJW4yzPc5fuMApmH/1V3/18UcfsvYLD/Hs+ZOJU6dPHDvG5gdEtry2CGmMbyseqNRBuQ5QORn8VQVCJj+qAvUiSga16QoWyKhD7bIkhzs+KEysDaqhaoKkTG+Xa0sj+sKtl37MG66Zyc4lLr+zr2cAZmM5rBRVUDvIApK9wJUyDEA7hYUNXb1dvf29tA1SEwQ3UUpaeeeWH9SR4yo5UxDRITK6rxyZhyKhUiYAsnhBqeYm6w+Dh74vJ/RSKDSAbBJ1sSh9kGJCNJBiSsCrv9StRPqV9nTtQpDoH5klHTKVFwOX1UXBKN+lPnAvC0jcf3dXF0DTUFK1m1f/VkhrD1XGrw957lc9l4PwdQyy3ABFPDEkbMyA3A7R1/j0IOLa3VdAFHLqUqpBK/r69W/3IuxADZXY0uV/YX7+Fz//sOl7756cOMosTz07HnV3tb/95pXVtc1bt++ihO41+uLW6Ngwh0dqmGuBc5KuXjnPTsLZ2VlKd2Fx6fbt+8eOjXZ0WVkMzU39fT3nz56ZnH7Bsk4qOkumP/zk2ujQKBsLeCcMb9xhCS49GyAZyHJ4bH2TMRhMCyWQb4uIf7TDGhB5xlTTdNPgwJEA2H5mtph05Ebu4nejU6VUa7qaZwqAJJ6ogzFA7QG0j5e0+QaJ7j7mQ8PiJ07JqTnP9xCfqQqqVOtEQaNpheaT0PBrmnJLQvGzFYUjHV0+5k2VoPaT+zDnI1LgkuWL5yCyGeGNX4SkpnO1i//F7PMseWFq7XKQhr6HDpzltOyh3dlbmOWc+XXerQceGzuIP/QEo00TxRLTWfboImeaHUgKWtEh5v612MDp6LUt0sUlISySnACTRAMns3wxK6cMwmuhPwUlJLLmue0F05dPbSwlNhJ4OffoKLFU+VSwZoMnY1X/0PAIbw0KoF+mCTou+IDjyZMZljKRDrnj+iA8PWC7pIUHbT6QtFZc7usSCS4Udk6f0ZvQ+rIEwEEsQaZkN00RIGkNZKaYHT6ueKosCYlqwzIcoPH+97975MjwygqdJ7sp0TZOWOyhhM6fOnFm4ugXn137j/+/v2SBQpEvhDoCgdBdl6gAfJODktXq0i6ksGxDMH9v09OpfCw7ysqAPHsJTpyY+Juf//WL6ReULOdj0k5D8qgEQ6esHqIBTRpUBYboGX/04S9ZG3DpYs/g8PCf/OQndDk/+MXPWaj1F3/x71ms+/73f3T34QPWcyIK1hv54g4Llc/hQGFFhSzT+mOiyk0u7KJCbVGaUljBov5GrqZDwspWqds2j4GI+HkWZJaBFKTZ6GszeKmiHBV4js3hkkazy/czFiNSNS4oidrhED5PGkEmFPcwp2d0cR4NUIWwinYJFqcJMTccjc82MC6gjeEKZMXeRIVf3CCg0XrxkEDt4wNt6fty7rcrTtUuTtXD+1J2cGEWNVGZPXR+ixDugebXFPwqPb7AV1BoKK2kNWSFI/mvxSiQZFge7Ud/45UZ1Wj+KuBvhCkAfNcxeP1NaA8Ac1MJoB5dtGP/9u/xqiYixVu0HXKnp6c/+vCTlqZ3TkyM0+CryIu+sDLku995HdfLW8I5AIkdbryCcHiIQ1ExbjKa8mo6Nj587uwpDm7bdnJp98GDR1evXDgxMVqe8s3bg06eOEqV317ZpjXKy/8ePnjc1sKbVTu291pX1tbohTGqqKpirbZ2GNBmwUQpB2jmAutnbtSteBsA0Vsbl1pktNgGp9/0ZgJZ46KwAw5S6rpofKdOFY/LigmPf6IuU33EwhbTFB9KKwYV2PpssBgNQGLgYk1wV0GJtdU0qzb8q+/SV7g38uVQj00iGExavs3BpP6IAINDVpIQJFHyJIZasyRAY67JuwDRpEYSwOdWEmVwWx9ABWcxijW9pZXmvrOQrHxz4QhDIPTMtL2WAdiZLkgvBclJDjmbka5RanQEBuC4tmHNlZtgeUaGCTW2pRFifAKOOIYir8QXc1EBFDb9DpPBoKepUMRfJq3ruyCaVQzAFnDwA4b/OX78xJmz59gHUoQAtgJjHuLi7Ivd589eMKPJwoeCmQJlGQCiwRSKByAGMCrTqW1ltSLMsjhq29W/dXxciTJkKwGVIyPMYFARs2tZUnMUR2ABaOM07f7+njffeoPXgalBRWKOhyBI8wUtC54627uPjh9lLU9KQutJIBeaV/gL8jXrpi3AodTpa7p4tltp+aZQdngPAXtpTAhGxHX8xMnvvf/9Tz79+MXkCzrmDuOq/qDvYk6csSlVx6XU9H3X2TLIKP3J4yeaRkY62lpOnzp55zaLrmfu3L3NQjAO4iIzTrU+c+EM2yRQoQhBabwUSqQ0IFsqz9YWh26aC9QjeCJlAJZQOlUQgo2zZ0YwGeWBdturLk5FfXXJOrGHA9BIgrR0LuGnUEV7k5INsiqNGagLIkDsXPOqJV0p4xBZkzLQT48ZY5EqJ1jJKslqeXJ6KGehuJqdxeft7SyZxgeDrCh8gSJZlVXJi1mDrW1Scfwv/CJ9Bg+yIZt2khUntCCEpEr2tayrXBUHTOhZIfxAUJmtpJVucMXjfdJzZ+IyAu8t135psPg15u86kHPp8peMrcPfggRgQrKgjcm5/VbpG7KA6zoqo1+lVA3gv9GlpUZmUUqL2NxoRO9RHz/88JO9pndOnhrX7BSC8ssJ/O+99zrGaurFFNXz2dMXX3xx53vvv0nNpdSKEjNyd/nK+YePHr2YmiaD+cXFO3cfMhPsnuASmlnYxXEaI8srTK/AMVvmWLSw3NPVv7y2MvniBYfYuuhWP6oN4CgC9kVytdfajl0vZYKdUpuQr24AVeVKlcEkAVBgIAkDl+pc5SyQLkFPpplKcZHY9IDgQlkN3ulLCXNg7kIKUH1MEZeyMZ1WUgR5YMpEYDNRcv5s8xp8ciiQT/HI9KJ5/Ar9yHpYMRS58xs03KWkSnGJ1dkc+dnPIe1OCItFCnV2vRCcs7xYY+JpuVhQuKpWTvPuYCXKYMa6XDGeaVRgAAZ5PGn2qerk4MUl5HS18M0xaowGW6AKns6gL5lFrmaK4aDSexWVEDhmsIHQSjKIXeIjwFfJIoxHRBUkvXbQSSCWC+2Ii2B4HdcCeTWg/YyYtHvnnbdPnp7AtDM4kqzqT7k1BaM6MzOzoJBg7vnHgOb8KZIjzLQ+eKiHQBJIN7mrZLbRon08IntIVQa5iNgdYQYl8jE907GoM7MprfStnemkGDgX6Xvvv3/6zAmOowIAWaixNHYqtiUHNhEoKEhIWyl8kouSoxaw/Ki0MqP0EIg3pvGYDVpbrW0skGvx3UptW1vs8WWMh6WM29uj4mxuGR8/9v0f/OiLL649uHdveWWtr6erpZlXbCJhWh6bnv7KW7gZ4c8SdtrmN25cRyZkzMQwjhaxLy74flxGp9955zszC7zOYQBPEAsO4QC+MsiBYnL0uSp3m4OBzyOrBhe4D77Vo1I05cppAV2zI9BpoKDXAjsRIKS6WocnH325w0rIh+d8WDeectG4miTlZRJY9bk1c215ZZO1iI6JtXGyGMtTASBEyOXSOz4lU0qWHrNjyBZwM0eX0aoiFytSHTxZxMFJiVrkGVuzrG4lFcCMTyBVjkPhUeE1rEsTgYwIjdgKYiOjLdWtN/wTVAbtcsFSEU98sEVKJUkYSR7cQ1pjHiXvGtxv9xdS6rTVMWtUGoJjar9BMINGdn4DVL/rpJCpRnLUBIuTnz//4Bfs+//OiYljpapbhtrupvGjA+++8/pf/+yXqM36podeHTk6ev78hHLiPwIdP8Ku/Ytz84tbjCZ77PP9y1fPjY8PFRaA6u3pPH782MMnz9AR6uH62ubSIi9KamEm7sG9u1YaTJ2TeO4IYn8jTVZUEsfm8KD1KGoRxVOTK9Hob8GWtnJm6xhA8xb9pPVc1BJQPGdZVGhCMYku33b8cNkcAMXiMo1A8SMZNA2AoJXBDaPQqToHgSRpgm0jkIv/CSYxlQGQEiJKE9Rj8jB3NDzgMRgOPU5aEZtSC+aVJFNhrbNkY+vCsUcx2BBg5JOdJjbKXQYEDJaCcdO9vY7WLk/1GWYIY7irs4c+gXxnFzVCRMS2ZDhwKZjIEoQwVvCaKe6gpdUX2a6ukjHbT3S80hDOQxqGuNBILeCjmKTMGuFPpEEaTh3RsclyosKldqwIMrf1L48Ptd+EaUN1LEAZ3djaoLNWASU3dAHy3R07MghjW5yXZcbJpI6Mi72m+Xlesr7IlbKDSnsMzL/yPks6MCy68Z4803LBldqjYFibdxKyYrC1DfdW5lirAiu4gVd8tUAng5YQyMle8iHeo4DlA+U+e+704HAvlJhTBeCsNrQQoErUPKUI2YtidiCx4PUXBB6QTAdfPUKLuQvVcBz7Y8E1TU/PzM8tkTue+NKlK8cnJpAMO2TefvvdjraO2zdv8qaR3Z49NnSlcNuZ2WeSHS2yMPKO7jt3bsPTkSNHUQY8MW23Nnfdtf7kJ//iT//0T//mF798MvmUjEoxFjpzU1gxmo96GpZsAYdBkEf24aJWWxB5JFallVOC1c9GR1w3VJmZCo+QzE+hOe+sQJRKSUyv1OEdkjO50O6+IKSaVrI5hiif5ZokjD+7+8ihBdafd3Xbqmjx3aWaGnWoBlmRRqa+YzhatMNmKAar2dLHui2VW9gKvuSUMjMlxow5P9Z5IV5kiDx5BaQ7PSrzJ/HCWf65gFklUuXagJXntYAY5JJPCcYnTgUgSqUJOUVn+I7SleSFzhr+GsqDvwWmMe5QzNcn30/4VXDQ8zXhlamILB8Sfn3yr8H8lY9+Tf6+Et+hB9HZxjj1DDszOTX1iw8+/lH7+7xZIR7RkkUFsM7nzhybmT7/+bVrbGznFQWff/YlJ995TLQQomKM6vKFs3fu3PMlDU1NHLhx/+6jsbHBWiPXIydPTZz8+LNrqyu8+KiF9vri4hLOeHpqcn52eoCjAKmau7x7lKd7vGgbAlAefEnsakwlp+EyU7W56biZtVivQUCZGU6DBwaBGNGBOxQP+5FaQIMaDdRRWOOpx9Barvglwn48Z17usKGDkfaYwCTMZChWAvU38CMGvgkx2qq2Bjcx9P+w0tYTP+SYZIKXxLkNIr4QTz5BYM2B75iGAJDCqPIxXy2AxJeMwOzjkEHeWJ6Sly682BcWV27xcilOFHQETt+LcDa22JfCdt/xo+PDwyN93bTU8byMi4oZhBIBsVZRjbvZ8o24dPX0UzBeLtxl18nSwvz6ygp+irl/j9bOQIhT5RXFhcw6sbJDjecxqgI+SiZsNnypfcXIQQiXhPJdwTg9AJP8FxKLAWEME/bALgNJU8TC+Dpj7PrCuEM1RKBINKJixQHDOBzeTV8WYaITVUG6PIp3aaUvIkb9GQrhTK77nfFcLbtt7HDiCCoHbUXKJ4WtZiUASSZEQwDJIhRE5Dgvz+WipXmwv6+PvbMaR9PIlYXLCaCVaKrGlWXb1OUuW5HzjFwyYsziOfvoBERSyk75RxWDs+qEScPODgdGsSdhZXXpo48/mJyevHjp0vDIKOOrb739zviRozdvXJ988Zz+NA1eRkML2SpNGr4QzEjp9etfPH/+jAOwaBrjzDjOglOj337r9dOnjz6dPP10apKCsGdLH7qSA3ShVbIX4SsQZV/KMd+KwqhS9rBXpsaNTiIlkyKI1GSdFrSrGJCuR7+00JtHvEjAOLMJpqAEpolTvim4Esk+KRYYB5tWgaeKCnjS8rFturu6RlOEfURMFrT19/V3dvECD8kWL5lIaRVyyTzZ5uL8HIu8aPDSNGPfkRuWsoAg7R8JMpguCgFXu76XCQeMeIFkHoi5PA7CEYg0FrL8SFgJ1W9QlcdVfE11TADt8lN0ifSCKHrFUpVA9bQCCfc18grCg9+l4OpxEqeQxVglqxFYwRjbGNV4XaWoIKSENnQjQIWj8Se57Ue8DF24rFGzD1muDiUn8jBH8FOEwTOxN5Su0JYHv/UA//XrX+OiUXlIDq6Kwgqr6xGkxxb/3vPJFz//xUc/+P53MdQkLHQAyFaiN964ML8wf+/eA6rms2cvrl279b3vvdnTbTOxiH9kuO/i+fO0uV2Au+3SrUtXzo4M95enMDHCsVg9PexkLCYUG7i1uc7bf7c215p3eVkI++ZZ1LGY+TI0VI206xYz5/X29vSUw+BkuLmxxoSdrtd99vzy0tWekZFOLV1rJyaTFjCRSFN+tXv6GodZE0Be4uia4IPTwZJMQKzVVMqosrBKxhKwEIrRAAjSiKy1JANFKiD4hzpNi0AxJsTWgppMKuqMFqd4CGXPsqScHqRqFiSkMF1ESxzWrGDjgkKpJ01WQAIHs7YA/LA5d31zDTfskD6oqe9NzcMDg2dPneHgrkFeocirpSRSPmw40AEIb5hfsTjmqvwJ2NvS82S9NCZqnrdHLy/mSKKevb1+F6IpU/6iQIqKD9TUgnRDHVmYi/KJMqe9Qp7hD9h4dwiBIt20cqucEQ9rrguabHJxat/e+upGb2ef47o2lJQ2QgE917yyGCVQImboI4WazItEN9bZAr/qGm5X6DBra1pkBNlSntt9DiwemVFFIMDdmTTZaMaJOQ90DtU17coUZG5tGCatK4ZYxUWOdNsY6aUH3Jm5a0QSMqXTvbTl1A7Yl2YLhzlnzreCOgfC+ew2d/fQAa2WgwFv4XHsMPMNGaWn68bOV07y4IQ2DsziXd8PHz6cnZvG1rOtiBXRHJv1+efrr7/xJq8SZiri3PnzbEO8fv3Le/furq9vsFDAwRUX7KGRHC7hggj0ifOwOKmUfht6w1mYNFQ4eGtmdpYhWy7gEWLxW/ghiE7x78tPEZUQaVlEiM9a2mpzN5HcEl0Fi5FQMHiNNMCfSBQN/VClTFILkli75grRQZKHaTvsoxzxvjQvCs6CzSKvJYIGhstYHI43BT2wrGNmAUENpSJIqP2EaDZTLiwvsl4ahBybgc9OG6siu/BVUkWdGfPZYwd3Jox9cSlvPXHet6dHEYhYQr2QGn64NTbf+8wFoV9qZXTLL/6r21ok7BltFRJM5eefC3EeDC/HHHz+27grpP7amLTIDYmhOBW6IepXvPwN6fkVc/tmcMswUKk9ONfnv/zwk/fff29sbCjMhuGcPfnWm6/Nzy3OzvK+3p3bt+4eO3bk4oWTpCp5UH8vXTxz6/YdhruwF9Ozc0+eTOmAa6G/t2tsdHR2Zk5T0swcDQ6Xnf2LnAXJwCctUfajY7YYzin1GAPmSB6dCnvHnKK1SVEcPXqEaZftrk76ESyb2NxYpzKnL2Tdwg2zD2BzcxtzQXdZHxxx8xVs9qRBRTxZ0ETGonPiauxY4bXiBRhlQjIjinhK/agArB+5LPdBDqSBRIRyVdUhbzRO/taD9BIpPVUSUqXe1UH2L1KncpsWSam1tW/i4QiDjJG2vileK2/pFjO/x0DX8bNnTpw4Se+FsdQYNHPSrMfjgAGzhRxAwIW9Gc8go3GicHgzLO/uWKb99eIFr4en7OwUk5gB2RZO7+B1CXDBRwat7ma+z2zFXaxoWC4P4+sLGNKqZFxwhNHaV7YhgT4BrDhg5up2ejm6GvHpnovUYJnmVHcPZ03YJw5m/DPKE7IUFixyEronU7B+u0gBUw59io9uVcoj1NXJET03tuAEwMzaIy/Yw6fet4SiLLTo0tSrtyBsVjh+DR5eE9HSNjQ4wNBDyK7YRjMYjUBrVYDMgXBAFfvznj1+fu2zTzmmEF2lwYBz4cCawaFRT3Te3maIg3cObrABZpvX1Cty5iCRwfb26sTpM//iT/6UgvyP/+k//rt/99+z3mJ1dYUSPXXqNKe3/+ynP33vve9waCwxHJf9znvvcfjDl18yNrUEYYyj8rJBvBHrrVwqpe/wjRFUNrSia3OrvaNra77pv/vv/59jR09spk8MLzW57JejDCbIeO1DBOUCv3zbyghAkZ4MpCFVUnFduyANDslSIilKF3F1Km1rZ2nlFFi/ieKTg6Vsm4OH9gfiRfqgRMLC1JALmsrDASNlXT1jOzRN1BWfEAJRLktCdxhv8cLfrR0nOZjI4SiVri6OLFC9hK+5upJJmrpNG1vrCwuzDB8ChdiphwSUyrpRcoAm6UuiOnnkG9dZqCmQZEpOBB+SOne5rJGcm5BcYvgunwO81Hj6tr8lMWWwb4tK0v37ArJPxrdF/avA1bFXckPi9ahfBc/vCWwD7ZQohW0jnj1FzA/++MfvMylW74rgPk6cGL36+hWWa/muzJVlXkl67OjIwCCDKFUYHuq7dOnC1MwMI8wMVj+8//jK5TNsMi6P2Vp4cnz89q07Zuo6HnpqrGDATfpRfbe3ezIhgipiD1FDa2SOCsY+kikDhHR8qVzM6VBT6GmzVAJSaVziDuirsQ2P6sPmeQzCKs3zVQ615Z3x8EQPR9e1by6p/9hTNsS6nwWbWqbwoAItapCK1QLW/RQfY4ShGAxNA9yQhTxV1bYhOZGVR+K5RoSfeuAWvrjFvnERo1x/+OqLNJM1ChJQ80pm7x7s2G6z07Zp3ngfWmdXb3fnyNEj4ydO5shCDhOUDKBs3jhWmsaDLRU9qvwjDYeWnVfOhO8q5cIMOcVD93dpcQ5ZIGPoo9uG/UGKLP+JHBSFSP0oH/5taiVWsly0lRcG4fXZbFTAAwm5oD0gnZLKHrA0GRgk5RpmGWKnUeCW5eILZagUBN0RT78CESzyULTBW8uLdpy72mmdkULWG/M0id2zwgAEoC+0apCN3KSXyWMAIl6GI9xQX6MTEGXIaoPQCzsedsN4ERSYRHQKpnhv9EVliGZRxxjfpgjBQADn/Nz87NTM9Wtf3Lp1a5uhDBodGZdgpTan1rlcGTe72tnkC3pdBIRUAAAbir5GF5iy4bzy7m7exsOGpT2Wfe/uzc7NHjt27DvvvfPg4aNf/OJvVlbevHz5Kh1X5iB5qTDtimtffMYR013tHdkTyNZehm1pJm+4n8r2Cq952Fvfpo/I60v3eCnT3fv3+gYGqZHmrHBgFN7r8qgulFw95Bp/bX+PhpFtmiKPcH44aQ2DhVTwApasTKwzTo1u8MGpFYz8QDbPStYM43NByogfITkRkgjlTzyvaXNcDqG1t1FJ3NNsWZpjBRZCImSvWBy+XuA5T66b3cIMPhf6JS+forFcqh8se2a5lkusbdu2IHDeiogkLLJaqKcMofJr1gKgzDxsCOlUkLZKXruobmVTtPDIV65TAYxOdmG5Ad1v5TKY9zFB8KGY/WeFziLYOs37j7/pqghKqMNy+aaUv6fPsRYUdhGXhU99oEYz1MxGSt77y2CJhEcFmOS5dPnU1NT07Tt3aC8+efrs3oMnb7150T5GRM6in/PnTt9iJvj5JDHPJtlyuHDi5EhJjpKyFrqrvWtla4UMsRl1v4g9wdZjgnyBKbmVeoqt9WQrHRMb5zg7k5NZ6b0wWtbe38ZQG8sgGCPlABAcGPaBoSAGdbB1OAXmARnjoY9AU5X3EDPcSPVB5dM/sf8Bq4yb0TVx9IyxzNZmRvtUV7Q0zFbFFckgnaiKUgqrQARIgTkXVdw7jw6onU9fFWrRKiEuyoaHBrYRNE94bkhe/GjfgLfALCXHQfkQT3lhI4PAkyccpLf6tnVhHJhdZxRiZIQlmr7ZT2qxV9CJmLMqJegpC/uEsaK4VQI5sRVl6sULxhto0fR3deZVzdiqZfwafUxOc2CdCl2mlA/5WeXkosYIZYjrwsU5NC4fhIpkIYHXaQBNfFhTeoloFEQcMGi0JiTX9eA82RMHKrKGlvRgzNVVZ60MjGjazBP+gNFO2yMuWXt6Iv7LgNDY0EN6Muep37xCjuaibl54aQETYNUZy2olosEDS3JaZJGjwAlgAI0fEuN8N9c3aPwhLuLiJXTG+ELbPgTyVhJk7RIJVi8mdo/+6tTUzAYnJK2uSZkMRi72pRkJz4jtHsOYtEdZyujQPHKAI6ZekALNCxY1pD3m+m3pcemDLz9mVTMne/zg+99//OTxjZu3ALt86TKOtrOznSWUvOL3008/ff7sGfWqq7uNAyW6t3s5cZreMy1kpMtgwi67sNY3O9e2eFHE7du3eYES8kJE0OluYksDKdpp9iqhSMTiUMhQxK+ToKpD2jRpl5WZMBJES+o/YisyqEQGctWPNI7oZ8okyo6ASnbAIy2kQTKLyT4975xBBdRQYoJBVTMzIniPwsoK54ShMXTucxBVTvoMQMFpnskFnCjf4sIiZogM2VTAC9F8raShEBC0FRMl9S4T8OzRhCTu2e87ODiMmpVnhaDqWoK5BEO8bz2WGGnnY1MQdVAbDFSKKttyX1LIGtXcR0IbYPL3LEDwr03R7x83vzYrSUihNwojysNqpxvXb4yNDF+4cMYaXAB5xW9v52uvX3zBgbUzs4yA3b5z/8zpE7x2y+fBMzraf+7cGd4xikOYX1q89+Dh+LFhPLcAe03HjoyMDo9gYUptSJtyh+rE8g5Oc6uMW2qQXUtrKwOhNGg59d0961iGcuQquJhCxhPTSsAiYp4xS1hHxqSz31UrRXpW6u7s9szONGGOJFCUamOqvFsvgGOGiCNoGL17Pvls2lPhDgaqZf5Ma+JSkakPAIorVSa8BXGjqh9GVRBb5/efcFeTfS2abIqzFVLg2Krc8KBWRQuy4ryxBnglfZ3ezrFK/A9doKPHTzK42Md5Pm3tvOqdHb/Y5WQI9TBCRUYW1m5lx0Sl/oVvp/84VoUSWV9bQZKtzV1aVAzIDkcWcvSVXcAuNndTrtCDbEGSCgUvClqWYhLyY1nHgOguZQlJyRfhlbVQFvcl1NSms9QPYr/sNICLRoY5YWeZATVHEHmHKWQEhOYg03/4HHLDE6aUFBe3QDE/Do40eWy4AAFteoP0YtKNkzjg/QqBEZFGES7xpU5gspm1kFixE3AagbCYjiApbShwvAzOmzRpKIiXC4vJAAJJzwexczSzjO3sPrz/iJGG0qTK6nztLkkkm+XtkK4wbC7hg9vbOmiSBJOLxVQeBrQ7cYvwYzUoOZCeXldPT9/t23d42dn58+fff/9716/f+PSTjy5cvMhMMEP3Fy5c4OLjjz++devG0gonTrdwVAgHOvJugK6eXqjj2BXY6+7tYxCVcXxcNSS5wdZXLe329Q329PRDhFwWDsMmheGgs2K2qQFd1XCRqpBqnm/KTzZRTKGApkzFAjK+1QEbYd5CA+3oxBe1g8dgTxF7BSrJANgWETu5mA2OCPNl6VoGouLlrFsbi8tLW9GE7l7msJiXFQM4CbkADC1x8JWIZd6avsoWXsxWG4ulOS8a7mghCk0uqpy/YRhwu9cLC0wwu2Kflg4jz4xKQUIw8xus0m8ga9IaWYUqOk+gGSEJWpIrLHOAOat+qcs+B0jy/U96LwzxytzUmaui97MzoqBNwoI/iAqoyIGwROoh5VOyiBBCSpXzgaRVirps9zEcJKAeXy4USEMU1+pHoQRatAY1hhrAvu2lhB9O3iB/0fyq6L8+ORkeAiCL/Rilp4hhkXbh559/wS61sSMjlYSiLMeOjTDOzKJ93vXFFt7bdx68+y5DWVWh0Ks8f/70jVt3pqdm2A3z5Nmz5ZUrrDegmMDb3dPBapBHbEaKCTVrNJb3hvmK4mXeDYB1U7T0OhQLNUHNhyhsQJkbTvVjwcq2zXQ30Q1T1/BAbH56cP+BtVLts4RgynovOx4SZzbWUHijcjpeTT74G17EdPbsOd4+zpA170blqQouXcEimthyF4Nj2rkGI7bCYVcdSsau8YDGq53JuCKDGzJUZSCJVAy7WoW4qalcVYessERJePTNx+CuSBBlzL95mAXfBi44NJtjiTzYYAu6edUc5237MvC2dt7U1DuiBSatSSISk1Ty4V7JIiQEwRtubJTrejfZosNsL9LgVTlkImGQJ7vQFtNKnbfLL+9QyCVPqHu8Zl1x2y2xHy4hSMn1nRmJJkPuWnVhWlngpMl/bWVCeC/WRFlQYmTuHLCA5iIw1pjvSFOTjEBN7QTDbmd7K+cVW1DGKHuuLQGSIlBOoNzYWVnhhEK7iJGiR2cIQeA0yvb2M6dPc4ZlcS0pJG05/9KMSqZEQq1i5F+88d8SAR54xTtkiMWJWryGB0OS3BzgBuaKI4kSmIJ0fOKWyIch321MPC0gPByQkXBlrEmi3nkQB8Klu9nCdAs2naWMIEcoOCm8IYM/zPPTmIU1ggVFFiziGBqkw/rkyZMXLyZ54d7Zs2dfv3oFf/zRLz/AB0+cPkVaDsz60Y9+xETOjRtfshWBw7OoWmNjR/7V//R/NjZ2lIYzcmcJNJz/7d/8zaMHD588egy7Wxu8dmlnmPM6Onjh7iBLwChjWIdgCKVxiItm3JWWw9Y6QuaAC+fmiyyhzaZ2kUMkG8kQYRAq9SDljp6oymhPSrgSSyk9OXTAQqyQp5C93GXLBCeZGK34LDBgiiYV57/JyNe6HQLkOTDQj0VIJuYdEkxHviqAowtbnlXJ+vmWZgbrGGQD3kpVgSZJIdlL14LOzdJTyfh2W/vQwCA+Gzyqr/pt0ZdQqjqkg8yv/QCIDBlLUYYFVR6lkiFAQWYdTDXYT/btr4KkATy5x5Yp/n3mGkB+u5eFgOT1zYgVUKBUL4KS/EMKFX9F9Cyn+viTz3/4o/f7+zngpQoM8F6+fPbpk6ePHz2mD3rjxu2Jk8eOHR/hMaXFh9cfnTl9ZmZmHjfJ1iZO5+gfPFXUGYMw6hsP6apinW2h43HtjezsjIyMsJI/phm9QrmsQVYh9Y/BoU4wY5SYWmZAmmsa9MRTwTFsvJ+ogyVH9ApIoU5aaQmi5+gNbGcCT3zoM00TNQ5LQOu+u6uvo6Ob7l8pTRLbjSCPl8pWgnzkw/zHslMH6B9QAYwiA1P6+1KVOKzqwhk0kiZKwsR8zVddXYFGCd31m+VmVFH6c+wl6ekb6ubTP8DRDKqnq2hJ5M5o3RU/GBQEoYAcROYPY4I8WNMzS7HNz7vejZKgbUHNtuuR9pAt7cI2Y8usz11vaiHrTUco4jTlww9AOkDzVApgIn+dIFE+pMhiToQpUvRBUitAEyhLrwz0dQxeBmOMEQjitsWMtvicDHyF/ep608Z2GxPqNBkoK54h2xhpyJmbZQ3hHCuX0BXx+M5z+6fkxkI+2ngsFaYXWGUndQa6X4Tsx4tUJOUVIZToF5POTpuaTSaME4QdmCRXnD+JAYIe+ebD0Hd7Gwt3N9e3lxdWGXzmRDfSUkwUTj0nVV2rTROVK7nyL44hZKrTKDQtKeJdvMiQBxH0zzTfqOg2R39cvnyJhRSPHz++fv36qVOnLlw4z6rL619+SZvrytWruF4W9L529Y2x0THO1MJTMpn04MHDjz/6+Ec/+qeXL11hkphXIYHw/NlzzIPi/lmFsUybbWmhq4dXPHSxFXB1ZVnG9/YYboWAna3NyedPmX4mBse/sb585OgRfbDcwEkp2opLirle8D43VBB6wRLqFVA9Bly51IAFT+GivhQrK56yjh8YxR10tpuhRWxUXN4tgeR5zuoBuqcaIF14AxVqropPFszjrq6tkCMNW95ZxJxXKcl8FxoCqMKxa3xXcfGW3x1ez9XGi9aRrssaCzHig1gwGyTOLBryTXTojK5Cf9o0AsuLP5XDLpZG92x0QVJdlvsDMk7Ut/pqxPGtEvwmQBVTUH9IBodlUnH5d0rcb8LYt0urNpZQCreWio0M9BHfeusKNYu4wvXgQA9nyM/OzKJdvKzw/j22/A4xnQoA2sqe4IvnTt24cZMVOwxTP3ry9My5E+30fWij+5qHDroMNlBVFJLQVsbK7zBWilZTCvEMmBXrgNpZZr5YOcFKrVCJZcF50rAlLQYGwmn54kjS5VGL+SvBxGDJJKtt4jCAVdbts84321igIlYKSwWGWARtWi1YF6FVB2IdLk3sOHAzrgutBn7w95t1BHbBkY6S+GEIEhIKI3LCbb7lSZnlqwZkkcCAXV26Pt09Q6MjZ85d7B8aYX1QRirpGeqJJFXZ8hEBP1hpt8x2siwLv7DL/mzWvTJljuNgFh38G+z22VjFP3V3dexxLhCdqWSPMHAiLIUjU4ZE7RpbWD4twVzMS1rDhnRzQ1T1yKvKdHLpUwHkT1zltvZtTy7YyAQbg1mjA8iUNwcg2BgyH1NA1R5H6T+6cfs4h1z09PM+OPZa+tYM9ivb4UbKTZOTc5zBBvW+IwH56KVd46AG7nGcAq/M6clxCkxyIzgdF2hRuEIMzEgt5lUVqUVWXHqvy+S9mlCclxOzToHk9ohxOKAAG0rsSwBFALyfVAJGtRfn5z/79CZtHyqVokqm6chS8XQZwNKiZEcNzk0WXGrElwpESbT5Jp4OHB/AGRGi39nB+IXcwYBVzFGa3oGes+fPtrS3PLr/6MGDB+zIYvwHz3Dt2jVewfT2229zTAdioNeLaGmcsOzi4cNHn3762dT03L/8sy1G+OdmZidOTbBk48yp02je6vqq8mjh9ErUZZMz7phsJlMS+s7ODlp2e4uLrWw3pJoxzPXw4T3OEMBD01CAwrSZ1YDyKXIuxa0+pHrzDO5tT1PiDDEgzRJvJCnQAbg2UDwAK5tMS/Oc881IZsHkz8eRfFLaKkECArdwWhbNUNad1co1CMWJ3dCy0Z31CEk6tcTB18DAUHt7l05QMxV37o+DLgRIYvWE75LLzjS7y0OD6GQIVc8FkggiasRDWS0UjvgmgKyUYJRPJYKAPDEhkVIXHY6SgDo1MpF8mc/vMoSeioXk85tmF3nuU1yaRPv3f9BXFq02TaEiR25Z30RbeWho4MxZdxxZ1qo9R3Mcf/Jo4saNW4ww3X/48OKlsxy7wUNSAUMn+OiRUa357u7T51PzC2uc2sHh6Bx2vrBAC1Ldqykem9q3PIkKc6EyU09AYZ3GtmgZ1cCq1sQc2SGpqFDZobFSfiJ94L2zFDCSO3ICgdf2Rmh5Y6xoFzNK18oL23hBGY+cvNNOBRsrv2xs82GQOTZAejGBUXQsKtgwOBXSkkfjtyRXYT9aAip6SmTDDc7ADgOYa/A8rN1Z3ar4ZC0zxPgY0n24i49kDpFFrx3Hjk2cPXPk+DFM5zbt+h1eBLDnihKMoIC6kgRw2ASxx+JoBK8i5JVIS5Q1OJEPTWkdAZ3c9XX47O/HrGsE0AyzJdfYN8QAwQgV5CQhSE/ok5EUnJJTiDQs1Ctj/Q73FnbhzULxUBSAdBNVKKA6yKSh7MStE7MkObsq9z6FNuNQpbmnT1/cusspyt39fQNjo/10Z32FPEPoTcsr25z6wjty8E/Cx5d3NGU5THPTAMcijPIaV0/5186bG30lUYOfPPChejdIRBcEkAcjJMC76JmuNwxjt3dZcE3rMrgK/7RAHZYsCRCeraMgghM6wKzuiVtlq2ilaxLjoR9JEfEhKBb+85zV++yoYqxfDJUkAJNglifqhNCMdraRhWjykmWVhhcZ8MZf2CW7O3fuMAJ77ty5d9999+bNmx/84hdXr1xhKohjomkHPJ2ZomCOjI1xCgcrpXGZC/MLLMfgrUpTU1N0amGd3cZ03xmsZsB98vlzmjAZBmcknKEtfBVOrfPYsXHAGHtgBIuFYM+fP+3sYi5qnAWCEIPckI5uA08TahVKQoQaiaeJSRyqVGuUwLNAJUUlgJRHHHCNWQuznEyiZbEsrN0WCkkQSdZL74JzYIAeAIQk41KuuSSGAuWSxWj0gLlAJnTumS0GhTrKw+DjUUnNBVP1NGgcSnJxNVuV+mnW1Jmz5hTqeRwlqpgJVUXbffJSyKNioCFRtaDA1c+QUM/9pXS/bxEH5fv7Rt3fKz2KBt1AVyqL2cyRVbxtcHBoYGRkwCJW35po3F69cpETcmbn5qdmZ+/dezQ0xASKhp7A04kTJ+4/eEhdmJ6au3HjEVXYTYtMVu4w7Ne2sRHnwQjqNu34TVbZBnEcSqVGoErXUwX3P/YQPbUjFmOi/mGn6loX5QxkWq3UZh+pn8WKqqwmYT9LC+8Tbe/ivWwdTKJ5sh4eIt5EA2WiyqkjiDTC40Ks4wQhqk+BTooGOkSwH1LXwO6gm6Y7QUIagqax4K4iC/4GiPplCOAxJsFS0i9yJjMnNPQcPXYCizI8NsZxTpxC4Bgkq12snByKrJW2W0A0ZrmlDQPI2CFWgJVWC4tzq6tMOzLsrO+gh7axvcVJWjhgOird9Ara2nA9+BKNmggZU3N8VfaRt6pSuVKlA8MGRFqNnlbyqbNQE18RQVLYAKIUwLTvfmtgNCB833spHsCc/KINFA9JxzFSCG5I295ZX1jeWVhZ311bZSx9aqZ3ZPjoieNHJ0bbeuhirrJmgcXF7H6TCxQK71g6Vi3NjPMcO35keWkFsWnNyEBuAQJMMWszzUeVi2pplWUeGONkW7DQDRx6R5/JjGpBwaHxijGFV9QHyW7vPns+tbK6hppRQthu+oaqCPoieaompJIZD5mztL2IWUderoBqZ4Ix+gQFEkgX2znBbVcaM6xqZYtuIV+eZnDY9x6OjA2PDA/RpXvy5OnCwhz94Ndff50Z4o8++oi6evbsGfrMnj27vu7Mbm8fkRyltr6yCh56jQxiK7023rbE0RxNC/OLNOhYjsAyc2oUywdo06FkrO2irYBWwQ3r+nC6vIGRRsPc7MytmzcmJs6cOD4BW7R+YUEewaVa+5EdpF8FdSpFY5TNYUFSIhaVasc3lTsyFBt3xME+cgEpaSyq/AMaUaHrrh8BI29f7u8dYF0mPIlZZOVLzGBg5AL3S9FxzbpNREEjPjRIRj2ozZYGr5NaWlheosQhoLu3h9dvoOBhsFAbBksuobyOIRd5UEWV1mY8vEwhKVcgUinkscYm8RKddHlaJTY+qfbvG66K0BoichkjXK4OP/pW95X0AntAOFXqV8UdQCyvDeGQfJBvjc0CJL2/1XBYYocIeCmvAo8wDyd8CbJEHAIrpfCKSAuOh9YdZoJu3rjz3e++xcoMkETJmo4fH7t69eovP/qISnrj9t3TZ07xzrMiDGrcqVPH+j7lvaYsetm8c+cR29+wJIR0PXFF1YoK7DgzjFQHx4FY/0AFinyt3eASCrvhj2ZR9XOXARd8iqpzUQ8ktYZxH5iYOo1kHI+nrDMqlq05Q+z3G+gfYhiJEzVHxo6UZSvgtc5Hg0CgZKrSFWeKnSib1JpGPpCrLahIKABFaArOMVJpDHm17+gPN7HyPilmh7TFwPsIQ8QNCfmFDp2ct9JSYTMiAnBgFV/C6souXmDR2tQ90MsaWKy0gE7dIo7YNdyBA68xy12etYBMZmen6JBwSADiRfDE8J5cmknrO+xl2WFYn7erDQ+4eBYiOaR7k/FfDmPEZXAAyvpaazvOGpNLHmQkedg/goyzTNUhfelN36ZwIEcUHyRjKsEpkcjIYiMZ1o8EEZCRPIkJNU7E8oEzSrMiipkGQ4Rbde/wLvMz0+vziz2tXYAix0XbEltw1T3Sz9q/6ZkpZ1fdG85ibpsouBMp5jDVDt5T0cYy+DCAtG39WaJQ7Bw3aigvfNkCgJTcySCMS1j0Qw7EYF/KmQ+XsRHMRS9NaWbRmnjVgJRh0+LC6s3bdzlcyT1UNB5pLuEs48uLywmPKXE9KF1oR//JRqRVX7nK19dxUp+QERWlicmDLkZ6pNF/YPLjJQXWzMjzlSuX8BAz09OPHj7glMRLly6T5PqN64sLcxMTEww4k4QtD5wU//nnn2+scbga7yXdwL/iXF9MTZ46c5rdSp99+jmMsLJ64uTJ2bk5xnIZT2HnKyJlmZL6zGHabR7ziW/u7BxhFTEKwJll7Ci8feP6kfGjXR02h+GG+oKM3UJkKOpg6ahUPvMLeUfnUwQqiXyVFEVtKGLukReJOnI+c7E2CD8YKAkulBjD5r4HlSPEO2mJd6OV6l9tXhbcIUOh4X3hiKwQOq3dnt4e7IB1V7XP1BRXBnPgiCFmu12r5damDr0v7YBoU8UVmdsqqMguudTy4td8U0oWnKSSCVnVYjPak0IMP5VmBK4gOfQN6KEYbkPry9HEJEefINoYwVdCfV1kPbv6RSO0Mmq8f+n6658imZdS/B5EvFLIvwldKSBYVRrU+Vu37hw7dvTMmROoNXHEMol68eK5Bxzb8ejJ3NzC/XuPR0Y4nhA7Q33hHWbsPh3ibZkYskXW1G6s05faWFmlsjPmWfwpfV+1OtsSipqh09qzmq6SCy1OMKJ/+jsW2ubovaIYVrKoS9iUTtQVvaYjYgyep5j4fHMgLO84wSD09PXhUahDBFal8B72DAsyZIcvMWGFPLWvVgXFV66tZLGlcIkYXlWHBCYIrx8JxrpWR3n4qn+Sp8SLy1+5KBVbSZQqWJDEvAsR1Llw+o9uFkTTG2IUl5ftsLCKF47iXVTUKCtIYskrMwjjDLzNTjMoOM2hoWbY0ry5trO+sb2Oc2JQgunhnm6mkweHBrscJGxtWQehfkd+KAMWXrMb2zXY67h5qMam4XHjEbRRDHBr/tIPjqFRK8IKhGCPC/f5Ea9sQ2RNnhGDscbb4jOAxiCc/kMhYJaDV/evtSBHtt5OP33e29TexxboI2OYKjrEk9tPNp+13Hn2aG5+Dm3iJYEY+fhf2yOQW0RVrDwtRDCRX9TLRoBZ4tA8zEqKoYrvkqSUV0iSgJAkFzBPmdCX9ZH1QTql3qXq4EKTw7XoXBrG4h7gWDBI3xUpG0smJjXzki3X9IAZemBywUikbOuBvCSJfxyvbVhnNiGasuCclK6slRCJSUKD9HGN3Jv3Bvr7Xrt6pWnvCmPRn332OQuwr1597d2337x58wYLoc+cOc1OpKnpKRZZXbv2GWsy6SXT50YLyJcd1Yx1I9NnTx739fYszQ8P9PWycY0DY5dWllEy2kNPnz5lkzFnRY2MDEMsbowdis+fPaXWXb1ylcr/xRdfbm6vjx9h1dfRdlZCMvmO1tDMKpKOoiO31GTlkDKKV4iYIyW4T5FEDDCleNUWRMNMS9nVrVmB/WBVDF6y8IGTera30SK6+EVQ4koIQJGYl8xeY61IwuEzvEzS8+TUAe1N5GqzIEjRrp2F+Tnap9gsZrt6+5gb6ibfqlRBllJAXcinFHHi6l8ipI5UeK1c5mMqoiw4P+ZVmEm9qCeuxTZG/EbX5Cidvz8Bfmul+PtD1O+MEiRP0VsCDEd9+unnI6P4MN/jou640qLn4sXzk8+nWH7Klt9z508dGRuIdjsKfeLE+MOHT1A0jg5cnF9oHhig9l3/8guG4dIsR/+ZVFkeHPQtXuSh1tEVLumtIBS92+2TP+N7dGkcfREoNJFEGIwbgJKJG2CksCgn/TmqIX/a9xZGnVvo3lAt1pqnp3UVbDFmwTAt2V7a5Zwf3MZ5HSpa6kVUToypXLJqpWDor1zGfkED9RE7Vi36fWUZqLz6pqrHDIE17urg4tZgJDtjvdCkVJ86YHUBMpjVuBDhGJsn8zOQ5lyhE4Z+eABGDD3kCZnXldIJ8Vji1haMyczM1CqrWdnUSz9tZ4u1csucHr3NoaBNvPu2n7eRHxnr6OlitZsvqEFYbmzhSDNkHdpo3Pi6IV+1hDBY6hSXBSzE+1HsFEwcsoQ6wmHisBm6BQOXBchFem36NO65bQyVA+ZReA7bQOlucTJ2j8QDKcaxV3XXofP1lZ1VGgjNPcNDuFq4WlpjApiX4G7ShrMPLZlB4pgM71hgHt7xejJH9FhkS6RQS6Rthh0MudRGoP4wmKAekEgKjPFpyAIni/vRmAz98xQBloc2CLJQKtgtYfaPzc0uRPMtdBWWUAipOtMZSFHv3dLDkmPOjTB38mhv29jecM05SkYiafGDk645YEZFXFAnW/mngLgiJ+BM4SSt49i8Qoq4+w/uTU1P4nd5d6gnvm57WB0j1aOjI5w4kR3A7ArzHO1hTtTs652cfDo7PcuZLCzYe/r00blz52mVP34y3YeR6O2ltjOxwVQxq39p8WUS1KVJrP07ceI4Kww8tLZpr3+gn7rIhoq5+SXWwXG6Fovz7aSmaKEwXCE/LkN60cDqjpgoUfRCTZc1qx0BXXeSQkgdOhh8jKy80Jpw1AnyRgI0F1ClyCPQySz5+AUX1BmKhQYlex9puBckgAYGymIYcssAElYN0enXe3qZ/UVHFRoEyVKpj5Dw6lBjVn0RQm6qH8qu9jQ9jAoBjxtvibW19+sHBwCStXXaUORZrv/4/XcgAXVXfVW7UvzRgGbWkE7euXP/nbdfQ7Ehg6do96lTJ1i08fTZ5MzM3KMHz0aGPKOftOjZsfGjDDkx/of6sdofPXzoysv7jE7rtEjf1DQ0PMTuhfpAmrZHLTVj64q5qLZUE5vsGmEMpjpM1tCGQqp8uYJiQRmF08AmKQPE+mfg/WC1nA4C3BnMFvp67NCbX/DcY9ZmZ7deeZ6KYs5kWAZwyQGM/CWAQixGvhykt4IqeAA0EBfz+lKiLCoGCEZgiW9o1bcBXwswb/+fx0oilt5vaaDBgNfB2bpkLX1LvQmB52apnHmTD3YDgw3fzPnS1HAAWfR7rEhaWl3hDH/f7odsu7sGRkfGThxnSHBlnQMf1/o4h6Gbs/lamHOkFcPL+KAOBVADPIpRr0TGSEpiuZYHfRnFTbEqCeTmw/zzUBa5JvskyU/ldiosYqqHMuchlgRHgpVSuIveRMpJSexW0+4GDgmozdWt50/b5mfbhge6Towv7m7ypg/4R65kpnY7QmLmTF5yTY8dmqQXwktmpdMkbGnHUTBmjHhtCRLcMx6yaPvQQGT9LXHF/tmJBloOicHHc0HxOM7iMlqeaSYRFxvyVtfWWTpN6wfwUm5JZFrbUzYywrpzCjvrTC9s4Bp9DQDjms736lRtZKLqECVn8EUS3vGAZ8vUb+4rJHJOqEpFcQYVc6W049YXF+dZ2UGVPnnypEP68/OQzctuaaBQdzjSCQ9Kf/fS5Ysvnj9nSTMeF8/KO1hY4EG54HtgkvEPNIzmjse1NO16Ls/O7uDAEGgvXbw4O/1ifm726bMnjFTTBh4ZG11YWrx7/8Ha2ubI8Ojlq6+xcxeCIVOyvYJAxAB3iKLIQgagO8KmrSc3PEFkCADlJwJ4m9mKj3IoqiZQKRK1mDOu88pClmIybA4SHqsRdS1MDEjXGMDbcCadhijbtFgCreZUqEoiUkGO7bal5SUa+uTCvDJr07CAAZQ0SqxiyNSRfC7Kl2VnJF9hJhQWwikCogJAhJ+GdL/tS8UuAX8Mf68SsMAlwLWJ1mvUj/p46+btY+PjzP4WlQeC85/PXzg7PT1LJ+zhw8eXL53p7evSmDVx8CRTiENray/wiYtL82vry7MzkxubLGVgqY3LGlCksuwU5GoX6FBsr9XvYr1BRRXQ4EYX+WaVCgrJU+xo7GAeqTLURIBFZO/L85owS3bapCZBUCpPqho/9KoxhH4wE5VW25/2o8HcY5NKEoNVy2sNT0QyiXwK3pe/yVurUMvaHL8yVB5BAszHnxgBnb6fxCkTya8H0HFtzw3f65or9qY431eHggLXOvMOG2bCOjsZLp6ZmWZroi/MoSOGq2KjxMoyzhfL38JkVXcX5+T1Dg/RCWbsdJm1tFvbXa3tSBtRIALYSQPGkQBnynT++hEyt+QcN9TUlUOcKtKRt5GVsUyRUWjEWMQlyJGNk8iTZAdDesDmbF5MFEd1SEHudgJLIXiX9a1rzTsrrTvbnYz00i7Z3lld2NtdHx3qXdxeZbmfbR3bCooSwVrkWlW7pyV7hhDijyFBAEHLDHDJxmjkmydSSabi0nV7h8bQ9eQvH6bKtzJWzBOJt1ht+yF5+RUTFPAeTN5gRNcKZGZCljzl36BrEUrygjeYwYEbR6ygpwogFIf68xajwEtzPp7LYTUQtaHQQNZpGJQYsyuBpRwZZSW5Y7Osc8Z5cS2le3v37t6jSoGK3BhUvXvntqevMRHV0c4xOOxB5OCVufkZtslS4Rbm5oFjXz9LLSiyycnnMLbinpxtdiEzNf7kycOpaezCHj1ERqVYCDY3t9TfN3jhwigb8/GeioIgyWlZMJjCQZhoIVU1FYuHtTqVX7jyV/HlkWbDVxcjGkmWZxOmqlsOrv8kcKQGS9XwlZ0kN6UlY+tXJA55aY0YOQeUS97C2etZpz71eZWlAk4TmSNzN5dXVqhdNLl4Lwwd6wADqQyrREmcL2IKqjySWyEpbtBV8NC9733rKUuq+u03XjTCl7xMUrKosVNHEuNdv3vFxT6GGv2vAPraqEYMLwM2UvvyU2IaAUB1CFvj01cm/9UioxYmOZTNASp+NZS/AjT1HpWs04D5ZuvRyAjv/8jIVjrBZ89O3Lp51xM3WOQyNceKyaJKHN8xcfL48+dTWIN19sQtMQ5F9UTBcL0tNpF3d+x80kZn/Bmzk8UX2CqsPzquYYnhQk9QEtusaLnjR7SxmQvTYAmXwNOYOQCsPQXetSya9kZ+K8UGH7aW97v4phr2TnR3r7K8tKojKiZ41UyEbp0GhYaoQsRvaoi3NQLqeSgxngMQy1kZZ2OClK+Yv4IfsmHW/gzpSWCWXoKCj2lrMeIHoPaTLLynfron1u4Voez+pQ8AVq03FiOnBexxhucChTc3xygm5ohpxLW1FTr9OO09XmnECpTe/vZeXvLXx7juOsutOMKI7gGrXTDxOVGRwtNrUxbZtVXRJaGKW/9FB4VvGY0n9kKW4+bgBGIpLmmWOcB5UKWOyPAaIDVKVAHjizlglIAHiAqdyJYSaBbVLotw2zXI5hIimvZWd7aWm7c329ir4ztjkQfvMG5anlvc3djZcygmWUEBQ/NpRgR3oZrMNPPuDJYESYVo08Bd1dQDxuw00yFVCC7EAlLIDlNSTyhlEn5LvsqJBW7qUhuFxMsU1h89fcGiJvqq4KAgSaUDdARfDKq1YuQbNrmhS+fIM1E0o1Lejnaw2JYDF4ucgKeMeQQ5QFKH0DfGJABDV0AfxOCGbDB6xwXfdM2Lm6n6jox4WDW6qGwOmLBrjUqyuk7/n+MbeZEwCHEwADCPAyRpWUTNEi3aOGDD+TDXPvn8GbcMvzCOQs2lDbi4MPvs+ROXcbEkZBN3tXzj5s211U2m7N986y3ekEiLgYWZihISE7go15gDxW0zwKkmuUmEsClHvS7cZt01GmNhshowClTYFQ9pNBGMgG3SQqPpwpiyViOZ+BwAEaJqfFp4ESdTZTwEhtFyTmsp7fAafPZCgpR26Pb2wvws7RioplftRmHWE6TWEhPdK6j5lm7Fzo+/SoxAZctNEnnJheNeuRBY5yygyfaDUeXf+BTp/sMU+EF42asKPfAHnzYkrV9KQC0cwF/XpvK03Ip/H76Wrvab3Gs3r/o9hLMBJGQU4e3HWudq2SlXc36ZoxLz1VTt4zt8FaNWy6DhodUxIYXZ8OCbLg/BN8qWpDwlBkLr6Il06CeRtKwfPXrENsILF04BAAVADg32nTlzamZ6htGph4+enjo97iixY3strNtCCdlgSm1lfAvXm7YyfaTqeGdaigx8ooEOcanLahmdW30vtpVqwbOcpIF6Y5eonuXlnlynpVoqjnWMKiY5orDNa/VzBAoH287qXWgLsSLOHDCev7O9q6d/cHDi1GlmtH7+t3/N2+YzoYa1FAfVNO6jkrS1ISZL1GKxHpNnVQyV2I2glvDjd8pN2mw0ILwEBw2dX5Fe9nN6oMJmZJlsjSWQqck1NiXAIqZFNms2FGoQgo5WeKkzT4MpfMcdI8pdvDOBt70sz8+vLiwxholVZISMMb+1DcfJsPyst6IfwktNObiC9gvjzplD0BGoCvamsM0Y3VVXL2G5ipglRHfDpKokkbvexRn3UCMXlqES8APl0KnsiTWpYOAvV+FJ/+0m7Dgx04Qxe8CwAyXFSHJBDKFcVDeJwUnyRg/PkcKIs9yJpk3z5hLLoBemt/HUKYwAli8Vy+TJJpIzvpo09NKHMpYZaq4hA7L9Tu4QoArwEgLWe1dUBSJPVY8Qxxdam1xIQb81k80cyzWz9MWXd+bnlxEwkoEAVDyjB5YlWRCY4beGIEoQGw3BHrbFC4S5d106ne4tE7KGCNfMKjQzKuS4d5khEGe4yZb/wlHBXL4lKJRTSep8cZHqusl3BszpSVvr6E2znsjXj7W1zs2x/5BXAi8zoUtHl3gwoN3QAwFUPLp/HIk1PztPe6H3eC863jM8PDoy8vHH927fus2CaJw3NDBgy/6rnu6+8+fPHT1yhHJO06HUwOhKrRkeghVDVChaUcRbNKjGlXFWHQBTJlEiEqWepmIUFdxrwlPCID6aNgSmopJ4klGlrJ+O9zBpvbKxSVXheBrGn3tZZVpB1nI0w3zoynNMGHWAMmNVF6+GQRJIviiL+PKJ5leJEX4o1YohPepvqQmSblFHKwFSqtyS1MwPEXDotkL9O/spClPQp+W9n79CD7eNmRe9aoz5la4bs0tCImyn7ofKYiLcZL//4B/21b5Yw4e3cuh4zJ07d0+cONrd47kx8NzR3nLu3OnbN+/Mz849e/p8ZXl9aNjKhVYNDw1whjMOOEqkSlGNwUJ3Cq2yJqPQroew3qF12As8FWNanuHnXJsvo439UxWpKQxqYZFATt3BQqOSxCt3/r0zmHUCrfY47M6tJtf66rHtSFHbyJiGgefm9vUPDg2P9Pf2AmxtiJMTBVXgpaoGctLDBdXDXzI/XBtIuR/EU4Li478grl0kLbwXkBgXomAHsESW+lahOPAD10Ik/5Ie7hgKRm7ujGpxRBlRMw23try+srTIaYFery/z6nHW3NL3oNfMdmA2JPUO9HNKHhPFrk/y9IhN8EAB3WjtkCaRVyUxQWmfqqI143lII7d+QbyWFzOSVkDpbSnr9EJ84yPMC65BTBEVdoxDzD7loeIhBGu5xAcVTku5aoowRoVxi6sGZYyANNIoatQJrVmnm8gWpN2NJvbttHTYq7JE0RqQKdqkUOdQiaJ/uDZOkMDTu3xK5KqXWRLSTUnZmFRRgEh8Kmq25opTnqOGPDYReRal8WDnFqcJ6O9yKsjS5u3bj2Y5rxUnTt9VeuwcO0BN71yDDDLNrg0CXDmYom20agHlwzoM1rvT193Z28QiUUA2WMk8fIWspg46sZ4YV0QrL6JNKBdFqoojRWWuVh4oZ0eaW37lxh5GWMKdCJZd2+2tHO2Eg6GASbC8sooDoT4TQSqu2YrDQnmWy7MJlmFn5lBpYz95/JC2AvNSz549Iwvctlq7s8uGfFooczMzOEX2BSp2W2n0P/2yHQ3XDtNbKKz/dmlDtUTIOHgqLEil1kAVQwwlUp4Tyi0Ec4EU7BaweYCDWLuYM1O4dTgvBFJY2DtI5YYtE4wnSVueiL5K4A9mi7Xi1CvS0SjhBS+QrcBFC2RBF5QqTUhU7QnelqLJba4p71KVVIFCWfkuIC9/87SRnAaAZNdw//V4GgC/xWUj2YAfuv0WCP4IclgCL8uwqE4dDqtCJ/jRozOXLp1Bb4lHvcbGBk6dmWDFBjsLZmcXB4do/Jmiv6+bl4hz1gMKzoAzMbg+Zl54g6DX9lCZ1NNf4i5UtL29mdkZhkbxAe0dNrgZ/2EuCTfBEBdZo9VUZ+ab6TU6zkrifFmDrHsxEOlpFS+LQaD6aMoShIcfA7YlxsJqAg5irONs5qgBwkA+1mgBjK/41bjaX0O3D6t3qQZgS5VLItsdyZiaT+uBPgkX1WPjDwQeaHuMi8nNVW4qUAEqJsgdUxT7jM3L+Qu4CdwoMmXBFFt3FzgMb3mZV8rSOl/knWiLsysbqwgORjwsipWsw8Odfd3YuE33YzvnHVdDj9z8sVUM0ysHx6KliVA0pJChBZG7sAeY8tByKBggYr59KyBg+S9xiab9ZGIaMkAqXS3qS+JASfBiScaqO8/Kgk40iUzpWlHGZB4aJIIA9YjAMQbScJBby95WW9MGy+4x2TYmAObDEx8DS1pUioLH4tGEULJElcdBQUbaQkx1rf0hwZCsyXbWWzVIXqbimm+L12ygJ7gCL17I2+E4c7A9ecoO7FlzQPf1t/ppOGOHNdemz7cpxSYVqCd31Bg8GSMSJiFAfWubr2dw8CGdY7MsIUqdBZPVfa2oSIskiQQh34VO86oI9wmyZL02GqBY5RFKWQbMZm2FRPeO+V2GpSET8UEQR2migmgjgxgEjt2AW9oEkEp3mfyowH399nSZwaIBzhwzXpl+MHOl7ArcWFt9+vghS6DZDO2JPVvbLKXu49wBskSVySavdVSt9ktJthAhpZCL3IaLMGJ1lWzrdADySEi6+HscweEMPevUOtkr7OBbBnzyFBhyRYfw0ZwUBvFIGUoxGCHASq/gGgIzAnHVnj4GRzj1hodeJvOSSGKCoRJ+BOyXxZKypgqhwhqOlzI6hLZ2e4icWnT1a45/DH8YEkCRaKfevHlrYuIYe3gKU3S2Tp85eev2bVaUPH36/LSj0Gop3TC2Gj5Rr7CLmjuS4wm2NjY5+RzzwS1ax3dsRwuLPziqCAWmv4XbJTmn03CoIG7LLq/v0+xhaSFH8TCdyYoWVDRKq5qCyQ6A1S5mySqEWsa++WYeQhQ+yu+l1TP/rq+0ryJ4LXAZs0psibJGeLUPY9418K/7LfXLpOQHUbQJisuJO+dpuj3iEhI4/kOKbiyISVhCkAhBRwfSK++Fy+VVxwzbZ92ZXoC+3zLHWy2y8RoDyMrZJd7isjC3sukCEQ5RYjqPvUacs8EGDOYPaQ3R96J4OpwOgB5pKR0qXQTUQElICzl+SZiR+UhtvERol4lS4g55I3mnqO3TgKvqt5g8rSJlqhfDwSSNSWVeMZTg9h/LSv/pdykqwLjTAZv3PnTxqaBPO8pjOnfbWrabWZ2GXwAukJa0FOu10qYjSxqF3jCv7JGYFoQDkBCeji9ePeRJN/8WhowTh96oc6ZUSjyyS1jRbi66WPym/h8o8vDDnPyKmJEt3U1R4gF4rRAnxbk0UQli/muhwmZ2KiF+GhcMWtjHS6QWmQQagJQq1QtAoaVUik2bhwVZ7iMH6gcw5dvkYbTGFzhFECQg0JEBS8OHOU5ONmYGh18OvGIr3/zszLOnTxitRVFgjS+Z2muen59dWl5AgAw4Xb5ymTYGjXRWZ4KO8z2o72zPh4X5hVmwMjTFCM3jp08R0pGj4yzIYmQbApNvhKk0IdLqCik1jpQ80qStyAUBInPJb0kFB9VFnisNRE0aVikzGqa4U7/zmmFshoYBNDngmiaRWsFqCh4ozIagcDLUwdCSL4rh5I32DgwWDlsKpaSCry4OpC7EpuCALhTAgTWDSBHkr4CF3Yas/3j5j1ICqiU6NTU1/fjx84uXzqCrVoWmpmPHR4+OH7139wFvX3h79SqHn2LRWSgZr6Da4nuoFPR9OeyBBjQdwdKgxDxTn8CD+WBDKhXbUevNTZbu0ltA+fjQJDamo4MhaCoCe1KxvnSsOa2YqhprEl8MLUA377YwINfiTg1qNFaOBjrarTZDgi3bmnWTcKIMmK+krfQcbwZQMWTFAhXOwVkCSbjwOx8tl3dVyA2PqceYABHwgHzLYzPyXtcCxcm6xJUHNTgwl4iSrJZj7c60sA8OGhvwyQIRUDGGzEE8cy8mF2ZnaebTlKHXu4TF5+UKu5tM5nViLznKlkNIGFHLOR6g2HIXUrUajk6mPCIu7ai7H/XBYU8DJEsROYZCqisSJdp/mDK1/Nno0inkUaSQaJMUxmBAH2c+cXeFM4HqwfkGwZIryGzAYIVBEM7JDBq4VtaA2kEzewmXFpJVZQDp0hJyQchvyPNoBRpyLF59/nyBV/kRCbl24wKedgHgUOhoss2IlKjpyS+8+4jg1KldZZZygYLRaDQ+OUKZNNAzJ0vs/vr6Np08m0mRlzJ1FJ5cHWgo3NdQ6hohmlwl3XkXRU53PaO9NpfAAh5jHZy1CCUKZOGXQWgyh3CXPury07IiEVntsQSpYKD62Wgl2lyUXW27VCgk9xJ4zvoOWGD8tr2zi5VWvMSe+sqrFzhKg/V+d+/coiMIP8qwSA0z4Isvdtlze+3ap6OTY2W2mAY4bz/kjGj8MS0JJr8pCOo+709j4pkKT5ANebcaoYQUDRFwk0rLIz9h1gvjFYOtxwQLiiJwjCJMEamoU+FpxMAFAORIawKAFJkoyl/0yv31lCkEsI4Mu0Naq2wyBoxUBQw/zUs+yJiZeAYGXPcIWI2OksQYU1rsIYcS4Td+1imEqEMS8ZbrPLIgCE7uGLwUgSXSGMRSu/dC9AcC8K9MWAGljcz1PthLWRxA91u/gbFGnIfYa3z0yuvD1KoR+wi9OYiRcZxX4imRKYb95EZWdzoD75D/QYRJWKIOJsyDb/w6RP8haZhjg3wgIVpO03Cds7GYCe7v50xyieRAi9OnT91/9HhqYe7xs6nT7SfWN7c5FIf6hbHCODrg7CFKm2y6Y4lG9Klmg2KvmO7FAaNtVGHsAaOnDFZDAMfaxSBsr21s3bx1BxFQsVBcRqqxAxxvR/9bcwsnWltqKvXVV7ERkAjrsIoGSkbME2RYE8M5kRg1Vve6r4PjDIBHxPEvQki4BQaLEXHVE0IOSAVjjxUmM4coHX/TOKQDZEZ2bnwoGZhFf2hk4DJJSTFjaB3yLAVXlZI3RhtPwhiMPNov2EhMO1GeggoP0trZ1sMJWOTCO+KwnZyLwJmMs1MvtrfWtna3VnHJnKmwu817CTq7Ozp7u9g84vpQ87N0tY+7vDPNAQm6V1RJxIhAnffF/jB+K/k0oIgJzSqhq2spd/VSw6i5jakD0nMoIV6H47geH5LSG7LMhY271QOQGHyuQHLoX64ZCbEcKAPVnY+byQiKga84DkoKvrHa2TKU+mAxhh6tlNoENLlpukhMKZS4RlXmKUkYGk3fl5H6p4+fsArq2fPnLIWK0lu4uA9tpLilAcwSU/64jdOvIec5dPDnJ+DSSxYM4MAQqNg1xcuCVlc4rcGeooVoIlOQzlReeW0uSCR+sVwbjZwKI8mCa0sFeUefAeAe+uAaJVPB0N/slzfeEDF6kayAr0WABGwEkRipZyiDTvFNRvEUiqLQyp55X1oSvJGeN4m632hggLOdgcEHexAjwygVTxm754YTkpeXaHkwipWDP3vYasxJW7ymAeCFxSXmFNqnptg1x3nxJ07w8BSNd+os/PFP9lJAkOPcRmBcwQzPOAwGeaJg3BMJC7TxYRzZKFvUDh4QStiDNdw8eGg9IEPTqMqGoPaC1hTLqkTY3NLf30e7IVKDAssIAImhTHZ3GV5ixpvcc5AIJyFk4UJBJ6b9IK1QVgtcIWnu6rAaMiiJ8ku0msdDihQy6lD7CP949QcmgUOlXDTtAI+pBzQfn7HgavJFX5+VDn3BeJ88Mc58DjONH3/y5eq6K2/otuImqcsabzdE2KZkNYNViIUvtPWculLn0UQsP4Na7HEEH81xAjqP8qOeKDkTepwYsbDAYiLf/6PhodvnSXNqcDEf0VKNrplRb1kGTGu0uwePnva05qMoMUxYXa1A1iWtJFGpUtaPUjEgw9qXOqnh4RKDKyelgoCsxFKXrTjx942y0sYGqRYiFXb/aWri/q1XUoKhDIVJePBxwx0gQpEAKTGcwKnMLDiiFc7cuG8PxIVsbKwsL6xtLK/vbKww8UhHtqtjoGuYDou9ZXwc5ZPar9WKB+ZOnKKVP0rN8VLNgR0JhFloQwxkSoeJ3C0DnRAFBLIiP77FZEMjxiRYg1fpxZ7FpiQvQHmelo/CKixWP+VG41s8gSUB3kIrwOTM63ItC4yr2bsF2R04vmyggpUjCykNKTQjyiFiPY3yo+W1xUqtNc4X5GXITK5w5i+eOSoNtXagyDQEQJ4NLlWLCZbopcjrpW5rovBXipC2hraVbKCn5EYEyxeWllkFlx5wWAQnNOuxSC3hpLIfDD9qHfgTKk6Ki00TUuZwnPyll0f9ARjxO0K95etOkBirsCQBbNKa/Bq+8sT7ApMn1gUFXW4oWFuSIpN3yHFlY4p/d29+fm5+YXHqxQuOqnj9tdcGBwfaO85BICdZsuAAByY3tXxJDGaknS4v5qKJo2F7eoaJnJqeXVldaWll+9H02sbOufMXTp05297dZX+frPN+rppwMjtbZA5GsCMlKOPHBfRKB3lYVVnwSTERkUAEDChQubD0Caq157sZZVawF4jCPt189MF2uUvzOgIjjsbArTZubRWZU0PoWLw8+9sIzzX8ltz5LleJVPmJQfpWvki7JDT+EIp/yLdy/ZsFC/0fTSi6Wmc3ldA7ajrLHO/evXdq4gSrogrAkKc4DHO07dTM7NG5he6eXrwvkyMoZxZjOpKM57b5zFuBrRCady1qNI94VmC4CteloAYcQGoS9avFIaDuXgATNCbQlrKg74PDcYlWiVB984ABoSNHjvKytXv37nM8fNSdVJoTIaP/JSNwFrvjrWmtuPwCma98lzy1kab2P4FuFH/l+tA3dKQy2TyJq0JssQ0FX2pcLQlqCRIfVHh5WvWGayBWRK0EQUObEHZa2Ge9MDXFJgiOFOiiI2yPnCMmfYHC+tb66vYGjf3uVt7Nit2zl6DYoTud8WSoLEBbXVfi4IdcHIGjb1z8L+ZMHhyvpI9LQbLG1hYSoJCDEdSYeYVA+dHkBglx4OLbpwKUr/wAQ0wxlC9XToegCRU+dQLcqgzljZ8lw+gQOOSqdLvAJ1BoqiUXcyiw363i7ToHTKRrfJgz39hwWUHsqZ5LypMrOVnCTrxadhYf/0oKY23TMNnIEpmar5yGQ7IgTonpFHgkGk8V5gQolpUrtMCBIG84DmHGqIz8lMBTQnXD05oWyy8EwQbftk+tLXhHLiA1NYcnLbRhKSpkVVBEAhUyKLfoQizfCaHf59xZ0paoDs3SkWfLV44iBDfwUCupzfNzM7du37x48WJ/f++Zs2cZ171///6z508hI21YO9ORlBewAz2sw6KFffToMZYjcGQea4d5g1BnR/elS1fefOcdppWBgRPyBj+mQWIgOKoXkqUSpigpKOOXoYpQKJH8hzOJ56FcV/wLqp6EDEHVYy2C9R1xVmxy4XbqrSz0hAAYjexNTSBhuQAX09h064nBSTOunopRe/jqXwu0hIKFaxWHLOstVqnlXz/sRT23VyP8RxSLJA4JQwn9AQX1oBYa1KyKgncUVXXhVMLtHdZbzczO8743lYWJko624+NHHz54wsgw66GZW2FdNGezd3W22xvY3ubsZ1rkqCgVQ60yVbLTgzmCxPhxR3PHjkuXDdCC8U+Vt7UKAGBxlSgrimnHN5pLF8AkhUqrlZXKNTq+CWxwuL2DQ2fJkUhMid6EJrzXqaqyiQ1MlRTvfgFXV7CcSm09lWpJJsbAlfN+qTgYZPLdT+01EETLG9QUeL0SQN74H8GkwQHaIC9mWV5gCJsQTr2GNO1lMTAhyuJo2l7f3JhbmHsxvb66utPT1UNbfW+bgVysDCjwEQ5QulhaCwafe828LYYdMZ4UBUr7rlBkd8ujSaTJrBRzPAa/9s2gDXnpjcnfiVjKw62n0oztj4XHlvE4Uk1qEJFpWMABkL0ZWThFSHIj02EpjQMoC58yX4XKAQfILziiz2Ie5MSCKbvqil9/FrwySVrz8rckrGHzV35zT5EDBCd8syxwbnZ2jSWAK6sUVgD4onTiOLgq2OQogW6nzBp4AihpSjJizEVHSCLicCG8dxq2QbKLm3/6/BndSFMBJJ0c0MW8Owdzg48GAWVlYQS3qeqheHSyJ4bH7EyFBcASQyIzLrmXJMTjPBCW1Fd81JFVF8ml+ipRBYMi1jv57d6nqtBbOVJDN9PWxrABvofFU7zICNdL9/fu3du8+pcR6VOnzowMj924cf3Jk0e8u4mJJ4RRzxiJOou8ufno0UNO4hwfP9bb13u8tYO6evbChR/+8If9Q0PLnM2xuUXJML9EYN8wDXBSwQdMwSdEKtwaUuUv3YjQovO6JpaIWZulcHiSp6ntpWkpb6ThW/vB81q5MKpMFaGEWGcGCYCU3MBcZYvi8wYxat0O7wRl6zP7lFyVCmEVwCt+eMhTPzaevEpMyqfUddsS4SxPIelrsL0igz/4qEPiOCTt/dL5XQmiyrCeUbmvK8XvKttGvMmbirmxvvno4dPxo2OVTWhtPnn8aFd3x+rqxuLyEkcgPn36ZHF+tnv8CIrK+xjoZjDshAlT1dHnOAV7I9YPcFS/mCztHmY1tQwN5dcJO77xZdYkCgEinHj0EpWNeUEURSwYD/2DQ1CsDmZC2H5cbGDsig+50NmUAA6zOxiKSCuI5Jfqa8aagMSQ0M5mjrKifhq7H6SMoHeARTMs6Uq030BYfFZJQlWGVTIjAsFFicp3bAisKDIioIVhZ2ba5168WF9d2R3oH+zt5CEvKuILJ4E9pxPCJhZzAJ5xAudmOfYE15yJVzxw/ET8WkVDgS20xTbEl8RSEWm8ROlN4zArHkIPGGIGJdQgZGyIieK0wpj2EWdaMqInTbuM630znQd8MXvqICQM+wEDTYgUNpjtbRQMNWj9MhJHV3hA+4GDOs3didwigIr0aBrPHbLnBVKYdeC2dzicc2uD9/Li1kwobk7TchsLbRAuXKYE2SqPTo0v08mlLUpLmhRxoMZCZnIvY6HIQHXlnRD3790/ffZ0MyceC24+DMy6Cslr/i3YIjgxR4KBgghH1+15p2/dxmR7NF6YOO9oTCkMysXRY7yXSH1um6gUTS3bgl3BwFHpuiU30+p5LW9Yk03UqL29k1la9hWeOnuW93gi5KdPnnxx7drqyhzrNfDBrKHirHfeH376zPmRsaPv+qqTnhtffrG2zhpIuExtVXlCiWdccAjlI/IaP3YC19XWwbsv+6ATSphW2d1eRnFhl342M1us88J8EKjbReThWk9lQw4a+fcZF1R2oqDbNQs+MjKlaXmYnLYRpUNG7R7VGbFjdbgwYC4oTSYLPGsMreOFvrRjzAcpKkpTJF9O89ik0QZLNPaZ26ZEqmyCKGCUkMBJy4+SUO9TBt6JF5xopCHEEJl4HllwycuvQ0GYAtn4IPwmnyq2gNVjeH4IVbk9FNmI8te/Jq/CY0HxUtavwhxj8aoHxsFMI0Jivp5ukUWodYTFGNVvc7GPoxJWw+Na6poYfVTBW14JDeC/zcvC6SGhyVAyQb8xGo8eP37ttcssxUKVIGt0ZGCwr9fD2zj5YWtr+sUL1pvYhdprZoeCg0m8yCuTwXYuiLV7pFu1ctpRVD/JEYetT0VVdB3FNcbUa1bMyfolGVQnTR+hLg1tCQbdMwgMwDA8LXEoPn1DTGi9Blgv44etfTE3QRVYSHGPB51HnT7PM2AHkigIt0UTOCIbWplQTTUyUcoHmw5y0gVXQCFQSvOcL1D6bQHGenPNY6KQBvKyv2iE70MGgn+spHnKfsmLb3yC3HAcEoPNzPou40XGh9s63WpM+wK/1dHS3uksKX8CkppeIx8lDTadRKq/U9gkIiPaQZoiDY2LaqUCMLvLNiU0nySieDgz1DVa2DtpkhlLCreDfwiFNoPkzXyL3eMSpBQQULIiTd5r3zmDhcdFA8i+SIcfhUKsMd7BAUsHcIfkhnVWhMq1qAgZkZXmTSK99JOcwq3kcyd6AkCeBqx8zc00qp3vthBppE8OfBQgzs+qDP3AR3riSOmpJQRT8BcGERw8QolBpxm9IK29xrl5FjE6v67sKDHmbPkyU2JKxqJDQBa6jiRojENMRa3IRQVnzLk8rWAkLgJAtBQGL4QnecV7KFQEhrDLj3qClrgAuZNbCPBfNIWpEEV8GjCQSH9eX9zROTA4xDsE2VDOMO3Ui+kvrnE45e74+Piz55NfXr/BGyZ4I+SFcxdPnz5D9xWUPKULq0xUD/gyI+Q/Pc1rHZ5wLDnNL15teuP6DXbMddIkwz02N9MeYt0mTWnkAJFKQ+oor1z4DZ2iqh6lQAKiBH1Acx45C6NyBzhFw+I4hlBcLih7clhVKxMhvdLhhgpf1WABWlP8A3vJd6+ZzQW04aAhC0v7fcQ/gLUPqVAE81epMpSkepKDxeM6jKJQ0mmwZCSI7+oj3WRICOmBKl8FoCGidlmQ1O743ceW64YnXr6E+NDz397tS4S9EvUhar/hFpyN4RUYDyKgRBo/ts0Zxax96pakjmc/dRLW439bFxD/LVFF87WHBlWQgmtiydXU1EyFY6+pp6uD/aXYCE4UWJqfX+Nkcry0do1BmraRkVE33Tk4qqFTzW2jUic5dInKoteSy+Sg1pQdpNjcBKJrdoNKjJPS6uKpdKu0VYXhHpfUxkwoJ7wyaczIFW9FDT6x5rldmVLZChc4CeuLbsSsZRA7S9XQyXJfagPfGDZKqhAMZSW4rwTrqRYHfagIjlJhC8Z8hz7AUo2RXuoUqTBKwZbcxMoFHzOyJlcxxldyDoLkqG8yaI9Yq+SmX74QDhuoMb0MEDsIwEMcCDJiW5i6Rg8AVhSgMvRjB09L72K5wgl52NWzpAnQoeWULotAM0qhUrSueUImARIsf7SAMJ9ulNFwOfwA8chUXtIq4IBnzXt4sxFW9zKBED6PAMlJWBIggoIEciNkjbhjCvWi4DlkQWZ5bhGCScoRZZKnLIkHkng4oewgQ85bWhCe659hD4kEpE6EpFttTdcYTKbEoI88eQKYORlr00FCwASHIjRj1GyXbhyzhu1d3Rh3QBiMxYhvbW90tDAV2oiehyKvR0EXwyjcwhHxSreVF9NCAa6KXGg6mTVZFGoKa6DgohZTISu3wKEcRRYlo1rtS7mFL1lDVg5X8EU20WsaTLjsLrZAyClTwexV4FWJx4+PT0xMPH7y7Nq1zy9evMBbCa9eeYN3HH15/dqzZ0xNMe9rWbshQkKo7g52sZiLc6iHhkc7uvp4NcUGxgMlZhmzswO787xobWGeQQLIIQCPxDg+UkEb9uVjM8pZBQUv1zwpUERoWIyQARp+KC3XpQ0nRwfQBMBl0oBSe3gltlyX9AIiZouVdhPLpLE8NPdZBE5jH/hDcjYzQ9j1Vy3iRhqltNxUKl3S1kCTrkqe62/3dYiAb5foj1B/nxL4lkUWXVFrC3xRLNYJPns2eerUSRfpoM9tLSPDwxqBnV22WjAB5GrRvR1ed8dP1uxo4KhuxXGozaJEz7XTGhbqDG8XMGgWy0O1PlberI2MKcCGmogZJqdhmZYaGRodHhpisGp4ZIRRq4GB4ZEjR3iByfXrN0gfnHzJARhySxbGWx/yn+wFpYJpvCkWU2pCs8VS2ATIsKJYFUmoPfT2FUFA+9xANYCIBV7IVufgUzMpyQGrf0pMBVHgGvKRKmi1i6UnwtXQGmGnFy+JzQ4uBvDsz8KMO1Nt7egA9Oz8aaRtdHDnaINbsR2T1z7yEW1EBAXhkfKrUwkYAOCAcZ6bQtpwOToFKMF144BBFfEVJngsqUpWRpODmZiwIJRrxdIAgwMOlqAw1yCx5wyUtPLA/MQoTtSOdgFdQzaX2d9IsCxhRmZBDwFSrxbDeZZWKTuUjk4+DlhuDcKoaiWYgQkaQ4GIO+GhNl0IYSDMq3KX7JIcUStvIG2BMnHIPZwwtUkLDhWuqQgJTWQ4kKNFVpDzJOwnInTieliVxsRwa2taRnZWgaaTbDGTr0kLTvGqGIowIkFBLbV6jhZb7RYklDGsQhPU0O6SCp46apEGBAo1xi7g0dEnTx5zRB4biHC9Dx8++uyzzy5euDg8MHj27HmAyeHe/TvYCxZtsg0OGnBgiGJzizEA1hsza7U6OjZ+/OTG6sZ61+Y6JNqIa25hXMfX8UbCZE05zc3MMuGaFU/4PKchpCftPeQI5mgwpeAjKEcSpazkkP9SUFwCBwslEqgS1A4GdwyAcFIH54EkGSkLkEi5hheOmIMiBg840AtsNYAIVinVI4oELQPrX4I4EhJb4nJZi+dhuTSVJVCHLukquJRhifm1vjGijaEh98boP17/3UugXgfrWWO9apaFiVXtOabj+fNJXijLCRmAUY15ezfvAVvf2kCBsTQ0dlEfLBs10EqoulCHaKhqpkhAKseBUFetFgG1c388m+nAV3Qw8Vgsuiv6wkBpDtL3RJ/1vl0ulWing7e6ttG+vMpbvXt6tpc5oHWJ848XqO6SV/JDnYuaVTrNk1hLfw+G4omgQjpVVGu6Tqa6JrbgoN1gHQ9ADUXJo9SeWlzDb3lMdYQfo/VepOeqelK/KsiND6Cw+SdHmBcMuTpWDhGKOqOlXBuN78fOO86WdWhQy4d4ZwM4FhS/bMfZ1S1um6zzZ8KKMKs+bt0h0wie7AIXEpAkEwdQBtZYD7508NZqinVfheTNQNoI0JnVEhRlTf4p6BqTRvsK1eLPgjQqgnHEi+niM8EgmCKw/xuz6UBfxqglW3dnM6FITA4gJAyQSHjKMkPEIgFIHUWzHSaFtcKbXU7dI1iVcy2YTQGUSAJ3RAmRb0dlyKvgJJIrGzs2d7jwO22CDBF50mTRKRF9RSjStFRrBVAAE5+SsOVjExZvbotXWdsmI2+yk/6EQpWXsliiahe5+6qvZKv2IzJg+IJo2GL7zanTE7193Xfu3OG14btNrefOnnv46NG1a1+cO3PmzOlTJ0+cZG0I7+DifeCcM4n6saiKPQ4kHBoepCQ58YL3KKGYYKbxuLS0SEuCmRUkSQUmXlnTzrVEWhipYGyNlhQt+vWNLXqfzBNH2ylJ9sVn73h4iMi94qKEUl2VDa7b/jjPEEFKTSgbiDS9nZMvDrizO/0G46MAkVf0nT0egCEOcmfCy1JPqDKKqoSAIuKKAJusCRWwP6VmHQCrQflbiGuM+W1eF4kcwFiX1oHYP978HUgAbTiUS6n19cg6ADpI5cOKcgL07OzcwEB3STrIO7u6un37EKaZUVCWNNPE393lXEnV2xas3tfAt8aBumCVxlCo407HaJ20spk81lKp3FpRAvoCSeQONuoQ9ZF4PDjGYJXzF5dXiX729CnTVK0cJWtju2OWDSYgT2WwwqWWWakbAhQeuAeL5Epj4avwmxTJXzyiMiZeTZoqFHkieT6EO/997G1jIE6WyOBVT4Gs5ISdBJLbAsY3wexCif5Zt6EcmdbixXTVimuNI/zqmEOjRrb4+z1fmMY7bvABemYl78uDYZcLDWzpWCh5ydavKIVkF4DwEwJrTIW8imKAwStMhFzo9Jrig1AlIk5vBYnPIJvqI5+hVy5dIyNN4ZkLs0lCkhPrQ6ME5RqVoVsCB9KLDjHCjD1l6lGOirMQjoeyZScsgy0+9dhrfi0J/6MnQCIczWPtY+oAUCReG8QmMi+8ziVgUWV1F3kGrUkLdn11WQhks9K3B9pSSsamBio51jx44owtHxtEcCdc5BcX6008ikKBDL5UBL0R8iWucMQFNxJf8ihsyLDpGsOhWx+lslmHaUUwQkt2eDt1ivZQS/PIyHBHx2sPHz6c5Zzn1bVj40f7envoE1MCR3nV0dhRXiU+NzefTnAPs8WcF3369Om33n6b11VTRWfnF7u7+ziHlj3Ec3O7TK8iemZ/MRzDY6PqKR6REQpHhR3ToPf5eOox1ued995jAZR1wLY5RQm/elaoi6bJeUTlr5WlKi2vTIPgkLYwhAiGH6xOJMzSMxUUZfNZpCdSimCXVS2OOrR5THTVky44XvUNvHJLLcpzCwg1JRe+1DNV7HAw5hXlcBjsN7s/lK3la7ZFSr8Z6t/D1F8pzlRc3cvvWaA4GsuiTh86iyai7UxpPXny7NSpY9xiMXhXOPAEmpe0C+n6UuPQT/orWEy8L/jUfM6UXltfWVmGb57xHP12JNOE1UkyKiY1yoBWWO2SqcgxBmTPsHfUmgY/oKpq6hd1imY0q2l4xYDxYKGWkd4eWYKuqZjQpKIfY/UyFPvpVb2kKk0Ue3LwIcGigh47XTGUYFJUeVRSH6htRtVQkoxPsJRqLjV8iu7XoMwjMF7os0Qg+d76RK5iFY0k8A4GRsxYs+niTqRdErN4iEuaF6nmtDPig7U7Rmqw/DjY28rsMNcu88mcACQGa5GK6LilWP0AbF8OJmgc8Ei5udSEKwOYpYjArwml02YEIxElqmbTRMoHTGXmtUCJRly8ONfVqpq8JABU51qeFtJ91RaBvHGWOzue8qiKmQ23sMI4iWc5wKodN0gopaSw3f8jcHAmTyJlgsyc5sDOAoaW0TykK4nOEUejUsseVYNmAoSQxi69KgpMdSVZItLKFzcgeO58OUF75uGzpsypaBiAwuAwGzhSryQgguXSVmSVmTwmV0gCxEsIwu2YFcGngvpv2xa2KK8KTlmaX5SQRzp/iSTeYY/ykdSCKt9+IZEWXvWBQHaadxk6dlgEnNS0LYilpcd7FS5cuDA0NMsQ9POnT9liNDFx4snTJ/MLc5zUwfTwnTu3YfwUbzSdmHjy5ClE4+H6+ga7ewaOHd/t6OJ81B7W9LN/kUWFUPxk6gWvXevk7LbODio5izdWVze5YJ4JOuemZo+MH+vu6DbzNJ9KKxrKSwA/mm3N5MqRnzBZ+FFi/PMch52OQKUYFp9rDmN6mM7AAXOtUDQ6JuCztrnJejpQsEmJ84MosAgzOIvY6rko6BReZSYidtAxTSINVEs0R7UhANsYjDsU1fj417omY9Ihn1emLk+/BuCVqX6LkXUCvoqGr6K80NCYPDGH2VQVGkP9lqJNKOX49bk0IvhtXb9EuZa0kHHgUZ1MNUNrQnV4/vzFzMwyuw7nF1afT05zRLPqFBvPIc6YxIHBQey79p4HWgEmqrapZUCx9oWhY7pjq2tr7Pfjkseul27Nac6pQFEWtF6PUYL1gLw9YsgFutu7GzxBdDF+mi/siZ1BpqbpA3Bsk30Oqxk+XptUjGDNENna1We4cIZszCSVlnyRQBVMRbYaO8vKWGmgd8+HV79jBm16WKCWIWqu3FKsocok4raRVZU6P2ZNlFkSSO/z2m0VlduKZDFr1MVCIrgHSGFloSijZQw/aMZLr0ci4SqktbD1iDM3GX7QB+Ob4Bks+loaRpghD2xw34dHBDP1ikmJwZZNpamTUgSxYmTKLUELR8kqLnCYm6woRgGJCJkWvIH0DBIiQ8WYGK2BVCJ9C0HREGNseczbkOQwWSH8IJV9Y9CSyKA4DElA0GqQpwa6wAoW2YeMm7MPzGMbebYgCF5BFSwVqvU+RpTiNyExdlGQcOwjLEqHSdCjwIbwsEFKcCYSkcoy2ekwdX2g4pnqCyzJJYyjytbXoZQ0dtAZCZdlPhpmM0oQYQKRyXn/UYkHo4ilLczXE1SPC1WBUGEKc7Wk8GeJShRNnLKGiGfEJLKGov4bymh25RWhHrtlcobrEZCaIm38g4dDnmHtETsknjxievjkxEk2LD1+/IhdwqOjY5zRkYQtHNzIcg3WVPPuIxOncceLhTdaWnvwtwO2nFBW1JNRs631TRp+vGZofWWdDOkZM7VEf5nP6vIyB9IiybBnXbOupES4TnkEO5eSSOlYUgkm4iLTNKUZE+vgRE7lgMsZWGFdJMlCNeMgEcqRtLhfYHhmXv4kRKoRibcpPNU4EkpEmvzUfNRD9U1Z8MDCEOyP4Y8S+GYJoCp8MDG8W41tCIPDYyxe5NxHzpDBXKBUKNTK6irmZ5AqUXofYOVJSxMvB6DWcsZqc3Mfr/km1VBOkuFcVWq0ptXNh0V1i0qi+1adkMUv/sK+mJa2mV0crueAGqobFiEmlnWa7azGYnnIvfv3mVRyxjqpixmCPOtqXd9fofdWT21nQirHQZmIwfSNn4MQ3pV8xJFnAmtjsQMa5xp8eQj9ZarW6S4Ng8YkCKzM6UqFaqCJDYrSD+Up2Pgmkh87T7JpIWAokbe5a3DJkSoPgFA+AAxxtTOhxmvsOcHDDUEYZMcWQlsRQvy5+EVkZjR7WFMtFeYj9bF0OrSKlfpvjcWatIO3kGOJaL9ltBIL6cOiP0RWJykWHCUqjAjtsElaebBJZBnLzpuQOxj/8EhGHFs8MUhp0qk8FGfSqzhKwzaTXPEpSGK7EwdRqGgkJXGRb4GWW7go4khyFUUxgLKUFzdBr3FltwseThZIZZ6O32K+efcDq8XpbTkvIzp37tbFJrOklWpwgdtbcJAczGI7GIwENuBCBKZor4DSn0xyY0TaizYVaJRQ6la5eiA1kuHRgYyC1DVTbt+SWQ6bjMIFVXkKmchidHQYz/SEobFnT1kvxSuP2B/MAsmTJyZwbexSoGiom8Mjo1RkbAQOD+5Yb/Vi91k51g42WWZFX9l3PjU3eTQ8bwvu72csm9ew8M6G5eVVXtvCW3qHBjmoGQ5cc5gxHIcBtBQUiSGShxMVlzLlAUG+KuEQQU1QDvUCtZEEO2DxEBWrIM+sq6iTLO9yABYbPFhAwOtRuyI6i1bE9WCNRUR8+0lp+FNu/I22FPDqcT3tH8rFHyBfKdbfUfmUCv7tkVv5ot/YE96P1Nndh/nh7MlNXszldvbKXJRFEjhL9I/KSYOWXRcsbPQtoouLTPGwWJpb2pH0hlmi0cUOIt79RSuT3Qi8v5xszEcDVGp3aoTbILVrLc2cs8h2AIeh3dSLOwFQI8AaHUaqjo4fe/z0mV0aCEgAizWJb/5SCcGPeSpPv/m7qsCp0KlEpNVPh98qh0NYtLtGJemhZ/u3gIDU6k6IveUXHa5RJlNmxMNIA0iHFXXB9Gczigkjegysl2+Z0mxQRvCq6eXWu2IQckuME2pIDFtDoB+tF6PHTMsGhKYgu/IpfWqphSIsMDtnCApd12tWTNlrx8zGdBJhP4I8zRZAUIUUycK/hy85BbJ1l2O9RX4otAWODqQ7a0Gs/hi4Ys29xR+OSp5eAirF2GM35Ow5Dcym1Ba6mwwOVLaSpQmKlac6PiUNWl1dxl5CAagECN4Ucok1X8AsHaSDtOmjIRhKpQL2SfKHAAsDElR62jxcgEMtVTCW1ubGGk1N/JmmHMHQGkgufIkkobqO5gBAoLQJYBOhKPeB9VUqYkiXeGuOrtStsHIkdBWqazIhAlT17IK4ADfC19KFTqadAFPJwjgOqTy2HikaLUNvb/fx48c5L4uTYGHw+Pg41ZXRZF6zwLEbOFfWYb2YekExMc0LgKxxQtYGr+nlgBRfw8L2LI7t5IWE7Ckk7bNnj1eXl954/c3h1sGZ21PTM1M93aw36RgcGmhv64UJ5O7wRnSYckrhFYnuM6t8lAnAjvk4UqRclJN0K0t2Ru0rRlmBhYxjMhCj4t1h7XY2KYEBLij9NNSKLPcFJQHJC9bqsWRdrmuRrxZyHf4f90Uk+HsnglJk0Pb3HqTBat60t0QfdnUVpZ6dnaYhiw/FQlJFff1dTy+zwSgwRoaXquMwsJxDI4M7/aiuCg0WzsxBfdFqFlTzSh/auIU39w2HXfQWa455pcLmEduPHIii5c4FFDB6HO/DHJUmOp6KL7JifKiFpK6qjnGwEukJyFYoYkGuYaxVjZL1oW+gU8HAUuTPj0Y4YFberwup2wJ8Axy4zQfCiilInlzbu4KlkkUEXgwq/VTcl/aVOUWsno6HEyIFD7sYIYgVZZj3qnDBr8AZac4coYZJ/hwOdT7Y7jnyMK8G41wI0PJSGJXEhCOCUnCoW5MvcmxymgJc657BFHEVBAGIHMkUeBHQD0w51CHKRRveide+K+AIGRrBTAIo04CGpYAmXxQQlWBJKmPPNBN8S8WWA/T4CXstq3RWGG+h5QaZ0p0hCFoeqERJD0GlkHhqnrbM1CxC5MOVLZwSpGufAGEETicJ6IKcmErJfBwHTLOF9b3N0LNMvjuuVLChwr4k5R00FkWVY/LNbZCbhyAJxtRpi9JbojR1MtxDadCkopjSjDOLWrrkY1mZPnnhuqr2aR3m5YtCG4loeZHK2hultKwdtC8KajaFD6TNWDSnjjCudezo+NDQMNWbviyYaZUPjwxTzyGR5jaYoIRWnZgd4OVEeN/zRZMCBWcWaa+9Y3VtZcEzTFYvX77EG5V44fWLFy+mpib7B/pYt7C4tNzPAtDBfqtLlLlGT8WHCgjN/JNBhrtTecNTJWql3FACHuSZoQsFiNir+sdZrjSaHP/hhed05jtJE9EWVPtCLhkjf5slDaESu0VnAVQUmPXBIKWleA/G/+O5q6rXAekV7uuyesWzfzzyKXqbvg5d1+XlJSZGHj9+zNKqnt5OtrcwOVsWUFR+JQqXUb9mNs5tbrby4s+s5bH5S6XhmsYkg1UvXkxSSXjH2djo0aKYaCpVMjXLekBN2uGtv7vs+MRDUwhaS/0WNUznxXdZ2uWWBMGLdlfuzRIyql6K3hv5ylABFgstXAVKtbOyk7n1S0WoQIKFfM06sLkquOvJudAYWBlTew9lbVoIDDuC1Wqi8RIUvEDE0koAU6LhmeXNoYMkwVDIpcFhm2M/kCmPeYGs/bMmtntIjYO2TpdiT1kup1nVSBgqS+sVtotmUTtvzsXQgaOQBj7gPTtQGHA7zt3IfywfEWDHC4lTVAQLTEo1RlUXUNQiBnXb9sZmS2+RMgPrQEbmGlNATGzSUAkuXC0mkwFJ3tDHqKSjK+uMxliPoc7xlJxN3EG7rAUGXJHPMxotMmHQtZfL0CSd5EGe/AGj7JWb/3z4AkwmCge5pzQDKULisb4p5RSRfX20lkUDrFpCn6ENYdiMonxoLCA48GmURZj2ocuyDBKXIKnchV4vAePDvQ0ePFErU98sCOOCnHu62J+a5LKShhAM7dnJKzmJtfQFw4egB4O8ESpWfeaoS1TW5m9me0RsiwgolgNUOXHPmac4VPhEggytkIjVV+vra4tLC5yW193VhTdlj+DK4hKj8WgBeycoI3w2kPJqlafQd7fX7RDT7eTdo48fPZifn2Uwg3M/lpZWWWjNK6yuf/kFp8+Pnzxx6dJFbIT+NzMrKSWot0AKC2GmfNlEs8RTpJYogbqQApUbG++erZECkUXlLBpEbVmQOB0A+Uo5+EQkfJujXwBF24Ug+NBVV35UeIvMNrTxtVBR4q2XEMS36WsA5VfCqlAuXgapPT/wWwwlUXV8sPWKAIPEFknVH3NbcVGP+qaLQ9i/kcoCX8DYtedZ8qn9xMgn0vPCywJDN69OgjHITMkUmXifsjA6GDRNjaFAJyYPGpI2gr18XQoTaTQUxMtQv0LMr4GnqED6Gp4nvzA3y5m2HEsM2xpzDl7a3mb0iGawiqZxi9lAL/1t4vWCy0sLWEGohO8ytkjtGxlxw1IqQPY4oKoJZBck1BK7OVQz5vvoapPT0soy2HUlAGksHVKk+tgXooTIgpoTNFBh3qWcLDBRm0gXpf0DC6AG1x751CIzsXuuQIc+4HkT6+wpI+qMc2IlhLH65qnmOpDEloyTD8iMxUCAOR7KHieWFzoEIyvMMbZIe+VUlpXfgLEQQSC4UiS0e8IGcUkukYhWivhj8SYQpSsUkuBHtyaDMh0bAHYzoutBFgFQOhBmFlZAV+FqI0I0kRFN8b8MnTL8GhuipcwHULCZGteeMuBLmUSuZKCrobMuyTAGNgudAwbp4ZBKV2An2vgQCkP7c8CSWPCCMJkAZsEpSR4SEmtPxeFH9xVxUlQrZyXSX2fZrrOMjPUy0EkTzxP2Hf51/pmOjoUkAW58Azm30mBGRRgRsbmU8oBRh/ghurgbkghIrxcS4AU6GR43Vr6QccgsMPgvRlnJR9NPlOvPgIukvaWcRFBo4NbrelDLLWUteximSHPiCLnrF5MFhQgVpLEHnLoUOuBOhhL4rS5rGdR+K4BX/gAjmN4Hz0h1sGzBJOYS/DXKX0kt75lwrpQtvyvLKzZ82P7W3sYoGed/sX4SB0wXmeWXBYDBbbqVjGuRfnVtCfdN7ZqbeUGLLysMu44fO8ZM1a2bnnZJHefgrOnpKTqijHgjGMyQGm2/1V3CNjZUm/Caih36ECEh5cf94UARq/0qsHMcRQ3CmMzLGmoDYaCAKpRVramKPXKPAhTIfHuvQlPzU2rao5TV4ZxzX0tdPUyerwT8w4+0lOJA00rUbkb/LCCCArU0qoqQ29xb3JZUER3lXCRVAMr1H8Y3cqjUA8O5t0uT1FeDbK1hfGj6Mp/LU2oWcrOGYm80WJEYdZjD53n/YP8AHWWraiRS1JNLkmj19Z1pHxajFglas1oZZcX3uQLxxMQElWVqdlonUQEUE6AiO7HHHcc8WY4hlq98pEObaSJnoLSHBaJeOIJ4U/uSfNLiNNCE+CIfUpXoctCHIScgQRecKkEcCTDElHh+ZEsPA5C47fsHqzchqYIVD6FAVQ8jvXJdkPqt16p0kFutBv6MIFVERHRIPYJUGeFT16oR3UOQlRSAJLFU6hdDQ/jeV1/zktLimBiGpD/pcLVBd651j3uqUWPnSHyuepYzxavEBdbXSnSGjFkQRYbc4H35htYKKz+NK4OMF0WScqGdFaN+P9gEUMFEx1X0yNVW5SFZAk0bQIeB4abUWe9NavQpZOn+6UNbNhVfoq9C0JKNnMgp/R7PkSYvaJb4QpuPNLNF8eKfYRtJFNsrVTgvkyGPimhRFxa8yCOelmAlqAXQ6hhMGDpkFYogVxKsY5BhsHNNDFcUgDDA+xBB1XDVfgEQEn2udbXLk+AJazVIfksFoYRwQBsbUGJRR4FTtMmoZGcixU2gQcX6C7qva7NzU4wt0+tlcndvNa+g4NiynKZC5QEPb9PsYErJERiy4Pw81hnQ91W27DqGzp2dfhY8nz9/jnb6J59+hg9mrGxsjL1Ix3DtEydPDg+NrKxy6DwH3mbknzQHQ+Gr/n3wYXUHUwRgoi98K+78KElCNJ9WhS9gSEQpkFy+9KV8FbFfhgZYcom4yoMK+UsI/oFHpArVeQvLX8eRYq8FrjBJ7CZdmp1jZK9vqB/psTSF+mOFKkodiZKiSpb0fFmCKbk6OgshFbiG/g/jd5+/1Mo1agms00hlMCkWstjzuLcIyUVDSIfhY3ux1DuP6SgqiESUGxU71iTmoq6cZOSHUJwXyNlvMjI0zHE0dHXx6CWnlIWXhFxr7nE7pRGqKYxfKAVWwMiU0FCSdaYso4IHs0PGDLnx4p6gMAsYoRsITHqXoCwJyVjEJq4rRvCYBjWwOlagyThdzFRQHUQS1anJ7au+ij4hi9hFfBfEgB7Lj2aSAP0jCqxpwoOYbqGuoCIrQOYSnSRex8Ez/Y8C1iCzkAkywQuUaU0KwZSOHSDKKPg17HbJ6AaYtYPiATO+ZnZInbQ8KB+zopL4HZKkOGT72xAOOmAyD7n+OhSeQ3rN26Qpfh5bKlBkHA+4EFR+iG3NNmRWIjCFzUJXtqKLSbr1ykG77/BMa0B3xSXKFCwkg5iBVVovDonwWPWuFCx8gRRyQGudN3/bChU6MFYMemFqoUKpLERS5TsPfFxPAhTXPLX9GStTnnIt/ZVSUakyqBI7VcCSJ6QAXoWCs+RGkePSILj28Ct/wYNrLI8Z4JI9WnNVDNdgUBsMPELq0MkwYsve5Ivns3PTRJOKgA4FBOr8hS36vkyiyGD8Pm0IwGJEbIeXJGCbnp45eXKCHcbj4y8ePOCFhpuMRHMY5KWrV773/vfYkru0vILnJkQXGzm2IMyvyjHZkvkrArKxPOx2u0JRjbatF1p55JjVLpvumeFmAjgaiW7UQh0MsqkOdJZJQsOO/IyoAZYsYLeernbxB/V7iL0inEYOa3Ko4lIRcq1SaJN4gfby1Ay7wXvbW9d2t5Y5qZTRkv4+KoB1sp6BiagSqReYph16eKl0BbFgVDWHDUvEy5SU+H9Y33ChRvuJ3WMSV/X2nFQMNGdRIUK3Y5aBzGITkbidxsznMa7LsDWVLS37gq0mARFFXEYjVmoyo0tRYo0tKo1ZA0anpRVl9FPAavATcE1bEhEbeyVlCUnFlw2pEhkOqEqUDqnMuh5KEhQDXKGj4pfMzCHlWUuQ34JLayblQue/YDbGoDLwA+/adrmq0pbcTWPGga2+SsJajOZXxNLAd6LJMzygmMGZG54jGWH1slUKs+eQspxez2iqAnJPV8ylFFbkUC7425KH1tUnBAx8RtGgQEAowfo7hWkjpZIIDastz4LUO2GxQwLJFXGxvVyJnA+R8X4kJ5K+oi4PQsFcLVdWkJXgavxXADImFWFB2kRSYpSJntAq2YZpb2WRgeO1LoIqTQcUjwJo7uykXsJq+lvyQ0IzD26BPWuitLwlA4TkEkHITS7My2T1OxhSSm7IywJrtaEgDWBoDHy+Cm/IslBbMPmkzjUXZkohpN9PeRFKjAiV3EEBCdvEQDvUwmKaJGW4w/jGAIVkS3OYb+LBWUP7/+fuv9skW5L7TDBlyNS65NUCLQCQWAzJZ//aL7HzJXdmPsHu8uGQs7tDPiTYILrRV5eu1DIyIjJS7Pv+/ERkZFbd291AAyTglXXiHBfm5mbmZq59PJbvARnuDJsUtANKfKgHPhXJko4AfkOuSOXEFRNG2FEqLZGLzc4LxjgxgW/Hl9uoAOUMU2SQCRLwJx3Lvia4P5h1V5zywTD14sIC5753zjgSo8+5WhyqxYDY+jo7m1ZZDhoULIwYhDD5fc+jipkfykK+IzqAKl/UpTQMUhobWvbdKRlNFo/3A3gykTy+jMNDqCbY1wGQoqpCKxtKhWg8x2JX7wXbMf9/2q/jZaRoFvxHClRRjh9iDMlIJTre3Z/s9WcmpvsHx1ONmTkuxcIMuCDIFXpFmwQmadRUpuaYJ45/urlpt1rRw2ZZ8h0CNofi8yPo/FPyLmJNgTLeyAgN+4ca7MNFm1AMmrYIHBNtqMbSkaDfS+eFdQiDC0wvddE2Ig4jEFCKcbolmtYi1o4iI81UD8+Ym6o1aszv4rQbxQCH9Op//lWVKFWJEWYqttRWAeLuUbb4kPs9//IpU+McdH5vDNmYihfIQilp/NGJ0O2f47GYJJSL+sWy3Tre72RhvuPhtzHL21DnCiY42i7hnVYLZm2UUgrGgae2CJeMim3SEgFIUpl5qEhifP1X1jqTXrjSqIJU3ocIkVJGJ71RUgrboChYYVbx8psSjYhd2WAjlFQACV2GlLAHHIQrNgCjYMGPwlDYXZpdFB58M74CBqUkZsdbKTPRDQ8rLTfnXzNZcoMoRRCvOTLGUpQqKz4WJKsEEVDKwgZzBkKBWCYtbCrYRByWxvKVZloSmmcIph6HNdA7gygYL9syxpYTREmvMboJ2qHsfZq1McakzowodcwCE9w4UCJmiUyoEWKhWRwEAPIjAkSiflHJrGaKjMyUnyVrolnSQiF+rWIjmPdeSoEcs/LWXlBjnlWzDWgyAoYSzbMCnxyqciiSnBKaqm4HmoVyBmcdE1iTUUGeaDaKeLIpnTkCT1wDeXK2RGR0eLT3X391trW1NddmkWabpZb0hh8+eggmR0fHzWablgSgIA5gMdz4i5JEtsjjriqpmRthrLAVNUzLXINo0p4lkoUpGJLWQ7IYb1JaEKZCxYCXBnIVMiBtNB3oSJvw1tncHGIyJFC+g8kwJHiXj/FIJeUIwjDJKMoI8i2c/45vBT1oFPwqZCGXKPGARkGOJ41gtnOgzTEJF5zPenPNsLOfGJCjk1abBR0zjVbj4nqiw6kOV625pUWtB0MdGfxEEmjmsCmwLNCBN2cnJ/XcJglF+EPE+E0nIqJg3ZXxCSS40K08g9P7HkNqE1YQvx9pLIJBIzbdj/fH+6YMRZpEKJLMJSGNZpsF+rSrXQRZbWqH1iWqv+gkT/jPbQ3IckE76lpC5ROVZQn47yC1Mqs2Yg5oYWmBo7Xm5+eXFpcfbD04ODqCGPLUAQsrkuYgFiVw5K10sI6rjInA00lIQgRfQnkhis4YJNe/8rSqRi/5bTSfwMSIuppntt51VBJ46UNUvBQRoQWkaSiPTWlEwL5mhNCBw5hKh06CTUALvjC4ggEs3kTDclTZi5ThwTdBmkGsJuvfHIMkw9iSJADblCbJox6CsAZE1YncEo1eB9/mocFBxRb7wjuqDwCg6uqhcEPEoUAKS1KmU0GL1pEYhF9GK2uNJHpKL0oWDKz5JUe9wfTKBgDGRK6EJRZfhG+qRVilzGGYSYIAPXjVX2ywxCp/+RGKGQSW9kaHLdWvFC8i4lIpAiArhhWkYkhKogpe0A4RpKwsp86z0id9oEtOqhZwMhBDkgaa2OtUO0pt2pX6xQyrWywJoeCDBU0y8ZZuRKJ0BUJyFCYveQ/Jwy9FIa74JzdFgcw0CdJFVQNE8ULXaNiUSOProbDCQr/jJKY46IDGEyTzwjvCbd0SXYqfkWGMU53VUto53TBm0gOh+vWHIHJn73+3y+YimjIuaRa0uYhnSMTvFCPJSyvLXCVqS3ty+vJisLPzliMvOA0jTGesjOE0V7Jzvt7iwhJtfIpwxoKu8/OVy8uDvX3Ied7plKYfS80ZXmM+2DGxXPCC1pEJEoRGgPP0QUKyyJrKVcVHpElLDQP5Uq8pPpEsrXi7AoviQzT+iML2KbmakgsPR1HdLX/FQhgLK9VJKgCcEXSJWV7zMQoY+lW/Jd6PhSbS7xHlHtB/rE9IXDochf4Oz0E0dQ70EAms7+C8N+h0mdPpd7snZ6fTtemNra12qz3POtvrg/7Jyc75aavXqS+0L24Gs80aTT9EYfvlq95JZ77Rml+YZ35pbnV5suHBZM167Wq2dnJ0zLxGo96ANVDftTo4qE++KA4xGFF09GKUfxJOoVKLQlSqOUQVaxRUs8HmI+omdcj2MRJItcW5yibSTRVW1+B9Q1cYCmk4Ak3a8G5kSKXGoO6jO2x3Ut+Xl5fZvzS/oPXlPjI+qSOBRnS7P/aGh460mHaUGRqPccBUD7NJbQquWmJ4kXlc62jQMDm+iRmsUsBSVnko90hNnVOIAgezWEbBTRqf4FBK5HcMZehDGjSZXLecKltVOmVFHOJzm1zaCi8A+IlLIqETJiDDdaYFSDFJ2jHLq7XXBqfaA0p8BSdh1EVaFp6UysCSs7qa4YaoCc2hCscYYYzii1HWLou59oL1pnIV/OHisIdNJsnTpAUzAJFW2omDFBB5jWcoSqh5BZUgQjIxjQFO1uKII1OfUswBEwoS7+oRlETSSElALhbb6Jptx5OVO0+QYI8JAFDoxABMeo3RtiBC3qbDZCuJvEipOOE5iq0hgbx0BJl28aByy1yi8FvIZWK0M32ysp8UwNQSxd6yAZIEIGcyhU86AwaDBPAKVFWM4RdFMAZ0izPT0Yu0tSU17I8SIKP5GeKjT6L7GKeqfFH+E3ks71HkgoaUJBPGhFm8z3Y17inQuMoTIfh3B19kwlnUjJlrOx2c4K9EElnguwVAOrNy0A4lmmNrc2u22UZpNmdr7PT96qvfsm0J1l0MtP1p1HneXr93MT1bN2Gz3WU/I8uSz86756/Pez04DCb2pFmLctMDPnRYnlkxR+oEP0ituFfCI9p5xWvMyQwdqUI2ix9nETizhY1uUowvYeIUbkMicu4rY3Nmz6bEdAZyzD5KYxjf2FXSAuCf4VNqSF2HLy5OzykwB0N49AoHilt+lImEs4kHf5lQ6LMo95rbLdDdCAeBC4sLOxffnx6fztRnu5f9uaulq5kpNqhSTxoz04vN9vT5xTTHkZ+edy4GzA1zMR7VHdnjmNLe2TkLuJqr656EbLtsQJeA/bEzzTqH1oKaOzn+R6K64nbXjaTrrvf4FyVItcQEXl52zs4brSbFh/I0PRk2oP3KjoODw/1e32MpqY+eQDA52c5xV1hnCFKNmMEmCGIdhVFWD6JJoKgWvtg/guMaFdu1s7OtJg2kuV5OzAIhI47IaTlSd6xafPBuZdHXv6JIAJypa3wzREiWhQCmvu9Me8+hQ/uDvuMlxaAgULhkEGRUfSWJhLUU+c6L7wZWEUq08WfBZOgToMMPfqtvjIMtAciUqq8JnvHcIzvZt0kkCzF5+pfuBe0jVqcHB0IhCCkTR+KILb8l/limBVutiexVgQkusUPRqDVNsbUqON5JXLyqckVTvScYiGQ+dGounFngLf7+x4eXotwTWKVIqEF8E8ksMIHJsLK/rNxGvhiYjVUEgntmQXtqokm7sdFAOsksOUqNEKHYYJ4e+IK9STdOIFhzFlIzkK0aIdUY3iKNAxUHrrFDs1Wwc+WywsA7Ja3KAQLAD/oFgE9cIfL4C++Wd+jMihYoa/A4PQ5u0IucZHbbTQjJrVp9bZGGriQvT+AXrIaBtznGB1qaGYkBGBbzQ8tCBkGaFOUW8hCIOxYQEwIK3Vg/TPNCUmnutYFII2/gzjsVPyMtDFAD2ClWZnYhyK9//de7+9vM9WZOHeKY9oJhHrrEN1NcC9jruRTr6PIYEgyY6Ef8pzku45JN5IAFmbIilAGPmRrcQNuQtbnHgV6KNvpU81g6sgGUqiESNWKwn5jVWboOJpU0US62RXGFKYoKpXHOGxjECnkrfhVKyaYhpf5Z/lJARmOgJvcAXHTO95+/gidLq6vzK6u1uSZaHwMLKaBMjONghpUl7hrnYFxaxrRz6VFNeuTh7MzmgweLiwscMDvVrPVuLvtn5zdzS71ul+V5HMZ9TfvrYtDkBQEjpSSfYI0u11Hvv90+uLghiEsJHD3xINWrtQcPWiv1PhXXiDLhnwojkK8xUbnFurxRISgeh2ApdZ6mZOeITpgt0X4fT9PecMkYl/U2OS6BtYqaUvsJcILugWIKSyKrduD40BzDKE/Upw3t7jvqOxWZueVc432GFiSOVZrMgp1f/JlZ5RR0QetppbfLmrjxTCNeI2RFUZWMJx2C+JFfARfQAT6MJTZmwP/ko3+gxjRpIPizgJhPLajhQ5TLVz6VxVu4gWjMoXPfI+mMgjbjN8IbkpPtEGpiF3SGCf0VWkUTUxeFg94JIuFBsLqTJKVltJK0JAFGyo46Mr0lihMyWBmONoqMB4r+8S25h9kUU1fekyzfRtPNuEQnVCCe1UrEjB0MbESUeKNnRMcv4pjEDPnnF8hCcYQFnTozyRoClHE5KAow9lO5S4pnsBcCnjYxQiOe6FPZlaGZjITQlUVfeGQJzsjhhCnjFKX8URv4Ewv95bdcv494MmKlmPq6sg3JutCngDSOOI3oBa5DSuEJGuQBwcDRAFgaaAWEoXKkAlV+iFUoZvx7YRVrxhMookTDkhVOW6Xp2wTyHbj5ICb4MlTBwDxRUn/hpyKbopVIYZFLRWZ6nJN1er67f0g/Zmlh6emjJw8ebD394NFsffKv/uo/c7Mh1Z7JAlCgYN4ZXmu255fYhdTrX7x+u9M9O6elzzTh4hIDZc1LjtPizGpp4Cw1zXb00ebMVq3ZQvXwJ8cqPC0qH1A2RPChTJTgoWfYq4mFvgTSqOJJe4onLPVdQhdIqhiG6jHALNSq8lEYAFm4UTK+8zXM7Z/bLwbgstM7frN7fnDMVR50cy+7FxtPHtXajUGhWfaL98471/3uDPRExdNJna6x8pmbmenCthr1rZV1+DGYuOZoxfmZ6b3Dk6u57tVFj1shES/upkTa2cTGmL9nJ0ZOkTGCaGLvv35Du8zmEtOeVwOk93RqBqmtryxe191yOOTZP1XKRyZpfNp+pRfRbrdpGtsrs2XsiB9H0RGE/DGIRIW02l7fdC+6kIg7e5XzdC2sBGoYQeHH9gV+bYWyXIsltR5+bv1H2/GkaWWY62jQnlO0ezQHdgZJmvcAKXU9SsZqBVxBE6fSh36imkCN4KQ1/Pdx5jOCV9Wxn05n0bSTlDESQuxS0pKltVOIaiccb9rUyr0fKylFNHMHJNA8TZdDJ9TwZIZ30hGpAIrarMqJOkqg0VRSElcVpC9g06oZ5p7fELH4ABCGqtJlsQhogEkIJvlDyHHiZXl4JrGBOBhmrHEHQFx8CBH5JJsotyERF+CSTUb5MsktcNz3bLw7jmDNTFXu8maSDJoHP5oKbB9ZXlrmGruzozPHkidzXAuq2qFiF0wVpCVgUC+EigHTvlHSYbYi7RLdGBHSJ8OSa5Ex9Ti0oO6XwqGvvcWisMeIhWgpIHiq2YXOs4Aqn+XdzDLHTASozzsvuBRWROWovugUaQkYqwnmSmIi41g+nBRLMrwpaUkunqkRBWAiKjtV6G0qQdqhh1Z0M0nGJ7HNPvwTenF8Sysjm1z+kRn2UK6Fvz7tqIdUnq6mWZzp01g/PNzZ3n714vkvfv4zdv0+evQw8jn97NkPdKBps3OU9NwcE39zH37yxfLaBphwFOUJlw1z2mjN81UuLxdhjLNbk7bU+WZQs9/t7e/tXrTnMY3BgZoo4vmTEyAvTj5Dj1QEgvUhkjWlDLm7bsDeP5FNE3rmCTzFzdjVgDm1QPgGKLwjIplPQBfJkA//o7hS4h/D5l7oj+JNAMSnZjDV0z/vnR0cMRM+XW8itdedbu/gaPaqzb1XN+juSRflMQB1dnTOYeA1BypcXkGTjUnc7u5B82qid3xML4zVQFOnNdZuMAVy/Gp7mlkKGukYmyxHZ7qDZc+0dqtLQq4HXg3EDUHXN+zYpvfXPTtDQ7LbHLN9vL83x8hVuzndoDU+wxgmvRd1x93yvcOX++UtAjMiFp+lIhSfxOZxF+goduRq7Os9r/fgvyfG0As9hOMiBWpS6rwSqeh51HO71qwPLi+o8IwuoeVIxNG8EId6IcIqcYdEHdsp98Zhel0uqk1gCTpNbvq7xLQkTmxSsWnGzi4uLSLTXOpgzFIZbl8ouNJNIksRWmC6R3/xSLpCH6OLuMiIOn+VGjQcGPgQFIjGjeqgyAAHaQBhw03+uxyRxcfcXLOECnNRFrVWZWlic+DPjhLZpciGpBb7UkUiTskaaiS6zTu0jfodDVMAJXqJyROXckkTxLJE4bVwBBPjIANNJcdBnUdD5di+4f7XFN6npiSpY3pBqtJi+AdgMgkbKU/JMl5iLXnknSUPQUtIVBNRhwj6UqWkdtJupcriwWwhVoSGAZuIWGDBNhBsQIoZITNR0XB+lvQKEdmaKBnannNapP7k0YfL84t/89d/4zYwO8b2i5UqO0bYYKbQk8LEhd4204AKuPm5OdYjdHv0rmQkeTHsY08r+hoZSBuBooUyFCBIiqiVc4LzkBm7Ru5JScmCqHPDAEeYPEp0zIGQeUiviup+5z3w/ACMkCkCHIgSYZQbeP4TrJLrvHK5V1Ew/I/wRnBLgwUtRulLJsbQJTnEQTPJuIpN2DQi27yiXPmHxEAcVVWhVUnN15UL+bSBrniiyzjDQWRBW8EtTV5NOLSDmdxqwBuUn5psNbnjaIEO5uvXrxh5/vTTTx9sPZz9SzqTsy9fvSTWzEyDwYK5hcW5+QWG2QGC3kEt9BsN7h7mSEu2JJEtBp1xbFbRMv4Gkhxe+eYt28lcyenpKymhSCOLVXELemBXyl78CzkoG54cgIv4MdRPU4GdHBY1zbQESjGVuDIRbvKNPFEPSILQ6q1L8UMlYpoGNyJa9T3ulwjlEczGvv/gV7MHQ8vyXkfoEJV3wkvad7zvgBpBRpgoOpWVw/17HAA+uOSEM+jGnCPzwYfbuzfHB2sPN2sLc9AIvdO76A2uLlhfwNw69Yt7vq/7g5Od/bffPeMW6Pm59vL6Kkc/nB8enh53aGIub22sP344OVtjoIN7xWiQghhyyH52JV6Rm+Zin0Gvj3VvM8FUqzU7rcPdfSYuMfbMXJzt7HGY09Lm+uxc7TKcKKwcL+CIFpR9KBW34fjEU7UyIiwv1XsYTeygZqp3iYsuvAX3vgjjoUIYiw55rcFKlcqaAXk6qRSTzhQkIJTZNWQObcCkO0eqmzsz4DAgUscDm3p8wgrzNpWIgrDfMoOosXUiRs1HVNSIWXxChWbOLRoJ+zs126g3Nza2mAF6+eKlrVPFSrZHawU7eBEXXaQ51eChfFJHeCnUIwoRoikcwyVnEkMZC4IjEIwwBED2TzIZ37BJ1oIUbWfO+Ik2f8YoDvJYIYMc+fEnMF8STpfGBA7UM0BCZLpjPNH1zIdQcyuHHxJVUuQFf9OB9NQ0+2hsrNg7QzlgC0JJk0gM+hiUR+OhKrT5IQF8ipY5QjUmgDGzaAmcahP80Bkilpmw7PqV+V4Y7IJZucKQsIyWYsCh/MhgCpXC21XIhI6ZiYlhFtSkYROiQT7IfDF/Ef4hXchb5rC0mgJgPZAslj5O1MmMkcwUPp1F4AZ4HuaiI5LFDRqhkrCggVaWzNk/OMvN78uLS1yezAIC8DQroiRLAADfjwiK8OSLM3qAJDnB5iLhIGIsD5MkrvhWz+KZ10KKIcTQKKkqlsYjmZJTCEg+YGJWcSVyZFm+KbYy8YoJMQgqcZldTktWVMjatFVBgAcYeo2OqJM4LJKfY858hkjgTUYJJCdxvo1IOaqv6gfu+4d3uJlQMSZVcBcYsB0YoN9pFUKc+KW5TEeHjFKBSWwK5JaFV/XltfWf/eKXc3MLlOK3X339H/+//5/jw+PPPv34408+efvmzW9+85vPPvtsZWXlL/7yLxdXlr/++lt2Pjx5+vSzTz+bm1+ardWRxIX2HAdsYbPJFFZBGVZkHR0dcnTl0tI816UdHx8cHh5wgfDnn3/BFUZHR6fBDTwouKQoxUvdFN1Cg3jyKBy3ZEoWeoT2P/udKpLcUgsPapL7jyw9O4B14SfcQUJGLBgCTCW8Tf/P6w2N1j3mjsn9ie6Fyob6zMRBFp9jcTma9M3Ll+uPH7XYUMQauil2l9adqqCtRE+XVWwcVkr17A2wrv3TTh/DOTV5enTU507om8le82RycwOC9bsdktDUohlo41nR4lyXiw5X+lzfNBfa3B+NpNUZNFle6F0NdrZ3l+fmZROCcnm1Pxg0V5faK8usAhzj9O/mRKkmPIsbJeCzvKs37jpDhqElpIiT3vfj3k35ni/y0SBRWgSL+ViOdEVAWXKVxiX6QueuAZo1N1M9Fpefn5eFLG6hhgsTk+w40LhmYg6RR18zWxwBV9Gz/50sXN8PUVPhK/RVCXjQBLVVww0QmCq7AVURquIXlAERhmSq1bqmWo3VIzwxrR4l7jtP01YuhFORFd1MyiSrDHxAqfBRKsIFv+LIUbtpAfAmn/JnzkTwXCDKnBFjmV9c9TL6Hvrf/1V/WpJJTopILqplgKIboI6VPWplVDgAgp4YmnP546fClOKou+zGcjKHbBVhC1kBgNcEm2OGFXnyHpAgljh5BDpDpGUEzp5nXMlFjWXmlQvwZECwmsrJtDuOgwm5ysq+AxApEpGpNVoAU0QC78S//1FUZLK0LKJPARjy4vhgZku4mPbiQrusQNI4kzjGkjq48gSGOOIbkz7BOUtQimhIM6NXWj6JSBfzHvJJUvzGCn0fRSmi41cNkleA5+VOMjwRFgZgCeIdFxwrcoqGeFCP3DIvdvBaqapKQQQxTXbDZxEFEcBiQc4wsgJYJYziTE5SD5EglsZaAWOozwa45YwjGAuDRJK5K6SyZAPIFQakCGLmhRkOC0nHSNb8wtLDxx88+eApHJmZbf67f/vvOmc7jdrs4vzchx9+uLu7+80333z40Ucr66s/+8XPZuuN77/7fml5hXVabHmko0Oujv+TpyuPudz0dGVlbWF+4c2r1y+eP//8s09bjcbfvH7VOT/95Z/+3/71v/mfnj97ub9/ZKmdUrYEECnNTZCibFBvWKrwhVaW5SMBRQ8BMmDgdDQJh6U33Ea0DWE2IOH6dLXxA9qw9VO4Vp7GL61OgRc2jWgfr3/qD1Tb0e7e+d7h7NUES6XWNtfaSwvoFq3FWYcWEquUOWkS9jVqjZv567MLJoUn2I9/cXnBoWa4M9ZltJsLM/P03GabDXYU0ZldaLd73QuGTNBwXF15enTCbq/FjXUkgS6y6mLi5vj4mOrETBODHcioqgJODa4WVpexuicHx/ONJgMqtBOn2WrBDfbqGIdgh9VlyJEhD2DW8NXfe5+joOIvZ6u5sCqk+CtVqdqj+OWlSCDvI1m6F+FHPsUJOTvmHoaDA4584SRX9XJGAigxFdYbxjztmVavWww8iJ6CapbSEyV2vRGtWoQ0asMmM9QCZSnqK1Jvkam2jCtAT/5o6zK1NkNfj7OPb9ErCnf4DX5UCPTA0OP2d6i97lD1Nri8qXLkSHIHNJKCgFgNLQIo+dAiUOKqBr1DQWJLJmGIXBR5ge6zsKPiWhWrgnQbafhmvR0641I2ftJFVLVCKTunjBGo4UxE1qqLlLHie1DhEU0dpMlcCgMhChoZTKlN/64TmodAeN60/CUDZBtmXjrxKLUBI3hlQLJY9gAEVTWuNg4vC16eRuM9ntVzLFu6cKyisHGF8Tc3lbjLXkyvKRUW0MaS/NgrcYwGBoyFotxJi15mlqhYngCChNVQUqDoVzIgH+lkvuhYUPDcL6k4LIwrjCywRVBkdRWvqs/il4DhI4UoyMsn3pBvOMerBSzAjTxM+64oj+IgXAUh6tTIE0EgdfCQyMWR0+i9ZI6/9daAKs7Yj1TXPA0daR3Dgr/UhslpXp1JyQ1LEEbMzVFZkmYSo6olOUKZVcGIWoEG622AcqkKQBBgbgamR7u6ts6ANGf5MB/y9vVbJm7X1tZg0/fffYeu2dha+9mXX26srXNvKQaVpjfHUtO5Ru5Zs8PgM7uCWXIyP8dpAYuff/r5M5J99x2zYhAB645FpPsLtOfPn335xTztgCgi0UaMbU/4UpE7bxSnIkrx19PKUxE5Q2aFYfIPF/K675l3qRqfMIFcpJuRkl95qZKNeDz0/efwS1VFXOxUTbbnliZmpwc3Vyy1Y6ku5nVleZnJ+UHvklHEGUaI59pLtVrv+HT/FVt7e1tscFmY7y0vHS7MT11fckdNfWF+0u29gxkmcNpXGw+25peWdvf2SE5rGpawQZUOIN0H6yLC5TGlJ/0a572jYqy1rJRmBnRxdfns+JQm29LyMqLC5OjK+tqgNt1VcnHlmero560w+HXXIQnFI0JRveNTKm/0vdBG0e6mvvNVcr3j9Z6PcUiqI7o5e3s7XEHIzZ7crDC3tkbTMN0DB4HQvmBC/jxt9NJboF45k+4sefCimlbKgF9cZTkME20EmHmDWqNJ9Rz0GacHCIAc/uFPBFFTcFeViGDb9r7FWg0dfU0ORtJ8akFDp8BPJSpIDil5m/x9b4XOt1SwYyavS1wAF+35vqQ/7hf0RhBU8T8S17IR2XIZw0daJ/xSbuyhA3o0WRhkZYwscVF+lJnBZc4/Nhr/49JRUjlIZcvjf0Hnlc4mfHH0cpQg2RktCcwGS+9nASdkrS+O/NIt0pK7c0dnakGW6OWZMogkLSQGvVmXB6jKs0DlyZCVc6LyFwjo6YzDF71GXLE266g5Xob4jNKPvwzxUKqS7zVnynJkHXGKNh3an4JfSQpMXkoZeOHD0gQb/aE1tGLILOM3Shewo3WJUrnCpQKoAgoYUK0KawZ8pSxgUnDhEyTxqwhYSgbERC6eWmgKA9PIjO4YFHaGhqkfEWUw1jFqHF+2imyu8DS7cScQDCnRRhiNBSdQcBRWb9sf7L0bTLO7agbRV2bkdErEi1FTGO2uJ0raUhMBzTYcBmfDERXK4g6+wXWdzZlWTgemqO5cD4yWxHxhL5eWlljfgd3l6GeSPXv2jCvUHjx6NLcw1z9gJKJ3dtzZfruNLvj8yy+XV1a4GYku78ryCmKP8mXvMOczYGsZfGafEpcecmv5s2cv/vN//qtXr15/+smXEjgkDVVSBnGriFxoUsqNzFSkkBAqFBw+/ty6FF86ckaEm7nt6NsrLgpCeTDu/VS36f/ZvElKRnSywXSOG/G4c0xrgfXtsmWX/i7vdq+0zg4dIZswnz4VDaXZk7nzwyNbxpNTqysrLzObsLayMr+0cjU7tdpw1Opo/7A9P9+sN89Oz9jAwGVYTG+wbJrJCKsQ1rU2wzq+o4ODZc4snWufn3WOjw4ZhG6tr2E3mnNt7+FG8djIe9NeXQUECFqBC79vDck9Ft9nUaTifXEUjsLv+0n+zt+ArCQvKgvwb968/s2vf7O3twfxEHvWPxOH1VU2bDmonr4Fqyr4r5gzRsfsDA5rYEX0jyHqiLOiLL7W0CKm0NFKCh9p2UDeianT47P0hIsNtmWPAwQAVfvl++6zAhXgkXpi3UbEJ7mSJvXibtoSU0wrf2Jr4YsbpYlWAaYmwGJarDu5VKnf+SESvEYDQRTzMtUwKyOPvycxVEsFLo8CD+VmywZn3kKpDhkAixEA36S1oingEiRtEqXE88sZeEjMmiUtMLCFd+sSkeJHFdm4553Q4UPg8sLRivjybTifaR8BkW5SbLS+ioSB5uFLQcak447VAy6qgMFVESiEFTcjLe7xzUKgND4YbwWapiAIFCgSRbkSQiyFlpwPlDdNJ1bSHh4eBRkwLbyzXFZDUde00K/lSjwFtZylatFUq0xT0fNDxxLNJU6MX9kvROIjABbIEQBlOIrY8inPobO0TUOFsjkahC/ZWxdoiPhSiRO0LlaTGKZMQXyzFESkFRT7Kg5kZTsAixc2u/n1gi4mIZYnyZESzkIdscXaZnF0wCFtYbiw9Q9WyTm8krAFVXoYBNv2ZJCZqFmwFzqQ0tk7/qSCd0YFSDFAGQ9xrbProp19UQOXZgGROSrBfCfhOKtgyRYD/HBz87jR4DiO5z88Yyfog42Nt3u7mO219XXGkJH8laXFvZ2d169fsrT18PBwd2eHuw4ZiGM14su3rzkkCyQ++fjj58+nX7183unccI8h1zk8f/bs4cNHc3OoFfisxEdoILaNFbDCyWWIH0GQQEUgePoK9x3n1JsPiqswJAYJct2WVQi+hwKSgPL4MI0/UrUwuXzxDI2ydmbk9Z6XwpuxAOv938sV3kTg/l5wqsSFDiGX5PFGWJbsMfTZ63EDqLO7E1dn5x7eMOtMpLeFIi3sQ0izkcV0rYUPP+qvnLz69vtnf/s1i0EH5+cYDsY56e2hnzhwj3Xyg/POzqtXJGemg7NIG/Pt5srSTatxGR1AvWAAhG4a/eKV9hyitt+/nF1YoktN8w7Wss/tbO+AgWsmdBgIp2G3cvOwvrxYMXmMDmGx37cvvFv35OPIE7aUdyQpzsoTmfB7WKF8p7Alxo893+HwnYhD7ape2Hm7/av/+qvXr1/T5V1fX6dDj7pE0bGkEXWFiKI4icYfgijdaely7lBwBwkVnUt3eBWl4I8YUKdxrCRSeknKGCQjR3SbC+KJxkO9FI2LtjJ5EW9hYbgrNaxOEoJjjNYaEw31TzJlAIqeIuPYPKlEiSWFFGk+JLKrgK2YpMQLf1A0XvYuo38NIBd6IKqbqnAUmEhWpiQhFY530qPlgrodCZSjqoyWF2s7yNRk/AEl+tUk4mKhkp5fuBNnDPwoTQEY/Wokvos2sYpb6BADvAIk6ACAIVRWa7nugWhmZgRQAOMymBzdPDQlzMgwt6bypjGlrXdcCYCkIoNSgZOrqGFFitWhmOgxuazlwYgxfyCviIOPDksjvkqCskJCpCZmCAtEzwnoM6xeJCvypeFMXQVXYptAoEAyEpAKyKDlY0iCkk3Qsk3hH+jzj5Y4/SpGLkUjMAt3pAJ+rksQbEJtGFvUxOQZxPwumSoZBMM0m4GyjP9BQvkRxxvG3riLCXxhB2aSI7QgpbczGS9OnEu91npRvEp0gpUxQnBzBKDNEeYMOFGZmezZmiUKGJiKRWZmS+mDPjbxUWvkCpsjMVWZkmUeI4+YHHAXZ3O766w2ZlLQDQYemGAFBbRmnsPFSEL5bEUUagmC8EhAcFYg3JWEicWXgnCdErNv2M4wEXDO9/ftO0qNoHHzcGtzvtV6/vLFix++33z46PGjx3v7+3wBuNvpcE7Sz/7kT1ZXVjvd7vHxUfe8Mzs/1+2evnzZ29/fOz05RaE/ffrgyy8/ffXqh++//+63v/7bP/+L/8u/+Tf/V9bf0R+SGxBGPFNuWgEZtPcT1FNsy80HheEXVhPZaiN+Cj0hhhOQMXdppINHlLGUvfgVqhIUsgjvn5+TJvxJEyiCtaQpVWP4mDoOffqnZ/VWE1FhoxmLk+vteYjVqnOl1AS39qBeoNrU4GpqcNk5Prs4Ov3u2+ecNTrHJOXUzNHBYWfQn2k32Y7Ksuqpq6mdZ6+xxMvr640pzsiihrn0VE2dOs1Cy9bqMou/jvb2TpmEnpyiH1ybmmmwhpGxm/AGpUPLujXf4uBGOaXQ/W6+xDrcZ10RkOJbsfh+FL/Ho41HHo97L06BNozAEBeaQSllSRWHxL1iuJ5rJzjobXmZ8TxeyIS5XibDmWdnfCnb0NFgkJYW4wR756PzhKcQK84orkomySub19OjNZsp6iZrJNmawYnbhKrAZKZ/VnLIxbuOJ+QjguHlmxeNTxwmI6edJb4JrTlKCNYZLYLSdWgTdVKsCUBESSf81DJf8DcCIHniOwrnBZeo5bU8q3JVQQUkiU0Xh0/F9DHeB/gwxtivuRYQY57jr8O6D2LapsQX3QiVeSZC0K+iVqkrmpVyJSImCeJgBTSM3hLEFjKMKMc+yTatuj1AdO0IJbPTAMFLV/9oyHSJkVh0GYA6zCo5lxjCC4VtCUQULKYg8J6pc6VWrXbIoS3XPXrmlIxQIjIlDLywoCpF+RGJ5AvHtQWVr+hhjfhPuciNNiMGmHkMRJYgaRNCiYntjnxaKf0jxEA/LVDgW7D4Si8zDCtRu/QKi0CbZaGz2giIwjQnK0P4IoBEAkJiay+1WBVWFFRBFBnTjhzJNXSorRoL4N3zl9Q+wJDK6fQM22A4LjIZkRzcscYjCOBbiWHe8CdXnKUSq+JCR7/xSQG14lhbWI8cKBqxRGQr58aRLAUn94KYddxGqkPMODLiCXSWjNzU2XTCcV3SB19EjcXMEAD8icDmE9Z0Lj7cWpyb+5vf/Pr5Dz+sdtc3Hjw4Oztj7Ihibm+/WV1dffLk0avXb49PT/FhDrjf7wAfFrMroNc7/+abr1ZX11AjCwsLa2tb//P//X9eXdv8//2f/wlKiR+dBXSabHFHKV0iORsHNf0LE6sGEYQIrymCUZAFCSF70CXAIHhIvQCRopXDv3CxQBhF++fxUhXNwkg1q9HEZLd/cXJ8TPMK2XMl3vUlrSQO94bATA2wHprjI5ca9WVM8OB6d2f7xXfPzo4OaZm22Yg2OdlcWGAehbP2GVPtcajooAazmDY+7/dXmvOIc31m5mT3AM+5teX66VxzdbGxwkzzLIPaDGdDesZO3nz/jEtIFxtNhr85MJrRb+aJORKke3zanp3tDXqbj7YWNtZv6rMD6siQRz/BlFLSUYQRN2GzEmEN0o1eyucf66nAIWkT169e0Qp9nkPpJ2hK0gOmZQvxgwZF5PCZazZV0+Wl7jHaJEFUJag7R66QRcHEKfC8YP3Q9d7y7gHR7fbcysoqowtMA7HZjykbRB4FjNwT3ULKZNNRW6nTWXAZOAp+oCVWlMOIZmCHs7FO69baVTnqWGANv3//X+k9Al8li8bKe7LzjZcS6M/wvfjkOcJkzG/8VRJZ9tt47wFiAsqrYUSz+CUmvPFOWUfeABnhYySh4qFKJwv+yllF2joUrpq6MhnqGAFXWODLpzngbDXRycUGp/dW7JXyYHAMGdmQlU7Uho5PtJlAlV59b8nHHDDtOw7+xlKKinPAaj1euG8aQdFmxAGyglugy3ubUyYIBiQGP+33tHqWhMhuveWR5eAufQRhZ5yHbyQXlzFk4IFfGZdx4Ng4xC+kppASQAtKMg2exbZIeJc2QYWg47a3trAgZ5PChoCUkgnkZGzIYj744h90xMhQYBb4dDIKSYhiYYkQAISWyllgAbWgwQtOIGOOyMWiQDXeeVSBBV44TIDUTPWlTEkPmCISSRNExVoUKLdFRyzyQY7lz3QAwUXSJDX1d7RnidoP2gHLGYSMTd10To4bSysMHT568ODo5OS7r79+9fo1C6kUANeS3LDXyM/+ZbfH3DQjbPSiXGdHRl6bcXGBFuYd68u04p//+Z+zt+nt9h59M6w1OHKWLHBo+ONWl1cApQyUSfHQCcQlBz+VYPChkx6WDcpaNWGVZUvDE1IjbTQCaGsMi2uRTZPve/Q33T9xJylw9JoYVIxCRwzscTYaV3Bm0KMdjeZnIpazndkZQz8U9riK4Kxz8vrt3s7e999+f356Ri1YXlrkvGi4wLwxGw4Ya5ybb9dubuqrKyybbE7esNhoon+JealPT7K1hh2sE73e0etT5hc4iWNhZZmRkpW1NVqKZzsH7BHhuABOCOf4aZZXX7AErH+x++LVXLt9xbLhRmOVg1yanMmlKHtRONI+xouqUo35lJJS3JHyITDybJVX9oeueA6/7vwWATD+TzoFcayqApsEpKJxybwvEgsOSBmXg2EmkTVqJyAJZTUiTU/W4XtzJqLpnJ2GV8kkVuqeakBotzkQSrUFZL3OyGOTwWMWuMECgPETTAmlf8dkpdYCMEWgEwQwCz+iX7A1HLrw5FGKa375G2VsUED4Axve7wjLHywpf4mmonlffFHBhXojOr83Zon4/ieK0WKQTn1r4cQcD/VvMK3yGSanTAyfWiDelCXDobHW156jXRj9xJpo+BHPOKp0f5D7KCALGzh5FKOgMZCDTuTYO9NJOtSknEs+kCbkMQy1BProJu2QA6tjzvBxJ07iQirS+xO0ZliDg+ossi6+iBiD0dGXtuOkx627/SBLvIVBCvQrM76cAstwo0jiRSERvftx1gABAABJREFUU2SX+alS8kAh45ANJCTzCDJwLIy9NgsUVQu6ZpAciE3zMJaVrp3JoHgICoVRBFIlRpb4dPFwJrx10lqm0ERA9SvjQsCO5+c2Xiku1LAWpeoQHye7iSU7BQJ5aPXSZ+BdAY0rP2OwqtcCAZgV35O3MCskBCybCzXy4xgHOckwhZCSGh/KDdMkkArPuL8tkoQgLyoOjsUomBMXBxA+iWijZFgibCORMWIXrNlBk0wcG+G8RzObq+g4Vh6FQmogsxMC0hMThlp36VVPT3KiaLNZp9VP2cG8yzlMvXPGnMma9aIvnz9nrrzZaroxmakNty11GK/DVHOuOyJRLi+iaNoAsyktylGTq5JjCm5rjSKkIkoSEMoPBLGapV1ZCigN/3u48NGMIfLvk78soVBxY/Xip5ISG9DF6LpjARb3+gh7s9Fg7qD58OHRm51Djp+kunE4eaPB9C8ko1KwRKt2M3X0evv7/d/QUYZBnz79AC4wH+cSAOYh2cBbm+50ud+527262pprPf7gMRuZ6LwevH7LSMX5wRGyc9HjjgF1zMOV1cPu+Q9/+1X/6Gz9X84fbu+dvNyutxqtpfZMYxYsuXDpjIMn9g+b07OL7TkEbnNrk1XQ3JdbtDhglLxhcaM3hx/D3xF9hh7V77sU/rGY9xL+9Oc4EMWxVBuGB1jaVpu9OT/H9D558oSGjvWISTxuHhsMOGYEyWS6h+lXyoOeowZhlRH7SLWSncqhqkU18019oWdSTCrUOD1ln3aXHYD0phkWiiaByEQHAyqtI1pJy7eyleLjkQiSkD+zxh83VgpeU4PIMtASHuUkZMH/iCswR89RLKHg+64jpwLPl+r13VjFJ9i+J/+SHXFSj0s+780sYMgF7Q0feFGhqpY1NzgohlLwGw/UMl+FRPpUxTYV/5OWdOVDwDSFGGcw8ZCugShaBEp+w0yb/gwAQIMPA/wbKimz0gXZ6sFnhaBw7juPC0dv4o06QAiYAgERBA1/drjhZRkrBghZtoqNTbMgxLRyesvepcMkEfbbPhaiSa5oW9QEigDNrdmjR6XR0wxLHUGNHMCBp+DiSsGAAPL6pKh8YkVYow8XoBjFkeTl7Ek6ymnfEJmtqz/88MPJ6QmdrfmlBTp6AoRZGgtztHMGPtQKNyV5xgp544BfsvYpdqM2uB+EXU9yJiYLTinihZmXbmqFnAJgmeKSDwHSLu0JfnE8ywtZWbR8AZqsi79SQRzEB1BphWGctD/4ih5x8TcKm8m5N5hVH0wdYYMJlH3EgvwcLAtwajUlpLi2ComvQr5sNjOELjUYDWOO7+LivHt0zmyWd0C6DA47fYVerqMXoG60CTxV95AzqiJ3JEyhOwylfOZ7Td+Xdj1nFLx+9eqrr776/E9+Nstt7h5hdqE00FRBGLJ/g5ljDhegOVARnUiFNCEd1WBIIikp/bS7ulCLckkoksP4SAsEkyQoGPyrqLxIXmOOfHgP5FCQt4TG8/2PYYS7ABJ3GHQn4bjn+PudSOZ764EC4eOdyGMxgvEUyypwrCnpX0D2DndXHR9edLkvcvHDDz9gEpGlgFa7/hUbi+a3NtiISqVg3Iae6OCs2zk4OtnbZ0PRZ19+ye06B7s7vfMzDvSDlSzGY6UGY6Ic3E5d50wO2lfXg5tn37843dv79MkTFnHBv+lpTzBtNGr1+fkPP/3kmx++33nxZvs3Xx3tHqzVmk+++KK2tjiYnvRojoODw9fbc4ucwjFxPugueidE+wB8zzsMrjUbbZdozbqUB3XgWJ5lHTI4AqB85z90UeDfQx+JURykw414jaefCQtkPdTSgVOSjL8XnzvPrP6jKiHkn3z6yeHx0Vfnv2H2ly4K5ELOrZXoPo7knJ9HAtEBRQ0jimjRy6PTQe26wU1QDkQXyXSSy3llOsnev4mSZMGcZ9Y6lknXCsZ65gFlNmZBz9gx2o7wcKNGmZMyjaQhokiQnAYwtY+KXZZqWpJQxKwiM/rgVT3Tpwt5JTWeEgl6qSSCgfWNyWK/RCRPfohTIloFs4DG6FYtMYkOsxJGEaCRR0mDDTEJQ9kCFyjpLarnVSwEKNfV2CTpGEEwOYpV8ok2XQVQZWpT4lcV3sxEHzBRouKimSJe5uGCHaZHe4Ix01Y6jI/2szDOaFGjbAlKXp3AwIYnNpknsVBunK/iVRAiBMk1NWRBbCAbheKEVuhhF1e43AEQok00kiQO3k7AS0BAA8fw/MMj/7wPGAVJ8cyGB29U5/Ikir0PlyMBHBEk82QiJpRXhoFr1UszEbsOSANAIrNxGbuLtVM+TOC+HcUsqUTJAssE/lAZfBsppfSn6H6LQgDJwEQDjGk3Z8spNdzpmgOhgqMAGSalG/bi5QuWN2w82Nx8+IDjArJ0RCJisdzpHgIBQD4lT7KVZIUCsh8EnclmiB4EDA3CUh4gGACpCWGwU5hwGKqFC6oiEtkjbnmXJZUDSnyTG6FVDEITlU+zsYcuaYVZiimSNLQz707WBKtXYD3DeshXoZEiKhf4Kq7gQTyggzTcEQh5wVfEkNJ1u5piOM7hnQw5o4NZpKPcs2e4Bh4MU7MQDTrNei83XFUNcRrlwfm+JEn1gA2ymyyur5g8ZmMw66/evNlhvnlucaHZmqMWkZfsQi+zcvrqCLKTBA/KCCdTdqlEPQHzgnbxHJJIpEfxUj6Gx13aY+MitCK+Kd9x454VhHfi/NE9hgz9UcA/HuEOjogWYxF0fI/3DjscCGzb84a16zSm3rx+883XX3/x8z9hQfLF0dHk6XmrNnvW6zWXF87Pzo+Oj2lD9WgZdTq1VvOzX/5sbWvjzctXJ73T7ukpCzSWl5eu+mxVmtnYekRXrnF2Che5+Ap1f350crR3OP3BRxuPHqBfuqdnx9yv152c7XdbSwsfPn168Pz1N7/61fTl5NKjh3T7piYWr7lzgFuZp6cP9g5YjF1niQBn2jQb3CT9/PVrVJBr89uTZ6ddjBh7lOeWTcLawsK0iIFywJ8VPjRAEn6cSkpLIe7opaJ15Z0vRGMoXSV0XLrG36u0+QEZ9H2j2fzFL37B+iiWYaJzSgQEjRqE3FIxabsy4kR1AGMkNx1chpR7rKhKtVCwia5GobtgBcY5tDShVrcjogf45cgr4LiB2EoflA1KCj5Tn0Mby5xEmi/eUFgu9uXispsB69jdEpXqVJ5aXHMhu0wClvohcaPRC0SJzWd8xPiWfGQbdRiUKjKav6RIJeWdsOIDMY2MihZfwBlCVPxBQUUrvgiC5eWTjLR/FlILiZlQkVYWsXibEaGij9qGyML1UC3oDwRgEwOVIjK8hV4FmVIKyafJYnrVLFHmybYIlyVNK8csTCVLJCel0NmwsdtRfB2EhrjkmvWFpDVK/vBHC6M02T6AJ0iZvKJPcONdqwcMcvKCsoIBpcGT0/48f4sIvEA1r+SwaXfTZ2U2WUgK/lsTqEHkjj7mj7xDHTPjBjPiSDu0pzbOstHLubpwCpmVCzxDJQPD4khjOAQqTmmlDDIqLkQHt4Kh5Ce5RYlp5/geAvzIE5sP2RgXtVcMsmn6GWif7/Jg/4AisN9mjhWhQqQu4EGorYpIeIVbsuBhhaExq824vjrNHllQgQSlyIAFR+Kp+ql9NovCP4CngTyE46/xUgjwKamGoYQYGJeSVO+BTNTUL8hPeWCX3dPL6watObgXF8FPxSGKo3okkFXA0rlRh3iyxSf/bOLEi6XdCLs+dJo4d/ni0dpqZ//ggobJ1ZWXZmCnYYdEp2gcxcORtOySaLCjjH4AZzuwFnRnZ/u//c1fc8YC4BmEY6SBzBjh7HS6JMEG/+Y3f3t4eIwKXlhe+uDDDxEctl04sYFiE+xkn6nC/sXiyhKqOGWxBApD2hyUAMyRp1Q6/PkXCSWGxHeehjjAGXKjUOU9zxGVS9i9z/ck+Af2EuXf21lU/m4mzo9Pd1+/qXPJ3VwborFLG+pwc/uvf/03Zyen60tLnVbr1ffPl5pzPYauZs6oyNwjuLO3Pzg5Y4iHm5EWHm/usVN70OeuqstzLjiyX0XruDU3X59rw+Xlep2tSBzbcby/e3Kwx8FYjCTNtGuz7fbB8Unn4mJlgeVc9cP9owdPH288fPjs8LecAtXZ3R68bT/ZXJykkTYzxWVK6F+Oj2635x1padZ2Dw6ZIf7w4084HoTDuTgtnAZBe3F+FgUx007xfoocfxC5fgwQQJCWEgrdRtEK8FEQ/viMOwafP/r4E5qMxdyOIlB1GNRxF+KlR6Cg+RBIErILmjqWuksjOOrGRjljCgwrXTK6Qw1Vk4iPgkwSiMbkPQuygEaViG6mGhiSuNZfIgbJCHz8U1kQDVSOdgK7xAf5xn6ZFFcVJu8kB5CKeVT4uy9VHbzrWb7QGyVUiMMIwv99nQ0W+51OJQU36RBrgXGk/PSHNJK0cljzSsst05byySzo8LljBk3InzfTaqi9YR6I0JEgYuXBr1RzaFONnNUpF0x3eXMDpEmcCmWj+gozNFpJBEqkh9HqoCIJhfT5MIFGsCAl3eEgVAUPgfHUqAYo6MTJAx3p/Yan2vI43gLPD6f6AAYiUIGXTORSNy+ZFeKybRsYEaiEU5U4q67JEUjuWEovkM5uXyFwDtFswBGiYnTZjUBnyVFomnwlxCqZIYUoWkoEbB4pCTH0UDShLU0WdwBX+Jb0CBBhcXigYkxHx4rR4KlrbgWgiSXTHL2RoQCDVRAADG37ZNDV1GRqQyHUj54Xj6HDoNqlZgqZhRikY+wU0wGriSl2gPcBGJmRqQjRSBmoDClBiVBBBCD0wL/CapjR7W+YcftZFRMOucRNoy67rcZAcE9ByU0eSh9roHOxAIBVOMbErIaGBjOFMSICMEWNgHRY4RgXuF72BwxpMp5pU++aSUSeSjpiaJ9VNcJsOl1Vj2WmBcZMGOcBeXjL5M23337D+Rtmec2aLG9kguycHb+xuTHJFeUs4rkcYIzfbr/ltAfmyvoD92CIwPTUwf4eBtsrG2xFFOmVbtAXDERYyVUifJbKYxn1SqnTIg4zIgqGhbfGGXcEJN2t3xi3bz3/R35DgN++fcsEQbvRRIk3mg3V7cQNpzfQrXRNO637wYATMw4PDrc++WBqoTUz11yn9bmzN+ic09hqLy4cXfW3Tw44xKx5OWF7qlY775zWZ1pIlRckZX0dvVJXbMBPaDw1eT7os1J6YXWtx0rpFqu0pga93uX1GaZ0ZXPjzdttIM+tLDeWFph1nvEILLpy3MbU6J12TlhBXa/NNxsMcKNXmRlFfjhYzeOKZidPOmfTR0dclzZVc+AEFz6HM4XxRUMoA/ed7P/DXaCa7L1CMg5vPCaVC9lGHDG2nEiJeDuzhkVg5IlmPZt3B5whpriqipHSsrHXGuGYX9EKKl587PHCKNvJvCrk2RxANHp+7ERSf0VWVSaxDDyFGIEPhsSN+fXhGw7VkGat2Y2c+Q4ph2fQo9zjhCvBpijeIps2RImf7HwkVQUsaQAigiRDv/BX2JEgdQufIwYZ1VFhrWfUpZU3Glrcw3OpQRzk2dH8oCKiKD3NgVLBnzigiBRJx7+hl568o8+cAeBHsMQy94QBAUWu4u/16VXQshSM5SGY6DxFNrqcL9hBBDxHuIuXatS+jSlNZxsgrQDtkLzMfJloAEe0NQqBPE5pM7JDRGbJgk/yGnakNMBxsJ9pD+1ommx0K/t9l3W4W5gJUwfXaSWz6HKS0xjIBhG0o8zUk1OH9Jbto4FBCsXpibxMzzbrEJxWDRqEQiJnCpkODBAs18orXpQn9BVT5ADsMZaUJLTMs+BYPY2OQGspED6mrjCutpQU8gBkZ55LQ+nGyxmbFvmfAQBGABhrdfDT1ihJRCeAfUmO1jmKZsEuGIiS/uIEqlYGXEqZNGIqO42h2CA3lX/1Y1wFByeFbRYYwwLbfgOBkvlYKilAkJBTLiZakXQqa6GtVt/Yw0zJt9QH0gVKoVtVpgqukuErIkNK4IIJRMFyc0wKq2QpZLNWp5ogYRbfceA0RDgImA2lPeYL6dyecxzuwf7+w0ePFhfnHz58XG80ucVhf3+nBxMmmGLp0xXe2nowt7BAn7nVnheaOiRsmLyhA90/73Ku0NHxAatanjx8lGpjFFAPXRBTuSW9cKG3uPO/FK7QC+RCaqIUukuEqvhVif85/TCSf3hyzOwADaCFlSUkyWqSc2CwB0zPUg9POa+K1Q+9Ls0mqjSVEcla3FidvFlV5qDk9FSru3C2f0SzkvPfsZXUkTpL6Tj8uVHnXAkuQTo770zP2b7+03/9l8+++fabl88/atQ+/Ojj5tl854QzpS9IyLzy9ps3i5vrX/7ln8/lMEuE9bTXOz3v0+Ctz84023OHhye9q57jLBMsf27uHR2wVpi1WhwTPcPZWrTV8Z+bm2JxBhyMcvtH4xcyQ14RGCvz6P0eAqMIzWabWXKG2VE3rIlQAK2WNu6tlnRDWImheiaA+sNPscdIrZ8++U84dYtXq4Jxx3SIMpzk+qZ+pgpndsbKSBgJrAy2i8of7AeksEadNlF4jwN4cSg0c/5DXJUw6FkLKxVjzmN/vwOiNEn7g+QlWTHbqdFyv1I71OmifCp8ZZKqUMKplGLHKXdYAC7aTB8hcFUykETJAYCEhDJlRkMJz3RQsFnmYSiwiaj2ljfoQ3kEdpZQvKKy0JX2R0q3j9yJkbIEhUrzY3USX2AADdxwT7gJSz6GiZN/cYUWeWXQUcoyBo+ldD0sydLEA1G2K+TySzb8YU5naNsiBuwYvL7ZR4PbpsOModVpF7ZqzjHG2dgjIw02FYwBhprtR+WWEcWUjoHNMnhAacXKBFXxIRytDrrJdsdFUBoDS4LxjJflKKTC/kNUuWDylIcHmuXhw4fEomGO59rmOjsiaM7Q0HFxs40YCRcS+ZNXP3Fy3CEiEXMZWpkdL5DJlEF8hN5Fj7NhBoXSgRCcpS6CjY208ELSkyQtKZJQY40JorqqIvqafHnwArbSI9x1CzJ9Z5dN2vIKSCVG0RLJIaTMzQtFD9EuBkzIuiJVCGVBhli8JcA2wRQ8XVxc4JobF8dO1diXAjP4B83hatb7e9oDKwnQoTDm8OSErUrQ89NPP+Z0jp//7OdffTOLXabss41ZTr9qttqMMU47PnfF1lIOLGTsut1qH3Kk8MQUJzJQK7h2CcPx6vXLg+ODh4+eriyvkkVoJRVCJTGXJhYgZYsApHwWwOEWA3FSxlKlgHqUZEno5z9xJ7empxj1bc7UoR6rmPCg5XTWPWf31/LCIiPDjGGwyLnFZkIvizxm7gcBJdXphTfJwVCG9xiEeLS1tXAzvf/y7XT/8uzwCFFieR7r15nPZCcM3eBmq15rt5a31lgQMLnzpnt0cHbRn6rPcr0g0sgYCefb2dY+O2tvrVGTvvvh++vexcTgqt5qLzx9yG1IiLWTZmwWP6fqnS9e36ytrmKAmbNY39xg6pcjLakSiC9SnH4PsUutrthZSecfj2tDcRBildWtjOg5HsFvJS4/1sgppBflj2JjBRwvXEbLagg0GzWbDlZ6n6Js1bPixELm21f7OkgoBVU6qYTWf+R7rKxmkoa4GsRoOr34n1Z71IuYULc1D3ER+ZgJwENxK0apB8P0/hoVnHmCP89hyRLn9mE0HKFGBw9SJlQMRNaM/Zc6aGbqWwrnH+4WUoV45WEAhst1TNdoEsttSgEYBDQI41/AUDTyJv9iD9SF2j5pn1JQ5cWtoFrlUCAZ0//5EdH8kRlGxKan2Io8xRCgf0RN4ZyL07wYp2CV0iSF44vq76JzJbw9RqIRMWXhiygUIF5jlPDVIia6QEyWhy/3nIO0FJsndQy1WZADRxqwtdZcs9aanaqxwKg205hrsaIYXCcW5ufttevIp2TmEIKDvXSFHRrwX3rocgsTTeysZOM3ZkZ87NORnHDLc9vrTWLkjRYIBwhMoiVIErsAz0xj5niRFpMHQWe19d6KU/lOTrJwEStu83TienF5kbFOUmL2wRg2pinAq9VBU+98vv1pXnnBEVE5cBDDK4d8t9zJXZMKuhgMY4K5qTTY9D28mZy2gjQJejIBOWClWIBLqeCAd8mdz8Ke4pPCSQ7sEyN4SiztsAKP7Gxp0FhLXDKitMBl0sJMgEM8CFNsfCUiAU5EiyOcyCC4kRAqttqtzz7/dHVhnpOB6dZ0mehjQh1YsmyGG4IXl1c5VGx5dY1RRHDhTL7jw8P1lWW6Qd/87Vcff/zRyurKn/78l98/e8aqN7dEDq5Ys8Zzbn5OZBx6uWaJGidCMOb51//lrwiFVQxpn7w8AStGoff3jn72s19w7r/oV8gPmzUWFGxKi0hqhwYApQGSioSXRbcCUyacHvErLzzvOiIQ/h4nlLgChNfRyzDkPan+KF6jrAu0oTwMYdN0q9dWNzdYsUxNQCjf7rzpsIyZjuzkFKMIszcT333/DOqtffDE7iULF45P2XwN2IuZyYVHm62VJYR099Xrq6Ozp6sbk53+0e4+SpGW0FRjhp5oWt793eODmcsmq+9Y37/Pzu/V5T9/9AhQJ51TmoFQgw3BzEvV55rMjHJLPMv5nn/93f73L2u9q0cfPF18+rQxNdubvJlbWmQz0snFAcvcmRJeWpjnXBemIVhQsry2xtAI3EdB0FCVm+jUSpOEu+GdXIy7R5mh9+/4RRTuuPcz/E6UsQ/Fp3wWaaIyLi0tt1stmjiHB/vYXPYmgasyyDhzppeoLsNUThv57j/l1ouSXHuByqBFRK1EtkvXohgkfJwH5W9www3ztnhRdZHmlL7gkoZ7UQ5WzuK0EgS7RTA2SgKWNFUBLIa63Z84CS52/sajFBSVb/8S/1QrUNBZF9E9sKmoFmHYU1QH+6c5rtoUDJihpsAnxROr1BkSACdLvhkpNhxvcCSj0Ih3a63NMTKy4CgM9Tm2BOlyw8wFCo6A4Z/9LYupT0y1wEALY5EczYPA/IGhNGexvWpUL2KyKgXtxBwjRWW2hcVMjO9SEMKIJGVzUDFoxw46Siq4iJQlh0wOqhekRIKYoKCOJo4zduz3YVpNmxIukA84EitF4FGcAA0nmbPaQCBCJsO52EQCYHUwbmLpCkBGKK95zs0vcqQs2xIQmlJeSQF+EtVngUiQTRXsHHaXDTISSPhmUYRHMpmAH9HmhcQgHxBEC3IUYgYDQArWjrjpKMFYhsSVU8AAWakR81lwKTjwJFMaF1Ca4SNnWdhzAaFgFWID0SGkNBO9UpZgZBlEIOWREs5006JQU4grvFCqbBETh3dWPAogIGRLeFWKQCLLl0IRAXxKNLK45yp/AcJKwYq8m4jgjKMFwCgwg4DsZiWlvgVbwYkxPyUXkhRnSHEpk/S6uckqTRsQrO3ifIb916/rKMTra6YYW/UmWgKjy9T9xoNHdE9Pu90//Rf/ku0ujDf+b//r//K//T/+FzT+559+0umcvXjxgtVqmw+2Pvnoo2a9zm3AjBl8+8239KWYnvRGhzmWlgxOrcgTJ4Ry6EC/d3TUxcwzWIp4PH7y9JNPNuax1paIP0ikqPAJtVIiAnix/WPx/CBMJqaAKXMKGA5UZf07/IS8f4d0/7BJKDJ/WN6MS0gFBiqwvt3zLkZwc2OzMTH9+vvnB7t7K2srrLTiBGZEc+eH569+8/Wge/H0F18+evp0olm/6vVfdfvPt1/Wzy85HR9ZvmJEaHb6oHvGvC6LX1BJk3X0EfcGXp+fnLHEenN9Y2FuoTa5w4JqTntW2U5PNtv1h48fHLN2oN9dXFt78PjR1f7JRe/ostOlS84R0lOtWhsc1lhuypDZ1Pn1ZXviujnfntqfZktP/+pyYWGZT+5KQ8HL0CK1fwwqIiW/Exoy8zsZHVEcIaSUIXPMtnA3J4dTnuyeInm0ubEF0e/Z66L+oTRZMqEyKyXD/jpEzVgQMGju1Dh4kgH/mRpLzW0/K+20+PkrL9C4yPwwd+ssPgFoYBSQgTEV1gZc6knqdclVP5yg1BPgH3tRoVQlSpR3H6oZklb4F5UxDtV3q19FlSBgPiZ6F1rlE3DEIoYqO1abPOzrlByqeAnDL3ZBRHjLYyz8/a9Siagj8w+QQktbPEiicyF0aXhFHeHstIAKSdQzKKeiNs2Qd1sVPP0DayNgffiQxvZcnHtNhrE98F1QjuoEcclRXKiExaHihMMxdJlANJeR40IP1teYE7qeRWjkSE6FZ5hx+igsx8fiEMR0yNTsxPV5B6ExhSWIZQK7wu/IiIZBcQRJItGthGFmpwgyPUu9VGb8K47f5K6wJJXkgHS0CucZ2lrgcLsaK8Lo95z3zpPOk2gmpy4wjGabvrILszH82kBNJlSmccqXxpMIoKP4miG9Yn/IIbVRLht86/DnA9BQ2gzSkKI5xXvAGCoCEsy77hNf4OQdKEQwTnFBESR0YTZBVXYlowzI8UqHH4hkc5sYG8wUAL1thnOZYScYIChPnhgk4AX3CloyJU7JnZAIjHklghg5YEAbkOOCWYOKFKIeOG7+qn/+eGPTIfoJbbNIqES4NanFWdgXp5zrf3l8Cgc4IbiLce3Rvzk5YRoYVjIKig3eevjg8ePHLJI+YY0rW1aOjuzpuudxcHp2xlDEwuIi1zOg1jn+53qi3jl0b8zTp0//8i//4sMPPkEuuP+ZQ5Q4YteDDeIoiChbCk7nowwpAE+k3w8PboPeYxSwquj1Uw4g4xGEed9FkvWU2/8IDhzuoFHKPcpYuSIG0nozwXUL+1zLMzH15NGj5cUlZo/e/PD8BzZ9tdvLm+v1hTmuNrvs9jm1+/xi4Aa8j55e12epF/R3aUrWJ2defPccvjCRvP70yQV3KU1VvTOat/M3c4tLS/CIo0bJ8Lw/ON8+4JAWbP/+8QlTFMgFw8gc7Pztb5/XVuYX1tcXt9a7h8f7g6vjbgdBerA0z6mXVPfzmanW4lyz1Tg6PXl9sMepl5uPHlIu2mfIBgReyC3O6g91BCV7D6lTWUZkuH0BTuFyJSA/yfF7xATKuz63oN/7Jn9wLCydZR8AI/wsBQcBDlSnYhJIBzRqR9jwqZSJ8lAB6S5TO4jDRDubtldWlheX16h2HMBRZuUgRTFnJCZhep0iMZJBYEIjpo5V0dRKVBkvSIB/aAB74BcDzHnlTAwapBeDEDjVKH2DQL0ja4k+/kjkWxIVE5OuTqrDeGJQz+dYNeG7/I2BHGIGiqrhECYJ5b1/d5xNmMJQnmWQzyRjznBUQDHlFjHxhSw4XRVZ0kIixttmWeDGpcx1lKjD2DozhiYOkfJBI8peq3VMMwocUgLJ1wLTpa+eQgkpiGLby2zslRXsKJwJxE26V74FE3R6xb67/gUyg7c0DZhwzc05jNwyJ0TRQYCjGNp1NonM0WpDWTsmWm/ONti536dNkdVU4FKaVzT1QgGyZ6DZU7EwEt4sQQyi0p3DoGpOWk1WbKECQnophjxBAtoUiDHlU7w0LTQ0gHCDomfu6osvPofiB0eH3333vcTJ9DNDcJBDPGdn2d0Pcim8dLFCYGk4X4DR6UaNbUsY/livUM28lR7Zw7t+OnmX1mL5DCNGnjcUoMSRulEBZGcrgdEjqkclBQQWR+TALTXBVioNEcrNCH74E9YOI/N7l2fRS3ZR2IPL8IONRZojHhhCSwwTTSMMVB0G1wbL9WQWzKRe0VB4QwbrrC5NIunMiYPNJmiThNbQwvzC5exMm8vj2P3Z7wHWyJHOItKwEkLTvkGVMJYAyFabicjG/v4+hGU2l4vZOTP30aNHEOL0+AjAKytLMB0x2Nl527voUe7jk8P9g13I1O81MP8rq8tPPnjyr/7Vv/rk0y/Ya8fKA++O7/dnZzq9ixaL+pTmQnDpmNGr6ByLakvUysOfdAvJg3Lexmj6I6+jaEOaQb2REJBmTKH8CIQ/uneFyY/BLeVkueHe9g7jwI8eP1xotdm0/fa771989z0rmreePl7a3GCaoHvaefbVt29ev51/svXkFz+bXJ2/SOub40Np9juighXnyMPpqc0nj25atStPr4qooohomF5ev33+ev/1tsdYIjGsLrros1GNhMwpZL9ZfXt7m715REao68sLa19+wlE7b757/npne6bV2ESo5ufIg5ZWe2H+ZnZ6e38PXtGf5gYtuu8vu6/omk9c0r6bYpgxhiLin8KPM2L8vVBm5DN6Efdx3qUoJXJEorzeed6L/060d3mBJKqOgeKG4OlZdZZDX+7+d+xXY5AYxpHCqDuKxITUgCl4TkTh4JGbG0YtLvfdZo/YovdjAgrxtUzIOGKtVUl3IhSxQ8GLGFIrU9AoLTo/MJU/8rM0KlvjWPHHisp79YlpGb6Ohf/er6lpUcxmKcxkzO+oKt3CGsfAGNFOlqG4pFV/ls7D+yBUfiSMynov6kNg0QfiVLAKciNc1CHux+HyGIyQGux8UOyr0QGR7qxpgBCDC/FVLqWAYg8DJKwN+2vWPJUenxo1RVO9oh2hv2pIzTnK+95LYZ+5jgLEODmj4umTTl9xW/D1NU3gme65qp3tBA0ui11m3yGnuWIesXBuB23SG2VGFSGwGy6JshBaWChs0PCEdjFjRhQKMFDLk/rMcAxTf7PTbkjAHKZMkoDyB4aJAgRipCTeb+qxMUeHh5hXLDzNeiJTmSV4DD1ZOnTG3We0sTkojvKFmtCCtsLSyjKk00Da5SZNVdlBDZxsO+iZp7+3DtwwlZzrJT4xydge3jEqYJm1AFUZmUUgX4pTJa6YVwCbOn+KUKoKgDX5xSkAQwf/rT9G4yl7qdtuq6et4fiFcWMmMEoAh2gxwB7nBQh8RnXPtESmlg/h+6ITCC0+miUD9o8y6ijpp6YW11enJpbYldJh4vACuqoT5aNtq7QsYuu4Cfj85IRmt5lNTrL8ijHnvd1dDklaX13tnHdevXqBYSZnF6ZcMeY27bnRAwezbzw2kV8pzmZjVlWzGGdpkZzXGfCk48v5H3Sy+e31LliIy4ArSKhk4pIjecJEvIA0zU4mhc7Vp8QQZXWYvM9nfv6gB5Qhl2GSEV9GPsOQ/x6/ICF3ryc44vFwd//x44fL8wsTF5fYvB9+/bfNWoNt1q3NNRqa7BV+9fUPXHP04Wefrn/0hKMg+9OTTFRgS60InD/MWSqLdcY/oSaNp8ml9hk6ib5Yn8PQzufac9zLwn4kjg9dm190xSCVbdA/YeKz329OTC0vrbAFZ/f1W3tfNILhJuptY3WDpQSLSwffvtj54eXF4enqgw3mwepb61Cr3m6tz27uvd0573TqC4voAVVNlkpY7RV46D6kc+HBmMe79CaKsvx7uPfFHGY0lnyM75XvUBBKZL/I0srpr0NfqDb0AxIeqblhTQMUowoq4zjokg1FeHFggVUAyadtw9q1wdV5hzUQDPg7fjaOzTuFKsEANdYwphqsvNv+TI0Sq9R2yIiX5r2iDz+x39YQJy/SEi9lBMatIgp4fMqf2qTkbdS8C+8dkt/B3qhVjMJQ1URilIfhuFJF0TqgIjolihIw7goV8aGqU6TkbgyimeBu5PGEt0GJikZlizWGgdPhuJaVAxSvb06hsyCSBy8O+6lZQo3gof5VFadnaERIRxJLR870WjQpLqeF1PYU3AvONm/LpkIlMY7I4wwlEX8F1aF/FRXPGY6yq7J005FroQNkil4OS2TRlayGpa7RHWMtJWdLuX2zwXIQp4jt0dOnohdD1qBIU4syXVHHmHXSaOnoBKs9WXvBbiyiOKmJS5iDLmp00oo/UKQI7QqEnXtnIQ0dLJUzo2WeIczx5VNXLBQze/85jspWIZFyiyTFIwxqMXC+uLgEPCsMrKRlE4tSZUrxHer1YBJVEy1W0kBm0+vDeDuHPYfsegJk2OWH1FLXXG+se3W30dewWBA4lU9CWGv4E01CkiQZW2pCRdE2CqWTEPIizCOOpi9oJBJhlJoH8YhPOjXf5GzGQBzbRxiIwU9Vo5KWFlm6yBLTFJSUDVlsmbj28hb38tJeaTcZjuGPnSE0p7jHZuLkFFa4ZDHFLoWQHHzTzOeyF6DRn56YRF+zZ2mLfm6r9e2337LCdXV9jbUEb3e2GXmGK7HBWEkZSnHQWJpiro6fkh2Opw8uD6ZnGbTkNHsOdqG5Z3f3inMrB07XQD/XJrj8O/TiWeQHGrtylw8Qk7M6KUs0CWeWWcaS9/gbOuaIFazEjaIYUtjDUxFQv1cICLWE52f0qACMvu++EPreCGOegL2FDMLoonEYYzH1JipkoMSnxydUqs2l1frE1M7u3g+//ZrBYVqZrcUFRJCZgt3nrzjZ+8kHTzc+fHzZnGXo05YKNZyiKkSU9Jq77zwdY5ZDZgbdk6PnL1/ecAmbm/kG8598zGovrAnLPUoLjiPhGaVmZxED1YxRX5x29l5vD876Sxur7cVlzpPDjIBcvT39+KMP2pcT3x/8zcnb7T5XZi3MsVt8ctV+GvcYriwuscya1iIcG/R7Uygc9FeqhzQftwxhy5AvsrYSgMI0mCWXrF9SsHjio997XKGkJU/0kpbUVIiR41WGC6wwJfIQ6HrGv9RSJJg7o4ifdZnoOY9W9VxWxvPshoKtRhFlVxBi/X99sgl29lCDIpaZqhp7SeSyJSmopFBUZ2p50hZ5AKGUXjQQETENPytFH5xV7VR2KqatA+Eg4XTIUMism6O6ehghCVB/hlmfAQt8XtWAKXZRweqQxDEbBM6iAx69gTZ2NJjY9IMoBKQCQkSKV7+0YRnplFToVA+etPZKx2QMTdR6ZGut40JeHaE0tW1tB0maLo7XlTKnYoO0ugec0Whhn7lp6sRbJQCuGkUAoLeBJaQR0cSKBh8gKRGWiogIIaMTvl6znpg+IYEYU4BJkWgHbOBsys0Qbpo02eaqPiQuLBcKepUeABM7Utu8gyY4ApKI4Cr+sgOEnEEOye1B++IUopkRgy9PGgRRpITVYZ0zepk2O8iLbiWDJ9Pe3c4KPbxYu+RkBifYsFuBosBUrhxELtkg6JiouZk3skhXngIrbRTOwSqtAPN7tLKvuWgUtgYzqWiq4oJuMMObtBCJkQNGcthWyB7TOS55WVoMbqYnofbfkxo5eIemAXq8Khw+aaJKppKDhFI2ZbpkgVOhONlXlpUgYsdBYUwTfWvziupijIFaBzICgKAKtCRGW2H1ixEoJQFAKUz1rHI1XXFhRRGmUcSSLWKmKMaFfy6EcqWeApQjwGSfpOSMz0sHDHnNNm2lGvGzXDjrNtxkIygvjFnTcAIcSGNcFRqn85E9ZZo9KpxY1phv9MqRegw6snoWWgGP8oCNfx7KQa/WmsTeHwpOo4/tKJMTrdnp1bn2D8+ev33zZnl97ej0eGfvgE42SNpzd3faLEKCy2wAUoFcAZorYC6Iwu3B1zc/NFm0w+zxEqcssQ3dY4yJYCeYfnSXiWTG/CS7eJS6ZRNPgmCArYH3HXzFU0IWgoDx/Sh3v4u6HPkNJVJqjjx/4gVK3mf6T8S+EyS3fncuMkLnKgDmiTix+ej07Vc/DI5ON7c2msvz023af9dnO3uzF1ft2TpNV9YeI7rQCVqgcah6aBTuCDw8OJri0kCazCyl7NM9rrF46vocK3vdXphjvYXVSXZdcWkGxULXcFQpBwLMonRvJi845fK4w87KOvuhWnPsTCQOymfQ7X+HDPz6q97BXgPtc3HZ4sZJbt3Q/qr/sOi0GLjjkPYf4xzLi4sIrmLKHwQY8gdPyDNix3upDx0qag/5pJgOo/4II6pg0hbyj6qZxB9WulGocazkIEPEmJtkgKKjJjIoSD1KLY8iCExbghnP1NYqb/IMfYnqnK1dQ2sIC0iEOe1plIl5AASJJhsqhVYC7BTeQg6KUsGRgDkLCI1t/yaQqQzp1ZieSk1FIGlwGdKiFFXgequl3SGpqzLIi+9BISF3HokmbanBhSmFVHiYyLihQKwaxu/deiZxnSIPejGWGp3QVqQCezwVJU6xeURDRhRJ7q+NGzytCmRstOh2VCDDLZwDCVRTm05k1QzI8RXXcV1eds6hNyO6RYUYlbi2GJguo08oVZK1hhmohtiEgKCUVBmgyJhlokHDGE1xgCrA4Q0GoYwLPiEM2cOOQmeRIZbIySDyue8c58zpVFCzj9Whi0tZxYIJS36cn57mMCfQpoag/DB0nMSjSmZcHHpcT7I8w/EYcxJ9EOYDwhPI1LZ6Mz01cEI700mybRA2xoSYhQWStrqCeD6lEbKLiNk64nwI25wCtd5jLbT/ZM5AP90iLU+RsIhzIWspb7g9LDhecICy4PBLwzP5k6XR7WtmB3A25KTQFCcmjQwvW5pkC4gDAggVOPCJhHhahDFHYc0v5TGvBN2NIzpW+MJrIihnwTG5U2D8yBOpYECd0tKjBB+SQHdiQhWyuGapTSSGsREwof2g9NAiAykMMEWgm8NexjbVmflz1nSxkJo6DXhnStCNTNFhowvuwclV/Ol8aq1hKPmhZzx1/Oa6c3pMj9jtKZeXr168eLOz3V5cpFxUVsDfMCqjjJpvo9VgmsNvVEAukKHRB9F++OF7xp/bc4vMcWxsbn306Sc077iYh2YC46aHewenM6er6+tzM3OSw3GrEA98MxcAjzAXgB2RO8SXVEXMQ2TTKPx3HH6jRLxCqOJUCXKhcvdSDb3f+aUslPQd78qjsE8s4gpWPxb5vf5wlbKzimf/xctf/+Y3kxeX+zu79GUX11bn15aRCW6bOnz99vKsW2u1WaG8s7M7t7k+6ZUAts4xAfXLSW3z3PzS3BxsRmdAPe4cZCyL6kgPaml5mdE6ungwjOmJ1bVV6hTd1e709BE3L01NHp8eD3ocu8jG8dbSygojTuxWAjiSsb+9/fLZD4sLc4uztbPdPdjCAj+uJYSu2H5EEOKw9urZ4dHc3MKTp08XufSQw0PUmBAFLQELCpveW/pbz8SSddXLbUj19mP+4xETp2JxiT8SmxINUodlSJG4gTwKiiC+6e1SlTiXBpJRMFqYpe5T34pAAcq6RuW1omtXkdUBdbYoT1QqvR1vrWAqGKNBRO0RoTiV+1BIhBbyRPtjgBFK6x7emgppoEgUJ9pEfo+0GpH/qCDlM1FK2lLS6nmXnhS5gpxgS5QXcrznrC1gIDJVoO9xJWZJywAprTLJJ+7wO9rfGHxquEtkEVVYjJJCSsr0LNGGKbm5aVP4FTKp866vsCCOClm/OH7xpOXB2tHezTXbKLHFIpjyFDhEBJpNE1HznR+ytV/meC2dwPTQza1gg92hM21lFwLBZlflGM+Rj0kMiV4fsid5E2/MOYoC3mA+Wxugiem2aEXZbJ4VQ/SBMcC2IJQWT47eXFh8uLTCRn62xXE60vXkFWdwcNkNlKVHz7DsRKZE6U+TC2m1HhhxDjTu9l4+e75/dsBoJPkhEymCZtDiV00/JUtDTxgEwLRcMqGokaA8pEJHyyFTYGMuWeNT2kWImH4hBVYkAhcSVGQtqiCMoltgeSsxA0GyA0cJGcvKOykhLDH0jwbhibrnZA7jgQlBmDRsGUZMR9vLBlcSElcRib+R+Y8PGZIpngbHlXe+RaV4xyuvxKTiWW1wBSw+ARKmwtcItcFmR7+Wtg7EccyGRrGLaqx3YsVRScAvbQj8Tk9PMLfwFUAM0IdqxKafyhihRTBrG3gSAdQom9WHBpCr58wAIiCqjPYqrUCk4X913Wy05llzSwRvrJpidtweMCA5v4Ej6rmO0DuRuIp8lu1JFHp3d3tldf2jjz9gjwfNPHBmVpg77Lbfvn3x7CVZ/+znPwcIiM06niXphk7yWUb1oMIgNuBtA5gohSOFoYV+w3TVbyp0FUvm6C0Lhu9VtNFPiRpOjPx+5KWAeV/gKL/RSxXrx5NUESgbvFzdWJu6/rJ/ctae90IMpoTnVldo1xP26vmL777+ZnV+8enHn7Qebuz1WWZ7xkpjLtMYcNXVwVGtf9me8Zoe2jfILj1TJmXnVpeXV1d2ufe3PttYXmBbMQ1q6MAfhxJjJfq9ziVnqjgTNM3QMRaVvkyjNsV9hZgixMDt7azdOz378MOPnm5sseSdmwrfMOM7ccV5lRtWyUmnmAcDNix98BHHarHRrW0fnbZbiI1cQY6KsryZO6X+aVLfJ+D7qH3rF77eJrn3Sbx79HdgMi15xBjcWROOGbWdjchywwTKK0f+kcqtqlbe0hm14wH29kfx1BkDSLwhlrSVISPatNJ3iCo6CYVZCiyCEKNYWdiAAqSroRKAhvZvfEuHS7/QR5i6xIn4R/pvS06AGAHW7pA1JKoTDxIKJJbLGHGFFOJd4BZlBTNU7WMENIPbTz6seXEj/wqgsSpW8mPuAVQSG5A3HnonDWCistRKdhxsA0lMkeWvpEyOw9T6I0OIEzQCc/wTZDqklP9TjRrkpBkF42yyo9kyzJbuktnRUKRraB0rllUwsgrWYfHBBDxQjA4d+e9q9noKQKDq8FKFU1XMquAVChUiQjCch2QCYQOGjjnBukXAxnHSJEOqnM7KNCMrs2ZnPIWciWEVvjnx5AjgtfmlP/vw08mtwcn+3pud16/3t1+fHbj4hhJKSNQ00jPNYBPlYdUVu9Ynph39YAccO037V20uc0gJFXQ6dJQ1wisOikboyBwgit9ccTE7Lt2iscAdD+pxmyG0biAEjlNwc5ATw+IWjUJS2qQs78MC4+8hX7KAdgcRhnSQHBCBf/wlQzM2GUITruSFPM2AeAhHEGB2ugu0ZHob02QjJxj67jJUm5d8SmDJIjlJAIEInEKkZmDJ7MqKFT9gHWMT6bAXbhI8QaQ0AZmz33qwtrS0sLm5yTUJz57/cHR0QisInhAJKBCKfHlnsxB6hHcQKLYIowhpT/snkKZQxVD+xVk88pueZvVWet2007CJnJDbT0MJ8ffCNUrnpizVjaNvLNTCcYIBbHr79vWLl8+pAFQBtjNRGF6gyNOnTzg5mo4BnGW1wd7OLjefgyd3DHzwwQds22DtKH2p1bWVOiv5EIMgnRfbE+EWj0K28iw48y7SQf93PgJ1WNix2O8mD9ixGKNX6GOpo7NGnr/PC3nIhLjI7buJFAawo9nIOH9jfaM1OfWKFM4ueIYA4wAc2txeXpxbWGLGdYaVG7MT3HfEqe7sPD0/PX/x1beTne7mwjLGmzYX12OcDc7ZTdw/O+dAjWO2xEDJdoPKCwKMKXFRxiyHasHveuP47AzqYn8+/eLLwdTEDy9f0RzmtmF3Int21qAxy16JJgsTTntddwkuza216t3e4Hp6hvE0Dro9OT5h6pRDuGiddztdGm0MswxQbA3nQQpB3yX0e6gwpBKRf5QN7ybT5w54MrXujNXr8UQJrQzb8XGHm61pOGafBaesNrlfBCFnzZnVqejM2EhGAmA9Uu3hAARQVSEZXZkazUfXnYfJ6jFkHvTJRbSGJRohQG0mkr0NuwTUo1stpIFC/ElC0vJIsQCinUo7ZgSnvFgt4qry86kFt8UzdIE1/Ci/I6wMiwO8mQ6h3Y1u7cPhOV6a4oO3mMXajVLdBSMhTR0IAVKwQzDEFKfi1OUGPKQekmCOmeM2R5ovTHhrGckp3RUZA3nsu7mUx5PrGyvrnO94gNKDGWZodrzSf9OgSr0UYlRCcsU+6USGCK5zixI1aWjCQy7jStrgX0pN7rzIFKECXGGLC+0rkR/6Od3WajAhBGhsHnqTnDHuHFvDvoW948M+v4C0NaA0oAwaEzONy+nW1NTK8uaT+aWzxx+83Nt5gRk+Pryqz0y06h26O312Gjh6P9PkFH9tGgLF4AvXubCWGsHkl4kmNC8rq1kGBl2Vi0L8FAqLQ9sFwhdCkDNxwZqmKJQWE8pJ6VD9nCbfQeF0KK/+Vgm7/ZJwVG4pb0uSA3hoC8Ev9Bk9dmKmtVuEB9rIV1zgkIMI8c6T5NgMz7qy2YuVAkH6311uMCFCeAqXdKQgn+SnEGk1nUt2sLpMvhJkHnFGG36aOyKrAcZLb6q0fJSjsfmOsdg26k+baUTUFOTmbDtLTxmXrNMJnmA1+2f1z5g7f/3qLQtdIZEw0qMFMMqTUil7jCq7PgtQ7OZytIJWjhvibC/ZNieANiNJFPvaLPfwINiMHxKN5TqcNBnEbAwSmfW0EkuppbCuEQQ5TuSAcay5BbHffvXbnd1tuq3YYGz5L37x87W1taOjIzpJnMf06cra6dHZf/qP/4kjhzADdK2++ebbg+NDmlwtrnxvNJQEmJtGscRhZMvcIL6XN1mGrMK7pac1RCrh/Bm9+C1VDdCVF4nsh0Hjzk+p7dO2xXjY6J0IJc7I5/d8EdwYzHeBmDO17/qm3+2dvtmZvbxe5NapkzMOck5VvT7v9de3Hn7ywSf0bt+eHe+/vGDzD13VS/qslwNuJWzC29oE68tZ68zx5iI2MzmY6p3tHWy05x5sbR0x0tyYpdlNK2qeWxP6V6yynpz26OOFRqt33aUNRL3ZeLTF/Q/73Kg04X2UrF1nuLs3MclU/Zv9XZc9Liw8/eKz6Zn67u4BkosSqHkLVo4gvro+Y/fS/uFgvkNj+XJ2eu3xA6sepSvkL7+h861XIWLlWXEBiuFxywiS3+XJXRryhSTfOgR1SO9kjFwM2WpUDkuiWT84B/7+7vazZ98h/8jw+voaIEiAGQZrBvA1t3SFqZ5Z40Ltpu5TWMfEEMR0v+iBoePQOyJAp8QFlanLkdaUgxxV9vhjDMyCsimCZCV6oIFTewXZgjnPeDtSGYCAL3+kwJmcP0LN1erBVGc6OQFToGuIqUAEqgL9pZKTyPTJuuSvflEFiZlYG4G/+OjLmwiGpklM/ChC2scsHgK/qN7b+KMC8hJ6SxNd8gZW8LfI1F5IowEoaKnARBeYZmwxzJprphiq0ESi2jWxBMUEoKqmaxwetbK1eXIxODjrcO4QhZGolom4GWBMzhIjZC24MFBhBvKWBwrSvIgiuUvZw5SEGlI0K7EB6bSyqVTZoEm/3JPPGPKpIoW6IEkUwGp1GYJmIRHj4KhNcI4NJoS5oqMTb5RjKRb1lfxtaRRhADg5cQbs5HSt0V588vHHj58eUo3n28315YOzk1evXnG9CkdBYjNnC82ublj7yIouqjlHe3Ax+M1El/nmucVFSCq8yDKFRlDFEQw8Tdv7G+g3KUMqdXZLaYqVWooAAXPaPxEsOZZD1mhaTJKuWKGYJBHopCPsk7NkRg2Rs8pwmcTlXXIQkYpkKj6U4dBccimtSBUrz9BNXsDJWdO0NLpdGS9lqo4mKYVSHkCJK6AoSyRs6Dv8rTKmJ6lI6qtkCaMAiyiUjjgHncGl1GQzMWZ+uGcXPfjmLWdlkJa1WWdnpwcHR1CCoSzKDqVoPwAO0kE3TvAnIboGrchcH5QFKFtcaDd+/cMz1+lhVW26SjXIirAyoMwZhGRNldBaQwsKbccaNeQpqRcX/bPeORRC/2B0T866b3f2uHR2dXVlfX394eMnHrT036739w8oJXc1MJph35fhUEanOYx4MKBDjGX/P/73f09VOT/vvnj+nHX4G+sbXIhIbws5YmVpGMGaQYaCkFjZCMOKKJdGSogqZXAlcnnnSWEsz31XfArPS1iVvHxEFu743AfwD/pt41W1zZjz6e5e+2b6enGS5dCONiEknE7c7W1tbjFWX8e+7u6zqYENuIwo0F5keRSbx5DvzY2N3tEJi+APDrpcnsEUb43dYSenh2+256Hv0gr1mPIziMWCZ/qsWHpWc7ZZLc9yy6sbrtDodjrMIHCqN0fU0vlm5AeqkQapcpCv3qC+bzycq88vUHtYZ83o7el5pz5xTRfZJdfnPRZ83XT7R53e1cz03MYqW3cQL7qMI+sCFcOJdxl0l74lkiQJU34HZ4h9h+ej6MNsVO8V729ujo6O6fVyXhsVn1tnOINvb28Po4uQLy4us1aQxiJ0RV0ClFpPQkd+0j8BH0wBwkhj0bM6l5ZYX7izu3tycmq0aBJ+rbGwNNrZ6qi1EIHiqlj48m1L3+kf1TfaHzIYN3+u+Ui/KF0BQoSKD0hUJQSAcwfF9CInqosS6S45+SKrIQp+FDZErQReIA7JZXQBiG4S+jEiaj6gCwSKI+oI5TEIpudPwElacCYFCU2dF34pvb0XCCBaRs5PBal4mYTSpWgBFsK5OIbxIbnDA92CkYZxTFmpDMlZc5hUmmvNDc2nEIhwmyJObyW/YbvETMWEjIJm8HS62NZ/MNRc6xs4Fp9AcSzlJFmxaneIRWO4SIbaDVPssl6vKAEI3Up6KpIKIHbCqWs2GfpkQk+XnQzo9MGAH2SKjm69tcT9ojO9ieXFjc9WHpD64PSIWVN6vfRzWUdMV5c/bHwO1Wphwbi0iLPOUfU0seWEulsLRDmhHxKUlogI8E5NpkjsYkTFSC/XZnmOLH9s7ZeexpLmkOCUYdaTYyKYOTY3zIPQrLhlABzaWKhQIk0sEkqllNOqRXTLXcqeD+kZ5xejHta06wtXa3kZHGnhLD62Iu46M4oTP9uk73UxdWMhASVjNTHTrlGnSaHweEUCrZJZF8aUIqSBqAmanOxdXJxz6u72W2QvjRF4ioVD14EylpLDZlGecNgr7UiOTDLL0GB909WAjma70brZ2ab8lhtw0BaG2iBjUvC81Vxsz7fhCGW0iXRzxWmU+wcHzIlRZgSDAWj2YjNNLsbMvtjWYpZwgiuZz887Dx9yT9IW+XKaCmPjRPnmu+9oNNAWg5acxfHV119xoNba2uq//jf/+j/8h/9jbn7+wYMHG5ubjPgxiM3JWWh5dg+zNgE5QZixwGmsRPEMSYf8qGoKa4eev+dv4RRMvhsfctzzuRMeqatYXAIQhDsxxqTonv/v84nEWB2oLCynuppAdhlAYDqLPmufDuigZ3t1eop773uwsl5nz+7J9l672XJ//8TUfL11erpPY5rtDAxgLK0tsXsbvtJ27MCYg8P5g0PIurC24pAGVzgfn/U5Z6N3wb4+lrDTjWU0gsHqs+Pjld4Gs0osiq5NtFnmwWALPenLaTp804vzSwxZcCDOgMqMOqjNsMoP/clY2FyDxfI1DqrkNsMzjnrp9Rc2Vhc53w0y3SHb70OMO3Hg1zvMirIai1Uqnz2NyuW1+tZ3WDsNptLR+OBKR3dGX1xwxQjz4KxXoN1JnUPl0EhE8blohj6JKYsGR2e5oqV/xXS6mwOxyFRYTHU9g2ZoC6ot0UlS5NP8/avKXwSP8KIf+ExkMIpeofKi06oOqnn5NzLbQZt4eFkGnXoqGZQ8pRK6O953Kotxk6u/w+TJXd1SXAUOeFZ5IdHaZnuK6hI/H3edcXQQBHUI7vyMYogWaEoK2xPBOHCoycGETONtCGnTyHeADWIy4kJ+t7AqoILRYhufVMQ1KSSiqKmb8WMqzlnbpBa7KnF5o7R6oF0Z+iMOM5lmpLGrqIBBNJUPSSNqJkgByQ11RGJ97FVz1gF7WJnWwdN88uRBIp5JqDcuNKeBEMIypayzd0W2wEEWmYNEnCxZMuWJiDTn51qrSxOsLGNgjL0MYMFmc+74A2E2qFxc9k469DTRsM0rTMJghgPfp2fYX8I14l988cVC5+j0+uKEmnh9XePSOi4boeV4dEy7GqUPVimm1EPMUP9FKMHKOjA52emco9YzyGBMh/EvWWvOZKSHRFFJQperl69eHB4fQEXaocyJct4TyFOOFufj1RvULsuiEBPd/7jCcz6GolyN8KTUZcZRZtuwgoxk7TpkHQNN+eURSgoxmZEhrwpHxUggUx4SDuPf/wUg3Cxgw1U6edoyF3+FMsB1AB+bGkeh7ZBq1z2VenNrHYphrB0b594az8EABUsAKsgEn+hlejbz7Xm9kCdHANindIm6tkXFv0r4lHsyARmYkNXm9D+504J2kkvSvaTw/JwtpfS9gE9srkKaX1xkJxu3i4M0pX/56uXu7s6nn3zMxtNXr19tbm4sLy3/4udt7kCEBdvbu7STzs469HoZoN7Z3t3fO1zf2Hj04CH/GE7neEtWCdEMZBKRRUOHe/tHe/sPHzxAtGiCwFxajZQt4inlC034lopxBv6YeydkBOHHUvyIP4DGYVVo/EjkP8wbuLKWRNmJy0ILb37kmM+pSeqOUyLs7mvNQUkUlEe6X17vvH5TFicvLSw8evx4fWFpuntxenRMjxZJ2eTEykYDu0L7FJK2Jib7x6cMTXf29hGbq25/9upqudUWOjM+Nxw7yxKrc2YksOv7b3eQeKzm1OXNIiver2929nfZSczZOk8+/JBBFW8LPjmeZEvCNDs9rxn5aLKs5PK6e3yCHrjif6/PVASDWjbcU/NGxKL6vUeb/y5qhb9Fqf1o1FRsQ4X/k9nQXKWNeH52yhIEur+IKOfg/tmf/VkZ+EHIM5oYq1BUfrpSFkF1r0WxKzwxSWvyvNs/ODqmqjoUF+tLLRQHdY41yyppreSbxCGr9TSCRM9MzaEiiOXOxIfirUrkKRg1sclLkjyHFcCyvteVyCOSlzgFGmg4u1ocL4blQQ6pFwAXabwr24q2R7O5RokS8YdD99L/uAPfWogZVtVEcgrMwDa7lMRfE1VhQ/0nBQjQfqevSrgnAw0hRHySaeQGbzGUBoGlxs0SYPofGTIMF9AcSKal5EFiiUiA05KhaBERs3OAIZ1ge8u8FeClOFoosNLUaCNwDi0SByI6raknY5Ra/DvEIMNbR0gpCiOaOiowgao2Vq4y/nxx4b2/+NjAlr7ASl52npoL7Yl6bTA7zSELHF/HRiuOaeYFFQ5qngBJdx/zyeLvqxtmrWqOu9ysLMyvfvBo76Lz9sArAM77VzVOl55foOKfnXbQp0NGiiU0cvyEIUoXHIGIJANPLnhvz3EqXp1Tk4gGe7ANjIBCRPNOiSEWdYDBF1JgsDnPksQ2Lhi+fWCXmMLKBMqWNdquCh1zhAAID/6PN9+geSEoT7p9BNFawXJkDFt0zT/sHwEzF5AP6XipTP4oOMU0QlwKqfmD5elTkw5p1EYSTnbkD0UwVsiUvK0qID0QZxmoqxgyt26DV32med1GzXF3OjsASY6oMHgGDJaRz7UZJKsL1oukphvs2kT7Yp+zUcnuPXLPqHMubLaa0chBPBBoTDF7gvv9Q3abMOV/3ltbXj46OSs1lj4rA8sMxX/y5Zd0XpGlf/dv/+1/evUfubn9yaMHc625nbdvGbFf39hk6nd3Zxftxikr3fNOf7o3weRFs729vbO3t/3q+Q+0HjY3t9TVnKLOFfF03pHIHltLp+igIAYIGUMD0FziVVJefnj6Uqg6om0I/P7HKOZPVZf3Jy2+ZFdx8N1Yvw8C76a64xMQzIuf7R9echPD4XF9ZmZpeZHCr61vTCy0GZpnRwLXbiMiWNCVrQ1icmLG3pvt7snZxsoaF0le0Mzp2ldm3ILbmtn1y7FY2zs7CICHbGCxGVIeXM7SnOUAnfMOU7+MjpyenVC0zQcP2CxOA5qDMOEp55iiw3bPznf39joXPfYULa6uknOWfAxO+l2kZHltFQbQ/Zuqs/Dq7OUPz+ZrDfcc9y9aC4uemsMZUZ7KY4WSYT9Kv4oSfwQyFkho2OjrOxQefkBSpns5opzLE9Uz7TYrAZFVNAZ1F1I4zeR6qzLSfMMwuw1War2jlR45yVgTdKDrjyxBa6xvmumkVWXjGcOtfFaOgqk5tKsjsS2FRboV7/wJUSUwljASTkzoF6Vk0E9TkVAzeydS8SDADPk3RE3ekKO135lVeZVMeKoSNEGJMIo/fCHerUMy6BKiq8g9prVw4PY5zI/fUXuiJCebJEmvxUk3dI9qEJLG8VrIGTRSsBFCvERtij+ag42RpGXebUD/hItCmJmVupS4ci58iSrhAREoCqAZ84XAfKT4NJxQi8CjISBiACSxNKiyNi+T06WhN8NYFFxDiZZg49goeFfUHYLGkSWl4sk7OdNBxYKvLC7TfCATBIrEdDyxh6z16Hf7c/RQ5uaoduhuah9KGeQKeDEuA/doT7InDgdpARtL0L2YHVwu3EwvTM5cKLDc0t1gtSSziHa04T5/9tMUJuQeV9lIBjU5asOZD7nDoh7ap0TDORiMEkk5QBUdAc2QEBy9PcJY5nN8dAxIjrb+7KPPMcQRttAuRIxwh0CljWmIwmaRM2vLB3+hMxlKDzLFh1sEaNHT+SamruIoBGALlhBwkTqZCqVKWuRMKAXciCHhEEUrifixnAqYlJcpBNECT4fXupLk1APJLvvkPA0oMI6Ueg2UYi9uieA2OHpMnm1CjxMHVKLQa7k6p/NywYYTRjSvUNO2IsTDrEUHLKRwcrd+esjz2ze1wUWLQ6S5L5LTQEkBxxVi7/bgQrpPv/xifn7+t7/9LUDw3X77ZqHN1GSbw4pf916yu5c1s6fHx06i9/sgTo+aAW3OoUTvH+7v0JKAlnRE1tbp07O8hcK5qBREGIuGGhSZoWmKJlEkcvV3S9jQ8d7DqFJKV97zWj2G/v4CVjb/hLaumFjS3gEGYcfB8l7x+p5v9WkZftIpbJSaDDkXtntwyPo36MD05OX22/nZBzWuxVhfBQIDBXvdna1HW08/+bizd/D6mx/2X7zuHhwz3svJGP0Z+p+9vW1MZ6fNnuLlpQdPHjMC0el1awxF1bMo8uqaKsNavmNWSvVZ4zzgGsSnn33KjVishqtzG5KXZaGAJtjX2/aUvObjDz6YX12G6WySPbu8OOx2UD1N7l+64WjxLqfOMoe6u71dX9/EiHGTBJO+Hz/cZGq/J5WUfqlcyl8IP/z6UZrcJZepq/RDKPc+zQRXko0nLvkVCbJ2I6s0RGnff/75F5yjh5Rhg+EdZtT5N5qoVGb0S6nmpKDnNCj2yf0aeKOFqD2M0ZKKaIguTzWVOPgH9dQc9jacP0YhR7cqIgX74Ytqw/AkA7N8jSOf6CYK3iJmFP4qFVLCgWCVVZ6Tvy0DqlvAVrAFUXIvSOadaGSGv1lG8xgNywPiMRDqBBx625h4x2ChBVQ7eUZtkFbzTQUelQVAgsRJCJzYkU9wD04VsQjCMoTq6BZWk+E/hM3IDwoJZJI0EFF2ogsY/okS6xZ7fa5oYyiDjdtAc5Q0ofT24aL1tBS8eIoA39BL9cr/CjfTRBGIKTgYWnIkheMAcJe3ISakdBdRrc6iVKZJzcUU8iEAQPqOc9kzOWFKPcTXebUpVgEyg8FS1rWV1c7RiXsdUK9oyVhobv8+OzxmkIpZJnshmAROu+bMkdMOYpgFCeyAcGGOZIC+aG8OkeGF/QennZmL3idzS+fzq993Lvs3kxx0ySExkV9Y68wjIJHaYmnoA8tvvFx65TpDAebqYkY+PRnOkXN7ZvMLLQwrYdQB2h+EQgP+MZVF3dnd22Uw7cHmg1J5IAAJcYiGtInDL7/mDRJkyTXywGEIlFRkTSgJWUeNJb26gFAezdluzcFNkXKoFluT6dHQGmShvTwGGORHCPlHYagshddhXOFGhA78C80UXnhh69H2xTBraVNVbGBCosi9lwXxR1lIHgmT2KQCAcGRV8rKvk66/gSBZlCVoa+fvTiZuF7wvEEGC5lKSDMv0pSk4KV0yZtkDYIoKbQzoxqQqXN6ipQrlxGSoMTyPTTWDUewrq6uwZqPnj5daDWeffvd8fn58toKqpmDo08dez6LZQUyIyZsWO0gNuZsm21wcLh/+l9OmxxQXK/T1fvog4+8FGRwAUAQY/cX7UFIAz0tnK1UC8+rLY53XAgRu5jClJikkKcgjxOGjl/f9FbZWHqLr0sU3k3HH1KBJynjkxg+DBLsmAuCY99jr0Ydizz+XmJBV/JpzdHamOY8qeY8F2CsY31PO+fbvc56ffoRdx7YfJ/k3pTHH9YbDJLc3DTbTVZa1S9v+scntEhp/ex2sI/02G5W17mf9xED0LV2e7XdhhGgh6kglHVe5OX00Vxzqt0YnHWay0tsszt2NzCXD0x4zTPXkA2uuKSLjmz3orf7ZptVdTS5FlfXFuZbrYV5di+wIqM1M3l6dNrt91jB9PjpU+aEOQPk5rvpF69ezj/Z/ODhKmSmdoTYQ9KPkeXeKxhSwCEZ77ZvxqhHKqON0V5Wyc4xV4IBloRO7jncKHOBS0sPCCxMoe5gOJEBLIBjeYql+fqS6kwrHiUOSlddT3u2p0RKa0tqtU13OMHudns1Jlbn08sgQ+ozNVpFEDEDpqUjfsnC+EWKlD+XICHcyqeCxotCmThGI0drQd5EHfSSOBHUlskUAMPyOqIGEPVbVbWTJA0C0SQX4uJGP+nsXnvEIp7aPcrsCgxPIPbHBbpZ9opc0MeivNRFNTUKqAABpoovSMrFONUTB4oLMxRLVfNBZJANymo/1Bro0rPAGxUqXKfKYBr4I0Kai9BB86GSlcA0mBguYoSCfeisbEG5MZAWxQ4g7AQgQC14hVLgFh3tL3wrnTQQlLayi0iqA8hGjnCKX7gFSvJCQYpdLn0/6Uoc+tsaLGsvJgpLiZzxbyiPpCnONlowFm+mA9HxDFlhjukkcTnS65kXkMuoNg+1qWbJmjImAGMb6izdWZjnMEFWZoJ3mzNgpyk144WAubg5tykCaOelaC71buj7/vnjT1Yua/OXv/m2c9CamOIKHnGI/RB5aBBXCWVF4VtPwTGUWmcU2sWKvOBUDe4cljyY3fW1TQa6wJtGOmjTDMeOOkwGDpLPMWfLlWYR33wmZ7hjB5ExBOz5xsamMW9OPMGJwX2iR9Sxi3T64RIdcdZokLv0KWzwLaDAXnKTjR5kSnbKvBEpsI984aELLoaV6lDENxiW8OoZwgDMmXt+ULzWBjlOPjS8qXCOkiFdUMn/HLgDOgAq9QG5vmLw1nP5Rcw15BOLrTZHbEOESx+SIo7gqmqSnb33K3r8zghATzNPl5S1r7RviB9lIkhojPQcHh+zfspafnU916g/ffDg4ujoDQdmvXjBPbJcqLW987bb5bRwd5cBy5qDu6UIwoZRZhS0QyefofNWe25leYVGGG1DFthxkAhXxSOlpIF0FjYagwyDfPWASpL/xx3JqHgBkvKOYiYZj4C7A7Pi6N2MRunKC2DNGpws073k9+JWnz8RjerBXPjpYPfg+OiDdTb0LnOmydJie2t1aXppHuiQD13AeZNwtHdw/Oblq92Xrzm0cn1hGWafd86a9Gtttjp7wY28i0urb/b2jk9Plzn65PFDGqwIyekOl/X0Ob1jZW11bmH+6Oz09ds39aWF17s7Z0fH7MOhup+cnblmgEaQE1V0zVkaNnV+3Nl+zTlob5c31rgfqb68NNtuLnB5Wnuic3bKihamF5ir4vjxtQcb0yen01yFGTELxSuBfz9R/ji+4eUdUIUjI38+Kx9ZBqHqDPNzCC4TL1T1a1brF3+FCT55Cq+s5ZUGN/bBV/UTDWK8Ma75wKA6Y1NsuuzlL3CUIA1pHFoLKIYFYJ7FEquQSoh6nFD/8sgLEAvQtKq1YTjUKFWgskkqFc1h0S6JTT7kW2UtODWRCX/MoUPsharBUdAmJAuSVIn0S+WjRIKgfPqEPNU3yX8yhyrQH1EJeiUra7SkElAc2BLJGAbwUuiRAhvGpwbYuQIV1rUmbGlp5dHDU5qeBwetiwHDt+pONrCwFZM1v1LSP8ug3oTedPpmMaC2CrRZhV6W3FLD5FBMTIkBNexxAabgJz3VJxpgVzSjbIFR+FTwNbO7DisNdFBSaEhOqIPmNKJZbNVuA6mwGThkyD93nIL6BWscvVGUXRBXrLoCcw/6wiJw1jMnz3LpXIMpHw5x5qJXls2Jk+hSfdmmWNusz33YYsPSae1mumNfyp08FtEcLBdP8CG+rQyNio0PKe1SCI8bp4Jz0iphUJlWtkuBIJeCatlbXE3OFXvICsjMTC0sLWA1icnUDvsDsLDEE554l1zNWSpPTS4sLT98YlODEXJIY72KRAUjyQ1PaFtgy9zy0W5XBpgEEndcXLQNfFN/KAeYFMN5G4Po7zhwKhHAJEWWfcKJ8wM8bMwx0l6FgyFeZG+AJFL123aTHIHm3JUVhSDahVAFJZp2ahjK8fycL0aa6wvEL/Tgo8pRqFxI3MfQYq0NJQQNxdHBDTcM05tG83u1HDkIw2Yjl76zDtCdMuZCY5RuVrdP54wV2j+8eNFYmKd+QC2Nq/NkolmmG0Cd1o1TigoTtwPUGC/9xS//lP403qw/O9rf75yfr62vPnvx/fl5f3mZjMP36EGKBvXAkZK+Q9q7HsbXFeH3430pChzJcevK++/I4m6S28R/8Bv4Iak0jWo1BoQ5ZgO+ciw6i55aCwszrTb7TB256PfOTk67RyfnBwf7r99wUB2DGtdcMznXpgbunx4O1wJcs2f3aNDbPzrkVmAnd1E1jC27Xd9DKG251xon9P5mZx5/8Tmn1x282qZTgedF95xDLuH1o8dPOJj95PSkRyOpf9Pjru4cJNQ7ZRahM7W3j4mlweSFSxyDfN5ltoPuEkMaK9xK+OHT2tI8KgK75KCF3JIk6pZxGv/BZBoleIeLQ0bfySCepcaPUgYdjzdirAXJ45yZ1HUVBXKleIOi+kecyQZVgOwy0ih/ckqQio4rMBAaqiZV1LEx19YMHTIzfC2/UUFkACwqLCxQofNAARq3qCa8Jc8w6S2ZEmPoXQhpPGus+L3H3fcFctJBiftBJTU40QwxGoWv4noqLJQhC1fkhXekHiqMCr1SY6RZAFVpyWxYDvH0vcRXq5QcLW1pUlf4jyNmElScIeYflNBymNtQTYC3YkSLs8ZEGJeRs7CfdZvYC1dkkfz6qjfRBS6xBROd40QDzQyVEuNECLTnvBkqbTJSymArY0XZmBK0HZlNecRQq1ugJQF8ZAET4hG1W4hDolEpq7Lxw277UhqQt1+Iw2CgV7FgTghJX8RE/e76c1YZuO7psnFNSg+DVbFfdoERIRqcn55ONWapgRjIwbRHkCOLiBZtQdc0szMCJDg162aCPcQc3T59xUYoY6GtI3IhrqRJpg7UyCT5z972GnsZ6Mp7ualLchsNlDQFxQCzWwa0iYcHQ0a006FALm13QmZ9na0PK8xg0VqkA6fl0vzabcyrTU7YTl4wAeu+srbSY+3o2RmrPVFhxCEU9MFLOZycdOuqFzSVimYbRQggQIw4hch36YmZ4Yuo9PYs2a2z4Djj5Y0QkilQtuBKqQXoe+VMXFLhTdn9o7CCpR6jKiiYFRqdGLVIHxiCiX+iTDIPAEQkC1VhH9qLF2/ObepfXTiyI/2TY3CBPhRMBQQQ0SjBrXlGG9uD/vkFssxCeNVF2Cd2LiaQEyKk2uK4hqODQ/aSKtzsaUEjMy4x13YsKBPSLOvjUkfinxwdszTXgVJsMieEsJSs2WRRDCWhk1ZrNV8+e3Z0eMDBxbQAaGDkxiqYQm7QmAKpHPmzkfB7uXFe3CbAdxQg3e46SSFH/vEcBaMes/pucWX1dHuvf3JO9WrMta/PeoP+Ze+GgzSYUj/n9GwapNhdQhl0RvM0F+ds3QxYqz5LdUMEGbJBdL/hVDLaOLWp+vI81a/HzUh0h/cPOaSKO3622afEZZNL851rTpQ8P5+koemVRp9+8Pjl61eHxycT83MLD7emTucOv/uWZjoxOYqu1qQ2e9rdxODmcG/76GaHjjUOaaD/zWDVZG36wUcfcR/LoDbFfjhWxVCuMUr/sej5Dmsqj/t8rLJO5RvlLWcj4phPxMiakjYl/igBO8JF5/Kp9rCWoVIoJhs9aOywW52BP2oeAmSMomQUSAGUvygccFJf6qg4VnmFuKCoN5UVV9IhzWNCqH+csXT+EpX/+UM9RvoDhbrBH2pBjUHEe26cJL6/J0o6D1KkmI7bFMku8AzFjbCSYsEq3qDzHrDD+CWZeljT4ohhyUsblPZ8YAwflBZoKHg9RAgyhQYkN8e7GeVL+sgJFSxbkUjPN5WCdj9NppKCvGjcq0BSSIYNaAAQxT5McZLXNzs9pAnLbBNjETiaKXlTfrLwDxe+gKn9mfJFpLTfDL3r0N2VizZ2EFK9bF3ltCvnPoUmFe3YswGsc3l5OOhxJkKLymrJ7F45LkEejBra15lqMmUFRmwJdfEORLA373pW/LnnhuJxogKmEskwIK4IWYpKvmX9s2WLcg9r6D67JotQBofYUINpJH/0DRveaTiCN8hiUlwkrMSl8ChyusucyTI9w+kfrIowgNpVWJ+V1dQfbVZaOTQvjk5YtXV8ftalG08Hd3FpmVuY0HEQBJ1CTKUlnVpmFqBy5aQQ2CsIEYXygp/0UwzgH+iGksPME/f2QXrjEd1mDVkEpk/AJDCwihTaC7aNTfZywc1rnNIBSTkIgdVhdE5ouiosdBC5diGDyGSPoQUZkSMjeIdc0geq12xHXd7McqevbXwxcBk9sWjPZBSE5dNFg2BeadQAev+sA9e5XU7uxEEM/8CmQo08oOcx9/W0Fudn+rPqL3P2iWTQdqCV2m632KGEVmeF84tnz7e337IRk7YKXWmHyi+vD3d2Oc71448+vtrYePbdd69ev8GCU68ePnrSmlvgyBGyxBxn3MmGS0HmH+gpJ4a8KC/vZhSG6/1jEX7/JDLL9oUjmz3G9k/O2JS9srhA5T49OqHNpLq95jSMWvfwqM9m3vXV9oON1bnW5tYm1H/58uVca2t9c+ucq4xOThe3HjAQd9FuMrvkVMLM5MLqEqU56L4+YpVybzDLac/NufWN9fa6w9esg2AlUuekczhxzf6wxyuL9b19NEIH6VtZWhw8ZkU9J4ayS+zk8OjsiO1GrpinKrI40YNUndvv1dtTp8dntXluLET82GfJZjasheR5lw5/fJ+iOxW6IhhjmRLEvzGP8Msa6yC74wHUDQTNkb3Eywf1OLWas2IwuGgP9t1xTMfy0iItyNMT59Qtm/pH0HyhHSMLPhOICUHxJVQ///hCuYtQeo0gi7eVO32D8qFOL874giKvZMdX5ZK1kPMtxMrxErzeqR+jGLcxSVuldFMEdiiUGoUbXLmKusNPf8GcjMAtNhQ9JvKF9sNoBVepMfTJb4gTJNE9NDrxJOkwL2lTnL9DClQ+txgN44SABQBqHlo6KezKJG0rmUjapIKA5lJQ4SPNB0yyRZDEAqQqGSeZ4mvJ4JfdH2cDCSgdM2IWdvBS7AJ1UwsanlawiKPu9Q+YzgHjNCT+t0uE45fOR2lrkDjNEinCAb79ycvvzw72p2ZXZurzs7PNycmmp3IwBln0xA2LuC6Or7ibBZxYemvrjgEWysfg1lwLFUzH5bJB/xibyUBoaRrc0MXGiqexplVghpWTdxjdokBgxRhAntow6wLj5L0ewwvkyTJal31zuCU7grytwduBKTORQmCbV1gX4FgjHM32Pr5Ug0QwEvBwaUJ6wvHF3u4eJ35srNcy3zn58SefhFJcMs+eSG6jYYyCxo2GihwrHgDAkZNImxiSIllLvDRgzEEWFn7wY+uUvIlAOOYTBowa2LwanwqHPwFkh23FzIA4S77t5+MofmZoBIm+s1BEvpKLEBEFCIrcLESTUTgZg4CAaJMQhAxcrs21CZzWxqDxcn367f7ulYd9OhyDcmFJBYkLJqGqVQLLzvG+7bnmdKO2sLrCjg2nubhsg4kJF6OjteyYgzOdA3pap91zdivNrywfHR5iRcASCCy3lnY5cpJjxaAhy9nYvMTqHuoH+0DE7dKbz2Et3eK3GN16Y2197bPPPv/f//2/R3T+xV/8yw8//hQWUJnObzo3bhmgsPxXtckaMIDpPOUFzidlgVZjXxKZTwtWuUTJu+kTl6+hkPAKQwtAI6XyGgoHSpyxmEYoowZ5e88DxsKROwHibMbWG3Hj1VLQ2mXklisTKCBCCHMZimelMieZsLxufqE2v77CuHT7wTqz5Q2OTJmZPmDpw8wUXeFBqz5rk+XmlBWLC63NhU/Z9UXFoYpxTunum7eQev7jJ3P1Jpgcd067M1heL4qsLS0vXbG595TBp87s1ICDQNoNF7hMUwE7HFw5u7x0OdeqL7YZNJrjbhYaCJw32T3nlmHwR+7Y49BHSmlp1Wus1rNXzI6pFHlI3DvFp+jj3zLDWnNL8HHig+1YEHGraHiO/BGIvKtAiaAmUArUj3qM0pRXwuQo564yyMK9cG5nsMqgkqyetAnDj1yzA/XYC8L0F8Fs/d3ZZdWL+k49Ggds5XH4mRex0DMtUfOMi+gSWyVAgiKqYBK1RfTSAKNSO8JF1wVtmLWrXBWqPrGnhT+hgJdkmoMCOT/DOXeqhpkTiycKqIpTISG2cbFAEI0ItMNpyKvYyKDAHlGMuFVuwrTLCrpV6yEpyMVlWmnIEzMzRSDoeCMFRd+HrSRCfVAQhoadTRIz1nyZGGIQmYW46VcwRZsxYq7T1ECBbhAdYk+ppDC6SI6jh1BCnvs0pKcdSIvsv6hTAmCEkYltKmwl6llVGWNEf47JVrflkJSoFta4FEFTEbiSTFrLUef8o8xDVgvqWKyqRRYJ2gKinQQG3FRwVxAPO1FBxAc+7HDl8oOSGTlHt4MfZ0L2ZybPZxkEHhz3+rPnV7QrMMOrtAE58oYhMI6AZ1SZhgYUxapoU+2DgS9kZdscR8XWmV1mI6OrNcO3FCZ4Ft44HwIz2fi5t+MKQ2jqxEhOhHC0N+uNMZDgg04/ODz45BNusmNZJuNAs/OLnECwPDNTd7aaYlLVtbw8LQPGQYrZqKT4klOm5KX6xk/qQ6pyYcMEe1VpDNP9ZeEPpOEoa5im2aNSyBBrMs8QHWCBFojl1SLahlC6CJP8eCU2qfJHgZQDnjZBaO6QAGsWVSGKRFIacQRg4q2Ncj1W28VuLEcUItqBF2apWfUnBy07k+usrZKPShidWXCFrSBDhsRihnXlwcbMfIstw2zvvjk7uma1q80lllNh0m0XWIUUWTdUYDspEAcyeIbZ8mK9WZ95XpeBcjKqJ4JoF/yKMyY5ld/Z+ybXzc7Pn7NjmzVcHOsEQzDYl+KKgmYxwe7+LqvkHj30vKw/+7Nffvtta2dnB3oxonfR79Kv63SOf/3rX7E5BEQ+fPr0L/7iL7/48st6u8WkPuPYVDZ2R2GjELnQiljkgJCP3PAVXPMaDoxC3/NS4iXuMO1YLLlSAI15jl7vBN3N6U7QKEFeSlBYWcRJX9STssEiwEZt7dEWB5txaAZm4ZzF+LXpK4ao5uq1pdbMIusg5+vtNses0NLl4gTiXLMdiPGJRo2bqjj4c8XmryNCdM66UKjenr1qHO7vP9/d3lxZf/jhh0wtk1Ftd/eYg5uRJTRjHWmYnWeJwBSLJbEPM3Oriwgj6o1VAIgFe88vMjUzwQw/iCzOLz7c5FrDXqfDXEP/rNtebBPnwZOt1uJCkyVjDQ6St66XYlLk8nJLiXcJ9B7y30b/Q9+Q/lLXxhLeycBKwyIJ2gnc0dlHBhV+qo7214YrHUIdNbFRn/XQfP5Bar2uXcaP/GseaIBS6R1po6yUadzF851HlALUgOwlTB2dumiVs7KDOKiO/lQj+RvKuc1gqzc121g4kzAkFqhDsPEXZRAb/iVyHkYNJkASjOObFNZiIjJCTS6m9EOiVJWNcC2MesB1IGUOTNVkKyKY8yhoJV8w1aN4+cN3wQcQygfO3GL4HSQWDz+o43Y9kh+acEQG+QpymgiXj3CWDJwQKAGoQLoFDGrU6ADbEsBWyTmxJ8zT68voqKbZ98wBokrVs0Ya6tzYYFLkdMIB95jAnIrqpSjgI6ZgaXOKcxacqAi1KI1sKaTzI84eNI4C8UxCMIhNtqwVHYSI1UET40H9qc/QKOKWO24IPWbB6+5ue3bmL375y8+ffnDVoe51p1H64OBxXnZdNT8u/7no7u6xCZ8h3aXFZQw/wmynNJ2mC9rJbOeVWJF2Gg/uE2bb8BXjVsGbCxNrDi+XEc70zDiklv2KWEyuOWOdDllwbA3X8FCGiEUkyMwtCNYTO0rhgBY/S53ckVljlIh8OLTLM8eS9C96r16/JAJmmIG7jXmPmIiMMRTrdLJpQdnnrYsMDz9DbKLhEn0U1YSJxJNi2eKD6AoXDtq53liHD17CDFyXKOFDZK95RBSsIYSlWeBqbQQPSjF3RxeUY8JSCcmHHLTSvKkawLg23V5e4LquHr23Rn260fDyKs9lMK6ro2C4c7ouM+GPTzwRfmfa2Qe+wIr3CVY3gIn4hJiFHFy5AeMYoUMK0L+Yao5vWb5cpR+EMDJasby2TjcO/q6w0aXnQf1Qe2d3h14FNvhnP/sZo6CsXeeExZevXyARjGVCkNdvXjPFyYzAixfPsBacMY0AMNJOfYXHSLA8tOrYupa0IsbXuMMLd9/3TowRf+IL/cdDeQ9P9BwPUp/o7keO548+rK6qQl0w5glud4EUwDNT7dUllpRcPn3Y75wzuksSotaZGcG+cu8Bq65ou6IGA4JE9fn5tTTF6HiybQ5xkVNpepNS1rA+cWXxl//yzxterjHLoU0UaXFrvd5fsIHGGaiA4s/elTjxYNiDF3ntURoo9zR5gi/5shoB5jboSt8sYblQwkll6w3u8OEGzsAU9QizcIsbvQw9hnT4KWbdxv393sZZ9k6KgoGYoSUYAqSY3V5HWzLJ4ILNV4KUslgIQGUNjFpRkbBTFntBPVYfAE1Q+TMrfIbqYjxnk5KRdXjMDWOMiDLCbRhy51eaQk60QfRpNJm4qt5gC9ZLYgujYHUn8fiHaEfgwQV/nklZFGbFEMumLU5U6eGf8SSL1o1fLC/r8DXEUThDLo8IwoudEbNOyQSndOoME2EdJTHEshms6SO3iE5y1VOgYh0ZFYDFdhDOlUekxfiaTvM7W79mHAfkWDqa+wIMUBnCcJf3F7ubwSx6c0y6wVNpas+VXFGGwcMXuohoQzvt6Jy0SkQBu2sTjUzpu6TnGWqG7OAXooriyN0aYLwoJ8q92F+iptVTxbSAEJ3+jDfnuB1F+8pk3cxMZ+rmuNf5cOqy9eEm6wKPt/c8jZJl0ijGC9oALEOeZuKJGRV2kLLc4+ake3XkkQuQGbBR7nbXpB8l0BBruJkdxKrS6eK+F/ebkDFEzak0vGSrAEqD/qjdKdo3zRYnIPY5WovpGMauoSsahlTaNFUczKQbgKqpS1BoZgAZ+ij/icsQKh+kJTfNMLXOQVc6cizBnWWMDXufCDzoCV6msRsapm0WFhBkaIpikQCuwFhDM9jg9x2X2hqpkgBVEi2uY40afmKDgMRntwk7H4BjVWP4QkdGkWbiwHpISqEhDAtiZjhirH9xiuAQRJEykCBjOeHXCsvy14X5JW96cZyatTYIIshTl8iRhWDWAF642CRtDk7NcFyDBbn1Bn0ED+VmKh56Emrtk5upfp7YdUan9eQUUmKn+bNB48Q/YyfcZjH58PEDVpkzGvnJxx9yWeH/+//1/+SorMdPHndOT775/nvOm9x6+JC8Dr/7zs1skEISWu96E+cnp0evX71iQfWDh4/WNtZhN/bWPXZIPM0DsTA2tCJViDNObStS4cm479h7+GWk9zigFYDlOYrBZzhc0uoNtoladMwo4v2Xd6Hd85HNElUNw6jjDbWotjC3tGBTlVy03+ZFoWmspd1dYa7I00xamDNL4ilfvCDP0VkFY0QA8fKgY3vMxpO/k+xhgOLw1LZMyqRUiYg8kMv5sP7EBXSoTiuQykYwkTiCHTUHHWggl9kTkhPVvwBQ1scollebdwb+4zuyr5ABY/Civs9Pz5eTAJjkLoNLxhD51BDeGTtFDSD5aowk52GEqgyqtVK9lQbfSYML38orCTJcUzXDxgtOPEbs7IMOAb6XNMm3SpcIeKRhxI9/GX2En+IryXWqONApOI/naSRZDxcpB0Wj+pMouou0VCv1Jrq15CqIOKAJhoSIjUyn2WKDXXgUHLEpuBiZqhkASVhIlcAAMF+VCYAI16tov8ABZeQv5LCkgaWVtTuBcuVbYVNvZ54OL9Qj3vqpbmqz3JzE2CadFVf/m94wToNjdFTRF4LgMDEMrdGiJBoqEPwpktTItBwfsCaj6byZSqpZKDSt2lZPIoFiZF2ZFm8hR75v+Vg25ICDjvhYSmid5Clh4RIJxUyikxt2EFdVUaamZmdYYNadmjydvGEednZ9cYazKnvXTAhxCHujVncInZlX1mVw9BJ3HzKq6FW18gZKW0ILJLZ52itFp6MXGEaAkF0uR5u64Wxj/rC8NFU4hId9eqyeneVoHnemwvQJrDXGgNUQLPWkZQKXsUOMBNAMAT6LywEOsbWBFsJm6m2byzpD7uYsDuUzVzAVC4enLeKJm/PuObQQoNJFg14rSNpQOkCqQsQvD4QJ/BAECVvJ7W1oeQubfAUEnKpYVyRMpGQNjtrAyMEExy14Q4OFkRPFBnNkuaeDWdiJm5ZypUxOIzUu/0PVKqA8jcFNgjTlWHnuSE177uqSXrIDC0p2wQBZYzMaeIcU7mm7ZKe311Zi29kqyiHbSCmh5GNaU/E/3R5Hvae6SFKfZTdTjHnMsJYK1NHytFlg+eTExoMtzAPnI8JkttbQwjk+OWvuHzzY3GTO6e32NncJZ+v2JbWEPCChwnNJo5PZTw7brL1585LWwlnn5NPaF1z8yVlrYMKqYFd5I+TsfS+sFLP3Odmsq575GkWtwkJ/pIJoljQuiQqPy2v1HMLz807Muxwfj1ZilvTFn6c1YuRVkMsnuBW9g+awNkZGYuuGwSBJ/FTxAoDPYjiDgqnkZtg0Kik+WtmhI1jgiRM/k1icfJAK/cZrSW7Nyqu/oSRKSqeURySSisTgDPoAqRLE/96DoOQyzMzg4iHx70X+B/9Mzihx1DZ/rJBgvxEdSZCjIlD5QQglLR+kTnFQRv8kNSRdZqp8eheSsNC1hN+WgHrKXxqZt54Bg0TbuzBIs/A7iEAwlPevgDFDP+W4YUPMxjN5571ELE8DQ/mYGAHdR30sOSQwev7UeCalbWKi1KC05YgiqZKs2GA9yt8tJQlOJEVJeWWRSLZC6SmEylCG0JYwfsIU2XxAtzQZ0LjpBaPJuYuPMR5206H3vJuEjqGKxbYEnCJaqeYO96Di6C8zmEOQwhxX3pj/w3ZzKQpJ0J11cYHPakGcE3wW20SilfqRGse3tHmP03igwYuKp4Qm5gPqhN+lbCm5M7pUeFomDPpxzgjHCLLtj0lBRWNqsjnXbHAqFBSYrU9d1ib6E32O62BUuTU3YPtzy3t/J3t9tDXcASy2gXYVJPOHQgc9Cys56F9lybPHHkEowhlyu2S8EUwseaPF4RccIMFpGzU2F0U70y2bnrlC3bM9idv4LDANL4nD9qnYW4qlFcLOmA9zPEADHpaeEltwWakTl3yWICNR25ziTgQj2y/EkbOlVynFQSBp7ZOfAlCGIJCYvruuZFbi8PTFEQxqmykUJogR7+rDZoQNFlpn1H4lzBUtiAF35bJi4JqTBWWAswSoXmZaq0XsfPEPkUSNYLoYtmd21kaBrWJaR5AHtqAliUUPMhKTrEGADIlHbwB/OqMQD2vKYYP0nGzsugYKywgM86AbyiezAqQGEe0u2+lYM62RliZwwj4Ydwk03IM2QwPGrUrQZoYbGJhUe/7s+cPcxvD27RsuhuPEJ+44hmfgQHsHBNj3AVYszeI6n07nlAMsaYM8fcIRUA1kan5hieUwnc4R+CDVKD9wRJIrvvISevKQRxJYvPLjk2ghVYkuU4cSURihP2mN/6POPAIpackIElcp8vNuaoho7S7opIUrFkF0DAFhElO55C94yurbdAUwQcpdgMlgqS402lsK7zCTYW5VoiGBjOC/oQvmUrD4EVtY/hU3FNJ8iRtRqSxmKxB/wTZvSAdvggLGyBnfDx6E+lpldYtESlElALjQxlyVXp8xsGMRTFFCyInE9wEQOKq9SeZ60OqfRY16ZHjyomefCSztDV9dc8QeJ1pztTbLItRJzllVA5WkAc8gBO4j9stQFWvaq9HzZVBbhCgFIEpC48VpmEkgpDS9xCp/VJj8SVqqvRNV4mnxhKXMCxEs+ERFMXvjUf+GGUBMXeqhJZZrxVYETPHAyxfA4+Qi3FPtBWzJz7RxVXlFtErMD3pDJElmvqZIWRJXm8Wf2SVAZKJbywul9htMXbSMvWDM2IVgDhTgby+GkqF1GYVFuZRCQyTwTATHjfUkC9T/xPVggkOiuPuH7TOsTp2evZx2Apg+LwfnikmghTYgS7cGdUSrqRjWgqISDSlDdo0JqLHwF4uebqQFRDHSXIOMIFYUI3ChQHRjCAxGYVgm8y03YkccV0KlvPLFBgPd81JCwcorKYUBJNOwadAfsLoSriOFGKCCAUEsCHQwEpAsRkalDiYu+63OWZdOK6fTIa80LACFGmAwB7py7BarOrWHheppgiCFNqvJkdVSkDpr2Fw2ec1JACz2wbpPs53J+XLycZ3mfLPdBhO292IZYDL4Q5mCKhgHfUk5Vfe6PAcWgC0bHRvnhTZuaX8gMfEWMsVG7PgsPhKfesikAm0iBcmqQqMM6UK8bdpH9oishEaWiS+2lCEj8BSIKCUhQQUsSFTkFR3rH5ES0XC8JD9w+EkSGWKFdoJKvQYDMarMlOfiayWeQR9Knmh5yiWZL1L8ccSKG1UYny87lGQpksrAdKTd0RFlRPEyrwIH3Q1tucGGSmCRqVWKujEThxd0AIXjJEteiEbXF9uHwDA+DyS5XZXL4lhOc8jD+iI3yGJjY/2jJ0/+23/767/51a8Yiwbh45OTXIR0bgqyAZbCa3OHFGx9/e67bzhh+uHjDzhkuNcf0Jn++c9/zpV8DLxnsojZSrWGjQRLE/7KBx2Z5q1Qt/iJnt5VnNuYVfDv+xMeGDmwwtcqt5A0HElGBSDRq6zyHftFfDCuwhMaWcZb+itm0E99pBQM+UA85bNKBql5R1z4J/NjZ+QskIVRgoJYlRU/RBulNwnMu0UkgPE1+3AwlKoSBwl9R9lTU5ANxankWcDfBldvw/TDhE4q4wB157d8JZfhq7+JNUw6HjB6N7DkUZAb5ldFGE9bguwMhLbKLrGotkg+J2k7nsSEFJecsthzfpGFhfSEvRVGElFjZfcw27xIbWBQZ5RCoRJP6fJhDbee+138q7d8lZIFlaLGwm/xkTwAxUFe7au9MjxRXBZUS6mMwG4lSQ1V5azqsA6Ze/IPtgVUBTMY4sMvnCOms5wuYxagDv+h4w0AsinPApp4Vmwh5Cmq5p9kAjCR5RRZIRW/4pUvBSZpLJSj0HR9nOiL2HqOIcSH3gyICQldkF/BBLdkEPNv1+CS3i7bWi57HUbPUDTQCOsxmKkxVIF5RH1WHFABRvCgKpM8rNWyF1yYY/FEm1IEN3tB4MYwMasgyEosZT8q3EolInhgMY2WP9PjSE2otYFcK8p5wiIJa/yhBCkro3mwEruI7naJE31/MEvzFbaCEdqXq2lKNoLDJxAr6IW2YTV7JEjYvbyoM/HaaE0wkmwvkKnhq9NB74zTe9gUwRKeKFRpQ4lzngZxPJFnyilJvOjc0NtiIhH7N7hxLtZy3DDcTU+MG2q53Qha02xhSpLWqLyiloAoxlxCcLRNk/MJaB64h4MLZe14Xd3Q93ekQXJnLtmrxTmCLhPvESuoBLt5Frph4O16WmUgDpxVVGJ7IIB8f9dBHM4LWV1aYaiY8XCbyZG8UE3c5GmhIXwRBOECoqOOqJFTqXxD2sJCmAC/ES5e8HZgWTuXD4HJZdwVCw5Yk5nqGA+ogYg4szXDUc5kjPDBSl7w1qwJjfTOJsII5IiaBwQKSeMGJItlFXSkCtFVgysTYp0qk1nImysH2ydZ2txHPSS641AwmQZrAcynVZQssshLMafhyZHU83MrS8v/5/7+i5cvWO9Gt2NuYc6mCcRIZWDAmXOdSAjZoQLbDJY5oHJlpd2a55rhb77+hhMn/uRPfsZWJRb89XrdG+53umQzFXmBA5Q1UyU2ZOf5j+DIrrhRXnyO3sMyuT7yAcU7EaBUAkEeQpUWuzFkNQ0hhZBPC0YhTWwhSYGkklS9wosJ7Ek4iBW+kcZIFfcY9lBxmEKVYohfyoOMgoBDHADFYUDxNTDn51TRkyRZF2yImaxBEdQD8Y//ANOC7B8NtPS86xh54Y9FhROzHq7EuA4CSXXgmjVOQIGkFLMI6aSnvxWKAwRAqCUoC+NCQOlyB7hcQZtE05OvCYivxeJZzGqsLCpMCt4WtiSMBQc0sRWDIJ7f+FR+xdfaXaFUfsbIVvlb6NRLcFVU7CTplUY8bxh0lUVFG5QXmFOhQQVYqiW7I8PsLUPKeqe8Vdof/wkqFQx+FD6KrSALEK1ib8lZAUcTi1iZP++48oQW8AYj0+vNXl7OMivHndbnXYyWpbKdola/muIwKMycB59DRkS50FCZ1+rLaNhC/HtOkVaPmitx07wpmeMTeqBZZR+h9k/TYCJJot+Dlc8yR02WZMaSHzuE0BNYjK50j88651yx4NIvxCi9PREVY8TOFwyASTm9i8k5UQIzHsS+vOl2ufVvhpNh5pfbIEL3LItse+xjO+x3XhzunE1wPRQTemr8FAsDR6ee0RJyoKHDMqIapGHIE/yxu5y2Y18G0ZRKN/S4GXZGaNjQCLNgTczhDXa7NVO77HVZPm2p2HDBxj4MmsOwWEQWUoMf222moDGDqoHDtiVmqVmri0V3wLPifMwt0algDEdnNoj+XGpSotBCpHUcyazk4A6Rb1jVxQ7MuRhyQtSKtxHCTKlFdtjCSFVCzRzHT+F3+eRJTEhDUSpxCcM4+Sg4V5DJAfpgvQTJ3EeA4al2pfyT3Evo5i5jWW0EioATAk0ArqyQhsHkqvfMakGXGTP1CouJABpw3OhkCIMRGe5/taWM9rFduNCeQzYu+pzUbSGAgzxac0lCmozgMMRDdeAiB7IRJ1F2xRlMxCqzRZUnc/yAhvucMcTa9o2Njf2D3W+/+e3x0aEGnVMiWHE3v8hVS4+f1D/99FOoyPDg0tICC2eAwC1Y3LgEYhbW5g1qrJB0RE6LEjKP+9y+i9etCzeIPRSNKiRUuI01loKYUa0pn6QaCxsmCHPyGPrYrRn3GEvExdvsvqMi4Qed1RyOBtGM9XTA0sQgiPQAoWLfoIWswR2sB9LLNoFGi0Eg2lsTrmXXgDqjyao2FmrQSkY8o2dJyezdTceDuK+b803Mvpo3JRXy1BQ3r+y+3V5cWmyxD1gu6wyXSJGQyQmuduAENJbTzdS5vil4JVwt+Pdwd8kI2H9YhxyenJ1Q5SgsNCSznBqHckUF2feUV3mqKnAaKTnN/3zzY3icqOopOQvmKFrb2nDSdi21MRUskalzJBVq5AHIEJY/E1JbhKUz7jAD1T6VOc0yyCxuBqtf8rTBj/+QYSWUoAIon4K2YJYsSqbA5tOshZ/IJf+UpRQkDQcSxOwDQJtpXH5Lgt/rCayQx0IWtO3h+8a3ITZWMKHW/owOVNqtkMkszBXFNXnBVC3dthrF7Q04uoGDJSkA+heikhyI9keAY1KID/42IFCu1Ch6oBXzLGEpisUgYem2wTBpYWEV58SRytpg8JRM4SZ4y0QdNcBKYOQQpfgysArDwlYxJ3OyoKdCXqcnnau+vY3gQL9S5S0AeQA2Ud4ZEiy+jmoa4rgHfyh5xJP1NSiNmcbsFV3pK89b0NYyszs1dXLRO524bMzcDNSMqipLp86WuDipg2wy9zpD19lpP9aRcw05O1VAlXh8uTFpepqD7mAStCM5WHLB7c8/+Wz26npv++3h2XG/z9T7TY5/vqaP3MBgQLTrCW43pK1B14pbbBvzS3TZgM4kIu2nDMkqcMALSIvoigxaJyp0iq8ZgwbMhEMPIhE7pJFPt84vshB3DBQFssEVDVXiFJICryJtldLsImJSH9jKYJpvtKkkTZWbscEKvPAJDjAfPzkm+XCKqeyyUoKBk9ZKM001/KnZWE0WedMBhfU0T2i7FG6SELEXB5S1lxg66kBKQkGl7IMy+2RGPva+NOT23bF/LAfjriowI0EINok25w5gcyeN5TUjSC02gQJufrrwOxM3lJdawbg2p73VWHZwU5ttfvzxZ5zU8be/+ZuDg70saPdiPm5kevXiB6eBa9OHBzv7+9uPHj0BPtxCHig4As+nLP97uUIYYRUw5cX6lRLcgz2Kds//fvRh2tv4Q58qFzLMG3Vq+9WbH377W1ZDILdsCMYbs7m6vvbw6ZPGwpysVtdjm9UfLLx48f0P26/fsPIN4aA6wsRHjx8+fPyIRc4yDLi0oq9uiIPq+fTTT9jVDdUxsCQ5PTr+7utvuV+BE1cg3Agpkbm+3n71+rd//TePHz76kz/75WSjhg0uEUAAhiI2IHB+fPby+2cbK6uzrpYfASjF+vs/C1XK8+8P7RbCLSOCMwLWY8AvazAZX6Huc5Aw82426hCsYbqiE1BtVFxYYJAuyv62tkqExKySFdbia70yaCzUuLDTP2uiHyNJC0OobKYZS+J35UqtEqKOPH3xh1/yKp+mjiv++SAkiMtlnDbGKKOClgRjXsMQyhJckkkQTjJSV5ncpvyptwqKaiGQqcUqBCmV4mNe0WMqQ2IUvEW4kEfMQ1OHPTnI4WaCtSpujEOmOe2HWsMWEgeFdCggxxiF7mW5lhNOpe0B2wCIrr6HqdHd3OTwH5szWQml0YZSEguk6IEATONkb9V2A8zj/5BGAB3SAwQkDMtgK5/YeTPQSDCUcsl93Z6soY8OOAQFlDN2ZoMMSvOq/OlqSLRi0C+6l1RjTp1jUBhDyVqF/uXA+xPoR9LK4GzfmWnwzfZEM7Uln/PfGB+VKvmjNDhsQy53qvGCxaVg8IAShoieDuOZTRRTE5SRhOub5fb809X1i/Wtnb2dl9uvuT2GiXw00/Tg2i6AhbxkwjrtnClOnKy35q4ne632/NLy2tHRAYWQZmzXdpWxkwFSyveZbrfHB9aXMyIgOzfMl7ohnW7ZVSg+rIVylhWUcLnAvY2nj1yHCSMnQ+AeVQ8aaNUEU0LZZkMhUJCMHiMjjNqyw3N2osY8ndJIJOlfuDTMi7YsIwMyitVzcdCfsQNiQcOriwuuN6B/u7K6whS3oxowugi/MFmfn6NLkFYxAhkmmgeHR1yyuUVrzX1ovXPQpYAle1hGlaED6hrmVGG4g+M8E87WoJ+scmZewIodrKkpgp3kTJVvvv76xYuXll01pwhTHAdXBlcsuHr9+vXWgw3O6qDD//3336EWaUiwSgtZOeucnp2ebm9v54ZKbMnn3Nm3wKkdtBtZv23pGZ4hX5erjNF67HVE/uqlovh97+H3kMbD79/jl0K9m0rOBotRftao4sL1wgtlgUZtt48Q/uzPfgn7JPj1zdHR4dtXrxhb+uRnX0wys+WUhc3fq07327/9iuVon37yCaP0rJhj9drezu7bN2+4V+PTzz9n67D8pz1ar21tbn371VeY4cdPn1BBEXuOP3nz/DnzUuzJhoI0kUUTEVczsRype3x49GTrIVdInh+dzG2swafEIKnlKBrAyoXtV2x0pVR5ltdhiYe/o3In+vhjFANPSGg9KzWGD6g6HvUn3t9L/8S/i88tCPN1Mgzqed95afuiHS9otUB+NXfRiQWHPGWyRABJBNM1zHmpfIDnXx5p6xaJAHaEHgjgMl4irzKhltrCobZHEUThqsh1/FiThm4kPMGLbARHLbamOWApa4CvlOgIGtHPvEv+5EKwJg79nIYGVrCQ/VYVDXNMDgWaXhSDP+2Rjr4KwNAdao+kKCX3NdJdaINnIUwiBoYqEGF2PVSG7SSopAx8UCsF42l9FmiccFI+sIABGBv34GB+WNjUVeHAEiIDE78p+1my0HHRDCXCTeQY2wLMElLYU2URnDPuBGxysD9jMUQBJtgwQGHroY/lLdQNEfiCrKggsCiB4owvc8BEd9jCKGarNwtpOMZmiltrhsP6hIIfplAKu/RXCROSa6pMa2Z5EeoN14P3NVxILQp9hi2Mbn1Zmms5iWIzgjN2OGSHjLEnTnpTcmwJy5o9tR+pJ4o0j/nVZCM7lswZT1ox8gb8sag2BFhVxK5iEKLOwyK87Epf3czXGgubDx8tLR+enuwcHRx3O1On3anlAZPBxMUAgwZA2dTEKR6X1xMcJMQ1L5wsz8oTOunOFjNDjAH2/CyrH+oP6mHAqYIMldNC6pyfxo6TMaBAATpAgAi4Yu4f9CIfkktx/wpvjKZchRGRecko7QotoTNEMYXxEWdiky1+FPvmgpVtiJVr6ydnXSSFjijMJS9kg9xIQl5gbt/Sv4whp8iSUQ1+yTjhyf4eQ5hc10pBMmgvylnQxQZcWlqYbxBwOUYYLMDz8zNWwdPXPcGuHh4hi8Vql344kLG+OOYKwNl9ZxcXnKr90Ycff/31d5x1mOJo/S1sSgf7jvYP2NI712zpoQTMrq1t0OBqtuY5ZvfFixeQk5WnLLBaWFhksdWz5y9fvHzFKgVkBZR2dz1LizL+7W9+fbC//+jh08//5Gcc+AJl2A4FpSl3RfrkSNbKfcgt1W+dhS3q5tbvnbeQwnhA4Oc2nNexT6KVKCVCleo2thIAVnrIZJ1SEwyGXvAf0TISTdRmo7XGPY8ccaWsTcxtrmEyn//w7GGvx/J/RMbz4q8nt9/udo5Pv/zyi+WtdWfXJyeZYnm86L2hX//mN3uvdx5/9BQ9lMbPBNPtT588ffXi+eIcp0BvIjJv3mxzcdtnX3zOykpayW6kSbFYn8kyJC4ARqY/+/xzlqljtudXlminZiA6aMYEDYuAfCOs9rZtrfNXKWKRpxKXH58pYHkprxWXCnGGAY7dDAmF3zi0YZQf/R1nxFgkEArH72Y0QodKtrCwcMpxeDM1BO/xw8dvXm1/9dU35s7/Ia8FHhrxAsvBMyJkgeOhtxGiIYZpbc/4nwA7dkz0FZWBeuMqEiUB3NTM/pAbcqA4hWoVDH6KGYh2MYSIkXNrPlUsFZnVke7+QzeSWQEFSMEnPj4jR2MVZvmn3ZZl6i7HyC1hyTp+FSJgx2dqF3xG37N2hCFBlyN46AoV0n6hnEYdoXXMEGVBxkFTsogWMQDiLwXmD50JuqgopNmNGt5QhLpId5OYwGHy0pGyNEsEJb0d8ypAmIOLMkKH07eTwigx2kzSkK4fy6FZ7ksppaqEwJSF4JzgSMEZiPOOhBSLCGJnNH1iIKWtjLWvahsL+FJIdlWqXsKmDSOdk01icz0RBIM2ybgAlBRDhw+tAb4gHEoT6lmudO1KhnwaN7Jkch0pkiSiAor+SXpoqGnkk2EADCIYY2tpkqD76cw2NOZyDCtIBYa/WBRWNSPx5IDexEFNLK/dZadJCpUdQYCKjEcDwLJx3w7HaFlOI4AtlLefDQcYTpuYWuLqw9WtXz799OePP15pzHMfEKhg0xm8zkjFBBceLbbnGdskdxy7j6EnKMT+2uaA6KCECIISLzRJzYHR75kZbkySJ6UexdwRYdxBNw1haGVnWnUEppaCX//GHJHLV/ElMAPDMKXUPWEhyJDXWscYC4MGNGV0zI6nppI+EfCHNDBbwts6YwuulYUkIFCywSjvceqyB/pfM2QsO6CyhEThstDMaSl8mAOGlSxEKTyBFrSTaC1xbfTh/iErtUwVvIskEBlbiLWH/lYRJZwkktfmrIXkj5FUxi1cJgaqqApW168urzyyy6XA0nPdevh4ZXWDy+8+/ugTQrffvGVw+/HjJ6GnA93JDnAqL5Zc0exA8uAXl9dSxO++/ZarCBiqYC6SSQpbTFnFPUbvv9drKezfC0TqIWpu9Ffk4R5kmBXW4o1cRmVZ11RUKD73CKhWFCmG2xghY+TpYHdvfWVteXX1kvla/jhGdHpyMD0xv7bM4aNvdrbhppjbaKT6zaxtbnC06KtnLwdn3c7+0f6b7YePHrYXF1mpQkbhlw/VZ3+w/3aba1bnFuc3trYYgWCwGqzgNaF3pDmlI/H/CO4eSX9/lKS5DmUwu7K08ouff8ZxqSanckL0MVdg3isuwgnDRn+mSpW3ElQuNONr6FHI7TeVBLNhCuKMxagSoviFTHUgSoFHPN75R2LMeITERryf8E+RUReZRSAP8xziQhDghhPA2kzb1sQSSXHPP79i8IWkOkPVBGbABRMR4aWMgaXEyZV4WiDTDL8FXKUGT/Op3FiBy+vQQ9gxs4mfPEsSAtAdiiJTXwD1BkJVLtZV+ysp04fEOmCYUdqj3G6BBDW1LXmI5CjKEC1+ycMwzK99Z4QDE2dEPmIOK8hkaQ+yNF+UFQvu3x2ntbt1ghYOskWPiVOoYAApR+IiDzUnFp2YAKuQca2NY4bmoHm48ao6j10YoHcxr1CWBHRraNEw0ciOoub1ZJu1UbTMqgaBJyOx6nVmh+UjOgyo0iJCltX1YcwGk7tk9GpCqGgjHiPjsSbKGQ4KgxrLtVoLi/RPrzpn0B4ONOHF4kqf5JfpNs5MN2eaNq0Gl8wTzNeavdk+e4pR61zmUEw70KAoFExbxt3SVENrncbNu2qZQzg772gLI45FEG+JOXyTSqFhGBROpIAS746TphQOP8istaCWiAHJbYjAbahPT5TDR4CSpDyhKnRwh6LZsCHYRWosA79iHTKRqzGTilU0TtgNzPpkqGJ1BCAnMN9cDbrd88WrZVo6FBjIkFwBuLzkvFvsNIAppvPMVnpGRuZZtcP5kQxdrKysghiCghHV9lN/sdgsPmQAH7Qok0e3gjwfAJebRKL5cHl1YWkpHnH4xX6wKBEBUTvAZVBlBR8c4ya+WdoCTLr89quvPnjymDsb2CV8cnzi3D+Zitslg962gjz3o356xv6lXcafSPKKUfZ+7/Hjh4BhxIJm2x2S/+6PSPl4tBBeRv0uR5zfJ9o9MAEcboUL0ktuiAZsZ1xnFnG7mpylel/fMDJ/sLPLhlRUilUMYWD55MUFM+5PNh8yfnBhZ6rUSkVpplFfWll5+cMzxINWcZijauY40kcfffDDr7/6/rdfwzw6vmsbG/DPg8WsWgVHhZhbCzmB9sGHmxgkBrdpth5s73I46DSCQrg9p8r9HhQaRr3z+5OE/cnAO2DGPv4OXBhL7av1ytWpU317Je4bKXUBhhia2MSJdcnHrZ4tJooo5a/8RjLeRyAYjyshpQdsT6Yo2gJ47AlooUddRLMbMRrayi2YlNzRL5ZPphVX9LmM1NYVM1byLHADgdoXyDG+xgvwiJGv8Uh0VY65Vy5lG2Kvv0GlLGZmfuaFHFZFLxJTeZsJ8QP47/QoJeKppNuhxfoyCn2BRmGXzIDhYjNWp6b9QAPltijDfGEhdIJ6RA2uQ0xCGH2EobrSMKAMR/jKfWto2hxqVpzFROnYT3YiT9NZlXwI1iHocWeaAKYN4QgGDWiAYsYrZACIIyj0zIf4SFug650/ls1yRwB2mDlH7ajhJuNwJdafMXDanJhauJlavZlpDBhMhVi2iyhQu4kqceha1U2imGHGS8EA7UE5CFE1swILe4hFjAXWBCYyRUwvhx1P13Rk4cF534FQAIEzqTwME03uKaDcmNbYWFzpHV6fX3XbNxxPP8P0MMPNditDL4VYglA8spSIoAA16f0O2JvjgiORpNxEIQIwx1ga4oTTGp1AsUsvBQs5fAM+n+IGfCKHetIX08EsAAaGbVpxlFFEJjjuilOzzVRNUNCrIIkG7RJiOTHMhVE6D9yIZZJBjkTlIheZZQNtYo5Rx/V1jibb29/1xM2CERmgSd17cTFTZ/bARg/vQcBGQMojP1mFjPZ3vAg9kYYz8kfvCtNIgfjHE3JLRjKjalheHYghG5Q3kqzUogygu0d/Y4urqsgLdjoD2ZOTHPG9+WDrV7/61dYW1mEdpcIgDTtERmJna4PeXr/3+vUr2h6//OWf/+LnP3v16uXXX3/NjR2bm2tcCF1oWHD4kSdiEoLeBt9+hn3SeRTI+7BMI78/7OUWVtIhSlV69DwioZb0jzwxrqcHR9/++m8nmamlRTK4POmczjZrH3z8EWPTHhcHY0Be3SHFU28ZZ6N2UWuQf7VIQV5Ptp9lwA2ew6bm4sLDJ49/8x//CyM+f/o//QVNWG6cJIHWN+VVOAdXe6/fzjeaDBpRkVFwm+vrz58/752dN2cXaLyNrO8fRgJycKQkyuMeOd4DCCEdd+I3/v3Heq8IRTWP0qXGnJ52/vqvv2ZYRWVFNjIl3St/9aIEtDfDQWuSfLBM1LSKp9KzVFpNhBR914XYlbc1lhUQ7ID6cWfmWA0NNfkBnl5F1RQuoonqwBOJCDIFw+hQYJb+6C1wxQdX4Q22QBrKN7kkL2MoGvylcV0QJir5Gp9FJ8zUFSMuBAqNNCKPJAx0Ekb5lIzMTwf5Smj5/Ps+UT60uHlCGJatQMiry2n3n3ogOZ0ElBbYhC/jbKAwkcPwTxa/i0cpefxT1+So/wudAqASUYLRSNhgiJ6yU6Ez8jQGtDLA8lCnXCBAsSXQzfFhR2PV1ogWRE0skDR64YJMIUGyT0asFulnVITcvEjc64P4x+qd7unZ4mwdPducmF6falxNNmduavuXUzbqA4RJPsyqoIMQfjQ8OTEDFS4t8glNadCQZcEFfc8qHTgKRvbQkAuIzT0m/QFnQ0DMWrtBb5Wb2xg7ZqqKvt6lO5Qn6hPTH20+XJlffFPbqR32vz3qzVyLGKP/NhowdQNuN2ay88IGVWxe7IiFtYEAdzndOv3C9Iwd3XAcGEzFtRJbMBJxurBpTESVVpWXYhIJ0payogYhKz4OCdCIg/DeOU/lCeEjwli5bo/zqM8zKRLGF+hWBfvzYLK1tcVAOmqcFTpUCIFHOnhg8+xIskI9bKQE7KLlJJNEYcUMjUSQESyoUcrYVMXXEWy0gHURfCsxELilMo2ygLPwzjyxhQ02I96kwC5KKUXKtbs2FK+uz05OpR9YejKrCxEwtAcHh/1BDw4Cj2pjYhAVsllA3uWlZUZl/t2/+w8LC20OQVtcWGTAgiJwozCbjr799msWYZ2engBwbm4Ryh8c7D958gTtw2AABxcxL5GipfDve1gMBVsXpqhkCq2KZwm5fVerKHG3PiVGiFg8Kzj3Ygw/SV+kQcrhSWEFCEghq8CjI4yG3OMzPc3Kp6lLFwPu7+w+eMTFFT+n3QqJaaCFWgwpc9f4DOeWQzgajRDSQkB3gCM/nXOmA1jWmCxoHDteAmD4uLS83F5gLqaxyOYiGAUDRArq+8PeARY2M+nLArD/ljYv/p2zMxo3ezs7HyxyM0dsaIoBPKBGm5izMzcAiuJ9D0UTyoNiGm34mV99xty9T0Le9RmL/nd5vZO/Mo0HFHCg5Zq9v6edM5jjHyFaHeqtOED+UdvJr8gAodQX5wkLmqYhEbObRcvd4oe/jLj18M36wXy7nVcghoVjEeSLTpjmgxNRYgiqPEp0QhJziIY0NspYhiQbZm5gCkeB/TN3ISuKJQ4ikXOpAsLW07BHYAKM21VOd0ADIF7iJXDpk/iimTcevuuk5tDhTUb5UxFRPgQfRQMtVBfkZir/BFNkZpj29hdZdHiU+2ppqVIG1/uDJY1Ou7g26wGOBgI8/3CajkDl0y4e49Aqb3OI8408SzsnOGCORCeYIwhkwOIjiSUYYKLhAAoWTjteOocd5AmXYhXYobWrcgouGj2sJrEqGAqWhdaeCZ5OlRrfbCSq48MUTDrjRVw6WnQYXfANDpmpZcQduesNuhzifFObrNdnnjbmlrjKrLb4m+vLuuu0UBpuNJIWcernoEOXlPYdfuZNsdgFz4hKBkVZCY7OjYrXLBbGiED/snt8Qn8KhNitVJtr3zS4QfGa4xnoE9OodEMrXdnJyc32/Nrj1uLl7NT55f41G16kerQSHYwBM1yc62TWNxNswVSXpcA08Zh3BUPq0myDRV1ActKYzh8EkOiias3BX71Z5B+xwkEhyJNnuCCdA9bS8mIRcyIKUxgUhQxhKtuQoQfCfHJyTBcddqfJYT44KSOLJmk0sORpjau4cDP1MnoIWagWJEBr8+L9UWgNOONkCIuEkyfThBpmsgd5MWSYn6llfABJixFfMXNlq5ZR6dfh4R8jA5ELmgFM6zNRyD2zVesabN3VLpIUu9IibN9i8pK8kCWwoH6B9pu3b21bWGPVUvwnA4gMKqYrLdabiaPD47Oz083NLa7AglCt9tzDhw8ePXrM5ME333zNBYVMZ25ubqytrbLumgEDCsnVuYgQaw+UYGsCrqpQhXiyxWLrCZN5gkKi+Vq9mAgRT1sTXiVy/EpdChv1JIvCbwl0mzZv7/qQLHATLHrDFNIYjAqhA3R6anFt9ef/4s9rrQZ3z7549mxve6fT6821WkRC41jF3Z5XW1hcxC4+7nZn2w3bMggO/ZJplkaeH58cLy9yGSgrGZ0ltEDDDN0tx6byJk1T1wMo6WpASwpw2q9vXr1i+Id7D5neJyWeCyvLM806K+A2Hj2YWVwQZQstUHhGk4s4TDlRiszsu7TH5iWAiQLc8iYCRVSjT4b4JGv4MkZD4o99jUX83a+hvHUSGGMOhEWCiaxEYFWKlZVcElHNVxyhTqE4ySgGJbLMEZzmT73OFwFUB8eroaGKXkBpQ1s2ZBjlSbw8I29BR3kHAWsIhBUINAdELIG5WeyCU1X+/BixiG4RG57Um6AXdMTM0shHdZghirnDDYAnC6qWjWiUOOgJDV8a1vxFagAHYpbQtMHDWLgKCMUnSG6mCETWELnmi5a4tVt8jB/DlFKIObFx4BhXlQ6sAKTgIThiRR72RFw1xYrdyCQpSjoLlDLAE5zmFdGij2geRIHy3BmPVuHCHBZtMaZMk0FFRRgJGSsma0wG1BYHacuzDODZvAQn8xc1zSZvFrIUlrwJxGRFL0nZKfauXnOqpGtmkBMm34IIqcnUPRis7nK8ydUuCoEOmNCg6gHng0fQEDEZQaZiDIxC4GRfpTQMyBaF/iXgoVQWwchbJg8ZIoYkM1eeHgX6AKTgF44AX0+xYXN6eqHeWGQE+GamzpyT+oAxzgGbSdI8pGAUAx5YHnrMVxdadPIrJZIwzjTbmWOeEjRCRPEHIxHD3gyuOK4G2jA+Bl9r7H1scu7WjItyuc0NNaxsqIUg5HyrtdBonV50yNYGn0uyuTiJf40Zj1FVHecKYDZGe8YFhdZsUFuZz261uZUbv4XlpZhMKSe3pC+V0oPrJBqDAuCG5ZWuwTceempmFUY7w6Jv24At1JwQ4iBCCh1fbRp9DmwSjRVolAKbTV6UBmjITQZoZ8wPVSDGXzZDK55ZWMery6b4g61v3+6wq6TbPWMRE8ek0JQBVACzwYkrBxuMmIRODIOxV5h8Z/s3nGRJNECwPsuDcKFGZKGUh40T2OgJ1v5TM1JodQHUBq7NTl6cylSkIIbFlbwccDbz2RefMQH5zbMfSqMFKvCnGBDBrjwZWWgqOcoKDtNiuOKgmNevsa+rq8sffvgRHeJvvvmWZb30j7HHtEHoBMMpVmvT5puZ2WDlHGDCGugh3chfFMqLmPjK/3ddiVb8w0Ve78YsacPCKlog3wUVfserAhgNWSExDpG0AOSpUkZlI1NcpXZDW/Galvdsbf3Dx8fnne+fPf+81arNzKHpzY16Mjv94PGjb379m2ff//DBhx94wgZ1kpv1Ot1X331P4R89fszdINQNoQcdHio0urDszsg8buo6wbAoFunGczkODw8//fKLB08esXCOCAxxoLk7J2e/+qu/2ts/3FiYRyOq0UJOmAWFu2cdFjxyRIDiTXn4YFumBl5ijTmZgqyN+fAKoPI37n0vznjQ3+V9nK2mLxSxCKBTfiohoUTIEoM5io6C4gw5phQiiWUcYsonha26RvAQh6ax6VEACjPJk8X7HiYB/lAW82oOUed2a5Jb1v7gWUUEaPJKbuM0ihiRTWEMqA0dkSgguBuSv+SUxkTBQJh3HcWD7cz3s9SGYlf0MQ4Qkn8KlyY6gNKsssGh3hN6oJmqSkkik/IY5TR8IbokTWEtuYDDHJoHaezIAHwjIiUoCJlIttz0aH2zg6vVnmk3bzrcHhQJd5QcW4L+c0YQlFB6JABm8CWd5ShgK4TNXG1qbFsnSDair0McUCvM1YVecgaorGVx3IAOH/Gxglpn0vllMe8U9t4csMXREdEyaKu9789ZOFAsRJKUfgZHgamVb+wOSrFMK/W6bptD0bvotlbdm1QaQzRDGq3W+ewsL4yC0Ui5qLGGWbllS8tf/df/6nqBWN8hIgyj4ZAQc1V9UkrVN3qUM1qxC1XT1QgpICHeiWZLZJoDuW4uWG7bYUKVDh1tBfZa7DMKbcuUVpMDChzJzaporou4uexi+WocSAkNST3DFYdtTvKKEGBHpz2K65zbF+msswaMdTDSiWsQ57neeGpyY+sBG5pks96SDIrjZDPjIRoTqnCCCgnD/rRuICNx7USm1Joari5utpo0wuiWQEraDUSiw6pQMq5O7tqkMNP8KLTtZaDQC++cd5dowDoDUjWkzNjZX/u+uPDCjVUAnJ+fazZrFwNmbRVynwHLs6Tn+G2aQkizFLYsxZyLCCzDehMdUoBKeghTiCPiPDk5l8hpEtODtl0joioAo9IC5UvMLQNvkxPNduvmpgXZU91ApLLfaZxARg02MK1+me1utCUR3ev/P3P/+SRZdubpgaHDw0OrlKWhGt1kz5DdJJdmux9pa/Oncr/sR9oubWm2NrO75Mx09zQaQDdQhQKyslJnho5wDw+1z/N7z/XwyMoC0ILipOeNe4949XmPvOdi7MxVQOTjx4/W1zd4jZWZQloLTqmkegCcabF3794tLfU2NlbnF5CzcApUeC0SJINAfN1MXicjJ++T505+UitMFp+8N/ctCvMSEUEkpcmjy1T2kWSaYdZlOQa2uqKs+z767JOv/+HXT755+skXX/BuEuXJyFLB1u725z/64Te/+frk8ICjwVgG4ihjZulxOrwM1l+htVYZul2Do/pMrd3wSWC6kmyLD3oow5p1P0A+ODjkM2Rr93auOc00Nm4v6vpmdrm38eD+m4OD9dGDG9aU7EdKBnpk6eJnf/cLBI5yQcMs3MLq8o/+9M/6q6u3XIIpIcQXB13U/05/VUhTEH+sxUUIre/Dh/cZVO3v7acGE81fWwEEG6NtRq507XKYgb9OGMYZKE6kk6DcDRoA9+P4RFbKxG2jR7FRK/VIFLO+Wpf5U1YEEjKINNCd9Qod1veqfWlFLCdTjRKf7gZLp0nTybyXJLX2OjAhqxYwwpFs8CQfMsaFgHOmJZI68WIFCAv/Qj32ehfwh55CBvBpFPDWNnt2wW0CIgIg0C6SwsnAfOKX1/A0Pa06dPmaER8dX15aHK5M7e9r4mAFM3PkuhLpwGcyeoCXlIDSkBHVFEdjsjSFcom23HTF+BoSDa1ffa0ysAqQ5OFthFnfIpJsR0EKEQ1AW4dhLNXbEfAY0+3NDQNpOlxznjwtgRKtnJ0OVPI8wc8cjTS3en+NEBsbsMVm5ABlrr/AuxF0Aq7Ys8Ekh++z3DCwmu7NcxD04Gr0+mI04ONJdrPd5nN4fLTE1C7v287bRwEUrRaDadZsFX0xkD9BDcSMzxxaaQU2qlj49NT+2cnB8GyDrbq0HnDNVgb2hp6d4Y75REB6sBBie87brdjR/PpKf3vz6vQQLhAoP9G5zktgBE4fgiHHXL/fY8CNRdH+ERh/k8xN3w8zLW5u79DGo2UxOuC3YkCVQopNCFPxRYZK0tnM2KajeeyVygXr3MA7g7nllRW+s8Bub+bMX758ybuwvByysrzG2dUjP6wLK9NXzEvbBYHwaSYewcscOwgZoTOBrFJEqH4gi7FpakXbCEC2+w/uf/6DTxAbp9oeHR+dX55jnFISfUMiFZ1OCez7LUJlTCBdO0OY7PKiDbZFTMUDIEnD0Tk9FPFaV1JheHP68uL5yxfskDInEnSzFbAzMnbE4AiBmU+qE7QWIiuuT8QR2zBqFenTsGD56OPH9x88+NWvfvXs2bP/63/331Et3rx5nbXexXfv9hEXPWB1h4CuL+enWDcdsHbA0U602WEE2Gqj7oO52K6I22uytccSJw9d2ZLJOFWuK1Qeae/CbXyHNClGl6WEGOlJTBWzuA0YL6z3+9sP7k0v8jpu6tr09Or21kdffPHu7d7w8qI/7YmtKofKPju98/gBX0B5/fzZq3dv6G4ym7O5u/3g4aP+8hqfxKKRpouUKTt0aSmkjcPaffwQ4fh5VDtsip2AX0Hoi8v9T3/wBa0+vX0MLlYeVHOzDz795Izvj7kOpZmRhp3xvtOf/1d/wX4MxolhD2jUnIXlfj/WWNwlRbYtVZxWwj/5OhbyPxZCyTwEcTHApSas6dmb54Xgzz9/fHp69mttFwkZn6rC1dZB3VNfjAZCAcmNbskeZLxV+CwEgdDlbFF3/9REndUWVZAEUicGNQhRGU2tDKoOaeEVDNWKFoArWfiD1thXkhIO96hmriQ0Om/RqnGqdGq1TfhtSu4kRVqEC6r0ZtUecGN9GBU/3y8lJ7HWX82i/fzbIhI1CT3mgzgwyWAhDWnqHHCPucfn4I/xKjSByi1eBvYg1mU5OzvG0cpTR/CNvHq30JubXlq44tQgm2MbKN4hFrw6xNKpTwtnkCJRQIzuvHgb4rzmTlGheaaYdK+ew8gRj470JE55OYOtXGWVgNckBSgYBiFcmcSPPC18fwMsDRIsKRLgz2LSzY0wi2Zmw9OaOegjOnODnOHgYspCn2MinHyHhjhcR+YaxNzscG7m8Or89fWQTxWy10vzbTLgxG3HocBED0icl4MGznk6TMZRKMOIiSqBIkKIvKpXr9jZzYu9PU643e4vP9ze3F5dZYpbf8K+WVog5AEBKCMnX46uL0fT18t83/bBzuyrZ8C2wUUtTXA0JZ79DSV2BBD7As2h3zampaaHQS5mO1fX1ug38J4+gAkWbiIqc8BK6WRh/UqzCFW6CtbxPRzxRqyirpJK0eaNZp5Tn2jgaUVo5/7jX/3Vxm+++vzzz37y4x9DBvnz4QMOveZAazR/ubTswYSHnFVxRhsMqbxP5ew3GM1sncFGtWZ0Qd9CkTIbnDHlDG1SvntqvYYwMuNG6fe49swQfPp86IyKpOUHQOBzPjPrrFGH8AXoYbkXsNQyZpANJ1gnY2haggC3uQYFJVAE0xWIjKVHvplxMeR8K1ADxlBa5aZkxRVjwAJ5G43OBPkggNb37bu3B4eHf/lf/heMgH/1D79mnyrjXdh89vwZ+7MAglK4Zm82KwjTiBQBEBOwwdRQ+Kc9f+8fM3ygYOWX8QZhnKduJh/H9xOQiKuCmHcjI5h4ULTAXd/Z2tjeZHXECuWKr5sNNu7fW9vZwWgdWthWqgJ6+tSNtXvbG7tb7EiEeWsfu+rojGRtUqWn0bVtBHh0R5l8pzkddkUf+YvK+rt9bxcQeDHFyR9tRLr4P9dbWF3ctAuFQWFsgKbE/NzazpbNl1/aoJQjEGboIJEZjIIaICFABv+PF8qKdYFRhc0w3QnNierZyC1fWNcJDiiSGkFBi6d8BBRTTJRxSCCXcrMT5XMbCUcTPHZ2hQvspGUL5NRFpQXfJIgqqeg7DQumKzyZc3xvZrLzT+8LaRIojS3kydRo1Eja8TyiVuyCHWcMWBlteY4Az6RRnFISxx+MM/atKBLfAW5/iR4HGcUj2nmhFdZv441tgam8SjSEhkZpJkg28F26wkVcHfPd+YvBBr36RfbXugtLeUmF4ifX5vrGTz77bOb84tdv96BWFIFMji7Y1uTea5X0r8237YTVKmgBCPusoNHyQzT3UkhjRM+APA1IwZjkkdFfxMzVbLEHy5FHF8kkdHOFUgzX1sRc9aChJ51l571ttig5xeYl1oBnpxcpz+myipBWkgVBTv/ys9Z8qOZ8mQOntrc4wefd9OWQ9V+cInbJaf5OYgIHMc+zB0qcjEbZwjN3piFEiYpXCZNCixbb82JeqHbMj/IX5t4Oz969O/rm8OX2ysonD+7vrK7ZjsElJpGzI3gKM+yiht5zWyvHRVkac45TulUqLLMayq4oh+a4blZmr9mBBT2ZX3DzGPuAmNle7i3zpV3lKSUoRBkCQFqJQTMZWEe4Cioyl11on3WXNCxxSxG0xi4xJ045UxwxMt2BOZ+wBfNg78Wzp1/+/S9+8IMvvvjBD/gmGivRfPAHq6QUogUnM+Jzi0zk0vR6mpg9lgBFfstLS0xlM0cNc7Z8tMXsl8BhRve9/goLBpCBFVj70lTzLSoEzXZyxARMBEDtSvsI5XObm7jl+3QS3Ibu5Ls2wrCYryjYRQVxjI+svJ770UcfMSYDNSEGKQraQN4PQBEbm1u8hU3jrcHEYFlewY7jzK02wFeM0Ug4wgIZM6e7NONpJJyMxSTzp59++uWXX719+xYgmNVwuMrWegJlKYVhcfAZBgYYa7AO4TbceWjRodU6VuburIwp0kjwCXFID9wQjQhgvNJkroWK4YGbXLmYzf+UEXx6A0ZqxslYhUxXXhgSC9h0pDrcRYJr9azlBDnluMFtaXouPzHTRkfJ1QoRkEfLlCxAG1N/ggcclIKs5DS/lOQxuSzHynvK6CaSQVIoBWR5iGyKKopgWlKtn0iLETaIN5Ygp8AYZxdmFwo2T2GroWqJZTo+SGlHR0s0ooQ8jhjfSGRLvcWUVNGNS2XGPREBVim2JMyjGJClvZyizBuKSoZXUSTK8ohPHROH9BEBgtDe+DUZazaNaZMMlsuN4kxDH8R4YTEIkSxmDgfAB7mljOCBkIw+0gdzwKdXVOJQkrYshAWElKs7S7XQkSBZxIdX332gJlPxGgnktaa3R5AGdGGXEn1eCzgweu2WbwU69ooJbJFRmk4P6QUA5VLj42K0QQG5foXcwUjL66Krbp94EhU89MAZ5YHGL0/gocwpnyw9P18lY1kymUOeJZDkrN/Zg0f8KqtmBUkZ+4MnPZj6U+QGEOhCQKo6PcdA3ABXFgqSOCb/nJ6iAVLbih3V6WRwg+Iu45dUxBIZenp4wBSSpuXMiYd1hA1W+30JUCbbUhNurAQ2mYxgaQNCum/ONLJmaIBt09AVVADGfVqjy7Prsw3mAe9tvbseHbi4az2Pb3VKGYfK8I6jo68GNoM0eJxieHR2kr2DkYVCwblKVglH7SGr6o9gcLMz/fW10fzcCfPQV+enR2fHN4NHV/fWestr8/0eIOc4AhuESGp67mqafVx7r1+/evmSEyoQI1qmpQxFMAQJKL2H7hcWOEeTszqQ3AwTepCSWR3FVyNjBqxZqFVASMt+h4mOReAcJeH3mbGuZhaR0vSaTeK5p+LbmkRlWBxj9Qs2RlGgwPk+4AWrChwBOXVytPfi+bdf/+arP/nTn37+2ecUUviMZbG501NabOmPUUJ+fpDqifwsmdIAM3ZMq49S2A4+Kn8NFWwlwyJBV7qOUasXIeMHmEODD5RMVqdANT1WDGmTiaII2MO48zBwHRPxLwDJxmCtt9inrSj4JlDDKdLtCFvscSAKtcvFFVDrtEThAk9qn2KAktTPCE3SYNT2B+DLSyw5z/w//8f/MS9u3WAzrGKwD4umt4RM14k5+d3d+yThQ5nGsEJIpjpKQFbj+0SIRxsgkJaQRsa7yum1kriD4tv8VtWkdq4peraKJEK9cIMcDfY5RIZEcVdmKKD+BUoeFIc/Qeg/UhCramjMhLyqy0xiBppWFHNKTDV8PMQPBFRJJmQKuXmUBjh/xnRQyiZElzIO3EbTkkTQJLogmjgYtSijhPan0FVM0V6JE0W72w//LQrGuOrxw1n/sbGSCN0x/SAQuK2BjWjxgcE2kZME/cgErfFTV+8F7TdB6eVnRBUHmhLzTwLoYjzdo2kiALUNoVoryZHbBMpBLbkrC3CZTUPXxJhUV+IYXqAl6UsDLLnUrvzhUllDgNAIWF9cBzioegFr84VbZUgRkgEe4sgB3BATIwv/VlvjIZlAC8y4yhYoQRman2A2BRdKBQ0fKRmbksFwLHesH9XaGZSRh9ky/Y9dSStMsAKroAqzgaFnT9kQwkAGZrBHiokaIpKLNanfPfntDR+tv2JnRfoJUtX9UvehowMIVSRGoRiJNY17ZBkhKlNGTpeO7m7YY8hzIYEDN30JvRxkiA0U5dBNpHBbcTAljbQbZQ+RhYkKFAWF0bpwr9pRDoTZmgU0pwYyS0A0V7yeVHfZycMgkKaEyVv2jFwszA6uzvm8MvrhByhGmRsbG1jAOcNkFh0ZWc/P1fAFCsAi/hI7PghDkSVVilIk3168+504oAf5XJzpU1hg5v3P/evR6eD65cFe/2b+k50HG72VhflFSvGSKwcrXw1HF6cDZemcsHPg+jh+aRWZ9mQSla8Pz7I/i4OXec2NdjQjV9EhFPseWIeT2ujBKttpDZPhdEDnwN1hOrs033OHF8coLy2TiQZQNWFTgAEQCFM7qHCMBa0OBY0G8Ori7PTo4oKDspHX9WD29GB/jy/S37t/n6Wpo6N9lMC36CGZJpZuzubMJsdYF1DF7xIUJPtp8dIjcBAnO0pKOV7BHaaUJCGs2ehOOaj1fR6tl39WJwm22ZDqmiOqKlT9QdYf/I6R+VVQWU3ZUxWFaSVkoroz8Aeh21fhwVxUXR2XOvWEVW5MZhYjpYSWEpgZ2YGCte3vH7x48fKjx49pZVdW+iyZ80o009FMStPn4IhKVuu5sULTAtMKX15gYFgpoOBEgjR/AwIIHfXktT2WZiXx/SCNyAQAaVcVjUHbELrshTFuIzcfgk5YyY1MUVOjoMCb4TZCBAQiGn6fGx38heY2wIwGkxONGUTZhUTxUEUrPnQ3RP5Rya1UYr3ovrogSOMs3Rl7l0aMKUGps1NjFAUkuVus0M31f4Cgdr4vwJpU2v7ociF5wg2GG9PHv+K8AVPME+qz7fiAqMysgrh408rWH550u+nRlsBFKbmRaYjBivU3/g+MUm6uRNBdYMbP4ZrOs+iUXLTQYXwfZWEEmv1jGpk2/Ca71DhohQsqI3QAw8GfdCsnSeAaOQU8dQxoKfkeX1Z/XJKEyDRAXBF7LwQaKKwVJPFYwECsq6BmZc3lTinAWsLswA5qz01Pcy3d0ovDtjVmoXOWHfl8NwYCdN+0m2lQwmmZ9x3YyILhjWcD+oEYX/ikJQMolEQUYAU6yY5FIDVdNVXD+FWV3QHWHlwp5xbCxtd6Jor+T7FaqeT0UWTyn+4ReXnEFdKGIA4VxDiNQQn2wIsgNLeoC9DV0+F9LA5QPmOP1tkZO4n4UCgbo5wwRx3QyPFVc3O79+4xc/Du3RtwCJ022O/dsrLg0AAPPMUeZ5Aif12Vhx9BmLqs+RkY4V9O0fMgvdBK08eC/JApAhBfTT2cvT+9wA5b30CdGc4ywT3N0XwDP1OP+ADIRCX/M41ql4H9UDhpZqiJpyWeZgfU1DTC7y0CXp+UZkMbQYNuRFGYxDMWdJ8179y4r+xmimZ4hWMvlvpsV1nb2ORruCcXR0GpoYRSlGQ3FqVVA4y46LWU7fG6EKNiLAfocjk9wzvQe/s0ve4J4OgJT6XY3Jw+PR3w+QEaJItaVs07D6RgsA0JVon8OFKJN53uBKABmgBNItGyfH+JikTzLGKrZNy8yWbyp0fAkqoMAqEzU91nc0uvmfOnGWL4iPQs3QX1mspGRI18Le+BEojWo8eYHWkZgor8RJIZBAygESL5OYOCCQSWFaDn8ePHOzs7pLIAzOQzHYnh0MVg+hMYAx2L9XU6MGvSpjxktmjhvrs1wseE8U09loM2EfML5fIEtMiFzNpGyla9KQFBp9gUSf5H+4mgElF+Mtz1Xw4aynGp1boFlbJP7U/F0IWCglgu9irDF4IMVY3BwmEuiKi4MBO4JgZ+uE4UOa3nJmiCcMCNqK30USqRE7CVJOn8dP1jHIX2e686ZkVHqGvI+N7s/8wE6AqWkB0aZazipMA7f1EiLoi9gwpA8Ta3aTIKKx1j08iEms7Pe0oqIVtvfmEN9xKMkWKoT7YxykRNXoIKbMolYQxWxdFC4isEplZM19/7339GWR4P67ZfC9xBpIUU0BScuNeCHMBaB4EADFjqSFAsE3A6e5UErQkz4xc+y+TIrSCcCbNYfslZCPNMguRO0DMmTJOOLx6zRpIUIFGh8iBBsmAVACduWc+MZ9BmL33PRQpITrEiGO+4vrq6ND+7dzoozgRhPlUsNdi1CIpKZz6QBVOLV7xdG9GwnOrBD8nmriFHL8pdt88cm4KDJNmL9sKnoO+ENgLG7RXz5EJMwSkJ5sWzfLisiS1vmA+DDN1ASuW8ZggyUzuwyMe+V1wyTQWfOjicOt7bOx8M+by43Sw8tfLCJc2whfXP/vRP2cv6+s0rDmIEapppXymlp1HbmGgS1W60IvNNVtkmbRssszSpjjPnGaxylJTf4/DVV9wHrSoj0H6PNykHw3OWc5nivpkZ8WkqTktCMSrIpotQ68zIZZY3gsBmHM0wK9MKeuZ8OLrsixT8kANB4NxeXmf5c3h8POC4DxZxSTm/4kgtUiGHD1Gscdr16hqzsbv3Huzt7XGqhpJHOshYI+ksCblk+gR9Qgk2QAoLw9SJam1CqH4NK4vouCD+G5ZCN5kxvxxhfGxkYxoWyBpmzKjVVCqJeMJrrduryduAtgllD9iVXWhadCPKUPnrXqpSvaCKbrBk/lR3Qwxr8ZKntZOHOsTfiEvaIUlw+rKwQibX7pUjeYQdIriVFC7EozqOieg2MFdtJInNcULnJTE+z8DcO4wvsmO3j9Ew9r1//z6i4LjNGvIicxpdNmMzn08bDC5UCjJGzEWb6P7oQMEwYQGIVqzQbZ0LxRqFfRG4N17WUKWdGGP8RyyWb3HjqtzdBtjUZED+Kkw/7sGSglYlaNdGkYkUdrlCDLWeQETlp1bzoHnZvbfJJD9ir8ADCzlKXhwxkVCv4xlbTbCDGjN1e0lUp0Vh+XRwWcZgFFIUjuEWyXnEEjiIo0GTXosCXX4npNdR9C//Fyy/F6iMk2GczdxjRlJUQhNIYeEiwqkilovmoyUZa2XJTloF7tRskip+MrXyKO6Eu+WIstnQkd/SpPRun1WvI5NQwi2u1J/tPaWtJLZIEvD9oUNekAVPg1tNLw1NoYvp6QogiIkpVQeaBhP4EhjTgFi73hDNVU4nMMemEhEGAGIxmeR2gvUCCzhJsWnQMzQ45jc+yCqjECLTKmEkhj3LeRMLVDKz4q64Qj1y4SaggLnYW1zrL50svs2ORitD/BXE657GwLsbZ5jxNw7wgeKnfLKIJgII0OdVvdQpwBoRxFfrmWZCOCKXzA4mjXneuw17sstN+VwySWssgNwUke0MQ/MYgQGn0NM2xqGgOhpgPjDIt+p7y4s2xIWV5V0P6mAYODe1MM3hDy9++7uTN2+n1nq+96KMWQW9WuRFi5314WiQF17lioADZZqRBqmzM3w6a4Gghjz9exFWN3ifGFwGfNErGvRF6HSCMrvs0VgYEac1YV5Mel9MnzmxmWkFQDHkJYNSSIuIShj1SoUDStrh3MzMMpZiqgGkkTutowRtr63/6MFHvJrzdu/tHl+KPztlOZ2tZzTySHZhZnaDfVOr67zGu7G5zW4o3RoCdOzksKYaK0+fjO4UfskvfpxeYDqytOr8MEk1rBv0QweQNj0448O4R658Mq3K3AOHiUC5Y0erIIqgN0NODNHSAodkyK/uudglQFVrKBGFeBAMq+Pu1mLSAFDuQKY7ZEkyox3yUAS5Rx/Cc8EJ0s3qpxJ9aXo++56q0RG1FGmLGrPPzHJQYdhORgh6jZubLORQpa+YL1lZXeZYCXA5sQbu9NHRBwTQdeNbe5y+TuvPR61+/KMfMcXyH/6X/2V9ff3zzz/nqCa2kfPBYG4wckjiewMIg3etmWlgc5t9rNSB4jysKYv3AnkUDplaZm8IEADHxPlQF22a6FzZ2wa+SMEOR4RPCkpDHkCLIAI3Gs+j8QQnMRBvalk1Zpga/EelGiOGjVpwDKPri8Glp6rUsQC4R85hIhs1j7oDErSO3UCdjgP9hVB22tywK8CveaoNTM/xDgwi1sV5W27tU7JYRWO+ivwZFPn2hbv0nRxydkrrtytQ4ml/7ChcXp/sHzDvwv78fBiRAYRBrQdjVyKxAjFoWLltUmiJlTJ+GCc2pCZ3eqlM7z2OS753U9nuZOZB+UgoASFgy1zBpFLVa1UXsxHMZF0m0udktEYUF8b5S94QmwhbBVRi/vwEVKA0m2Y+4kXj4o+MzRJJUzgalB4ptUwnCGlIjHsmoL6IqvkL2KBySqHcdCH3BSHahHR/6DrmQM54hNRbjIgg/o7ueBe5BkzJKfcT8IMH+PzVMZhRlBihoH2IoJNB4MlnoWAp6rBg7cz8iBrxYkQCaBJspYCkyFASQy1cI6BSyUpHPIFDnHRk+73ezr3tm/PB8csX5AUWXqkRCUkcpWBmFCEMKponJNoH8QN9NBN4Gw7hQP66YrwfhEQ0gGbPNZMAtCBoRT3JkBxaocTuMz8CJ0MN8I52D1TU7VVBJVsTZWeCUl7yEK6J8J+sPrPrzXdXoJWBSI+tTopZhBapBhhnyQuLfFR2wMunV71Zx8BkgHQGMX2+WuTZHbodfzOsaPJ5V5DCsd2JcKtl4Hzx3fp5GYGMEhz6Bx/Scosz9k/fh9aaBphuOnLkg/ZswWLt85zTwdDTFCJ0cDvLS9zTfHZPhYKCQScUllBpgD1zQ0tQk1UvajeQfSoXv3GRDLAwK7zL/PX02tLq9sM+u7j3Tw5ZyuZ86UUysgA8M7/OV5oWlqYWe1urm3vvDijhMLGa79QvDUoDQSRKjvqT7ULEiRgeQwJXdAtejYukaOCG8544A2t9Z3drd2dmAYlxtpXvU4O8VAWMAPEvNlrTaX4VJ/+A5FS5GAKPfVvKTHW7cVrTiVBu3LaGCpARyaSSHRKA7B/kwWifbd1BgCzZ+sQXk86HA1f+XTKBGJdHshFOowMLx/pzQPHG2hrq0xoxG+3WRsTcNhhTO/d2+erA9u428Rgj7IOYiR6y0mXa2uI7uQ+X+ytMEtJ4LK+swvnp6QmNLl9PYmMBkPga8bdPX1xcnjNXz+ccnKGJ4vgiBbWp0KFouIhIwxQ885TgDf/bk1E8AIEbryZCrCZKdBQDjb43tbrOXBeHrXEMq+/b0Q0CCTaDyCgTl1LQeKK3xjKTGq3AK4cEZIxJL+BBhxcHr3jz6y0nboIDyvngNepG6icX53vHnLUxPTw5pTd5Pjjl00aH+/uq17mT66WV5fuPHvK2Ov0y3AZ4wXIxPP/1z35xsreHO6GPeIFiNPWbB3xR+YvP2XsIS4TkHP38b/727PAwe8id5YBR5Pzx558zwcBBl5hITNjciA0zAsfl2eh3v/j12dHJX/yf/uv+9jqzTGkQyKDNaTETAm22FOsTKQI143uhZCMOA1km8oyhjW/GhVuMfwpCSnub/5Nk6AOMBPREtBEE+oLwhsaFZG2UTnpT/Gx70gtRDrwlkelbbkgmf0BSpXGEeWb6zMpicnqSGaa1zFqO7g8jwZPz06rtTiGQChKjswMcdEKt0dBLz8hmnR9wrZ5+jcMsUQ7EOMbq+NJDOmKmSyd8xhyi4N7dFzpZd1HFbVOaCo9hFLDA4F5yjCkcRnAHUq7WCwXTclGdkyahxJPRZwfTPOssbPDJTAkBCgWSS/9hOk7APJ5KoQvBOdIOK3d1IGZpwavxZqVM+rVWrFohSUdgapVg4cnu42eff/TDHz68+OEjvqb+8jdfHrzgxU57mM4fZ8Y5Nm5he640U7xWrCSt78J2PKMDNoPMQoJkKQK0J5+YOKgQBdFV4xCiijaJbDTA1EwGAYw2FEB1MCS1BVLrLjIoHUsBd2KliJvLBIexEXt14cYihMLkM/ZTvV3QybcdE7oRvo9ER4LAU474zxSWm5pn79/fXVpiaZwm2N4FOHA0HOg5s7CIlw3FSMKl3egYcTrwhh7kFfvDI8fqYYyWVXGLvFjQHj0ikb1XHtlovx3vT71QmshFmkCBV6DFJa44gg1A8QarbNvKJGRbeBu/xNfCPxKFZterL67oejD+XFzfzumbV1Oc99Vb2u6v3l/e2Jt9y8GavCpkO6OqSoPc2uyoLv5HwtKnlHj/xx4JArcS8y933Ee7PlU4d1r/HJaYp9U4IlI50ugspZZL7uJFpVfDwene2zcX5wME2O8tU3GZz6WZdUEer80LQipOKtJgNNwaRSoOtRl4Ykcp8QfkhnibI4XlOAo6eN9u//qKhQW6U/Fb6gtqsBCAkxeZ8hoXzQnHVyF5AVoWRbvhgUpHd257Z+fhw3t8PJGaQ6HonQ6+tPJ202MP5bi/zg6+fPMYJVCrgcHBWOT5xS9+wTnYHGDEMJRlB75MvLG+QUt8zNdB1tdonhEXBCv1/BlfZONDQQpTp8nQ7rixTsAKbbkswPlif4mPOO3a2PMKWE+akWS4VsxWi1ToDgUgY2cdFX56XHFQyj7y4OrJi29OD48ePXywvNKH84O9g8O9PQRy7/4DWGBjCOelXM2O8JWc+v3u9esNTmnbWEPXzJ4x0H/y5W8uhxcPPv54fpE3x2IXfOTn4OD+9g7nUzJCdWTs3NpNG9qimkahrn40PP/o0eOPP/4I3pgPYRfKq+fPf/vlr3vzC+vbW6nsmrRiUBrOU50cHLD4tLLYe/PsxRdb6/hKans1Gx3T3/sX2wik9zJ0wonkY2vNR5HvQ/nfK37nsVC8V+q9x8kCbHgihMX4VZQiUupB95MgdNoMCWvEX1lt8htTqNmX5klILM8aT+azuBEpwvdzL/QxmSPEvyBRfFI5OoUAkMDxzvx3TKkexKKfk0wp+G6gctMVtx3Ozwzl64mm5oCWlFYQskqzGAhFqDKF9xYqoit3xk3jIoljEJawkBAb8VX6O7RB2HfAV9bba7CAUZ8MVIWjv3S6MzuAfd0fVFFHIbAxhkIGDxwAuLOzygubvNty79HOKmfkLc6x1oYceHsKsbs2ijapfxiyuuBH0x5jwzJtaGUGcDRqsuM/aAY9jtnoeN0s76g73JhB1pVACzTAbsSVW3JI/m1IxuIxJVPkNhnlUCqOXJgqjJeAfVMGRXGsIFSlTlKiVG9TDV20EPXuaXw8A09WtcPLzPSKS3Hs4x3BACumZKCRo/FJL8c3NDi6hLYBQDEFBS9RtMfNfkIddsMIwzENqWahDWUKFFCCZdJsdn505UIaPQ88DcuAno3CmIAOBMCwjqgUUcGeomTPc4SXi7M6oiNQLepEJ3pnRHKgMadycFT9zaGGS/eS+WcIoLU5v+jNLvzg4Ud8N3V5av6r5897N/TNkJCVk9YCAdIagQq4yIK7Tkm2YZx6RnNONt6RQt5kVozkid5VKrRYX+jDTjMJyZwBZeJ5TVNWOlu65OjHMSO4+Dd9ffni2fPB0ZF7+q6vaIn6K2vqkdaR3nwaYMq7X5iDoN1+nCqBKekF4BdcZ0cMuuiTqhqErxoQhpvjgpKYxYVFTsNgxxMtEL9GrP7K7NDjvrZpRqun7/b2+NLw5uYGOoM3IuWJBj4zsSzrcuYxu8xoQ500YRsgx4zCDq/AccLoxvL2Zn+LphTOlCVHrzDVzFIGn2Wa++Uvf/nNN0/XVm1osQTmpX/8k598++0TdhvQnNT8M4gQYwlT5SZYhSoSbism13E2U+NdyJigEjUZPvnlesoWg07OqeYMantQt36IYgIiZjKAAyLGcWRRELBPJ+dq6sW7AxL//C//s/4GmxKk7Hp0ffDq4MlvvmHNYWN3d0EjoQeFNiSHfhjnNt9//NDPoqDswejLX/4ajW/fv0/3Vmqg54avCs7t7vCFx3t8PDgf1mavRtxB6oKZoJO32NzHMEPO9d1tBrIMx9anZzc2N/7mP/zHd29er25tUIM6frRi2R1dvXv75t7D++ura19+9eXu0VFvY128dj7GXN4KAAFiQ7fPH7iblKDJiJr/H8h4N2pSX5MISmfj1EAU6N3St09WfWxc25UDazfaSYcLOup3mxtI+RFTfN1BZL5JWrQ1HU/9bFFMjVlaKbnFP1FnLJcATComGZJTe5gE2PHAScRoVTIholNQg9DABDEmMkENt6l8nTrApaAFihMAYasOk4C4L5rNYOhIKNLGLq2ShJFckznHESpB3d5midAn0tutggV+SCNzWkXEiE6siFYe6wJVMmj029ipnyNgAxZvt4jgZpqTDDk0ETi2JNSqywtex6QnHUso0dnvwWe63uWMBcNk3CK/pg7gh4RgQTY0dMwHF20iV7hOnkzwXAwwrKTRIUPGxR2/wJIZGxX0UnL0Krdd0DL0wujFKBtyiKJlc93gkhW4ahy77O0vZJyNzo+vRhfzsyOOn+QbrkxLclyWVY/zDkdff/Xi6998DX94LESLJ6W9ZE6YeR+VHsWbNQGgkM5tSFMWMUfY9eAMvaBLy1M9jgxeXuaMRHjhpSakCI0MFOnCD2eHi74b7PG2rAkjfvLQ6+EPZb1JayUYJW/tQCpwrFg8hMyJGYUCY9YS+0Uce7a8toLueZN3asAXeVNrL0b92fn7G1uf3nvw6vU7jvdkSZgtQ8ABbKxEDPaF5BLBRrWMgWhw8l0B67sEhGX+5p+6tVdDUZes1bUnWDGmHc5uckwHs8HMQ2BUmp66yVSBLGohM0wO/9lPf4JjpS9ycHh0PmLzDqqgsaB7SwYh5/3jKyYhyp5hNYYBzJnXL1+9ffVG9w5R8UsKIo1I6Qd62Aa1vb3D94vW1tdgJRT6Tilk+wYFfSzkPDf78NGjv/zLf8WryP/+3//7f/tv/39WHWWRlWCg+0Y4UwZ8hMo2BmODNsTqLkRmNQj2sJh16E7+Qoi0wZzmvUSXbpYPCbj/ef6cY0IQLKDYCP3ZZ5/1egs0xmqvQuyJyzgAvMwbCsaRUdn4cXxDFqo2/NH3Yx/YIrK9t7u7vbGxzKc6kktod8Nt4S4eoTeMiVFJ+bFosr938PjjB8vby6TAHxTNLMxsPt5iP+Dz371cXlkDGiiYk9IN8QMrM8PsA02/DkPa2NpkfyO6ptoLAVRaAlntVVmTqPewZ6UHkvDUqndGMC2CYfJEpcfoqC6UxULYTgG0Kk4y99a666mj/b3h2eDzTz/tLy8vvFx69eLlZ6ur9INtRrQXQ9WetBB5Flul5PFf9FJcfRAkZIzVWuh5JKdC6sjRsdE7ZcDQuFU0+Zl1/CuOvHYFgxGhkklNfE+IjIHkiMsfmulyFi0qQ3npZryj7rjyFUSJiO/oyuQvxNcPUEXgnWSJAbYWoF9R51beOJ+4IHF1Qcxxvy0iZiJT3w0R3XejjQkVEXXnThTTuJWZLCTXUjQOln0fX0CFcBmFl5p/0kBLX5QJkK4kHDELNT+zubm+1F+EHlzdxua6RyAEHWpTc3Hy3oPQk+conm61c7gO7ZiYd2tRUCZT1Rg9rG1i9ERxsuGZaQsx+A8G/CwiJhGsfpCoZCEj4LDhUAHg4cKNj6mhZMBtMsSzySJyliP4OdEIohgq2Vn2I4SQHJzcCICQ+n3OycZH+6PZ6yFv9ExdMZxhbxH9DTIzM/y73z559fJVugVlG2kpBARiJUO+yDKP2gpmB11pOZNAVr0KXT6ctd0OvhuPm10f3Bzx1ifbYcDngi0dGXYWXV/xNYXe6vJcf/HqwCk4e0joxAaXGX9sk/dbGE1z27oaJuTVF5Ajb78opYD8MSLkE8JwRFYmBtmgMpqbP/aVMc+f4hVgwPXyrcBoGBLUrI4SN8vVGlfsJUHBTdGyrK3x1jLN9QzdlYggZFmGHOTkkSbM8ytgi0h6QnTSGArxhhXdlhqd02ljWVo9NCnJB1/u8wTN66v5q8sBX80dHcMvCaECyLpfB8CYQmyNRCAobqzs5popZYaPTODDvXrSNhp88tMaOeLkA3dLUA/9bEvHNlCJNoMjBjLQyIRWmEPe3l1DniyXuiSvWmVfg2axhwEBU8ozU/0lm1rWTCBM+2R+Po2e7QLtEecYxysBmYPJgMuR0eh8OGQj+gwHVfL1DibqoRlN8LGylZU1SlMyFp5rEw5xBrnxktAlIQST6toyKDXk5h93ePXWNzZ3d+8xmode938ryg+EDnRL0sDvZi2jABXf8UW+qxtLwNJHRvcFefPe5tPfPj86Pp5a5lT2DhSUsIWej31hEa4/oX94Z3YKMtvoCmqBTLU92NunY8r8ybmLSNfsHVjmewl++UONQpHYsDFwc84AGx2o4Nj76OLgzR7v/T/8eMv3Q8Esk1og03Xsxnz36vWGr3kxVJ5hhP386dPhyaOFtWV8A/r6PpfUcfBH/gXtB0U7Ll4Vavz4/k34ez9y/ExqGsMIjck3v5wD+VijStX9Kh5C02QU2O6J7Sgjhl8srYtL0RRuEJIjGdMYioUUjJyydrLVo60uTsefldIGmL8BTn3psIWgXKSE+A8l3WZ6767yW8R6TkWXDemCN1tlAm7SsaK+4HuDqGPNsaBxVkB1pQRccmw3gRV0XhRvOJP/RkB1MYBginJTL1Q5bozjwVGTvRykU4MNhKXPVIQAJR85Hb+6uDkcLS7NMY306vmrk9MTIZKI89T1AC6WQxx6AKaScLlNUHh9V2tsjNnygsmTZIkwAub43MCgSaFsOfZkCJO3l1r68hnAoRgcZgQp6qatQgdhTgWbIf6XPMqIqkaErIvMntnl9QK9C3d4W1vDs2TBAFuCOI6TKNq8Z3tvGR2ezN2M5vjUg1sAkKGzzYzebCREpGUBmcb5+pLDKrFA5ZfgrXIQrEaBIfp1I1NjMcjPNpI9ms5yc079cp/VQc5zuj4bksA3qtTKzDTDKDLQWeCzpkt8IgZQSj+KcI8P7YqIABVSkEBYsX4IDIE4f28erEDdQDKvt7BEOTg4umQd2wVQWh22t7BkpjR4Dxpci8s9Bs6Apz11UlkNu1SgJdls+Z8gr9MM7xagn2yJiwF0jXXJwGI0bjbA0ilJOF1J0hZTY5xpgGDev3HTO2DtIIrPDhX0W9fkLcyA00j8o+PTtN8sLACYbRikQBddATIpdg+y8KRDRCbBEgRcr0gxrS9NKWNc219QAs3+p4EC8J97CjBKE4WxjFnJnDySgaEXVNIxKEaXkG1nJbpGcGDhnlTyYWWxXHewuAltdm5n9z4geF+PISnHaAOWV7+Oj4/YmcU0wdOn31xfczCWbQchZNet98a0p/wJUtWVUCny7WPWN+TTA1vW1je2dxj6rvOlSukFjkZV1iRTd8OdZ/zu3dRGw+nxKavX9vxgVEknPn/YMYEAmcPv99erMCSZhVNmTs/4Ogcy5+so+2/ffvPkCSve2d6swlWHZ9ONvmLe6fVL5Mt3A6lIq+trP/yTn67Mr2sUWYeBJEDid7797RM+i8Tx6X7Z42wItR8/eHRv9146keTCvbnARtPNCXSn+8c//uEPIBpH9WB3983zF29evvho+YuSn9ewrpdANvXwHvO/9xHrIFi0IMIysO7CaYQlA9jsNwYmEcGaeslDVTeAlQQn8gCwMhOH1LSWIlvMtELWS7DYPrpCyNqW1msRu0pSSAi8XJx+x0NPsd+NGqvNQxWCJlPym0kiNRfzlfEAzyhyEaHeuMPrsV1Kn2wXy10+qEi0iqHJEzKCv2MLJIoLngDUfuM7lZzuBTeSwdWNXwoAWozzZ49HjkIKBahrthZ2FTE6/Jh10BAvAxILia+2g+nGZTTYKS0phS0oAxcGCwFMIeHi15kdFUCOeEkLkWRHwD1qnoLEwoqbP0zBN6GqUArlcCBKd4UAY4pvw1y9efP26ZPnKytfYKW//uWvXjx7wQYKvDgyL6XSm8eBy0jcg9tiaJcYNnB8E6/5zU/N9xjg+O7GqWcFQpV9XP97ASe9UHnFYLQLxaXzZGIaMTUVsVcpXEunXFIQdTrKtAHLzl6RKyaNT7koMR+BAEQviixumg+9c048Aw6SWfQqhVGrFXYrZilk8ezd6zdv3x5enrFNZc45cJekhMZmE1fp5m1/3U6Fr7mY5RANTDqdTslADYxuXTG1DERAteRLjCQRBf0AYVzFbD6q6PX9XgKnbUydneOW8ceqEVroX3DG8cUlc7ysRNoqq03PkeenYQVgHLvLtELX0GCJjMrBv3mLCtdvHQ5R3NF24fsuIjy6Q5SEPh7xz7sPH66sbw7oO7nbjOGfw0R05LolJzXGVIlB74qKl5cWFvkCEo6RjBfWdrVHLtUiCcTQ0PqdVQacqk+bhHDo5TuSCN8RtlpgSc43xx0LNgg3U2enfDxpSCKz8c5eWI+sYRGzPlbl8QELeMy/1Knaul2SYD/5oMk/KrBxIKfYoZxDM1SbwsZqUag9HIQBmiauJlK5VnsIlw4HPJFfKpR5dFoPXssBRBnAurpRiPDoKFksVdDmhc10TLpubmCbKJfeAiZNR2XlZvl3T77++uvffPHFZz/84Q+Yi76FHdImHkXXHoueQtDR1uVUCf7s8/F56OXNLYa/22trvLYsOWYvN6RBvcdOWVUHaQJhi1JY5kHHcShGE6GHLtKs93xy83KZKfoKAYkER2eDf/i7v/vdV1+do9/ohC1U9x8/ml6cx4nYF45i+KrLpz/58SeffEqDwAgY/YSRHoTirLjq4nSTmpLvOOkirg/39kfHJ3/xF3+x+9FHlwuz7F0pTsipA7642n/5+nj/8OW3LzgrhvUdCtL1OTw6wv7n1pZ1TRQJAY3Tf/afEtQfAKMrboJTNwnjmz9QVnq14E6JMlAAJguSWhnqBiQFP3ULu3d5i2J4t/K3OhMcO7C4wUIEH6u34nhj7SVBRXDjXzOb5MWg3sc33PlgYjJ3mZLB8pWVm1RToHKXe2sl1Sbj+2oyaHJ0dnoBftRlCCj4BaRgchWIIazVXWLCQJ5//+U7RIo05kfbikcrB4ZoiNONhKQOJMzj4ooFGhJcOK09jp0FtRofRjrSk5z8Jfro6Oxnf/OLq8EFZyDuvdkfnAxGwxFtnt6MLQ85V4DdwHYjStqOHmlXaUSZW2SbCV8n4yVGvl+Quk9loqRn5js0S/vpzg38qeLtGuCO4tu/tyNg4sogkEXqmwCJ1OWHAuIJnf5gF7hmFAu9BD6QPrq0RQo9SERNWTI6VwRmBDYUn5wPeU12NH21wMorwxpqN+4LS7u+5pO6DFb4Oh7+Oi+78K0lZSBqtZ+HkNpREoPQMsxjNloeWyQbcttF7YaNsgvznBI1YPVr5vJ8qMEm4YoPpR4e8ZFwWhtgYGV2OinGRGe3jQuVuiCfxRkggxeAABAZwnZkhtW6A+pocPbmZN8vHmdAquQzsLPX5YygTf6AEzyob553yVBkgW4UmEihS8EGInxbprkgUCxQ4jukS30mCq0eBFtPDYl/GePa5QSbHx/MmFVlZLiJ+NLmxVrttVDN/ZScLaD0azG40b/7Tz9jLZVoXp/tLbu+qJzNRy9Ib2yMQuVG0JQiAALsTOy/evWCpof8DmFVkwKstUK6UuAms4WnZzjaWnuVr0QEIPGoyd5iBe442zkuIH1B6SSQCIrIw65h5YVAYjP3romHUI2MfJQlD2sHfCGKL0WyN+7s9JTqwbp7GLED9+/+3b/jW8g//vGPxwALbF0LKfdQLwWAjcQjipaRSBnLvifEDiUgY21pa2t9dQW9VnrLXILMg/wTMBquE/FGFheVg/vkUP5s6dp/d4BKHPHb+Usa+W6mzs84w3yKJXYGpqJMIWoh5wzsPLi/sbPl2xN055EDhsRxpPbGhFHGDPsb9E9XV/2CyjQniKJbmmf6XXblBJg6TQw16odf/ODhpx8zTX3w7t3Xv/j7d4cH6/fvzfBmXTpP9grAfz3FKbt8ogqMpxfnZ6cXVA2il1ZXD/YP3rx69Xj5Mwda2kG8RHE75lkx/AsFqbkTxvIZxyame+Lhbok8RcrJgplVY6nc+d8Y7op/6K/5gAJcYRV0n9V/AuZqjbJbU6GBNiuqaDWIJNGNQx4tSGl7SA4cKrS/E3nHhd6/IStQje1KC9bKrVVKFZW3iURT5wee7mddSsBCOuQpSKTk/pPCWAFxAu+Dkcz8TOBBvHgMX93QbzdCEAsOgAVVvqEuL3GZ6M3lKviRrptpRmHPnr66OB1xGBZn4jmIY/CSQZh9U9ZQs203craIDCFsIKb1dbaLMRvxjNNKt2aCKLAxoUuyg6hUtBBmP6Zcn/jHwQY4XFLT8KGsVDrvSONFvEulOO6IErmQjaRoITzInP24EhL3vB3K+hAf+KPnf8P3jZJLfhWCPcfMV5MRiqdHfBjJ2udGVo5DxH+ZzVMPzzlhEflBDN80xl8saoJIESsTpZd4WK6ypFiaARgjxY4JHBZmIFVqYkDLFxTOe0sMglEFbZ5ul9lu9gWfDfaP3hy+fidg2tJZ9ht54pKipM1DvsSJCE4c6UTEJogrgRsaHxzWm9ODveO3W2x/XVndWV3n7YsFBqYIAula3zgrY/Di9ZvTk5P5/gZWQ1eDwVlaevly4JtJ/zISYANZ0czksGK7KC6h5mesdOH26S0sLPAyKAPcszdvNbeZWSbZTxEjQ1iD0qeWcvglTWDxzn4lltyZPyGVTapAAGkw2sxGyj7iJ6M821ZsAMNCAMhcoNM32/d3H5wdTf/sb9GOA31sRGcQM8Vfu3G62kJNATq5RnraBND4g+4Y4qMLcsIrld/+G4bLy8eclCKkZMSolYbCQEqYt9XFToCZKWkmQCdInKpy1ZkFAA4fowdDYxJJ0ijDMjln+cTyV18df/TRx7yGlMYeWkhJYegLzHoo4MqkC8RwWyg1Cq2C5mlxdWVlc2t9jQNDGMYnsz1z80JsV3jiLzQF621UE64F7oTlVT5lMXfw6nD7/hZ7Fk2m9qOyi+u913sbG6yhLA/5ZgmVBHRgY/aOrZ4Ptrc/+eiC3RX0dDEA6i9jB+RIFjMyZamuiUCSJMAHRoYX0qVQ51QQQpcJSjJDwprRkA7AzGz/3tajiy9+/ct/mH3W//jzz1A28DJJL9y3+3t4u3/1X//lytqqr26oJz58MvX1l19xFsr2w/uzy+6Hhw7Ap2ZBUYlU0u5w/r/mA7RKboJ3d7U0jsCqx1TEMHjir+SP47/3BqhKWkMmD1acnJmNTPHAiRzSSw7MTiTmt4CoxqZZjy2zFbOhHnPSnv+YP9Ak14W+sRZSE6czhXprYYeFO/TciNFRUDS9qA6bGbhXr8Dw9p9CV0FoA8cOtH8j9jheQGO++GHNU7Pln3VOym2YuOi1te+I3/GrW2aly1TXttjGcOnop9wb8FwOlWlfIszaFk9pfqgTwqX2AA6/QhuB683SlymAAleI8ON+jJr4j9gcUAFBbLgpxj/y0IIEu9lVAvFW3KBsVvUy8PWdE264VAauxbrIYjLxeQCVH2ouGXGYTEEzBl/0GAgXRcSHLYVDQDlGghjbdCq5dLEYjp91yw1CwtSYTOOAa74QQGZumBflnOaLRUZJwM9mtIaxw4vsLEZxUHELTOmBIFUS0+eP1PNKJXNv8+d8yADh+jIwTpi9Y3zzYB49sKEI0JlOoEflyyyAAKZlq/GoR10ttcmBVEMWydhjUMPEXY5ODvkc8ZO3L1YWltYXlnfWNjghiy85+BGmIVuj6XvQ53Dqwkla5p09JQpsthnVDwY4bRKwkFh8Ox08FIQTo1thbaAdhEpa3jRH8/3l1XsP7vOi58u3HKumx0fk9GM4+Fjv5/SzpF0yR3F5AVLexWJExKarweDswb3tz774lPaYIQtfEobxUKL0ECe8Y8HoRT3G8pAbqiABRLRmy6srOYRZHGSOqLUdjUqlWpYAO4zRoVnqzCm/2sLVJeyTkfVpzI1PK6mdbDqnINCQCXCkiV8eSQVN7A64TqXy06Y8kcNeJ9mSE05cOGBOm9fbbAHSsWBcjshBYn/lzImWgIcW5SaOu0EmEvgD3beP3GlDuCt7Qkw+c8oZDSFDyaUecy+W6Xyn9YAAhPrlqeFq5FbU3WtDnJLzvdmHj+89f/IMiW3ubtGxoPxoePHm+VtGwB9/8viKhYyav0lzgUwuGezOzQwy/+z7RarwFkFEaEeHqYuXr15DKr0ttiTYAWdeYbG3srXOZJu9RySM8+CGL0a7Ucu+NNJc5dtSH58+e/1qYXVl6949Z4gINzfno4s3+3urvHy1uszgm16SI2A5n+ar209fPH+z9+5+/zExJZZbmv6l7yQo6htr7Y/HMDakSaUhG/xVoCoBDHlCoh+APYk3Rt/ydDalALQhbTz1Z0Ik5CHSrqGRH8Qzll8yJN8HiPhQ1LhkIGOfDiAnAVCFqVExeckwW+qJlVGax0BtgxOSp4v2IZ4/7qqL/UN/IaDcBajx6jhkYhr4lMUf8polX0FALOSFGB1NOpH+wSXqKiRJ8q1++OpE8UdToO0iJX/se/IKzjX7T7FYh5LAxHGxgYmXMfiSAadCcSQiIhCWdRlw7uhwls6+vZjFpSzsutrieTqQ7YcnMSw4BLXrCtV527ZkHUaKMGDZAFcAGMTxuTsGwXxXp8iX/3RrycM9TIMekcTflXrS/jv5ecObEousYmakH2jqgAAZadgQjk9NoDCFhy+2caS+tW9fw4YTY/CVYuag+U4Uy7jns5cO9uGH9iZWIV2UFwS+AWcuVG5MNPAE2aov9m3fxO4J7v2CQdwCW5Q59ccPOZwjHD5ByPoqZTJvSQtEowhImxkGjgQ9eaQgWsWPyy38tDpKw54EpLOpCrxzlyzXT12z2fv0eLh3fXhyMVjb2ejbzNrSsPuMvgVl0LQNhselxYtbmUkf8wAbYYDvGHKulJbhIDKHoNUMB7Pstt+M8jhraXN7l46bPQNV7mwhU8r7b11bRwtaRwajGC44mJy0LYxi1rfX+WSscx3mM04lw0csDnn6V7YB4qAy6WRRFGDCBOteQRQLMO8hiK5byq/BbBSEC3WTKqFdX3kaKExB1d67PZqThblF1ETFQDoKgnVcRvgcaqNZqGOKQoRy4T9ExnNRXGuq7lbZgYMuyQXUwtwstQncptgzQ+w0wL5MnHLCEaCc3wYZjh2V9CLFCCc2nUrBIIZo1Ac4ausyh35sbW7xgr/bhwMNngs60LyZCMRQmIjKmRS5gicjxznrLteVzZUH1w9fvWD7yAETEbBMH4K+xePPHi+sLO2fadAqX144DWh2cXV9dmmJDjh1B0KwAC9Kzm0LCpnGkdOs1taA+PZwP4btYBeaeB3787VlFxHQajry9KFWd7bmeVmAkFf8cUIPPvmYbfosLaBz22q7x5weesVBJ9tbW6gWiVPHsTlYYsgxv7z8+Z/8yG1ZCoZIGItJcF8CAtkt82MpkPFDsUoPcSUNZurG59vMWqch6OouiSkoKt+YUjpmiU64q7/RmY6V5qa29rCMMuKwOS0JvKlTkCsFqTqaO6FKtBuyIuwWtF15VwcEqgOXEOXEW7RBFgL5Aa95ky2EQX/HSVixHqBuHWbIj9jUlY8GAfBg6aDjGipAqSMvf8u96RF+EIWuIk3a8I3l6HC0iIf71DKKRGJhHIvRZJVlQUOW3igX+v7e818JKeSGKsiIFh/JMU4wUI9z1jJo7fTh0diypOs3G6gZrzFkYpaU0YSjiqgIoNLVNKJC5Nvz+0bavhPC0iexIpQEzNUZO7pTrBSzRfHk7HLIJhgnMhmqckLQ1PwChk1eN7pZTLFi4cicR3cocXorBCvUwIzYuXdbtMMjTjmTJFTEG7S0DjVMKIYpRk4vDGkkTAkYuLG25N2ylHahEr6iA2lADtoGYNnK5NBBiRZXFBwOzleXsFSmo+wMV3wIC/yMYDnywW3SGV1xQDIumABcgEKcjtuRn91MdwCJ0KXMWRYvI2S9KAIULcqRYJUUsZA1yiZSOZnNRpiMaKHkFzOY5YACvzI/OjxBtLQAnKDL3BpriWlhKMg4zM8+095AH7OdNj2KOXIKNro6qj+ITJqZBg7YlTu5shu53TPrQOvO4X8csgiYuZkh71rh+bFMUDDPQXdpDpaxMidULS0mf6mcMEwdgyOo4n0nhq6smbqDyW7W4pIN8Nzc6honO22dnZ27jsykAcY/O8uxF/OLPUXh1IGzK5qBRsNRmEx9M4CeXeNFma1dtjWrdAyXzIiMeWCkSt2mAvpk7xBt4iNwH6an1wKborFLwNHfmkFkg7Ejq8jfnRFTvF58fMw+QbMSSCVnqMAmQ1BO/Hj+7NmXv/7t5voaL6qiMGiBfUwChJCloUV7wAFSrFVGED6hHu0XqfcyZv6qNSDozvLKHFEwQiRJTIiiNjsNd0NSJ6IQvYyZT4+mdKxyXB1eIy/1gJgXV9dW2Pa8tr48X686m98f/wWQIKB2q88yldD+1MM4/Ta6iot7bnr93jrN8IC3ml21ul7oL66sMLcyy8mqNH/WILoVdnOmeQP6s5/8mCRFje6DB1BVl0tGindh7kc//ZPZP4EpG1Dy0skGBM8scUlN6iZSQ8+fff65ZlENR+rjzOIcbTDekBUOXQzCwsbn5x8+fkTFcfKZzHKNAKdZXcaEtnZ39X4AjjTK7RTzud4Rx0T8992WUkwt7byXj7rQYkpteYBZdJciMcdEyixAzGZynjSU9L7t8wGfHo/O1CyyRBEbqcqtMVkQk6gMBW2sfcEqPhuWBt/y9kotJT1e/bHAhSXbvZMohyNc0ygxBiuJFYFNuhKiuXMlo2gKWZ7H9UHdByBKsc6Yl4bVSuLPMuVEYREFeZpscsm5ecVChGybH2pDIc8TPBZKGSKdvGDCrkIO+XzkiZtCb26Y02uCzNppvxJWFQr/IA9cUkZG4zmFSe7iEQQeLaRhUvaCLVqQM7O5NZtDrhhrgQgbIYFBo0O89H3w8hyKzDs4RHrqmBuxmH5gfgi/Hb5lAbSZT2RtlrFDmmvSjC8mZQfQxRyxyMelU4fy4ILBzCUmS8nUIXUXSg2UrToMVD2LY/CSO/HWJjbv8q1VtrUww8l3fugiQIAC4ohgZhEZk3kEz3zmaIuQpCNgimdzDqKBb67EuZOejTlWW+lQOMHmmMYC7LAHL7PifFMqc/X6ZCVNKiXAhX/FreM9io8m/0iFfGYFuu0OTohmhTJTOB2mQ89PzxD3xdz0EZ8E5vhIvkvsNwN1rJwoxK+KS33qhCyqNyF50iaQyRzsXLknVV1oTbRgVCdjoIeGEINh5mTBaWhIxrBUoNrBdOTaYGb+CUBo1UQRn/VOB4J8b+CavoOTG5kBoUFmBttPJrPpa21xsc+Zakz0kl8bLgkUXCuWlowJEIHkmTTGnzLhzkwjL8+yWRAe2YHFigg5JcDKw6/ZfbhW7q7jwngXonhEwJtwgJbm/OQCErFAOyUODxfpjWIz9DWw4cawDZgAsWMmjj/75JMH93eHp3yn6ByVZaFZPuKM6KBAuMSEIm9yLyixlJ/nLiuRZgQL8kw8AqGX49q6Q7ErOjCoG9tmyRb4Y/8ZkLcXNdkFso0frczWf/SoiyFw+uja6hqHjWxsrXtaiR3WptQxCIrX/ThGMKX4Dsv3/RVaY94/s73ZlcX+ymbf2EBA5rxbZuWOX4RWpIXYF1f6vvlNwInFIixvkRCjX6dOTM/0F+EokHT7AWtNJ8YsXvOPZzqp2BIxkKTpukocKTDzRjL6SgHqHNNYlgxJpCWZCCuPvioSokShDUovBmPrbuJqTBwxJcnwxwb4CqrKX3IMKAUgnEQ1aOrISu3VpPqTLGgZG+NKXARDBvMAAnbwKFqgEk6wAjmctduj4RgKHmwnl2WTJhYyM95QMC2XLTGU4wFZMGIzUXwdwEs3KXrn0uFtkQ2bMKRwTNY4OcLX53ZMmEUzMdzJD/XvI7VrwDCiTQMGphqxHJUUMTiI5R7JlEGYhQzlGMDKDaklnTFWyppBi/JXEC1mix3ZcSEPbSpsUbnLDXFv/yFyMy//ZbpYpx2rPUxJToNUhFoH5ExtaiFqwOU8HD87KpgirFl/iU5RpII7CmCBQ6ls8p4Lh9tTwRhPQRlv0pKHygD1uh+g54chmBR/ZOn3Q2YUI3ktKFZUHQdoY2Y03l/98Eg6xBJoUTY2tvik/NnZKQ0oPYhCiaCtXRDBKYd2pZUIhUsu2BMnL5ChhByRw0f6IFAl3UpG25XJ+EsJcnzEa0n4TJgjOhwgJoeMegPZ1o9TMHx4AYXSJYMa8cBIbon3iE8mnHue7eg3gzl3ZGn+5IwXUa5PZ64vqGZSr3vFZVNEs5B72ZY66EEMQpInEovapMZQJJ9UpgHkh74UbSWCwmTPzi9vFq6YomcdOt+vwXJ04vxDXRKp2u0zWlDU9jCCGohuq2OHLbxmz5bNh7rBIdIXYNqWkQ5tCmNidhQX19CkBmna+CYjJEsR7ChQzuigIXRJmtHyLAJBkpDA+zOnJ2cMaoHJD9qCXxUS+ANAMHKPEksCHYWQL1oyAcsevkNYZ/Kppxzp0FvpHZ2eQCBggRIe81casVCiZ5i9vf9gi+r9gx99QbcPTeFwIAJSYVSZIBS7I9XZwhvKPwU1DOfLI3+YBZxVi5+itFMtENdmtDz6tpesltoD4zU1eWkWdctrCrZH/tQj1wRkAiQhg5n/EMcJm35SmGV+zxtREgau0uuVglCThw9dKpsp5GmTZZP5OjUkvRIQduBblPkJZ3eJ0TKBQWQU7UANxCoPziFCd1JA4iXs4OvyqHA4qgA0ryABgsitW+QvzY67QKSmXyUsQhX0RjuRTcsIxZsEAOh1xUDQmUGmiVXklr+kK4UuhA7AUUu60lI4kaPLOf4LBZRSV+MobojsqGkKBTt5iLQmy2XLX3/bI394bpx5j2AdGsQUk1OWkaEjt67DGm1br8lQ7sCS5gZQkAUhF54qylR/PhqjWermfRdTR5eyXpFVIHVgzCpM4ScUVJPlB4DCk1PzGG08j9bwoKqohj9VM7m+9yIoeAv4cNByFmeg0wNox9LlYzhBSDxb1OydEzWLmbx2f7UUKRQFmYEQICrdR09oZu4342oLMsOMQ6DK21LTqrsRAQgONXRSzgeRC204k6arCTaVg27wJjZy1GQm8Vj1XVph6W4BN4vDISsnApqWLQyNX4qrF350jLKlBgW5+aemwxWOuPS6kI/Nykda79ivPEUC8gUU0hymRGgyiKbCL+SjM0ddDlCK5CoYBoiBLN6LYIDMfBOTxTSSiAFckMUwkjlmfD5NM0NMxvWRoxJmy5V9OnKHDUTGFL8LccyzWyvdMIYoq79hPzlUwq06gaSk+MDKL+eX8MYE060AgV37AMkfRwElRBBlDYMSSAk0DZopYQbofK2PjidTcMtLfMPvxasXb89PR3Tbi81sSOYWOYNd/fIAd1oXf7ny8RA2snuEMiIlKCmIYLzHudFXqAYB6MJQ8iIvaUyz2g9z7Lqa52MTi8znQbUr07YVUl6yjzdQkMbJjtgMwPezxHQLaDYwC5RMLkUEac69qmwaF8RC1bJlBgTw2erM1AoGC8WZSUYBpVDIrXedIRT6U4pCMVOZzS+4tWNnKnTyaUSBDDxoy//kkcpq75l4RMpMjdBpQMqQwqhfZXi8CD+b54zVikfnSJFvvroTBTM/4cmjyBCqSmsy6SiBWRMWChCOHCAEypKDK8ip5iFBsgnYElew0+OT0MZPS2Xwy3lbXIFc0jBLAqW6W/8KqvmvFi1Yg/aOzlEmPQxOrmBWCGHrNihVeuMO+KFkEubt/R1Ut9F/8A7wMhVD5G/M0UdwUTusNPlfErHe2MvRhVlIqtC2DzXmYkKmkoiJPNQuyZXdIhYWTBoAhwXKtBOUHewmY1vJsJ6iAhhTqm9UmP7MAsBA5vIHggK3RnRY4e4PlygCWj7LJnijhnwcR7ZMtzG3mclDkIfYAFeqjx3l4jfxATXuQ1AWWevow984vuEktQjJjfeAIhQiQVW5ZqdKk+YebNKdUOkB4qUGS+PH92+iTiMLlZYiOmSQUNiK1hJqS6jk96/QEXejjUcjRZJXxemfEqvWR2HI5y/c1U/rKAWYIhBCsc4NzaEQYLNxmicBSnFQc0H6fMybzaMcLog26BDhkwBPcS4GeMNA8TA0zjYsZZxI0MESRghAsrL+5Mwzm4EYiuCKZ3lfcXXuAaOZ2cW11d7qqttxM1EmV2RWBVIEHAcy7HJxGjfrpM4tO4BJa+12FbrlMAE9acjcgag0IuBACp3dpaagiQ8aK0gYlgm8ohttuUkgCWHK0IRJTPFuz80w0w70emamzy+HfOyIbdqMOR135RfXDzVaJmNe+UAz2BUtiO0vUnK0R/NGS16aUJr5NRXmKVVYAcuNCWYh2IhJtui01mKeBDmHWkMpEYVwg3SgRI7nZnr93szZ0osv9/aHZ+wZSbtdkldHknmFhl3vNb8bJUAQF0KbSqMKQFIMGBB0MKSckzMy6dZsGxnyjjSaoVWTDbgzbGhlOZdjv+y8CRc8dtUoYI0tU4Ry+VFs+h9UsbK25jCXLpEIJCRqhix2AkOHe8ooDrPVUScH6Io4yQFaBsFals0iSwmrbIiOOBQPnNhJjEy5BVQFJUgPKRZb/QXNugvhXYGAjreq+ldXRyfHdA7hySx0sZwIkotIMHZZZbVmjc0/km2XBbTYmZWGIUX1KiZwkUpzSwCufGWAq4y0ieALNQFfdAkfrVDXEKHgqScOfzmoeYsDwsdcCsy6Kwnj0EDc+SMfwLPLx+r3wkKfQ1L8ntJKn+V4kzQOYHEtG5Y7gf+vFcSiYv1hrZqFTCj8upMY/5lPqmwwySxJysTuUBqMSrFXbuVIWYtabIJ2IDiZQJFKqyQRNJiJ4Kn+UpzcVriYupZraX5/nEzIBZEEpepQgT813d0w8AdohMKU29uLkfxv5LiwcZuWO9LUukbYckluF8RLYLiR1+QoUZ6EOO6LFa65ERw3+gFBmaOyccVaOvC3UkoppM1fO6WUpqRswqNCChguwpSP3Epd3SQXZaPJSibBAIyGvp6NahEBgkRhOlINtGJd0dwBk8KRXdO184xO5BKAM/7xKIGKuf5YbQPMIYachMiYXUklNZIcNIRGjAEo7UjcKDSiUuCmsoCQf8jfPViXI0xdayeORkS6FYQO1MlAXDf+w9Y2wwb5opVexAlo3RyGxQmEeKTpBRZLbbqJml3b3lq8t7u00p9nO+Um+/89NtcuftmMgmj8GROU+kV7Y5k2BaGrgR76hmuHEMhyIdnRSxpMABi8Smvjqn1SSinhwelvkWAZhvnpAQBVbJSwZpLNjJkVCRxEawOEjPCWAmVz2PR8DxVX6zvGmWz2OaAestNxi1OXB0alLCRjaGyJckU5opZKYKs8q0eaNAmJ9Uw5Jy1FTm3IPzcoTypDqANvGnsH46IDha0bWdmhPX3DIFXZcQTIzM0y34k7Wz2duuJtDfZKseeH3HRgGGY6YqfxoMWMq5IjJAnfCDedYAfW2oDTpJBFKtwhNlbDocyMTH4CdG6enXsO/VnAyPiuv7BIN8Gd1pwPxYosFbt6IdAsz26aAi4A0K+jUnpsM/NLyyuIpAwyOkU0IAeRcNAac9Q793eODg453YlTmmEkbZU+hkxk0FxtCmmD5t0vxJi6v+KmLRKRkzTZiyJfkz0ydVsZSpAY/TXEaQC0qWL1P8BDA/Bp0lgP2Ts6qKO04QE6HblaXAK6yqQkQ7d8EpQ0wgQrL7Ox8x346rQMrmyAXGVj2Ldr+fIOGJhMVaSwI/RIPWgETxktJ9XaJWk4Q6sod7HHJyLYM6VBJcjFmDjUna6MlAEhIbdEk8+r7xd7+AlrMZvb29tMBtHVscaTXz5CeXnCqsAp/0+/BPK4+PgJISnHwkcVSQI0Uo0lRqW6yxcvEj4as0hPWQEuBRJbKlI4REs46YFQQI0VHvLEB6tvAtn4EWmtsNtUPafIPZPpEakihhgkDDa/AeoOattC9VEUB9r4QiRJwvdP7Eu9GRWEqFD6KoC96a0rQsbb5AIk1QVOigppQ1FcCDzWBlXhnlRMIDTW3JbHAmLMxKexFEio4JEf/jx0SHjJxgzdvbgrc7AhfgKpkmlFM00muHMV1c506kJVQgkHGm5cyNBV0ChVTqBYGzMo+YFMbvIkOKyQFzNRnJI+B7Ag2w/IjuLio+WDPNgO5fhBrTflAbgVmhCIh6SEcCQbPqFw22EHKA56bInAFEQ1xyY0H+Fd2XhtRclVYiBDJGMx0URc1vnIWjBGpqRdGLbsgoZdLYu9/jUTkMw+Zq6Q4y34zPWyreliJvLYGsgWnEs/xMbMHl+n5fycfm/h0b0ljjzq8dW6RT6WRCOKJtQGgEQNdRnMOC4AM0NTJuNog9iPjbd3rzWmGuHp16GYImna4tG1X8uhxnAiLxVuN2HxTKEA0hTiZhrbLW+lRijkBAYW0IwAMjVghOMwSK/tIznMR2blnV/MxkJwb6/Y2kshQZPBdk1vYXsS5uHFQDLAQzVSFxIZ0wzgaihOEpJShQJKFH+sGsrOcpggR26gc3as0izRFlIM9hhQ+TIuy7LOH6tIgODVbbPpTTBbzMGUvFW9wCoy4KQBu4B+rZiWWC0xzqXXhSTFj6JZZeYG1whpzDkzAr46HWa6gvb/eolh02JvwC3ArESM/nWUyIFTusKY8VJjbQEmDNlZxOlrYwoGZRvCMhkN0MMqxvr2JgeY8PWHzF1lssGVUobN+BEszTUPJMUk/ObmFkroL/W1CWEoMId3mfIo0BJBwGNSi8JzXDkyUCW2QyZ6j5SYjs2MNzSngqYNo3TJX4GkEGMh7kpnpDq2UFS8iX1RwscOImeulKC4V0KJWjgJ5lEbkpEiJYzb1C4bxakraETCIk4XelZWV+h9SH5CIAntu6GwE5+bsmL3ry8u9PiSBW/+ri4v1UmqIZaMgVOGJ3xZ+JcJBekumSVfsbneATJurXxYaYaqMR3VazefP9grmx6xZif0JVU3R4dSpw+H2YUACCBQpFoCNJlKbFkNBGjojyrCqgoTWhiWEzrYiqwqSaDAsB9Gw6yd3NJ4JNBmhC7obI/X4Ku7Qj5SbgM6lQpg5Bp4xkRBZDVzl2SpivHuO6HBIbtJ2ndlmSxuwkR8oBtDXK7MarhbjwC7VTys1K2l212jKyXHiQ34XXYau0TGzmFYLy+PRslgkCNxeEO+vgzSygg4CHlWPQlIJko3c5xwF99SSW+/Ljt/0R/K1HcFq5ozBlAdB4FaOMSOBqILWyMpLcMup1661z3GepxnsJpQCJKCPZjrovtK75qyxUwHPOkdV0TybPkWFIcRUo5ZOvMYOoi0926X3alH1vn4EirvVeryehwudMNJbOeskF6MZofnN+eX05fn1xdDTvlhuhV4lz3OXlxxn+yUxwHRPPjjc9c3fEKWPe/O3jWaxK+oaUcZHnuOMJ1uxSiPKi6UWle4qQdoZU+XyvVn+e+EjAtK/WZRJeUeIR0pqhUFBFIDcDJvUMIJokAkK/n4MhxHZnDeHQqqyl3UcaVAFDJNKwh5TgY45KEy06FQV3Q3oUIV6iYMMhLgFJY/GeCP8iAViTOmFKzuQY65yib9Dg9QNI+BMiReeCgoN+BiE7EjAi5sq7YVtsfAEJYC/mwLWOmhOfC7BSxmMhXARrf5ywXfU1IWoUmB+MIVxXEumpT2ZLIhbU/lc8/U7AzHjKYNsw7zkjeqPqMXlnE0OGVT1Hot7wEqPwY5kGnTaUJBCC61gABbf1yKyI9rY16Zg4cwo53dHY7acJDmS0KcB3nFS8i+LaRZChCwLFzCD2PxyJ0FcQSFY4Z9gui5QanylgB8C6I5TCDkRXF4deWf7pNJykEQaMuZO+gkM3aj8SRB8LfBbKiDnoFf9oV7yBCuXcUSAaVkwzlAiKFmg89ZHoUAQaGEAsBGAc7PdyIEIXggW3WzOSuGnC7INJ/N7fWYaqLWKboiRybCPBilOUqcoJnbMBYerd39pfWNdQ6z5CAv80aPjXUhNrC3twFeuP5pV0yGr2rx5UVYa14BjXDG+ClHirDQ34YZkA8q2kjedB+enO69fXO4fwBHbNrYvbfLi2e+pAC1VCKVglhvzk5O9/f2djlUcp7vJ6l6yCfL/tt3nEf34MF9hSuu6P7y6u2r16+ePz8b8B7BiCLb9+7df/S4t7Lc5i1sCGYO3r777Ze/GQ0HFEULmist9eLipz/8fOfxoyhOZyUD3wlQG2lb2RkRkq5/4E+oqOxjxX2n9AcigCYq2O600LQpl4lPISuBVuBPEvjSTQIuos4MD9IPEPxdlMAHSkK8UjBzsZIHKaACTQukWYlAKnu7Ly1Q/YhNnYC6jvpk/IMXpEfdo3NlMyJrGga3WkgHiQTxmWH8v5Hhs5HWnC5oFgQTBBG7N5M/Hp02tYKk5lOFNDCeNTNyKxHl3ULdhBITTQ7wSgYxQe2Yz/+BYGJkCUZsfIozNDhN2GOf2XzjHma8Km0ob4v0WCFi4e/gxauTwfD06GTEm3v0ZjxX2EGAXfK5OQ4k4hsn0CgOOpYOa7U03AUrjBg/tQOSi75wIN/8Ix9XXZCBEpKZXhoOy0/10M5JSyYumFVwblkmDI1NmeNTeoFasRGA3qfmoi0Sr6slBocSN1ORCzzzQh3pyOJseL7QZy/Z4gQC8ZkvUoQZBr7qQrIsav9ujj4yDg0idbJqLEG1pYkiW2BEDBJPMgAYn3pUIW0nGgYsosdWVED2PMeRkze5YZQGmIrMjJy7qbVL4FuzfWsZTBnMeeO6ND0sWneoS63HdTCVwgtXGGLqgOIwWDo9IMzLvotmrUaUlnj90eYx+Qk0m072Mc1MscsOFJTspMID+JnGUqPgB6x9PFsbBKY/hDdoQkL1CM2kQn8I4OLoEJXTyNarPnCkdK9Z4iDMMwjBIBnr0xeAQoBDIh8dQveQPDwd8Erw3KJdMXqFKsof/wWfaxsBE0lLxg+SrGYRRwSprqCQeCRT5KEMspIdwqBFeRGAkBolluKWIVFqq/wSF/uStfRPzZRAniJGdEyCdvAkUP+uBwMz3Y001SDMM3ZPgnA1GP7m7SNMhrH67BLfgRZ8CAsmKLJSfCiQk3wQRkCOCJbFC7Y+L/cXGf6l/kog8CIYxS9oIwL6QzD/EXEBwxkQ337z7JNPPmIHt2ImEnKvb148fcV+/o2dXSKQBJEMUplhe/Psxe++/g2cr/SXybj35s2rly9279//7IdfzPV6LndIsdbMQdkvv312f3eHPfR8PxhNuLJ2M3XMS9x7e/e2t3lrgKy8WMM03Lt3e7/7zW+2NtYfPbwvWL4udXK8Ohzw1lNkKc/sbzg/o9s5/MmPf4wvdHOltsYmvlnaaSUSxf0eCZTNkIEbavU4J/SO7//Im+8rYnwEUHCSLQbsnRZK4JbWd3l5mWPmSqeVua5FJHkI41TuK7VqMQYT0xVeGidfDEXyjNn4Yij3sIdxlichjzdxDgWkYMXuvCg6NWaoDJPXMQ3jSGLQUf6X0FEElNjGGK/btgeGyrNJEoEU3w0ATx9ERHIjQQRkatkksWqJVUILTbbUgw6wkbe/uh3T6w3FyKtx2rZArBCNIskrztp2EsunPaEBPhucMh+TwQXvpeNf+yv9Fb/7PjNz+F5LWqwAAQAASURBVG7PozZ4U4hGwWrKOJkXSRwWsUXUTRw9Xt1kp6pgGTrjZKtlQjGeAoWSNN364dYlQTvGpWWGGRJ0b3EyemVIZgRuU0Frox7x3fRGAh/SKVTyF1CF1gBHTJDXzMgFD9qfki0NutNOQW3XdpZXRGgzhaeIWib4Oz0frq30ZxbprYorEuvw5C/lCApOnxzbY1NuiQa3HiljW3agwBl2JSzkA6C8tpDzwV1XVa8vaWDIgSaAKpKwCWgow1VSyHKRoqjpcQhZkKkyUsktFLu7mDMUMrJUqowFHeynz++3rdh0R3XxvRog2lBLX2SgNgpDoQdgMa8hMeDGDtgVnRLTbB/orfQX11YuTw80NBEkv40ZNxLjr/4bUUEENGYsg6Jj5ESOiE8Lhe0yUK2T77TWFDgmQFeMMzd7i3xF2BOn7Qpwoqfl4Mom6GaKs1O++fpL4D569GD33k6ZGHyFOeQGZPWiAUqCHyeGTqWQHgtnhR4dHFBBMDHgYjZQAvMGegy0dEwt0PJpKJ65whqM0pMDUCGS+qUDkaYyGK3DwrCToQRK1D5yn8LRp5KxlqonBccPcMFNXqffeUSTIvNsc57p8motDs1np2kYUgx6rBZoQlWI8E4IdmkwiIHzx9gz2d/Y2trgg0ccikJ2qBgXjd2bN/GpvSHuDtR//AMiZI/74Jxpm9idlKpwMDNNM5rm5FnelA9WtbX3mq+tPWF9+vHHHzFYBx8vLb598/bJkyfI5bMvPmeaDocDBFjCD6PjRQ+MWRi6EIOVuG+F6Qs6nzoW5Qj3bLu9ev36NZXlRz+yZeWlkK0H987tRnenf0GD9UZKWGp5sHufvt0FMxqoKb6MaslUmWqS/O8NpoebYpPMJdLET5RqDE/E5LYyc41Ob/92AiKTczOmS0VTnhaTNW7+pCWxw+aH1GZmXr5+RT6KSNf3hVJ6l5qs0OevggCoSNRhJA6cgOOCdKPMcVS6lOXQgBYeA6ED/d7fzva6v5PJYS9iIDbEAw7O6Z+/xwpKC1EdueQvp1r4y+lBxiT0yfuWlAzFGfCoXLqrpr2WHRD1y/OdpwnpCojHMA4MidEvV+NBbXBihbnKcyaL8bEby8s7G5uryyusLfmRG5pSp0k9ShH1EYFu+Vl5OWOSfUC++7vA+yiOEMADNupDFvmwjKpKmgMhicmDmgwQBnAXkd15IoV2hPU6XGQYdm26JZjamoEwlw8ZvANxisurRhHoNOUYQBMhQ8aaE4Yqh2J8clYRALdrZySAguK7YcGToyA8qU4DM1rI3JX8so8fNw0a6SXBcbr0QbEwyB+HwN9mHWBxFoWmIOCECmp/ynY07GfGGyRps6nlpPj9cfwUvQaJDiSpkMeYRPE8xZqBb8WgFxoZtkrRLsB08nABsQUgEUGzc0t6sxELapWqVdSuAtL32QKKmgeA4LxAy2CzBmTMaEvFzPTJ2SlvxW49uvfsyfHNZVoOmaawA2+B5onSwPR1MttXNzPTC3JfGSPPcm8po94VMIZF1tp6Bwx7S473IYFDURYXWfTjbBEX6gACGxIoTD6uzhrwJx9/crj/9vDwYHNzzUVcxKzugEzLKcOESA7roP8VZL4kPTManvN92WdPv2WgQ+eAthZ7h1pyc2UJHX7t7kgHrpyddnychF6mCk7fSEuloyoa9rpZO8SKBmloCdBJHCrik9HIo86UoKYZaWLbfsVLS4yyWdJANAABQtkU4Ghm6aIhIV6PBiCaIoaCak53Ih7kgUK9gcomfXNW/okb8ks6fZql/vLOLt2V7eUlOjVklGx/BAWUm4oqgF1UJfxTrgCHxqupBQwK8XToRMWkDos5bKiI4r3yzY/z4bfffrO+uf7xF5/xBagTD4r1nG2+gsAs3ddffcVnrDZ2dxS0P7ZBcIIsfSPcER0KFGKHlsBUAecNpAvFC9aqlvklgIPXXo1TEUz7M6szh17JgNnTbyUjtmJPiXEVb10v4M0QC0lYdZwMJqWx60P4aa7JIFgbfdmK5E02CS75m7pZGukyRKfJUNkseTeAA4shVRfkj1ufSsMkWjAP+Ys/zASPU3IYi1+UYrsAE2AUICcygfbC0N3Ad2NEAaV6povM/S1gOAMCJtc5e2dxqEThvPVwqtaFTi3TUJLJLejIECvVJfKjS1Rydutki+o4MWuKoUrPSnKLUlwQMOOO1aVjDP5YYUsLKR1ERXwHrSB5hQtFhM0wGmGbgYIMEMAW73LlwmLQYwYisViJXZYQUwvQWEqB37oRhwtWVFFisCUK+mCbhuw5MZ5+JFl0iXahxNmbZ/Kl/+jew0e7D3Bo+kqIohDeGe/gkX/8dNTYMzN/fv3FIbSvgjK36dpXhK42oBrauOjtiKYUtMEpHXp9O1QSMIJML2vGNF/kIwZvHmkCwG01tMy4WnwLFNpkABZJx8XEacsxJDoCDvPibioDgSNV5n0c5kP3WF7kJAnZIhg2cSgjqyIRKoy7hSVWgTULeSi4QZCMCrO6G+UAk4HMWHBljbk5hAol4VVJUljoEE++tAHQRN6baxZmptfx8sxic4qG7RlyYRaaQLLOOgH2AUkAGNVKbJT356Ym6xpShlNSeEwo2sgJeqSv8Fjg11StM0A2BA6ggExOgmAJeZRiVc6ZEnwTfcTb3cj77Pys3+vvPno49/rZ9ckpGeO3UkQCKYPl4Ktkg4lOQRhwBY60MAgrjAjwbfo88cXUoJRNfecXl3nFCRN03yYjP+ZYLgec48FEPWwS7xQ0tMMybhtbXNzYWl3uvXn9ErlRip9mXf2BaB9Rwr+UwjiTNotsI+vxvLe3xzLA448ef/31E5fQOZqYL1oztSN92huyplWmgSsPRa/OlXforgppiSgaFviO5rknkiJSF80VAfrGqSiKSADNOnBirG3dhyTYQGwUUTCg0zBcX1CWtCYZATNPJTHoS1zICXpY2VGqmD6LF6UvZRjb4+Z7QmjQeJiQZN3XLy6wuc69R2oll+jitrjU3T79M+8CDPvWf9MpwpxBWeAZqtrfsc+nDZvz5ozDP4+PP//0U7oe51NXzN7gKPAiS9OzW9tbz54sMBRe39rEZshuy4gwbXZxMfoc9WNtRv6Ilp6cbYySjCHeu3fvd//w5c9/9vOH9+9x3jhr6bZZGKbaQhaSxX/qCN81O3jzdnFpng+PjhgTYIK8B7+6qgkALTK5VcGHRKQVRUeTN2T8bqmgNb7AfgjYZNw4l2bREkTED+pawBQ5ant1rXc+4lw8RUA/s/KQDZJyie05ZU9tFCw0dIEs5mnwuz8VOwFH8SPcZNRlCSRguCgnACSyAzD+q58APmpS9PzikaWC/IK5DY23CWogzYEUP5yqlRtGEohTPbYnLa4o6LhKiyh8NF5YTImvvUvnXQpCS8QBlfw0Fh/B07EfvEUzkFMc/dj+6mup8rz4yQdUmLxa7C2vb02xxDt3ebG5sMDR5bsPH/d6y3gA/BwL91yZ82NfKmNf/J1KZXrQdTimOVEjJxLbL/RcD5tLWYFdUCo8/kkc0dW/vhVju4uc5FrjifqoIvIkY9GHlUaHBYJiL1VzAlATTnNYJiiJ+qv/IqS3mqiuHA2bLQGEqqEWC1bvoz4WgK28WEWx0hWMPYgylKckpEKbjJIZ/u2wKALi6c+pXRoY8HCL17WLZy+4C4l3FIwnZt6MOV5SNCWcrx4FisgMLAVEZroijM+IRDGNdv5INdXGDHwocHrONw1spxKjARLCp1du022HIohElZicQksoumpg19GoodJeMfoYno84LxJ8F8PB0eUebwkxELNJtP0t2KKCaa7qUfEVSlsagiiVmPhMt6BdQO7i+fBofr/v6PiEORhNj8M1p2jCsdQlPisFU5Qi0LAzbwPfAANAVRtPOPcrWDTABsVSXNsdMQvySwWd4rNLvHeztrHJy0Uc8czX92AQP2UWWuPRiG0NIAIJI2C7KXxvylcRROXpl3BcbMGpd7EcVe2AAMSQyXkWSEDNMrZbYB5JkyNDyaSRhyrQtEQ1+ctW6g9QYaRUQOYoTc9EPnLADNZEpBIsLfPwnVBYuE7eoAHm8ft9z72S8cxPKP/vFE+EYvwXC5IrsJOj4xe/fcqnFzyDwM71DZ//fPnt882N3aIjxjR1PhhiXb2FHhzTr+HscQwFOqkaTAYssQn/+MS5Zb4Q6DBo1oNTEFpqU8zeitQ01ITQGEVV9+7f5+Xub3/3u1d/95yuEoeQ3H/8aGN3d4FNbRgVArEOazOHh/s/+9v/tLC0wHeZmKBg9L6xu/3ZD384xwkIndywW424hds74aRydUn/xL/x3eq6yvtnfH/3Rkat0lxboPKsLPfdzkhXS45My7VBK9sJGK0gWO6w8B7RyKTju7JXZk1fOcTHRNPE1087nyD5DjzyUwmMus0eKC3qTubxQ4M7fhZAef6A4mnMzwStyW4VhAXds6NUM6I7fBPOxWIWREaoDVDmkaW79aOezWS8v9yMqZm4SVlBBQxIMvhmqsvTlza2d+Z2dmmkWA+d40PXfH97eTWd6tpuyjjQM4toqfEhVf3jQKDNN3RBI81hQRL8Dya9qD7QGNe/km5muLOh8O9tMBcl+fAJXXyZEU4clQM6lDPLIdCARIWVVTQpYzkC8LqPMVSEnOJIfUkhNqF4bzGSVJCo+cAJF5azjO29oLOjzCR+xktS2IkYNSbmEj3SqLIX2jBGFwXGicDE6SDLvf85L5GZ0yhYCaUNLokEPgMgR5nzI+Yhu95KoAAzBBaV0MukGguQ5MZ8JLr9nMbPNCLT2U5qKq7mvhtxkKxbUSCURgsKIX3hNME0bW7KsWaS41Y7dusYdzJgIj+L+aAG8fVwdDocPP3d06vLIZvvaFU40Cv1yFkKAPBQQpdIhSG1EKRv0L0hN3AgGSSu2PnJCQUpnnaLDTVOn2WBk3VebDDuJL0KXHD2s0itox8/GLL36uWb18/pljAt4wEaSNdtOCqUxs+ONZkTkDAT/jvbTL7es4G9vGL7Pj2baKr1WoQPD6wasPKMec3MDIaDFy/essCedhTCZUWgqaCyIvE3x8fHe28PL1f7hwfHF+z+d9NZdOrGNfdyl5VExgKJdHjiTvxlggGFJNJfIRfy0gSjFjvRGBl0MjVAV+yabrIZom74476CxCXwqDa6gKap0/Rv+HyyW6/s0nRlur9A6eJC2sRzl6X9BSOA34v83seizm+OXZ2cnC6wQ0Qz9IV1Pt2C9ABllqo6WAX2Fl1rJiLRiujZubTo+9Zya9PLszvf3SSLHHhXnbc1nK1G69oWd+71U0WSauvBX5YzaHF3drfPh8Ojw8O9t2+//vWXu4fHX/z4xzNLC6HUwvzni0h//tOf9ldXRnO++8S7cRgGEw9jNs1MTvKKIO58LL9kMikhBNTtnSucd8+Vk+s4pkv5/r/jrGFTC5GOzIHS6LKcuLzS43AF93E49p3TuiPt7wMZbhrN5LGi3gaYwX+QKpERK9YIUgqpzcTnPpW6VJrIWxDfuRNX/o8RcZP7TnTjIkpZ5Kk9qdMpWbkpIvsVJsWu7m9DSy/9WjsKxLggCWmANSCpEF+XWHRVzETknRy3eS0udCUK4fNL1rlef3mWGbil5d7qOqJFagBilDG/1Jtb6PGHFtd1L06Z1UnE24cSqeG/+WXThkhdEmPPUAwRC+YERp91fUbifGxefc3YwsSlHQC6w6EwJ6HRJuo2mYrGIJWFNSkgiYufIaD2gJral38yyuPdBhiCIwCwhHlrnKGLt6TVN7Rw34IxUktXmneAw2miqnCuKUYlpwl0UA+5lA2ysW6DRQQww6SyI0z2WtkOO0OsB5GqCcBipzLAAyOrO4ZuVmhSjiGVck7Gp+2JOCK3uBXbmMx56pjDtxig0IoBgAhCeMqyQuElC6f5M5cBfbBDVmum06FdPtlkCyWfveNzSxz6YR/ukv0Cg8spvtuIJ9L72aBDY/o06iaUA0nJiwgKCrFyItH/ihiXyhio4aosfK11dmVpmUWS89Mha7AMN7P4ocEVZK5ZpYUwWltmLqdPz06/efoN36F4+OkjBrLsaKjWUQTBC2tsGqRHRpHMyK1sstNhdTUDzprydQbCLwyztcElQx2+NiqxaHv29PTs+bPnD+8/uJU8CU4fkCVyzqz4q1ev//6X7K3dePLNU1pxGJdshaAYaTdtKW3ZefI1JMoLQvPwlXlGwJGNuDsXIHRKVU00L2ixKtqswFdxatlAUkTkjfddQO2pQfDhdzDYvrG2vr6yusyWjsoClfY3hNCVGf9tHIyf/7k3wGPK99MffLa41mP1TfcA09e8f7HAwXzO+kgDYnHl8vxydHp2traytEhPxs6dPUfmXVgmOBsMNjc34YxuTppn9MhiGLtJB3zBlwYZfrAxTIiD5kWTql5dQ+xSmczytaXewnJ/bWf7408/e/LlV99+++yjTz9lsFsOJgL2DQVa3/7aCp1eXhn0kx26D43+nyuLifJVa8vE5X8iqW5Loe1KFHJEW5FVlI0NqUB+3KBp/8/O9Fj95VNTSywDOZ2u4XHRQDqncGuipem49w67kLWJW3JwkR8KxiqTrL9MmP2Hc9+FYB6wYIAKQbu3Q2LNSEKXmWwFjSspdd8SLUkzY5lWJRvF5gqwMDK+EAsWQgcGvHcAdkjNSO37UBpx9au8H8oyhiKem9XNjfmbT3HRrAj0N9Y5zB8H4ExeUC/0e7yQwBdpOFsS+6TvWdD1oigWtoQWjyTZPumu0wvHOQMkau30A28m64KUrQQgobTMig9bcTZOd0SQAPwR7pRemskYuHUyXqPgYk46+LxgElbvqIBunZHS6Nc7OAlSXASbhCQpazNBjtOjvmplvZVI/usVpSEk2nDqmEgxDbolCWByTVkeoZtHjmwQnrSaTHOrfQOE7rcZYuxp2OAMJ0lWoAa/rU+kInU8AMlDjiRbbwRi0aeXSiFzuqHE9oJb8mNmcSLJRT/l8hJvxVZlvjKkYMAdKHZw8kQxhjrMWgJbcPxlxsFh2fRiGmAEx3wGQ4VoBJ4idlsKaJ/nq0qDszO1RcQ83x1yaOhpnciCH0HGKZNedybhWemgv4CeFYgit3pVPQkPXgxl20gFnPxDIy7X3TBlxvvLvNm5ynuZTjUnudMToiEPpkw3EUvlQ7lffP4Znfyl5aX4FyYcwJx5GLhmz6CHlC8Ped2TEcAM2ZYZ9fZ6S5zFCn6ECpF9PuOwsry5tUUflBenceAsszD/ozJvptiI+2f/6k85doxV2YyuXMtBHcgZStAmqzI0jOubm3/2n//J1sYKI3ha82G+uU0mZigAxi/MKS4GouBFkSiT4pgJ7DM0JIL7NNdMSQCTHgh2RSYDyLjLwgFLH24XAw6oFS0a15iEU5lTIoaLdkgAEL0tJrpW3WXJe+POtijXQIYJCcl9ru0yCauLryKo0BtNpQFByx2lXdb6WwXqnpkJ6r7zAnIP2QHCvNMc++DcY0M3JdsscEbzvR4v6/JdXl9yDxDURb/+9ds35xfnG9tbiJX9DL7OQB/FD2BP7e+/29zaWCAyS0g01YeHh5tbm0hKlcGkY+br89E5roLhhsKPlXtGG805r4KkGUHr9To2+qevwzBbtSkileCyUxN0yIfsiCIsUjWVRCLg78M3JYzK1l27OGGLqFxPxSJsQNU1ihIhuRCinbkYEvExHfvTGAlnnKHrlVW2O0g5DbAQrOG6WIDzA0rUSAp06lgwFDPkF906MRMmihCvSARIxZnKDyxcVCoT0e0HjFDpBdk2ipVOShtVv/i6VFiKSErDFzihCxrKVdwS0VldxZBV9qAK8ospGEOLBMQmdn1mdCO5oFbKehLIRzwU6xgHCiCKNMVl9saSKQCTyIYXZvB9JbBECZY8HVBKkIoP2ry3M7W2yj5ZFuTx1GxVgDz1grfKai5veTAUwkXgYdy1D1ZbEqaAYa2mqvSgZWvioBGzVSwthXhreqPMu7Q+KDQUySdZ8RQkcBcLbkoJE1BBn81ETvBI/96ZEtrwyAj49nEQkmXhWFLApRxpu8qMYhORkfSZD2T6YAKP2A2eT4GUiKVIP+qMVpOgMZQNjJBYzq+kmAhSKQHfpACLd2PBBHVO22diCr8YDcUgyGT9dudQ7E4uLCF9/CcUYoc11iXymyDtEUFQwgf/9AS8Yw2gmEoykRwClQMVbLm/tODysAwCVzwASqDmIb0qlDRns+Eia590hVoRLZSphowfoAdt0AjB2sGQ48rA5VLE+dTNcMQC3cxoapav1PtSjgSiGxe8CzWPkBG/IM6KlAtJiAxMD20pDgMWnrrmpaAnv/16Z2d7dW31kvPKewuXFxilgx+C4ol8EJWzwTzycYi5RQ5T5DUrn7BIiXAfLYanc8q4j3eLLwagQ8Js6kKKGP0cLxWxuHt2OmQ1dHt792QwWt/c7q+sDY6OMW1FSjPpu7ycfMJLAXOcDUc8FikXBubnEZHdDm6YrmF8vbTSW1yaXVnlhIze0Qkf2uJbUkyyttqdNqB0rklhvO6H4zYGGYHAJGal0bD47Q5IHaJB/iMBJ1Zconbsl1S7VYDQC5BLISvwcZGYlQMi5qs5OSvD3yVeXtASZVPgf3yoElxFoQ7VbgAF+e8BBEX84AYT5VqPFE0kTS9HDKBmGKF/TFeHMcHDjx8/+errb77++sGDh0xOIBRO9nnz+vW3T5/cf/igv7bsVglsNMBQ0b17u8++fcrLG1vb26yfsdX5+bfP+IbmFz/8AUNowCpyOL66+fbJNyeHBx89fsgwGsPlI6TfPn/WX13jBUxyYEXwZNPOXrDB4OWr1/2zAbXaak9NQZZ8dGZjLZghOB7qVowhifJ/VPgjs92BRRm0HISg0SiIgAturLFpaPFFTuiw2r/Euola5p8tBSqXufxNxQR0WUuiu1FRMohV5xMfXLpWgOKXbu0u7VPlK2sw1bR2UaHKh3JCSojlBQpwYEMHX5rnASpatsrcrqZ0t5ItRPxwrcU1YUgM2cxHaogUGE1UiaeBgKCOC/NQ2RAdslGAVL3vYC/CjZY2UYtGIATigohi/iNJYaERAMmzWw75y9mQ82vr08vsGF1YWlkFG86XrQzMe7rfmnU0J4jxcziYJh6xRDpolC0lXH2ZTsek9qQDgllRgIObWZZEyVuNiFBwhrCmL6GupVGVYsv4N02Yg1AwS6YqwOfj4PNuvvOSuBc7COZENhTNIKp8fMQs2/4ozPtOwjCErE40FZPeINTLC/nA46db1YgPzqErQkRAHCVs5lp7jGZMwnpJgVe7zxJkV4plJiksvypktYfp2warXYcpIqWIsfz3vlSE0kJaXeTftcZ8XL3gVQLEhi2RAtuymhKdKcYuKikiRjGOvOXLeeh5OgLkIaPYrB8CIT/0iTUCy186+6z9X+RlM3soyZfcwScCnzhG2u9SsAMLc6cAtsR7ss9ODgYc1Lw4e8kOIyDHDrFjqYo7gB1dvi2FkAlKPIE8gU2EASRGk05ErO/k8Oh8cHqPI40y+ENNwi/lFk/Boki0HjmlneVV9cFoQJtFfnopzjlYs4DB94bpQixMn49sk7VJGmeQ8Zca0Ds6PPWdWDdmXaxvbC6vrO2dnLnQqLDUGgVAIBGApCeKOcYm0FqI8kGmmBhw8wEdFaPjCf2KosTN20cEVGsBmiTku25JAjzzSSIRnwvP0IfZkIdWnKuPmJ59U8YfLprKu8KPAJUFHVsqqNKNNIFK0PYAFtuc5wUGXv/1ICrpUarmzR8uDVBHFY8TlCbrxGUy8/h+Iv3Dt5ACb+oT0AUdFnny086zdubSR7euzc1xNBXvyT978uT5i+ccw0LRCw7yuLp48OjBg0ePGEYjT6RdkNic/OiTj2hKf/WrX1H7kCOv3rGc9smnn/SW+7S+VSmQF/Xl3s7u+cnpr3/1lSRkvoo3ZT///HOAcBI4YCEKsdAJmFpY+M3Tp0gxPGpq3G8/eNBb5QOdSizi/jCzvz+WsiWA35/t+1MprfFbbQjp/GpkMRWmOmh92X3FRJUVpeHSzMwxEYzqTCg1XrtKpaO7iDmXh9T5UAhmbS6THzBjSBTIk3HWBXBIiaC7+IYyUSG4RQQGEf4ayLoNmsmcE0Tfuf0DeayQ8RLFeCgVEQFrLJcbvRrznnAAnfoMp5U2iatRmz/WpyY3eZdLCzo9yYjsyl3LnBvD59p5o3KxJ7f40vn5i1ncdlpMEBGr3Tr/g7QBi6E6IZajkKCV3S2OmcrjO+eK++LUmWn23tJmxjB1FwLHfWHVQODNzYW83U6+qAMGoqziiELGSrLlCMTYMEKDHk8P5MAoumjWZpGgGV9uN0RUlHBgHmfrAB8YLBvJEM+WVDhSww1NPQjBTgjQshzBgFhjAhIeQZ780UdQALyVxjqhGw50icRzcVjMTYZEosCR2A6wSok7VS4gkMncKN3cVLWWVZ+lwz8TAQLoEChNKFawmhKqCnVqBwx21D0eS07x9pYm2/jis0KFYcGr3NwoBc95VgkVGhXdU9AxQwI6PozAgAs8NMYcT/r29Gjv5Ghld5vdLA5oPJuCwjRUcAYurEWu1V7HDjhI08jyr+HwD+iRTQQoYRbzxTZevlQJbnih22iTqgjMWjDJKo9TN7ygfHxwcHK4d3p+9PDRPd4CBbt+XCX6eWH/LLiwl/zoCGDaDABXlleeP382vLigJV5c6s/N9ygBgrS/MCLCNFrLUE4/BmhIwOrKKiwyxRoIma4Qoz0ef4BGMUmiThGQYYshUTpuA30jM5C5TMjDN4WZwUpqEfFBjhU5N6Qc3Z3ENqxC5aPFgauUG2ixN81KDV0QZuJXVtdxy07RR0/kl0VKB2Yu6XEGyNgubokla3iMfRUu/XuHczJjuzenyRJJYD/n/cf3Fpac+5X6AOR+bWtjdqFP9SeSKmfvHAHMLzz4+GPWBfbf7R3s77NgtrG+ssEU/8oKL9Ow8IX8EQc0wQBdD9Z0v/jJTx5//PHJyQmCgmOaVd4qZG5EzyUudUp1ZPz60//sz87OzoaDM6SdpXG0P884QrCSDBXTy1sb/+q/+a98UUsj9Ypxxjta1UpcEOo2v7AC7cEizyX8EtTtfZN0OFd+sZ/29P6fMdD3EvRA8NKFpHZosZF0Ldm3wcet2NaDe5DlDCEgPpnhRYoKgGn8uiA7BuRHT1O/pia6DKAp85XDiSJiVcXRRDJbJF1zchnbQahCPlaUhSydLO/l6hB852+RxJXQJY5vWgRJun0zvJcUfFzCCigrTAohaZBdfyexGPNeEIFm6EEtLOLRD7bT4uQWYrzhLaPL83O+MUOvl/aGzjhuEgPLANMevHNqDu4IOC6EkeWt5kUUqv5ZD6Mu8BGKy3xYx41vZFBhmDmio0+FspfpuR7sRYQqRh6O1GiB+DKqRqDOojg5qrZD1+P4gpUfGjPy6F30bGSI81YGUuG/Kn0rcgVBLXBrXxcATP2gxWKwAXZoDxSYk48MFzIo1MqIw8IE4bgFQss6JYJgkVyJ9dWfiiQNILaI8lB5yGYfgSOW8PUDPAgJaToYrToexQUHsiIQcoHyLvDJwD9o5vrBQLI/fYd1Q/4jTLA7j8oJDpwKkuMyxKqXkHR+tmTl5AJX2YoqaVi8AGlNHJ43Xoo8MvAcpERQg5HOiDd8pNaBBe9lDq+vzhheKFKOmuUv6MglCxYEf37ggndIhqLGnCiSGnNAFEQUR6w8sCzNRxcYxzPXy7VaIkpCIQsUXNQKmwn57IQW5VY3qBowa/3N09HwZHt33Q3bfmI5+Zw/9z0pdcwb60FGAjICMtDwy4yN7j18kI88Mf/iYgyiBTXNFW0WGWF5c2t7Y2u39uYzsGAOiSR+gOXTkw6IZco3tp0ViX4wEsfg0utaNSsQVktfiYt48OWk2Z+z+hStJXUgIdE4Tap0Th4gysl/FaEBWHNsC7AEAmWtlzYuAlC2hHiz3MJtrR7J1Moyq7/LcJD6azYzfyd0UL6TUBFgKIXxGGw2aMbcBs2nC9wr+S5Q7Xlnm6fiHQiVtrK5xItJR8cjbMifPJGF9aXZ+dWV+6jpo8e6KuuePVLu0JT+Rr9gCawZVmnglxfX2c8Clc7NoCMWJ+iviEfpiRmLwj4X2O+8ury5KiRFNzWSVA1Y8kIYPmGRjQV2sNUdAZjwyw2z3xGE5HeCtGAnlNz+4y8otIj5Y4omsxn1SjEq7MoayadhGQFzYHtWf0mGLxlKlReDAWqRMAbfgtP5xaPS1z51+gm2j1VYC0Q1Dj78l2AFUMVa9a2ug6XD1eFoxm6aBUg2B3812dyPcyY25cds3qZ93x2aaJCsF1pQAhConnaZrP2hbAICTNhs3pI+kUZ9pIAWTiQUjqV1Jw8PyASRxZQ8eUKmkLa9TME75cb0rsMXx7hkS/eRKXTUFdWoHeZ0/AohPsFCwLRVZ4DMYX/UC9sIWhdAqmS0cHk9uDjlykHSPI2urgaDwYiR0mgEmXjCKc5PHeXsaKlu/yHLIKVKvnbgwiCViJYzU4O4Rx6pTJYxn3R0/Arm/cAO0g6mrl4MjA5w5LTuDsWcPrIcSVyt2tQf5vsynWd2JwqxYdsnhxVRWxUgv0TkD4rAEdLOoA0WD4ETXKRqO8gaxxnIVHY2T+ZbjHwwl3++Y4qgUTGA1GPB5CrPXHEtUsVtlG2mCvLjnT0gvDsVAtMHQLMhiyi5+qPKy0KsCiCssmIjRKYIWNeP244ZCp7HxJg5Vis9OQAECOkgpSZySAgZYY2XjGcwnIuZ6Ut7OMxS2EZrLJiGxgN7VseGfnwfF6luuvpKVsxS0q3VWfdndYC3oRqJGCfnUsEcrxXJkJKSRbctaBfpo1GcdbuPP/tsbvqaI1EXFqfOhzTeDihJKtVr/23QEE5hgI5RvDMdBHYnYiRv3uzfnM4yB4wds/i6tNRn8ZtStJ3ra5vL/WWkmKroTuI5jqHha4zTjtSVH0TBCWaBSUTWWDA6gvR4MPWtLHlXlYNHHQsrpFiNSW1wn0Et8ZhthAdRGrA9GJjFg/B5E4wgyiZSe3DXtI0BwgvaGJaACV4rEnnSirHpbH1zgwY4/SVSEA8S5Qo1smABntpD7uoxgLgtcJVDBU8E5Nzi86dMeZw+CSt1q6UYz39+EQhMZEW8BKIf0iqsr/RFysTL3immpRNljQWA0VyVKdBihLk1WiYBQiJPUh1QRHJvjFUAD6PiyDOWQAqaxnHqGK2Pikir9o9FLQtq64BPBmEFB2kmdSogqR51RMncJaXY915S0dVlIQzRwm/KVcmm6TQAiF2jaYyfDZnLfV5pxv0p2tBq2dJ3hNgorvKN5JABneSkRiJ8PWOWP4rAhk5RFg8hI/RUhhBGkiJLDJ3PtDZyTcxtVgWTJzLGUUUerZRSNjUZ1CqyNyQu+pInM3SZSqZEJbVllRp/qZVYKD5BDfszY0s1j8Unf4mTAdMKSxmMDQmYE22ST7cFTcS6qPPp1ZBAYaZVphZcrBKCFFgYsWqSHA1BvbbVsFESrsDSGLjs5OxsWpt8IIlyyBVJYM8OdTnQ42JwNsxC2BQH6nAMAm/TnQ/5Jq3vksxwzM7cLActcrSBdcJy9QtdNGRSqkU4GqFboAsTPSrT86TZBWM8GM4dK9OUCLLVQvLTSb4AC1ufqEjpuJorw1Q8GcBLYNXuJo/pac4oRLviEjIiUDvWm0x/xVil2KZfNIoro3S8HgLzzIcUK0NQD/HyaDdbg2CC4BjckQsVw2VYpQcrsKiqMmaUTqzcbWdEgcsWDenCT8VKCMrpBpfQArwokVsbLYgDvK6K/7oRIKhp0HNtErNCOFeAlL1G1wUk1dYTJJKffhWsIEW2BlQ7AbHAo4dygWDYYc4GPfHTp4GyDMvgCxojAHVTwrTO2KeUUeggXqpUC1ld6UtWYpSH/Pm2FuqCTBQ9y1udbJRn+pgGGL0EAqUbX4xPkSecImzrL9/CXFnmiF8mGoHkUYR8IHOaCR8ayiXVVOYiLf7ITwzGB/0Sx4tVbFTGIqdnOepowIuklKeV9YwoJp15a3ZtiY1VHEjCZx/n8Wsc4+jLlTSJiB/0gSGRyBAW4I5aRzsqajDSUvgjcpZT6FA3sTF933xnmM9ejHQWZznbhPzs9lJUEZg9yOk5entAhybnqqxK4LEBJoBQ4LBVvJW0S7jEoBvNQIbW+Hay27+pmoKORuC/rMBHQUClLYcVcRxAMZHJaNwQ4TYTRTS6FkicLG7sbdagCP7KVsVgAE+AWWRTFQUAxw/rsG9sG6zQlBs31LQigGdyEek4QRGUkwwnyuQ2UCoWCmGyYlKHHixl4ZVf5Vk9iy5hd0CjV8waRBY3Q8Tic1xH0KU4z9AtWGucqbIN2PqTjB+8hJICLCDLCCQ0Gh2UwPEG1hGDukHBKeMd2uZVCBS9zJwne0WwRwFZVVV18wfyFXBcAUYVo+fjmBc5Ui1079hVFwRhEIT+0ImIVL7gpkSRHeYsVZm1eFEKCAWqzjzzx3KSSuBKYloVyazAX2UabJEAnVSrKYs+KYgXLZSI13zRZsGlOmIMEtvk1ixInbKBFIIiI8wm3IhTU9G0gAIv/HT22pZEAMkrDhYpU5osyMpoUzQ6I2QAwIGQwgUU6NBLFabrzLwc81hIAI/Ci44jvnTOyS4QCbV6B+oyVn45NQJKjbSAWjQFrFWAg33wk7wswaeT2Kw6GPKXA+J8DWR7fePm8mJ4dHx2cmJHg1a/52daaF2hLLzY1sqvtCqcEB9zdrOhroVqLDeqV+EjRMUhl5SF/ypYdaCTDQX4Zj2He3GAUXUlEISQUJKyEQro1JMceDJIpq/kB545d4lJShO0KLVGBomQBDQhmUTzX+rz35QArViZVIvpRzjdFysLHDFDB8YMPbZY8WQyI6gK+gVaJI8R8GWbolVSVQLbQexVkCGBWAuSTemAiITcgIYNVQ6PFRZZmrAEaK8YqhrkhlUKyCcHdH7s/siRlTW8l/RVFtE0G2R2FAJGBIXduITYJpaReUgI2tATmVPQELQIHJqpPsBJLVQColbuQhQnuiCC465cYQUkG8o8ic0m0Jz8I1tu7ODzojqH9tvjccoBCxAOz3SlptiNxSC1z6rvDK+8r6zBPtqgrBkjr4i0JEAMJXVP+gty8mLzNd92tJVFAaC1yrppSBJo9HFpy6urfMNgfWMbUhE50qBO0V1Au4gSnqUzHVsUhbWqBGQLDiYQnDgHpBqSJ3JicGTIFdQwW66J3OSEZNWdeJK0/fg7zUnKtWczfSCIzgAlHh7Ld/zYe8WGdnsuSt+LtvWBAMLK0nJOZKkCQagsE3JzS8PtHSwkQ5exHkoLUUWVTzZrRXJzo0asGDS+dPhc2mAIoDBg2XJtvC+NxlmQf1U98ogBq7FxiNCBnqgJ+ozS2Pk3GWu73kUAx1K3zAYnMZbyzxgNN9LhdRwpS9qesSAax3/nMVnapbLlyiXhDnXCIYyxeBcTojy1mfVsXjRd6tNdlMQqKjt6jIg5QmvISnaxJaWk5MjlL2IP6AmyJ+l8716oBmujZWPqgvo9IaRj8BaTUoUaIXYXTd+0Fkx3WGNFw06sN4aqRJFCQUh2nw2BKWhxlNLEhGLi6iOTjDzKxMQG/UaLnAf+2zuxAW50hNFczMz/rk8AOnMFqbIOIotluKmv5VihxfnTAT4fZ+BQAPCMYmnC8IHUPD2D0jOdRo3tzRSmgfB+yFkMNNx+ll2/KWfkljTpYhvq6cn+61cYHOfc8TIeAz+HwvqAMem31q5o8HiMv/V+wHNAop8HEgRBgEBFwTDAHnagiPM7gbPoMlACjtxwIRNY/dnopQNFom3yFIPyIR83izZw/G6rIlBCOXstvD6CLBoAmre6JYnW+dnwyFjRQklkCaFaQxEdtlu6VFXhRnqpDBWrQwRIq4ZcAQLIUmiDK00i5Y9UYhaE8e6PYAcpJ2MgQdhVN4KkRNpdcwuzVASUO9BNBbrdMo0rzBEhTkxTWSpypY8h0dKQCR3xsQqaHIZ3QpZcyik3ZZvAfX7QCh0CJEIiyhMhvMQ5RYEZwbhsgYw/bHCd9oBLjEDgtIcJHq3MDV08sCN5XmNlZgW4WpZqcUyUOQTfZUZLPU6Z6a8wk8whuNkioETIqRpDD7c+Gvirx4y1lHiubX97fb45ASh6rVRDjrhkW4Mz3ywb95c3WBXe3DplxEq3zzZtAQNitE1jbG6wYAZpkMM2nDvHAE8KKemMekVGlYtmocHqF/IQFcQSjXCJ94FiERGZTUwgCYmhCsQcRtqliuShZWcunTdScMq93oLzMLIbIprCJku3e/EnCDodhfGjeKGrnnMl5s6j3QsTxpHc3CFxoqzZymAqP3QpIWsw9iMEDJvqqdwiOyKIzf8ODLAxS5Caw64DN+RAEVpgl+v7/yJHG+wuIF0qm0XLegV2y0vuGtAx39FbIAAniRJoUKVEwM57oTKGdfGM0RfSlvk7pd4DwmPl50rAcqgpnKTLMn921gQ92PMrb6XqUaDStXT38wFzgiOimrsQZINvcheKVDOWX7nlrYpisVi/dVdVyL03BO9akKSYSTW9XXyyOgVG7XcoZIkm0A67cHAMkohr8t16pjBp1hxoxienHBQ48qgAmMwSBYT3pRxpgguVKJLcxiUriLHNMR6loexs0RIxhsaSgi3pllQmqJQXfg0ZtxiyNDN6mV9gFEptx83ZyuG7aYbsavIuDIVoo1zWPTo5Pjo8YKSreVNvIZD1LvRHcMhtRkc1cqODAMQFb48c7TE3fXUx2HmwTe58QS4jEIff5a65K/nZSLgHyGEMS6t+a8wxAwfOZGiqHm3S2DWGNpAInRKRRy0lt3DoYIjYyIYbBrW4RZegZVo36LSv3eMyr/YCpakk8SfEc+tcCX6Qt2NLQQrQPLn6h9xoNCZl88BQLMpABdGB+0UEaM/GGG51AuU6jVGNBG5tyb1NxY9EE2mGUjXFb0Mwphg7rTJmha9CgHw4GIJ/gk+31Y4LXCM5Gi3MtCRQ6AJSY7uFDSGpL46rdOWFi/S6IScwrvhSNA0w+gz1XOnJCQeBaPTCiwiECyd1HxqNMUQJmYIxgzGOeunJ+eYNtmOzGQ3wdXTTMMabCzYc0w+MldC9meJNZHoqKIDuPd+wAHsNjiS6NiWBx7mPGeaH11bXmHmlqUZTyioSKG2KPaHRqWFAv5KXIzZ5ZRMW2/spRgoVxw1RgZLDLBaWV1c40oKX77A7y6T/219hgtdpn4yFmYaOD/BBA0ToJNHhgF+qDT6Sthm+SaEHApEwh0SsKyVmKLTSKSvG4paSS6sB9LLuTgT3+B3lNhGUhgoxWJotvgu8+88qdp8N73FciinJ0MZN7pN/fOkAjCNub4qk22fudGp3Ir4L8a7R3ck8+aC0ZTY0AVRAPhFSiXkWUyV0BSs3mdAg/HDVyRaPRYk0j2ka3xTnMeMOlH/JDI4qcCvK2xyKME93eUbJDUfix1iU8J2cBT/mYImxsm4x3L2ThjG0u0kFmAzYD4DwpJiuZ8xwKo3rGC03AKAirgtzTZujrAjkIM3ZGVKpOlULWrH8+T7MmhYl7yg+rlmYhoBu6cqfqqQoil/uGHgpA5JMnQhVMJLn8h3xWIp6ICC8n2s0tMG2E3CQ5iPJlDMmoaOoWE734hYhHjqzaLAyEYqHlgtT0A+AsytGTGiuS/TeJYWRpBIDxqqbjRHohmSpt2HAYHWCtvWMvnDcjHFpfa6uWMflvPSjk0NWrOQRR6JuAGK3RkdBJWGClCIxdNIZIQCQlUxavwu+9HU2Q1lkVH2UanAVvs0BAdqkPUJibMBcs/MBJlD7csUzk87nO8AJfJco7JVW2fyduDDsALSaIRJ2CEo+XPPXQp2otFMwQbg7S50SEL3DZpjBDiFQJvGBXKWTsikuuYFYoBiHoXWTiSeLZYtIV6NrNGMalCjBNFdYN74S0THM197tiahYdaFIQ77Yul+AFxfOZJtHwmrImqYCigRgeVseZhiLSm2xCUBGms0CwJ4l2SPr2ABFEVHqo7GCykPwxIinp8/5YLS9ClJdBybWdWgyu1SERqNH1w+UvUQnhPBCLg0gp2BJkXu6OuASXQv0o2z8AoNk5mSy9+piRKee2bToUwq4YTV0hpOWm8KJS5+1BKHsHKSurK2x8Yj3ek+HI5BFBFVDIxAFUEIAojQ3jROLVbgBG2rCmfKWU6SMZdDNBkptj4ZaZOxmuxmPRfN05aV+gEoEdDIBRA3gJ3SAaYlaGtywTO0kClEuBLFTQQYxHejU/vgjDIOiy/y88Zit675QbK+hdnQBGjHKIIY4IX6KApZNbYx/bX0Z/jaDhXPh/28XtKw/DiP00z9Jfi0xtdktWETbcCiTwBKaT81mNSQS/BNRdMJrLFJJfk+wTBO2uRRz5BhQIrKGNvJVTJRzB16QJ6cmQ/FyHSkDE2r4A2EM/wNpH44KChCEAi65tZJWHOqmY7fEENgKE4l3jFOyiIgAwYz5TKQFHTGReeKtTe9JscufeAHG5IqY9+hNFqTGXw06eUuExmCxenXkotJwKfqWcWh8FXOWLz6tPF2VTxyPPFOF9Ms6FiFznxuhmSjTiTFCADyJ1MJdqJQkS4bRefDWH2WqSMpVjrI1s30olPpJKVCQYSMKabRh+Ey+YQNxLOgyaLWxYAB1ybu8R0dHg9MTnDyj3jJ+PsSO94M9stE48zIKrRSjFkvqDBCkzop9m4ysca/QzSjVZhiYjqnGwon0ZCvMyEi1IrV5iIHMFU5EH4Qt8c4SE3PQAQgUxVuc4lKc4bWud9h2BNxxK4BKTJEqpaJuS1itnfpTb5gBFbub5FN7meCNBqj1GmECfwGBHjBcqlSqPiDITwSP8O6n7mcufI2QLpWSgSoaF2bh8c7pPcAHvsT55rZ2aU01kB925TPBqDG9oAihNOq0gn4T1wkBs1QgI9Z8eYPv9o3jTD0hejtENsKpnNAuZpHTblleA0L9LDPHzdlvUeIgcVQZm9Z9I0rmKOxQuCbCC09KGp073YPoIoC0LPhMp6iRke13xFgNGO4UPDYRykkt2u0Bq+KHXkg1hf+SqmCr5t+wmR5D4OmSfdGcTxRuzSZT7jJU8OADBMA8DZW/znVThHOvONWIBnBhsXeK0erSEZJ9JruMZIVOcCKFiJwL7wi4oYuX47OJK9wwEQXlHFi4AL0IR0WAMNPFAImPU+Zhl2H3ctbLJRRhcuLxg0ePafrgEIlBLJEMTiAeGXNAhPymSZRl363yfXmJUxhaDv8BTbaw7sUk/iAmOVKhioClBwVl0QJglOVofmcRBe/CMjr3+0wYe/yyJBNsxwUY95IYcYSG7omIMnduRCt620f/doEn3/SaCIh3HOp2Mn8lxfQT7WVcAG7xprxobz81gtBCMRNoDXZpoEQUR8FiIRyUNKJTEyKqwtVBF57IZF+fYjavlR5iWsGWzQIovcsRDFW8XS1MXoe/gSNZgamIhK3JFPjk0Eca4HIiXneKxgqP2UtL1g1rspv1Wm5LTYDL2LVB9MBzPqvo+6a3JkNeMEqhV0tivdgW5BnsE1unY9JE88YoFaWTh7Itls1P4VKA5l1AZUYzliQrEo9FIBFG8t9EqqzpikSCocPigI4BpwgjFFxysabzpJg2HBfhfXplWJkmG4cY4AWPeqjASOrEJWwJEmHdA5l7+Vfyeqjg520ViHBuVtcVpDqlAOfZ+uT2A8knjtKBCtm1ZgwQ2TJF+BIB7fxNCMNcwrLomCO+4SQZWmLf9GC58OJqyHsRHMHKSb9saD7j7U522NhU6+XY4+nrNvli/IDVLkbHijt7TDm0gC8I8zrGAhOxfea4lnpuoMGf6IHxeLz5UKsQuBF2MbqR0YOCqrmSKwiCZP+UGhAYWNE/smcud2CidZArI7vIRHnIaBMF8rELRQxLc/5rrgr5YiDCT4gRAxzAJRH8mnixoYhMrgBlfgQocIBG1g3Ae3/cHa4cmF73xIYmfYUOBuuX2C0TYhmYklXAYdN+z+U5H7zj+4723xps2742Ai7rsiwZdKzAQjAaDUujNQoL1ylLHjdZazOkg1fGTVGcJdC8JE1sJA05SLX6pOaPiwcZSFiRdX3ft7OEifnDj2qjCaRR1vu5ToBTQOUwZSjKYFDnofnqiUKYuBWkdPCTPWePSdShRVWROb0tyuBxMxCXknJG8FFyZG75ig6gO+kBCEL4Y1SHHQqL+SPMDBI1ciw/SqXWsuy5yGwwnQcXhwBGTxKKGm1QUHdRk9JSYYIn2LVwLQEJ2Aozw4tP47wG7YQYO5ttizjLHMzzBKrcowY1XRzzwbsHD+d7y5o8hFOnEiAdFNADhcyN0KFByDyK13kIboMmcHIfsky/DWRJN9E34jSrZvAtQ0lDhO6+8u0jDn/3RAZPs7sF8i91F2uL4CYg3qUXuWlgHwpasqrgT2BIoVUl9uKkCw5D7aS51VNqUopIzhtcbrvSwjDRuibg0qgRPnbhfWq7+Pf/tlLWAJI+XCqGNAn8A0CAM6ZkMhmiOgKJFts4W90Uyg8j7gBpyuTAxPhOMUa/xCee0Xv8kVAb4f4FfiiVHm8RnI1eIAkCAiKnP2wlY4aLtarscavFEVZNTbXLG/Tj7A0VBKtQqUFTZLnDIsSlGpvAf6uifqae9P7laSxMvacqeZOaEJ9BNSIJ10bZiufKfUIh8hq7FUJHYUmn5UUEWqIiIy9VbAwhYIKoWhkkACZ90HcCMgABPrxmLxkj4QVvRqMBhzON/MwIx8WcD9iOhWvkNd+rBd2NZ0G6/5aZ5MHlgFM8OHwV/+uJDwscLpqPJvW3d++tbW3iQ3gHmHU8P6LOGAx1ZpzkUImmTammmpQouCotGDEeX45XdlBAVbMCWQLmTY7jwx2RUDzRcOKovEci5LA3HCAdy+30R8qAlO8EwpGF3biDZ3RDgO99Rg0Ut5UqTycwMYre1i2E+XgnED0ZbL0F627y1tlpOawDQAM1IUYpD4zNLphSALpnJ7HOTU/FRxw95FEULiGkYOj64TxtLdMI9I/KBFRzqjENgPZaNHZ+jeIyhALYDc5ro8WVuRovyt3eBki41XzsVWvomjpioyUwKc0kzFJzEIgQUeH1Da92q6TUKMiLZ7chIi3SUDxgIjOhZCVr9PguObaS1VuhWCVoCOmC8GxPDc7mpuAP4u23mJ+ygI9kJJZ/8STCtQraPSfVSdW5uTPs26doPejELBCrtzekOea1MWO0WuNVQJK3BvC0fHa4os7UMIuqWmaH8WJM4zlNzHsd7gP3sBHAwzzjjB5vI7m6MnvDBwMWmIOm/ff1MGgxE/+nZzY2tmYXOFmC78pzUJyB87yyq10L93VnZ5bcM0dZ7rlRiZoJIc5Lr2qA6KSarCCdXPJdNVREwTDdxC5muLAe+KMrwZwkg2BebcpiS6kJcMlH7n96iJxT3Lu74ZaaSOP95Pcyx4zJg4THvl++ilky5xYb0lS8AD7YYcOqSJChXDrMyWSKtgCwZl2J+cddVEkYDCIuRiBgwAbrHWjJTAy2WZToxqt45SODRQOlqOqKAO8WVMtWmTsCbpMn7kJDWdScX2RxRKTuhdYJYyL73VuZIF+arMaORACTopO/iWKJjmeYAK8oMFQ4qhCRAxqV4mU6SpIGqPhGQVZmJEIWMoq78KJxf1ywdpoK5uS874jiRvlGtV4JVTZ3t7clW4tOpJvn+4IFVFA4iWzIeQuvFSOD2Cf4Ty7Q3I2qopix+5kvB0cHjHRxRrziuDA7x/dajvYP2Nzs2Wu8CMRQxMaC+eVLuvvsZMq8IzNji4u89LjG6W+rnBqEjlm+2tze2Xl4n3r+6tWr0fExM3XswmWwdkU7zl5RxY7ghKe/0Lm3Oqq2oRFR20PyhCxu44Fk1gpHFWNRHH6iOnKXw6EUqfz4U/KYZJUziVjIDCgkl6YbRjg+X7mkQUIEjvwoLBLaZ3+ABiRZCGpbYvz5OBF4kCEaT4jLLK3r9s5A8qZpQDpMt4B+086CToLmmQaWYeXZ2QWTmHCC4DAlJAtWwDASpIBAFZYWGGdLZQiLGdxrDxEEECWY86FY5WXZmqFptAuzIiYT4Jwx5XVdd1TzkVjgymltWA8maDVWmjUqrAz2wQxeocl7kuom0oE+pqlH5+eyRHfDRob67RFooYsCwc/F0opOiYIdVCxZjDjikVdylUnzSGbhVscJXs8yjbT9xhAw3FOB2Gg2a2+RlSEZMmYO0TTAjmvpqdjeWVOkQaSFQXBgR7scqmKs1ckD4shCJxAVONubDwzHnJQBJUCpFAOOxnVpYb7f430BFmBu1vtL6zNLw6Oz/dHl3M3Vp4/ub68sAQPZDs/PKbKx3OPLUHz1jYVWiAAzLaTrur4KRe06L8nyLtD1lR+Gs2GkQ8uRWj0+MKC4QKsqNPF6khL7B2ipdUWrJpCLEFFLNSvIMRhhTAbNhve48jFvnDIdCbvj4xCO81SRIv1HBDFPQKNkPZYCxo+3EFv17yIof7c4CQiMH31aX/JGq+ZIJg0pASzQLalWltx4DTFevC3JILMq2vjMHy/K2aK5t2SFyt098RdrDzkVlf2r3KYspWGTovR16eijR+wxdiiRyTUWQxX3SlKpeExA3dzmGFOVqBIY8LCIxsxk1rv34YPZHt6+Y8WQ2aniMTwAlsz8j0C8Ld5LvNpqI5ukMUlhXy/UfikNLZEvpHkTOMHcFTRKNiWOS0Poc8UHfJK5o7rZt7Wly68qL7AtWUWDKOssEGnFoJhB+OMABTiqtpEnFIZI0+PdG4UaVAe3ldVkO1hyKlMYlrRSVoTpn2sHXbaU5ImY0K+nknB/TvoCg0rrgkEXyAkYPfJweMYR96enkMUB5by6O+Db4S9fng/PcO2X03ypjQP8eNmItV6/78O3UZnPWNvc2X30eGV754otKcyNIzHG2lR5ulnLfeggKy8UM1rysGUaOEbbOjXnaOWfcaDrOOq4KMrfdh+zgF8bCUpTmDK0LsgBsgnCsBVn+ykZYM5GAHVpAB3AAmuTUFJjtNuhTi1FQrSKWWkDla2+c5hOCwiaEUQTOIW8FUFDTcyk3KulCSuQARTm92w8nHsANQTB7RgRMYnnq2ccEXLOcClU0ZHLfCO+lQYhyCFiLB4wQy05CQAMkYhSgqDMjDSzdFqCUfhQSyrtYo2YlI2I05pKgIZLIxTF2OLjKGy9i7P2hxKWTgAgJURfshASAGjDL8hiHaAoNDpNCxlwjyCwbdFOBCSMMFzAY7jPVfrH2BCkpq+4xSnpfCychp6NaTzykhyTpfPsYxePnV/IMzOpmKADYT8pWIwKAFD8l3JuwGJWcDr4pk7AjjWJBtGlfdOTHyiKFAmbLlOVIDsEHleWeterfIeWhdPrJd7pmJ05fPuG/WBLMzdfPL432l6jdaNBBRF4L6c5CWz2pz/4jMle5oSIgmpsDRHRCDNTjZMGAfnVrkQwAp7jxVy+FifxObQBXoBGSblSrF1e+n7Uq6Iwtm+6fS7qmu8taEBUn3FI1hiGZ3fw9V9a+vCkoAwlhXqKLrqYLqnlq9x3rq2ocd+f6U6JDz18qCh62Ns7/OUvvnz+9CWfoXR1i/O/WQtWP/4MKtk7BJDnW3IAidC0Gfar82kTOy74JfObueNQGImZJCuRhaVFi2AyR+47vFNMYe3v7b99+5ajpKHyo48/2t3ZZp60gtAs/R4Aq0Cg3iZ1AFV6wrhImj5iQ6zd7Wa5DcXEnzIX6iOrDWjZST9SwcXkMtxHHhPZvZUAUJPKxVkgI28lSaSZPiAA81UgkQwVitPUGiO6DElMPe0KgbgymMd7qzGGqRORP36S5ng1Fu3QLbWT7NIrnBKJd+NAvNn9CcKcFcjBjfk6qsZl7t4Uw3fiAJUuu8UbkJYe4rEtPIKVqvgNljsAfJAa+GQLMc0N056s8x4fIfrp3kWfSbXLi4EvGu0PR6z98nXMqwt9vVPNa8v0+Zf7/ZXHjz/69Cc/Wd7efX149O7g0AY1XtPxrlzhdhhaIEH07OGLKtOBEpLVXcKE/rxo7MiDW0RlguMzBtrnjLuRHhK0CCyBIh6WjAxbGYBx3hCOJrUvMu5Ajf9qdnArCLVA88Za98Vlj405oVd/JlUKcywYNeaAVnebW1eqxZ0i5ubcRYNyzAIkhWuzNEWNF1gAUkXcg8V2eKZ/mIuPaafsOeciwoIWcT3NuzzMQovMd4+T7qEnDaHaNBAfZuQEGTHRr2ch3h+9XL4IXm2ssgpnXBH+NN89oachW+SAYfcmTDEpfXV+7io6p0UIm9puhYduWVUcVIIIB7DOnyfKaFK9tx9wwR65rpg7n602Fi9Yat9UugepIlGSz5InnLhBh86Rl3oO5CgcU1Zv/AliGaIk7oOfga4lfR3iBI2OQxUYJE61eSMl4MD8yFzFlB1TMpWOLfCVX5ssRYkpaZT07JxTkAnIYYMVQw2jHVJeX/Ii5cxq37OEWLq+uVxEtxd8gpa37N6eHB1iuTSr6+vrflt3qU9LPz0/s/PTHy7yPe3rm7PDM3peDPypUcPrSwbLnIvgwB0+SoocgLU4v76xsba+QTycQBhVWh5hnL6LAhrbWFMEAKhqZo3WYQCKrCryouEqLOwq6VZBFwV9A9hRGkXAEhlGVRqRSui0XVIjkmDcOD4xZazGVYbOcsw9GYKCiEwpTiTEIiaeZbMCMAvVm1cH/7f//v/+//3//M9nJ4P+Yu/B/Qc/+PzTjc11lEXf3JoXbUu8pLtghNRvYfI1w8GwdjHw5QZsgS9UHh8fo1O+5cyHgRCUPINO3BDUlU1cY6wDFy21B42ry0s2ZrBePn/5zZOn7969455MVJCNDb5AjHk3qcluvIhGSmzzKNwCSNXKgZkhRTpkpP1pSNW+dJacED+lCiIxdrlVsje5WnvsXfOAQfPFHHbEYkzUoKpUgkeCurMQUOhEHSipQMiZNALythqDLT+BSgchXVjO/LHWQVI00fKZnNKVs27DeVMTyb53xFOaBmOLc/oMiIJqnRh7+dQ/3TL1jqHdNfsfRUZ5C/o3Ig0Gkky1klMDWMjiejUeYRTZZLCdBzWigUqlHymEct0L039KV1WBgGtulVjdIV0L+QsR+jQKSEzxiVxsBjE1hjdQKa0VTBcu9F1eHh8d7T1/znzi9tbWWr/n/hr2Ow9Oz0anp3yyYX6K1xsc+GbiyjrLV296vZX1jaW11Wm+hqnzY6wf/wTHtMDO2YEPxzC3ODs9gCOFkGiodQsF3NHZj/MOzdJW1oelgJ9lztGIBjjMKJnIIWtzxW/MxkYBPOgPllVAKS+AIoPW71PiSacAs6bnQ49ko3UBK74vIlEXSiTVhilE2j+OLEz19lMAMUL1VEoKQdo0AB2jqWrH6apCB2cvIwSoDVfQnZhVx+SDXJocnAdILChKzcyBt15Sa8JdOkIFv6wJUMoI6sxfKhhzmUIllTiqmihrQBhxuaPJqUjmoHAx8VZymHMu1O/pKecoTi/P9eTTIGZC8pCfXtUYL9GNIYWtCoTI5zXSleEOZ8P8Nm++wztM2yPD9Cyl5InlmM50VsJfqKYJc1u1VoLYQEY5GU6JIqPQggwMEZ6UphFSsAA2xOT5CwHKkcOQEarztNCYDOZpWTPzzqgRZ0EeinB8Zh+Dlrv80w4koUiBHFtf5pv9JLbj8YtF56ovF24uptkozrGjnOc/N3MxOD58+S17FqHpguPlzo6mRjuLO9tzNO+zN4zZpq/Pzw/enjO/PTq/v7F6enAwfTWaZ01ZvOUtQyxzrXM0wNsr69vnF0OXT2ZmWKzlCjdMbSJ05VByoocSLbCcAfFwi2yLE7LZEQe4gauC8L/WktbX8/gdf8OvMoWKyIoLVt0yE517HrXSColRPJWtMHSJlG2SrpgumyQEWlxUK0tMB75y51rwSYrto9L/9Nc/+5/+X//T3ts9VHE6M3tydITefrLwI/b0yrVOsrlJPJeepZAVsGsOAB/8/Bc/f/78hRM2nieghLlFjJ99/sW//i/+S2a2y4LArCvxj/9CSKXcMuldcV4kB1lyXh8dHT599u3rd2/dyQEdl1e0xLynx3JFMlBOg8S0uNHArOZOI+c+1YWk1kMJEZEP+RAaUg3qkCeBNB72DCU4oHgiS/eTOPK03M4l0tlmQEMeXQfwtI38wzMdH9MRvXTzZ5Vr18pGHERLPHWQW+ntEMUuCj8pZMG9tQZYJPwS2QD7DCvhJnaAgyiJjOHJjJw4kAQN8GAC9CoZR4tTAQ+BNEH7Q4YVYclgRbrYAU1fnIZVJHCkLQ9u+WV0g/eJsy1FC1VO6yrCMvnEKBj/W/fKIsyqLhVNijX5S8NtKGEAKKSZBBv5Wci67KYX3dDx4dHl+dnaCufaEgMSdk8Naaw88Y0NMWwmod/P92BgwGEPc9KctEP1nQe4m2OBBMFc0gUDMqaudnL2tGSoDYVPTo1fx4uU43LhwqIE45AhdOEYYRDXB3lxT7LO/yx3Fh+xBjijxFgvoolWIhaeHFrBvK0CdyRJPEM/z04g0hE6qebObCYdCXFrr94pH37Rn3OhStso/htr5S9/I/vKFu+PB3RAE92YDZoJhb/0Z72g7hSilAxrASdKoadBSwMMzOATeG64qrncN6QUgD82TGWSwZal8uYKbzQc6RvICJ0aJMAWuiGnNV1cLDol63ivOnPSa2fZYH1r/PGXuxJJqi6a0bxxMi4SgCc1FDZ53QYz8YgUO2HQwwWXmG6JzkZWGQqyRXme/d60Si5MMa61Ew5LMqQ2NBdxayKdTCIYaSCYg6ytxgGAKsd2A7s0tqZRbgMDcSFPuTGKpYgdJiYfPELEjYK0cHwSGIUFJyhjU6pAy9N4ODx1dpVvBc3z4SQM45KvPPamLzjZkjVwnPr59PXZwbvh6TFkgfR8NLwYntG0sq2ctVbmk9fW12iDkeb1aH5xev5PPv+MXVq//uo3pyM4oFZQinIK0nV5tnrNL7FJ2Q4ZBjzjF4lZJRjS3F/XChB9ZKqi+mBQiC3Li5XIXi2x/M7Q72AYQSkrbmCEG4PzBgjJWo6pOwkS5pMiKSXcKCMibsJOWe4DL39yNwabdGd01GceqkQVz33pNsZprLVnrNwqkb4Vt1oMzoS24fD453/38+PDQ82RgOkOzn732+md7fWHjx5CJICCAZT+BTckYCTc8+f05PQJ4be/o/lJPD0YLASj43jt83dv32F4EYXoNVLQir1jQLs26TZA/USQI7gV9M3h4eHZYEDnmq1txKAHTIvapjR0cHIk3ADgRlwUTodBLxbDz2NylAIwwUaSVMEbAIKUK/eiNyaduAahKpCCFTFK5oC/0xMGHqfQA2Fk5uq9Dpcwc3I8ODs94704+KByNBI7Ns2SexOlXhq+G8hTmO8mtaIFwnY1Thfs5de7zAVWYkjg6k/6pVGSuyAxpo5jMjMn4jRs/jVr2UWyNYURTRmLpaycfpiPDtMf+kt5XAT/UZAzf44uhDim7PsBkA3z0OlBQ7VCVHZaHVpfjtkd+eYtvXzqrGvYRGJUuBP74GQa8IEjBxkMHCkLCMcbyEh7AyfUQBT52IjgSyrMRdtGIydGQOgWIsEvsSWIMZmKJwEV0DA6LvUO1M6uRQepWREcNFHcVgcN2RCSpL96X6Y5IRCPQ7MYlOTD6eCnuREJ1qAH5CeIFtK0izzqSip3st8CeHKvQCgTR+IEMuhDNSRXzihDj1Bq4QbXz3SwxLvT1abPKSEeyQMVZvVHNj8dKVX5Fb+BUvSjPPpFVTctBIhspVanvp9jUc0ji15wGqFDrvSKzdfI3CoiOkRHnyjz0lbJSDSkyGRAQ69coFdxkSN2fk5TDqU8KoNIXwNiYlwtq0WBCRLZwzMlXZ/QAq7TBshwsoRvcwqlQtDwYO+IAjhjenwBK4ESFPMAVSsAx3acmDMhl8Ecyo1ngEG4ghWUZSjstAEFyOmiog2SQNkqDw2pDnKE3S8yKby2sLbKvDNr0valODiZ6X586+X5gK7ECUs2B3vMIDGWAi4bXviGAsuUVxfnrKTQYPOi08JVHwZQx8XVeW9u4cdffIZ0fvW7Z1IYVqksw+H12Zlfd3TS2QVwX6mibi/3V3gv8OiQL8ozpbnFUSIwp8SvGXUdHRyyg/KcjgEHlACKSNrjg4MD9lJiYHAn37nCnaKELTRydc2rDmSgEoDMFKOjy9zHrEOb3bDbEGjYnUZPbPuTdHpa/FOLt4H7iUdwNAVTFpVgTprUOLud+GSwWLo/x0enDCL5NvPFgtzpB645EJQ5HbJQ1lkjSEpBHgUIYXFAN+dngxcvX3779OnJ8TH7zdK4ywyqBDxLUUDQbVBbEItEQEq3YMuD0vD/ZABIl1VzqSRsCaq57t7bfcxuO7q8UO+yG9+iYeTiywvJaQmsErBVMMxagcTsVYgta3LYHhO4qDqJ12B4Mif/QUF1l8rck4fS3FpB5EQ/zEyiJxFCHsFK0zRkzkI7ZEPKaKg83Z+BBgFNijiAAywbGN07IEOPNH0gVP4qwpUgN3b+x2YSFZoAcEFRYcNxZZbHsIDAKkQwUjqBrhoDixvbCIQXs8TROeRw1KEFEaeQKqvsTAZLfCBIXWYXYm9dBkApQKSLbCAT47O/HN2KxtD9rafxNaSNn3IDZYBSsJ78QOvEkHzKOs9g1355Sc5W1nE6KQiSj/24Z9SNJXS6MZ5xLyXi8gJsiqJHqjaByX0dIrKhJcfhzbCgpmzToupalYZlivBGJ87WlpXs2ip/yegNzIIidsT0AjeUt7JBia2vJvMep+zJFZCcyjB30QSAiGKslo8sWnkJUqk/iAMYGzplDBJhYyWsuAaeAaVthTSLWvuhEvpoKor04q8DaTJ59K5RJJkr8BSsSgNdZPqDw4w8cSDsizhFLM5isz+ApikNPc4kMPhjQMaiLEvObLC9GV1mg6+UIV2E7RA+zaXdKV/1susENxkGndNtYtTqN6Edvos28KMY6XKIGVelNEsgvIeWk6bNK+8pRap2r0ZDIX9iE4pGs5YY7s1hl45SQK5RUxyTaWaItighlOSFaJaq9QLqVA+U2dZAEg5AnFrCttjaABJUbmcbBpXpLV56R56PRiqlYImCtJioTCCMX2nl9OuMjdnYzJtFs2tLS6ura2Rgsddupt9apLm7PqeJOzl0rf7y4vT4MB3SaT5GyMwQDYS18wIKqF1zbGhEVoyGeUuKNWHYYwvUF59+zKD2+bsjpAqDdGYO9mkpjrFlaGbCm6kn5hJw5byre342fPbtKz5ysrOzwxeXymwodXR49OTJ8729I/wYvRpH9dPXo+Hl0ydPcW34h8rZ8iN5zet6OBgcHjFcO0tdoj+YHqFKMQMyVzK2ZJmHi1hKOGAMKJf0SSMFDMqwC5Z1yKIkCeZuRfKItmMmKuU2G9lbfiszE4MpSBSWyW6mxfne44cfMcGr4Wcb59raKjvIbElilFFiOQIbHKDpHpm/u7hA4g8fPNjfe8tWUzpb5KQQay+koh4QOSHERn7nt1K3sQv7ZgYNlwwT3Mm+Ve02aJD0tmOibFw/PeOLb2gTy4wMI2qrmmebEyir1CAE7ShgJc5Z4tK8vr7G+eSsJEGJjjUB+4US/vMkiagX6yFRo6awiiPQnYUObiQ7Qicn5UrORKNVkprnsSCZoun84VuxkCFklR/pB7toErooKRhHmvNuIO/diNunJMEw1Y3uDgIRHWrn/2QhzS5dIld2OETfWVfXHUOwGWM/MI/XiJ+xuJylv4Fo9QwdVucz0sIpQbIVK5Poupx3/o55EN2dlLsPkA4DEhKTj4+9m2Pi6ZaqiUjAW1YYatbhJs4J96v6oZyNx/MYoK4bX6kQBBP3hJiQXVhyql15SisFwz4RthKYHSMGt8ErSAbBWF/qN/ak9U3yR7kQKVcU1mLtvhta9VQeUKDBV58VrARNGsmry8o+ec0uaCnTaqEuW7YCnxE5kNwapRFYXkTgBjlNrbiksJFoOr1DXhSKlcYOOnSwr9W7RCFqzCGjQMo2mgBpS0DfQ89AFbMmmJWgUG14gj4sSK3uw53jugyr65Sv5JAHRdHC0jLj9RlMWha90K3gvBR8NzPLFPIch8upJQ5u0h0KymwGaQcVQ1P/4MsYR6Q1AzTzm44mEAf69kAqpSEpEhPGclPWDjdkZQTM2WYKyteFCRyEYdtIyVb5xQgYax1CSLdaqpEGsXBE2WTQO5DDZ+tJmm4xJ1VFKEsTyZ9s9WQ8ocgUkD/sjTUGrvFbDkSSIB3gRvK0trxkXG0zSAEAU/4CSi+v2DE/THCaN9zZwLyxtsJs9RQbsD0uDiXwIjwbFQ8GJye8Pe/L3NcjdufeXA8GU77PR3vOuQcc/ceV74sNB7TJjMEW+BTEwuKKTfDlCFF98nAXTHMsBqOLxaXDo9P9vT2+3+mXidgfwfZyqGYFeoFvpJx+/buvGe+urq2zdgsjBJaARlejb558e3R0glDpd9lCWStu3r59lxukbs4uKE+Mip4D/QyqO/LM+Fdr5D4yqksqQxQgLqAqZFVmNuIRehsJ6NwLvhmrYoc8I1vu9kxNPT05efvmLV0DYJIeIrU7Eago/ydelJwgtrW9u762/sUXnz9/9mx/f4/86ysrfM7Fs7U1U/fXgAVVUathfQwElKQzG0zVwK5g2eoUVKdn9jxwSnRRaOC5R2Rkt/ELd6aFUzlq5MgNNkJTNxaT3FHYoaYzdWyS6XGoAHs7ri6fPn3BXmhcyc/+9m9o4TO+tOcNfqa+KQh8DALTKgnxNao///M//8EPVmEQxulExgmnNgIxnZIqFZnRgkEWtOp26Roydsoshj3j0GkkVRup+JyVF+w70yYWJIqcoFbgdsH9lgnG0aSnGuvHXzKb3xJkHkcnb+LrQgI5bCyqOQyLSpHilkt9D3fQhLSN4CoNE1DkKX0Ac6pTfEJC4TVrKyBcnhIvljxTM9MBIULEhZq2OT/bY3RYxJhIafUOiMpccZNXYeiUgjf5FUIgUAwV2XgEgtmKohQQCOhCQ5dgulHx90ZSkCsGlHzVQ6LyszXyFJFRr1ioQqDuZxYLdJiRX1EwfsJ6XemgtfbEvPJjkThCpKS2lsFKUSqkyRCamszlhnTlHh8YXoOXXDGYtF309FkCkyg7S5oVJQTxPmzXgBERcsZSQ3VVHouS1+pTVgdBJhNJEsjjt+h26GW0CJWgtLB7HXZopOmL+loDLo/SQH2cYYtaKipZiQnoUmPEYvNLfalGyEanutqwoaVKrq2mNLqQdz70O7Oc3aQZ5f3cNGchN3k5YOTqam9/P1IbOU3BUPZy6v7qJoMB3i9Gi/qI0AYbsX21Lir4gz7SdGJKOGZffUu40/qJ1W/BKml2kxmB2p8qFSkazLCO+JB6RqkSieSaC1FguB36NE6LN4QsSmQXTAkBjpEJWKAG84m4IwepC4GS2rp79J/xdo7eRSfx+SkxR3zuTZjneBB7fJZiStlV2hw5g4NdcMsxCyd8xDMtMDwBAt5Fw0XtQn7tALAfpjtZ4N1pLQ5BQDfSZDh7cnLEoIqXqZyGv6G9x8ppoDnu/JwBcb/v28BSP835Nue8wsdeW2Z/LmZZcXUvFz6beZK13uyfffZwcH7JhkDORx8eHw3PzugfcNIHBCPEDBbsMJ1fXOwz13wxWlzis71+Agza5hbnl26WGM8Rw75rXtNCqGwEg2vWpvGqvDoLCRGY9iY5csroj0bCvhZPmaHiL+lkQGRex7LVJpoGTCQoLwC1P82VJk5oraBYChvohV0ZMKCnT578P/6H/+Ho6BhImJD1MFZIQd/Fmp6mhbY2uwpw88nHn/ybf/NvdrZ25rcYHvZOTu6jTA4osOJ7bByL3CjcFyYSWA8pU6UCO30kAmeRxJIzy4mxkWbrHCTR80A1qAzRpT7OkpePqTrV4TIKctOoIMmZMh7DE8VVuhMOhli+n5LkW9EMGkaDU0a2lD87PT4+PIAa1DFi8M3BpTMzjx49XOovvn7zChLAyCeosJwS2vxw/uvffk0fGizwVuJCxhAvAwkKTI/jigkflePd8oOD/cPDfXsVUR888W49fNEiZ+YbsZdLAom+RbFGuYFjGZ6xa0B9/sMfYcOMxmFKp6eCyS6L+jSEEWm22kaKzpCMadUCFU0XWNwB8fgcanMzAtVsTbbB0qlClqiJpd5woxEQJFKL46r/k1qoy58CAFaLlfnlzifLJ5SlaoSqT6YTI0J+PNgJMXvk4E3roCRWEKQQ1QpQCGrg28kHiuRnS5RbUvEkOAvyYAbyJLqGN7h9DmlcSqTFXBgVCh7f7ei4M9chdQlMy/pFc3SBHqev5i5ZBsbd4TCQlCwEMLfoBGmm3lKKdX5Ib6H8doQkO1oTBDqXgDSZFuWHqlCvg/doOn80B/4DmJ9VxXGe27WUByIl1m6Bp1UDA6hwh8YVFrwoV8OEVlSlK8kKjFA5coV1KRekJiKVzmgDB7ANQmUskRKZFouK7RwQSQUsCAO9Qxt7t//a5dBiwoPZ+FGBsEzkzXPRJRCDUG3Fc08SlY6u+urqBY01eYmGXPZuegv5zXQkBCnghWmf2byO5dIAz13ebMwtzQ6p+NOLK5wNscA5xjOM+4IyalSHMTZIVXwQVsrgBnxIBKcmLdY8a4GyZqB3Ppydmh8NGf3ygWhKosUbzpue4mDujCT0ZSBoc+ZmkG/N0zvv/R+YIKKIjTsZAFZyVWNBK6spEsGoRrWWhphaa5I/4qJHyjuxx3kWCzllJVCAgBhpFnnTCyZYbaFlhELfkhMUosuqtNagNCAFerAChYOsM8mNVQzPTpjenT5nBMwQmM+JcDrrSfYieiI0YoEOxEXNYdg7dcPGqyXc+vLKMrWTMRa73uCQQ7Sg2Inhq5Ppc1/ro8YtL6+sM6O6tv7u8BinzSl0vJjE2AjOrIbq1C4FIjo9PYNMBtGyLXecw8WObFR/zHzsRx89BiO9ErbW0UeiK3J+juXMM0kxYADu20ZKX0aVGPLjGVvmQWCE1HCy4A38bphkhlaEglSRTSlFkUcrxKekNVPQhLRYlUz+agOJbAViqE+efHNycphD96jI7OsGDzvJ8TJzvFwEGf/wD3vRAXMmN/sH7/7jX/0HGioooZGgXzsYDL755huG7+mTSjwBEMwKMNlAL4NHgLAEvndwwMkFfOkJ/PsH++RpZFSjQC9x6ubFyxf/9t/+vxcXl9T+DV0lX8ikptMA0yNkGkOBe4SFu6ahgRskCXb2W9F4QyelaPaQBBnoAZKfz60+/ujjTz7mHeDHL1+8fPr0G7ZAKZtY6urKChAABuUUr23zGt3V5du3b5A6QKwO6lhGNC3Lci8EAnv6Hj16zNtN+/u8cPxaMloGz1BbYoqF7X6xZMwnAhEaoAhUOKAKrqpnJrrQ7f37Dz765FOSzcOf6Be87wWLUaHNxiU3gvP3wZBsEylVaY3oSnSIhNxC0RlKZBdZ4HO1tPKd4aKJQr6VqvASX0C4KrRcc9PsFeLNlpwN2QTeFiNfQgWIQqtYxJm4UINrsN3o0sbl/oibIBem0LoeBpWLqpTOMH1zWmAnphi98GMPJo0wbaf9NWJsOkhjvsOZdVwYvhPT5YxvfJzTml0oasHEDYMJEJgf/sOcubjRSOw9kKe0DkuwBSIhMQ+oTTsEQG9FcpMNNVOzVNqApzPJrVzRgLauIw8t2ADrxnykWyZh3FBdqc+M9tu4wFjqZxvpVyaAx9gaaiqJXij1Idg6DPkb+GEQfiwZjmRY0LCq6O0sIgs2pOHr8P+hSykrl8pLu4cMuCJosLEOiZPd2dx2w4iAMCr3VZmt6gKREMXnqobnpzr3c8fRl1eLTJSubl8z2cU7MsvLi3gT14sQgaNsuKaVhHAUEKDCgGpcEuCJxe3jGHHceAR8cVKYdqU55+WwC6a3sHDcq2tXZGaoBlezHEQh7eW2wnYAIjdA5wd8agBJkBGr0NVYuWzxW822T51FBclItTIVspjA1iZx1HQSF5nCRUwxQwTJqJtegBA0KVtW1aXM/V4TW0yGZMC5MXSc6mPA9Fxt+9GajYRnWYgqRNoToYN3Nbo6PTphrLq1uYlpDDmllc3OlyMGT7BC5+OCHVN0UFjwi8TCCKMi9jHmuEoOiWN2cWaGjU7IEPgxHjB4zganULEZH+eLgc/eXExdjhZmltYW56YuZw7ZYXHN1q6TlbUVxtyYNALhHSimoP/hl7/+4odf9PvLNYeJVKmUjMb+/h/+ngZjc2uzx2vHjH0vb5b6K4Ph+ZvXr2HwW16MefMClrA2xkd2OmOMWqwjK/tk6BWm4EMrRBFUBseZpXy+q4SQaDJoGGIuUa3WaBmvkyF5WlLdq+5xjjbjzfy6xKMHZgusJNTzcil29MGiyTDsPD07/tu//Wv09eD+Pf6xfWpzcxO5/fznP//qq9dpqxwfMBxMN8svjd6/TzYOxGBzAl2W05PjU/dND04xIUyHnJgHqZtbWxR58+b111//Vu3LuIF7CebTzr0ejRyD8pOT4/39A67kBxcxvKRNBlo+HgkolL4OMyIkPX78aGdnl29Cf/7ZFzSEQDhjLHx0YLWamhqw6H5k/yaSw3nSW8ZG6InxWmcfcdFXOz/HWhRg+SytNHdcK2xsMF6fZmP3yfEJcNjP4JwTVUPPzGSNb7bpc0myqN0j/zUgmn5Y9aKPhSvsbTTAregZyEnCZEA9+RFXOsc9A6yiJzN+6L5IDj8WBjZ6QBY8RAjNMdwWLexSGxmYoDrUy22m7i708GCSmCxSobmTSqqoyOADYAAS2GBpLZhgUFI8q86Ix5AjxZWSVMGK1dL4G32fEeQ1hmpm2RQvJXZ5LVcBMLa+1DN3VPlaEU0pvhlLKK7pJQIEV40rBAnNsy1wp9BxvdKfayfaGDApTkgLoftwPrMIE4ihfD5XIYR84opUUjtedWk4tFRGIHNv1UioGmpenCVwHMh/KAA+ryGFLEnzv1k5A5d2AtsTv4EEor3kJn86fVBFgtULmItmyrSc7yO29iKN+PeM7MMudUM0MMSLp7ghap01QfECR9bgl0AWlRchc8d4f2aWL9kdjg7JAASBSEfZMI5L1ZCfl5ut2XxciMG6Tbcj6BEvReCgqJkhiCkIBUVTxR4f9tulbgMwBIq3zBYeqZbMfnMlTl0mkIHJvgM2/Ly7fvnCd17ZI0GFZj70ejDqP3LFiYaNGLiIDVhUo5DvJmkNIwGQpkKnXJrMLyJVTAblYkoKKFNmj/2IUX+Z13JOTo9oPJ0vjUy0c+yF88wvmOxle7mjXsowWPmbv/rrb5/+hsVpOiGbW7v/zX/7f44ubPYpCgngqBqCfItb8A5Ozp58/dvrqRGHrW6ub8D5HN9AvBzyrhGgaZ8UuCplOpo23HqiFnFmN5fz/T5yGXgUJc38LMc+WD8yL0Bbxjwlr/TRzjBZzSzl2eH0vd17S6ubS5zhPDfVm5tmbH3JZzvZNwCFTG5rA+h38OzbZ4ys8NTNIOkQuo39em9vj51ZVF0CLDGpurq+SjeF1n19bQO+v/zVry8u2ONacuavFdKxPY66uqytHukxShHRhcJXhUgFxpqBqpYEVaamOoWOY+uGa9Pj+BnEmBynwLoBAiNjzsDVR8wKnw6yd+/eomHYUpQSQhxfgFl89PDBJ598wqwAnurs7GR3d/tf/+s//+u//is6N8CG988++4x7xq80eJytAal7e/vIga9Avn71hgUIWjj+bW5uf/TRR1Q+bGNja5OmEfOgjYY7sElbqiQs03Y+fvyY1hr4jLnZgo5FUXPj6ND6DN13zMkTAdkOtrSM3FjxRaBbWzsczIsiDg4PMRLKMgvCOcyzbEe9ucm3Ow/KFWBrdJsYXovVbwUuUpzB9sXlUglMe6cuJZBkoNdCJJ+j4XwkPp/FYgSblLohBnZMFeBpcW5ucWWV8TtycAyDBuO4uKo8fQYp9rnNoAX548kaIe6m4CKjnisKe9a1oZv8vqvfcZHbm7uZoKHQQRVBM7jN2u6IIVtsixjrPRR/J9dkhHR9x9wKcEet2cfmPVlWVj5ABFmUVkvBMY7LgMt4UhREXcaJ3ozRJPk7dE1EQCLipxqgE7ywzllvHCELhVtFVHpB9SxO+WZEJoMxG3GHLq3COmUPrEhRttVUxamRi/4t+f0VX9BPBq+FQn6a0Bvd1IioWnvQhApXqQ8TGvNMskwrC7AHWpcGB+6JSA4gULXL+m7evHnDifq7u/cbkaU/YIQfIIU3vXMHygjvoZPkMNIlpUWM0QSHGRAEPWOz+1OCLiNl0EnRzJUxbHdQghxpFt3KNJaRQwFZF2MqBT2jmGsjBixWoVDi1dbu5h3t4t67ixFnnrjetTw9/3hla7B3uMxgkSyNeHBWByLjMPogmWRL9Yw+IylwMT6Dno31dU7+O9TDanPE40EO9o6ZUvu7v/3rw6MDXt5hF8na0vLV6Wjh/Ormv/2/sGdJPmNGePfUDChKRCJLJoCM3249G2t/2DFVRFzNkkgS6MO5oEsjMDe/uIZ7WV71NBVGlurCC//gG/XiKkHHlDOeB7O0g+L5FQhmoEBp9jJwGS99MgQI08ocxPgj2AQU90zx0aAzfmY0yHYd/uEJ8vFNxr4cazBw7/T8PGc+E5DkwtwCdApnevpsdH5zwsww7pfAC0gM6zztDEJlMB/35RsOvNV0MTq7GJ6yWXdhoX/FVBMqp9/j6B8w9GmQ4gWnXvq2tGMa/unKmRqyF2D/xTl2GNPgPHDu+vjsbI4vGvYWt7d2Zm42cOzfPv2adhzZlpCLX+GLgYY4iJSgtsO/aEHBgrMskdnwlhCTNsc4dIobR0zeQOrkY+DZr3CaxcE3umN5i0VWyJt+t/fORxxNGh7Kcs/sOov2++/eQdg5Wh+yR/0awTtLv7wMlTSTrn8vLHDqBQ3es2ffApomNp6NBfsZdsLx2hLGwBtB2DPLYbSmw+dDkFOWTwRpjFRGJOu7j4pXbTJLEWOABga1q6vrCMQJaJbmVDJbFpxicbKaj1Av9u49WMTYgHE2GB2fvb28ekXdJo2m+kc/+gmWBVhMVTMKXPSGRrVfJGuSWy6Ary0TStN6VnCZryw9ddAtBXRcYGdldYU2m/KApG4CGlB0RAYcc0t/QUTGpLgXbjvPUpA7J45VagZwROZx/sI7Lg1h5V/Hiw7vZbAgtKdAA2LNTKRMFWfIBZsLMVwqdyVVxg4IKckl/QXNa6SlxIieYI3M9bM0LZhjG66G4lEDK3DmC5EFlAJ/MFDkgyGV4pa20KCQ3wsTdEYEhb0YcLDkjCbERQlUeOfu+N0CsZ7QuMEPxuDaiVzVsFBe2HK0VDtRaGRIL3QyK1DrN/D5NxZQMnBxvOCQYSxh+dEVRx36GqEZUzPkUkTlYupTHx3fIEEeB+SkIWklgSJdcbNDUNaoyehDuThLCgQ85mDAmICedylG6wOTQTJlNbknxWD3E8rKGFzP9tUtn9IGWpQaKGWMu+mpZCK9hApyO664TmDPTm9tbx29e0tdAh7OwXpjq4FZF/KYDFDgKvNmJWumgqlQYOEKpWkntF/kRcODbzo8PKJpdPQ6GJzk8DXO2sB9M1M8n40/bRLR9piOM8EzMwiZymVyFnuFPdkHJr37Bw8efPvNt3b8a+IDJz83z3iPKyNR+OQgj8vR/vnxyRwfs7xgF5FzahlapWUNCw2qg2+I5R00nR0p5QqKHauJuP2RGhmGU0ZJ5oRiRYPHW+qtstFkfWVjwLeELo+umbaFflsR6UeJtEg03zEsJpzZPXW9jbQPt/GK4KI5jMXgYW14yragCJFCQAwgre/N9WJv4dNPP5lftFWj1WW5l59HfbIIxw67GcavIwSrZevlrtgdT9vBB7CRtPuvETGe0Qlwzsa6XGIU1OP7Cn0+wmvPDCZZMMZg7RoMj46PZjkwi88z8IUizuDwvWP392LWdgd8rQVrpNkAnhvsYVAlC9lZZHKoNLo9jCOzrIhRgIWvDi/MTDGntbC4xCQXQirfEJF2dq/hU1gp8wcR2TjKZVUGIrxD/rEMZWs+/ifwoNS6R8uM07pIMqjc20B2Jy4sZX2iSnKx+U+YYa0ENmFGpsPgm7evkzuEUFAjSen095kAoKtEDKFDoudJC+M7YXPTi/TcqD68yOS7TBbXKbOK3F/me6m04hGgvScbYIBACdBcfIG0mVm+2bi6lprCM1R76zg4KCxGk9y76VMQCuw56gmolIqObpnbAjBee28YGqvenvBnLbASEx3S09sAum4jFQEalILikS+58yUSCrgqxAQVJkTfzgJE4v30f3EGugh3JAhcJ6tUgOYfgk7Mmi4eMbk3UuLMXW4f3pUf/oieLzDJWbKFogiP2VWcYVY1qNZOkGaaROxAEHynI5EiaySUspTHsP0sjUtGunp+5MXSYRJCFJ7IVCU/p5QShw1pg1oNXOpAksFxizcgDS/kMEiBC24glV1rI8lJAR/smYcoUeOp+GsZQTlh21wV9IkuZPCX/MCBdCnxRzE0wOYSW5/QLBf815TlRJ/VEnlmByZScDq5/G2sG2o8o8nJFKCrK2b1vOhShBnJpBdOed9qsSGTep0eL3ooLyTJBqvpOfQtDyE1ApR0gXDNDTQ5P+q8F2Nuf7Arl9BKhkgCipQFup1lr9/00BoAEXIlk5SUOvcGKVGK1TSuCEIdUrKxtrEHM39wdikoGESqnsEAewRqkVLUBhQrIcgFHO0Y4X1gmUfixGwCQKTJ5yRVNE8GDYssgknuRFcSSDc2mFR2ognnsLtz7/XeHv1VCgR0UIhRBrCflZVlfC734wDllZqsZgrGMK1T0PcgXsm2XnHFC/BeC4rXPEBkPfCLeRk00U5olSzjyjiLQOZxvWGWgQOsgE4m+NHssJmLbZYcLs239k567FNyNZheAodJsc1LaQhE1AmRk0WLK2zbymyFwYxKUOajFLTwKoRZuxBxA/z/T9qfxWi2ZXd+WMzzPOacefPmHarq3ro1s0iqRTWpZkOWQNmwIANuwC/2g98M2IYNqw2/2A2/6EUGDMOvtgFLMrublFptUS12qzk0i8ViTbfqznlzzsiY5/hiDv9+/3W+iMisWyQt7fji+87ZZ++117TX2vOJpqKJano355/i5Qb6R9mbw3lT7EVRF/2AtrrpmF5PJ6+5OOLAE3XVRgzzeT39XJxwkbLY2AMiWh7mwahGcEabZH1Ao119wB7Z5dUVztXAxtGOYfa3mzdA2vg7RXj0fAcG9jgrldxkxHLFJh6CD8aa1g3r1ukV0aEB+jYTkXubrKyamuQUYpYdONDtPuIcUbTDmDbDiUMj/YPOTpNvfGxkenIcsFQUjSIohZ8oLeujce5RX1zqESyEe/ASeUVCDVO5JrLpFOPLuwc6WX3tgtuyXA2fzdyoWeBorWQj8iGekn2OsqkxqdvofCPJRkgqWRS3LbTYntyo+21lOH9qjCFP+KKY3Fl34xj48mGIoSjVpB3ENTkkNdEQSSRohj1a4aTlp33hL1ShpMx/40vwfCSjUUXXlKUrbi0gO7qDB433ZdSKPPa824EntKo0kvw3qKuSiNFMWlmMKiMUZEQyMYKuMoVl8S4NyhSDaYd94XhK8bbSF4kAl/zGVSkR8qIoBm5CvVs7Sy62Dxg4c4CHOp5mWJJEQibP3cviApCS1Qj6ZRKZFQXGYVPTKV6HBb8aZqb09le8jw41mfiFB24z8cIPzw1CyDiQ6lGhkKFQU0NOO7r5/Wt/UFPTiBWglLiFhUbl3oBPIq6R3Tn+DbkCQJ9V6QZOlZm7aK1X5lX+flB57EpAmiOfZCWNVISQipZunRTAzS2kwo3iNC0wQ0En3mcXgce4MPTR/UPKAd+WRhZiTowDpVU6akq9LMKkjpI4l4idF+zI2NpxaAfn2NfNe9qKRlEPKEhBT6IqOGCxRO9QHdpstgl8B0GjDLa7wlUwjQxruAcuSJp6pzORQOkOCgA0j9puVIOYBCoXgoO3Ra93eSBJcuqM3oa5GTjCbVMPz5kHKP8sVeiVM0gKt8Bd+m4Yi+iCk8lLA6CnihRKUsXG8d7GgUFa5RDZMzkzswsHW3sUTyOYAi9hwbIR75isSt0QlsCDGN/cAhTktcF8h2giYRQsBwXaRR6YAlbufLE2qyoAiSlBL+gIYo3wOggIeJRug8jjUjAhmCGK0LsQX213CvU17n2+ShZXzKgqMxL06fpO6Gb1IxxocBQEGJBXFojsUl/K76WcBdsyVfZZxSnkkCgkiWMFEZBIaNBanfV6KrLtSHwhC1aHRulTMmB5oIqzhKS7a3JC1xVrkmm3FIz1ZKkKq/1BDR23+NAGfbt7uxvrq1QByMfv0nGAA6DBOB7TeIBl1hA1ZPKZLSYIYmdzjT2dLIThbUKwnpJYStDtRiNtFg5+ZGyULg8jytzaD+LNzQf7ngXILm1eyXnWNTTgsCFtd8ekj8/2tvfpEU1P7kMeE9U0elgoy6roFkPoihHbCjpWB1igmXduGBSRGPH8R9GtIcoVPtKqq1gZTX/D89Ga/o19FW2rMoCjsAxGkVhtjUFRCvpaVZl4tE6e2K0ROiI5tyKqaUJpVHMTQTXxgEoeQJ0/rQv0Qx0x8IgyTaDyWGZijYkY1MfEnAPR5vCojCyxPVPTMyOjYxw32dfbf+/evcWlJSaYmMFlivTJkydIBpaMjA+9+cY9HiwtLVEQrpRvFJkxIGZbME5BkWNe7P4SyteCJO1UfFKDZ1r74BNZEOlHzgRTqYACfHkMZjhJ+067BC1wvAgJvbAbSkM7/Y60p7yXatjiqfo498vZStIV07ZnFmsN47f58BwYVSDXKTa/v/gVllcK0RY+9Ty+AnlVsI6EL5ez1yMZorKRQPG2I03ItU0VDbuD+VCp5lafuIqSblPy0J+/JryMQlitB0le6Y91CgcAqwCiWRIEYH+8wsJJJP0tEU7Rlv4F1InNy0U2HG2KuJynDcqi2mwXvmQ3QXC5z8XFTVNyUGCgzLVvskqrCwTtqIqhXIINySsH0IsCm25SgNViXc7G+sFuC5XpO+6ioQ+5wqDtzxCda2btv5mNTzsU64tLsExzRAZacpohzAV3Jq08GCIQszx5aXSAVRVuQyxML/S8iXe4jyw2Scld4yUURBz1EDjEY4AClyjSEKEDsZFbxUfJzMy/wMiifTIhtybyK/DpxuXK9YelCJUr6cgFQz3fivLwGtQx2sCjE2MTB/uLa2s4hvA99k8KDSDKzBagylACX+XDq/IXzCWOdPgVuE6HLrRAnTmdcsTCssiWdZVWAUVKHdOCOB4iimnYOx4QNeWLADeQP/zO1klAImsdCam4IBdomLV8p3rDn0tXeYyjxgGjUgyiwOFGLQHKM6WaArSesk+G2FxwJCCkYYrIAj2yWtbxUSjALx8Q5sN95MkGPAfvbMSBkWz3ZJUOXrDn+tc6WMBC4ID8wPuqXTh+JRgBRnRMKvLeL5buEMXuYQBKj5ZFEukoc2wh042+Q6a/n5H9HRbt7O6wK5dxRQYDYQg4MtY9yE4vdmf6EqQRGqE0aUMapevDWFF84Ej+FnOXR0PHY0zd4aEjhj1OdvVFOtSjEyaR6TQzWh0OxE+IkLJRfAjmjIWynOKkAeJazqt7za/cUnulkQv+yUkbgLMIORcab88YiM6b501nrLFfahAlNI16gANWyJZhZfamkQoQuamSLO2lkHILGfPyjP9XqqmVIPEBKGkBRiEkRERkFxvLsdK7fYKIggbAIC6NpCYpnopDsr7z3e/+k3/yTzlG6n/wP/z3f/CDv/zz7//Fb/zm3yXv0PDPWJu2s+MS6N/8rX/rh3/5w7HRF9euX0XZHj54iBa/+eY9OsMvXiwwND0+NslsMmXbsBsaRGxu2D05Y6UI4z2b29vra5t0OhE4qNoHEuV2XwgMi00gJn8QqbVNRVVF1Lls+IRWFzSQwIhQgX6ygoyD2TOdLPcAwRvnarSmYWMxM02ic1bYj+EPva+a1sgleBQOMlp1DocvSaqRZcknT9UI0aUEuC5tgEngx08bBKUHgfq+BLNJjJaiXpgI6o9VCEh0D6wkAf9qhr/qXnQkxv9iq6kpWH5GifKLnLmR1JeBBX+p0mBCVPTu1UQBpbIlM1lKag0khaGglBXZhRAuyZAkMQKDLFKi9jICF3em52E+Jo1QKj3UKaGwGxOWyPPSjK6CgOWFxYCBQe5aubR7zKeySDOns/p+wzhgzD/NE+bi8BS2yAtSOCZihfE5yoBzoM365tCclrXKMoVZ+TMG5bToBilJIQMhGkNKbEdyENWkod+D9PVanrcn+s2n6oVd/pANTB4lWKtVIx6wOQJC6ZioV6wOZ3CyCmwnrVIUDU0O92i6EhWhlfI1qfwJhnb79FKkpsfFMJivJOidmJpiYwoLX5O8sGhwITmVk50n8ACEQYKgyOPRIgJKMzGRTEkSPBQAj8vAxF7rlDla1uLmRMRYXZdGa2gNNrFxDyJEFjJxBZZaec0KHuHp0ydMvzlLr2enfL9BnouIQJEgLEYzcIA8Zlnv4SnLXax9bO0UkCjSAzvPGLrIJpBATFvL2WgSqpm2ASM8tIsWRSSmgvqI1VTdeEKGTLqOPHS55kFSNaIYEUaUG2RUTLgENBa2cKCblZhDZoYwe5ArLZ6NQIU7mRgd4ZgH5e14vdIDMIP2NI2uXptlxRzFO1CQ3u3e7hjLvzkSEu4xzk1gvQ9shFKyrq2vMemLD6ZJMTE6zoGUvGabCTvcINu3zgZRoGzn7TibnJ6ii8YKnfHxSYQLCGbxOwfQHId99DnQTDwbiLH4to+tpxTkDCIhPIzCgDC/JodHto080sS5c4iBC3Z/mbcXDoMh9J5tFvEJqfAo2qjLo3ZUoTwBVpgpbFcqAFXoqVwU5q+FJrQvfFyJClBUpIlp8KsMAqJcoFIsmABK+XpBTv640AcIDgm9HMii1BI0BR1dnA42MzP/3te+MT4+MTd39b1vfOforOfr3/gOYvqV7/66fYuOjs8+++ydd96jK3z9+tWrVznN4+TJk6esgHvt7m2QYfnCxx9/+s47X2Ioh3kDSudNoYyZ/OznH9IquvfGW1gv3rLwve/9xbOnCzSo0B3cKD9sZ2KrQSwMWKZaqj2onjMMcRsaM2UAy0VdSrllLQRclg9tQxE06Kwj/87+QQaVZHg+jSAoQLk7KFGj0mGVzCFBKo0XZDG9vJN9bRmYrAkV5cNLQVRUMHC6FJvLwhqFVPp+1B4hfwFsKIZGCnesXhHRIaEfbOtOu104vVrAX3cPqHOkLF9DwEf7oTegyJp8awiWfEKDXRvjVIUma9AApGQkaa50hKHrvLB6+su/k71SgwZ3BVDKvSdgRu3OQLhpk77UOsUGRb7CNBilMlc+swJOV1OXZhbjsJ9EzLLZhYPV0Qi+1A0cL+9rcULNymTNkVM8who0bgsWBIzgLeuifgW7qLJpQMXxUbxUqZZ8JzXYtxEipqFILHP9i5wDaF50K40W0HAEHY8ib29vMcMqQu0Q/PTYWjGBUpcoGbWSQcSzpZSCrYA8DS32O3Fu1LGujp7BLLjIqQIMjTKiRW6sCJVWZWSklg37HNHMoT8OUvY7DH/WOT4xyWJZ7C9YhPiiTE2HedXoxqTyFKYU/VwENdlePIIzaiU2FlPL8mDnJOn47Le2d+g1Q7rDL8zxRHlDplqM+3D9ENgrbnCBS4gK28GK09bTZ0/WVlblQGNbmHACgqu67E5lHUVQNm8t7/SMMrYCs/goZUQXUxlgpcKTH2AD++kW+ta2+H/Iiudo81s2NMEoBOCYFq8k6prs4aT7s8G+06EBljr5qhBZYLstjGFDlOdkYL1UFMeKJ8e/++u/RvNw/6hFD2N0eJyB5aXlFayYRHG+VVfH6ODAyCBnErniIQuoaEWeDfQPXbl6/UtfeWN7Z4tBWDeLMGs4MISAD48lznfM9fRw6gVnlaH0tCFQEl6OQZ9kd2evq3NtlAMsJ6ddAk2bifZI7+Do4OjJwdF2a6urc5JtMMzLj7un05G6hkfWYQcqqIts7gTFwhOpR9fO2I3K2H9YiDqkzpTqyi25pvfu7cn7HJQbD6mmxPvWSHuXzBkyDACptokIsK6g8MgKnYqiGphXllLpMHVcISNLQN6ofilqiq6kPkkVixLhVps7pUcyyyisU5rwJTVBK5LnRhSMFEzRUXJuCPA/OHism9WRbziHgejJkpCzv/N3/g46vrq+efPWnYnp2enpGZprNHAefv7oS2+/0T84MDYx+sZbb87NTf/X/9Uf4n3ffvut3/rNX/3+93/48ccf/c6/+29/7etfH58Y+ssf/ByGf+tbX/3JT3967drct779DaiC+I2tnddv3mQkZWjoMxfIqCkevU6zxlXx7Ajm9G1eskF9O+IEMpYf2JrlOd/UDFCHGA4fi/2ReGTA7IVsxQT0doyyGHtoKOKS4RxPUPMIl0WMsABYS+6RGreyi1qhnZD9yqX+wlgeGxmGmlIBNFJQm/jzK7pgfcRKY4wsvUnEIxnukhrVUSkFWmShNiSYGEAJRKScYEFOZaSAaL5iCS3LZCQngL/oBhMwrZyiHD2BaSbgC7yib2RJGeSgZDDywwW/kG8oFOqCRN5aaSzwQv1iJSmlHGNKzdMUjK2npQBSYpEg3KbBShyZ1UKLzYeH8I0bR+eotXSvwCp4xz6j1hIojYTwj6uwjgYKH6bEOPCOAqnwJCOFkxqkcb8lui3e+rxAwSrIP/ji2KWr8XvtPqAVSN52NuWTxFoqj0WMC3iIg7IEvkWCvY66AsA6NgyjAlzQPPM6GFo83SglKnut1AEiGEPBM47HlpePokoKAFU6MmYfMHBSRGUmGx+M5uLii7PTOeGlKGTNNf9pW0mJ+bBUPFXfYAFNYzwWpAKhsNBfNT010mD9Bvo5YUF/AQcrmfpNZ0vOC9JDNjjgRDfhaVInx+MjHPYwyTm3UiO9LqwIK6KDMZX403M8FQzlw2S7NEBXDcVcZfVcCKo+l6rHycnO9hb3TJ3iabiQm8UyjDI2IwcRGUf/PRa6CqYG0JPjqEX5T2s/WAEOSuLkga1B5ymogC0/GBslYXJVQRRTktIyCRGKKlQof6wXw79gLGczGw1/ksU0EACuUiVxEQDbt/p6rt+YZVgYHra2VjkukO42rtzF3hkbxx4uLi6z+hdRqA2np2MTE7/1t39jaLCPQxxb+/j7zvfff39hcTHtRIYHOS/bmXJ68OAPEUiFwjBELJD98jvvTE6ObO1ssaMX49N7crTHaqoWBz3CchKzPmuEOsd73KAaa8PMbioW704YQleWF5cwpNPTk7Ns0u3t9eAOXi2wu8fpooeHQxw5mb2kPaNjoxQKv9jMAifggNoJ2SgfBYWreiIt7ekOr3zomWBBkTxV7jIHHiGBUgm9ErsCbAJak+UccNQL2Im8mIyAOOsTeqtUYTSAVXQ0RutCllhbrY0fTALFV9VStuRLgcqatBBaMRGd2AhVnMxqpPU6ss+9D4xOeSThpuL9LnXKvcrAP2zFyaAeMQd8sQJQCrN4QftuU7lrYeHZv/4bv767e/QPf+8/Z/78va++9dmnj/r7WNHG8Zx9z54/o+EyNz/JMZDMj29v73BOFnUH5FEDBjBgMtYsQ8GcWcZ2utOt7c2J1ggrDkUdDHZ7lpa3aXszxQADdHuUSv8A8hCqQ046YM9j39tBQ7jgw6gyVeyMKs6ojRa3i9pGcnoFZMMLuDoD1T/rYO2ebcgKOncEWPeKNQE+Mp51yBGeVBw4VSKWyUmgMOCqTaVK7zdRxrY5nMsLzhNN2mRDG2yRITm1AYn5pPmAoM4gOuAKLQpkHSAmLPWyYJCeVD5q6jjYCEXeBUX09zJeFEEIYrIwabgVnXbQlqGR/Bfa7W9uhe2H0FyoqCFHICmIjAwutC1jQIdRZk9SUMZSBk6Mk2AD0QcGbtrEtKmq2CTzi1LbYmpnLuScmUKEcMka1TRfOHicbYQN3qaXsSiSWcRDiDYMxCZaD3+JDTUlC6ouFopDFCm5WftmLrDiB9OMV0Jp0FZkYzWNHdEPwGGEk2YQtZkHViiO8/MlILyrTUIYtPCJR7mlVkeYMN8mpKbDglQORIVQGa/W51nTicRowVOvrRtS0iBNBLoOlfyYAhgGfyOwDkZ3mWjBiYWzfsEIMlsCf9AjGQo5pcI9m7yALZoLWErx0nLJyYx3h8cMurhJDGkvM+7LSYTsAwEOItNRkRrqEk+Dt4+lsxJoBSrgGsZIl5RFTkogkbJq9FJYcCdVFY6RVHbbvrZ2oAOIdmNznY5g7winMokNWfgWfx0wK9EdA9PVWX+cFPeZHIXxuFj9ClJ3STFaVRPYhWcJVkJIX8ckMwybM1yIlJPBX0MTuxr+kFTaRcAk9hXkhCWiE/yYGmQqgGKupV/G0fk+Yc3VQB+vBDwZ5cTyrKdPg8PhAdSTTaIffvjRtRtXSQCalIWI2S/MwQXjE6PM9j57tsDhB6gEZYGC/hLLcnra2t0GBYYbNOk9HbxE8PrV+etXZ58+/RwuKXROC9rf21rfsNL09mJelxeXr1xhWHoAd0DfmgsCy/roGfOieM4LHLZXfcLbAl2C3tPNmmx4yEsKR/uGqSKMJHezfksbYIB1mDnphAFGhEHRajjNfZWCbZ+cniyFIBZkyrTxzQeB80jKkp4LVB9JoyVyT4akB4wiR1VUl5QP283El2VFPADP0BkaLTqkJ6XWQWQUoh+1KLfNV0rO42haMIkUS60a1KSqkGwIEenkgnopwVXRHLEJ2+XWLBvjcbvWStd0JzAxhPSCQ8ezZ084iGptbfvB/U+vXp378pu3P/3oAxYJTo2PcwYGnbvNzQ26qYsvno+N3P73/r3/3vb27sE+757a/O6vfvPrX39neHTwo48/v3P7JlWS/jRDGlCH3Pd2WzstXj81MTjQg/dlxMZ3TFJXcNdMmrCxIJZCtGyFmIVRp+gbL+rYYWycBtPe9mbODD84pQ98ts85Z/RW2IpD7S/+hJPWv4aXMNEhH9SyOBzeht/0qzmFGgxV2nR4iu/CSY3m9hWJVIL/Ft8lSiBrzvkSIzfvZWS9BFbSE3ZJs2QReceM+YB/a3Q7af2279Qdrvlc1iKuZWbA8n35UdLq+IWoMvqUxLH7WePiQ3Im+Phl/STaelVPL7CqiMvfFhoOJHEA6ZgCDWKJrc/lPHUd8nEcVCwQxKLa20RWFlw8FamCr/V5GQK8oinEuhZSh8aXH6dYJouYTGPxOXBlgLAugmhShSzhnOsaChuySem3CGD6M4WmCUC0WPnkFCJ4chf7GTolAYrkt3nL9BehPMDwssjrFTQuEKKSwCuyokQ4QCcvRU8GsXWd2euWTp4+AZFgLNkAM5ARpGlGcVFRPGZxLI+kMUAvyhEz8zM0T04Jzh6neEOiMXF0SmA3qRqbGw5IE6WAHlCbB7IittHEDWGof1t+7YJ5mCAqSkZ8wSyyN4KHZFpfX2WbKafqQQzmHrqBin0jPQnMaSBvhVxrBilF1oIUlyqTS66annWkGR+mq1bQIoKElBO5pD9j5jyzeiTQRBOUmEYc5gC8rRyvEt9uk4ZN8olyVRhRJZFDJ8xw7DPPfcw+3B788UAva7JXQZDjrz3MgRXj7PoZ9ehr1Nu+IGcy8Ko1jWN/X//k5ATbRoEVTOQ8ZLBCam93dXB4mMEdbEyQPn3t7mvTk2MffPBjtAMH5mhBq8Uep9GhETqvLQ7p3muxppa1VABnwBCAkImrZf0OW35tuORkwaPDbt7Fw4tpcQMUB/Fwhy+9evehM2Q8cLd3J0PYxMNiRlkKPWmOtss1mapYONej5XiyPEKIfEOCFMmnJOQ+6mJ6p+NiBFy0h3ZQuSXehGaJqvnLVSpAPfMxgndJgIVEHEZZxnmowvi+UKSgYRqw5ZpAdRO8ddBATMrOhTaA5nNwFWXHHmjAlq9llxwLI3wrBa4Oi2MLhSCroQ9Qyi5ZKG1pceH3/vF/xsw8a9R/+IM/X1l88eDBA7R1a3Pt1u2bOML79z9bXXq+srz88QeTd27fIfvTJ88YS7554wZnWSwsvVhcXHrw+aONjU10/nt//n2WldJsXeNkm+PTq9eujY2PsUzq6GDPUT9QYVEBfUIruo4TLlULAWFxbhrNWfrE7JGzG8wCsO2N3d0tWgC8nGF3awvV4V0StHtr7D8kOwdhXWgCUk1PCekpK78VAjKKAjg0VDJUfEiUdimJrNFwFGlfCg2ENmR/26KwYquOCQBEFoKNRlQi7lJQJREqxNpVqs6vJfmI+EoRIIWpYFSdKIC4ixy/ZQEqeb6TNcU2QM6f1ZOXVQ6gfug0xLMB1+ciCZ/yBREwiWjpIL4dihBRLbh5pBMgXwLxIRDiZAKUJusvIGxJTYBnDQfaMfwK2KwpX/C28puKD+5kEFs1p7m+lJfcWZNET0ZCYzxFhpRt/LEAjNdZN2iSE19S42lDmCVbvDS1IWMB7DSrKhUtp+o6sDWx0ClaCYiJX1KwpNZIMWjDCvneN4UwF6mRgURyEWehzU+ThZaCBRNJkuzCKcT8pvvIeXX2FMu5B4nKh+3GgGfdbDG5AYfZpM9JA0UUL+HFY9JRNegNuStaEWouE0yrtZAPmunkBQJIRTaygcTekp6nysZLq4i4pbjKldgkpfyGZ1Ie2vWZ4qEbtjPJMNnq+vrzxRdzt2/TYNeVsFwIZBxKsj5REliAkBhw3YCR67rOug/3SO54BP7BKTCoITlV8cgOOPtwdM5u0c6ku/iLQABwUY/IHvJQJtf1sDzPATrtvjPyJBMNiySV5oDsYQu/XIgci14WHj3pOj1kH9Thzi57bG/Oz3UPDj1feMa4BMyya5QWl1DkgxBsM/GC+vUjVhffunGVt9qlmDZX6f7u7TEOSVLmd8vKY+zw6/ut3Y21dWZP+eDs6XngWFkgw9EZgwP9g329bHHZ3tqy0MzjZkEW7TNP9idAEl4aSmA2LAYyW5TjMxwgYiwa3IaGRqhQRb2DGZ3HvCew3lYL7qqCTdOQLwsUllbQj9GUSyRA4V3DOp8QoQIx+IPC8eHduRO3bm9trG9srbhqNkNVJJBlGkWh0om/fvUaJ4qzh8cXMZWxUBaXgmytW3/ETl31ool9OfmlnJcuL4C0IyXBUQQHAZz99JhUfhxr5vABuYtkccCki98NE/DIVg9DF31T3voXgXesrSxurq0Eu46//MGfvf+TH4AecJcWnpFgfR1H+xn4wiNeDrm0+EKSYFlvN20q3glIqS9ePAcZDvvmNEmQef706dIiL9FicMMzUqg7dn9FLsfm2whg3ESRICxZafVnh7wrHBlzppm/x0KMnS3GvTfW15aXX9As2OJFli0qC4LTCjW6b1OGSnBuH+Qr7pbaYXW0EUmlAPGaVpN2zBG9CPjo4zY7/+pfkyEmiObrkiwo7BUI6hAqZ7TkpcXgrSwvXv+ykl4B9MuSGf+qxlimqFV49Wk7XjMBq/1OVFMg7EEpDCD9Kjn1APh18d/u+5dkhh9hSxufdll2fQnkgtXga3MplS51BrHr4V7BRHPJqbftgdKXn+JLbfpxHA9TZ9iLXxS7aqEiqYmVV1nJDOIM4iOXrVhUMnU1T9M8goOVBoMCIho9FRK9JuDRih7KIFYJCAvdsBOgwf6CwERsw5UMyYqX5aVInAlVl8dU7PTEqn8oYGu83s8aJbL1ZR1wkRPnL1XgAcriaFH60EesZGFHytBw7AejmQmwngoPNO4gC2NpL1El082EI5UwiFYmOVRPzvlIGvHIT0BBGLCciK04WcSVxDH2mZ3WvNxtf//F6hKHzDJ4R2LKRgVcsE6NahcNjW3AGvJo8XlzyXsCwAGM96W/eIbfVJ+cCbCTzGosRMXxywcHLN+0tiIT8TJZ6LUo2W6rgD/Qdg6e9StOpNlG9HnhAAHcpECoERaZKR3LCJuXl1c4kHl2aoLBPhzM4GBfpy/UYGkRVgyV0giCDT0lcWCk9/Dwg5+9z2nArf094LDwbXN7JwWl8cg5YUdHvP8O06ZVdfOuaDDg/OHPf/7s8SO2jdKfZRYPzsoaRxEgzHMXOFwMCjqPtYgyXEercYa1DH7CDb7ZQ0zzg3HILd5M51lZnjUY3MDXogHFsR4k9n0RjF3uH29vtzjlSCJAhC8VUCbAEbnidIZdrHNdIE4EqrnjQkAHqJQugUS4rq6uX/uV7/4bf+vXf/c//U/+6E/+Bcsk4SZAw+OMdVhzPJf4nXffYRXRH/3LP6bmqRCkMFEFM0QuTVSERBFqRVKe1yxVJVw0Y5CAn23VNc70YkcixeWgJjUYmVmTWaOOjjJtysSq41Wc/mVeKg+JIFWiRK6CRaFg0AudieLKJCnRpzADZ8kF+FEY0/SRkiLTkGXSRJJMxz+NZ1nHwAYM8bmtHFVUBeUtVzhtlgI6+8sX7/+idJrjjJV7a6OBI1r6OJG7i+Fret54RzwkB4izF5yBaG43N9bYTN7a5xhqZojdxpZv+rCwt2F6eGs18EILEeOdqkQy9k1wgibggCD842NRrea+7G6HtuwuRfnIW+HJ1SacK0MKBJTqBLNhXhacVjKZyZ9KqVryIY1BxHJbiopQXRVTAWNDouB/UcHbD5tfccnHvpQgKYmYaJyFld4lySWU1TyCT0mSfCEpCumTABFWZcp3k8XUuWweBnagVayXFQpI+45fczpKXDzjNryseC5hUL7phUdpfSDMNhbeSJFQUsl9FiRJISUw0vWstOMd1ohTFPPkV5lRR05cQMfqmXVXYfmxcG4DvEqpsgO1YMiLiDFnRKD1anLSqmc4dJp71l1tqCsbdFUIPBggXR/xzZ8tC70ut9QQ4iU3DfsCB3bg4bdboCQZoNgutYa7Rncgkg95CUld2ayN0AqqMKGgqA4kssWKa0srhrpHCqf5GdVzAY+1MfU+b7SIUSYBf03tBk0oYGy2+pAaguiYhRLEU6S9SucyOEA8iEAtn3gpkCdJYMAjhSRmMCTt7nBTTLnQsnFi4snJ6sYm47/MTJKY1ybRv4G6nn5aUqHa4oo6MgVAOA6lGEEEzitwSSB6Mk/FQUFkKeWkFmBEzObC6cMhTj4UOm8P8K2IcAEIdGvEHT+Z2ovCFBsBJViLDSQaKW6NVp1gTsZW1TktotOBHOPYx4qmvk5GnvvWdrbwyS4vz2uR1FTAscg8QxQuSXaBg3xosTiHN7LuY/V4OyNHZQ3YtlKwkS1o4/kOj4ZGRkrdMmtwwqveHj64zxZavOPQ0KjHf3lsC29j4Gj+A/5cdWMPnlLREhB0bJStAUwDs3+J4Ue2ljISDbdYbM/MIBWL1p6yPwMH7biD0L4/bohJYlZTO6h9DDIOmFsuYtGZyloCjILP/Ogd1QXUTb3nES1ZH1kTBa6QVM4YCXWy45P79x8+ePD4yee8LxeWkIZvOR79c5em7zrc/YM/+AOewQo65SmVdHJJMfkj4ITmIrXE3rxONEkQbDQo6CY9YrCodj6u2rXUhKGOXxQ4zXHG1tK9Iz5ujwPdwjR8MXURs5QjjkW3KAAal5SpzlGOBYVR56imYNXcRzxXK+Ae3toIFp2wR08zAzcSAwOAWLSmXjSj3JcA5tLKm73vQnGoKXoK9nh45/I7GB0BW4QV0QgTqHwitHZpRKYGUd45l84vhBxyJCyk8c0CAzbTzc3MMr28sPAcC0BkIxoT8eeUWXIKOlcWUwQksVALcnNlKzqMVLtUJJJReTjnEDZ5iLjtELAHngj5E1q4A5JyJhMcdkTWsQDjDPBVRxWSSUqiuiusigmODGm/CjDKIcOS0uK0GIzWA8qZFBRWlT03iFwYKKnIs4kVORNJap2DyMgGzCgywEVIQuxp40m0wVQokMRWMYTJjzlFX+LsmZEBhhAcyzs7SmufNZsIGgReooiMfsJ0sMWHeCkEPhp/PlwTUdZKxUtQmYQv0+x32jIT07hhx00FIY7srell4QlLfelFkUJUMQhs/dBTALikFHni3QQiKbGoTuJo+gl0ZtzEckqrN+8dxw/S09UbAgmRIHm71zjjkA8vJIpvSlQr+Ik4rFBNVWqELiv9yBeToRDhCdfcEUCmrmzeFqvyrL7EVJQlADQL23pk2RamCM0neEWs+XNoG/rr3GlSWR+VD+bPZeZKsUDBLxQMc2VWlbyQDCxuFHiG0nMdtpMCuVVhuC9HpIjKPYrqKiqNkEqr9EoRC2HRs1KccaQiQ2D4L/PVODBWW4dNVrJTKE84/dP0SitQ+C0lOIcmQPUI8dgKUV6RMIQiK5SGIeXDzgPe9CPBYgWyVk3/ILlRqSoBHnGW1EC1ZXhCqTUkQiYl3BYTfAMG9hnp9wz0TsxeGeGFQR2nL9ZXmH94/uIFR2CAJwyP4WMbUgiKPabSMsZBD/jZ08cMBeLweJfD21/6iv4XzbemaTBcY+ZLBo0KsXSAoeSQociWy/SGxoZ4wc0EmIAm8Vrt4xP8pV5cpYAWROki1d3dU1ZiIYsrV+Y5k4uJXo7lJoGaEJYw1k3XhYLptQwMsLD2YGR4hPMfcN+H27t4YHY49Q6MoEwoCady+CZuD3/OphesbcGCQ6ii9UGVJkTWCo8rFKtExlMwI+4Ra8+ePXaNt41Aq48KqXqE4FwjUxooeQbXbNX6NPxQOKVdgeuDlKi76e11lEr5qYBWHmuYRsS0aL0KYFHeWo2hLFfNbeIlQ6NzzDIlFFMjwwgb6oBGape4oHFz1usbjlnlJJlBQJgF0hUcXqk3oCHeAEW3QwBKa12XHFpNAE0z36JVS1W6nsoI8QtSwhZlwPJ7EeVzVYdCPPac3BYFSBYt0v47cf5eOCKJlIEMwXyghMYKKDg0RDEkU1AifQGcyFcCcIhB3FYb5Y4K8EIp3hWBZTOtBaj8bP7mhsSm/xsGAAYIQ9xY3ryYEhThG5DRaIFpSQnhk4SmQEuk3C8sxfj6fNHjgIT8ADLBBfUBCEy0SPlAdzvmVUBB46VIUydwEbxkBGVYnER4J9PbOYEscFlniWqsWxARE6kqGK06hJqCrUVDSbU09uu0uWp+HjbMCFvUj0I+nEgBQcdCYR0h+CRrshcMEAaiPTS38QfD5oFFiLvt0j66Chx4yynnRPgxaXPhzS+G8IGUaeuYQQrzAzoBEEo1KTYIrDYN6+TGZXiSFZZIJ4rPD5a5OnJoTYLPL+ViKbLIGcN/hEoyEAiLzPFSAcGneBRooVpsggd8YwSR20hKaALkQw6vFEgC+4M0Gja5gE+vl9J1OZSFRUJqJTixehmBihFGic1uoJXOqmucIcggfhbV6gqEKBhRvQimDY1dXQyA4oCdio/VrsrEcyVtkw/+AVrbIOt5AMCwiAKo2EW7xRNoFCXYUM1ZiWRhFTdcYUAVf3N0sm8P02QB5OviWzTp4JQew+qN2GwJ2gscHKQXiQidpg11yJOub5sKmAdra5tsFy00SKUL0DnQDztYOM6Ck1aLDUJKN1OEqjW0RCjKDA6wZfnjDz/84IOfZUtAF+8xvH7jzvDIKMUBmu+qMSBmR1YG0vASIq8bXHrxYm97+86t27zinH3A1lHetsRbGWDcqatsaIdw7gqCpjtLa4K+LzRyVNbDx4/udHWNj44Ajz0mJ6fDO6z4Yysyb2LiPb37vH3jCN3FzTDyzEFLnKQ4xIt91jYZQjjqZCC8jxVlpIFTo+MTIxMTz5eXIBOXTM1n2ph3z2o4VLwKKIicUmqywCrkL0rJA9wYm7U8aINb9S46G1pj2Ump2GkNN3FNhBDayskv2doykk1oPG04hiWApiahPlIrIAJsTA3DlaeOCDLQzOqF2Ma6+VzRG8OPdEgMgBkE5lC9zpwyegSDZ6ane/tevHixSPrgVWh0jo2MYhK3t9mfg/8OLPTEqqe8LM9gESmE65SeYqTYYpvAA30liYtwybGCtJ83vxhiU4p6xCAh3PIV60SeSoh2FUvlXlVGk9EyQAylpdY5s18UUZDPS4SZxJTJrmsApI1hocRbqAUGYjAhhnAO4RcvzokLW8BNw0WbiS/ZFOwB2nBP2DFYElGUegVY73NRRQAWVkWCv1hmOybAA7G5aqNqgQagSJBsaVPXzuvTcNzZiqK3eRS2cg16EQOYeIEwsQYQ4qMk9fucNcDnnufIwxPLkstdPknqVxoDfNs3dn6HZz4M7OSslNAMOlJepXMBbENRl0wmTYq60MyQADphPrYF9hMjsqpcBulERF4Qksf8VAxa7jbNrX0ee3oemmS5r2vz21/SsDd9asFjSCiNlrMLY0GJZOEDasr4kGOQ5OJzGWCVkhiS+ZxM/GBfsOlGBUYgkVYl0iAwdQiB+Sg7KCTS56aQqiZdRYqLcItefA9DexfpVQrlT3FCNndTW8lgcNqcwJXvMwe+CW0qYwk0Capn8mkFzWqtI0VhLko8IFcgF3oBKMiAtRBSAdWnXOdDKQgSZINXk8MfdcIiGNVkdpan6ljlkgIRJY7uBZMOQYmYOPMwiufoBQMegnopiB8aQ3adNrOYQ0MDHDmCR2Zw9vhsuHcQ0dH1AdNoywAH5sEcOwnNygL7qbgZprI44S+WyYEBggQGMb7FETFHuYkGQ87wZBtH5yENGUZIGN8dnJ6ZZ3h7ZXWNBKQlM8wgL9ZXcUFg2AuNWbMKuWgMCSzFJ+CpCqkXYMctcDhS2M60xJ3NzEz/rV/99dmxSQ4iRKa63b0WXX+yQBrreEbxnbxHgeU5w4NjHL3BhC7vCWS/794eq6Hp1wLPWUMm41kOdnC0SVtod5dCnSfug6buJ0+eDQwMj05MoTLUCF4WfdrXv09iF9t29POyWd4h3zQzQdnjpnnhoNhLAt8KFjYZ7LtCtt5PRbUWOwqXDxvw8U8GuZQLW/LM2Z+dMqGYiMtfakoluxx7fh1Wal8I55FqN9nUfB8JQB+kRptI5vONVMQPNLmlRvE0gByHs4XPi6EGBhkX8CVOHGtx1nF0gGp0zs7NE7+ygiCaPfGApBd+994bHLjx0YcfMtSv0LOCGDxs60X+IVgUKDU2NhcpUgTBMiRYr2RO2oihKRqkQcpdQyWAYK+qIzTYzEMuCgi+UfUzyAdTyYfiJMTKCquNAM+dbsrlEcHofHNRAalywTcsMMahFCFzZfkmtwqTSdoF8DcNrxQUBwwEfJahqkjI4I6iiy4uKL0QSEEpsUCZq02yacDpZVqSQeCVvy4auooSqalgVoosKTUZLgr0Cuh+E+iul0Mw5hw3401hMPLc+CcGKi0CHEzXBKIwUyppcIPTZUPUa5Khv1lTEZmfw25nzm+QR80T6omXhVhh/FJ6MEMd4IFV1lSk0UgVsmYVk6K/EMVcsVLQ9Zz2VJpneWTqFJ3Ihg/nxGnPFIrfFMe4FYN59E/0xfHQyZA6i4YHJ7JcRlbs8N4sZQ4QSwsTqMDARi8t4VIonmHEQtaFYKTRv9AW2ZwjaW6RqYUV3a6y0TwkdSRQ3LEahRaBQo9VKpZPA5NhhHiaVBgye9wNEfSJbUCR1nqb3VwK6mWkL+EvZDGTY3wAHHU0hbW6eFSS41bzWxJKDm7AjRgCBosDezC13lQkTxp7pFaBDD5DFZCjwqIM0ipIqr2MBOUI26gUUEaHG8bZeGd6T98ZE6ye+9EaHx5lXNc1zz4MeNyxjRBMhXGOTNMiY/bBLhrMoSnmWrsqRehltlIDudPkhNGt1unK2gJtmdHhwbXVg46u4StXbzGrzfSmDI8Yi1niLZvJRrFwW5rahBllg1bk6R1GKPKUeEWm9yU1Hr2Ltx2PMI6xt75+1No5PNk7OqXLyhAodDAyzIEgNHsGOVP0jHdSdPbzhJeg8+JY3AhNHl+JxKsVjvByXQfMDbLP+LhjqWeFXi59X946huKzvGuhe4Ex6NbRyR6w2Xt62skZX4fd3bQ0wANHziESCjd8CQ24VmnNB8E4LxSGSQA8rJQ+MEC4FjrUFY2RZJiFOWFTE22jMr6NFYh4aTwBrcng1ash5TQMPn9WakiJ8JBrBgtShQuptvYCmkol/GiskiFIE8gyojA5NTM6Psk3LGYXz8kiL7hlsT05esbGJtmYxPg/GUq2fPNOBZpBk1PTOboctvFI8StfPUf0Nalp+GteHRePSomX+u4n/BRsMKk728LW12gRz9oh6lgIWBAaHUjNlwW2A1RyhxhoilEuKWS101K2wAWsuTcDjyKv8nPmr1pQQLk2h9UFv4t9bBdg/bLhAhKQAcHnD37JhUUSSA2TQqYlECNHhEKCaJCVgRQNAyuNSUwY7qUhktRRlYKbZw0L+RFcPX0JsZQVTOyf+KjILDY04ATIPx8d8avkNLnNJ8LC8KcprMnZZEqSpGhDSZ6CT/x5gc1jGaNPMYt5m5+AsULJbZ2W7E6awHgVSuWCA4UWuYu54UiDN/lF2U8VZHxTJOxTAXlITGWi18tmFnZz8EGleKh1JgRVC/TGgIbXBd8FUrBJSxpJA3tGOFlRqwCI0IFWCiLQUiRpxmQ5BwWsFFKxYFYNhZQfOqPkbdYlW4ypCFGMVb8yeRPEUBGH5hpSHYoBIaSdFZCh25rSZgndGWqSL1e3yJDA2IRcUGZmlANSgpwcvLUMgJeBw97xPH1Bmv1Q634vO2dGkkm8I1GBWPGDNN/8yosgLPykxOWETfLCjAQQksdyuCLJwRU1nsRujW03n4GFMRCUBdJt0s1KRWi1KKBoLpiaw2ZJqmhkgYZ3ZCRFSlE1ClqSsdnxYHqGJVPmII9dZVcucG3jKQoj9yD+jNOP9zmKhLFWvuEB7XiNscZBOwlbGiS1WPCOkfzO7Z0cMt3R1zoiIS/e0teTUPSltbATWcVKFGUF1/APjEnDnKLNMvsLdg71Bu28AiCPEnfokWRdj5887T88He3vPe1hjnL/S8+f9HK2dpoR5Gcam3WvBN4vybAQfpecLIMH8xHGRkeHYzkYn3cQYm63Nbu+sc35X609tp9/NDF10ssLCscmpieglw9HSC5vb0/evhtGYFq7dza3VpYWUQbIQFHwTyhs2haKiiqCnCApIueWSK+J4iktC/cja+OVaH38kcX26mgrZoSjt6u1z5xzKglSojEEyMZ/qwTRIr7NmWAMAfHK4yYQQfnV0IEh+EWXdreYE3VegQDn3cPHvYFvPTXlIB9Al/uhQcCRzryhZGhkGAcM2YPbQ9ubG8rRVQIuy4jmqSUEtITtQZx6QmA5m+ueaPoVYjDNtZEoHmWKb3kvi3bpjdkrqCXtwAMSSBoB4oKbl5fSiEriaUmKhbiFyZLlrUHyZHy4wu61ISTCqmVHAiuXRQgeYElo1gZAuyxuY9GqVkgBScLJBp+ofNCx7huEYCyhDSU39cUz66DB4oqo1G1UjPiKgCjyWhzfxII5iWN1iMR2KWSfp4Qg2XzBeZJ6bC8zbi6ppIJRdzWJJJY7DVxygjGJLSLgRceSSOO/aiu9ZGIkpzCAx5zUaHLVj28emCO4CEZmpTqHEi0QsTFeXGMI/U5pCIaPllS1p75b69v1vo1OEAmJEVDlAR0yUn8owl/+YRzWRmdksQJGS1nlhOvxU7uWeWox/slW0oo5d+BolxLEe5j3Et0gCjZyDUqBF7lLnUugnZphwwb7MJh3Y4BIIqyztlHtRmUwnWUt0gRn+LNTQdXJNF0KxdmycbQP8+FgNBTAWJGhsCgG/Jc8LNtxz5GTV1YYJQssCZBVpowuO/5gVstRbD4PrQqPVjMxQpddPCINhER+xBnsHuUCGFUCHFbLoTfP66Ep4Qj9GJf0NqCIUqp0ZUQBMBSDOFKM/V1F2QYOuKYkEyhN/s0jTi+FBg3iJAb4/FSCuiKCjLpfe9bIK0FNrRw8t07x1LMdpNVXBg33D2a88dXi4CsfSwkfwAjg3AU3VRTo3BL4oRpVGZG6hAhOC2JmUnCwCYuK4R4RpAELT452ck5fXGmUyymvKGDjTctxeyutlYzFwAfO+EpOlDv0O1pCRlBCmvgU1zd3dfd3djG32rWyusmbhHgOCiqBDVN4gr93hgTmoRLBXJgGN5Ids7rOUTtED5HYCqfoLYunpWfsKmGKhF2hqHo0mkKU7PD+wf/o+38+sbcbWP+dvnZHx/7hv//3Dqcm777+2tTU5Np2iyZtV+/A/sEWtLBcgDcCQALcQ45lylG9gaERqresQOU0PvaJFEnpdzCKtqvz6GpUTHGSVM2XTL6Lxwo3b5WAC268gTNRqXpO3QcyzCNT8nwRuT4rFYjU1BklB1KWjGsEfTSIRiueXvNHfWEAX4AEyGrqAPFoDDccprG6ujYyPsHp6LABhNh0QUq0QFRIQzqPPeEO+3HGyAKYp11iLxMsmO9QveqoC9q5KrDfBAD4YoTAIZLipFFINvb5lUSpN30Tw4+xvxhMzEOS51lAeaUeGQ816fiigblj62Yv6wAxmMDX4svdZA0xXBU3GjQSaUrB2GUPS2Ug0BBTXcDmwDjPJMhShsitiniJAhBNqQoBTuQjMmS0lGy/rGxNrGngienLtCWCpEYHlN+wWfF6WZF5wldKC37k445VtthVssIHPqmeEmXK8DpXZvSuYAVGG6AQmzSATUhEnid9k49HpZznOdtJSCUEn8eH6OrbOS9gNYVfQAmCYKU8848NAU6FwtRrJJYEsf+kq2CbBEuraqozqiVaEB7Ay2iJXQKbxiBmaACnRtFUdTeJW+Nw6oWs3EFkqbN6X/21egUFRJ/vMLZ4VIgQGYqxSoUdcQKKlVxc0lnE32F4aDs4WEdrgEiy2HTmpxoXJTaqcBgR0hvy/ZEqGV6YU6gJeBUOYIniukkrYdJILMjzz2Ipm1gkLlZjww2hJFfemJr6zwSh6DUMEFIUqeDLTygHKjtcsZ4G5i2Dh6VCDdfN8mEhyxcQ5RmZqigKSgTWJUArNt8NemQLQy0nDhgVapQi9rhafef5ZAJe7hDXxuJhRFTUyXZZa78EamSWmNisafhUEMAvTTXTE8M/F+lkUDajyJyv2agD2alPbug5ZIcuq2/RNc2EIKtuy8Kqo3LbRQCutq+PS0MRRFhkIbAGrjh0Dp1UU7ECA+b3RFiNPeNk3dPFpVVO2MWkk0E28glP4BVBO5UzqoqWfJMSEjj+00WkKBnsoCyj9Di6a8SIoNjvy9oyWOTq8cMTXnndNYAdBI0Oxoc/mrly3Ef3kodsHVaKESUPEaA+gACzk10VhtMgw2Q824u6jw7fWlnEHF+/fpu+7eHB8eKLpW12vnYNUsc2t3ZYpUVts7mB43EAodkpB3QgIW21xcqSrgixImVQH0trkCgfBCovjb8c1EW4Q0XiRWa+g0slpDaSJpDPk6uMSWhuJWA+vy+FcBPu8fGR0kbOh4dsGdoGBQCmBS0egFKWgvAa7MhQ2s6FT1Ch04PTs20G2q5fv2Gr/uS5iJEI1UkdybQ1rTSSGw3mxLhDrA0u4xZUVTKz9C/NCLo4SBTXr6LYUEPO4EvhXNL+EpVfIIzHXxguUgImsOCSIKWlYvj1HrZ6BmmPLRvpr84rWfjz01R5WWR/4pcFVYtnJAtcUWViQphVqMWSIFz9ZTD+pvHAlrMIHt1Ioy2YnmdXYj71E475Y/P91GXBxJqyqMuVZgwyG/SMMiRVXZI6VHBXbJFGOadOGoR2OegW7PgmgWVSqomaZHLhcvIv0NhXHnOLGslhLZ2Wpvmg0iokIg0WJBGdBCMSworLJb5EWmDy1Gx8rLlRWTAmHYij1Kgpisq2Q2qjcmwXUQUVBKjFZ3oQjBNZaHbqUWBq0BuHpUjwCe625VvIjYKdg3rlAlo1THRVOH3XwE3nMK1Zu5iu6aHrQw1E4bDs1huJEL9oPfTb/vA2RCsJaqiVNFZHZsE5ugsV5b1WouGWDABJ1AzrBhjVmhKFoh4ZYh/qMpoVtvEaej1OLWdpopMa2JaIS6d9wD4WjeZ5vSIFtGEpwB1uU5CUpGAueKptaMBccEm6RNokikYl0QOQUO7Eg+kF7f35gnHSyZRSXX4t3kpEShYod7Kqlq4w+VMBfApO58G0YmSZ9SObNXyW71Ct9SjgLR+E8Z/ggR+TAM7oiRnijF2XCCFTlDm4hruCDV+bNSolIhSFrD5LCMOBHQxsgHGcBRKB16G8MBGqiJKPVt+hM+s2cuga85fMajdgC8k27Eu/KjNHUDF3qypbGAKtVoSLqxBvF60IDk7grQlrh/vjA4MzfcM4lN4zXqkwQPrdvoH/97d+Y29iiuVXA/2jeS2JfoGWmYM13SzY5iyNFm9/gH0s2R7kHZUDjFsf7WztIcC5k+O7/6//Ox159hMctvaW13YYNOLt8AMTo3tH2xub28cHvjYHPtCAkYx2BZNqLCOiBO1wPQrY2DMoqU+RCo3wjqhKc4n+5rLkFu+uoEl/8UBZJfAgBXEjHFVBjjUpvfFabHKtC0VXXITITEEE5r4B33lAsjS2kLj6wi0FpkGjfSPQWEtpHo1BG47V5ixXW15a9l0XUXdyEdCzdCLREuqCBwdQnVK+mFUCrQ/QGILyh+oBSiBjOlrBaQ5BrLiKJCmgLSgRIyoJFfPKNZGkaR6ZBZ2zkApN9ronpY8dv1OjNW+pmuEkSS6DqoyvlF63l9FIKUDqYmcB6x3bpco3rosKri7DadL8dT+UkroTGKIWquToyyHQK8oiQ4WpIxduq/TSijz3K4JRRL8YKAdsVR6uCvN2skvp8xCJNfiQQUcFf+vzi2DPY5LzF6jIY6BEFSNB0NAYVhWQCHERumgHkyTOAz2paoD6JX0wL4FGCOeF/zUXjVZHblhoFNkMas1FKBSNdUubR3CAJ72S7tQvcVT7/JJS8+JKGDaiujVUy94QIJpchGVB2c6jO+cgW8r56+Ys+6nRMdr1h84c6ZUglWRcN8prTcJq+0I//aAItBG2wNzJNCMTwRwhrBI5bxPvY+6te8HbMgqjEF632iNYfw4dcIV8LDU1yryIIsVwIf0NWAd+CbTLxcJ/SmLBkQPx3GfSQUTOsQSSKCUEBTOV3EW6CRZCLIkxZ4zfwh3fZSUKoioppAQQZYelOBPa3KfdPbxnbuvoYLxrtKO/j1k7YRtImoDboHngOqk8qIdJcf5FOjNQEsNfTazSlleGDkYa2WJFJ5sBU173Q2utyCsmgwflYhaTVVDgWnnPqRaKpNkrlhLIoK0Xvpoa3CBLFPwqfEDYStDFkWw+I5kVwrTgyVXMa7iScv0CIAVhhJ3jT1sSViXzOTtck7W4uPj8yaOVlRVGMka6e6/efZO3+7IgeUROQU3n1Wu317ljGqaHXb8WdGSLq4eZyKmpCaYjOamSolxouM8LdvYZXabs7us9V+av3urpGvyH/0/E1zc43knD9+xkcGT4ZKDvsKP7xdrm+tYOGoKyoOaM3Z9jzgU04W2YPkYKEGtF0NEo9ubHaJYs1VbUtswCQo5ehpU8RBYAgOGXtEftNNEMextyJ5DMEafSTvLS73nGii2u+20eBwSgt41mgwhPor0vwSENKR8+erS0vko3mlaQp8WyvVw9V0awGlgko8aAGTCICahzOKSi+UIcWSgLD2hG7tXynEDZz5FnzLhTAGMsHWyBi8q1AbwEjZsiJk8DR0Taac8v2hFBsm7IWLgVdDip8oQlfGvtyf0K4y7ANFcF5HI0MfCzVqIJ5/Kzl67ryV9XQLJAVztrKhVQqd8Xke2H1qwLfWjnirmpJGa5/DHWe5PyCzK5bJP9BSVoR1OyiFfiAm3+Ns+iWX8985qMv+ynSscmBMd2KcYS0xQfoTEuT1WIUWlS+ZQAfi9lrtj2N4DOAxhrApp859GWwx+1D/Dpj2DSLjhIFofm6CUylqAJdBiZrZucPpR5vUtwfGyB0Xwd9i8GcPBjorgSKgjpqtong/WdwonhRwPfBHXBEVPYQHZnDe3EsEmoXEBBtXtvfXwluI6GBATQt6bluVYlitQUknzk56FQqDeaaVnDrbEgLM5e8w+aPuIh8Oz02/PldCRqBWaRXhDQmZnSxNPthLNqNVtfnZC3eR4sBBxGkIwRUWlxlAl7pdXDzMNsh/bbBFVl5o6H2Bxu6TbbqAcMaFFW6g50MaQFIJZdnTAP2tdP42rn6GicFtRAP6JODgtLRlDhT9MLOoBxaNMIaINJLM05gk+FQrhXnNJYQ5imj8bb0RFz9OxdLT7BBfbNAsIiwn16PeiFuipkIyUuXC5wSRVjymBAujSRP6TLD/gJeVzqk+3YaYW54DEtNJQikuG5vXAFlGoKJDtLcpiEguLDDydWKx+lp2gMluJjkqHWQOdwfl7hzjn6nrtxdDA8NjLSP0wLoXd/h0S47pnpaz3D4xhwmguevWWvDGawiHdobHRy/socR/znpBPe9MDeX/pw+mfe9zA+Pj66syEpXR3z125vj7d4LdL49NSztdWFxaXFxfV92Bf9QGecHgd/p8BB3cC8OedBccs1qqbacXHsAagkQGeQBSt94CFkppL0JDvjQBSI/5EVlB5iU6dyegzSCYtgiagBmF/ZEc3KBV8JyelVeKYQkygslvvw1TURkatcpxmk7RBjviA7rvQcClphM8t0oKeAHJLb2t3c2t9D3Eov/HD+BM5jAiiA4RYQlQjUEO9uH5h2GDP2qi3r7zwILWXCQiXrQA61xeV+x6x6m+Qt4JxoxmIFjofk9ZJoHNSosA3e0lEIUyiB6ChKoR0iwxxzyKh8SULYYlYpQnpMoDCLAH5gbKUHLTggj0zAl6LmptKb5xcDZdDgoHxLsbQMplP7vYJ9jWtQ/gAHCfSTM3F5FrCFs2kJQStXRMPs+IQ2aaJBHgqRaUDDFFCXCjebL2qtam7O1JhgxFd+0S+EUWWqRbKj0M1VsgSY5VXFy4YIak9Tshy5CKLialaLQj99QE0P32CJeBhLEUoh8SmQL5htaYWXOFicBhUtIT+AzCv1dgNKhDClsoePMMGnDlokWkqqjDCv+aLFrYlPOVoTGADZwlfEVCmKBhEMVohXehZfcvGpjBCvDHDqIliW6zvOYTqqz3gpNR8XADLiTDdOKbj/HjAwQB6cE4D1cXI0wGN3yUK2RKh6OE6epXhvHJbBc3Gqo4D5RnJYM9YJ7vOiatPqRgxSoW2NNoAwlVDOF3USBnqNgOB8tCUxMFDyHfUlLdiUlLgL2QFtvEaBIJBK5IXkma0+yVvXohOOBCxJUrFIAG/UA+7ZfeGZefIW8cGpnGiJJWCYkoYUaYmUN5UcwphoZImKVGSIGJbrTLnny2SQJWXcRW95EiboRAWCuLRqXAUiebo62U66B2t40eHsLEA7BwZP+3qu3LiBJ+bACGmgVsOfmKYgLmOErDrw3PVO+KmqUHlCcYAWo8Lfbxh15plQZ919g/1DFISC8IbjPhPqISI7qBF/Ujf4kZMEglMWKgnpJI5FxYyxML4CbopPcWtRyQgnSRMdDp36p5j6AmKBCYitWEEm80VV6tF5AoGLOeiQy8UNQcO+18ry0qeffPT08YO93W3sJyWwDIrjIlnNhwFnsTP6D1rdHk3ZB1aMtgqDYiS1i94761w9q+MIZnhYP6dVD/a7Fpp5SqZbOKn/4OgMYaMdk3PX3hoZY1vw4vLyk0eL2wctDiPCpcI3tAUqbLflN7yTeEbFrQt+UBYGmvB1zgWASsnFyQZHR6xU6BXrGD05tfgLABRFToePrNLq8QgR1A23XdwKG5vkKVQO1r0/EkqgUM2T8PxTNtoMeSn4WFcOZnIuhlRULiJBCL6ZKGBEwmAGIJaqI25Fg5VXD63qAmPQCEtBCc2oknW2KRkewQfQwfrkiALSwxB2EZM3ldqMliM3GVFgSOJ4cnIaqhkEOTvb5s29UTJMCtoUTGIrZD+wRPUicAuqmIqMnIeW1AmumnSAIDRwVDDMCNZA20BVYhe5q1ULoHwUoOmbAMcuGyJiZV0KBREucscvCMT7Jut5mrCeKJLBt6Klyjr/Vjhgx70Iexcag7DWXHUjVO2jfBJQpW0/mVCha4iJFgSR8kdI9U0GMtczH9WTNPqULPdt/oRhPMYw2DgJ/abWJsTOCdIykLSl2RbNLyWUaHzWsNJi6xqGlhpWZoEECZFP8y4xgWQK8ycjRZOVhQLoDGVxzeZErp1IsyFihOwXxbpsk4d4xE5ATVn1E7lKoE+lU63SE1tViEgAJ/lrVYLzfPGd0q33fmh/BKz+oL1z0peDcQIBq0NIHdY1AC2HwA80KQh/ImwtSmjliY+tkhFdwwBHrVmjQkXabx3Tq6UrBeF2uwtmvgvrcMHMzaqpKrO4nILPpQPmpQEuDpC0dhCovIS9TV9QJmog2lL0om2zGhTamYu4i7uLq4BtpE2zNzUNaq09kYGc0NBHwhfZACg+sEQcZB03Mk5NE6XmpqJQBAAgL/SjGhYKtqCFo8HirGNwYHB89krX2MjUtZu/+Tu/MzU1fue1O8zgz92+2cIEdHWw9pU3BHw6OQY0yA/MkAwU8TEGFnlHT1p2eMCA5ieBEou5pKV4OhKsDTrpG3DkmSOcqFW84YcVqizNUPE10GiQ/IUgs0KtWustIEJlUeFR9n19JIIR1GV6ciTigmOaGm5YYoRrTjEio4CBThnC5AqYPPLs4JOBxlQV/Oa7eGy5RtBjgExehrOwvPjiyeONlSWO3aBvhEYCe31zY3ljbXRwDIJo0MAbssQMySbqaVwDVYITrNhsMgIFksvbJvKmKBaN4YdtSDAaQV6OwwhGlMx6Q/avnnR0/+QP/8WPfvSTmetXID6OgV6ri88oKASG9RLLadsHTCfbSrX9weYHeoOmDClYCsnHIYcjLldjHTejuA3b5VixBlhQLB20/LCpNH3DSCQPTbR45K2l838eKsWlW3ALeqR6KSF67iAxUMhiSei4ulRZuajrfDeRgSOFrGvjgDQ+vf0DrG+2y3twxJt+T3LEowuyKAzOxNAWJPxWZUdnbcie9tAyoTzWR8cTiZ0jBV1nvkR1uHtwYBgnTWK4Bt3UQBrAWSsC4Q6/FFUUpBRTgxtuhAMxm2ovoQghITjBsHZiH1VQMHY0PG8cPDM78BKvKpklqsMWTQzfBZlvAqhWfBLzqDJZHKG5EUVuvCWxQbpzb4pKxjefIHAumfP8la+adyYC9fQDArTyC5WM7SBcSBdgGoUBnYxVfgMaAJDgTVMyJfnh/xLCajtBFFPDAWGhyVJlNJftWPNaTkWTDQeHkAtkYF36SoHtlJfiL1+GRlVVqsBYnClC16yIpVt3qQLQPkz/JAnaYEWlwcc+bzDjRxMf11t0pZTLxXoN5Fejci8LkCr66jIbOGJfDWMS/bB6aVJj/cDHstuhOBMkEhU+BhkzibYfA0X4sYnK8pLTw9N99jqxe4pai92pNPXdAKKRxrJFjIu6HWhwqClPfF8JWZ13jhYP1Vkb16UTPOGWaC7Oc15cJarKyaVVVPwvpVAbjTjXfqADsjDJd7mHlKxXOy+mgAuKOGioC24kpzGqTRoJwBiBc0qLm0GoeUpZ0hAY8HF0ZPjNe298+cvvXr19a2Z25s4br40OsW+b0RTLcRQH231ydvP67NUrsx999NHuHoNxR7zhFKtLRSERrri4wbfU8Z0qYYsgBqpwrcIh/eCQwyb3pwZHHI+xZ82EqK1+bGGEa7kONCowL4t5AAdc8QOoDORCIEdmIl9baBKE3eH4Ym7SHQI3fINsRvvx8E6nVysh2AZ4eCea8SEMMnLRxvP813LpDA30DRQzKZGDDJ8tPF9aW6Fhwmq1s5PDMoao9+bGxoeffvTW628P9A4f1KyE3SzHayyFgeXBQXC0ompn3G3CrhicMT1UAqWyKxCUwU9ulM8OLuRiUGR/b/eHP/rh54/udw3h4PtxIfRH2y8tVilj2t2my1sD2OQ1MjLKGhy4YL3RWTb1APAlNXCQtzCHYhVomK6uSK5oqCsGepY729uVMc1teAUZ9fALvgFbQe8qYwHGx6B4ETJXrIQ/dAUWFymtSUPGJPTrXJOphpRHD57kUMQ7HtkTPTw+0cOWOdphOdqfAZZd3gsoI8Vclww/QdJtwTC7D8eGeytWA4RydMmnZ7y3oK9ngHK5ZVSCePjNPgvXotMRPmExO20mRoMASzenF3kBhwXclpQgxqJvcRo6iYNBEBaPGE7B6YquugmGJmtrnaoGSnnhB9632BKGQy+wrekVeERegmWm3gGQ68uRQcovInkKXbluosWNktSCVFvhn4e65PtCutLdvg0OJs5jKTjPmQuf80zobYyT2pSRcvAs8UuzymeWvypQFB9RTSq/vX7ZFdVDbS61NLwlEWbF3TN6RQwF0uFSufMohLgHuYA2MC2gTSwlXITGnDbPJVsWChWqqFzYSwEj+2g7BZ33S7Rc0UMz/9XhJT68whZwkYkmkYp8vgga05Gw1VdA0DmnmyoNWlD/+QrxxpnX25SpnboETKrCh0pXyQCrVOUvL11Fzbvp9nCyUulzpE3VJqftcmZ7qK0swqAiwXaK9lGM28tFpRydosf51Q3FXSCjhf8rgyhGnK+kKiAXgEJpvpBYScoRX+pG+vWFv60L6i2VpvzNyzClpHTIQlXosJCSoClonmNedTLAFQejjHKGoJbY05yYmvzW17763lffm5qZ7xkc7OW1Gd28HY/dU6YjkSignV0do/fm79z6rYVn7/3k/U/+4kc/XV7bkMcAKusmzwJZ2H6cdqAM2WyShoHJomKc6AnQDTBUKICJevAo+YXhX754JnThwxglWRTzjQVkDLXkbdpsOcNu9vYODQ6Pgzd57Z61kQkE2c8fAcTQTm5QJOpK9WbkTzuYLBSBMnEUjZh2tnn1+tri0tL23i77j4iiwRnVll7aJz/7+fvra+tzvAfi2nVLgbZTDq5q8fI+PMDgJFyf7O8f9O1wbL7Z2pyaGOsfmGRnAbuiZY2IcbQL9Cho2yIUjR/KhDSTzZ999sny+krPcP/k7BwvmQVtVlr1DPRRevCVNuV9ykFcR3gNXnjYcbIHkhAAtwHKN2lIB1jRs1risjWCsooYo3MRBqL+JFWaLFLwEaFqcuCEXTKKCwCARmSUaL9SlLBNkGRK1AhJg2QuwCoP63n7Mt4XpqEndGd1wEzyalgYLOkeHZ3gQKv+4REaIkzMFFIslIrYA503VSTgblFBdGJkZITTsu7fv888SMMEvSMvxmAB1z4NIUDbDspEI9KuwXaGoplUJjDcosI41EKjgWGAsEQiEqAgvR/65Xh6vPVA3yBrUZEC4yVYIpYiM0xDdqggg0wMSxq2cBOmWGkagDCdpN4irSZZxEcMPCEUD5v0bdkA2WrVDoBF82EwF5LRZrW/F3ft1P9//gKg8A3yijJEUVWtkZowlJj6f1EoURarTTBrlPac5Eulmy4DuqaFXBZmtvEvaHzzSAdoCY1x4xcWF8FQK5tsWGpq+DY9kXKUb+j36nIISxSPz74Iq8uJ6xoQbShIiw8VAOY3cYUqKYMtUC8CiMgViPIxpZErdVBzwuTuq4F0VZaoywoStEu+SAtQGRIbSqMTI0tjkRpT+l4AaBFLXH0q6yvEAkXk/Goo4EdhpYbTb8LGcIefKkhYB5EJTqLVgLcxUn6u0hVbA/cC48tXTEwLR+WBSnsLCW243mitGuW2GIkwOu1lpQuAlGpSifaxrDIEeKXPrfFAkDnkaVIkcTPH4JANrpMRyagaj3wqAX7QOTGR3ZcxFE5YEJCFomhWdcc7YgM6OudmZ996/fWvv/fu5MSkE5sY/e6Ogb4O3l4Mp13o7sv4wisrQsfQQM/d167MzU9fuTrzL//0+4+evuDUBMqxfP8TtBfnamIMWo9xRA8aBCMNlC0El76ejY6O9K6m6SM4eKiT0As5cwHijsiU8kl8igIsEOCOnWjHfsUjNhFUHdKk10JGk/NEb0Ga3AqxEQoPeFOm270sVCIAIsJe6BIsJa80tiHHGyCOjtdX17ZYery1CQmMI9t/V7PKA7Pax3dd8Db1jz/96NGTR9c7vyOSgciAzc7WFsgctHY55erKlauTU1OYp91tuvE7+2NjIgqW9Aght7ODl3jaPnEWAi5KBr7hxYulP/zDP3z+/BkNmJWVZQbwhyem6AUzdCziTG2COkmhDxakMwfvya+Wyp8gq4zCL4gsMkmg+kmlh0/IhmId6WQsyQDR1kBj1IhgJTMD3ESAAActh8U18SS2NuXLkqtucd8mzEIqIE+LIlXhbK6EMp31wE3Pml3npNnpyBdXNOL8M69E8gkOjgMR8Kg44uGhYc7bwvU6zG4gDWdlDzKKQEcW5SELDOccNq7xwfhdfvDBrMZi2xjpoQFonkcgjWTyjLPQBz7YTiTdg5u/fee1N99888b16+NjE329fZsbjJc8e/T48dNnT1dWl/cP9vDyiChjlWT3MtjKNfnpmA5xJTY5Kav9J5gkl0kbPif+C74AkNhGDs1dO2GeVpzQia7U7ef+th+oEJdDcQ9ZJX87FSm0MFKDFNuoKmeYxjdOkEfhmElAwPikK+CCVQP4T4FAt4CUDjO4bvAo4GSyhgJEF+uKW0BWbVNDEm390baJQFqyF2QIC+gGsLZQv7z9giBdomKO4C6VIKTcxfGlEA5YX4wtiME9laxiwif11W0ivr5MQ29qvvm/QKPEFExTLV1axiANGi6TiGIFBMpYeEAhbIbLPONkMSwDk3QmxD5pqysI5zLK9dzC2ykiAEVRMbAvrRj7sXzygHk+aOCeXEkmYy6C6WU7jREOs0Hb6QeBo/1Ki5dEYVcZItNkZ/xPNBwLpaRYV5qrRklGO2jIqtCG9zxXwVSCALJuWwZN5Sy6qQKqlDwAOMyx/AKMe8Cg66V4Um1VL/nDmGg+XAlF81+Pw/NqDxZeJX9RE01pKdwsM+j5CFFFd3RXxJ+ejQ4N37xy9c033xiL94VXA33dw32dI/QlTjtaexz7ySowdpO1mQM4AXaMDvd++xtvT09N/tN/9kcffXrfoTpNiLpPaDBI4qRHdN2s7LSmCYmEcsavOEEoRJJj42N0PuxbgSfxUkHN9ArdgbUNpUIkphmTpJdHYjwkJjcJdBpIDi/Ga4RYTQyxVHkJ9isYkgQIdvb4VWKz8/O87IizLMIeE8Zdip7C7Ox69OjxyvIG2HNQM2UzBtva4+yLfd5JQe/m8ITTUbOqR1eMEMnGFjIwoqus7a7iab7w5oXW9i4vXccNLy8uP374aGJycmZymuLoKnGC8+jICBlIz3GVw8dD7gbu7/MsJF5x6HhjF939P/3L7//LP/5jTi/p6uum68zh6Lf7Bw73doacSldX0mfwrK9QDatkODyEyWKlsNwxTJwLn6kVtsZwaKqZddnlFzCf6xCidXAEwaB4+dbzKAZuVCq5mhgLVNFw5epoXGliNFzmJWglCKpjg18JBSyIwWqYkAT1nZRIk7YEyfyQC5zBVFj8aXPzpwKQkfYHaZIPLFQmQeGiKRGGsqyB3EqLHixAUxAyGuH1VX3DPHL/Eiv5m+BWKApz9xEH09AsOuMkToO7ENIVBgbjL12shY9B6Ovpn5qcpk69995783PzYMipKSf7J4N9/Xdu3r5z6w6c+fSzz37wox/QOGPYBESRV0NY+K4UbOoQbLeBvVWlGFakhQlklPo8L9trTDrobcTEHCiwM59GRiQjBL5fubO4XDRfxXwiyXOerS6MjBC5QDFpLTryqAYZCy0oksNBlBAiFAHXuQVWZMWXwkSQqBhjGiKekkEYhrM8MExI6WGN+BCZIN0qEWAVR5jDrSQ2yKaNpNKCkst89bsqrT3psEpwYYrKFsyIT5m5FVoDKlyRAu4bIiQHHTSJY3wQXv6n4qmBVjEe4iOLqTwgxgnSkE+jjppoQ0BOwoXoqOSEY7DGaenEgh7Rlm1hptA0cu26EF7TwowWKkA++AGRGCjuqA8cFNN1RnuUyM4BtDRjJD4TJXhs5UH/NccKBuz0zrgYnyeVppHAE0m1ZFBVzPpTvSj0kyJcsFRT862p9ZMobju7bBgzU9nTyR50aYk9r2KBSZ5YGU2TNVVDw7d1NWhSKqBNDgbWWCu5BfF9OYClc0YOo0GbHDITiBMUnPlfDRJlHHlJB4/4hSOcpCRSLwVumxJd62v5hFQ+47lu4Fgc5el+xJPQPMt1g4ap/ecQx+tXr129emV0bJTGNpBo1PfzAnuqw2kHs1quco2GYMk1uQg2PCq0qXWv37nyd3/zX0OfPnv8DCMjUhUsrk1CaOdL1HLts+ZeynWPXe6EwZ9FssivGF6kyYwIxcjocIM/RODRMY/MHRPMJudjkxVqOKABcu6B36iuDUUeqG9obWO/OtmJOzI0zGtjIYpTU7AnZWK4oJ/D3fr6xubGDgOeDA/UOJbixuvTqugBjmwKyflWh72HGboKd7iHZmZBOnwRHpTubG8x1Ly+uvr4wUN5AOcH+2dmpl5/7e7E+ARj1xubW4ODA9Mzk3yjlNc7T6dOMf044Bazv6urK8JExU6P91t7qytLH7z/0+GJCY5jRHjoYZ6KAMFrWcOwrdYNK1TSIFolL1XJcCU8iYZ7VAWabEbJ4DtAvIIyuFIjGYLWWQecif8GQQaBDHkaIQudfBGxitHIOtU4j8QAJLEOJgs53EpI2rqHB/u7O9scv4I2kBu3D1c4TtqKCKwEwJKYefeJiQlm2qHRhp3bQaxGTssgTpb652RNZ7jlg0gSw3g1eSl9d2+H9lyWizuRT5eY8vHEw0OjtGFwzlkt1TE3M/elt76EA54YGeulZUibKCeSoiM9jGH1dI9OjF//128ybP77/+T3l1aW2sxrREahBAiVQyU7uVqR/HjNT8nDJ5cC6WlngDCvGuPaqRk8ZFsZzhOGJQI4v6hH3J6nuYhJka/E55bEnvoe4akVZE/bxwgenTu6uj0HjspGqSQwyfL80lfDgMSQBLiXHkq9BV9EctWO4LdhmvhgCMRJRXolvAyw/TDltvksiiGk0gKnQrifyh3uJW8QaENpx3AsVHHgpQfnN+LZ6HwwtDJYNux03k4KUWQCy6A9MoBWcZcbC31LKFJ2dsM6yIdKTFa+M9xs3soX/PXlWgNm+rSdSVeuzWqbQDp2ZdBRYLRH/6Vq8W+fCd5nzCCyJbMOOCWKGIUrirqnWLPp/XhkBU8PEk8WGRSmVihHNIt9ZV6CK1lKSAWG2x4qmNAyVSbicaXs2e1lH8KAmdri4FICNLd0s6VBT55YnwDhokWe6Ppqsmsr0tLJzlQy8iIcuqEhJdg62CVusIZSoQNbkNEvfqNdFiLBgm10RDpJXyQQV09MGIqIQX6s95lnfnJ+1i4dZHIsBflpMsJlvjLUqYmhScP7BI49JJzYNHwpyEIBjC7cvXP1t/7239r9r/7F04UXWEWAY+ZcrUSfEG4LT6lYcplqRRZFkG22d8I5X8HL5sq4yYZG18GTR8IMSiF55UNINVIPd0Z/cr/FsRWOdsBAlnPTH9XDOnhNArACBTsqWHKUiTYxZehHbDLiqz37wi6NJbAMBxE4Ei4tQ+w9GeIQafd3Q65Uq6OwFwbzy+gzPGHwF4KllJCcMEgmserqhPfwsjdJx+9uH15q1NM9OT4OP7a6Nm10sAUJRnO0Q46eYLXU3bv3HnY/+uzBg7W11f6B/tnZ6Xv33pi8MQ+6QF9dXX3w6HNGuTMUAnvg8MnG2sonH39w67W7Y2Mj8BQqQJ4QhPhSAP5k0gaN8gY8Q2OlJKk+zaaW3o7n1QSRI5W0bciIhyl0zEl8dHAAhXKiyaKyVQDs+UUwaT9ox1JQgIdhKlRTDM9Fr2GkyFQMF3ZDfbe5dThgkMXR/j4c3uXYME78wWw4BBCJojyx3uJBXjwlbolOa7LToHQtFohxCwGeYMYm38y+Azm0qyGQCbEEkg3s9uHSSEZbkUBlb+0dnPbzYqUBXpHJ7PHYQWuwt+/qzNRcx9nw2uroKR1uFr5hGJkoYdG4DUVqV//+weT83K9987u723v/9L/8L3b2t6ltoeiCY2UGi/B8S648sWqKX/GnWMa1apyQAXlH5LkD50pWjy59W5VTgy/iSg0u7ttXJcfLsmk/8Rcg6kceq/GFpL+KN0TVNykaGBegTGUIkg2mhUbdeB1BFw5N4pSnPbYrqI/QRWsR7EIEFTNRuNnF75WQaGpEk7b9HHjCye15Ni6kLp+AETHMCoZD82sRRBOZAqsgYoBELwp70mAm3ILcJAHZGFshOFLkr6ZWleNSVGzUNybexPXJgCCxlMDKZnLEzLRJKOD5vlSclg83Y+f/ZQ9KwpCjaKggVOemriWe3Y+eIj3Qx7ILXA40OzxLnqa0YotJLUuiUzAQVSwQ1osJ8dRWLoac0iUtalBZ4qzbuRLvDc/cB2ydFZiSCkJ1T/23hKTzuwmAjZOON21wAU4StjFup82vKEYkkE558NuSrKG+hb5hTMqHDeSQP7SBGHPMXjOS4DpswdN+VwP1ZDrqyCn2VqNIxDlnKM4ipOiU+nll/sq1K3MYUhLoGunJ2a/p8m15WfvD3Cbow0FP4XKmrfMsa7KCfkMi1/29XV968+b23q/8wT/75y+WVgcG+iYnJg53W0y/NinhXhhYpUdWZg/WokMRQSqzpFkMhX6jcBilMBBahWDlQjgByjdpFO7JCbN3+MjWDiaUk5FPDgc4kaLriEFBxlZxaYccPU0vlGkASjquPdWOoqC/KBbsUoNk1CCdBoZK4vEBziN6pWOjLIxiTWwPS7xoXQCiHKvKYJeMRoZDzU4H9rgOWWEqSnQdClFN5mf7cK+lPEwW7ne2SEk/bH5+nuYCMHAqzP6ura9hn+evXr17797rb7x+7cY19oA9e/aMNwONjo7evnXrapf8Ac7nD+4vLj/v5HQW9IIKKEPojR2srSz19PWMjo3MzM1VzW0UTB4nFRjJv/CSn7A97Gy+UltooNBq0b6hXEmcvClF/jvIxNkwbgUmbhut7NiH1qpXl6H9Ta4bxNpJz2+hlLjCv/3Q37IR8gHmUp1DV3kZOIM2MOOED7aZ4TQ6mLvsvAhGRsNDDNL3pK3vkcjAIQ1uGC+LRWVWWLea/mINElDFAEo8gZSoBDjViAjpW6yoiisGU46avdrV9R8uPpo7Oep68jHqq46pXnoFVUEuBiNhdB1Ozf7of/cfvveV995///2PP/vICq8P/uJAtuQ8F4TJLt+EUYmgeZhtS8U6VAv8SfwLnAQJEHOCgEf1FKxIXGAr5jI2xFfVq8gkSMYqFjhB6XKaFFuE18PL8GTKOcRUwirZNMhFPW2jHdq9PQ9RNtOLAUkFFffiBfTyKE/bEM4z5iKgX30kl36hoAZOZVcGkWLhFhXVo7wMvO7AX+0iBD8jxbMd2g+spjpcJIG+ELBIrjSkK8HufzoEBPUZpdNLY/L5UCb1Hm0+4T+HmYf5BVtbKfFaH0vU2GscMIdMwcJaMmMMFXQ5iRiBuktkm0ZR4jwAnDDjezFmqBYpYv4sonhhaRQT2mQGQdlRjNSGf255ZAqWpTN07qnWVqJ09iKy81FTTE7yCJFg+/GVUCXmG8CXEyehSlFtqMLOwRiQkCPQTE1O0UHJWy4qCDCxmG8qjLNMkNkWFs8w01DFBSwLqcQgEm1e3BRJw+6IIZQ3maMtFEJhEK1FsyDuu7oZcZ2ZnsHuKAx9N+MXxxwaYcew7C6diBNsk3uCwBVPc3ICTwJEGA0o8CTvQG/ne+/c3dxc/Wf//E9iJB0qxP4ceaCXTAhHJMDLhORrbqELKI7uk1jrj/Fszr7WSdSnJA7RtKQKAhxwfKLrW9/42u/8W/8mPUt7JIf77I+iFbPbau3utba39pdXNkk2PjraOdbT3921duIsb3937/jI2GbPCuAARgysp/cjkxWO9Qb8GX7kGeUrQDjDj41I0NYbx//SGisH7AinQvFD0zVp4Fc3w54DbjNNoPt0wFLkjo6xcbq5r12dnYfh7K5+8vjJw0cPGQC4efPG7NQMTmKSVszE+N3XXsOpUDE5UL1naYGMKMiPfvLDja119TzN3zARluBpjtZW1x4+eAD+YxNT6rnRkFMM0wngTxChEiUbpEGLDwOD34Qw3MfJGNIbAD4uGVIVUVei4TnqSrgs3AaOJXxxkBkplCJ+MWMhbPFKounDcQ0svFohpklQUkZrwqAWqagP6HDIiRo1pGczHiPPGBSKg4c2dJFgravo7aOJg9oDi6eB6UBuH0ehePKGS7cqXmtIKSfMA1MrGAYYbLknGNuinoPZ7PHRzPHhVv8glAcplUI2BA8ge0+PYH0V5LfWV6/dufeNr33zybPHrQP20VkyiS8z5Pw6JEmjw2lFYFUsyok1UycTkAu741Bmq1JGFM1UYkuCutSmWFxDb+UNAnX5S79fSVN2/Dw1T0ulgH1eKJHWCj+qBHXWyqTYIkbROwfQXIjaq+FyIrjkYwEUVyiuyGwkSFG/LMg4xI1viXTI6F8bQFNKkBdkYdfEBiSPVPhm8C6lvkoASUx1/vMKNsYnHyk8Z87mJHt1GHxytz/r/Jg5zdbPi3xttkdFsStMhTFoGfcCH6NiDcv84UECl6BKS3F3Z4tROhYtwHdbsayyTLc41Vt0UGk0mUd1Q0bgwNtocKNqEaOm0EeNCVGLEKWllYgx4fYC1QPHC2kJ51gmBv/ApDwICksKmxx2aGzwAjB5FKYKRL9Fv8MQB7QoGeIakkBIxKJD4kVamEk6alZbPI6AaZKABVgbLyBDBYNhsJpkSi8iNWsERcuCK1dbyoIAypdUparQiKBg7A/JOTG4j90mefeOIGW4H76i2LRkBcI3URqieDgK4hbms9NxfHQcGOl7MjvOgKzNG04wPuBlPl2sf+ZtevgkJguZ42JxCV1zCYXcKiYSCNsAmfiRwb4vv/XmZ/cfP3z6jPFcCgRxcaA+mMvxBz0ZVApICYi4z+RfyuccEg+hgPP2XxQXYGSPnhkiInqvHNSAE3BSMbMv+ctvXwee7AWqQoHzMmZ3+/D3fv9Pn69uHp8esia6m8MWsgmYgx1fu3v7xfPHRweHEtbRwQ5PNsvCsDTO1ByRzAYnkKA9ClgVg2+nDEHB1xZxFzQZjqChyqimvXaVT7Iq+HK94hqYcyDGQdc+AvW1DS1PK2Z3yu4OG1Y3ETKtouGhEZYIpfohqljWtHvlHg3Ysw4GSn/+4c9ZflU7s+UcQtJ32EzG4K4sLXHz5lu9HlAXdYNH6qLstpaF7xBYPV0fWTNAPKQhLTSN4XuAVIiMIKhsgRcAoxYw0QBFbHfWP9ENjiaUWoO3bciYwoYNETGsUQXMH/lQViRc88nQUfpAuZWLlFynxmmxeRPG6OgYHVYUiULpleJKudAY2uVlBYa1mFxkocDSVWKU1skJzU2+aWlZyZx04OAxO8NuYTs+YWk0IxAkZr0oKaempjgaBcUjAQGYuGQC48+IDjtFEUiKlAAXPkEOn232D/5ffvXvnkzMXJ2anp+ZHR8b6+0bOOvqhQDSs9hiZG/rxt//n4MToBnH/863v/P+z396/+HHmfoDryg+Ctmsv5AVpHXAS8tDfaievaziA4e0eEonjM033R2WRtmkCB/TwpYhZjFEH+qqiTEhERDl43BOBraDYkiCdgTlQqxtI8yGzREqNDMs6huFmtYGCY8jwarwyFdTxrP6pDhigEmygJfACuTjwvx8hQNBu0yCSYxtINkEEZ12wBRIeshkkEi9lk3Yz3y8wJByeCMv3+VSmPyX/U7Ft17nkEVPdaQeOs2UvOmHgpnaEw4g+XqpLzBp24EGx76TG1SQWfX4qnxepBtzocGQtNAWWVpP9USsUzpCrfJMHjICB9+xdG54Ow8gxrVFwEqYA6DcNeKTIjTCFHxxQXknGI3t7S0WmTK5BiyiPDv36JBaIaDwmEhakjoOacdcM2WCNWaJ/76zz9RbSCWp6qFY5Cjglac8Rv7VkkizxHLlQIxKEliMmg3xKLLGSvHbKY+6oQX8Gac9MwncRCjSGkL8pUzv2tbBqHYIEfq2WAN5nKD7hQ2KgqrPKG/KKewKGgBCDzYPMWDZdUDmgqtVePDixgnRKDotN8eIo3XpA4EoIpUvQLMENIBCPepIM+EspGpEsSJP75lh1dmpaVWPdStUI3QGaumc7XcwqgHHO85G6S6gk3S++T00q93wlBCakYWFECxUZTjruHFl+qtf/tLG2jpGjqLDzCRJIkWmIZFccYwJ1uYiYw0n6BDpoIusA7cGfoRQmcLJyAWIKqIcOzraWNl+/nhnaJBVwz0tLOmkDQpXZPJSQd4AxAs6OJ2fGemT05GhQUZjeMxrDOYYAe7tPj7QsIIUdg+nCIKoRjC0COz72d7xYc/RwCD1C5cm0vbVYanslcMuxfL2iMlFBgy8JadVMWRSe9gAUFrb0bGP2+3sYVR8dXmVc5uwWBxE/OjRoxcvXjDYg3UGGfiMeCGPPaO4NwAyc8koe/f+AcuvQWlxeVHwMgy+yMkMdTI0KnoHrf21lZXnIyNvvLnRy+y+1UD7Ah5QJm+1VSQUvXBadJET1cMLUE0gRgm0pZArbpoPTYX5uTmc2dLCC/U7ugoyFNbkgIQmFk5egnJ+WZBks4U2inLp5zx71TiWgt++fZupVjnKsreOM8bt9/ZaLFZbWV3FqEA+b2WBrBgKhSgwiAQ4q8/idDmQjDgh6x+g1EYcVsD9v928JohB2A4O1KpS8LXMathdIEP60EgHj3t07GIrWMcjYmgQ4CxNlhqLrHeHxg6HRvt6WW490NE/PDw61o2s6XkwcDU6giht8vJqmu7u58+fr6yt0uKCOnwXwgI7se7sZCEVB4C7nCJy2W0drm9t0rWl2aGvJxkJoZaABug99OnQB7ONpS7BEe25fQ9lfsFnHiZwLI1jVRYXJoVXRrwUSH353qSiamQYIzOL2ZeTcR2wMtxQmVJMfVU0iXgUPCWpqDK5pVzgAxNiMVTmiNYiK0nlaaDlByAmDiexhfhiXbJK6AfWVEY9DpsstfO6CtJrssiFZqgy0Q+hI3/avrwu2v2G1k/rCJF6KYdcNMDM4JnR5PyDIr/WhvqQVtOOpbUqEk+WVBChW5S5uCYfmMtwkNbC8VSksWZqdZC31ieSbzMEU/ODln16h8Uy5CkpVng3kmaUhuPwTnkvOHnQBw+jT9sblJjjxHARYV/UHojulhZ/nA59ctkjjSiZ6MIFcAp4+eQ1nisk01Pjreo68mbfB9ijh2InYWGO7HkpSE8oIp4P7Of20hC0vKw0SSiOr0AwvuoJNbMG5SQ+bCUp2ZkFRACcnwMtCkit09IBTOQCkAuMIA/ijQSQBEnsCLbjskzSUquAfI7DeV4SA6lBVNHx77fcdsgBPbFnwHzp1MQkFp0mkHpJIQdMkx7SfQB2N4ags3N/t0UvGe/bk7M41AI6kNW0lazzII6FCwVzCso7X3r9yeOne/twv/SqSQmShZjKn5BcckENQbpypJNTKeh2nNEQ4M46hHqrTqgkagUpNpBkqN6ZC6sLR/Uy7rx9MNQzsLXL1tr9vr7Jzr7O/a3jvtPu/fWjo83doZ7escnR9Z1t+EGTBeWmiWVjCQUTAZoprhCETzLc2lVEedpG51EX9vnkFKM6Dq8QAjwm0IJ0xV11v3JiEZGa455uGpbgBtpgJxXsv9L8Kc19esCdvexZerFoP8a+1+HxwtPn4xPjV69cQbDDg0NZAkYZ8KBjeXmJzvHk5OTYxHjnyvIQKOvtT2hGObgTDshE20c0XqANlnTSoVteWvrxj354/eZNqh8Fy2QVoaRFGsVALnDgm2su0D6kRoMNu6IepsY38vOHlLIlH9TpmMVIkG+taiBwoawsRFuE1WC+il/uHLAVRhJ74SVZdQNqZrsKJF6ACRRX9gfn2jPFzp7p6fQHOBVyAGrHRkcZXVhZWaW9TFdyjBXgI2PUd2I27JdbKOj4nVqGjxTFIlkzArrAt3MDl05wiC5cQhuPmL5gwXO8qiMBHOgCpvAQrGh5MI8PkOqhgj9CF1sWednok7FoAQ17JpT2WnuebTY4xHGrCMumMyuTD51jgnUff/bJT9c2n71YWFh85vRHJ2qj/QUmycCWUphoxxPDLTSlz7UI9sjJjjBBX8n5D+y64Poi0FbABaPD6Grkds5Y0CWZ//Uj/jyUV0bzRwFGmg7BJbruUDnVzCewT25aH0ggzrnNQ8EJwcfEXwp1m9KMpTDNXbSj9CaEBVL01kQAQVoXIbiDFQig09hF+lUxrJYKFIMXwQEuhaH8+AmePBEehtGeEU1qz+ID/TRhrCwApEGFeiA3NJpKYReJ81joKhzRvU5rNRRWISgqWRQK3w3rUnoVVOVJdMivL7OHO8bzMZ9CUQNke0OlMUnQAKnU3HifwAWIw4BEwKlwkztqNB0hzBG1nwkqFg8e4INlWcOkC1Rll41In8AHG6XwRnMAGP6x0Hhf2iFNZRVRSghiuVBruNDUgAvsKtFLiYscXc4jcGu0+kNSQfsrnbF25JbdZcQuOWDBkt3k5yEsPL/zwlKpxx5Wlxoi3kb5rJM+mP2rIUbgvW8CEKPF2iyugyEuh8VtSoDbplC5DE+7HFbC0HoUwEvIAC4QNCc+4DGZcbi0uWJmghrmlXdD9mLIRoaHAhwN6zxlWwWW9JANGP2jI6MWI2u0wXDOsWnsKNuoWS4a/W1Qb8gIGuGPnOzomJoY+ebX3/vLH77PBAN0tBNLANeQBfpVHbjXisR0UL8Y5dVmAYXp0kMrOdN1ijypkpZ9ZFqIaFfsuvVHvQd/3s6xt7nNuYIjE0MnR517rdPD1SO2TB8t7XbtHU3Mj373N7+9uL710599sre3BXnk3ztiqtglVPAS2sAFjZOxjayt8/ZqHLdQrW5dv87RnAvPsJV7vtMRQ5jBTOjikPOB/gGsLeLm3AypNUg9kPlEq8GUE6n2T/uG0eLWIV23NUpELbZ3tukAseyCji8HGdMMsmHQxQmL/WNj4y8WF1vPFza2tnfvf3z1gENF4CO2XNjaLj5dvCPRthPNCqTV08VRZiNg/vOf/XRpafH6rTucKQ3+OAz1vyyNqEkoOEaE4Emg0DTAy5Da1g0NSXz5C0LYxwwDcIQK0JZSFDCJwEm88n+eK3WMorQy/gCZv5fBy/xLwZQMvOqzWLIwNH9lnmNGUGlxVr8FxJgDynxlfp7ZehR4embm+vWbrFz7yU9/urPtFDW2E40RmSh2yY38eCaWG4LNkW5PA0ETWc3M2G98pCWAIgdowFJUuSoRasn0zdbZFoLDpjnBQMGcwHV6NqLNBEAsS2cnLfFdDtUa2B+31UZPs3O4n/rXs/hi4Q5vm9zf//Pv/dnHLV6DvXvIm5w5xLSD1d1ofiB0dZGAthdd3uvXrzPZ7Lure1yUgL+nHmHLkBJlUQEQmk7CGugnJuc0s0pKAR5ihEnJTYW6hijtNBMzVD8uwnwS6HDa16oaIGxksAjBmRRbeTQoWRTilJ7uAz5WuY4rgkWAnUsWUKQBfIWC5rXSU8B+W7jJ+BYXe1+2+dHxxJiAQIJ06TUhlAxmxFUCFNIcWANmirSOBNuIVDR7FbGFOCGMWrXjAW5XTW9CndcBA0ijp56IEQCFWd8ogjFJip6wk9AarcuIwMVDFvAD6/F54YIUNh+RB2gEq8fVeJGGDI4bxkEASwZUUIqyBo2L7jaSFkyCdLcvLdUQTFVYCGuiYGV5XzjDxcnpYWt/r3unf3RM2BQhr0nbpJdl8s1nXGKa+LBt7lxvAkYbSfEOujnCKJD8G8UfnV3EE/yAzIX/cAniwoyUBUiatbaz5EVIhP3AatOlZaijKAFAaIqoG795fHFzcQWASLbEJjVwxLYZiNEzpobbsX7J7oTcTD4gOpmRsqxjpANeULISgCoHENL+gnDsqcJrCvaZiasxKArqgKqpOyH4PDhTkaanp65cu4qRZwSCwnAhHJl7sLvLMRIdQyenAwN4WlCGlZRl5ZLPGAXWBfh9waN24fltUOGH2cvX71zb3th98viFDr/9GByASfgF3kk1j4B+eHq2tbuL1aeXaq0vX81zp0BUU/kBYWEHd2SEW0Tt0e892hsYGJ2aHhuf62cP5/rS/sHzLc7yOlrb6dk75dyj+fmhuZujvPF+efk5NXVgeIgF9tSEKBlbztA4qxvssiC/zjGlHHk8NTX9+q1b89PTn92///mjz2m3UMMRMfxxeKy7e2hwBAi4ZZQnTAMKBssWjKdKCfaMQyePh49VzLOT/cPW9g5ypZlx8uTJo/X1VaSDgeblg75JifVxZ6e0lm7durWyvMo2m4Xnz7Up8guMUoE19VgDy2DdPnxj5dAoJ6pMTjNMusbQPKd9bGx5uHFfP1tsaDU0w0FRCWlsf7gOlVEla2a4bewXB9y5nTbMFgGFNL3cw0kwBoD0iFDc/AQazywshTQX/KR2N+W+XI4cR/GYbOnxjCpe1EhzBJ+kYY6P5JsWwNLSEphwgS/kJDEMIOdC84jDTJhR0UdqE61UtBVqvpakuLHJ8QmOy+DNGasrvD/YM8hhqwMuGARMres2bcNDAlUO/aBXCxMBOzI8zAXAt8+26VqiqPDWl3FxxEe6VzKC9GhpT3frmHHjrQFeYsgmt77+ndYex3E/+LM/e8/Bg6Ol5YW9zm72n2HVWbzvSJ8nmkogAfqhl7C7u0s7bIgtxR6KhiPsPaKHjS2hhrt+pZmsCX91t/CNbx4hcVoHzHjDgrInMEK2WndY4MqRpVhrNJiHKJJ9/RJNlY5c4QnzOoyEX7lyxX1WEBwVgjcsmGDbMzHDI2OyrqqM4OFEbiSiCca06WrHtX/DLjhW96bkg+HkitCIz1YGkFU2qz9DUSobgVyaWVwsmB0xpGdbgVsTOCqKI2Hk3220XNtsoS0k2fbQyj6q6LGuFAkwAYZL8kleNl/8EuwHUuXglw04mJaGQHBqeFdoaXVJzn8D05tE8Rz8bbRUIDYhMEgjeU3SKr2d8OL3EsgGqljLCEuUFkEYg3A9lbq5ZeZk92xreH8q7PV5g2CyFuLaQP79MRRuUJqPAiCLxVBN8KHp9FNtHCKIHpmQJrM7WXyxiVW/BFr4cI3mpdjC7+Iy6NRXUYMNJU1xsHnYYGO8KAMb2pBrHpNL6BBMN14qlLPEiO6Zi1dZ7EEP5zw1ic3M3FUPE08ohJ1MKKRpqeIzIAwwDMHhcc8ofRzNvMVaSXUbckjD7xCyJRObxoQYKAKSX3AQj84NNmh2esrB56OT8Z/+4Pbv/j9UR4dSxRPTbPucqUiG4tgfGWXnEBNAYV9BiQs/FaanO/6P/6cOvs9DPers4BUDN27OY6i2dva0n25Wg1AFJn3tT7pX1qSwM9yrOVebopowbeopq6KcXYNUyoEqPgQVi79QjrjvvcWBfzcQCKTAD45y3ni+3r1+yHqIzkNmbhhhdsdO32DnG/eu/PT9MTIyDzc6Pt7T19/q2Oo5ZuI7FkTQtAQAARctjuqMwoiyI7PaO5nqVID1uaofHQKwY0EV+0Vv3rqNMV1cXNjZ3YIO6oJWDAx8a6b6wBFYpyNjdHMRGr1htp0Os6COUffenq0Nxsg3eFshM9M3bt2Ynp+jALaacmwxwNe2Nxm+LmareYqlWAKepYwcUDyA8x0bmxwYGO456R8/dXSU8aehgZGZmenFZwsg0K574lwQrEr2Npz+pJ1AFwL+E4dCQSJYN9ZJlpDQTJGWMrJXTSVsBwjmaJcBl0qNMDuLSUQJYVq1sCIvmOFsmWZMphrgrnWEDyjA24Y0JU0bDJc3Ozs7MjzCMdfQyeQYGkp3lSw0aQFusvT++cJdLTx3rThKPjE6yssW8EIgSosAOOTEAVIiQ9mvv/b6+Mj43u7e4uISQ9ZMJ0NIqRloIzF5TNM5skfEHE7HIMfwIHo9iqFnhT2HdTDahfejlarMHLhSZcAf6TAN0c1JRKenG6trm9tbt2/fwes/X1x6//2frXzw4/8p5327lIAGNcyMioarDmHBdfkhkwnMsq+srDCiPjE2MTY+QWFoyDFNHCbs8MFhW5pfEU3VJYSGwcmkU1eOCpGV1h1Tt4PTPS7VYnrYyhUqunsO3ApFKiTJ6bNMX48wM3Lr9m0OqbWhcOxkjWM/OdGTXSpIcWhkGE7RCEKqCbolqgdWCMHC7SpRXYLFVCA77JoTQkXyLWLgh1b4MSkzRDS/aIpXTad+0t4AAM+sd1LKlc1f+hE0/MxW5WKBA1d6xSI+M0ZSEBzaRTqQpVUl7RQLDG1q+BMlTeUHthOxwgiusEUsi5doJpYhrKokFlNYiVAy+EDIGuwwJhaaguCKq3icV03lihfRzgCArJRLch2ybAmlgdf+MpbBOZJYkgQiNCiigpo4g8ZiFlAcvkWs4jU1x+geMHUk34tuWejgsEQmB8D9UBaPEqhcQCDGFJYcXytBGjgKIjNx2ouksuMk8loU0YifRvQAKwrMilZYa/vomGOiQwSgVETMEQgBqhk+BabeSefX5BeKGhI+kLyJF1mi7bc3qc1GHskHHsOd9DITZJt6Fu6hO6ADO2OmyE+VAyh1lwYGFJASeuhVyG3KIr10W7rkCauAqosxF4o3hrGhOfR6nsDcHGsyx7Os87Dn+ZP5f/kHyfnXf6Wsl5PduNHxH/z98yiwaaexGk5MjXK61s79R0iL9TJiKJImcaWShw2xQQm6lIVaJ4MckuCl8JLHHYsE6JWf8EY85iLsxsCSODMbdQpMZmsfgcpO2ZX1dRkP9xZPFp+s33//4dBB51pXDw2Yjf3N/tM5FI9BjQefP1pbXaZYT2wI88BKzbD6KmdggpX4gqwfAk06WiZ9nDy1tb62urK8zJhwaxcFi6Z1j49PocCMFrZa+y9eLM/OTNMHzYkiooeWAbAYRTFsBzje3uocHmMYEWQPWoe7W9vsUmJ/AG7/1o0b7777lelZt4dh73jj7/LyCmi0Dg8YzNSHB1LwtU5EkalwYtg/MDQ6PjXEaw17eDUyjR6UhnVhrPvt2Nre4jAmuuzMJYdzgGyMgtU9MCUU6I1aqmbhjDxBF1U4RdgQIjkwnrdH0+vALtt6tDsReXqY2vT0bH//TiZiwZqualC2KpDKoDjFHsxZm86Qu3ZfFMIp44WlD5ianKFTu7/HWSXUC2fZaalmERbld/ZnXy/wEBA2kQYBBgWu008d6O1jPZrDTvr6zludHW+vLtLiochbZ1NXdjcHqWmHh3udxzuD3ZuHHe4iZ225b/+1Sy29kHvKmNVxfwfrCWDl/tjZ0cD2YHrbWyvb6987617mCHHbq77CGTKkgXXUffRQj3Fxw5w4vbWDlPs45WxwcG1j7cHjzzv2NkOlvToNkMP+KQ3ZWGAJuZLIr7IoW5sbmM+h4RGOcWN1Bq1KprSc3GWihzqjPExMNnmtSfUQ//BTPgccqDmTTQLUg1YIYxjr9vRVfRyCzYjuoxICrRza69evXcX7kuvR40cee97R9dprdznLk5UMtCd8vUd3L/NWDI2Hx5hminBBbxChTLlRlIBSqmx8MDM7QZRvFQw/xC0XZMNDO54Sq8uX5tinedZoJ/fwTHgaGwrRkprE8riSARIZJIRMfCy7PDKQ2BxA8JKnAdPwSBgliBQtSQwpYqUFR5l8UQgshS1UGOuBTs+CBVXVSHOmHFNSChKHihECoN3jYJVBUhqIYCaQALQw0fuioDQdhLedwXNEr9lSrA0GRHoVUMIVtD+g7GALK2TtcaUA8siqBHMUCPA0jziQTYUI2cqqSuG5SWg5FDvUr+QgVwIAY0wErGltZ6yn5LLRynoZukxEhQ6/pD/VjpLa85c+v+AF2JQ2A7EBBn4pxqIKfx8IiCDdXMAsdsfX+GEe8gBSeCRxlT33GU6rUai0hqUQD9DLS2NpY+CLaBICQLOeSmchYE25RhNgJ4D4EFkXQic940jXrzGZxBw8az7Z7+Pb01buvvnRb/7babg7qEIfbojdGMPDbK/gdoBTc32RLbwWiNOhnWcDra3O/8P/3pIoOYVSFrxQfSk0zaLBwZ7XXrvx9Nlii12vkR8PK8A9zBVjdvQi7GbQyRDwCXMNTMQxM+ZKUduH+C3G4e24O0YrCxU/Wo/V8YJ+p4MHvGDr7E/+1Z/tbq7ivemCeOb4CS3z3isT062B0V1eCtvbmupmgO/k0afPf/f/84+YRueYPpZDs7AJuwksj+1ASezdaolSCUqQzn3BEzaDcrTW4uIi72Xd291i/s5WIDgx+9o3ePXajcHB4e2t7bX19e2trYXFFRnmcSawg3pmM76UgW+0f2d3GyRhMzLkLYJHu/vrW9sHOy2OQJkYH8HFIzZGqocOR12TnYYibTMW4+5l8Q5AxFNt1QOledA3iPMdn+wfGAQjt4MA+oyhUVYqdXNK5e72zj4tAuau9zjTg+nU4bN+WVriK7mcfyNSdcjBJUJFm9DO56UMGGhUznEd6lCqp3ruv4M5XOERQQ4IAdIAsky5Azz1RfxDBXQCjUsChePCGYvhMzMzA7Z0vPSIcsN6BFonem2OpPN8eXAgIyexsFCNpzvbuwDGAZ8OOlHNMIMldnS8u7v19z/+YdHT8eBnzcV/t5//4PZ7f9gzrq7a0GLJgmSCDM27CJ/hJfWK4V4eo0IbWxsr6yuTaayAFQ0XbTCVBrJjp8xuNXopyCw4mVddMQaMX6QWs7m8d39gj0HXbnYqc5YO/NSNUBBqgQT5x+ByQifq6jv4CCiHC7ZpkTjcxT4r2hweMIItOiTxGYME8HhraxuUxkZGrl69xim1LNvZ5Jy5nT2XCx6dwFKPhhu0RB0Bk2pdvH+LNmQvA1bOStAI0WeBtR8EBKUoSCLtqLGIkIE96JVVjueRLIEYVD8P8szs6qFeNiJs0r38E7VLWcQLlCyQ/3Ii74SRos7V+jwNyJKh8hQ2pdLGef8F5cMioisPTIg3TjJ1Wp3PB3r4pTqcgxcecWlPAFmpEZViqmSfEpobUay8bWPeYNNOnMemIhQBdS0WIIgtSLX1iskhFj1oPYFvctBINafWYEwrph4VDK4v3wKfW5iL5OUlAaONotnTDdoN7vxwnzEkDStluGYtNVdvJusIQTC/QjpHPs983u4BU0qQM64dSEQrGIhmFdArwfLRBPCSC7berBLEgfGlssxldkpPIrEMd6KutlUjwFQe2rmdXYwYOSrHgGmqU1Nqg4DpZYc9ZxUC6eJTeNEDgap188aNmelppCHXAeRx/x07Y5MP3v0WLAENKieDh1PT00cTE4iK9gmvRjjt97QjCoWpR2dsRzrr3lnr+z//A1iCSdT7ReNBOAs8tQEAo5Fw8wazpZPrm1tmF3yDpbf2C+nD+BJJaUeodBeAmIF6d5MMDWrP6CMyWmnjytEeOENgsQTtYzUGgxEn0tXTd+fu67eu/croIHbo4AyDcXg0Pjk9NcfBRH3bu4fL//A/Z/dv6+D4ww8/of/6r/3G317Z5C00dCyyipl+BAMGLJ0nxk1Zjh/APcYhmTmdnpllUB5mI74DZr32OfmIWVh5C7pIBy6NsqN6EJ/OPN0km+12dnc2NtcPcyzlMbufGOaCS+1OMFlwGLu8VoFOLoPPHPbQ2UNjp3t4jFE+JiaPWvvdk2ecdoaBc8PY5FQLr3+4tr69w3JZ7K+q7gcctMtIbchG0wgWkAiUQ3/vuCijJuyXZXMZFpi5sSPOaWQAFrrgLbTgGwCB+PKlxsL4yMkVSQjFAr448MSEpDEl9SuWM3XISEw8Zl2fAZoJ5YydUoDpVag6gXU4o58KK1kOBxXYdZiFO4Ob1omuTjbRCpxRshTJNzBxxgSW99aeInq9SIFKNjM9y36tz+8/IBnbqYED+agZjA5dErQ5MrZy9y0KAg1Nt1jkr1HPilYV80dpSplSQy/JGfaw5Tf+yc+GN1ZpmuFWMWxSk08Yigp1se4ZevBZtBdZ7DU0OMSA+dOnT+HMRHp4QLW6g0IEqp3UcdpxomlThSJOoFI8F8gGkTFofNzNUc9jvNLh6q1bDGSzEI3jMm092k9TIe2bOpHExpKjP//e9z775AOqLQoDVmgLpDByXno7MHC0ubnV2blFK5QyJyamNB1Ly+gjp8BcvToPVYzBwGGwpMYyeIVcSAzdwZuZcQYk6ID3jA7zGpXBpeVlZgFkE8VFReUKZad5QSF2eDgtZ4cddkx/Y2Y8FpQqVsw7F1PDFbmpCGQuKRK8J5iiCZFPIkhnQD7nj/KQKOHY1Uab+JAOs8InAb7rgl2KFbQDpUD5XOYhqBo1T/Tl0guEyRKk3T8xF5MoWdxtilZGPBT/AkJslcQtF0hRxROUldlGPBmw6Q5yJGUo4TH6QKEkPw/nmORCwORuuuac5jDAK2YHjzsPVDPLvwhUk3MgXoRX9WPxLydONjEMeDGlIJEPPu2n9dBS1EttN4RziU8kvVB1yMYDXwjouCPpl8JFD/gS6OY5+WqMtx7xfVF6gW+gKuOIoDJGziBvpK4KhKCWvCCJ6YFdPHNYCY4b6wQaHYpyuDoI6wezYDa4SVCsqbIxIwqOfFAC82WI7UfSIEeqE9teMU/YJAZ0mRjj3FoSwQW8ENAArvum0ZD9Oc6gM83AsHmXda+bdezsmTnaR56He0fM/CAUBtR9exYIH9OuPensp5lfZIrj5OTQ7ds3nzxdEA8JthlR/9xzTa3DeIstL+Y72EcaxIMt4sBS4PSsDGRUXUgThnBb2iDPoJdRXLZPdR6c9PQOTkzNDvafbDy+//hn7//0q9/6zvydawBi6K9/YhA/ztpqOoCbmxs04Wdn57ne2Wk5hYmH5EBPWGVvxfpCYQxC8r4/GMUb5SJrOq4MZnLOpQJIBeLLmSZ6mfTneUEDvfVhNgpjUgaYfxxeXOza2lpldg+XyeL/zpHmZVJqfyYI6Suwmqavfwjvy2QXs9Wz87NXr18bZp9rH3HMwbuwGX4wlb62ubmwuPjk+XP1mJJVbznA0B99IcZprQCMCWDIXB/r2wRl8VkXsx4ckY1s7RMjWozvwcHDzz9nOHR4dAj5YohFqKD15B232KE4YGSpyBQeWHBnIc2HWJu9xoJLCZdUJUG4x3wtnEGMDMIyh023G9sNt58/e7bDu5Md3EAZnPtiABPVerHwnNcyfvWr79J3RBX39/Y21tfpuwOQpT76KdXY3p3Vtiq0Zsn38ooDiLAIrbv35o1biMUDZLq7VN4u9/zQNCk4JHx2486f/c/+F+Nj07AEwvGm+CQCoIUjNdAINAPSdoDW4XH4x4AZawacQEF2b/yD/+XwX/4Ja6+GBoaoDekKMqrmqAAZGchhMS5T8Cc0BqlrziB1P118xpIxaVCZwRemUuUtzlu4CD5tNFJ+c0YmGkeDg53K6BuVAY1lxTxvIZuamNjYbXX1snNtAjWjDgJRvnJwOS91Gh0F8uT05909992Kpgl3OIcmGSMsyJ12CYRzBBjJeL0HtmN8Ajj4ZpssiT/b2FhnnZqJqa2O7SM61wg4wiLqaBwtRY2pgxb9/TNnZ+zJZqgleoLyoCQGOIlK8PpODkVnwwXHMu3u7uAQGW2bu2JPGxUh2Xl6PaXGQXpjw+VOIP2SL7mZoIbK0vO76IYqThwqA1g/8vsLQxJx4TUZAAEAAElEQVRGzy0wqWKIHG9MjLmS9xIAlKbRmwamdtxS2vOGlt6EosM605Ck5ClJSx1rR+tADcFmZZxPhM4LNknSAaxNpnqUcF6GAMSHf0XgzBCDJLQVh4bTMsdKUMmTvE2Enkgf4G+7gAZhixJDg88KzZRekTwvFFLcOSdElVSwG73kGxEVUlxRFC1JzipWEgq5jUcgmsxeV8xxCqdqeIgVoUwSSNhHSEgWvpKJQlSdhmPgzZ3VkzIcmaO+RaZVnADDatChY3JyhDnADTARpW/RLgoT5PkBp0ZEluRhGtSFGAgYJsx8obchUzSDbhIzWsVQ3vjIKEadNx6cHhwwL8VGx5DDLovqIrhghyrEuB9WHrvGXC1+FHctgVYkGx0YTmf7KYSODqPFjK6ZhsUv+GmORsKk6jQJnHp29/b1n/9s7CkPNCswRfuCNQQ0PU1eOOaAMoeu4WYEqfbRQJKWfPAjispma6MX8BJZUTi/XrJgqKOjddSxunu2vtczdci4edfx4f7G6tL25obuu5d1bMesXmUkfGN9g74TTZnxsZG52akXG1sOkoB6DYKBAKWcnrD9c3NjfeHps421jdbODraeNtDxEfub2MNDaQYxIKnGs5u+CDZcBYLyboYQunEWQx2d83NX9lvbvPGXhh/LkfbZIpoAC0iHOh24AP1wsHNwfHxi7PoIL4XEjtLhnpiaHmaBLq8/wnyfdkCIL0Xa2nr27Pn6+lool/Z8ap2AJcNSPAmMthPEsrUcbIIVwOdxCgPsZHwC/4ETZr58fWV1/exsZnYGxeAYEHdUMIxMOw9jqgamwrjUIB5PHVQe1orSKUTASFZGApAfFp/JbPUTAp1itLcPEAKdWmadGepErXD5GICb12998uknbI6iCYkXViU8H4/c2cg7No7W4TLZL+FjJiRdJYRnsQpQEEGddwWwgb42MeqPFLAqe49J34nxcbBdWlpmvJe5WJYRlXJpBPSjqiijqThpeiO408oOBJ4CTbgSbFnwiw46t6SBw4y8ymSf6LmJp5rZ6HHgN9t03NEkBHSJ+WUOQ+eVJAzInBxv3b//2ccPPmNPUapqw8jmxxxayuJgQUDxcHJ4wfkrV4hhhcHe9i6sgAriIWJibHRqfGxlbXN366C3Z8hus6MyVBcw4J1X0VLsOPXTASkXe4Esg1z7VJi8QTmsYJ6675AZanjY4ZzFwPCoXpqNyy6bP2DIBEEw6at90rbYHAFfREzTRG2kynbhv5nh2LWpNTJCR58WWCevAI2NBA/qCW8FffzoweNHD7kAPSNt7zJHwMS2i0B5PZTTXmJbAyekwbIAHrbAG1hkoETllCBciW2+40FgvKqHAExoOeiCcodvlsl9A8MnXtu6RyakMVmFghlGykwuSJFbCyMXsIz3MjnaoBNVUC1KDPiYGdHYh0nyRAYeSZssYoKlAwvsPFUIY8MHrBu0RdTmmrG2weVToQAqbRg6LAyq9ymIMh1GKvw5k4f3pPUNjyDm6BhfPMQcqcZFWPhlUQVBBhWBgLTlVfVa6ROirlKeG0s0gbqfllNox3dBu0n1Yuon6eQFXOdLk5pq2XCzYZbtJGqfoMkulk7AgAshqFNiGEd5YVDRYyzgqCNuHiWPrNf5o6goVZcvGcU+ij584cOf28/IJDj6U7y17FDLduyGu/BRJgU50kcAYiEMG2SywxEufs1uHZMpnWfMLFJNqFrM5hIwfTPTU+xgoK+KSV5beLG5ujJhK9VlRJ7ehGl2zMoNJHRNqK8Mu9Knw2/KC+ubmsAJfD2sTRMBscA2ctwAQ/X4CQ7y6DhgJzHZfY6mwOArs0P37lx/eP9TLKhZog3YRAwxtfAEKinmuKOXnQ69rGTxOK7DDAVT7WAMJeIX7IGojQR3gApYIm0mqlv0VsGko7d12sdQMk6DfTucWWFhqAHo8QK47p7W3ubzhcXbd+78vb/3P/7KV99d3tjZ5NVJDCU4jqDUGWOia8gLep/i59bWsOOYzph+TbvaA002pkiqzlgzTs94URLDnnFaPFHvacUwcc5TTn2bnpk7ZC6Xtskhb/LdJc/kyfH/+tEHB/oeBOiRh3yYUWN8EvvuoD/jsfBBSBBpjZ08OLhxePDl3d2vv3hxtL0xyVuPHKH0KXUCGwYX+gYGgQNSjESADPSkGwSTgmbOnkT6MJt8dCt5py0MPt7dZdB7iA40DW3tKkOb5YApVwkidbt0EkZxela+1DE4hhc88r3DlE5ZsRfyhhvwZxAA70nAY7HSp3pazKPTBOcEGNTxz773PUbzqfrICxxxKAiAgIg5YIqmIeMTtHh4ySAHo2P5YbjFdHr2Bbu8FILVA+qoXLARHaaGHrd2d/Z2tsQAs2KHT1PeuEqpQCWt0GRn9blntcEvqKBU1izYk0MfrQmhVwWm4sMR4BENhxWbrABIwChu3ykGQ0hh2xUFDXKub8eGsC8MHSZZx+njJ49ygChvreCBSBB46vYxwFFIZ/e1k9NvstCdp/Lfw1ZnujqvdjPxdLRFH7aXlZocn3XyvPPsaW/P2Njo3Tu3JqdnP/jkAfYTftMSibkDRzUMHjg7r/S0OBo8UqTdAFugiQ4xDtVdYz3YG+Qbx2yDiJeSsEChm5VWiACfOjw0yMAyiFsHMiQA3xAFDFY6faxfc2wJJrAUkNn3XXu427FqfLkEfW9v+/79j1dWV9hJT++c19NiBpAlbVPeZk07A/VjoGRodNSaC4v5R7cZ3AZrzRstO36NNlgBVRcreTlpeuSpo+o8Tx3MbARFJhhNarVG5voJpMoZB9yJpSANjzT9QrAAboXiNf/EMk1jzeCp/FSfjMOhpJBK7XVIwLi6ihp1YgCG8VQlDXQqSSppXHIcUkxVAJpCg2P3i5TMnJGBiscHlGjosmSvOX+HQwqxpykK8bomS8mQGLi4HnnGu4uwk4KiGE0wplAz44CZpIEpGl112G8oBALJIA0mUL5Ek1cXneYQGbRNRocn8rX4oytzDJP3C9tnw91ZB7HVAMJmkE4FbH/aN/AJ7Kj95IgVJqO808RwFnSEIZqFbpVkiSSzAULIXfNlyx9tKfQgGI7EdzC/2MmyktQAcihA06A/UEgKE5GR9EeevnJGgxnrrEgTqpiXi5IucWyHBkWlFuvuog+3EGD7sHvjLH0eH6fundAT3HaKkpYtVYvcgGBCiH2Q2Tri8ZP4YAamijiu9fNhNxqAIShkUizHVR124ffsQcG0rlbrmCVNw3iWcpGd7MjsfuvN2x9/NP/w6VMFGrPoMDjcxtcGAXrZvZ3MA2E+GM920ppTR5nMhHwmvORNaZaamHoTtbBZoyZbJ4iHabutg629s9Fh9JIz/3p4J8HWynrfaDdDb3AW1zM/P/va3VuaqZ7u7Q9bLOXCZEMINil1r4slu3Sb8JR4TTbMxdDo9kM9xSBeKwfbImw1AZYZynG2uoyCl4YOqXpuDKYUDR/YPz2Znb1KB+vZ0ye725tMeQGq//Tku2sv2kL7G/06MJfwVvtiQ4VVT7DdWMqR0ZE0I+APwxEx5S7PtgrbdT9iL5DrWunp4ajgLquxqCmY3rtXr7739tu7bBQ+aOHz4YJ1MXpWmsc3Q6yMDVo/fN7Mjkf1mPxjw1He6weDD3Dr23CA9zvNzs7BALjDIgP8FuqHOpHFCil+nCTFu2qHMb7Ya0wghh7N9Isi4tcPOOdkn3NKmPt24IFywR8x2wnLeAw4Wn94gLlhuwJTm2zko8950KLDSfMOWEwe0+xbXV9bXl5m/gX4xT9cHXkBa58/J/HVCyLB01Gl3rNu3r6RsXEVywpl6Uge3GjrUir3qCW/AIS0wSFmQzWqNmBdQ6B5hu8cYUDTEAC49MnxSUrjnBa1mVPRdMpAtxZr0DTI+tBv7rf+r2vPC8/me/VZx8c/eSmmo+OPZub/o/F3RodH7ty4frOzl3dUr65vOxgUm0dzXNSsrjSYD2hXUpNkl74qtlVZWjh1LSjALURDvSKj6s1rnWi7Qy6TF1R5MGT1AISwnEeuuQIji63OzniDFGPXMAE2MKfLim+W4HNDHe/Z7IHHsE4Lf3q2urS4srToOlTWVVJ94DQNFtSLNfBnnTR8GdYAK7oKCEgfAOsukw36klDfXGqupZG6SOtNliMhZeIzLnxcULBMGgl4DkUkEkzz0aQQyAyK0SkygRwf23yAwJNFBYTcZDNHQhwb0WmipkRLlsPwN0RcYEIG4xG4MNUKro16OYCgPhqiYkgsNbgGEJfanYYxFEB1qeyBY9kYICcikJEtMTKEj2ow3sim6+Fhdx+vCdGA8LzUr/xSQZJ7KYPvWALpFoeE+iVn3Zcd8Fbug3vaSFSvPEezKxfPTWkefwlJjxGlx0jrpCJCqQ/bgYqjUOAYqKCf57nbCQqtIFol4ejb0Er88FmOWd9oIgsI7iNWaorNYAFE6dUfFcSDeCTFZogDSuKrSGA53E7T9bxwLmyS4Mp8XHRZkZELdiCjx8Q6AkkUJo+GDzYbR7u7vUXXwo+mjdBpTyMbn9gy0T00RO0iLa1iGmKkofUKecCsTTfikwDydOjZ/cpOffhDHWc97NbmXk8XS0+0KsGs4+q16a++9+4mayg9797mKpDsT2S8VG9lJ4jBBpd4QAkWzm8XS4IIrDOkeqEyUVlY19Y7eQsPssNrZ3tnY6B3rGN/b2Ob0dqtncP3WnvjV/p6O87GR4c3tzbYpOKnr4tpBwww9qbPjhJjCVQHlJYF2LyZl1dR0JGkPebIc8pXtQqF1EXlVqTBOtY+wXJbA4LQqkKdfHdAcoCxhKvXrnPcwcMH95c31/7+5K2v3LlDFvE/PWMO72tfe+/WzRvwhJfCbm3gpHc5pxqWMEU9PTNBK2hlde+TTz/7yx/98PMHn+8f7tm57e7Y6zxbQ594YUZf79joMB0KzIfv56HPbp2mBaaFRah723u4W9SDdgAMx0PQs6dTQyKuZ0bHbs3MbfX0ny4u5k2LaJ0KVPLlm9ubt28xoCBRCAqwoY4nzR9Lnft6EVVrd3tj5cXq6vL1azfZCc3xDHSe7CLR9/eVABDsXDgfhi1pFF67do3HaSZQoM0CiuCCPUIYCbbY0oFkJDPKltoLw2yKGQq9wpPv6JJD2emTWejg5AA8R8+W11afPHnCyrW3334b/4r1qbwAUan8Qg5S7QxrBlRP2M6qENPhBqjdKnliFmooIqbFLDJgJaOcxWdTMqms2jp2gfLnCVm8ZywzyKfHe6w1xplBcnGuMWgIE5HaUQg5fCGZjhc9vT8ZHKFR4kQszR+OB8+rqck7vL46c/8TRhImxifBB50ZGZvcXl/94fd/0ILTzjprVeAR2UOXb8eicqLPYNWWWi7atooSuYQa8lXDAqLIrgRZh5glAugPwhf3w5gxiMRpoSrYKjz8fgsLw4qK3d1txgM4NZ1BN9Zp7/PiTVWmq7WzvfDk6WFrj/ExNqHyxscjRjgODljv+c4779y+dQedZZ6Fc72tegzpx5xHTAoJQgglu6pqyk3fEgFCFy9JNch6WZvHIGsMFZm0aXWJtDcN90O3Sh5jVfCbR+0UlcMsl4NFVWF1ZYEg5A/cAVA7eyW7uONRIQUrEQ/pBFuguMAnaGJULvrZgZ28gMW06+jJQgq0UjpVuQCxRGTDQ7XaaiJInI6FySlGtHHKnvt3gGKTxpZHSi4epCi+KI3C4y+FWZ+wK1zSFxIvv0omRU5yA60Cz9o52/klIoSIY0mNLtMxu96I1/3zVNqTsY0LvwxJUaJ5AV3xkVUwCCJmDJWWzasU5KHr5QrLPLJdqUOFB7h7e/KUIyIUex7kniZcKHxbz7OkGAgWXU3kdhP+PFfAkK/BTfNIMxyrr70gXwRBJ8b1FNTnrqMWXQsG93YZzcJO8RxQ1HkQYT3S5vo6By1xBhM1Z3h0mE4DS2tnZmdppJIy03hsPmSyNvsHlB9HWO530cbed6mINv+MVU6ttY6TmekxXqAkfSzQ7O9+8627Dx4/efD4GX6CidQwjHK1X7LBYKcEE1yUkEAe8KWgHWtW0TROsg5y/TMT1ZbOFyBgLyvSdzlraGfH8V5aG5wJ7boS27Z0U+wh0aQAhkWcnW1vbrI2iSkBDRMDmxjvQ5ZK7dNAR1PpN4IoaqtEXmoGBMFgFdbZccNyg40b+hUUqGmx66nr2TpYmjuPbX/8qOufnhze7x27deVOfy/HcA1/6xtfH/o3fp3NUqxs69g66traPtlYp3nE6qieWze6Z4daB0c//tOf/+5f3v/RTudK98gRvU16klZNl2EziMergeAJjQaMoCurPZcIE9/FK28ZBgR5XszIA0dPBwdt8XR20k1B9Iwz0AhaXnjxaOz+9avXxkaGF3Z3+o4Gi6+yFulE9ziJmkbYndde6+4Z1DzErMNAdEsBdnHoyuDTJ0/f/+CjQ/ZW4aa7OFwJTUCU1C6MQSdjCa09uuDMOJBcf826lKnpmSVffswidxdJsTeaErHwTMCzPJvZRBqOOsW2uz3XZpsCUSBiuMD7ErjA7kApJ2MgRGy/S+fOzljxhANmrJvEBJw6cgF5AlkQLb+Wm1BPwNiFunlDMNFEggOBZH6HJ3gH9SoKTOlApGWBYlH76BsGjmejnrIbu5+hXbp2LOh7cZDXBpMsDWpSwc2O4YGhqZFhGAYT0B/mfIj/6dDI//bGPVZxX7ty7Y17b73xxj3Gr8Sxo+Pm9/905j/6B/Qv5+ev0t796KOPmeZ48PnnH3304e7+AQ17GgJWEGeve+ADFQH99dAOaxHaK0UE0uTbHwELm2tvoQuLAT85YYR2fB/7EZwgcPs1KsR+dDSDNNxCI5MmXCups1MOJmG+xfyuDOzjuBKOH+GOBmVe9rVBGbbj4CEdYVw7r6UYvPHmvbvvvvMep4cyuPCzDz78s7/4vjWOFpCOxPXVIirCyNPGT30oDqNoDX0pwFp9Dx/YEMMG4dZMGOJyKCXpbX75oghv+Lfq8pVRStXaEiNM5Wp/iU8kZnlAaIoVdG75xgyRVk6m/Kajy01i8tvO1kA4hyMQC0ywnLqKPJqMeajtTK1LElJZfihChJXNmIJEhCYZAuyTSi1VigmX7qNuXtBiiYoeiKQwiISc0ddzV/+J9GlCKYqP/b8IwjB3APGogWiygn2RtHBOEh5ROnzTcL4CMRmoWl8cmpIC6+UUhZdkBZmY5FClImA4aSCrNEnGl7rMUF0MdgPNCgQb6mGhb07SCpTqjCKYqeqMtkBmSSaxzsHYz7FKYCypqJwexyQcI37IDV+5t7PLWCH9EqwBem6uTl/xhvFcXlpc39jgHi2mdk1OTb751lu4YYzL40ePWUrDYhBsfSyUNgQ08Vq81qeTTZgRNaRhN482W4wtdU8MK0dx7ZieG3njrdeXVjeO9o+YfpQ7IMd/SKb3w9RE4ohogrUkuMkqaA21ZCKyah25OIyKmWM6L10dR8N9x8O9x/2ar1OOrr/71ldYOaz/5s/dOPStaRehqqkWGoJOVuzc/+ij3Y1NCLZzxuAAq23xvGhqhnH0vvDXHjEtIoOCiTRBroTB0aospra/gW/UlCsM6rHiElcn4bifnpplNmjh+dMHD58c7p+xUveNN97+5je/ceXqONtnnNMkqwuYWXUFqH4OMV5dXfzhD3/+X//hf/P+Bz/Zae1wiobjAtFX3aAT9r2gtLG5wWAtM5oMLzHaCHo62tNxXgzF5O5gf3/c8ykj1VpMtiDv7FANnVcY6Ecef/Hxz08G+g6OT5fX10cHOPIRh6FKYDWhBfgcEdXX33v77l2OI+RECvlXwlD+KBATEH0rLNLmGKmdXVa3OfjMOj1W6tGUYWUAC/5aLsoBLEvOeCsQaONi6ewwc41joLVzxEsg9ziaR26jnHSC4SlOGO2CyeUfqwrgfYFDwtIWbunX8k0MCm9LSHtzxlTsyPAgs7CwEn+MbCEkwkcWcRB6TY4nDCgFVlK1mmmJEwCLrwBglUh2FQBFjycmEcB5xF4y7drB0eBA/9jw8N0rc/isw+O9Cc6AZDI1EhmnGTYyeHjcu8cSP/Sr82ye+Wkw6O5+87XXe+7epf34sw8/WOHEFWskBqmzr7vv5rWbb7/9ZTbujwyPDXq4JibE9ckksN3X3c12ZzBg0oP3ZTHKDwNgOU4A5qj0iIbBqEGWlJ8xedzaRVycjC05QqD+hZMRtJpLZLGR7Iw/Qyz3FEcPHAvghH2Yj+WgOUfKdcLa6tzcPIdzAZrjabhF4vjsIVf2jdOOD7b0QDrW1jY2N3eywYIFkXjeTtZJvPba7S+//SWsE4LnLHQO2sxygT727VG6Y/IoROybGHtNOTTLNT7gRq0kgot6CndCHLcwsSGTpzRJdL3xQA61MFxjFe+mCFqhaoXVO95a81L8wPGzmNFSycfkM8tSg4vfKks7mMRE4lHXX/StJXglNFjXz8UzEqpyKlbpoZUtj/WMDB7mSZ7Wg0IEDBQ5OFwGCKbEINlGtqZ1CBr7cjYCHe1qDtVy0gAP41+EViRp0QoBvy8ISQ2sJ1gLRxFt9WmqyQAT0ZZM1wgHBEhOZr/oUMkxRquhxXKqAJJYrX1+EVhBEXGTCs6noVF4XiTJFZHmBp7QhBAojaiUV9P2cvKQRyiVHpbyYCiY0+Zwz6eZKAVTgblA+YizWI55YljGBTsOiR/tHeKsmD6BbP3J+SdsgAy8MLWLPh+1iOlJfDCdLUYuz45ODun90O3LwCDdBWtGcMaIcNArtWVyYpNRZQ6l5UQndjeyB58NAphDTsL73ve+V74cT9w7NsYoKhaacR8XeZ6cMOEsBzP3jjliI//QEJPPTQuGxSuvv3H74eMXD+5/Lp/VYkikMsg3tJ9uUjinoJAe7TxYLjdZDuO8fjGUXojSVMvI5FI3N8uedB0zPXVlcviNu1cnhlgFw/hqi9cWra6tLy2tHJ5+RG9zY3W9l0UQpyxmQTuYQe1kvfHu9vbnnz/Y3dqFc4ctTgk9qsEquZ8PwojZViaUqHI2agDXibHHs7m5BnqMvw3x7jmO1sJISVPUIl+prfaJJ6am4NjTpzRmHjPu8qu/8qv0MzA1GD+SwxF6rwzCPXv64uPtzzc2dhdfrDx8+HRpZQkNKBWCJZSPDjgT6yZsxMTwg4fxOjkqQzAaOL7DVfp6O7tsKp6dmWW61UVR/cwTcxq5g7qgZ5uEWdi+PlL+xccfsX1zH2ls7ox0jaqt6pJzAEzUYdNZ17TA8V7Xh+n1IHVnU1wloAPCxuICR2dmugaGjhlg7B+Ymp2dmp3b5vXG2zsvlldoGsia8QnEtsVOqoUXVE66ZbxllF4SS6dOeK3QLvPRvICDxQAMm7tnmRU9jFPitt2rRKwa4GwrJMRuohI2EUp7+YaogO0dGfNNf6AHb1n2/51vf+vzhw8fPnrIeZP01N2qhSoJkEFRm076IdSYVz3T7vS1HL0QTQxM4Fu9w1ekLN2PU5lwR1OsdUqFHePlJSedlPruV77yxo1bd1kO9p/83wa3Dv5XP/tXSJ1AQgsNTLq5ch/nzbjI2clO79C777y7NTax29p5++69j+GJ8+jUDRdWMowxPTXFIoMSHFIG4bEtE1A+t1RyDAfyvHb12sKLRWYc4BCI0QinSqItDFhlTAIN6z7s9vwF0U7FCm02sAAObrBEE5rArV3eNDcZLFFhOjro3VInmDsCArlAgBYSa/MBx1NGnVklRsuJZYsb66tgTpseJ8wLTze2eWXF8YtFTmandQhsFz5iat588+2vf/09bAR6cnjwZGBpjRdO0JqEPbDInlv4xldWYdLIpmSYyEgD7UsbB0qgcCatrWSGNNFNuKP58CfmRW6hIfkxj9ITf1JiiFLzZAsNR1Z9s/h70PVnvDJDZcFSQiZJ7dRz4A85WTwBR6xEmGYK5c1ItNkAJihBAisBN4/2Ct/OeoMDmIF6ktpDh59IgMO/MWx+2zsQ2fghaUArG6nEKcf8AcPyCPpXFsxAS5XMSJykwBf9WzwWOUiMAlBbaKe6ztcWCANTUYSAKXzlS55oZiEEPSkNByL0kpEExHENY6tPpKE2sU4HdJGRN6gSi/uIlzEUHppEOoFkogGRxlBtKR6DTLTGCxTRz6DFUyaWeES5gkpk8wXYEjKJCv2IvJ6SMrwrKAEKBPkiQl4KjJ+AfCl1yFP1XYfEAHkVAmscy0RaZLVbAVrtgTiBUWFqVlXFjsGIA8YysnwRf8nmD0ce2AvBm+fVmdP11bW97U0NGLXdZSNnN25cu3PnFtrmdp3NzdW1NTTx9mt3Jq9Oj+yNvvPuu+yCYBiN+aSpycmRuZlbeRv5IFw7OqZ1yzv2PA+WycWseOQ984wFdvWwkLJh5+jYEOcGLL1YPNrfU0dkg/JCh2iqY3GIgRB4jUSZna9TOWhI0ZTC9SEpeCE7FJUpgYHRoAd82HXMAquFJ4//+A//YH158fhgL4tPWubiGOGxidGJqaHhsXfe/RqkszLG3i8DYR2dz58+s8/BCmqahYziekQb3LU/4yqG9ACob6Ck+qEwyqsqtfgTKAJHs7u3zWkMbEbCVlJ7Obkeh8eCMgtSLVBcawq5Y0y7Fl8swsnf+73ff/Tgwdtv3xufGOnu7Gd1zvLC2vOnC5trWy77dYyZWtk/0De8e7gt2eR3gNc1oR554uuPumlUMaTLalg6qQzbssOSLbPgjHVGXnR26Zew/G50lMXOZ6OjE2RxORJctcnXzwujOF5tjzEp/CGj0zu7KlOpRRpKNg/POldX1n7wox//m9duvfbara7+AdiNntG3Rh+xsqMjQ/RK+kaG9rfZit0/c+Xq9du3WUneevgIymem5zhLaZo3T3d1MRpMr+mzzx4wzeH255EJDpA4bkHKDreDvYD1tQT7LKQqu88MKkKh4QPp6X6BXXGe77qGWJUhq5dpaHLeNWrf2vctAWzFfvutt3/7t3/7H/3jf4QE8eoT8dnkZSKc2ZbnzxZgFXaX+VRaKrzZcLAva6GZ1kAXCL1ssDVGwVOKtha9E5/c+0uCsbO+6/NXv/bm2yO9/dssuBsc7Rs5ZOgD/xZ9baoA5ZohAS1cgn1j47NXrkLf1sbazMTU2ev3xrfWO5Yop4uO7YPP7q+vbTDCzLo2GhP4NPR0dXUNAFQYsBoZHeM1w4z0vvvO19jk9bOfvr+5uS5DurtbjG+dnTIOZWeTuSf0MCZUTqGKqUjFSa4dXZUygs+RFOrF0QDcltc3vbWAzfpOorOrAqZhH2gSoWaIZmJikrkvM/ZQm9jm5jvvmAqm+c9YxtOFxYePHyNJGMDQDXrIpnA697du3d1kzI0DZs52xieOqT+PHj5k3IKKbUcMTmMPYAR+od5PEScEATqQ8sH6oLgGzDmdG25BWjbLbN2kygMkYoiK7CTEC+2gr2ZgEQMr9nt50eX8laucQ1ItaThCA5Oxk/XVVQzCqLvj+qhNvpzbLUIW0MAVdhNglMURgkQ7OhEVd6ECSWQjgdHti1xW7gKiKNqpKcnbFGpnQH9NDI8vcBAdbRUNZ/qLFwgUHMqBHfTrHddxMkX0ywOR71KAZTYGCKIhQ22thFYcZxuYWdErk5lQ6+w3PUmzqXK2MUGRPEGy0Ne2kI6vCIBHOPs0y6wjxItT8Eqq9klYFtJkrGT5buPvMxE0Yz5SljiQT1uGEvGgEiaWYBU1kV2qWdQhOYTDBzxMTLcSQ0scPRtRjsNSqfQEGgWBNflSZ7K/1vFnKqBVWAtydEQnmKexZNoyukbPnj796U9/2tfV8WucNeTArPaafX50grFz9BVoTdOIxpsPDw5TRt9I/1tffouLzz77DClenXcOEwTITOeG9wM8/eQ+5zpeu3OLWVzaY3TVacCvrW/SQ2RCOb0LZ2GvXWN97KyOH/lYV/UnGCnRy4InL5AM+wvx4mGpRKMvrtGhxjlZy2N4BDLhA2NlA4xZok4cA/npx589efSQ2S6mpXr7e9lNiy/cY03VVqujZ5iVNW6pOGBUk3MnuiATfwPlCItqxofWLr7XtkBe0G1RcbEU1DjRcJyiS8B5DiamwmdyrADvMqIRzVYKnDFnADsC4KlDVJdSL5uzrKihLb26vLaw8Jx30v3JH/8RmzJ6uod6uxmlGOzBGjCqijPqwb3BoqPt3XVGZNllSwPc7mDTvuKgDk8KIwAaz4GjPjwcxeVgIPA01kPXuB7yFh0s4PLy+uDQ6uzsldm5Obw1YxuMjKJ7zEoyOY5NxB9AB/pBH6t3uK/0sHQLYdEoGx0f+8Z3vnH7zdcPz9g1hpowxW9jgM9AX+fE5Cg2G2+DpoIDm/0h/M6d1/77/87vMIFJ+w9aWMQDa9mm+/DBkx/9+GcffvwJWwP66cT1sM+WOVs6HSg7Uye1iRRzbZtMzZf71hjfvJNVVJRcgUj8DUzAE+AP6PEzSMMjhLvasTo0fDg+OfWlL3/p5g9urm9uIjhYTRYoAjADPcBGBzaPNtZwa6sr83Nzc9O4ulkAwkPaolQf5FvwhxkIHh9n5Ik+ErUDILEY9DJ7bk5dvTI7f+orPU+6h8d/+D/532xsrX308NOF5aXa9VEQWI/9808+3G7tYqWo1vTUf/s3fvt2f//W8xds/J+7eoXl7JOP7vOMNsSdO3dQJE5CX3qx9PDBQxrQc/NzRF7DYtjaYJkxQxpUNLdEs0rjK1/6ys35a/c//WRrY4MinrxYYCk/CxqwuDAEFY9HI2s7UI90T1alCL+Jh+0McJAFllLlAM60IQkQAVWe4WWkAPd4SuOegMKQggTDI4PK54BGC+sU6KAf9jqDzFTE6ScffbTi8SMY4272hP/t3/rNm7duvv3mG7CF14sdXuVVGWybHGAYCYONQDHtmj3+8HWMKKUZgzPWWDoWyTcKoTsnhSkJdKKqb2k7A2Nx4WA0s8JDqQFJLj6wjZUKGGLk03tl/jqrLmi98U4nOr89fQNOBlksg0lMjjGdzSlz42xunJqee/7s6eraimDKiIdtUVKuyvBbezTjWnodkD6JO3iUD6nC87YgLv0KE7XC/9krceScHEKzAIFWWutFc9lExcDIMuuw/TcvLwFOdr3yKXYd2+hiBZgniaZ8JcjPMFDXwGCMjA8KQiSD8DOXX2431hwOa8lBhH8NPGtQXRCqKM0lQ4IsKSiOmDYTwKQcexLmq/0oDrixnULQx5KZ7zDEH6HmYyHNdVLoZC3mnNlklChpuQjRCKJllw4cVXPw2ZY/0z3YLeYVGYwCSPq9pqNBCO5lickVYvwmN6zf57yblIty0mS7ceMGY3E8oww8zO7m5qP799//0Y8ePfh8enzs+OoEqKDlnH3IDCgo21c+OGnt0Jva572qODDpYKRxZOiNt9/gGEsr3vDIwM6ag+e8/XRgYGlnZ+nJ4/7BAdze2Nwch2EV1XRkWNmL+vD6GOoeyjQ1PXLj5q0Xz55FFqiAWgAt1ENHH1BSfpVgmi2KXEnKbYWuYyR5NJlc1jrkxDA7xgI7ce9LX/72N7/xyccf854EOc3KZ3rqY2OOy3myEuzpZuklNoJmPa9d5bUKtDBkGp1eTqrgpXV0A+37Ig0Mii1JSrNEuQ4XQFbFyI9NUNFKgIfRqmP2Lkn0zqZ77djqzPaUJuhTtdpqaCdjwqwy3d/lHA7a7IFHTxBLzhaM/pGh/hHGaDGBrKfBvtCZ83gWmkPsk/awBHrAVmle8C5mWC4ONYkz7u/vGdFcMfWwn4I66BATqC8c93F4vMobG1v7O9dv3MLQ0IRjwlC5sAKh2c3rTiq4wWwXREcnNXVco0Jfefcrd9642T/ax+uanQdWKVT4pkPuqhonNrB8JSBMM2dqwrj/8v/7B0vLK0iP9tbExPhbjDy+/dZ777330Sf3/9N//Purm+suGuT8UHwoA/gsKKsB6L09AMJYuuzQG0oBZiDS+Cz8QcPxVfVNQ5M1R2gFTyGACw4EffDo0QLnKK6soGTE22ylDDprLC1ijdP+CKA5aIKhgqdbTzjEm7cTsocKJYdvDF0vLr5giB8EAc7IwfAYS5LHZufmWZDIZLaiywmv9954Y397l1GNke6+2YnJvms3mdD+dHd/9eSM1gjyUX9OT9fPOp53dO+4PgAkzlCIle6u2zlSiukP9hRNMBMwMclDBlReu3OXlfAME6CPIHb//v3Hjx/zyuB3Ow/MjcIxF1EbS1zbBk2dOIjuu29sO9m69WJhqbW1x+kaNDlJTMMlU8/B2OIJcKjcSGQsj2Ga1YxfwKHBDI1lXgPX24ffJdBGR7IIAb8LMzEvRDqU8OwJI214MP5Y/0xLEVBYb8SEXV5+sQCuzB/g2Wfn56bnYOEcWKFkTDVMjI7DVkZHMPWsFQVFtSg6KDaMtNtO17YSKdJ042Ro7gGiTog5E9ZGwxz+k59YdUcjjB80ITdYLaCQTR3OeWHdDFpxRAVLtz1EHYurglerwjVVHrLdyYY4Ouq0dK9cu0kHeH19OYpGUYVAAz2FESUBjMnGSGSImmqRct21QksCN5lxXuWQUIIBP72AQUtTkc19HJlyl0BHCNopkzplyXEsGIVXnvNvM0k5z/mmNUynhrJIyQM0pzGqss1I+O2FzMep2pohGUWLUrEzg3HaKEnUnBeyPCQv3kmgJk+pEYhYB0ZRheXQ9BCAolQs2lL4z7X5HYL+GwTSNQD8qXBxJY6CVQ1eCtxq30KQz7hJ+wwHq47BxxOPwZC4GvlSXYDEQ+BoidPe4BrU0VS4deQhV+xF8Y7JU84DmpudxXRTB2iRbqytfPzjH3/ykx8tP39C+7+1v9tq2SEgO87yYLfFHBGUrK+uP3/6HAgjQyOsJbXElgvHBoeHWLmL5N3gzkBZArq0v73Nwp79rS32HfQy79s91t3ZJ3tZgts62NFN4js498p++c0b1z+fmWfoz1elMcycsWDP/tDdIRTnN2WWksuflUXa+DZJoasXdpAQzJGggursnJ6Zvn3zBqteGdNKP+mMw5nn5q4gZZq29GfW1tbY2MIeX/amInL6PPSWwG574zPmqOz7OvxsgPmUbXdVs2aRKbYpGzTRwkjF9dd6apWQK5Nau3jL74FHMm1tr4MY1pyN2KNMTjIaPjbBNuscB+jelbNjZtp4GQgyxULQWejpZ0CZ8zTkAO0i4CCkXR0Ge+eH+ln80iYXzcBGnGCx6ZLR2oz6wjWmV/H6o7RLwIpTj9z5QgcF+TFZf7S/trZCUwkKGbHUhmUqEc9JPxTcXRUh+tbt0M3+MArvYtzivfe+ivyxZ65VQCM1XpoystEHtw/b684zqq9qyQHj2wxIfHL/4892NrYpCCSo0Sgw5ptNSt/9tV/91re/+eYbb/7zP/pvOPCL1rQ1l9OpPKGQrVh7dEARumxQzSvAS8XBN3FYf7qnCJrANXvcuUD6Q/1DLOTBK9PQ50juH//kJx/fv8/27rkr8/CBzjVkUuVoDTBrv7K0wmmXDBKQF2gUwwXfiIzqRXq8C+nxvkxPgjk0wzGOZgwCHnvCU3zOjWvXN9fWlp6/YICddigTDSwh841ZW+tDB3sMBjDshF7htBhyUHWkgr5Xz+bWJkTMMoOeAIsUnFOq/bxXgy4328np5uJZ6Skykg+EgewSBl+4NNQ10nkMH066+1zDiHsbHRs72NvnCLaZ6ZnnS0uo9KH7oWC+VaZtMChBJhCZHqR3/IECV6o/BpfHGlutcHEDLiEU2pOMh+OPuYU5qUE2jFK59m/cuEmH8mQIzrmr4GxAa+5gCYYMvXFDRB/zXC5K4Fzyw8PFhSVMwTtf+grz5iyT5n2bnIqFolrpNDRApobpbbGJqqc4E+ktBsHDBwAqLcTige392atLs9GkaUmTQHL8zzes0GzYhaOnaXJbAtpcX6bN5FGnc14Mh6EDVC5iwI0dViwpgoU0pVE2DhWhgUhVAKY1pakugEuzIEXK1VwQKcq0pGi2c+G0vfWsyRb84XbSRznMdX7hTQXo8pOQBAW//ZhfHhMk9uWQCFHQSbDCx0F7UqASBPohaIbsyS3Z0XIS68nbyV4Glzt0GP4lmI7azXX4nF8gFCJFV1MWoxsVqmTnF3nRtsIl2UsBKrlXa7Qq4iNxlYQnPFZfs0zUMV/h+zC+mEe4EVOhwhDjshzQcd6A5kTEAr3B1lGBJCQrT+iC2e1Bqnwx+xaisHVoB+AFi8KQgNSWHuyMdryWeNSBek40ZpyTN96898bE8MhZi5cTHB1sbz794MNHP/np1tPnHQctjCdLTBlkE2coo744fHR4sLzy6aefUjhVntWP2EQS0O5eXV7m1QYDE8PijZ63Dt3ySKE5nJZpmvXFBRY4jc9MDbHfKehLMhs6aZGdMfQ3xDIguE23492vvrexvvn5Z5+ydggj5OBYfDMcBDAKBmBnc6gYsgiCcIy2SriTwUW7WOiAw3erEiLAOjBqx7ZMPArxuFWmogeGhnAGVm+8GWfu4A/GcIZ0HzvGGQ12h+4DKmp8r+PPDrrk3CjUC/5SAs056rY6IFowBNgMBINdTuPgl6ACR6fDICUl8sqSMe+Dg63dnXVOF9oao58wOToyng6xkwgu8gE+0G1l0A0/QCURMDI5PN5fWn62ubfe0evrN1goxzAvcicBBYI/A8A4TjrWFEx3loAV5SBB/L1zeCfH7Cajo4ahlId5AQN9WYhiiROdHAaf0WjmummdwDx6LRyKAXW4omIs3+BF1PTM1JUrc2yn5jhOzqbRtfMluSqPJ70dHAONaUHmH9juub64DFfpd9Ll/863v82498cff/x8YQGc0dJHT58s/Wcr/+pffc9mMsrBtuCe3j2bAjijfQ5kcC2Ph1TJBrpgOlxrKo0Puw/uRuaS8oHF3mde1JNpSBKx9Yg42nM0HBlyOeQlA3s7JB4cHuTIEHnsYKkDRWgo7RT8x/rAIErCpASHA40OM9BOJ2cURYIJdO/oGTOtQKONIugiMXYH+xmsZFLdpiZYyIEz+uADc/OIc+XsBT152jsLK0sbzMczBbC2oi+qoMrauoGvtLQACPylleWvvPmViemp9a1NmsEMJgOTBgSdQvTMMUJOtRvoY3ScniXvLxj/xJ1UKDmjprStUaCARANVOVpDh2dHE2PsArj3+bNHnLntBru0LeAP/uPc/atBVafUZIpCs2S0dVAzwlOOiq/j2XnewTDB9vZODTbkhQ2nIM8tWVAqAhldFr22zipOVJqmIVWPHep8zcxOP194ikyZkLpyZQb0HO/tHxodan3ly1Os1l9ZXoSdDHdsPWVoLdtgbNxq70RTN1xe2Vtkpym2zjhggxKU9faBNU61sepRW+EONhGvnGqbSiO1JOBR3AfP3I0Kk1BkRpkQARPd2FStENbbFihFRXAsLWFvNyNovsFsYHfPHQeOFdsEpWx4q2gJ2HxKSRAftl6CI+aZszXAiMR87CRClUqMiKVJB4jhyEOuFJZox0gQ2cAEMlUSblAlXCtD4BEwmnGVUG5iRWo2yQUIETxCBns7pKRCdZyOyhDIR1oeIqYxdeRbW8dgWMygLV54CMnkAUzoImVKjE8ShHToq3zqsxgNMooLdU354KN0CNgMPtVugj6QKn4Y40fX35QCNBqpli+Flik19Qm7uIZEYKKC4EkC0hIku8mW+3wJAFnjVsK/PJcpBHAvrLmjhoKx30LTyJAAyEiJC2qIFHlcnD4ebpFK8nXHHjDGkfy93YwK97O9ndeYXJ2b4+hIT55hveXq6vNPPj1c2+jm/d+O4EvTQV5HKInsz+aQnp2dZwsvFp49Z+EjRhy4mPUe+otdXVSso/3DGwO3HUpmWuCQlzFYMHgxQYjRXH72nIGbXZZozc328pZv2obUJKoxXWRe48p9Lyta8Qt9U7PTnARJm/L5syeMOuJ1ZJy6oogZt9HZykRJBLUwQPaBMe2aahPIDX0XadBRuBELnZ4QQ4UIRYdzePj8+QK7njFAuClsBCuRpqYnp3kFYQ87N5h6W9ze3WYLD1sSoyiqC0aaam11kK0NHtQpkAq9EUSEzFc9F9+IFUyiIGTmzQcqJRGqDwx2ntnzCjgsBAfMe2M8dY954p4zHAaQwZdGN20V1iYxzsmiqrXNld2j/sEdDPoxXQdGTCEXzYBm2AGBdKIxwRTpPtPoDK0cBr5RSJSNWkTfmym3zGYyokt3mQPR8P2syOP0wSPbnlZKTTR38cdWeNpFIGz9N0DvGYOrv/sf/8dT/2xW0VQkjFG2aTecnC08W2BOm544AzY//P73wQfnBM/p5C0uLbDDZHtnCwLBX2w72DC6u/d4zwPBmeRgmdlg/9HQwNH+7ikNtmrSZbgYNFwVx/iEC6fd4W5zhcETdtMxMhmHwS0rqjiPggnaSdaX9Th9OzY6ho99vLgA2Wx5dI0Njk1hQl+CW5X6WBp2cnA8PjLG/D1PuL0yf4UONIhb187ObLfRbNvdYRZ2c33z5s0bd+/du37zBv4D0lRPBeeyPdKzrv54eopTRZdWV+4/fri9t3PIe+s9bo2Ff4yno1iOrPAXQ+SxMzR6P/r0U2aZ33zzTRrNrP+G7cAEAaoyCCsAemM5fg6vDCd4RAJ6pUxFxz40MtIedHRyeuru0f54T/drb74+//EHm599qjWhSDt9mld8LIZbU0Z1Qn5lPqTED709gFOZSMyeMRo3teYA7WaLHnu1GWMIeiwX7ucpA/VvvfUWq8MohNcVgidKBZ6kwZwwzs8bUNFRDrJEFRgFp/ClpRfzszPo/9Dk9Je+/PaTx49//sGPd/fWx8Z12CcdHlBrAxeriC+wh2lNTCAqVKJBqGXaX6guzg37q5rykbtk0y5BHS1pWXRphFWybeqhjDoebmkaMVTH7hzG6akye7TG2D/NUX3R1SP9BYbXIZMwENbRoedIOaYVZHjxjTJJRt2gr5Rr7RUFgQ9YWJmQq8tjaAVqtUHSCiSqViLa9SKpvaEQrUqpFtGClSiz5Fri+MRSWkAJMWT5BRAG+oUkr0JhyhLqGQuAPPaTN3gzKnN6NKV/N4tz/lzbOI1iAIiaDZexkwwG2d51bW+hgRKrU3g+qbclTJlVvmQBERVGhYKtcAIV1QIrWE+rRQJIxn9k5UUhWlH17UMmFfxJqELad6QxWTjJ90W0LLkcRK2pRTANrtgGT3qNc8BAaUlSa8YCNnSDOg2OVkVaFWYnUAbioZYxnUcUgzqKCaZAezg4MT4xi/GYtAlPlUBjLIs9+KjSwdEqy2ufvujcP2SZaeTDhhEGgiRQNrJFZGPz/kefLK2t6Yz3Wy+ePmMpEXsJrpzOUx1Yq7KxtDJNLRkaQqV0aeIj4+kcHLf2O1t29PZ5fc3mBiszOXjpKBYc5FARLCb/aDazlQw3MZP0lXff4ZQM3p+LTsg+WIMqUJeQkQqLS5Pkc97KARu7+DpFC+XcgABylQt5yz1bHRijw6qTAJu/tLiIgcMPsPSGrJgM1uNcvcYqm1F2+KxvrD99+kTvCzEugHZ/oQUkYFS99i0RDklBKFx0EEOECinZRnXhlvZo9Myc4sa/AbScMjC98SoiDZLd3aPd3S0W57BeenJsklU/gwPDUMXeyWtXrn79q9++e/e16zdmOcLv5x9+/Cd/crSy8ZTjiJgzY0YZk8cYCXjhxegQYuxQrrTY9JeYbOw2CFMcSagHtG+YPKa1PsjZW5x74EqlYZFJw6vMt5jaJ2QoPCeSMVzMASTIILWcjcS/8Zu/tbG1TvNr9fmLsFrmpz/qa4g41xfqp9+4d216+ic/+jGDtnS4KAJUqJqIGIl0dq3CTQQFbohMHtLSQP9RdY7g2DzhLC/Wj61vr7tKnwlpHh2fDtA+GRxgQoFzVZAFgiaIlcGWHUqOrQcZinOIdnqaBW5QDpegh14/rUlP4YI1vR5wzS9BahEu9HZ0jw4O9c5f3RsZZ0AVOCxxmJ+Zx48Kc8gS6zzwrc0NmH3j2rUbN29evXF9YnICOAgCmwA06q9qhhNgOfrUFNuoPnn4+WePH3ocDHLqsWtAK8JuEhVddFRaxi1QSNrK9Cw/+PBDdBAC1HvsddRbE5bWG9TiJBjqgF5XtkS9cd4AQWvRPnjBB86Skb1kC2vrAxMT129ef+/b33i6uECnFItJ3Qq8WOYYaU1Lqhi5EiicE3s4VyOQ0TTGkTiRnjV6jDn4Ji1EyouEjxYWFnjIQWYghnAZY0EK8JzGFAP4IYo5DjbIMboGSp5YyfFYGg0OHzg8WFlZ5rUirUna7S1ajwtLn2/sPGH69e6bt6dnZ8/6WhwogsLTYFdRxZDfhMyQqNeqv2pfT0DeWpcf1aPSeq8JAUkERO31uem4o3K4+oHKy5oIqMRnYW05MYH9e2qYh39hHgcQ1t4hG6s4SOaQoXVGPpg/0qWcdSAL1nCihLoqO4uaedy0RZ2ji0WhQUoNdTQPdotasLG6gUYQ1wE2+Adl0dagGSS+rrwxnN9dfnIeqWA16WBFpaBkItpZyEtrgwq5u0PFRGBoFce+2NDBzjm3RU8fF0yuBjYayGotzgBnrOYob0txuRAcJd0pk2eBDKYNslptJSOi/odAXHuaezzEWtbqhza6bcza9/6+GmcjF7dHqTyj5lTa+qWMiik9Dnf4qhAp2fbR7IqQxhv8wnpKAU3ilQYMEDajLFomO7toFgK1U5WCJIV4bm2IMEyIhXLTJNWhfAM1j+lACuJwtz1YxkjyWscqGsbLUsY4gRKyd/e3Hj3rXNvu2T/qZcs5C376+69evdrX2iqKUAiOwVpfW8fhDPIaB9Z+UQAgsFloam83g3IMLbJqly4CMxm6q/CKNU3gdvvWrdPlNUZI8agrLxbZWsHwEiSSDBaBPu0l7BEDrGPj7MCnMpzNz8+98dZbbFZlOJTRUnSC2k4GZZcWUluI0F7idHEj7ERdgYkxrRqIwaAfDDJQDfmupnn6lHY6bXMQo7ng8GD/wMLii9WjI6oQq4DRk6WlNVoLIMjiF4ws3+gVfFZWlCfndfC0X2It9fH2v9zVl76yXLOtyg/Y+pD5bHJJGYLzBzBtfbHzUTHwE+hgTmfogHfbbG9ydqNnLJx1Tc9cuffW6zfvXnn7nVtzVwcXF/e2f7i+sPyU47l4aSAva9thyv6Q0QJ29MFaZAjPXOriyWK8xIbehm9NIEYOpnBKQ2U6ccI4ZrhHHSOKrjhykU5RbCpceF4xqiHD9elaSNpbb72Bs1dZrUVyhnRKhUIwVmks0ihgWdnajRusA0Zj4B1sZRSCJgEreweGRmSYGUDezZQsGEaUnLnBXNqpu44OOKOa0U8tvlI55vwOFGJ0ZJge8MH+GqUQeAp1NvvoRthDRSSsxR0GBRavMm5APK4Ui48n2MLqb22Jog0N0jokQy+zMIEHDH3T4mDYmTfJM49LPFPdTNzQTEH0NfHJ+7PZ4Ms+GVaKT4yxxHB+nHlZG4qM3bsWNESpAfRYGXuAaU8/ffHDD366vsfBZtZ9uzTW16SV23pfQhpDvkSSjf2Q9oxXNO7u8vbAG1nmLYcxi+RFtfiL/7BQNnmn8QQryCVtkUijaULvWmEp/gKbwWbv3bt39/W7P/rRJkKSD/CttDBZKKJCMcQmMMuN+h0okqi8Z4ULeIu5pXz4zLBFxTCnDpNxxmyOAgjcBh9GYdI7tyJDn40r/O3BPqsdGUEBW8p3liHj4XTfGc/fbq319B/fe+s6q7nHp/uGxzvf+tJNtmA8X9iiwYT9UWUuglyUFpvBquD5k7oq6mIsfV55/Q3VxIAAT1Ec11n09jCzsOGmalfkMXwC7bgnZupZQUm1YRszpm9vZ482HA7WbiBLPlnZm/1ptJ3GRsfX15ZgedyrBZac46HoJli5iERqND0jz4wSq/2iR82NUMAvpt6qCKaIGD9Bm82hHiOC/6VfYFZU+wHPLoVSMFTmUlxzifhtBLV4cWs/xhiJUAh4oF00oQgMWnCOXgrVHtDoHOOtcewl4dWVq2vWONHDdOiexKxt4CgAXEGIT+yoPTSXT2MMYbqU6ZkvhxDRZsDlB7k+B0xrAv3X1hY3qDmWlUDK8BEOvwy7DU6E1BmZjbXEv1DhqaJO1dlnsrHGJ7h7kzkEmyyyD5FJjvWrgUf9YAiOcV2iaenoHqvzF0Q4RGFzi82sjAazugd7yUjs5Ni4DKPKLiyPrO3NHHassRwW+F09s/NXbt2+2/v5h2YOIUy8sYWAKshY3cj42Otvv/Xa3dcYDXVtKm/25S2hR0eLCy+GB0f6hgbgAjwCQ1u+vulhYhbzx7Kg/f311RXWH43MzaNf1N4QYFroYn6I6sOOUAQDS69eu3Kw/xZdoCXWRTuixCoY0SGLxCNnhpAcslBhdQuyDA9sV0amcBteIQ1EwOuP7t27s7qyyhoZEEC/WZM5OzdLVYHAk2egf8guFRIvLG58+tnnnBShZWS51F6LgU7g86i4LYMTFK22mKqHpv7/WPuPJsm2LT/wC+WhdWpx8+qn8EoBqEJBtlHByAlHHHHA70AOe8JvQOOAnHJAmtGM1sYB27qbDaLRXY0SQNWrp9XVN3VmaOnh7uEh+Puv7RGZ971XsDaQJyPdj5+zxdpL77VVHhcDhMvqfXKEOyYZaryM4XRf/CnqG8wJ9JQdpMUfzJkhyg0rl8Gw/+3Y+N7Rwd7h3udffvYv/sV/8kd//w83N3Z+9JO/fr31EqdYxyvkZ3U2VJQtSUn+isNhMgqdkm6cEmoGgeF7b4CcHxkOyCIBaURZMt17mD2VpCQwwApmFV6hdvwnaAy5fuqs/Gd/8edffPGpIssMKArU8SGKRCETcuCTe3cfGG+WRxdQv5aXbGYW2DKjyvocHrdLGSyP8OmUZcMLU2Mz/cO9/vGR4bPFuUmblc+Yj39uHn6f50yRW4llJwrLzOzyne1hmHm6MVJQzdfNHZwyvUjcECL4fHR6ZMeVlaWVLKWmYngkQYcuzpQtOu3ODHdWuh8cdecuhQt0aYI+BYJK6IivJq5PfWiYgQi94YX7s+tLy+bCJd7PlguYKPdS6Bo86a1Ci26paYYGnlmmH//iZ7/+4rO+MUUcoQsEuYUyJJeSx8Bl1IvVfE4tEoRwZ+K9Q+dNCh1wSZRZ1muQmWQwqLdbR1loPt1RLU3glCIxYJN4Y8itkQkk2vsCt26/fLnPv37nwT/8o7+/tbFp+nQIj8Nr7mthT/JcLeN1dp4aDMS016UuFdXcqxxwdDBzEIked5ZpnF2yb0RDQkziSWYxnp2q38+1tcS6itTpssMw4K2bMg9RW7SHK8zJ7w4OZ+aG8/PTVit05gQtDhaWOnfvrX395KXzVHLm2tVVkGokXwo9G6uSwQiVJBDtc5RcTXkfXr5qYn5CvmfYH6mh1ITE7e29riOrOzMW8Iv2KaBtJNLpDO0kfjFcoGsQSKSKiUYG4mOGYAla2A+3CDq+njQJziFRTS7kiCTF+rYn5DWeYoOuARgJDkA11l4Q1oeMubQOU5WVUYcGlzR7kabmCjen0TrcV4/ai9FnpDnXNx76gQNksgkb94hoG4UKi6brYu3ArRs3tTQurrhOJD96m4XR0celNsdJaaNSo8qqfKA1mKv0prZxWRbsJNyRty0BBVFkQpaUUyV5EDV+BWdy15v2df2ZOQ5+lEVMw4uKSvOwLKSGMKdv4KjUaUD+V5nQnVrRnvcfZRVpDGCxLteMHkTH1PsEZSOXe9o6MQKqFeMlRfjPECUfiXdWXk7RQ+mUsRFGSO11cYodAV2MadSuVSgHR/OXEw4NOMheNhNraysffvzttZu3O8++BJuCSzNHq/aPj7f0Dr8ebmxtvnj6zLYGD959uHpjTZ9cfXaTN0xlWkVmwiTjuFPL1m52Lo96Jp0aWjDtuW9m5/7+zXfsHBJF6YI3bRJ1o9c2NjaF0cRz3IPk7r27RwfvHu/ung7MlRWXbBSVCWdEYIKlcAWdgKyZjE3LFD6xMFpDGbTGLT44OPrFLz796U9/8vXjr6gA/DRzsOcwU1OQyb8FOapdXKBcLr744slnX3zVc7KBbYf3j2jxyExaQ9uFOlVPSNguvqG2RL9Qveme6amrXG+MqASeZv8Qjo3nH0shb3FO6I1nJAu4igyyM54kgOPMLlcS1Ixu87A3tl7uH+z8+rOf3r//wB4qUXGnzpmZNBtO98gMOYWWAgpG1eAeF6hdFeGZqys4D3+3K09FX2Ir8gAksGrZlSMf0mI/E8gGT2DMhDgm+qJf5xKWqjs8OtrY3Aw9oh2ClrQhVeQLWR0MoPdpipspQqbyKUigJ1O9l1e4jNZnc1uYrRAw2iUC3mEsjKV0D80DvDjtW4B1gVunnKaQtbSCGzxfgT+LulbXbpyu3eAhiXBodMSjlCmA2xQhhBZ85m3eWL+5u7e7vfP6cO+INSQhDp3gqyf6m9igltq1ew7Q/dPxg5NpnDXjJK/54A03onLDJCNEELQSoekSyOEu2CCLf2y1XpevBnZZ4CoEzcWuks+9w8O//cmP/uIHf3VwcggFQXbRBcCNOh7ogrNI0OVkbmyAaDpjUcY1TKObXpFb9jWHUpswkUPCgA/bCrPvpsWy8/NqBLDmWyuOe/BUsFLdJu18uLq+t7V99PL1Ozdu/L2PvjX8H5/+v/7z//zw8EBCFYEEt7jQLxxfSgRgGAZXII6H4afoRtPxdGINjo6LM2erjYlJ403lRhPIM31lkX9gbGxuCel4OzyjHqKsjXnUGjwonXK+teD98+cvF0194Mr0Tz/99DOOz7c+ftceYrfuLFkuwNKZsc+l5KI4g4R5joXJnyv601eJTrhcS4mhjkhpgsDZEiRNSBI29r+wHrbO41x4P7pIkzVOpISnroq2/5pWp1M+PXtMxfkb9Ha2tziE7eDEyekOppYYXXjbKAhByL5mvv3CQk8cEeVKXQAgeA2nqjd9xUQ+ywMrEjEHEf2yXVISygxTjIQpGZtxGQHcvqrAdqvE3OQzujJsEW1YpIweCdUKTyMY2qtoi0otT+teV7Q1CIqR4iGxsn4Ejy6V4GZBncRYp+kRTxLuTxHe4hwIVJP7jF26krGapPUyB/UlGgpJmCgaIcqKLHrJoCVPaig0pZjrUtKw+qskVGUVK2lxavCJetH4/jxEDwyaH1dXgCy8N5AbP2i2pwABH1qkwkBFGICKRNlLLLJBRSEI3q6JQIoU9YjZBnrpdHsXZXsOUVBgtZoQzy1C6n7Z5c5mBfhy3AIkLp3RvizEN/1DJ48o4C/7g3Grb334wQcffSuqpNZZBZhzY0iT1ntaeTw3e2nBgRGyg60dGkcLB8d30c2BtSur6zxbzmQNxCL1+MziglO0tx4/PT8+NXTWnx2e8WQN7/R6HSqm9oytHoNKglpu/s07dxgWzU/v9uLCwglrB4cHR1AUbd6ZNR+RXmmBZW5+6W6dSwaPdxayywU59EX4MbgPTj/74ou/+LM/++yzXxhyCguF6OOGP+13iJPcmy0StTMxZp0kMJQoWKn/ZXYJ3TE14wTf8JMB036fZ5yze4N6C2/sbTvPQU6PE6LpPl3I2kw7c0RDptoFgrj6SR+5dA5oKJAykIJdQTzRRFdUhggaLk4y/HkcjSAj+xpecmrb3vbWzub8HApmX635aXidEC4Lo2SgopqcVrP9OtRRlinlm1fwFB0bwZAjnmNCv+HtQFHInzCfs2W3G3UwWfwIU5GWYA+BGAl5eXI6+caIpOJvptQGuqOQpiZv3rDVWqYN063IFLOeWX3nDv5YX7w5ZVqLEy9KJiPBgCof+fhwb3CwKyI0Je3kZc8YNN2W1xyCLAGycHV3e9epFauLtjG/vb9/COlBIP+HXKdVTiLSI+4smHm/sPTFl187mQBlfv/3fv+oPzT5K4vbkYwBnpo6G7Np242ltYOxsb8cn1o6Ors3PtyxA9XFhc2/0qHUXdOrczHDGAYYyGGzSuf7ChTUbNua86/5cYN0ipwVFj7c2t752d/+0DDz9u72D37y1xv7mxOzlGzUAGajihq6ICykQoc6qUyfmeLTudUdPtcx0YGkTCznq4UJkFlTjueAToVnAY6gLgf71AEixlbHuDu8zOX1ZVPnGHuTGCbOJpxl3z906tDW+Mlg87OvH9y8dWfZJqE3CNX5sXBIBsCawAS2MEhT2eGTKMMsiXaaQl8EjdAbz9nb32WCkZPWmp2buXHzfTuMffbZZ8Z3cOzyspX2a6Rpc2vLvELq2iR5Nht5xsdNF8hEaA6QBoui8VEMErDKtNvTZ88MJP/s5zf+4A8efue7t7ju9pIzKEMVWOku6GBqHv8ckO0CngvIBJ/kxNWIFME+78gb8BHD6NiyIZoG5/5K3ZfBCDmoMGmjWWKCCZsi0YIbMTdjSJQsX2a4xJwGsbhEGpzjNAlguqE6A4kkp+MBHVA5leGPG9N2bbm1u7MhmgUgzK0Qa4mvrlIh1QaQuyg92iJNKVErnagtwbwsKQC3eBfoqWRuaMw6xREbPZplrMGl8jU1U9TiVWgPWqaIMvYhamQfOqrUitmHvAWWhxF6fd/KMnoIWZiDXq0ue0BJ0RgmE9YS8vcH38BKK8MQ7uKDpKbc53FVWSoa1Emc6guIgiM6Wco03vM0IkEKbdNSqYOS9jjFjS7ISsGaFHDiDLy58iAT6ppGyvPCavwdNbmPnCoreEilPrO6rNJXZWlTw25SA4J3oGpg8D15xJfngjjcPKXJFdLCmkJDt1wR6fooFMSBBZ5XeMFw7tNnT5fm63zTiU5vf3d8cLIgPjU1YcHDt7///bsPHtkfrmIdwGJbxuwDOLNodcyC6T1K0IEmXeLYlmrYTMDprMRteXWVFhnRoAHgaJvhZe/F9uzJeSdbr+srzDATui+Tcw4WzXBlCUPI04aVWR8WSo+miAhsQlurM2v/AYttjseycR7tkCBg5gUUJYPGkFjzCcIVTmMnXFJzW+3wuL9/IH0MbWEo/jtLG1AhDmmseJlYX10Je0lXwzmskffkkERJL+oiildB7FARVhEHx5JG2ENUmjp93Aub32bWCSsFGDTSeKF4WTSHAc5CyX6PyKlZo+QqEKpA9UUVU0oxOXqwVYJFW1FgWS7lIJ0LmzCfrs+vG/3F5B5FgMNOjfT5igINezV2qBbXR9ip8blpYGFzP7xIi4sJ4ZOmSHcdDMxA8VR83FYUrpQJyxmSgBYJdME7lgDF/ONOLACfAd6nSds22NJXNJwGLXprrSoQcEPghHfV1UOKgvKKzArrqB9fW4M2LnacDbRYkN7wopO1N+J6e4f7RyddcY/D3X2rWldWVz2+uWrD5J759PFUspNKjuf647//x3B+fNL7/Muvf/6LXx4cdHVaDk6G371572xqYf/x13xPgVc7p3eWP5pd/3hJsJ+Tej61dWQ4b378/GB4dqxBEGb2AMdsY3Oj6JjTs3EatDtiKEIIewigFQgTkmUSckP802fP/7OffW5sR5LBRY8UXIzZwiIjuw2fkMymQ36pkYxieML8xi+rKC0UDztnjH3CuFXoBCu4+coRj+OLy+ZfiJRLidjWtJ1tvdYEHKLfOb9sHmV0tLpw3cWk7VwmunuH8+ZcmJb8bOPmu+/oz0Z7Q7pZYlMRUdldDbZ275dy7AIj4mL5snlhBm4t7bVUQeQftewIrwpHZXMmVeSe2Pov5M69lpIMMZy2hlag2NLewaGRB0EpseW2rMtosVd6VFoh8nR60vvq6ydH3efTM7/38cePtIDXnmDK5dz+Ybd0JGy97Vm+4XNkCKeGrUvBNjWbltDqUap0aVg9mAy5XUin6wLt6AdyyPCHDprDP0asfU0Yn7xraB5dUdYSAxtgzdiaw/QaVNGtx/BiFQpUgtHTmnh9fs5D5qDTStrloksDVPG4xFVhvgregjmpXO4DfMsU0xRg0968qHBNzeZKcVpkkZGvoOCbV0rCjhRBLKbMeeBKA1PgSF20J3mQZ+pNglFqvxPLi/1VFUDyCqexCdnmBbZMd0i8L2ilaPM+FhcgPlNxlCvIGy1SchXe6EW0JYS12PJqS0CsBAVBDGgWJjea5tE3r1rj0R6lJllz+UaDykVppgestlSYBsT98xmSxwMLk8QWB+Y8wr5AkCbJNTfNiltPebHOPKwoSeAiuC2lGGBt4+xlaQxfLu4GWywzBhjBRcmSnoAlo4pVfba9e7x3uD0r2rww3yW+rzfXT/s2cuBartgJ6cNvXczOm2dIj6QtUbWmL+YM7fsPH9oiyMbALrJK/7rMXZnX0bl12wAe1qYkRkIs8+n53hcve189nxteduammO2h/Qqqi0OD8+9DJVdYIWpIiwszbZIk1hqSarovT88vTAERiqL8k0VG7eTGwkhj8LK7CFq8zy9xS7dAL8aYtGvmxx9/e31ttYQwMTpFkGGMJS5KR5ybx/tq58GdW4vGJsWJT2waBleEIKf5MpmaH3a7OC8bLOYcs4rQSOwTktVFIKPCirP1/6nWwcAfW2Om7pEK469ENV+6MWKUjSC79me2WUTml+qKB+q0La4DXRwgc4ODTSq2SDfksHmkfPZ0/Ie5/uQnP/nZzu4+zMV+hQ1HbkfjolA+CG54rjv37c9XsvjfFAShClO2yCgClSUw3TSYdF2rPGVpq7RpsdgJ3Wz1LROi6xGAUyHg6VP9B1FV0wwYxfjsBiVRpKCBN9868ro7Wo0Y+LOgDU9bCno66M4ObQDmV0UXjPKeDlcWlvR0S6ojSLrVhzvmYItFr/EPp00gmdapjh/2/e9+75/+k3/imOl/9a//zauNzWlHaC5N6+72+hYujd1/5z02/etnz5zNuHz3u8t3/tlFZ3X49WdA759e7vfG101b4xGc2awtFhFs9o/cPdzRYHuJPnr0iM0w88YmHcRBfCh4L089J6VPm9wcHLtebG1+9WrPkGXtABUvGTaxUejsD2vifLr7UnhAJCt49ipZBTCYYYKX7QEjc+djvYj42Nh3Nl/87/7f//fIewQ71t9XlAjdXjFejjxf4cYtO7sstcJC+PExwURR4Mnu8NHKjfPtw/7B0eBswNBHbU6MP3j44Ob6TfavqBDo8ENKDoQ5V2r+bN7qAPtaYVxR/3QXLs5NRH/2/MWjR+84YeXVy1dsv8ey8JC2d3fMloYxO6dQ1EIdZgBUmUGCjJkFOTurN09rieIQitX1NXOaHHBA9szcn5tfxudWCxstsDrmydOdz794dXaRrdSLV6gAXKCw0qTBQCEdIsh9BL898XD0vDSJsqEzRzbVi7wKMcoPoU+MdPiT0mNTxSz7jTM0TeRPOxkSzc4wnGbDw1pqr2oWuHaQXSJFpk0DZWbSCa26h9nqVXvTIw+ZqqImS2V9o0FKuK7tU+CpC0BpV8Buz0bPU8roynuiGhVFjvMwzXbVd1jr77oKEO9pzAhry1fJq5QYJDf1eW4Ov3DLESZgCv3lwNNmnizwSzykM5F43qhyhaTExpCYQNJrINKOvE7vwuOyiaFfGpns0WD1Uw4PyTDdfKajiReqoyXPdWHtRgg6BSaDz6ta/Qxu/IvhRGxYxg5BklexGfFZ/K7WJm9BUE1QjuKC+Iij/ne6t7FppRkDFWcSoCRtekoARGZ8Ak6iUIqXWhTbjGlRUOpQILNdPnoqTzSGDu8fGpeVb9NmhmfvnItCzXPu7NLwzoffXr37cM/Mo8SGsmKHSrZ1uq2MZAd87e6+RBi9j2IyGyYca2HAZIQN2XT1Ftge2vziyaePP/23Pxm+2rYsTpzXNItTu2VlAs0Z1zFARrUFD8Ffmg7CvBXrgyLG6cmTJ0TarkKIEIOkNarM1NHWxspS+AMqXBaQaXRjVD8hAi77p4OdHZ73sY6zaqM2I4bn/W43vDs2tvH85X/1//yv9r/ePDnqXu4dO8nFHE0VGWNTNxikInsssf4Jt8N4n0pIaUWUB6JoCR0jckwS1V2hH72rmlfFxEp2cbGPGWgZvcY4LuS6M6uZVlgrVsu427IDxl9hw0eTt/zUJFYe3SlLRM8sUM6UIWq8EtrDZKEADuoqrEbWqn316up5XNr07Hlqyqzq8kpa8ZXEsWHM71QKgDBzOTqJHmpiSYdFJt0T0yCBpTkd85czgNtcfTmoHYcu68VWuJja5T6mipIFRI+sZQGr/iskC3NwXbQvlTLeY7a97hg87tjlFFrF5cjBMHtTP3/8mEiawOV8rDAD+Eincblj22vMG40XFjKewmh+/MGHN1bXLEG2FWLfsq2xCRtELC2uPrz3UHfdiOKjh4/2+xPjK+/P3fmD/viD3vDytCZhhQxLa+edCWud0lQNqb3G0qu5vDTe+e5775kRTQV3jzLphorGIWxwyVukvIlZQzvamLmUvqUFQo6WsNt1m2IabEgK59oR94MbbVgaTvhrPBZcZN+PzIfGKtYUpdecUPgO51hO+M2MIVd8Pq6AoqQ5OTs/7MzuT07ht62tnbv37yCB8l0oKqCxsLZ2+PKL5fX744cnv/qrv/nloaD4DrVOrEzbtDCCVlVmlFaRscBrlgC7nR8eOcYzS+fxhLoTuZkY37S9azmmNldtD2XG49oxOdGzziDzxDodE794sNBljRFlbiSVFB5Z69Pva4SJo8Ik6zdv5NQW0YKeiaJ3JiaX9vds3HF53Bu8eLX//JUZlML7hs+Mv2ETgAXr4apws++yRAE9AhhSXF0K8ceBoX41hBfkHczIGvznIw40+Okf4MX9DxmcCmZQflGgXJM5036YfCdcJzdPihQYRDEEng2wdO7NLzmzstHkvQotpKICrkFCmgGch0ANeCXekTVXUtbVTGsZjtauxilpFPVwJd+jLNdfLW9+5mo0b/e/47NpmatuWhJQH/4Unj/Vgg8C61Qry0ZwYDkTQ50AHSdvbWS0v3tq01F7jjMSZcsbaMnVqhx95Qcs548YBtmtQfXlo8gXmrkrI+lZsEGLBJDgqUq6Kjav63rT00M2paLfCGuVNCXERxyZ28qi2NiDXMywCmMmmyA2aPNJuIpC9RHT66Yyjeu6ReGC2RpBg/zmJnhLNCXAO8EgFZogB84ySAw3UYwZGGPw4kroMzjvYP/w+GBhamL2jFt6MTm3vDSz3LmcXl+7c/uddx1SaEOHbFc8WnJA72LseJomaxg41TcGZAapsnHShLnpzhTb3t23YYXhtvXbN+0xBwhS+vlPf3n45fPlEyJEvwwxpVFha2IoGFM4qksX9CKJwtsMHR0mhowbYXmgXT/M2KJrUKURJpjRsCvGKVoq+/ovOA6KYxlhrS7AlwOqMzY/nLX7DmbSiTTSm8EnHHbClGaDp69+9cnk062s8Dzauzg64fzGmurGiz7or52esp0+Cae+HVkmSAA3K0M3lqEVavKBCrQN750YM141R1oxUyZ8cfP1EgC2tJSzU5QtoLV6eSNvnQ8jhhFzqC2kJ1f7iitcHkWaWY6KjLBESexsbr1+8cquoWHvMLa8wWZDQr5+6xqVXDwWVFVqD8NjwRkEx2Vk2dUSRVx7EQisiE6IpQShygxwQTEYuIm2t+6ZqusPqvM/5UhipP9ktre6cgPSpGWrsJHcRRufl7o+upIOypXS2yi/GOHxadtyZZTvQkQyu4Fo/+WYsXpRgkQlLi7mDHmSLNCnsTFGxuXBTjVYoOns25t37z66/4Bd+frxk66jhRlsO2msrj16+L4dwJm4MJvFQTO3h9N3D/qdk7MufSyQpLgMu3ZmT85Opsf4kfg+Lq1lJ3wFnMNzEtzW46GlS3GIqqfZGRnKTWjFtbGOqqnVhcWlb935oGtr70wN3jexTzRAE5hFkPtrGPWkbizePdPjgBD8Y7tsUfeMZM+KmvAaz351+/7//p/9S033FrDmXTEP7zzS1gdk+8njJ586bsHObpkv3bfLte0vSJlWAFINEzNTtx493PrJJ2Mnp7YC+Muf/dsvzrtDm4TOdi6mzg0Qv97YABY6IH3ii9UDHhHculjBZ53agSMopFIqgZY4bjhp0oWNmSUbauSdZ1WXQ1F1NNVOHJzoJzTfMXthhdKzwUuWeZ/yXcgzLwGi9I/5J7LJrNyf/uzTTz/55Y01M7wWx1DcQPPC+szMChIJfoJBTxR9wgHFdxGQ0Z9nrrBTvospIzzttfrcjAQl711pUAmc+5z7bZlcNG5wELa0sFsgsHdqh3Xz6rUuCrrGEZSurcbj7JNvsCP6ebwWg3lsepo50o3Iqm9GL45Q8Un5Cqpr5iU6q8ANQ9QVgII61UufVOGuakUg/o0rcukvIl3pWul58vb1jd9pclDkYWs9qjQLggcjTZU6s85Os3owXTvhIIvm6QHqemhda++8Ozm1vBzwAq2qGqg+FZlir65650EQ3fj+jV7zpF7kXdWZz0JGS+7Hm1dXBeb7jQH2Q54aK64S8qEJJE33VWSKsPDr8214K/YyV3gghExkuHQMVZJeL2NXtMKmDaA0LzVotv+B7DJzhbJjvom3ZnukBiDyWCYuTg2xntsujwOWnm8MG5trCGufBsDhx8cml3YnLoarc7azm1ow8apM6eLF7MPF1bt375vGbLRzzuLHpUW13tt68S//6/8HuaJ9SqwyDmJ6SMTPRE1L1I2InJ+tkiVu78yMLvK4Ea/dnYvOnN2kxnvdzrCnAQOzFk779rzBIWY5mc5kkSXQuRu0l/kwjh4LRqjdLASwRdCpRf58CKN05n0gO5pjbS4HDPBPXYotekII25AffIVCT6amnNljOOsx9c7HZxfsBnjrvXfuf/DBo95JTyTtk1+bknN+5+5NmfcsTzo8OO0eTZ905h114MC/o67R8kzeTuwFIc+gkAHWAeIJkn1OjhlX1JrJMfxi/RSDQEWosiPxvsujA06Gh8bmjdQSa4rV5mPDTFHRwyPYM443i53bi+jo2obZott8lemhLcpoVUPj1yiQQsA+BODoMPOyy0DhouSjWxQTXslXWKwuOXwXl6dwpEu22AgKLBhTjOTUOtlzQW82pY4nZGYhd8KcbH6cTmo8XTiPJrDFBBPbPTZCxvqmf8jXS/UpMGGK8fG5hcHCwjIBZq501MKk6SaHgi5uB0icPbe7uxO+prEAal/+oQ1hHCM54AjiDcUV2xt4i9UCNBZwV+LkAV0TD4m8pTs/Nv7gzp3vfu97TrsSef7qqycsqygNND9wpuaDexpqAr4NVjb3D066i0cOqj3bHIztOyKa/MGSZpjPf3B2aHPrOXrHXOfh4PAoERGz3m7dvH1ydFLnEk6eWSIuNGLlPXaAGZD6hyUyLIamKU0/Ynntxu35h6Z9OYK6L7QpRaL3cpBnhqQ0ZgISKaHwrDnnW9ubv/rkV5dj331w74GdocSwDVbvjI/t6w1jIdZ4aNy9M30+MTi24brVXKeve8PN6fnBSrrLLDBv7/nzF+mxLeg0ZySFT3X7nXufGc097n7/3Q/f6yw+O9rsjs2edUwrsSXLzNr6GjHEGwjBAEV/pc9FDlV6xsSah5AOd/pG0UW4x2B/7CW8JWhsQkNmBYY+yWWWLFsVpvGWJ4OlE4sIn2J1CyMQLUFO67HeffcRaS91z1OfMqR1eNTZ39k4errVebV3+/YDa5fn5lf14Wt2piGkoNcF1HzBXf4Kr+HqsELsuK8IQTE4vizGKzKVuHhZkuJx6FFRBGxZC17F7KgPh5cfxi2cnOoNhvZH0eoUVpc2YYl1x8/MztoowfK89IzHL3PE2Pj42kLmD6uy0gZEVSE5wSBfoAs4ACp/IFAGQxZJG85JJr44RMXoVSOSsCpOytGlubg1DOVNxDSSl0IJPpUVlKML6U3POWGnTOVAuxAkUkXmxAMz5oSETXOIDOj2Z4Jh15JTjc18R5mgMp852IaHBYKQruJaoWayB9xaY4RxABVdnJrAU/Ie1VTtFTnRX4xiidkKAlrDvI7xi1B4qtAgHR3DZuGeBnTQERUQweKdF07zK3mkzGd+JMoRBs2PICLLnvIgn+mthnv9DxYCgyce6eXFH4yWTTV4yYcq/JTaD/RJ3kCZBxXGjFlPSIPDUnDAiffsVjTu+fDgeO/Zky9evXiy9eqFqQ3QKbICJBuFWlG/aCLf2flsBpvMOZm7v37LzKqeCRc2mzVa6awFe813j5a+/KWbv+sSmzZZZum3Xzt0YWNv/mw4i4T8gNPL6bPh8sycvkb/YmBfApIjCoAUDJLpUZYkmgKGkBBMpn1bZra8smy/wGnYnxzjmOrsC2tGtArfcKjaonGR5xprkc64NYrHeOU4pODj7uHjx19vbGzwJ6CMU7GwtECtMyO2e18bn7rJvseudK2YsDhF6Exeyg662U4qWDiKlSKhZdIQLIQMJ9JPhKdjKgemwVKkLAQJP7AQyKG1YKzhZF0UJFzJsK4+nu5Z5jFZpV29WM3RqLBA2hV2S2n1RGnardHBWnoLNm4145KiiMT6G11hjmQLOurR9VsA5A1JacDwEbGTNraEMro8VGUUQYhjwp9i7NetE2Y6dEBSCDZlrEUPI0nZt4+XE2EPyDIniVkCkzdu3HznnXceP31h18aELAstVEDUj4WVfTNxbL3JzyMwZ0aITSbR0+FX8oGYKeWoEbiRACKYfqMlKXpVsEw3iUCQ8cCOwfKVeebO5Ln33rvvwv/hYe1lNBxbXJq7b+vVW7fEBmWgLvSADw+EQhdPsiVV/1yVFndm7qsyWJr9s8Hm0ljfxH9dtcODo52NV92DY96txZ3WNbULc7EpzinyZ0EolQEEEPsLwD6UdpHO6OzCoomNat7ceJ4NHg73MVkmg5u7EeGPryVx2lLZ4Eog2im5zOGHH3z07Y++8/D+u0RyeJ6jJG3ySN2L4Do+Trt5QdYuv8TWzleYnLCZq50czecQ6HKmJWzotGWeFwPjdMgVZmG6d3C4dDHxJw+/9eRoa3DejyEU2J+b1bm3r0iYI1jPYApzywjt7OxsbGyJd2QlRIRTYD7eGpizarCDMUS8iEnyRXlG24Zpo+CChHStYEs9elLxgCh9w+22DTHAzzBk3lx2X1ehfTko/fsP3rlz597+zTtCdgBYWXZot6nUJquLidi2NrtRJowcdOfCW3X54p2227SiPfVZkpoXeRoW9aq99TA8nUK8joUqMuTc3HT79FjAzT2hoA08sU2SM0790CLbgirZTilwWK13PJ1JkUPm7qI3dnhwGJUeVZ+Jha0W5M5NyN2qDByknv8qmlmaLazU8Je8BXs6V8kRVpG/Gpkyrq/W0hHG8zxyW/hJm/NXP/MjVIkdZiWrOuCR3PS2MaQ98qf4OEa2gWNOT5zgBA1a3cSdrCoqIqeKtAA6wys+E/0pOx0FE2Q2oHIjHfjTQaJhSmvE/08fv0ALdCO6FPorYyPkiMQjal2VmG/RlZTsLiIU5Zaocn5GnMCf+HNa2xKVnW0aA3YkCBcU1ClFc2oBH2J71iC/gj9IVmwqCONnfU62a0ks3oMMj3tMrQSnoXeiPeThZz/54a9++ZMf/egHO5sbUS555X/+zFkFnABpR4+ZOSFIM9M3bt2cX10yu3p+nAFe2P3W9/78f/O/td+8kStrzw30WRghQKRBICB2ZjbC/FG/R/LuPnrnvfcfGX/jzh4cGgzpHn7+ovPF/sJZ3yLjtPN8vGNtd9ccl/PO7RseGMLXfzzqnmxu73719deYeGFlMa3KeFki3GySQane/j78oIqGU1nZch+q5A9Nw7mFGE1LACLiH5aoflYo3BCcvSO++PKLo70dM3XM6pJHLBk+i9gx06uWG5xdrp7ZNPM0O8zFd8wlP3h8MrHZjSjrp20e3G0V+4zqyp4P5vTabSqddgq+KS9kUgJyxJvA4OXTInVvMCDVQDVHN7DWO/jkR+GDsLT/ZSPlbkYroFRRSotTWvYeVJwwrowuiRy5CiUtcfsszkkVLveKTyq9wGysXy7KiPHzGrs2/mlN9ihaNvI2wcW4SDCzuXkQN4bnavpYfBR8pXzVFMfmQy0QZazUhifvvPPo2FifUHlzrSLqwCAh57ZGsTUqhPFf2FW8RZ/pd2cyQWSkBCEyEl+HQxXNWy2IuCN4KqzWaRRhEFuyRk48c34hI401cm9Ti+98+O2bK2v6zQ56nOB/Ds6OBie2AU+IdezCeLPOtXV6uAvkVNDxwavDwyfzZ+MrD3PGEdGwS7gRbRkppr2tLXu6HWzv2F3aPAzVM0l25+YTaBeYEQN45RUltwaZ8+605W9/67sfffihI6dscfz6xVMBXeoqXjXMaytvVFkyukINMY7TbTMXdveffPXs29/63kcfv48unjNRuran/aFFaKvLazZ1X1hZ/VywvT/U5zLdjPXFJDSE8DsbvLy0av0Mx1A9U7YOXJw/29wbO+n/wbsfvRwc7bz4RW/swsBvoqzla6oc8Hp1+Pb165eff/bZzvY2EigEv4GOAUZ6vKGxsB2owrhjZgT3JsSQpWFCwje8JfIYVR0NX5xHHeqQhL0TvXehAhcCtWZqlZeDdQ3b24Dz/t27+u66BghvgJ85VIWCzOWKC+BK9iAM1rwZcUKhMA8aM6Lom8vDb1yQ6UpJIdzows/uhLVwu6CeVQjWLorg2bsAvShAgiwYpocHMDxmcVcT+ATek8XwtC6NVdGHtckX9zSwVRVNPlOp66rCN99I1Nj56pFUEIfNoxdgMpziyiyibBTAKr9pZmqIhtegEGOUFBFGl8clvtXbLXQlERkq8kR7FpDUQgwkr0dvTT8250oVUPEKQsj0q4tBk0MXWrEJOJRLVch3GxYJXa6upuZa44po8qo6tUNO1FZkRmEIPKKbstn9mP5gxfXb+CIMMbUpENpdSgkKfEgeS6c/CppkzuUZpsSY5Lx+Ayu2KZ8FTEZqlUh6ITG6F4M3PaOJitFwpSVUcm5Pq53s6J8l7gRHyeDEOqm+zPJnn3z6+MtPNjef297TAyXGE/XnTmjPD3NfosEuDO3o3o0t31q6s7b28MbMyuzEPiM1e3Dr9sat/9n58cnrx1+Z1mmKLs4k2/ZsTqcejWznq7d0c/b97313/h/9g8t7a/3xsb3dfnf/pPfl1qvNfztz8ZOlQJVFKubsz7xyQsrTqffuzaws2pShu9u1IbMteZ8+e/H8xUvB6Jmlubv37zr1UxdcvO/IMK3RTv61EyaCoZCAAxyPLNL2hsAhIpQ2lF0RPi5N4ST4t6KzKyh3aBcSBZbuCAkohUiNKyrzUlRgY9jb0/+Ndo9lDQkY1akpusm8ZXYoJ9WYVmP7eMPxIRsn0TpLCfocB2YWYMoMLbAqFR8Cp3BXvJaFJYVSInCeYfYcFJN4SYAM8+VK6kRW08rkan3pYpqUKCZaBjivcxEBghjpSI5KVt+5jeyn4DSEbIaLowczh0sXVewhEsXgQar54AOTZPUCc6C6VnslIs1Tg6TwWKzsVCBLiYGU8+GIIVE4u9QVMXzkZYgTsxSPY2tze3bektAbJyfP5VIsiCXxwVmyusbZU5Zanp0d02f68ySJhKgF1lJFoaCh0P4gmMiwhylUJkAaiQoYkkXYSjDGGa3Bi2fPTLdV1YZ9ifun3//+7//ht3/P6vXeaW/i8OS8K7rW23PG5uW0IZnhxMDmbiYDG1Gt0VsG2DGZL2cujgWSLscW0NKW1451vLGySgHrWs5Oz1g8QwXzSfUTdg/2e8P+THZ5msYOKI902EMcFRJKto2n6rYOCU9nUhD7neXFWw8fvP/ll794/vJzOC+Cxz1u1Ie+IDCtiv7hiry29nv/rw67+3/vu99Cfst7cLKZV7PLsw8fPHj/3Q92xVTAz/RZTbu4bHAkfX9SenmhX/zxxx+rAm8BiOM+t2T6x8HZSW+1M/sHH3zrv9/8ckPXzpLlrS3r4rkRCIR2xjX5CrZutSWFiJqzMNMW0BQxxKuzOUZJYkxwTjU2Sq0Yp/UBPzobYfjquFeWXNaKp23RuWWP8wMFHXLlL/sQd1OvVQZ3797Z3jbh+Qvnk1pKiw/08W1ZxyunCO0Pz7fgCwQevIzXmuejtuLC4K9K9llszCYVUuv51Udh2IsrrLc0wCTs5uEJe0A13l5YyPxT3r9IScbwet3DvV3ntsxOW5FIeA1mZ+NxaTJ8YzZ7zk1fwN2mm2UFR5CQdqcqfJqQcLOa9SAfDaKg1V172vzg8EAeFNoqXXvbUl2l9SzF+kyQyPQLIVuYqN8MSvJX0tKHKieUkT1wluywKhUujDhG5ahNWZy/8eqiJG+pJ8BF9YJMHz8qJJVKXdY2Ns6VousKRN+82m9MklrTVqqpkoZquRMkz/N2AQLR9BZKXXlexrAQVAlaSnvilM5LcSmxrtjdABWs02zGKqiUKiybG0WvBCMKSAo/VJG//AZd8rEvDY48SXH0XEHtsRugMhl6qLfv3Pz61eteEB1vxSetajHkz3/57Id/88Of/OSHx/vbQpXgArMS4+oU1uSA8mwJaFLLmADc0CZZXL259ZXZ9bnpNT60fsiZEOewN1xZWxchEiAmmlkWkcNMsumaXlgvx69MWIHw4Xe+dePuqlFuQ1xng/NLSxafb50+31hgrrQBvJOXZPt052jzrLuXc+A2LmfmN15tmDbiLEDBXbxuBKj7txz2lw6XdbAMMSCNtBrMwELjHpJB00NCrjBG/nInRT7jzOER/EWFKzO00PCkqZ0Ter390CKpg1n2Fdc50K1jkdWUTdiOpi5enXePjWGHEPZNpMcTZQp1LLPs0xHHFJOZXFaH6DcUdZRzNnROCzsdrRTj6xaju03FuRA+TIad2DYDyZODRLYNJyvcBZL4m2HPsEJ4rLg7KoyrVFY8pRQBETRpquuAOdzXi8gNlZQMdV2VU0W0vOUaF7eH97RaEE/PtuWkYlDcZ6bfMcAciMa2WCHTZfpz505SSiQzdY8Y1WRAmy/VdkWqLxEAuhRpdC5SfE4V6QcrVZlyk9KEKUqVW9mgURDi4CkoiHOQXikzlhVi1w1JdWlkQGEMeDiZhwUb2k5Ug90M+kE5V/TZ118/+eqrheXVJ08eq/cf/+k/mRycH7/a6e1t7XWPUGt8bra3MHdmYTf/Y7o2bjx3ohQDkwovzgQXt+bnzxbnbO17WptNoaPKMpHQYPPR+LFzDNnxG7dvz1DQK2YOi5PG3sWBsLEWN2zGwE5FC0RrKbvxcQdlDCOMupoZeli7effjjrlQh9tbm2gO1cGZSqAxscgYsbExNmYSN/PxTs97Xz798p2H95gEf3jG1GqzNOyabo/Ppxs7OqRL6+u37t2zQGLr9ebe3r6RM8O1Jkcx1+s316dZ6HLUctafLvLw7GBja3p2bHVm3vCOOmyOzQu2qLc0jNVlswcHezu7+r6u9LyDZdQdcWmcDKAF5uJYC2NxvZfVkiQvpsv6Wmwvc8geLZkGVvOUJrfxbG4f03aSLYPKeQXA6vo6BJgXPYdzbDVV6/2MYZnubVILktu2AJOEj6t232D7jau9ag8Lnjfvi4nTsHZdv9BY7oT55zrlprCRSzNohIF4vObPAdSueRJzv6xJv7F+a3lpTRRkGtJq+w6iT+HPrDqkYMq5BoU6vOvy4ZebtLqALcHMq29ckvzOtlSiSFYUuSs3IylrN4RDfZpZjzHS6Gpv8zP1Rl5+o2JPgsWUd/VVOkdHMTxZ/eEIK73WTrYtdYRwXspGCfr/ptSq/83PKjaNBhpyN/4e1XVdaYhQtTcoJA7mcE60UFXUivmNzxx+6krDqCpQlIlrxlp71VgN0wq1t7anHbKkeNzYEuReJozZCjCCOyo3RZVaSwNGz2LcwWac35yIGBKkKE6Psbm8sLPr//H/8H8yf/hof9cpYUqtspMkqAygwZCvY6cATw9WTWoyq5D/waQszFEgADRm9N4Ht7ibL59vrcxTZcuvv/7q1srS/Tt3qIbHj5+8ePbCfhwWx924f/db3/vuzbu3Jy0MgQabGpkhYqnCy1eX+3s2v+E6qth0MMfpDC4nXr58/aMnn7xcnBp2bPmdbSVinU3pUqvRrG73y8++2N/Z/fZ3vs0Ga6exFhO+zi7ts8hgZAdDJIKo4Jza0v78aVBRLiTGMe7TcxB+oBVDhaKNdCq0e78k7hPzRANGUj+N1r2cn7i98nh85qeD3qa+fmcmg1o92687p89khEyWSRT6+FjvJzYEkWiVoDNmwWvzJTnysabC6GNZwRU6ZRpcWDSAlclRjnC+N8BmdE2NVaBcEgNJGilD6itWrJylkHMXHtFiSsIc3iw9s7VOjtLLNhgaXWip3KpxYbcqrBAGXQEkaDkbGv+m1/BSE1rAwZUWKyUnWEAK7ZYFQcll/IJ1jO8rHlUqRvpiWEH3aRuw7O1tpjucKnMVIMA0pyYTavZ26SwT9ObBH+6VIqhRBeJY9Nk1cXlutnPZO7Ub5CSnbswmLaGlBlCxEC259OjM1mZRkLVP4jAWc2tfDkrzZUtI5kYBl2fHJz/883+3euf+/s7hP/yTf3Z37fav/vu/On38/LR3aGtvC3Iv5heHl5n8IB5h5rQZM7r8Th1uI+HpjXU3GWaIMjA9Zt1Xuv3+mJzEH8GdCfyzto9mcS+nZm1WFWYbGCkcFyCxW9McGwtfGsq/EKi137GIffSU5kyM724f7GxvGMxxiI6IMCQ4jpBvgi7V60X8pIwrjt7REorKHsumb6+v38QwdoEgDhkQqfMNv3r82OT7m7fvEpBtCxIObRAC9DPH9nDOtzZfPXp0t1ZzVdeUxIlj6eQdHp0MJ9Zv3pztnh46dC/6J/wF4yTGnmtWCulCYDaql27zD0mAVV+5QUp+BlKZ6wgxWTsdadNQAbKwCwxoQItOJjVfJCqYCCfiiCsytEGuOKPHR8iM6MaG8J5wwu07d21cqysPk/gNUqQDG28nx1zhjFQ/uprQhC1TrFqJdr3Pj6q5nLjGVOovjZzUoE2euono8eQE2xcW79+fmF842t5yVsRLBliMnMpNPz0HmOZ4K6qJJ7S0vHrn1t3ex98WErEeyVQJSsVJDXdvfXg24MJNDx33BRY48F1X6Fl15jMuUZP1wA2a6KsK6mpYWg0+LfW82hX8y4ZUkTd61RtYpvIosRyVXOglt0lY8YEUqBRunFfhptJIha6UWMAk0JLQHRg9KouDLqaZUGrE3IrmYooMrzWoRMXoAzXHhjE8meSU4ZSao0S1OmqEXx8tHXbwD3ylovMjxE9cMHAV5kFRkKTlABkpVcm0JlRmkqx0qgkfCgFifcgyCsfJ3kwChoOYvE3N+eErhQdh0X3twl4heFx2wT2/MF6okE5bsBlkyQHAgqyAU1b+wtCyKg4rnPRPOClR/fRi6rpwyt6Tr77c3rYsb2hpJrNSeAm1yCE6SdNgUBoDfGgB78SMbQQtRD2iQISoWmePgpuduPdwPVI1NrX4wGDM9EW3p//LY9/bP2Br+fmOrH308Uc3Hz6YXzFDIafYMXBn3d7Bs1cHXz+e5AGaM3WZJZK05fnk9FenR78+Pd7WUQZKmQGUiIYVdafW0tqA53ThH//ox6afvPvuw1K9kWFIyWS7ULEQUogICfMrbHN9Rb490OKMY2TbLMQGwXvvvXvTxERDdell5cA+UqQEVatLyf/gX/zTyeHlv3r5Wc+0HQGm2WnbF+unRi0qtBhNR23pZElGIwPoAJgAxDSxDeN2KDox+p4dBA0GF2VDR9dV0/wMvXFyVofO9q38tJBXT6c2wwIJ+jROSbO+ccnaGKBah2em9OvO4FtUAII1yQtpWiZ1tvvwdENR/fYcYkRoBcuyeNXb0vJe8vI1ROhUHz1OSZAaUL2iTGESs6UfFFkMAzcWV+B8ts7nazGHyFF8HrGTRFGzi0vrX339TLw9E9riP42gif8JyHFbI1kqOnVr/UZvd7dz0CVUVs5hG4a1qFtykHh2hlf8qRHPMGnWkxF5LgDRRGyRmdWlJaOx2rb79OXTZ5vvfe/3f+8P/v7r5y83n75YtG+X1b9zSxc2E52ZOzVDMKMiDgAzH+vMfhBa2mATSRw761tKPDXm+DkubMSNXmB853kbhpRtfby2xv5ZDqa1WZgW1QNcJ0/ZsJVgzHVPHRKRXSG9hEWxUxwCeaqgSXb3dzd3txn8eG6ZRzxtPL00h5ZBTD6C6Esd0yJ3kZUN+PmvfpkjuZ8/0yFbckrAyhLP6Cc/+9nr7e21e3fph+7hkXMRVleWXz5/0t3bUgjbRiE4V8ry1UwrFThemD+e7+wv2v3j4nXntDtvl+2O9Yha6qJaQ9vxSzvHyQ4tipUSZBXvy0zzwISTM++2rqj6hK61t9AV5UUClda4UcMJYRyphsxwURFS8ygwSCSpllHMCdXzM7JFGu3Ft0BcAhFmtYuLkSzuAC/kpKeywkzKxxipttWUzwJDdSFofnhV+jZ6IPzePqMJ0+CWcdSO6ngpkDwadqAyv/z8ixevnic8FRnIxVGNF4FgBh56Zshsb228MB7oLKzDI3p0COZ3Hj5ydnUmn1/07Y+n+vTVC64GZoGAGUZ+QMH4pgHVtPyEp1x1O2pCHDhtjxUzQBHh1JCkKd66Kih56nmEJ6jOB+tB9svQltpqSBthq7ACYy5Zs4nI0Fwy3SeULrujHN4VC4EINAFVkdGrlFuVV/2xQTFJF7aTStQ2LwNrLjfFVmoNsBIGrPYq3FFppBg1QXNz6znMcXn1lq6Larl81hhPVeEDQrSv6knFbnxpsDbxFoAljON1qROlQ2KMzfUFmZkP7i836g3CCx0Nh5AQN9AlS0qOgxmvuUjBBTk72j94/fzZ7uZrodOJzA+MQY/VyB8eL5ikvyrF9gE7vZMtR7Z2Oi+O98Wtbu5urjnbcmw2BKMY5iZv3l05PnZITGf59q2dx89fb27u7+wEBt7u7MzDDz64/ejR4s2F8RkTwcZOjk6t0Nj9/MnOX/y4//XjG8OeZbbiRFaHDKemX00Mf3J28LxzcSLyadZGGlSsE2yR6bBpdV6p/Utrz7766iu7Gt26sc5OFjKNbxDgb4haUBGMB1VXmBzdRGfoDLW4bnrPtXI0Qbnsnqjy62FUXGdPTRGnx08eD4+zU3XQPjFB0x7MHorK0rBlzuDR0cYn+wd75JMbjhHZiVQeY6JITDuYMBBsZMg83kShY+zJc9ithmcID+wpfTTIenVYm2SeM91F3jTnt9qFucIwpcd84x9zlS4Pjg7DbL91SayQSp+i2hUWkJ/CsiLM5hhnHHZ98XqNQ81ENZgdztRnC5CgSDc4TYtaFJC3qQJVC5TEcaJlmfNxvopBL9EMWbh4BXt6QrbX/+f/4n90587DP/+Lf//jH/+IH1MnubWOeKXCoOFczuKYhbpwzo3RsgixmdVpVxPSUQMlQdNSQOOi4brD5yfDhHrti0Ipn547vW9+eu5ycm7/vGuK4B/9wz82NmkyBBIKqjtVuT8z6Sybk4kpC8gUrcvfNzDcWUSOQtEIj6y7v/JFIS9qBCyEwqrnTNzt276VmWXCwT/GPOj6YBL2ZW5xbu7GWn/s4vnG5vdrW2abKonNclCUoFU15H7BhpucrPd3dLA76A3MhzMzD2fzUbRdZYAj4CFAGCyGK6gYO9/a3djf22G0rGFzYJIJjMfdp73Bxdz8onD62Vjf2Y7vffDxo4fvvH754sd//efHh1tsliHjne29m+u3kAc/3v7gg8+ebvwX+08nhUmnJzfNO4zdH/EJtnERCtCm0dHdCRcJxbtBJONkDU2R3qggfrHc0a8pJCwWlspnbn0Ge2pAuHAIpYSfrEiqS9wFGcNh0Wel1LSDUjMhroqFWsHwBPiLEMJmgkboxYm0MX2rQiVlOlO+/+1qNyOKShBIcrW3RVG/MvBISpMzaYJncFgX589QhoDisWGLOBPVvnB8ZghWQT74CZRV9/HXX2y8fm4GPsdI07/+4pPPP/2FwysX5medD52lwxOzU7TkVbZ8N7zECvhLve3hf9ynAAXIyiCPCiiUBqGj34ovC5ymRnuMsHFdMTUVt7ugCDWYXidtNys7gi2YIa5yxqKwR96+BfZVUXkGyd/A/1utSg0RnBjLUCFXhLGZKO8CGU/NR11+1cuGqPwq4PNZ4yJVREpKAfkXPVm6UtK0pDqoATjQm4KflcGhdop6c9VPDFA2RtX5a8/KyaB4WkX1TYkmZ1jSygJ6i698+vTrL58/eWwMFpObMqxynJ5E/itJcZlGp8603APitX9++twBbfMdyzgfv355+Td/Pfv99977h991TrsEKuzMcM6DCy7o5taO/eI4qpxO6+LtdXDr/oPF1WWr7TXd3B0jyYdfv3r6Fz8d/Pyr+X7Pylc9G9LaExa7vPyFl+OD4xnbwptEndE0Xq8B3vBDXMEA1TgjAJaFMIeQDS5AwIBIsNumJgUzf8fVyFMvNdWs6UIzO3Jo89mDPTaGAWaY9w/2TcO2rsDPhw/fcdb681cvXzx+YbauPSP8w48kx0QwFoJYt+rAQP7R0oJFvcIiUgEWWqKwyA1VfGovB3NRGhPSO7rEWXISBZMhMYzervzGxHUBKe1vJbacfl9zV6UBA8Cin33bOejg8G9+8AOTjXVOa6pBEPQ2WjCwfNfP6j4GTIhZ+NSCAy5PmhbeAF2GuoA5fpzC9QDA0uDELGmXgc75BRPnC0agyaZ8Po1jd5ePD/fj+aouXJaMlsx+9NG3Jjvzf/pP/8nazRs///nPdrZEqr3Vyvhcyon+hWm7IdpGTUcnKo3DO52R4VKOwUA5U8kU1Z9ZThUsG5+aGbdGxYG5y3aruBw341fEe25GEGdyeX7po+985933P/zy1cvn+pp2YLaJh7GM6dnhdELZNvcX7GRZsIixF9Y84qKuoNg0HGF4PGDC31Q8AnQwmQIfnJ7bdEWSrZ0d62sFCyDeRAjUMBBre7i5pVVzGV68eP3s1WvppcRduEiRoTSXOLSbmFtwHtmyak9Wb2zNbe4L9lLc58Yv2j6IRDNdT/CUtUseF+iEY6h/YWsTFeHn2auXq2t319fvnB33QHHz3q31W3eUJBhx9/573/3e8Se/+IEZW93j043XWx++/7FOu87lw48/2nj5+t/9xV+wVrPLq1bV5HjFEZeEPUJX9cF3bryJDsG+kBCjWFdgK8kqJcmIeV237LSrskhST1O6vnd0WrFO8ioPv5v9XlOaGVSZErGi1GOAs0GC3VkE84V8PTFcIo/s2bvVYd5jpuRPmmNv9lNZDlo1011TwRsIq960o4H8thyk60mSAlMySUA4s7HMQf9ge3vL9qi2p2VQPQTqSPdIRfCiTcFSSjTihWHNPrN4wmwcL9J4LpnjlEi9yWJ2yDJOf//eAxF1AwetsgAUWFNxYLjCTJ57EhnK5999BaOB4uoKZEU0NwCIhQ0wrjJLozoU2nBxhZHrCpKgMFHFIF/UURbXZBhFKUANIuqCspjPmJcgIW+Dl0BQMKRdiBJf6IoW1/VIQ9VX9iiClqGVf51mdNPan3oRoQbYfiMFhxUU7aEi3NRHNbto5ElwMaovilYcI95W8gTKBkF+/a5L0zwOIdpd4a4IXJodj2bEVceaZ3xqgc0vf/YTZ8hUQFrkKp2YutKzfOsqGqRi2cTpL3cHJ5ZhdOYnz3qHOz/62xfjvf/l5f/6+//oDzPGWVFyY1rmJIn4b+0cnO4fWImSdXlTk2t37s3lfJKpnKdkDtLx+eHrvad/+bPez7+29dXKmD6KQbLzo7Gzl+PDT88Gn431DiYtc7N8M7OKdEBBkEEFAhCXMoxbQwyjdmq5fe9evX4tOBhMJKhhKNhIa5yDv/sKYtvbMIkOWv1Ia9P9zehmUkTJTk1aDp1wdFzwuYUFMfhd03lNzEkXkQg4N00jMv+50UHBUIo1aY3gFkz5ShOgE6MQargxYWk4fWrFlrooBRdMNkDAIEPrGXtO71SIm9ccwcUe9iBpwAfEtyiXekoMUppIUC1HATk1IRDZyWFNjfsCUbIW+VtRAdPjJiFqzw6CrJEItsrNCUp6OcAvE2VXy4uNEKNG4Iew9lyrDfBbfNeKkyeVIuK4009XNpk3cUowh21J3+Td+w8XV1b7w8sbd2//8Y11R7P9m3/9ry1pi+kNkNJFzu2kLFaQISU2WJTb2nQz7ybPB9kbTO1Zi8lOg8cv08GA5PAB5LEL4kJn5vikK7JkJa4z4JngpUXDJo5XmLl//77VsU+ev87WF0gdqDOmZMyRzqQ5rEMW7LHmbqJDoYi8IkHUzR/3t/7Pz/98bnNs1jipfX+avGpohF0pI5Gv58VcFc8w+BfHKkeV5KxAXcYPNp4qTbCEHq4xs4yiN9TE0dQYUM5NvPP++r2HZztbrw/2Xh0dvjw+2pE4aA0PhtYqDQNBVlGRSnS2sPMVd1nW07MJawCPTuyVoEvMkTk+OkHe/f0Tc4Ru3Ln/8OC94+NfCszs7OybEG4zdrxqEv/N9x9d/HLB6KtFSx2Lv0L/+h+aRGTQFEMGWv/BAPKsDvMZ10pSb5MhL+VpV26gKcj0tJ7Xt3IqZXVuWl7PYduAxMP7983ofPz4ccQKMxjuLqUfC3lmP84EJyxRcqaW1QfKt8+XGeCOhTAry/bawrwKDJ7gKDdpSIMmLYJnL9KAKNviuTSmfuW1LC41MvM7O7uW7Tpn0DwP2inwR2iKy9E92fNEI9Pusi2t5fmZ136Ve1VtLXmiUZxRkcXudiX76KPe+++/b4BA+qClMozyNoi/+ZlKUjAYfvcVcH73myq+ZQtQTcA1tNDzu7IgBvyTER0m9OMJwYBVhrxujkkgHQHdYop4JB5UqskVPvEVcKsLjVFVpbLfqAoE0slrSLmxeHJfJQolgo5qVkr1L39X79t3+zl6WJuYx8S6Gj7jflAujHujVUQ6nKbCmhqU2uPht7pSXwHppmpqWilllbiVxI3A0EgPA3DKSDGVROnVJ/vk17/69S9/dnZqDFIiAhBRF5QYlZ+8KbZqCyumikIHvbfXO+Hqn88udfqD3b/96dzN9Xe/9cHK7dVoUwxshOjcBjeOhZzf39w1/1MU7u7771rwoKd4wiQaEHHOy9HJ688eb/3005v7R0sXp7NjFycXly8nh0/Pjh8Pz15NTOyZyq/rTAkyNERteGYeI57A/exW4Isp5viHTYoMYyxZNoxcXqba4FGresKkM3MaxRi3FjYBk370B/EpqjBbOl5KJeKMYD4Tf0g9yzeztmotPac1LCWyar2llh1lNquxDpBEoC0Atcy223MaRMYZq1w2gPFSgYpgsf6IdACIb5c1SVRdxSgvzGgzYSjAiNnj7TNAgK6pNhzKujTfv+gKFBH7MEcYSOnFHUXwsLhimu6TjQH2xKd4N3aqNhcE3+TXULkgy3deVT2FHZjwi22TAHqAiKsa10FUert9hw0b44z7n+hWrUwQuJCucbeM0W9K1ZGan3Oy8uC0m/o8NUY7M3vvwTsioka7EZgE3H340MaJR3XWpGyKSXUGcU1K0xUmIQw46dHuqYxO9ykCB+4a6m3xnhAx63m4KY7OjAhl9a2pCVadD5fmF43a2e6Da2cDJrx0fHL6/NdfbGxYrDeXo4jwmB4tYp8b/wWh6dyGCc6sarIQQN+nPKjw1P2z4/sHx2nH/z8uYBqZoM1CdC1O9x9Go6201+Q2+8E5l2xl4ebw/nuHRy9ePP9qc+Pl0dGePUXSxuADdRKPl1HUD2NQfSyhDohp972zi/X5xWVnVDgC+dTEKy6mrV4zYj/RmVu/+3Dh1avT3cHu3v7T50/nlxamL403n+x2DwmUPe2cMEQgTbMKQCprDFLM1lofYhvMCjuGWGEGq8A8jV4rG1yuKoTKBMikqj85IkOwXNtGEqak0Hx0LBEId09MOlLJ1h/IEp8yWlL3MeEP1FUVZ9YCsN0slOjbAgUSGTP8L/xgHnJmDcYVTiA0qAqUaUUTk1TWrsAMZFfYNX1WG+dBZxLyxS55sULNezs7ZrNTR5WSCkhbi08jfQrO3nchYf1q8u9XSvQk//Oswj+VJK9K01pS3Nvc3ACrfvx7731gibCiqQoqocodfVQhrawCE6ARJY/jMZRY+cyfYuumWhvIFDdSosg1irNEwsrVKLwUeCBsEDXAQvP8KStqkH99MWtpmU3Qh1blJTqUYQ20UCPu1bxyjkhg1VgSm2lGkJ+SQ1ux+gLNr3BvWKDBOgKYGNbCT1ouw1XtZaNXNaOB40WpYOWFAKMyA2iugtg3PaGy0iPtWbxCOgMQcqRXhaEojOrwKUc13odtobfV3BBZBA/npiW5Ko22GjGSPwZOQYEk1cvpKutTyWXiuD1/+fLwcC8bgFfhLVWSghce0qJWaena6vR4oAALbg4BfdIVXbppw93e8PlnX794+nLl1qpWyepMvDDC1NTyjVWbAYn+MEt3Hr4zm/WsE13bQ/XNqhoev97e/PUXl5ubC9b0TznF7WJnYviri+5n592djoHRTptP0gQ3I3zoACFhd+qkdMyUBRuw1DYsTNVQYGmqO5O/eGcu/hiSGgtG9vTxg/hGjzBJ8mh/fbvXPr0aK5xQW08d2Gen/ZpjlAUnYBAgmpnhkJr0YQ8Ac4AOxMVRD1Gznb84uxPxHDsROG3ZI9iAqWI1TFcixBUipFVVjUfjNWQyybl4lE0WT6wVrgMDMslLPpN4pi6mBTIb/WkcxXqlh4ScTenARFn5ECvO14h2Ibi2o6MsLiW4k1cSvbdRzUFG+KkllkwWpqUworhwVyQ5fEaPG4JLDY2RIqd0QtwI5BBXFz4X3LUdblhVIlW7y3Sl054Necsipkm5YNw6LivXFhZPutsEoh5e2sb4zr27kzOz4q4V6J5cXF1lgK1fb42j+apGiAaFwAGT0ZoQaU9312iBWi10M+gc8jI52ViUUiAPEIATzKTTEAo7K2/TQ+pmE9vZzvj8/NP9w829/omT/CZNaG4ejeG6I8PZHVsq5LCvcHV29r/oXZ5lUfFPl7/9n/7Jf3rW25+62F+aHdgVZm6mE5z6izRbJcXutd3o0jnnxgkwmysEf+mPnphcGLVuwdGRQz7YiaWFL28+4M1AI3rFEaeipSnkaVLifGc5txi3WlC9vHLr7r3v7O1tff3lr549++J0sM8MI0CmH0oxjmcIuH3KD15u4qCx08uFmzdWP/7u31tYWt07OMLqCHl8lGMZyYnj5BdvPnjwoWMY9456xz/8yc9MTONrdruHT55+YQrnw3ffcT6KsX27i5ntapIbiqfcuhojlcqN1fTTa8EysfncRs60BnQInsVpMtVzZZBn7zOHPlwVp0Ea6cJM0hF84kzjo5V5o9Dy4MEDBlXXlt50yrhqstwxGv7MDUdwf+/g1o0bstuCl9dlkxAsx4YRW5XgdSQoqPMVDkxlmFatgSEpIhEUusE7DeWz4ng8eGH29VdffrG1tcmalwyNCgjRR38p0H/QK8BdHldjW42jepPGU/9HD5I/v3zHNNi87MsvvrQT9s2btzNdPBOWUzJN2JCXIqE24ZnqYMAxfiuJ0n1AHMwXufbUfeb3ZBpcWiiDIkq42/Nis8hycidG7p2kUbqxJ81qYkoFRA7VRIjO7YtkX2GjZWSLJ6FDQhcQu7wvrIKPPXKbrNAR+hCHYLk1ApcEs9XqelIKLXgoZGRWQx6nFUF+OfeFnyAPNvIXGUuFxW/Yr7RQshcq49QhgEb7/WYMOO/qSvOyw1epvOivXH7lNU7MpMdEPCQPRtvbUd6QzSs1ptV4kwKKDQaAmE6oVWCFZpqgSKApjTy8Mvdqbw8Ow3KpSfmsRXJU2WmXS/mVET2qp1FkbvS1k/3xxdlyuOLiaGd/69XGxcV3MyM6xdkaV0/0KJQULZyfvX/v7q0H9yfNjMhEVdN5Bhfd/qsnz/HX0lnPauejy7NnlydPzgdPxk/3ZzpdIb40OBiMOMbD1em0WNLE6fJ26SrzT4o2Gg5MCRFJ9SyiMdUJ0f5Ae+FIel5jWpWy6iM3VxdYkzWX5kIlBzkejB24Jifff/+DwfGhjQ9Jr5/SGO61OaUbVvDpk6fZmQueXZBSCAdBrfjtDM7TVwZP0dXIpeVMPIqwfCG58iRnJK2Mu+iuM16omvwF+1l91Dm3TCakjSC58ZlObG1IWawcplBJmEBZ4dVcym2JU40K07qrdrr3+62rJWif3gEvvnxJcIAN47l4n3Ai/BBOk7g0RSiU+2iAdI7NJFO834r3CSoha3qT6cEYb65gJnsD7Wzb0VFl8QzsVHDvwYPwG+mLvzBh7wpjYNFJgZ4SCaFDYx1u8RCGKDUpV+12prKvmLi0mYKntDFYIBRy9PwIBXOdFVQGaaUz0hGbkc0yO7ODi+m57vKiDRR0i08uJ07HTD9OdVNppWUCx73+njPdzeuZmuxayZSBOrNjLqdOzzovp5Zf3fnHjiyaHTtYne3fujmxuiiidDZuKU4I79RI7YhvzgwJH6ell47ZONsV/pncGa4avNDPs/T2sLfYgxBmguEmxPEOpp2fga7ACLK1vLDtyIoBVy2qIrolO7Xcv3/j7t33v7X9/IvPf/Lq5dd2/I7PSS3RAfFa8mlOnAOxeKLLa+tzy6vOWrSrhgMCB9YLD8zGjnKmSOCdSV95fmPr1dHW9k5OmZrq7+xubmzvmOpONDSfSg6LNtJnxVkW5SOuMkLiEDcXpgno9RAJNRNai17f4MY3XCGrthe7lbjJGq5mA/D8wKxrjmoiQ5MOulD80RFvgxt2Znsby35NmiPMIgfcKjPOBGR2d/bM7hZFN+67urLSYvsAkytcdCURwWo4qa6wkyvwvw3Y6LeZHL3es2dP9vZ2aCQwgO7tZFWU3K0UWA8r+6kyGiL1pGzfo8JjC2NERlcqvXqT2/Fxu4t89tnn3P2bN2YmEoYZvb7KMAK3/UTp0R9axCBet0rT3uQsgqiT1UC1+ElX9bsZ/bVHIaC/a5AiF64R6uTTPvEhyyPs6BL+yfyMEN4axxj62Nk0I8U25giB8wdD8dBpKQXQ017j5cyiiPFvcHuPh2Nf38Ce6q/Bbc8L/lRBGaFsDECgjmq6AtxdwdAMsKobPjyD+8pasBQT51UAK+RpIA6M44Mr48/k1dVVKbQmXQG6JZE2ElfsGzjKHgTahsAK2dGFitaqvc3nOd4g/o4KU9lVqW9/B/5qXh7GB2nGpvRxxsb8nJ7A9RdH3dePn9JyVhbClsq7XevkB/rCOH1ubeXBhx/MrS2fmx4F0ISTT48O9589/vpkd8eK+d3Ji43u8Sdnhy+mx49FCHPMHMw0LESLkDFkNS2ZgjdHVNNoaePQHoJdFwf4SIfBWQgQm1wzNjUDCcb8pGZORnwe7P3OlobXmXTNLPJlswk9U6snhyddfqii9Dip70JvTjkcTIsSDeLmhHQhI3hdwXz1XdKCoM1H4at0S3rKnsTJw67gAm0JK5XLRNvKjldh3wjuRZgjfp+AszJd2t5+KrSgjUPAMqu0qJTaANPe/sann1dXSUVRvSouEofIqJhiA1yY1X1y0FNpH7DjJcQpKQxHlQCpvfJWconlLQBSmitQWVcOkyLw9iyJ7REbgeSgy2UW0pRzWzMPS/bxB/cf3bxxW5sxUPMzrN6xcQT0xXkswoEqfIhM0CEIHBjTZB9A5SdxiTL1Okc3TjjRwfA8uAmDwdQYDxHMiuGbe8qNsJ/2+Pzq6ertw9nV0/EpS4LSZU5Tw1hNJpHU7Nnjs97w1OJj5wcP7Q09Y1MPZnx84bifyfyIdTa50L9YtEO0xZ6zncHk+cmkFcGTY86ANT0R0izbjjs1NmnXVR2A9fUHO5b05QzNIBfSFxYXsh1sXAVKLNFXI8DcLW0rBsI02VcOI/AwqJrgnCa5mLSlbOYnTHbu3vtocckuOPe/+vKTo4NNvqiuvv1cxQrTqyQHk1MLSyvvvvuBmAS9km5nJG3CoAkTpxdO1njIjny6d++dg70NZ7HA5HTH4quwN8gcpQfDSJ8Z+3qxUSDmecUAAxLBsQIuhOWCOZ3jBKhCvmI3dI8VjoPXfpeqBGJ0YrVUA4HK/cEt6fJqstByCmXxhoYAsnR+f3cble1vYzaD4WoaAldAHeVtDNKEbz1gf0bWbZBnwYL1eyLQhFpcGlPhiPIhi+8DsqpRO2AGijdXuFTbGzeK1JscYKuvjY1XUCFXXvOBwvzhxORPV6q4sgpx16xXHkWi2qvkyv84ZrlKB7RbLZAwAThpS0VMbm/tWlu8vnYTGGH9330BJrHat1+mwm9eo+o9bGC1t01/oUephWJ8TWmUjN4DpoeFGilaZtykEDtGhTLkK34Q1iHsNEapkRQWW5x2pZ5K2Xg5v1pJvuvCPR5iG20OBvJWEuoMQuR0X1eetr6zMvMX0QG/l/57F/2a9KWa8qB+5l0l0gMu9krOeE9JWNmIgxXMMSTtiUb5AwnORni+TNIWkxQg+QjlwgSV6eoVEFpeCgduRlxeyanqROJkmrg87dsisR+ZrkILwOuCr24CfuUMF6J9hTAKK0AHXOJBfE8zSvpnX/7459tPX9366BGGTP8tGscGjDNzywu3bt+2Y6UVw5fT2MpOC6d27tt5+coEbOdDErKzxfln48PNzvjR7PRAa0OExiAhfGKt1p9anMT+aVuJunk3oWuQ51Gcp3S+w+OhBUsmZuiNDiXEBNHe5DO0yU1dhcA3TW+M0qpgNjjO//yf/7Nd+/JtWEu1acJFpjja1ejQsG92z9CloC1DwCpXkRAGWioyxV8VfIXF1JsaR1dLkRY0kJhguqNjq4jJ7CpgQ5GIIaeQan1LncUA5m01R4HuG++WbMJa4zylh2TfFFhvU3mMKZkK66TuSFeeh6QYwv/CYmSZiQ+lvfVXHBaZynslFOvE/Cdr/a+G+KGNslU5djiMY2FF72gbwmAldPJtONaUtXmnLipKu+ykPz83j0NbmYq0WpnNK+wGSHkKtOJa5aQVRXB1emUS38zc8aRpRvYOP7cJMbqcDI5QqHWqohyCUR9x07g51vacd1aOOqsnjlbQds0sxVyYqYZdskZhY0vJTnb3zY6iyucdE2kjybMj3ZIZRvdUt9Jq8JmuVcIHDjLKeX8LnZW58VM7wTEDwtuQfW5kw5q07uDZi6397sWNOwtDY6vjZnFn+kWOuOesWI+QaoMkO1ogLmuO7YPTfHkZtTDoi4rfJHlQFGTxwQeZaIgXJjtrDx59b25u7fmzT0+O9/q9/fOhOY8DepQytDnkvfsP7t67r29t30mixBm2wJsdtWGzgJIoDWsqZDA3vzLbWbABtoxjOYI6aGMBcb5lAMxX8BjCRAajo9uFX2I/E0luclrCGk5BoDBREsgTBvbf8/Bi3noTKmoMfRDmqLfFC/G+PMRHFaJynJSTULpBEzVTUwu9jINqdrQihjlPmtsqSoTzLIXj54GVpFqGpQJpFRgodbCuDJqiXFGY4f/iMw3MXS43EaVMqO69erXBiqNG9hAJ/6XONCzsqSlXEpGfaTIkJftVaSk0heF3nRWfssfoeh//yEyFzC/kAk3bbNVqBa1Q18rSirfwVrUo+LevcI2iq9rRW1BVC6rOvCsg6tFVQSFIEjFGBW8jQyPmSMIzwa96ye2pZFBX9AoSUm0Swj49Ee2McOnFgqHUC/JWvXITsLfVX6CsgvKN8Fi7yX6+JY3eCYNVu4LplNlQnRLzQ41hfwzUQGotlLYUWaX4jY8Wgk7JZIfAyB6WDZSBvorypIrNu3obp1i07RtFBZ+0SaKPKa3Qe5WiQGpQ1esCj/wwmZCXKGfbGF0L4ahgCaO8KT+3gXDUToUDlcfrKkjCtgo9dbh7Wb/p4fnuZ4///b/6s//Fnf+V9Rx0QWd2anpheuF8/p35d2/du2Prn+NBP/0Se1fp/r5+/eqnP9v89a/Pn76wN4/g0fbk5clkpwasEDCkaoBBAPEuAMIEPCxP1J7zF3RY06NM0mt6uI2f4RqrKdMlySHeb6BPEVeX7N4XptOfdXlCNOyr9U/+5A/OzXPe2f/k15/s7u06btExBqy7GZh/8Rd/+fnnn5e2aQU1NMbsRdxSZpB2/e6bAEicVlTF+UYHWlgsja2KeGJtVMoeCJyZUSe4tEzj8BBCEixU7D2qugrKveYEhisa5pErFjeNi9pNH4vsR7WFy/I6jhmOaj+ktYmBWrwogUsSbClvdH5JVqorpqlGpohqYxK2P9kLBiHKwQy/YipHKYNA8yRRvN0kVpZWnd+MaDpwWEnHnzDktUaYxOB4QcvdKmYDeLBCrIZgArstgAJ89RkzACHM2OLcfHYD1FWac3jlYtfWzTVKwLimh6QbbtZ4R3SZNNiycbo/NtvXSwRWhFlbYYZGTFNSn06zMwZsEmkbLN2/rnM5MfJJ5/hwfml/YZFJvpkDmqcWo3fOxx0e9mprOD1zxxypzuzYHDcwRhQazCU46R7sP32x+elXT4+HneH0jf75rAWHxmfF6dnmtM0ViQ+NLBBFxIG58QZR7U6SnZxQh2owQ8tZjab7khJmIXEpiEmPNkp6cqazeufOrHVWB8Jczz8/Od5Q93DSlstnFHsCAycWjZk2I4upVzaNCYImp+yQNWX8hRdIzExkW1xY2dt6rb/LeWKni5oQk6MynUWXcFH4LFPhMi4dqX3DAWUPW3QoSA1z1KV9YTfZkrZdUVHFSJGB9E/0wqPZ/KL6QxWdKm4BwKLlzXuvQ8/iKJR0Awy6XFw9JeFr/AZGIYqL4SQDjAQHB1YKbWvmo3feeffRw8a3squ6/powJnc986XUkfBWsrgFlM/r1xv6D/YzwUiADZ8k5ZvWgLp0AvaN8Cs87FT2NhKdi9jlhuvAKrshiZU65qyiMyG3jQFwHd+PJRY5Z4b1aLB+QaXgN7CB4OoKJksc8joy+h91IVQAr+wEQBllacpk57FaIhlsnGTVcu0PCcqS51EYkiapUiDJTdznMGlNSmu5UnKZ6VGyxACxd0qucq9h/0Y70v78tbcjGKuEZCq8wG7mICW83oq6Lik3McCRl7BlzIelDMTNI42onpPPUgXSJWWJI2ZHHWhIBZQiDtT/i0vmL89UFKXvT6Ip80wuRV7jBgQ0jc+twB63mgBTu1SYWDQgSoFReIXHkDcwBoUBr2jgoRuf2awJZ+gFXmQLurxUYBYZjF9YSLnQO3v8g59t/fN//PD3Pw44+qNTYwvLCzfnTWudPXGAErwA7fTiZHvn6Y9+dvSzT1c2Dxzft7awtEGlQQKmxqsBOlfkNFG4rLdhbfFkZKwMMHzYVl6bAgWHuogS6GMcIDfMYWsi6BLyzuhiodvbEbqqeMj1IjyrsWEzeUcOEBoohKePNo5CN5f74+9+x5bOi5lMNAUDuzsHRoozWBwolSN3HGE/c5dOKmhi3uoKSIXO8JwnftaTcKzmehmqBxTsHRmtD2OD06FMWutMqWJOyqgQkjQhtkYHgDSwXWGq8ATXrqoWM6+b1JeISJBRLgqVi1MBScNVpqrdO6ZAF6Qsj2aUVaoEKgplvFBhSm9/no0INmpWmoJSI16qHDSX4bvOTGpH0ozsRD+o3haMy3ZGZtgwx8HR/sbrV0srN5SAjg6S3Xz1cm97w6RjtcbZrDo1RQzF5OYOxo61DgP40NKsMpqbj6YG5ZnJ71O2RrHcMh7deFbfWr4608mIDhh1efcv5w/OJgaMSGxb0BgKXIFejdT2zBI25n+ps2vqVe2AOG5rpYEtLfacZbswvz6zYF/Vlc7k0vn4zOHh3MvX6picvbM6PyNYrV8juHHOemztHjx/tb1z0D+bmtnvmie47MR2c9fMZVG1utVcjkA+E+GOts6k95zskFlXbHyjrGG3nj0aQh+ZwgyRwxAZNTR1fGp+4QbNvr27q15znGcXOXciDeHwg72t45MjzdcpHMQA2yt06pTnV9EQ20bZIWB+ZtKO3cSA3YsFrAMo7Z1ik1n76eAbUj1pDJs8mj0aVlRz1Ic/zImFxJDCP6HLFXOWPovzl73ur9gFyNIE+eGVkEADRK3jkdiqFjspPvMfXfAoAWsEIWwqtZAMdXlpyaHRX4vhxKiHtk2d7GSd+HBoANgZlxTIy5cv/vpv/sYmGB9+9AGklZirLmgr1KkwwKgOLBCrKbnLfXr5uzs7ToAxjjC9sJKpRdqFoyF7lD2FRCbTFLiIcvYRnESgY3dDqpA0cudKXf7n9ehVvY2ilRhKYpIubbwmDp9InkgM1CF7aTKFyBU3iHIv5dlqzEwxgadqR2uCn+pqn6kxrSudqSjgJ2RMQgKuNEFo0aIhIbjJeFipToWAQ62UKm0ZAWEAMraRc78BFO2gjLCil5nHU55l5DPVWs3jJhorV9BaF3H3lzR5FhSmbmnjbsZg8VMz8ySlyuB9bJqPWOzKkFfkNLoghWuJdsU3jVM6Kk5WqWo7pzQqgl0UTAAqhixNwhJlFwNPwKwsHgcnqfnN5b5gb9BIocx6dJ0kxC14IgaRyppgqxmmL2LqUZEptiEi2E8VPkf1BQ3F33gFALiELvClCp5yLKS+Jm+5Dks25/jy5f6Tv/nV/W9/YGY6FW7p5dKqOAqnXHBN4yfGHGL+dOvxX/zw4G9+fm/7+KPZ9fO5i4OZyaNBtz85bm+dVqNiFR3vhBifJWcYcoIXHCGEmZxgHVVVWCo2bNjQmKBUCARBYsk1Juyp3DdX4a3w9eaZuzyJRArm2W3axq2Tu3s7T5++ciLs/OK8cUVWAY7tNGkY7LWDVLe2CEaDtHRAIt6hGiYJNG9X2SoKdAhRkKeyejqCLYhuzkxmDmV/KFzu0lLxKLpYB0j69APqihyrpeHJd5GpFZrmVtnJ/xYYLQ0IgYD+LaqtnCSDpOTxV/xL96WXnCGlYpzALAHFka1kM2Oipa4KExkFmgRJw7BVUa3JPoOT2u2rNzO7QLOI/kqQzzj+DiBYWFm5ESKNn3/6ya/+b//X/8vKyrpODLne2915/uyp7QqmbRqeKkqLoHuQmC0Z6Sc4j9yCkhQRUl28qc68Xa6yJZ4H6YBqln+ZScGQnJ2nO2qu1uT0oDN3Ojndt0sFNk4cOP9CHw702xdWsovvxCxkwsdwQhiyhwj9s/3Tk8Pe5MTJ9PPO9Ip1tjNzi5MLqzPLHxyfTL3Y0MHsTd333OmE5/3hYGt39/Gz51s7e7wDqDw4Hq6Y/GUWae8s81tBFw4CC6wn0G2iHbSX02s4M/MNvQOh/pBJWMUk4lgDfWPBg6AA3GbNZ2PIsB+905ldsMvH/vEeokTRZv2ZkzBmubsnB3snNQxOA6vITuPHh9ODtVUVmGUIuWMzC5amF6WJmZ7lpbEAAwbO+LPpMVwTkIhXcQwShFOueMV9UKpbXLPu8UogD4vGjIpoGrYGYT3J55sLEWOeYSChzSAjpEvcy1Y2FvxkeuNsNvCGGZStJdfhDFdQp9WFwQxIDk9ZSnbLuIM/a5BMJ2CDncn4/MWLBw/vF0clY4FXVQWJYfU8/caFHzPAvPF6w+KRcFTqyhUXVqbRrzRJ/rhIeRqM5EdgRdTqQwVsqqwJd2qDwyS4uoLO9CZ9BVtWNwJQMUoe2v10cckASIxnqn8DZyWSLg+r0m+8zeO3ruiHqvmbZQT4tKSuUfLgXkjIwcZXdUVOg7JRN0kWaWLwMsshmIm3FHRIF9cmCjGOZQQr5Rfg5QWmndUGN9ERMbXy5Vla35qYxlezGkAeSp1iMZwiA51PFSRfcif7qAmVsAp8q4R0yQJ0a2VqxsqJWdR+fn6nyOqGt3eadJ20YGhZf0PHeRMCFqj5rl/5igHHAnG5Ml8YLiyTpvvcsF3VthQ/QncShzs8Jx/Bo1f+xS5B6/hwysI72/gT+CkizM3U9Ky7No8VRQbDieP+4x/98vf+5T+bfXhDHCsDGlmQGYWtTRf98+Pt/ed/+dP9v/rxvc29u8OBrfsOpyY2HKFkEZmZ7M1ZDuu5qPLs0A0bwDc5BUSkl+Ij9a1BXgUwVM+/jKWENteNabq/1HWw8I03bzHvW+nT3kzqM53g1DmzAo7ONL1/7zZ9YF9iHd/lhRWI6/cGxoU9KWkLo8EDlQW8oCzXSJ5hVIHFaaqJZ3Ndm6eeKAEbKsCdK0SPkjK3iGJHjdCjuDhDpM0GG5LTKcmMhwi3TLoLMaipVpnFuJjAvbLCFml7Lo9wQHQHTofcTHQybFhWVsKWCEyubGQRSGLAcqDkyCABxv11gdW6ZKtq69td2pVLfnir5ivLTCXDkD2z8MYnYgETlAGJ2MnMtB2aut09sfeNTd3DLUG3mGcbLZpx3uvfWF2fW5wJt2pb0y4Rt/zDxrAjpbeZEpOoNl1pIdBsAjz4x5h9KfwW2cij8wtz80SHzucW+gtLp3p+YlBREpEIRSihtWDUTPVohcditFNCEnNUCFzrSaeYsAr/YtCbODk+2hbdnppdmV8dLq71D6eX9zbGururBw9vzM1dDPrHr1682NzZ7J2e4BSzFIZn/aPj6YvxpdOLQ7B3xgfsL1dLCxhUpkJLwKAD3JTAyNGw47qXjiK+MMwJJDkmYm7MBNNfHPIjEntQACp6t7S6srszc9Q/Njc0bDo+drS3f3xwyJqdagaCWhc1C2Gz9vbqHoNkMt1HW9fYZKtvxxUU1O0ONxS5M0ppYBJzuSuWvmaccE6jdyMV7snP0CU8d/XZXDT4jtoM5YpfvA5X+F0jFOr1JNZadN5J2N0uNaMjq+UNG966yXvu+KQj5lIS1QV36EVylIPy2FUKbqtLp1kW0yofPnyoqKPDA4W0S94mQaH1N68RM4jb97smgnCAm6IJD0akpA5XBva6r98kvaAIx15ddd9wWDUUU6luJHkprf6CsqDBz9gs10iKj46Pd7e3QT7X0e+XTPrfvgJEXb/z7dXLv+O7aguxAB1iUrXRGRy6GFNCUw2OirkuPfDFHjdEXME8QkdAJMmhdJrV2he5he7KMYK2MRj2jA2u1GXnoTGG6PrSm4peCCuGVfxLUSm5yh7xKmXD2Q7u6vF17tGNHjBmSUvlTnvCdOFvFPMM89QTDyrEET2mpiYAV8RKUclYbQ+oVHHoUbQuiFJ6SvI0qOR+ZU6dP6qXWGP/eAFl6qqcJFOohFVG7jF3Iawmu6WqrK/1VmCKIxwg04vOSQoMhtrMz5/tnR4/ffX806fvrq0naqi7AAL6RkmUVfd096sXGz/+xfL2/r3BYOXyvGczOPvUXAy64xfOy04cQFujatNqAPhUIykCWEZ4Wvw5BkJMRGcm8on2mFUjJW4WKdQpyqaUWtWa9tQVHIC1iOa+Ul29Kgz4IZOqoUzpLIGdNYNnc6IMwuXI8bmDw2eOIjbXKvwQUjYUZvNbef0GVRBf9BiBUpW4rys/GoSV6A0cHlbtDLDj+E5rxYzD1LLis+GBDY7OtUI6e67WHDivGjtV0VVgiNga4rPR1KMRnCDMoGFpLCwAIXCHHwokEsfoJ/iZ/SeSSi7NaQAU4osWUa0qCSJVXs3xXVJayqPhIRwW5ESKzs27G3QNaCFeY/LAWxQzVidEjY10WciciiMJslldEseUhrUGNBBWw8LoalXZyBcoMaRC8YuKrPoRrXXwUYKrZsnhG6oYGzoUNmH+ixlLcztLC8u3ndh+YqKwVwrLR7ivmpU2FlVVle6vo0e4QuyjsR2dTdXER8k+2OmFs9049eyibxcYZ2uOTezPLdw9PD14srn55IvB7fW57333kckPT589Ozh0DPC5RbSs5OLK3anJlfHJFSpq2Hs9MX7IvjtwSNWGOaL/IowapLbgA0qDZ/9LD/Gd1m+sfPvb31pbW5FUxbyV7lGPmtY7Pj4+ObQO4eyMul5fWxv0Dm1QE69r7OLwYM/c77WVFdbXPpw9IRWH+onezp04DALnnxztisIMcs7ZzMLcotqxTHBecsPuZjBqctouWmz3MGtqA5QrLJqFCdknpyP8W+sF8ZaYsXiKtkRTRISjl/CWJ5Gs6o/IroERnCon/JO9xPtW3DLACjaZ2bQPCVqalizjGhYddWYt6xKUz0I34dTgx/vwbXmM5DdTI8mO4MHHH3/04Qfv6fN7WOgFdhL76Srqh6vzvx621gFGxLtO6gWYHGWoIz1RpFcISJZ2RfarLCVVg6qOq7cqapVePRiliTxATunyKOfS6jgrLFH++OGRU98W72Yn/tojGgCBoQpPkbX9QuqDAtwyostVLb/1HQORy+d1aveFh7cSJ1EJe2sV3EQW6yKIKo8GiLhcIW0EkRRRDv7CyPWyEhO00D2pCvIqCYYlHSGt+jT5aLW89Rk4FBb7qsSwDv0fFmtKIHHecFHehGl/RwnZilILS5yqjAIxgEhP/NMK799cKQ//msD5FhxJnmbnOx95d/W+vkeAXj+t33GiC4m0VRBSOEn2utIw6cO8DA2ia5bSQ9hwRiniWAVefg7VmiOl2Lqt7kjoxzQN7upR9+tPPr/z/e/KMjFj0UVoS+EMDQIf957/6teDFy9vZSf96GsqQCf64Oy0a7/JuAWBCRa8a5FMbQQVg6MY9/DgptljP+HQBQ1Gg12VJgbbTbs8ytOrB28jprAG48lWuMlHSjHf0vojxsdcnYmp9Rs3xTRP+1lCQ857/VML/7/86isTOgBTyUeVBGbaqyBsnwXDVd35UXXW0/aRylJ5usYNkkrT7HdmjtiGmNch+hWlW0k91AmAAZM0GADdglqREkBoN5/p0KJZhXlbFiiCwKorycqo4qn0BuuPz5ddDpAr5oewEHVDqfSA9WJZ8RVrra1lg2MT1J5C2qTAMGtIo66UXoIAFa6G1WppKhVU0MedPV3Q58owFkqXpYGA9Og602KqpkBrGzCsNcNagm5GeTgH+hykiXlMsTnOr8DTOxfCBlHiB+FS7yHBdhysr6MeLnvG76Px+RpIxWcAMhttyvLs4urY+voxPybH6pR7q41tREnZpb5j7kOXIlsqyeSjPEvYIMEdzB5HnhuEW8CcyAWHUdULt2/fszEEjW3u/Ecfv/P9P/yjH//4b569fmn0AhgFNXN+MD1953xiLsE7RVp7Z9wmw0QRv7oKeWlWONOTQnP4QNcWXLZCfPHihaN7bVVoeqAlOXdu3kp007kRJkUeHHz15PHuzubtu3dN2traeH5qHMjS55mZ999/78OPPzaOyk4/e/lye2fHRnXwN3QwysGRDbp16Z1ocu/+ndP+sQnHDY72GWATjJmzrVS66RG3EfVxGuaJF1WOKfMJ6zrrJanplzcDDL60Ra7WnjAQxpOK0Ed+Fdmy+JQdhUWk8TBaSxs3N2wwshlIKyZ3bqMRK6Zy7nMGbABJFJQmY6ySSSt1WYC0tra6uDCbqY4jRMe/SZXFwG+3tN17gR3w7o7ur7OqEnSpTrbXRZEIUdTWqITWuJRdT6qx3yi1Aa+cbBZzrZuq9sqirKTHUawoBJIdLyGB3GvR1uaWLcFNs48QJGmlvr5Jpe35Nyr9D//4TcVUqd+2jh4UbGUz0sIoiiQYUV6laFV0vKrJm0bgWOjRhWrokialUUhzZW+9l7gSanT9SgWp5aqBKaKhNHfu02vQVF2xjEcLXCZxcVR9qyeZf/sySIMECQKy0aU9ki4cVdYn+eDeJb835S6mFJWrMlwXSPOXXC1vOX3pJEnFUZcuXXXl0VCFhfikKU8Suiz15zYZFMyjSzFpOLWbm1QVIfEr4fDgKWog8X0jdSSAOykSZdPBib5dIvQJak3k5IUw8uVwc+OVw0DGF+eVQt+p2GJ/XZmDV6+3Pvl8/eBw/tyAb+JTDMvx5bldbfpOdkBVVdbVxsEbHiJMaXgaW1BTr+KY8WMKSWHNohk4NUij0gA9Ft0om3GYCY0+6bBliC1ooeL1trRNvqjw4LIwV9jzYdcGYWhHz8m0s7OTyI9jTjZ3rPq1p7t5HF9/+dVB9jARVU/PKowSNNPDVkNyV0uu0hAb46XPEeesEFs0IVQhIuDhMRVngp3coY8aQ4fKoOuWw1sykSRhN1UgyRVtYiRYLll0w5SUbN4WlvxuCHHjYXNf2is/4RCQ4rQiqJNmJAS20LpyR8XjHz/szZbOcOay4Vf1ZjQQE6kGRXQtpKGKjebJgqNK5WXsquY8pgXyqCsQhTIoWO1xjlBbC64Skqh7ae8lQc2ZBWcTcXEW52eoYcclUNbgl9NobsfOJ44FBETQaTfgcWFk8cdomjAqoPyF+iyuafaGNhxwlHHNwcnekaMbAz0LQE4CkPM+Fpft6gJaUeTUEQutNqxabnOI1RjDd/7CeKqKsPvjEExdOllZ5hqv4HkVbIkEnw5t8TF0COHy0t3h2dTprdX/yf/8f3rU2/rFp586JEtfmoVgvUF0uP9iYmZ5/fbqzOz62XCBRbg429URDbDBG1SmTv+LuMFju8Kx+uR10smXXz5GFltem5y/vJSjBp3iYMKRg9/hCgFQaW5x+d7DR3ZC3t4U9x7sH+7/5Cc/fP7i6dr6Oj9ask4mu9gbvr/56oWNOU8HJybdrt1YdYoXN02rGy5SP1gy6y0HO5rdNhrVhNW8iwEVbMAeCNFkFk7REGv7kgJNKSLv8zatiz4LkPIns9qMKGELbQ+XctuQ127VrcBwskPSulyd7BriITxgPH7b8pIT2Jy5e24DAEKnhmx50tYl0h+x/VkLx5wL4CdbcseJ8a79+R30jrq3OAt8HL+4s/SEzXfsvM3ZjaiGJxiPsIVkEec0MLkhCH+EHd9cQU3RUDZCobxCVmWLEPgZQVFd4ERaNUjpQbpJuDNyF/cF2LwLDqX5Jytra/kF8ea7FJdEVuk6rm3yhoUKQ6oOnkPBNCma/hqAqjnt8FfN5AWWFi7DUS1MSyp9YHa1QpIqpeWvHhbAbXIl6mVSHs0fZyotr84AOIvems0m1NJQPn9BFdHFJAlfZXoXPBS+lJ37Np4eCLU/xPKyIFa2lseM10S8YiHpU2WEBtGKJMFtlQc/YKUPo65yhWztcpN3wZOXXPGwbajgdXizSvAy30oIFvMXY5yiQogEKKIgkKQIEc0fZSKRXAHGr8SfkyxOf5VfyG3F4rzSkmoATHQwh1xDjDhWp87raCqg6XW5xMh0wkwI6Zyfzk5kue/s9NyF01DHhju72/Y+X7+xOpw0H0RV52YwDY8OX//6s8tXG8vDYccOMsXpvO7jsfOTCUEWvBmfiGQCLdAGS9AZdzsthi//NHYkL3EpgqVcwVshKd9+Nmw6gfNknAdthwRPgkVMhnwCWag9TJdbuaZZButRjBlo7ujcm66qbGiyA+J/+//5b+xj5wBe60TEuFhEbX/16qVtI1NGcBK+wZCgjV4oA1xIhvvikRG/BLKAmr80sCJkERhoLsIGxrrSqHAhKOPqDNLbtZ1YLFsKDo+EvPGLw2f+iimgLg0alSVsmH5riiqTKZFXdbU3YhdOmOKF61iEgbQ+KJe9wIhfiffNP05FVUWKCvpx/MxMPE9zc5Rld6eMhmKQupTgoWLUO6qzUOQJR0FKrbqwKUe4TLQI1OlxL8ytHB7sKyC/wwW2MbLQMxax2ztiJdfWb5mAa00xk8fnG3cSLSVcKooYNwiVfmIC3ZAfyMbqF+VIg1C14TwsACo0XnAcsdbHz6uHTH0NH3AIcxKRWCVLETwEz2H7tLuQEFTJky45fOWIiUzWxYmlJQXBnWgFRBPmb95du3vP9Kb1xfW1v/qv/8xm6LPzS50p/l+OXmBrTk9PdjceGwG//fB7kxM3Dw/GjvYFzXctGkY6vitgSkrYidCu2lhYjZrJ8CeDZNNT5h+U9pI82D9++jR9UCtYtD4jwFOTzh/E08urjkF5sL+/lxnOhuJ7zuvam3k+Y+OtoLsMW9NtnBD+wd27t0n21y+fm/iQxTzYCjMU38J5HEw8WO4d0K4QlQFlLEdA0C/AQ1/Azh80urz1BJ+2FjWeaZ9eMc95qxb/ivnlwEUuBbrcqCzYS9oEZjltczO64qv6/xbnW0+Fm5FLbAhyUlg8ptr8x+LpCmVjiWiAUC78HIWZK4h1tcY04GPY6rH6Njcc6binAdHw5vmCpZgqKQFdV8ul0uiEdM+UzB42bzhNzlXZkhz7tytI8ku5qbxAqAfBdphQCQCDH0rJQAawjw1f7+8jsbmphV5pour9IWbsXxkXjFuuUL1oZFBwY6UGTH16BmVBh0+XGmVMYfnvM1JW1jH39dxHWtf0rCxBW1JpeKgJ7qxbaIMBKUfi1AKdVZiq4lmk51p4qPzRaikqIKgWKPmvpvrhI2GHUYIrUP1GCDBpp9xVQJr4G1dAuHpot4ikaH+BOlyZGj3R69KKyl8t8qxlkz5FSg2EERAN5fVL/C58FDzSZaGW9Er21yBpxURdoYkU6oxaSfm56ruVr4xyDpEzTEai3IgFGubi1UgqLwGzFt+ub2ZtmMO6fNHR22CvjoSrvDqfuTk2vqCPMdvZO7vMOh5GpH96srN/8OkXK0cni8NhtsPOouSJ0/HxQ8Fpk7LD1SgaWFSR/khVR3vyWVnHyGf2OxO3ia0ArSdgT2NHjQySwu65Qo7ued+ZIg4v7E0LqY5IIEtMjcmi5wl1mt6eGdzYvzwYmLTuXRogMKljvcHm1093Dvb1IlMugzA8NS3IVrQJkAabeVwgxAJHh2hdxDuo18hAVDQKUG9dwXo1QSuyZKzcjvZQixqRW/I0PBdAo4BQR6OBnBqKomHRuhrYo0IiU4EiPY4yw+a5pty6qmr9DR6P/hZ8RlUX2Anhajt4omGCFShJQ3BpXNFYy6ZchWv5BtkR6U//0Z9yIX76sx/v7e2jXGDMFWZx36BSWFgqBjWkVYXWw7oZuBJ4a5IqhSJoyRsLJBYvjPQ7mNNwayEdM5cJvlpt3PKEto0q1gfFN6ZW6/DOLi4u5JQiO2vr0IXFgWe7tPmJGZ5nGE7ofn5p/sb6oGNVrL5DerQQoaulUnjgYdlcyTydra0tfgIpGvFNiBhZB4m2xWKl7x7gdSBzwhnJUa+1f3wSq6c2n9195+/dcBzP+t3Ty6nD4z7oZ6cmnJVkkpD9Isxv0grd0dfPfmGS0Pvvf//WjcXhYLF3eKQTP83dQkEyEC4Mft6+wIAqDs1BDaQKA5odg4K4ogDWIOsF8Lk5YWzVzJlDRJZv3769sbHuNHizGEvOeACGjbuQEvciUlWTqsYnsvvDzAwMODeY76cGABg0HfR0YRnv7kn3GD0zNJvpBICDhgDBd0FbtZd0NMrDD6iSAi18QmLWdNVgQWMVCbyS5S2K0zMRkMK2j9hJ8HlSXnfSp6haqNPtWlV0unbjlg2TnQKKzwEMBpdQmWQgCO9V/5vuMpX6Yj4LClJ4KmlXoThwVp1XT337LZdOp6zwpIFRXlfweO+fYlJRsFCKuH436N8q6Zu3LUOyBAg1s1PBYhUYWUmZQQ15ijdc26pfXBr6mzf0N9rOOmL6Tea4qiSF/sde1yUqXDmwXQgfxdWUGo4IxLHzrZK0vXDXXsW0plH1ul5pHIvcTHa9jFlWUf0lb3FJdAfNxYUZKfIRZlSSimBFL8RQmb80PFql3JNAnAT5fAshgWp0STG6j9C6kr+Jtx8qD7Jz+Q4xpR5lvoI5rND+UlvuRkn0VDMoKDKcBKlmVGIrISB6EABSHzVMpaeiVl0Z6VRY2dy0+xFmpDdiF23uL9vlgFlGEpYZL/opMzOrljacjR/0jg8Gp53xzsTSig6KdYIzpKx30TsxFWZwvn/86vMvTzc20/1NWaChMyb64xf7uiyGNuCc5wb4GkIvegcQjI7p3eD7UohsQLw6sBMwKYLGIKO+PA1qJM8D/dPn29aCZMyw1Fhe5XlEPZ51EJh4CYTrfWeE0cMwkISy0Yv9Qbd7RJtZg6mnCG96eqatAE+SlJCGXCGs7nSkpgMFfGpOSvoPXHKiCUtBBSruqgtcUFRe7U6CKJPE4lyQHhcq5RcSyzgRe76vMBvAGg5a7yTskJ01s4VCM5y5qRFcsEspNbXC8mWbqtGV1YfBREwtoGj26PYoglZptKHi9XSii0zH/uCDD99/7x06+9/8m/9G3tKTo0a3BhZitKNaW4Szh6mOiZ50rQkACPuafQesyLHLgYMujFka0pMBtPqjk9PhcDrYyk6BLpMNTIVnydMCJMwwLNOJahfj7KuIgSh3MTm9tTy3MDE2lWW29r1aWpxfuWlbDbOxbPBBliMttvWenf3Tf/Qnj9558Iuf/8y2o5Z7CvNo6Nv0g0wIaUxSapY2iFRBhqalGJiiFwzYj5/t7z/f2Hjy3ds312/cNYc3XlZcO5xMGqyhj+6Z6ujM97qHg6Ojne7+6/uPPra/sb3VnU6maSVrgVEdSke4Qn+4rRERAkkSdEpSaiM2qcDwVau84CMz9s366s/NdZaXFm/fube/t2tDzUSCIsjcyW5ndoaGV45N05UssGX9ztOnX5vSRdlbvHN0dKBcBHIUhTrEqMW3mNNYsra6KdRO5WTUphGYUF60KUbKR73V6ACKizFWGPXStMvIciQ7G14b60gYqsQvgFxfSM898gqHCoE0o+M+HGFz5IkpMzNuTjpDd3V3d4tnYyNvzSGJjlQ240A54As1w7oTJpBWyYXSvALemwsIMQFJ3wTMW8umd3d3tkpde5OuCJcd+pUW3SFhmLtax0t10QCpLu2ugt6U//ZdARZiVU3JF24aKSBZG3uLDMZrURA/QGSFGzpni7dib4majCdzu96u4Oq+EFA/gJTrG01uj64/G5Y0rSUEBB+unHAPtEvTlYf3SqdWgfUkpYImqqkhEWUDUslG+6a65E3lhSLCV7iTz1VAeacAVbipTnYCusEvqKSJ0aF7pVWqVyWgyRrU5SrIQl53Lm2I1qnnLYHPKSbGU7pPkfEF80+a/AVTVV41tZ4VjD4aA41KzkNXwPckvEgNVGYmRflxIFWStrdrdFNQxT0ElSsiUo13r7DUXBAHySk5LOs5p50aiE6o9NIxwEZDJyzLn50zuWbnqDdh1uSlvRM5l2e7z149/eUXN9+5Z0QuCwj2j043tjc++Xzq4FBoryL/CGFGzLjNLA6sdrCcIPROpQVXoC1Q89EaAF1e+UkafWobiQUv8QNOOcSRiFEhcpOAyYmDw4OF2XmbVkZKqlSlKSntcKWyGqOO2xqWCptneCdSK4VTE4U0DenNp8+RwDVVQQbg7QqwAKwkP1XpXpgrk6Uj6iPIU9FvXRIXDA2jBYya8zRltf8hT0Yla5gxK/FpHJ0AjW4h1RiEJA2PV8zIhku6IIUoD+TNOHsOJwjymGFBC6yi8+SVfP5V4mwuOJmhsbzNus2GqWqSGqJSPDH6VswcoMjkmRmq5tvZ7Vu8kY2cv3f3gZhIzbsJIwEMCNoNfle+q7r4LikvzJcXyirUsbBLi0uH+yL8A90MXg6AvW/kBm06qCxcCK6rFQylBx2ENVKHWe3LZtDXbpMC5GEFwXL2ZHx8cU6zLrMsdGnhwjkfUOqQwXjSwbweE8Tdu33rnfv3FmanP/nkkx/98IcCy9qV1+oBY4Pf7yuqht6jfxF04oEcGBCPdsx56O9tvfzUSa6dqQdHhzZSiMWx7ofwR+Kr720umF3QWcFe/+DFUwGiV3ff+fb67QfnZ3MVR9ffAmM6QOHNclshJNxhxASHFhppxzBJESVYDS8kjVSSlJgYADplR/keN2/d2t+/axu6nAMP/3ril+dCBlFU8kRIINTa4u7AwMdkZ3VtGdft7cVhRQi7MrEBxllYYETI5Kw8JzvN9ldQaspy4Vm0kxKguQJVXkXtwKTgQTpVduQzHS4ILnaKLBeDR/JGTDHiwFhfzBkbnLwDaE4DQ5KoJNELc7mNDt26dceMMxu3hwzQIGTmcEweAV4oHpOx4hzhcrvkFQWrjquPlqxoDBX0e0I02rtl8LzPhUO44gjvgJiYUC7FwWU1NGSIpQi5XOmmyROKXV/efON3KJXM7UodxVb1s8rA4Ckt1HSyqvDDyfzKypr3MSPRy0mayryOt/b/66VR1e/BEyk2ztHZ0CrANLW1vyCEm0RT61mQEDYt5mvNKTh8+EuTXNeQFRYb2CkCo+LYIqW04fSrlJ5e346AwUZ0vbaHWwJRGTCkGHHgNyrKj99x5TzgYBa0oAq9qpZSRyx8ezfKV+kokZiWJBthwGPJ0vj2MM5CqNiSF/2xOIK4giE5w3NCyvEbWqpWQ2OURnU4xG+5FFTFNd5RQM2S1Q2qmWbFe+fWEapj3D51JmQNzufGxhZ0f8cmDZQO9o9+9e/+9uPf+72pxQVTPl5/8bj7+Pnxk5frNg1QeboMKMk/Gu8auxpzEqEnhCQkbK0AXMHiY8QHDeoAF/mLAOeI1uznFWVEK+vXAdNwVnASznei7NipU3kPDpdWVsMtiEZLCmLroQTrKUqcDl83OsBSwmR23rbXvuRxtuJttRoDT0VjxH9YCRCqIvKVG29iDFwt5OsJhcV0cYXyNJTLldR1hWNDNJA2jVmMV2JcqbwCcZKn4TH8mV0UkGODq7TwblzjGpZgmOI3eEXFhJmLsGGBmD1uAQ1lkQ8sgWqSTiphSXGyaNHESW9C9Nb8FGXH9dSo8IISA8ZIyqEFtC0OqYfa54VTikUrPVQLaOwl2S+bKEP9K3qqwlV505RAPwIvLkIjnqrMHtrefKVTxvCV9Y3MA4ICyMKXSAGeSe4gtzNdu0o6B00qczfiISBR5lQZ0HUKQnpa2ptpsfgCnBMLsyfW+vR7k9MLiR/LZDYICCdzWvNf/dVf/vQnP7hz57YJxYY/h10HBxX+MxYSMQ9G/A+1GzFzl4dBkiuHJLBE0GBzN6c67O8+2dn6Ym76uwcOWLqM/8QsaAV7QpxhzQJopGGopo6yKPhsePD69RcmRK3fejQ7v35ybHFAAk4x7amw0cANqPI7+PRvFPMIgBXEYeQCasXws7+V25g+LHvSt5LnnXcenVk51LOKv08VlJqI2VBgSZw2he211BxpVs9+XxLz4fgo2lm6UmsS41Zs0cdjXBFkpJ4xG4NkE2aFlKNfDJz5ifWzJuSrDnzI04TaTzdvAaCo0mtKR9HoJFyPgFwpItAqHZHAaK8gztl53wFlt27eunfv3tMnXVFwsfdMYamoPC4lXZnj7/jJ8EQkOeDmash077fnEbHRFSRGD/T6g509g2nx9BR0nTX4hpBiy9JSpK2KDGkqZ9FEhrQtNEstXoY4RDXPxeGuxPk6q1KIfkNbSb70mAe+2Hxa7/j4CIumDXWF2K3wyNRVXZHd1FU1BtmVKr+vklzX55mrSivIihZF2ICYQos4lSKpErnkm/CEk1MWN+rKf32r8IGbtMGrPMe4I33UBEV4gpw04Uo1KiCHmCgbG0ZJpwB/dbWq3QIibAoF/iWOEjMQlKanMeKflkVOJbRWeVIg+6gKPbcTVorBEN4pMwmVUcjzqIqLrIWCKZhz64f0qg1cBRu+DOHDoMQlmqYcgBGInEk7JBqdq7NSg3wNo3+4+tMXnWxqU83yGfQW1AAspswPeA3qMFtQyNEBZiHFK/q6cuE9arFLqcOFI2UmJ29bHSyMbM4Vb//weOPTLx7/8pO1731r58mzr3/088FXLxa39mkCMbUIAI66mDQLpnt6MTB2FhsRVBZIaTcwtI6aTYOvrmAiz/0PYiCrMJ9PCUewCSlX3uhfCqnbH871hstLjsjTi6cThGlnlMqKqA1q0qAoUPM5MYLAuhnQ5mxANp+AixnvJ2QbtTuxtczPkiAV1dW+C2tFPsYjlgy7aaiIcTR4lJQGpo5gfXSlWNCrpdrfUFAtbAVHOMkg/RMNZm+QeFEleeVIKTpynAqAk6C6soOxfERtyQiVoJAJ5JoDKY150vrcBsPpzjpbwjKrbBRcs/SruWlYihs1tMA2SJxRQH0LfDI9ZQeWzAkgTxOmpk9Ru5CTusPKkarWXPehKarx4TJ5zWm7uEXLwd5ANYg7Z58sRywfTohuZyM9rlWQjyT4LTKQPx+RAWcGO3lZ7BkSAiJmDRYvjTtAt2Fh4KFBzHMmg4yPi8zMzuwcHfXHJhbY3sjEyGcCACI8e/pUVNXR9pR4uV6xu0W1fBbWkeMKFUXDQrKiRw+xa5HNqtexzmkiJRsvv5h2qvUEIE3I1dOM7uKkNRpqHYywVv5oefuB9C/7e7svbOVx79G7U4u3D7ZmT082JsZPspNNcWAUVNAYrEKzW2U0xV8YTyIPcUO4rBRGJhxha6cOL51dTk/xch69+56BlRcOOS6tgbHYN60YMU9lh3ChiP39/TBWVqDFxEA/9y0sp2xdBb9VGBaJIirAEq1xk0dVYIANzEACZmQOtgJ89EpcC5DCtidxDevCFYXGfESq7UPiIEseSwYdEuxqj9PAlB6lcniwbYnv8rJNSLNA9uBQTHpof7ClS7MF6bHwHaWSZW0iNoNTIdwUXsCPGhB4AUANpIPuld8YBL86s3XvYB/f4VNtCdheJTrhV1jUJXHt+sWfSVuk8LIa65cGpbDKVF8pPJCnohHvVLL6rVB/Sae2whvo4YbhoL6Uz5nmEjnziuxU4dy9uBs1abZ5oSXjpjz45lKUX14VpMCrP3e5dwUK9ChI/Aw/kA4zFzmo4AgJwqhEO4ml5UEyBMlSZpgsiQVkrjMvSSTrMgfUBHnRQzg3AhinjqSHykqpoyvxgJKBVxWHsVgbFViNVyxWBChoQ8DRBW+FMhgPB6WBtR0m5mxcU/VCpOu6qfL6NSrPFvdBsUdlW32BT3EVaCh8eNfKioqogqryIKtYPnR56wJPgEkdjWi5qRzKaUok1asGHkXAsnAX1yNtEkUuchvpgp9Gs6g48CJCojAVqUsKtAxRM/hB/1ugSf0JI7ts3D5Ge2fLTkZs2BGcfPb8b//Nf3v3cPfpk+dbX341vXM8O+wfTw7HLKY3pNc/d3bM8djlIe+1cZtqAgbIANKQoeo3V8EcGDKJJeNGGTRKO9LnQ3wGF6tUFhunCUJOjFu7YPuGy156q2lglHcsliOF2YtYxjTqOlvqwmRc3Wjw1JdLAslwD75kw7p25LE15ogN8lquRiclNc2YPk22ymtvaFx/KSn/q1AvqnjfIPK40TtYlyrAthLdBSdJ4ILsi6lEApOqSq+ceQc8nykuCs47DIU3IQqP1hO7DlNFWpYrmqZwFcVRF82UqKFyyLK3BVQ0zNuXwiWDgUSJTSYXsraPytnA4TAfffQtPxcWF3d2tlpL8ZKKsDB2BX/Bq7wgksK1yYcm0MMUrz/AK9zUn+Vli0l286swDDYAaN7ppblvvYX5JQ2iUyIvs3PxS+I8wy80ZY4gr9sDailWPUisey8xQ2dqzxaLYq455DdRg0AXE6IS5aWpwqa7u7vWebdWp/dY9ddbaZp9De3aC9Qr12qEpBTE2Uk3a2qmM346BU+W9FhEayfzmdOxfgiXP9Ia5LS8apjuzAoe8F0nBmfdnq6vQwovbt573zyK7efmMB6dX9qleaC3V6q+8awxEXoNDiYuuCtBZRoDlFYHPOMSvW11iXB0j44Ha8vT80YhpswZdubj9qvnPVtDZ9eTms+drcbDQi6oU5LBFFuurq6t2noJCaJiLTkrk6OlriQtDpFY05XcnoQYhdb8dEWqc0kLie1Zmp+/pHQpDeqijpMg/Bn9Xq9TU1jFFe2AgbA2LeCmClcqoM4NVOsaWothgSxWtubK7IT++AmTnIUQudjIS6sKYcZmmm9BUi/ffAAgXpIvH0re3d0j0eAr2FOd5mqid1LgXuzjC/zaWE8CaxJ4i41TTtp5/ak59eztDxhImpaqvbjOoljKxyUUTOcBxmpygwgCPVEk5/YtSA7WL8q8Kg7KWgveruR/0L1qi36KLrAL7khxu6hfE+uZ2qwDQzC8Tt9quNCTxYEL8ySNjjDTQds1qVqVspQKotiTaiR0GRGSO0wRk6KMYLRevgE07ShEBjeuejPCqaKiXCSJbBaPKLzwKJmkVWEak0RVb74yC7okulqWxlZ7q/BkSpWueo7hlB3mjU7KlUaN2pRUo4et8AimzI1Z86aZnBApKlpQrmZgZxV7hLWVWnwc+KIsg4jfvDxRavS+mwkrLLMbeNVrY6y+tYPONMxs0kS7rMB3dgHmP54ev/jq3//Nr7/8bHx6drJ3Nnna2z3eedrbXVqe/97Co0QMx8c3zvpbE8MeeCvyQ75a3UFAoaFqCZoK1FCnOUeak533LJBqTW7tTqvSN9XpEw+/67xT8OocD8ZnTi7HZsf6mFNJCsnwYcwq8kXUiuhyU9xxZM5OLUS0c749qJkKOVhkF743+Tn9yBi7EK3RQuWcETDHNERrZMEAaVGu39UiZiHYLqy3NqVWV/I2UxDWGj2Uor0KIVWULY8zZQnLZklSJp7EtwRFohT+X/FGy+gT/qrYKr+QI62eRBVb1YQFgyqf9RB4trrVPVC+kda8CCdfgSSNWgwVm/5qdBbIgozJW6PLL1++Yrd0427fuqMfiTopNQW70ob6BEww4M9MeZXzQ7ntfkqfrYFrntLKysrGawcXoBwQWr9TQfHKBdENBaZlF5eJpTtufZpT14MhvepEkgHJZQ+yQ2IIQ2/RZ73tCYcET04dnXTNawYYHogRp0IlDbaCruh0oJxmsYontVMSAkJUumvgIYvwHhkZyXh8jCJBSihM+ghW9QXEaw3HZ+bwYHiw352ctCjVzOHqygfCMEaBPCJ6oX3clhz9k/PD7dd7S1/evnHj1tqN4eHD8+7WcLBpWFwPEDPEEAQk8OpLx6sGD4aDx3BvKQ7tEP+Kx5BAUTaMsw7QCX7Ts7avMk/DZOyFpaV15LQ2h0hQ7MW9oVYRK98LM/NrNgGdn9cD1POqHbrwYGPppHRVqzVF84vZCkMJxIfQo6JG8lNdQ1CHN8K3jb+AFwwoNhioK68r5Oahd9dVKLCxeqVqL6VFAmJsFRk343R5aVWr7VMxObDDqJCPmQoDXgjmRBnZT04y0Qw7cZGTeXQpI6X6pcagYsS+YTyTWILb4J3jXjqqWAg01BilWsmhJUzVehNRMrE46UAWHtKKBn9TpO7bk7oJEC1ZfaeZ2Kg9cR9J1/GlgOL6jxsBE8BAz4oocDsLoTBWGiYFtkp9FVV8jVpZZHr755vngaAcQrmSL1c1OV9t/lveVGc6E+NnHXAyQDzL7Bz5Oe0OOJcC/zNzzu+emBrs7wmFkhnKQLXnAkDBX+Zb0GcpKNoytXgbRuFaxTPX1qiLQOqV71zVQt/Sts/iniC5EjQ4y+GWJ7ox3De6kVQe/6n75AfENeHzTjVNzaW6ugIcVkuuGinJY3SvIjyTWs3XV6Bq5SZJKB7SI3ZYSqpUkPLSPD0/u+dRmvirlUFMgZqkSTbCuJqvrgZ3RlYbRuLujS5JuLyTg8kJJyiQGJnFLGZ0GqyFPbXoYkb493xib/XOXb1QAym948PdnY3T7sK2TeXmb+gmWJN4MHY+EOiIqgzMpT6Cj5KAhu+o/rqo9ax4VnFZuCxaUGf6YTH/aaP4VPNNp8enHozPvnORI+IGPbveX5xPX24n6ik37ewLTMWn+fYDPsIIQQx/8sLmFtm5OJsE2wpKd/tUWCVDZ4IrNInYfhQMCMrzhXFG0cxbwCjPY4kU6yERhVytU7gqUqlbTR1xQ3666okcoys0CZDhjcRsTVwTi8hVpt0rPkSmtMTMN5G+yprvVJULGvFbYw/ZC8PhzQitXJ6oomUM+0Vb9dKKyUwiU26hPZzoht09PDqEB9kQXudXBQIgruNjWzYPVleX79y5Y1wz63ejrbwJDAp2pcDCsLIY+ji85znth3Ikt8qn6UBkcMvMW65OIAtWUog7CfhbFKk/QROt0tWZX1o66h1TvZJFkbfEYe34VUXrlBF3Ymb22NolQg4d2ATcUgeu1ByrkNAK5sowRYO8tFsWQQcAWjaqJD3Kokk4JQ1CJsnrQhuweuiXgrgKznVdWl5gAF693rF/qx2wM2GIfokOkixMB5pqYPCDqPbwWpq9ODjaevX4r9eWph+9/8cP7z/sHY+9frp57rhfU9FrsR4NISM2poHsjuQH6EwlTic4SFNydBmsjI9l02bxfN6DNUd2x5kYX2KiVlfX2HcS2T2hAZKW9ms60uFOlCjVaht3ref3GOy3bMrUcYot8Bc/uFFPazsMhQStSxrmR8yEIQobQYgnkksES34Woq74o5SP580Ae9V4cpSsktZDuVM7jSVBENyxxCiLl4CjaE6GfSIf3Hs0O7e43d00nDHmSCcOWr+vaOXjHFW4VldXTBNTUFgmTBNIrj7zrFUdLGpige1tbmm50Ctpin4FUB7mSlnVJ5SsklTKpM7llc+WrKWtGlvVyVipkkT9qbTZlsqYVqO8rYzEIdLP5mtgq4HqC5SrrK0WSC4lCSdVxehtFEFdb1J/887LPAj35pJaXS4mk9RFRrIcPHjIErdx3qpxntYTw7mCI05/nPU33pntmAkxYabqmWmGMOVwKpHpzAGw21qc9oA2Mrball+l77XHu8Le26Bd8Uugf/v52/fErhoLkQAkzm9dDQ1FMk/BOlqGFCpeXW8RII8Kd0Eu3vIJxhBVU3h6kcBRxty00pMJ5fIrN0UJAkl9sA0Uw9lJb/aSfz1lhksaGbxl7n+aH4bLh5ypqZT7qIamHQJDlAtiSOdKJeEl48odR62p0LIRJsliKMt1zC7N3liDs9m56bnL8YXzi5OBZZu9NRK9uG6xy5JwzvTl6TiFeD6w+12mQzdWCjCt/PjH1fzgs1zXAg1PqBnUxCcWjhvratpeRjD5hGJManBy9bJzK6p+fLN7MZgc9FYn+obhFEtmJA4igxzNS1XQW5/2v0o0xNwuOMIzca3TeZbY4k3dQ5E2/BN3LWTP8/BQun1nGUatZcTBUK5oyehkULff9ekj3JSrqbCrp/lO2pbYj2p+wRbl50+7bWQc8N06E14R5d2n4S4/W1kpOyKUCtqTeg/y4qVMFiNTmaPU3iIvwopC6+amM8iAjAid9y3qhWFgO5NxMuErSt+gr9pBRR1IZgOm9Rs3Xr448aSa2Mq+bk3UUAURhzZKACx7D2OxwYkaZKzXdr+rq+vHRweZ/duaH5DdyRlN54i5s3IHTZSbW15xpM/ZubnqyEis41UGWaP/SBP0O5lBZ9B07fTLipVRlO9Ay6Axh0o3ZnpqRqOjpDJAi9X1yCGDbU63N80NMJkh6b5xIfgbsXwW4sGQql2N3tpF1xuv29raHV7SQSvDPsmz5s75fTRpeK+1rUiEUIZwJhas3jsb39t79ekP/7uTvYN33//u1Nj++OV+5nWoJgIbaSnChnZF55o3xR/lAtO+mbgLmaeFsZhXQQd267i7LxTNa1pdu3nTjpXjF9ZqffnFZ6YvKTTB+gzP5TADNnGAGBfjDr1luGxyeTA0eWPcznfZ+QG+MpuvRCfOc3p9KYBecUUeXVyzTLkwnhgIr3FUBrgShN9Upwl+ylepgj0XQsRNrEcjnOZxY90wuUlevEA2AN9EM4StL096J2Yq3n/w0ApmW4AbDBayMW5EpaWvEPpabzazfmOdLTZhHsxVy2hkITX81hV0Cv4R1NAq+NEWvwN7LH/wBl2aECOCPuEFqQJ1vlzFFa11iCGNFwqpBPWVD3lKRRQrtM5bewcVjcYxAVcX3cPzSNlyXj1s3yoqHgANzNf/JHKbv2L/b2a4+lXawiTdMEKuKMoiUF6EQHSbos0G7SUMZqOTjg3Y5B7ELI/NL60urq8v3L1zMe94u/2Zw+NxL2BszMLAldU7t8zZc7DNoHcyHo85QwnRrWpLk4PfoCAVq/UKpt/53RB19SpFxSAgRXJXM4PehvYUmkGqb1zZhSKAJQM1psVNvafa1A7qAJ5+ipISWgBmOjxpjP/KC5yBtOXI77JYwbFSU4BUgDJFxSyPsfHl6dl3l2+Mnb9+ceIo37BNJoqaC8NIY6EaVUvmKi8MXeOx6sZroX9e1IWQIWN5UyRPd97v6bnUlqboKkzygiYdrGDm6tzl6UnveHPD8KId/5amOnfWbs9OTC5IcjluJ4uQkSVLNDXaPIwZDVnYCyYasxLvjP+rONq0oVbqShhoQr0S8sBWV/pfRt0uLfGw4zRNd6PfJ82OnzucnLRz/ImSU2V0tgsi9Q980fAyUuZA4SWxs8ysoWZ8kjZrWnafn+OvxVrEK9WVIvIZnKHvaKBYL4tN5+e1hP4u9osMNL4Ij6SNuZoiQmTAF2bTjhKPvC1BzUzUgNdAHH2HqJkHqky3ZedqDdd1IVVYymj5sEz0QT2t0vImOZWn+1lgRPflJkTP4a/2D+PzSuM5daxdOk/MT7qfUWTqSoFQK495W1LhGR7R3MLCo/fe3dx83YLMaXdjyFRf92kZ1BusYvYyiMAvljuxVVKB8cYmxA87M/PNt4iQRFIYUqY3h8BH+8FLgWseltlNNQ4Rng8LKeSagYJGmlcgeAbTO6sgyhoYk9NG0rK2W/DMjIWMrGX3BjVlFPzSKpd01LQH7Bx4psEvdkadKineDz0hFkIDYdAbJKexowtiJgUDLPs56fe2dvfmlu9MzS9zOPAUR42JC0YCaogS5ORGiSLnYzbjHPat8nv+6S93jg6+XF+/aSA5DCoDKMP8/Errwk1ZL/9JS1k/coxCbVdTImUb1lg1AX8NN1vy/Lh7fnl8YXdJC3OcprK6tjI58eHB0WHvqdOITXmL2sDH2Y9swu4cnXfefe/GrXWYx9bd/T2R/wRHWPccwNIz9UlkJs3J1G5B59hbmz0G47GOJsDlxNIAjXrVTFhlzzXRJ/ap9qTNpd1HBrgeRhtTzPCSt8WZ5e/5UGPYMo7g7Iy1CKHUyDJF4vYP9iyHu3n79uOvv1penrd5i3OmRWgyxhXfwDFbs2Fp+CrLGVzGaqopShd7aEvqCj1rqq1l6HMCQkWtIlVuS6B8attwYMYlSxRDrSyfSq4keR+JMm9G/hQRimOg1FBSXyl8jNgGTkpkWraghYjBpPAEgMN+ie27MtYrIqVzvxbkYrx8Zole8X+muEIy5sgASoCOffCVH5oY5AMpMOSjUoS74SjTT/VWQ1SJ+WhZZnLWPenZ6RSqA3naPMzGd04sI0E2S7gYd0bY9NLq8q07nbUbVqE5Bm9m7tBO7EkN8VOzHbuWTk0cWp0nbjdmz1XDFPoAcSmlKGchbk1iMOncxHghQjJHSMASLggXFbJIJX7zyj+Y8VeIDtqrPUkaZHNXtTd/raGtNFvBA8KFXCmuyOkmOfLYV+7rSe6qTmW0J0puN28+IbqUYl4E6HTogywkKChza7tdTjiXxBxffRukDA/GdQAfCmLOcp2rmSFSig/zBJqU0hREvpStjxjE+PNbj9D2GyaIcBgiZ5khZwpSuhcS2UP1SHsdkm0PvoWJ6TkvxyYwVPdiyK3ud8zJzthMYEp8o1AHUYoaITFfrlAfg6XerHbgoEugGZAdfNenVkuBxU8uz18Njh7MTa3bi9B8HW21f6FzxM5Z1ezqFdSn7Wln3YwMGABCm7QtrYvDWr3dtGua9g9ihb2FQpmdjLwJUwOlLlN43FeJ+WBdIuQNw2lcyguBNCNg+tOUolTuAJMUaWquAiHtK56qPpkmAiZFlAARMhGpqllvo3nxV0qNGEW1YGJVtQJHn8USBBntyc4ZL6XAyCiDK3gdCm0ZU82grCSeA1hR1elJIrAVxwcUKaMnODucEi7L9Mx773/45edfvH71AmUqjJYWFTUBDwk+itJhwUgZk2jMXk8UxIhkepbI8tzc0nFcQ2k01rLebN9oihYqpwz8Jqo8maMxzfTIdM1z1iGJgdbaGZWvfof4LsyfzUwfmDpXtMDAEKMiqmB2bAHoTtk9yfaiPZpcwaK2AEG7mCMMVkRJPzgGoaRbOR43J6TaU0/VnAbJkoYhpCjP3Mzq6qojAsQP+IIO0R105oUP8xJs4QEFhYGL3Hmm/wkMOx/bh9kgzqkY1tneoK81sU9pY2qJGvaR7m766+lzarvRgUsTFSL7mRlnrqxzkFDaVCqhPfyATw0cmu4u/mwutELR9N69B8bvnb5QDKcYEX3x6rPpGecymcg47tyk7v6+QtXsdE7IsbY/bhOYWJ2oV0qCWU1Iqlg0za/WxZwHk4UlD6t7nP6xmzBFahO5pL3SOj+lefvTT5dX7ab4CD8EySC3KFkBoIBImJGGKs5G1qend+/c23j92kYuK6t2ujZx8PSk2zPTzfp8b8PYV7pXLtVGUrifBVLVVcioqrk0Cwvz5iUSDWkbJA3ayogU2VkFPB5eX9WUFIfZyo2+bkIqHP1L+am6ZKoVHOoqpCHhuq4aGRkhB+Ay4QutE3KngGCiUhbMxVE8igzt5C8iQGLweWn44Dn8YkU3V9o4UoUrCJe9S2tjw86F40lmD+wQLFcDDBHF8ResRGg1FA4wY5mGTC/ko1505s7n53uGh3JYmBX9K3PrtxzDoSXM0NjMRF+ziQaGPDAQ6vDrYmHtjxRQhU0hYif+pw6QOmjxqrFhIZ9V8Zuf7a5wHC0BL8kW9IUrWYuRKvAQ9oPVupFhFIKG+mK3t2lTpLmqI3lCydKZpaFbEVfv6zvcmciPGhrVA0P+a0iqBBRUmhRoodxpz4SLGAQtg4AqPCDEoKZ3mUyjQq/uCHCYM5divPYXlLVkqYdcFfd1xPR4v+NOyepMz47ZcP+U66xjOHScHPcsYIS/0o8XEbs4PO0f2dfRTM7G92AFShV81ZA3tbwFVbQ/qY7sgbgw6H70LSdNMcbFutwadLfGZ+5NLE4ZOzFZRU9pmFMWMvgACcmTTEEIKWECCm154nH8SjyYX6CNHc14h84FppAuiE3bIc1SmASB6+diFB83nKzSf4BkwK6c1lSkuOSqq5g7d9RRMgeYfFz9uQ8IRKckhrxkFkmUjJ7ZxDnp8ZMhUVErWVEI28oOiHH/GJPqzldLvU/+wK99oX8MYB6oiJwiYxZp00410BgbbbqHrLjLDGrdmio8xY6gLYijT4mx2JRZVJNTD+6/c/fu/devXlWd1aJCVqpr5iPDWGyYqoERDcUgkmGVymIijZj00sqy0TvzTkIcdA5j2Z95PvIaZZ0Dd+gOZ/ripjmAneesS52xYqDUV80zE8pskVn25ySTxUpLhwlxwenJ4HjSRIW5xXTqBjlFUBNsCOZMaxClR+cr5jedAAqv7KTTPYBc5tCbK1KGcsF+XtTDPAANrDi3c3NnQ0OoQsczzC6uHw/tcoV4+u25mo4LKoILNiCzzBhB9VgrMI8ktY2EqiJ+OuTpDXgZApNvBJW3uUXxLHgisteQQRypS5tSZcWuoqXFOrq/Rk/FadjhqKhz40RztoOmy1WKBIx3JjJ05u7ce+jUoNkZW2fSiZQqba19HIKx2cnZMHZUXrEO6+/+skWesQdSh0t94Su6QTNDxZiBQNqeSBCCVALPwx7FMW7aFexcY/iamZKssFxvW2kxjaxYXGI7iZ7Zo3FuduHu3XuPv/682+2ZVTBdESoVSmkSpdZfXi5VAe0jssnvaT+C5rraT7y9trqKkdihENk1Spi7XLybuBlt5aEkuVre9ilJGKLa8vbzdt8St8+k/F2XtzRNaipvvkqaJCkWiVnOzTF9u74UEd2GNJGVWDYWMZMn4ujk01SC7IaSQXRdCYULbHC27PRqQtXZRP8ohG6mJ9A0gqJcAmbpyhkwKhDCKzZ2nXfUx9ryusM/dHNF/6aWFmcWxzsO+XhgSwBUx+sCF5lKcz7e6e4eX0w5h4rj3sli+MwTjPTEKTO2l055M0Xa4e/tlgWYZtJ+E1HBcN7mvRIUgLmJI8+M3i5gVXFdVkWNSvYam7as9H67UWlSV/r6jOby6qqK9uY6bYhbYux9jIcXkmOnFBG7mt1mescnxpN6LLDOf9bYEKDyF+QJezQWRF61Bv0eUzu+cWbUfpIUDMhJBWRqUcpPVpWkLbolTnqdtyBosnYFtATACdrUDJoHkmqDKcU8ZwX1xy52zgZHOYqVugF0Cr+6lB3or36OvlNGUEOP6Grq+RB0CkFWigfeEzBMMfoqpeip3a4TUh01fmGnad4r9ZIpzVEGLi2uvyjmtC6GyGerowBO40OgQBPw/I85bB2gehI2Lw5vyAEJGKvPoZuRZdjwyoG5kpwiLExV01IXtguvKCsBt1RdyPEd2lDGxZXxXmMaMwUjNjXSIUpkIHakywi/++QNNcB4RZqYEE1osHuZtwVh7uMZZGxjGC9ZuwQmZgKPLkLJb5hKddIRzfjLuoHB0PUVC+0ty806K5czjhXsCn7z5m2CSS9RGqmvrtArATqPWHgLXzAC7qy4n4JMA6hOnrbwdOwpCCs4rcL/RusESMl/vGONzjIfnS+7Z5xfUKeZ9kE92P3CmrNAhHHxeGR62rKl6bnQwuOQBp+ABlao4lgmVkcgFwlsL1SgyhbOD95K4ZaJiTBjE/Ckr0VIwp2l4+R0FeZTcS7fIFBCArYO9jCorgtBBjoM8MKkpTJngxMBo0iNKsO1lScOvLqNF82Y9yJUBTw9CKO9ZZXpKbyCtPjJJIDwa9UHpeoHW6Yfqj4k00m1NiGE153N8UdhmYzj8FztS52OKRogdl8Xe2xiOTs47vTphpz911kyc8x43vKSidPacXxwYDES1tMELoXOJwDKGjQAFF0IKR1lmAz/IKJ24SVbJjaOanhBMpc2gyQimAGCWIWgrZAQWawbn5JdobThJ4itXDJmQM6fOm0tctLjalw6AtIuk/QVv3dhcerG7Vt7e9s7u5vOiFlYWNZ0rKNYsIVRI0WjK7Wk7BFrX9+012oUxoATPU5PQjD/GuorF4YIM5UMqkIC/6MIvnElg/8Rev/fqrylervSYp/wT2EidShTqSp3D22KN7VfpZZU7R/s81bp+OvaWsWhddwpuew8XsNltYVnecsO5Caexs9NscMFE+ciyeaeWoYOk9CXwZeyIECNceE7duZmZpl6RjKjODGaDpwSnF9YvX3nxt37a+s3iWS6RBTTHL9xemx5pdpbVoTyzWHNg7m5fZO1TuYWpi/OZmaQXv+FOcdNMZcaFtxCX/icHwn44O3vuJKp0AzYN9iO2WoYS7Y3z98uJAbJb/nffvo/4L5alEytylHpIOa8j55VKfHZYw20Ik0xhnB+dOyolFNIMNqWPmeNf5aCBgZpoI4Ec7hH3oEO5tN4LfFFKEbCQIbT7LNxO+pJ1iqguxM4IJ32NOqJyQ5yWIEQHy6cWXBgWalelab3SImP6xEfXJwxwD1spA79tNC5IUBBHgU7DUvXaPGTeEqFdbBXCWMkGe+n0wtYyl1hmh4m14mIvR2k84LQCXMiDFkpDXVlfmMUclEIaqTcg1Mg5ldT5sBQbFQyoPBGFV408CAY0spkCiSWZPUZfWeiGXFTZECoYtpnmkRCK3RGfmpCruZQu3F31NoqH+Ghivds1G/wUxaXdljd7KYJu44pp16NaBcQgznh4gJKM4KxhtkqvLAWSIuQdRNDaN4k0bJzfXooTsjINGMt1VPLIgvn3NHLwV5Un/KDHBVJ4+Ie6EVJ4AmPSwm3bt0yCu7kcMY2CaXnUKBe4RoPpLOrWyZKotOX6DoOw4PQo40xTRbLzJglNJENvIybMkWUBS8Ensj2eGJuYSRBBmshHPpjnRER8AcwllN1bP3MbHqcp0Z5+ZwkIqzjdfEVmuoPOaFrSsc6A9vJmJ5/DjrkQ8Y1SUuL3WuSNuiLzTwJtWpcT+uqtKDCX8pw46tkyOjdtB5ImLXmzRnYvmQhJpcuxrYBH7kKOtEFA5ANWLA2aG1++U5nbvnw+MRw5tnYqSWWoJ+d7iwuLE2OTzsG57S3b74Re2pbCWF6asxUI6cbBYEwgEnDS/nTIqTUa63Oz2Sv3wUJf05Ix7tYyEBr0szc0tJCv7cfPzU296B/drl32OXTzIpMypDWxTPjUwkV0KS1Cj++qY4TE5hiSkRYhcZaxYdRP83iwl5Ypayve1fZqixhqJRwVrzrx3/wkjFY5tZmFD+bi4nM9Af8/POcUTC/ls6w4ZLpzkcPPr6xvvaDH/z14dGuPpq9A1SA2TTZSca43TQ1D2gN2Lq+wtBSpLmRF0CqTjP0gP3MfT130y7PwEKUxe2LDTlzUcctDiBNcqX0VkfJYLKMujUh/VtlJqEruZLy+go0zGQGZULTmiwXtjo6Otra2rx1+xYmvk7sRn5IiOLD51ljUMxJPeDgcZtg8GCFNGyYkRYqEypP68TxRFRY31LG0fpBkLwxifWRLm84h8sESDA55oSztnrDLCvcIK4pJQeZTy+94llyCIsU0TEXncXl1Tih7zyyCfr48fFgd/twcos3FIDxUJARDFeN+fLz7Xa1+7xQqPrrd+6v0OVeBuIXqPP5JnuKyrM8cRyhNAn8lkZKlWFfDStGb58eQqLU9ZawYtlUVU/Sack0UQ+iLjjXb4x6GtHgrk+YMF5/vLt75ggBy2e48nSUoqtzg6BlbTIeLlBdaoyPnWL9K3ZVCsOZJlXBcmdKAOoqhJEJxsX5jJ6ZFHfU3R8Ml63XtAbR1Ax7DuO2tDMoggAFq8Yy201ahAHu2FKf6WsDysGdq9CXVldLfau3kJDmhP/IeGquLQzrM1gaOW0BkdrnviVWdzGTvePx14xCJqeXhhfd+ObDQOW9BAla4mxRxwzWqoDGkBZdZFRPgCNYtUJUkRkUNWrF3fEeNBJm4ShoYJepsCXtifBmsBtNwVhKFoSnYbkSPF1ZWzd4Y1ZQ0UergZiiiG5L5DPtSLjPljSqN6BezpGNn6x3N7RcXkStCJugAMvcR/VhY3nZMD8oOwZpKoO4iQ1G0rwDeIUAWB+w2++X42nSCH/B1oFivGwRXEupFgLBhimHzcN6aU5BBjq8EQC1p0DmUpBnl66w5PcePPzO97734x//wEhrFBwBLO8nTYpLkJZlI7Ix/TBzZBOQxdsRKKUWPmAcX4n702usbHAZkdZvjMJ1FmL5D8Eru+WogRnbH41Nm1oQA4ThLhm/2eW1mxSnDiABgwo6P9yuKL4jp/BCrNKZBNFEwqud6SnLZNldjSo7YWBBPDyHDYClFFEIGh7BX+kNRnPHqyzxD5vmCoZ8VStaOZlpljET6xFmFzPiNr08OM72MOnlShxcAlod0Le8uPb+5Pz9SQp1or80dePCoU4ZFzd4tmhymqjy6WB2qCd2Rp2dGHwUUkVnQOrKw8ytm7e1RusY74ODPc/Z6Rk9cXpTJ+T0RPALd5NCv9SJt473ut2TIztDCVMKXWk7WsK+vLaYBdz87JJA+uWB1f5nK0uLZ7PTxoAjPcUBhlVXV1bxksOCEMuJpNHV2CUlZC8wEhpmzoZfsWGKDddU8IYVdFNy1JKEo9rl9/VNux+lQMKI26WoOrqoHeknnZ9l7uDwdGHBiG/ml+zs7h0dHa+sLj/64MPPP4vFWVxcRAV/9mm3WUdY2Mgl8ocnQ4BivfqN2HwYBFFl7Ne5o/9M4wqoBVXYNPowlyckHd3pEArJGdmROiiI5UrLsKJMoTL2zn9p8y/3jV3KWLaiRg8jfykZBEkjce7Bmfl0hdhSgBe2cDfBfosZZgNlqUxxF5K5QAVbjEY0Iqko/dLqLwBk8JZ6LiTwaZjLhHhUa1DYYDBtaKmE3pUX2XjU/q4Rr2TSSBtCCGGL0sVtj5rLZA63pvgIJbeGShs5T7hJ8Qm6cM2n5xdzoEpnZtg9MY9AJsjI6wqPVvEj3KWQXEWLQnXQkrIDKTRFDeVJVTdKGrR5GFUYuQphU4JMI6JlUWEu2XKT/8EA/AYf9bC+6mUlKYSmf59srrzGD0kdZDhMtYV5K/tVLZR2EkGJVdvHB3vxW6n0hKBjvshP8Z8yS1+gb2CWO+CnGynOgNtxkt4EIqTCeDeSk+C0qppNUw97Z/iid3l5ZCcf3tXY5DqNHDzgS8YtR7fX5mZymVEzdjh+tnlqReJ5zoPTlclEyrLBQVaMbT6rlT7d+1WfeQjKutwGDY1a7hNVOxeSDTqBC9emdhPM0+Iegx5AmaOprYDKuT6c1ohx2hzLO6rGI/wUZirkKFIC060MkVycUkbajsdi34BkSztN1z+raLMS45NkIU/NwwpwbfC47Ba5BGTyZzx11qpZgYA3LUlr0sb6Ht3nR/pIpIBvY727bgxHwkwyi2gykUcCjdVJpVLYEhV6CyFap+OoNJZX/9j0CmkSpKJninvD6ZqmaPstjQlbsJqWpuW8nhrr1eeZGAyyCR8ER6HgomLeAIyqUbHBnO/08CpGvbCwwOoL06la9vc/+PjpkycbGy/p6WAiNNXCIDb2uLSo9FCP+kuLy8ZiDfIWi3GBMuHF4GODPRFD5iXbQSdEDgusq8nz2rIwb8b02pTd+c3btMRHPUFehHPWfs7zi5wIvBq3EuPnZdmNMAjExkIwusc2hl5cdQyRk/lIhESabMgW1Mhb6jWYDTXCKBJAczgyqquu1DnioGpsfkgPKPRKx9H59kf21zRIk4Hs5aMtfufltJ1YqcrUw5wL8E+vrN0en1nvXS5NT8w5v3dq5Zah7fiASTApkK3/Obk0Nz++cNHtDLovbI/lGaBqgL6IzLKWY1CqAnLxs/ihejL5mTPDAJMVP4s3yYKRwCn7GhoWN/5tZT+cI+XC4gr3ZWX9xvLiMq3/+tVz/M3g/aM//eP3332XnY7nE3pCBx6YPDo8+bM/++9evnwRo14TrOBKYMaeYhovFeur5IZGCVTrStarcPTbeA6XvXXhZ4wR3sM3aEZ2EzgXasYI6YTAILt+0kv/XgihZ3b2xeX+wSHY7Mtx+9Y9QorBFudnOSUGvHk6CO2C/FjPK1sZ1m71FvqazHqwvW0D0+P2pn2qEjBXT8hC9BwDPOrYRy9lzEKCJCPFYZoULl9uw2V5xUsJQ9XPq9JG396GieqqFDlSRYRJyfzqsZzhIUpz6lTg7e3tO/fuQ2qKd6VqmQleygBl2uht6laSB3kKPJ2468tPl7U2kZBMOJ0em1tcWFlDTtwzZRyHCRXwnzelJsNlmRKQdfjLYgvWtuqMUy8d5nQmB0By2M3SoDSY3IgQwlBZ6ZGzKnEEQKk7HqhiZ+iQEVCRq8BUv9OehC3bA99pU4O4vjSo/UqG1tRqmp+wE/Ql+dt/o/TMQXUmABgapJDKH1LVryASovOiLvna8/YzRVa2lsxnOmk6STSHq8V9PMkCah0a+zd1dblObOZncWB0oCufo8a2Kn7rJwIDQkrv0//IV0xb6q7awUekZpznghPSt9Aqs2VmFsY6y8ayzJkcDuzXwhSKCIldiJLwPPVDti+HOxdmg1gBnCUE4QtaI9YhQLS2+ioAikfiyENWYbVoE4gKCdVklGzMBzokVlRMDR9546y7b8sPvaHB2KwYpmliGJj2zxW+8I9nFsIWBRCuhDsYQTv2QWcT8GJWiqX6daeySifsZD/kLGvBWjDJKMxYhK7+KIoLM1wY58RCC85gO9CmS+SgWcoo1ApJ0woXfIImFLm6guHERzJch3VJl84o6hpbjco08zBSlTKkpNoIp5QKpOgWFix/pPvgnlII91N+6eKZLsYHKNKrLhKsX0Yqsmoh2CAaPvkHClQF5DB+UikWWpuq81ORjSuKDdAOV+iI5xA6fgCcutcvf/jOo4PDfeuKqwc8aqsWyR25KtkSOzw7zLyY2ZnD2TmTn+3C4dypBNupmXlR19kVa11Ux1vqdUU+2V32ZsaaMprdwb0ffvjhpH2sTw66u5wSkhxuYqJNDLnszBo6RoIoPbycoZdw8ZsrjTHD85h7YzRrfs421GkvmjqrUHPglxiSpzBVGNTL9CRwWZEP8kck80qLRhSMUY2Tol8tncnJlkmfHGxeDI9mF82ond+Kv5/JxiFyfHQQ8VpDbwcM4xWbQht1t3dZBCrHUFg8H7dxwp43jmCfWe6P8xw2AIffMK3ReTY4kJ+dZqiXNWLxu8dRnfOWWikwmxdmpZxOvMACnLIKnOuJMSFEOtDP6fQLL/UoaVVT2e/ef0Thvn71+tmTx05MTO3jY/uH+xvb8waVKyoWxo3GMfXp9BxXo6PZ5H4XnvhMmYcIjZLogGIq7YRNM308cRNACSBoiiRv878H1z+vEeuJK+kzpBATkp+IVd6Vb0K31pnR3y3fcZzhhG47coAB/8zOLwLXyuz0xUsYYT7uStWuvqp0pAj8ikoSghgONze2NOQtfdwyvPkEiUsdYNOuoikmGPF8FRvI3WhL+/n2fXvoyd91hdD6MBm4T/xITIVin5qJHwnJOzvbtuWgHxqXFroiZZxIMKTeyESEYHRVQ93Xg+unCg57hzX1uHIUx/ztBw8uz2+rEpKwqvjYHcgUAZWGHs2IZWeie9odbsSTy8Kw+UtTbgazl6dzOg3F2iY1XM6aC+QgsDjDvFtiQQGmXlrbt45e9K9qKj4VOEMYMhvSAN8/bZAGjilolGfEImxetAZetSzfBCAVSaERhYC339Z9DHChScHNA6p61Ko4xSuckIdU/oKtv+NKG7xGnShYZ/Ke1WS39Jam5+fmL+ZtPnF6snsw2Dvsm2RizQ+/NxRJmVV0dGu1I20uAziqzkPEyMsUjwJJhowNkoItIPppASUBlpzb6YnhF9vwGXVmgFkJ+35Qn6Gf+R0TF9PpnFzunw8O7bmUQG7FERLc1C2vcJ4i9YcDTnouzdFuPgNg6i9AYRFJii0DX9Rd/YWgMkphIuj4xe6w93JweHNpfenccKNSQ0N9J1ZHjRRyjFA9Dh7c4ir4r3bFociGV2fzizl/c38v5+RFArJq+pKRgnEiJ2P4MEgq/hWRjpoLfAbfyrnGselsg4k6sFeUcpte9wi0ATjVF8LrxpNoKC3Ke3BkfSrtJhTcosGqTuqCPQBM6rnmZ4uRykuHMhvHx9bdWSIRu5VKc+BveLvgbWOT+BAnIH1sns2+ejZsmXWqPVtovZjlLFHYMdTpCucq5RqLKGNkJBpd76ovDlbwRE3QFTzlP/yjf4Bgv/rFTw0wEdiIU8mWxro0rMqLyTeRW65udzAxebBgSMnRVRzn09Pbd+/cvHHDkkMxYk9evdzQ04IV2nxcN8dC3oX5Dz78YGl26uXzx4+tXrUEItt3jM/ML03Pr9g4CuekqvpTadiiMBxq5Eekj/toiYBhbPsDc1xiBdNFmynNnt3WGrTJGWlr5KofSvAgZeZ5FZjStSzPDHpgYFH0YQ+5ugdbu5sv3lu5B3hq67R/ahiMVI11EkrF9ETTUMPC7KSbbt9+BcG8qS8obiNXfUgD3eQk+A9NrTbKEJ7fKKCFJkCeHPOzj8ixjMghsKxbzyULr0erZrglPsiICjCfIRVTJ0ULeG/2ECwZGDeW8vz5yyfPNizdwcki2Hy+6nNebm5u+lFeZjgaroLaaFFnOS+YhywaRKrLPOPQ9FwhEy9xlUpegszCIbQ3i0WCCoX1on2ENsp467pGenulXsA3cjJ6WocxafbYAyqwk51k/cAh4jGxh5Mmfg/Mjl5cXLBUvfEy/JXSSDWpLg0pRnETTZNeLeMgqEN3FjwjOc37uhqA7b4wnBbBNNmNev3mJZlW+KzmlmBXvVXtN5PW86QsJMgVBk7euK2SMvNERktNjvTAVtVb29tLdUCh19KUNkojWrmBsJrUoAr9r69WdP28Tq0Zql5eXuwszUF0FnXodVgFnrnS0/TJwf4BxYJ5KH3bAxISXGU1QT+9g8y4NvPV1Ey6HvkzbByRAGk4RkDP7IzJmQ4+t4eTeedv6gAA6OVJREFU7nIDLU4hzwraS7VV04tXozUKSpYu+jT6sCS3ZRxBHQTlih6GqmSQ9O2WXjUZMhj+lBK8FFX8TDGVelRM+mnXBLvK+s3vllLWVJsrijVcblP38wusxmHpTk4cOgdwZ9cG+vYm1+nMpCeVplXIGSFRNXCBA1fBRmt6MUGaEn+A/MfaRonnG6BJVa2MROd3JTCU2r04O5qYuoE72N3E1ZwOOi0G3XfS+vhUb8pynuFe38ksArXTIVzyKgw2Cmllc7QIUHkUn6mco0A9uoARbJUAFsApwS9/vPrQwB3bMT7WuzzbPjnuLa2kj5Ag7FgnMqUiJYzorNCqIzW2esli2hNGoMrOM8yRyGcWbxBKh/DBij4xVIvsSoGt4uljUxKfKxNQC6tVYpgGoqMlb9++Y6/jw6NjveoosjQz1/VNgCnr295SpZUkvQSqRABTbzzqIxIeoo8wMpZFuuDJtNBSHGWDl8hhji1igM/s2m56FLuSMKDELoo73O6vDdBmbjzAM59L/x6ceipQjVHT8PSN7INkl7AGLcg9SyAYnmjY9fV1GRNoOcFlF+bQvvfu95ZXVzY2Njc3XnCrTdIrUkdC4CPULjwDPCGGmcyLKX7IdpjcXC7+97777T/6+39Eo2mrWv79v/vrn/7k5/KS8fmxWbOBltZX/+j737q5uvCzH/9g4/FXw+4xO62c+eV1e9UqDfjl5MXxKB4uRy184g066+RU31+TodeEIwuLs8I1r8tAhLjpYF1RKn5R2Cc+pXZIltlY2hRPura28hpegh6KmMjoAjoNiY0/ev380w8++r1VJyEsrW07aTA7iAQV+Rizs+blwqyB3Ze7G9v9QTdw24Lq7r35+dtn5/Nmjdt4o4zV5ZndorOlH8xzepkffems25xfsI0YF9e2kxbqDpxzkq57qZr06eMsBjZXeDaSA7rLheWFb3/7Ozap3N56/eUXn1jpy95s7x6srJjcc4fv2Zkc6/e6e3u7ZlfKJJTCUUD2OCj4IxxrhlPH3lrY+9mzp7rhZFej1OMDl5akhOXA3C7AYOkCidMbkx15uUJy0JLswcz15SeStEvBRkzaRd48lJfjKHYeb3jcttUiJNnVXB5cjayg4qDMma5f3i+TDAfcg7BHYhqhWNXvO1UrXJlY2th2rHhkLbXkbemfa8Byk8dR6S4ZU+xvXcp0edxa2X5WgR6m9dc52qtR6noqmZKNwmC1WHf+WvbGOSWhAM+rjEnlSgVVCWiLJUfFKg2tYFrb8vdWdcnWWh5GjrJSoGUF80uL8WR4Xg6i6PfZVdE7xpWozC0sGdFQKe6jpnkDJsxHaOBLiFDQ9cRCo+g35ekKi8SCI548L9OY45wtEmdNh9A/jGmJby+xqlvwPBAVhDIVqGlRICZ7V5CmXRrVnuf1W1dsSKVPCjzX7t9KoGcY9Lar0OGlZCkP2lSCi1AyD/IMj8SqxHLEWPCvI4kFgASSRBpacu1FIU2O+FuF0Z09NXxxsN8f9oml5ka7VJktf1FJGWW1lJ52leErnla3Oq/anP5hHkf/5E2ELOjL5SZgjF/2zocHY5MOdM2ZdiZgW5ptVJJhJAnj5wKURqIOhn0b+VTzqgylVjWtKjhTVGG64dvPVOShhOlNVmi3UaAYHo8AK6PUnF2wBF2QphDl8tLYoGxcFfayJ+GcGfATAtSaTpLSL6s/SJCp0Eu8S241npbRBJ0wAs8OHR8e6mVg/oPLXXwDF0BTEAzQLyycX/AOWqBj+II2E2FU7a1+gA0Q+EJzM3OnU8bGMgysyjTWHpm2ACm0R66yxpdpTKNjBMydcbi4PYwSH3aSWqjQroYVAETdhLEoAtnShxZ8KyC7hqsVxqzCEjglFiORMZMzsoeC4QrV61EV+yTJVDqyBguz4LZzOTOm7Y7Li/indxhfteqFp6h11vq9997TD9ZDam1HC5v9f/zxt9/74P3t7c2Sv/SmwabGRs38iJLQZciyuLnped1fahl+SK1pQeura4vGcU1sjaUXlY33IL6j0zYza8VnZgwZ81tZX7lx47YlcImpYhzjrIurJmpljnComrGZ7FqBXhEunXiVhviJgkeXMSSUSdx3Fmx/f8dZIljdK0+hn80FehEJn+tzZN+uGF4PFYSTE/oJvdMyN5GHcEKYLxygKyyQfLq/8+xg+9m77/29u7duHGw4zEf8UAnkIDD2T/ZfPP2Un6ZdqBb1NDE73L/gGUzNrFg4grJ6muC5oBEv95wFWuFb+6+JksKEtVn0xpjQF1yZQx1/KVFIAOiF12SuiE/WNNMWWAXo+EX96f0vzGPjzz/79KSPLYWxLh4uL926cztOpmHdsTUt39/dFqZeWFqGEMXoA2X8OeKDu6cFeD/+1re4Xztbm3kWNQI9cJEvPkK5qmF2P+PZqrp8TSnyNE3zxmfEPOrs6oLRaD65wt+aED6SwZBotStsX/KXMfYkJUQlVois6eTGaij9eJjkXgwt2hmfhy3SGT1RXhgYYgVAUoIF/AjfmHOQdp8/N/7dgAnkv/sqoOEZFaI5MtYpsRKqSaUwocw/WgpmUsgoqJicZSO+WXBhEC4aN2kSf0VjZUNpDk0KMMqWU9emV5eXuL9AryJagakY2FFMnsdBjJry3wNNlqiVkHRvNSukKANB6HBVRYfphKwxxVuJKocvrS6YmTtfhNrMxOeg69r106WC+RAnBETikKnwWXHjwkshZaJvhaiIi6Eva8OylmmOgOhcsFuRBETJGA84JK8ccFZ0GcGcr0bhNNYFF9UXCYcA1utChUxBSv2Gc6WM2prNmNpfnuXW79ggd0CDMMwQN7XeVVWKjYUJe/nzIq0EhV8j58gCPx2dkMnEoFPK0HZfFyfbm3vPnx8diBjQMuBTDasQuVOnmwZoQdyeASCw4vZi8moCtRUr4DJvMPSUoABP7gh1K6fgIvyDyQuLJOZRisYwvtPMoPlZ+PLs1EFrxzqKOgdprWKy50DgCJKLiyIVmlYtTfuyRCSokTwXvqKRUyv28tBvzcJXMiDndVJrsG0HcmNmsdMfE+K0FhL6ZvrnC5Nny5NOgDACrUrgif4FAneql13J1ResZUI6c0tLOpGvN1/vHux2Dw8z28IklHQi1Ahky3eofGsxamQrDYnZLkDTbTUeDEBEZLhySIspC3Y8tkvtzCwBCYldUdrxBNUN48qr7ChAe8VIyF7da/OEumoldZInY+FFdjckM6hoSAqiIGOKDWZN9WoYUNUpJBKoOuzPJhVVI17iR5RH7btePX46ttyILC5jcvQkxjLC1z811qjcCSYTm4R8qTdzluS2AymgZK3AQO+kr1Py4ME7P53+sXAHpxCKkUgDM4qEegE7bhKozBMEcbgJ3dNnyqQGPNuLCSwGKXMV3guupuYXl5QvGmZdkhlBHAxj7mqxtc80t8PqW5kyJa3sTJldyqVGfkI0pK5S05ENqsJUuqqnqXdqvHdwnG5GGC76LsKW0YlAHle3mszBJeu0XKCOjQn3t6I1L3gJ2XSvKU9G2wTuQf/o1cvHP/32B+/dubX6ZGbRqFDqdc6imYIiM3q1gxP6DcLNpCBz5/3e0YD3/Bo+kEPtRXNibOR6MHFmBpb9RXKWmFISxTAZc2HO1F/sit8djMt2ekdx+5NJMzQkraiLiGEJSDTyPDyxieMx94Yqi544O9/a2eYY8PdWlhbu3Ljp7Abx3Bu37DH1UMsoaN4iPifKVag4+vjCyrz0f/3v/j2XKzojEo0EcGQDELO1mQ0YQ760heCE/IVVLQuVR5+NPOWAlgUiltE6EaxwkM+M/GbQxJ8hZ52nyI5yESdzIE9j7POl13FqDqjJtlkdR0aNNYivXF6uFCMCpuqN4FO5YWTwBOLQL6EPBhvkUJdqG3h543/LGGS66I/iI+jgPCnIFm01860lzWfgr0Ykb4qIv9auRg4tk6aSJSW8VLNbZywoZs9K9dEPiQRnaD9JLi8NbOmbjsryheeqEwKw0LnYN64nI4VZq9g8b1dB6FY+us8XkVAXzWWRsT0EoRYRaCFzfYIYbajZMPHjRTfL8Fntvrho/EK6GuAjiHDPfqurqRFSAjURneg3yqLpWMVOL8zfuH83ER0Hpsw7rMAsV2wK1xGmgOVXITCfaVAU/5X6r990hnBFGtg4qBpWlFE9tLrkAXuKLH5LCPr6SvLCQsOX54gQsS9YU2ZdIU7GObLvXmhciMgRc1GOWe1X1pdrSzIy8YGmGDvqffXTX248eXZCcZLZhj6VNQivIbi+uXp+xSgBLGLdmh0u8xc1BJikLd82FLsCskKSmXfOdlF2ptbqPCbywNfRD7a5QDoTbBeVF+/biF2BEywpNPfBeliTzOU+l27iG5ijs668YyCkICDi1uQOpgNt+iYXuuCrU7M3JueWjHPFXmW9kWn1s3CXCkaIvW799Y2XQFY4GBBC325j47XgaiaLQkh0IQooQEGsld6YgTrc6edIv5idjynEiGiquLrR0HZlYqSdQhpRZ6twsMLVknpBVDhNM3Bl2NU4a7U/OitN03AOr41v8IGJSsI6VV1B3QopojRjAkVNm0Af+IArcUTiilIa0bEUspHR62gNlzGDbCQql3JgV+kNTu88VCyHwra3LG7KVBogzUfNkW3HQpf4D4Pknb2+Dw6Pj8b2d3ZhU0QLRyc+kcCUFjFowW0Z4GviXtg4vPyZeXMa8N2TZ08FmSE8Ps/5peAD08480LFAEwnQFTjqdi2RiAMOEHBZyzw/b3cyplOsK1KDyxLg0gmvkER2sYANLQu7tJsYJ3zlxKxpw+eLm5uv+P9escdK9aphGdGTK3MHzkkdRvZWQzyLcBe5YCmtw++1plwq/MysOuboYnCy8+LTzeefLgjZ25ayy8qKy2STNeyqVwNvBRetlwEL3FU4Jg4AUClTEscOFNqT3fzShwMGfTdmu8uD/b3nz6wy7+ATCw7p5eoriguaUJblVS7FhnYREuhIx9+sPtOxxZ257TrCkwdmqAQXW9s7prQLax8tLvSOu1kpNtl59Oj93/u9P4x8gTp9LCMvWRhTlhWqL37/+7+/urL2X/6X/8XO1lZk0RVpofFAHT1SXN1epK2VNwxQ0OWne584qDhw9Ly9feszBUXHD9kA6Cc2USg8GPqgl1M3zN3OAYyeC5mzxoQ37vrF2eHh/u3bN9GtJgIGBlcDw00TBC9JrIeGjJ0v38t+cC7AXCesB+1DGaF+LlAFeZE+NA+SPZHLq7dz1kNP6n1xT3tSZSTp6KZyhVgpofp2CSvi/9MaLYnOIa+0CkFIighsMPYm/6ggFWEqxaTG9laNAS3J31xh1yioLOUaGPtVYDUB65mzoy+BKGRFCMrJ3+qtAkRmyFqYqv6SYWr23EFaZfXiZhnuotLi7UfzRq/GSYqpmli+fXPxbAULQ5fF/4a1ox+K+/MpeTgiYKd94KtLefXzGvKrpryFuut3oxtJrt5+wwCHMKN2+IK7SF40GA3UKve0atXGKKasI0JdHrOcsJGtbvZ2dgWEQC4hJZo1d+ezB/tbLx8/tVXK0bB/zJ/Wv9K0VPI7rkJseIdabI1sibg0OLuMDXlrTYiEeBskhGVV2tLmxj+ujoUK1AP/f4aPEPkYywoPfg/FnJkpGTg0WTFqKzitgsJt2h3OT3kVP66KQoGGAhWgWoQtDXXJmOqLrD79VGrKwUWKmZmczW6n8WecnhXMYgcLFRVHcQXv/o3KHn23psFDqwA8vEvDmAwPDehnQEtat2wSQvx/WfsPZsuO7E70u97b8h4oFGwDaEeyyRnyzYuYGU6E4oU+phSh0JMLKUaheHpjyB6yDdmN7ob3QHlzvff6/Vfuc+6tArpnRlLWrX32zp25crlcK/1milMya2l8KMhHDzGI4TGR6RBs21OFrJrREKoBZC2BnIeQvC1EA6CdnPEDVbpHolRaSoziEXZ2PcViomnE9tkaNy4I0gSh6gSX8+6smEhQdalN3xiCboa4rFxW3EaPca+IAoFQwtvq3Gsr53U2Pcefuhq1BlkyoynOahKQmNY2p1oT5LrI0gfRosXN5trGt9/eNSiT7QYZsLXiGlkS0FINiDh3adHbSJYl9RtQg/+Hh1axrqys8rMe6UOWgEwavJ9EvvTqPzgb6+u6NEYsDEvHeZsFdWQ0nLiz2gUIGSoJf5TkwGkyLFEnGkvruRo8WhE5TdBuldmZ6ZXlZ9Xk4OkoVfSTXFyxKhgagg9JnC9a0uPNT9Ne96GP7mcwyn9VBdFxc4fDWxvLn3z8mzuvvD45Pr6h27u3rRfqfVp8CspYTxoSaTqksR3eRn9Th7pagH3cX8ptzc6IiX9Wzu76+rLaEdXPyPy0/OijeNwksIUXm5K3/kOx6JBxf9xWuyzfRPusb7nu2i0xPLQ4f/7119+Yn5/b2zbft7m3tSPJuQsXOekMtPkELB2PGYiwKJEAMI392//NBc2K//n/+H+wdtrrEJLxFrUDrpVBG6JUThYJKk2jrrtPbPcmMS001ZIRW7AsnNLN1RQLu63IPd7ZXnv66N7o2BRBYRefYW4USumnH1ga5hOpW1TFOMjB/o3hweksBoF6NX2rvDQRioq0NZWgKCvmzBntbKXlLabwDaot9FCLulWWLqL0is0sOnJtf94mRl6v+hDciOuDymMISkSAyh41aEJLGxbnWIhMS0+kEtJYZ0EWO8PcEnQ6MH88pLgqVJL+jcIS7wqUml5LDNLk069L3czU5aAPSkenc+bPmLE4nJESeiarYkzJV9cxh9IlSI/z1CObGo1+jE9RlIglPmgoB3tmf/8RIxicq4EYk5I+ejGuCAi/glmYQt5hVYXg3XuIGW82BdOSrkuU0nqQCk5ytrfPOeAGsX+VOx6kajN2hyvKzcBq3Egcq109ESFvGvgZLxo8NlFhGuDqtctoSGFpsRx8+9kXD+7df7a+un60uzEcB5z1xUVLv7izN5Cj5Y134j0mecon9diHUptGVQppRiHJKiQphNrnZYbNbuFmDlOEpt4IYy49FjFp+vAO/WVyGh15V5wq+DFAcAQSzdG+jIGEDcVbdUvXkBuID86/vErIb5NUpkmy3EgT2pcXfexhX/9Xl3yf9MOxlk6hVR2SN/nym0BzXBtYPgBD2Cb42dJTWtY8YjEmuAU9mcrKxNDE1iSk21TyMuCcuVsnRFGtBw8e24aoq1GjFFidQePCCdX1L6yWMlJojA0+uavR6nhEi0t24e4IJzN31g0V1t0lBWd/ZA2BFEd8eJkqwTInSdrKwuo2D5+lIlk1XKVkiVOGcRSc3Qs2+YS7eSoHbNsPJFW2hhXkfcVqeloDHLHpIl+/ft1xfTWzGIBy8ax23NsJs7a2CqZGe8Y+0jYpOamru5Zx5ohpKo30MjEAEpwRfT3gMc0Ad9dv3jR/B2kO1QeAs8Yjy+eLxSPDDum9fOXC+OjJwtTYrxcWVx89MjbHD0BB8ybyYkbVat8Lj9vkfm2Dj2gk8KrkHI7YjB5bni00YeH83Nz62rJkzI/hX6yREqwYIrlok+EkCwvdc400INeUFZ/WvDGBDJo437Z4jsLL4HSCyZFRgn96/9v5Se1C+4AHs+QaJpGKgfiTgxGTNDYiWUqnheM8Ia5XJWnSAJ+itbMjMp5GInxHUCpNtgEpSIpC4ZDvBhp+9jb+lc6EevoXAEVhGnawJ3OmfN9+CUK0d8J5Rtm8tDVoSvj27Vdu3byFnL2t3Y01XyzcOH/xgnVORoWqSKUGBJD5q5KLoQNzCxf+4q/+5j/8x//4zeaafrNX6abZUsVZpqppdsXDCTK3awPksRd60V5gkKIUUvdeUBJUIIfO0odqLqo1VHhD09+IlCRZT8u456gI7W2iiCex7Uud2BjUaFu9ePFcry1IRYJHBBZ04hqVBbwWmKEKi8tWlpZA6+HWYSJZS3k23r1IuGEsRrdXLZmmT/Ao4OIbhR5Li5Kw3kSsZdWCg1CPSet/hcTJxTQJuDo5GX+JI1402Cmiyx0IHitG/0R8Wkt1TQoRaPa2RJHEnvzHYFfV2dBTDaeiPUMy6Rpk1sH4dCwMhtptSB4UixI3qhlveIbYfALe9IQh2xF2SkvOVr+MCrEYGt9sktPc+euc3wduaol6baRCRkg0ClyjJXSonkHO039/KNEmWzGjVkH3gYQ7FdpNkkI/SpF4JXpsTIemNKX4SNQaYkPL3g8OLT9b/od/+Ic/++lP7tx+JRXy4Ghnbe3bTz5ZevJozbGQgwfbQydRP7lTTLVFivtISkQvhIscY4/OepW3kmB4KT+U+IbGCOkAS+0jBvASq4QBp0Gb/2dz9ElMaFl5nHZmpoOLlTU+yBhnQ0+A+1+d65Rb+icORNGJiAOWphDPmFr2wNQryQuNAFVU+ovKq55lzXYkqbH53UO7PvQ+dYLNyWUgErzm8U8JbwDxU7kd2KIawzya/aRzLFihEiSjLRl28YHM+KEMpseTBp9q8TP/WfUTcoxJWBCkDXl0YE2HbiIxKkcNxzQ/smhc9UgJydAItVUxwIzQGp9TvA5oJvT3h2iqYw2l7ep5oZVOJQnywTBujsbSUC4iQBWHdRk514LB3lCqUgEaLKuLh5OI0mP2C4igvoHJmvCULpiPwzW+l/4ip86JGiRohaqWVU6z8t00HvJiQ1sjJU0ECKd7oi5neXXOhR9jqaGYVfxjE4pjYQHfq4/ZNdFjg2/4iLx//96tl+7Mzk5pj+ua4bgpgJzWOz/rw0fDEyPb1nicDI5NwyEd9UgwW2xRGsdJGcsBpysfdxDNwjlTNsOmM/WY+C79HkxzipMk8CsRERNNwKpj/pySME3JraISUz79lehUhtAaGwfw/uaW9VKxPjopk5ZtHy6tbgwebg4dbLx8+fz5ycH11Um7PIhXnzJaHYnro+MMINmxz5pBPPDZRJxVBB9cXledIcDohuYaiXIvqddpIwAiqRciaV3sZhwwM4r3MI2yVTLAAchapkjY9LmzuObn9w7M1w4/e7q0vLRmTZy1XD7gd+78hcuXr2avcM6iKY0sFQ0Xtc2bvcov4uNoFYNvHryP8mZA0r16l1Efdy2UkkMH604ju3pUVUKCEkA01I0rVmATY+RJ0yLeH7tDL7kj2Ok+Dj/JeIaSOSeLM2rQXYF0bHB9bffxo4d3Xr0zkc9MNL91WrREiijccGbAETznz5//SrdnLwrTEKu3/WQKiVr4ERqGBQOYmI5eLqlavqQvvuQamccGdmVK7440JUVta3aIbLU3iXC2FKGlFIPPGqYkDoW8b7j3yuqK7P9UigglKVvS/rvTGy/VeqvszByiSMuJ/JTgPmM/+rU+F63eMh1qgWG8GH/w0p7TQZDOD6UzNJsGkk3tI8MbC4tzfHC21UE5u8VSvF51+BJLaC+Em/QdIuSOkqIjbExcIUiz3Z6hL0nrTVF1SsTpHfa9QKu6ehoa5CIOx1OdQfI/fE85oOO62nbi2NtNqwJ2czAuBqVFmZF6S2N2LdPdeLr25NHjG9euGWxxMuny3QePvv52Z3N926bbkSNfczVwU/U1ipziDAN3qHfIeNEmccsfRBU0wM8kESGkEVC4BceWMwh3OAdhZqEc00gONoy9HtIh2jzYX99yzEGqWvySwq0lTQGNRMoYsEV9oLrNT25KIGF6YrQD4C5PWZkMFniRjIjp0KIYtcJaEbaTbu8agqenx8Pj02PTsME6GGXFe+xIQMnPHSV3K9F9KYCmCGWzSXXT4kkfCSjLqnrw9RLG4/szEJ0amCDSfzoLy6AUmBQmXiWA63wJ+3S0+vyz5M90Hdllk20sIVrSQumHhk7gxH3EFKeAKLoSmBcLUawhHHJqkfpZFpD9xWxHN5u71J3T3TpyFBGBMUJw4H+j6q1ax2KmiQM9tFIIRUczwM7RwSBko3Mt3Uq1UmmqsQcdXWHz2eMGwbBZ38ZaWxkVJDHkJNAZwS5NDZEyMoK0QKvAW9CZKVgCbtAYUzL4mVWdumvsl/mUHXuaGRbLr+4/uP/4yaOrV66qx2RlPcyjR4+sLtRidiy8BVjr6ysPHg7NbvrudPbtGF1ZdWxgFvKuTC/sLJ6/NDpi11ZGXBzzZG/F4b6GdlxE9Weii6nNcWUcA6xiQWzowHIrM814lZE3BZNQKhfum9cvLxJeKVMMIaeZnL/oUriptXo0sP7s6drTJ6/cvPHXf/Fnd+688tmnn//9f/nHi5cu/w9//dcXFxcRXuzOITZUgmJny/b+3ur6+rOlpbV13c7NDbu6rDzQPybgHJgSXBqHI7ta0G5ujX8ljtTo6DOk1ACjFOn2eapS8iraqIVqWXtsREKZM+ehHTp/w/nbW7aQxCEM6zbvDx9dvHj+2rVrM1PTz548fvTgYZYSDgytLK9RvKZEEWaFAlYA4ysGNjbWqgaqZkmhHFY79bfsGpapg4puT3lfbdUOVql47FO0JVdOktKWxcrnojQfwKqK0iXwoG5JjmplIZUcYROA9qcafkstzvCG9RBc870Hd3FmanrBcrdqMxEqrsKjYy/clFm2wfesTKZPmULWNgu8sg19VNvNmVobH4zhRZ0qkyoWJBSQvClCUfXrVW6QmLiON+GhDEAYQGwoVddZdIbQSog1bFXMkWxx8dy5xXM1RBBL2LpWlbGRI0sMkeqtiAxhKw1sIyvKrT840thMzjQsJWYE1HlUiGEl051iM0HPMYBpyaaLmJZbxvYzwV80AqNz7MBj7Wa+2WMdtaDm7u0PrZoL2dm2q82MkuFJuzG4bTcWDOrbTE7P2PTmWWXQ+kRJ40PYTfgkUeavrEeVVhyUJnwrHGlN6ZOhWmmrOYKQvI6WY1QUKUDDa1Ygkgapf5XAvww4pT57LUmJojRYypBsYkxrV8Wt6m5ZLdNhDO9watK0jer52eefWHFw9fKlwd295UdPttfWLb/awo821VhGul9iR8eZH68SCq0qPpJroeIjfzi597Y0rKXKNbWpsEZgZgunGL4xI2w+t+IjNVrhuwQaXnLNqqhprNhiMQxBSAQz5YawKGWUNBGCm0pRjq15ngwJpp5zCtpfKTfpE0pQUUIW0WrdSe0qvte+C3J2DIjBe8tR43Gi4mV9o8jhbuR4GuhfOfpBx01a5kNRvINHxrajiUGv9ehKLskYFlWtcOIs9+O1yIwIs3kZFrXRxLaTLBktf+YDt9n9itSdQ2f7dqHl8tBuGsz2rmKqkhS/8AWKFkVnR059mziKU1KQkksTT7W5YX4Rk0NCVLTx1W9QCmdZ72IbCowK+ccnwtDyIz1RQ3BogQBMKkHz2XGfsgNOVjOzM5jpNADOA9goRhFQ/WZ8yxcdfEXAkQ+YmimlNI6thIKkAWNunrqYT9RdjgORRPdlf3/dKNfc3OLW+tby2LK1q1Rje9vHvJvhVqD+Dau+t76+lnNWzf49fGAL76YTotJqOLHbjR7YoIEPesBcPh98cDDmNFIDlOQHRPXD44nSGqwaWUOX+GAfTo23R2dj5UsE4UBxItZMflZJXw9xqVj+1QBMbEXGk31jKut0Wc2f/OiHt2+/PDc3+9KVqz/+wVv8qgO+mLtxTHHUti2SwwMmtrG06hQ9z7nGegKOGnn05Mknn3z2+ZdfLa2uakErAUKlWSRS2jhqh6uxiggaRvjXVACiOFlS63SJ6vAgFFLrSqsIRyDYDKkOuIkd68I07ekFWRj4MMOuiOWlldXlVTQunr84P39uedmHlXfTTI8xDmdaPekKigqxq0MbG+uLi+fNFmtQKTBD9FmAHv5pABbnk5empMHY6GlaXtd+TNN/V4lTbYoiGeQyWB8M4jpSW6TITQRENijwn8pnIF5z4dAezAQxWQlhb7o1g9euX63Sg1JlzFUxfhoCrVhKOr+wsLyyJL/43qsUVja7Sm2x8vd8PyZ4j3ZvIFZ/SdlCL3krCF8S4X8pQMyZ0KgmJa+wtVClGGmuSSmAaUzo9ssvq6QSp/L7J8RAdVoCUv7K1aZW5pG69THp39S777vgiMa+LQjMNgjhD74Hp+wqdOw9SwcmZLxl4024GYZQTsy7KhIbD4Fo1PqaFeVWaGjr5SwUC57dWbm5sro+f+743IULvqoC+3QFXgxxjmk/nGL+Yor+81ltwpaw/mzAC2Yu/AoH845ckypFpGiaap60n0nC3FdVIaBYAsKApqT5IlVlC62xXBaO7+39duP2y9MnQ0/uPXD0S5oxyonqJGVWtRW0VnRun8fPYxJXNz8p4ROaG1GFSCCk29BXRxJvQFCkaaRxunl08HRnc+9ww4kg5gHy9UjeWL9s0EdrrBuiIRo1IdybYBYBNhsXx6lYLAAt5UfSafOGwFCb0OLjP9wlKt44ahePgi3++0ut8jm4+Yn584dDU45qO3SC/igrZcVCZh3LxYcprfWYcqrsslzgFFG6Zdn//tJLL+kKLD17pt3XGQw4y9L4kMrW3ftphimlVwclVSfT9xF6rESGCkkwQ6wcz27aVV3rofgMfKCF8zEp2vVhe6GW2/YIvSo9e0a5G4dWtU55pcwFP+L2qndpvEQurkuBja7quMAiM4Kp3G31FQOdWg5PVGfFdXnQNCE8VonF7w6frghe0IdX5xfm9auM+jmAyXJxdKGuFrBMNWTS5x/JYV08XCdBGEqUUYCMSaXilapBNdgeOBZq/K033sqw58SoE4mxm/m1n+rrr79FGV4611cRtiDz15vaG5MzG8OraMBNrTunVayuLjs9imQsGaUeClLhGwsPB0fkYj8QX2z3k1EEwoMeB4MPsLLGt1XKyIhmReMIpuoSfYk8TaxEp6cmsol5fHzGny0ZF8/NL85OX6c0vqpreHxqUtZzvhqzMP/ZR599/MGHmhRZC+3bBfkYE3UYXjy3iJamFc7FHprMzstrFy/fuXn7g48/+rtf/OPDp08ykmzWgtGgCFkUMsKaGfRbW/fBqE5V6E+UoxfafYgqwZFmisB61dYCyewnwy3qcQSPSKEsSfmhE6pF+Q2q3XnlFcfZ+tyI2Y+33nzTLAHrW5Cd1LhvHRwbHbFGZQ0kjF6+dHV+duEHb/7g04/ef3T/Xj7trPSYcJWfynU65CfCrqrUw7f7PatvTWEQeIYKqpo1hGlkVNUrOKkpwar+pawMnpnaN7Cp3rfDagwN7elOGygJ2sbeA8kQSQoEqdVjOeOzyuNKcPPGjeXlZ44iCSYxXapIelfF01jyqsFd6QWnIzFAE5IhPy2kuueRLAQ3AfedoGqjWEq1SUU20WOvo464hC0v0TuH9crVy1HJYmXzv4QogSjxzwfRL0Z1JIfw0FXkd4TQDWfuFs+peYxsbGb5YFZRe4/dJ800aqoBDThxaJCx1Ck//IvlwSUzBgynGx8NwH9HlJru0MYtC4OhJ9a1SG3micXC8LN4Nh3p8A4FCc/T9aee4B3mnAkeOwfcj6QwijG4jhoWQIVQ07zFwkggTdf4qeo+eBNVDHFFLdW3OUU1sEHFeObkpYuv33lt2lqDj76wWS9VNb1pnMOSMrTF5+dRikT7WDYhNNxCPAQimEYGOGk/9QjKywRalDOYGCOXE2v/sXP+eGia9jg6h6UYG58aGDN9FEdb7qoHP2BTdMppRZSMC64YsCslYxFj1zMjIlO/vI+Mq6VJXQoTWWKesmZsYPDZ4c79o4n5qTl7dE98vG1gEG75+GF1+oySpQqx1wFe2tUNSaZgcUoEbWZ6hh1dW1n5+d//fHtjDSaVqaOAgmGHRlHDv+HbqhbldJN0Na9jURIMuRA1z2kJmWxj4XZ38jo1WANTYnS1FkRwzBRK2hflFZSUEFMmKAgaBycxf05ZsCKRYa2iRKe6K5pTtDd5cJ87s6LCwHKVE4WSXxpAiG7EiF40LQU1ljZN6+CgQrIUmQKr7HqgFqIN1d66dWt2Zjatn6EhS8ykyaywZTwTk08eP1ZCsiXokhiViPrIStUNQeuj4FATJdA4Cw0lOidnem7hxz/5sT1gvETrqtIjJT95ks+/aB988cUXf/7nf37z1g1V4tKFxa+/+mRp6aEj7gb3yJo3GsBe/WMMdXr0xOS4ZpDDvFK/fWpie3to11cX1bq01vtUuQsOZKpxMjJuBlWIvPk9nIqJQEBaVBiIWYYxzi2c/+EPf/TnP/6pHbJT0zP6kQ59cKy0ESnWhJlRoMS+F7iy9Ozp46cff/DR3bv3sOj4eJ6oCdx6HcUaQ15fc3rGOE/u26u4k9n1qSnLcN9+661V57/88pfL62sZn5OrpO8HA8nNAaJRlehyQtM6UgvzozMJkYAVdjmbLq0eqknnSQHJ0nkpIxUKgREEBlpGZBWSGcZJFmdtbU373lEbVr2dv2ideQpSntbdvbvLq8vLKay5E9XmZODC+QvvvP3O8tNH/9f/y//pH37xc6dCa6YYPSJvjTF5pQ+IBLf9+yhZi3UNzr3QSGivFBTTX68S30uZt1WRomQZEHVAWDrKLa+6Y0hIO+zqtWsLczNskcHBrM9m1AIwIIUGpAF1783C4qKmFF1qjYAkOFtiI0BJxYH+K9gpN7QlvqxTR2Z8OLDtVTDuhUYrfZWRAyZPakcL0KT16BQBmwKYNi13M9NvvfXWG6//wBw3ARaA8C3SLH42ZWiNefdFVcA3FOombGt0NEYne7ofkV+MiYkko3kFUR0V6d5bTjnTX5bWZxXYkKM9ra7CJ3k1sFNf0uIP05WSlmL8tMl44rJYP8fog0bj09p3uo6GuSmqHIXjHS8SnYwtbKEQ7O7r54x2nI3upU/c2fuzaU7vo3/Q6kdEYUuKQbZC/1X/RjRXm+N664M7MQxhBnbgEk3zrSMt+iNn59555eXxvcP3BgasFLdYp/Unm1jIvLmP6GdYGvD0oF/K99wouMM2v+pcZcpd03z5+zTH2wfoCa8ybQ2ihnbsVL5Pu2PwzPjvwMm4ZUumTpOt5Ww5Il2lE36wKYsAsSo86/HgSyljHVvxTLKh0yCUcZ4UYUySCcqmIFhQb8tjhjaOD7/YWHIowY3p6cWpST7NYXrPHN2yd+zkAq2y1M5QEgp6eqzwhDA8u25Cry2u167fevvdH338wfuspLL7LGs0uFaFCuap0a7NbzWgdRXPsJIasI6zsNBnc2PDKHGSx/E1uoN6MQCM8L1wiLZUCJOCXD9DemMJFCErq+RJHQtZeBbOZPuQZTFpZCjaKEFljxpIraxYHDBLyLmh+u2hTLxkcR+FW5UdnjcMcjM0sHBucXpmmvYdnexpvOrTadVyPLDlJj/1KbgalyZB2bNWOP4Yvurika55dkbrAmoaoFRsL/g+k2WTTnUwQhWGNgPgZC47FA8PPvvsE/B8iO3SpUu3X3k5n9LLIdkGONJTGBjddZxUMWRvc3OFg5sfmnfMTi3FZdCMCk6ZhjKNrWO0v+foTcdW5JOFbRIppoSqGpzxXQTNdiyhx5PW1sbvQWB6csp6EtudpsbHX75560fv/vAHb/3g2qWr5KpZgM8DR/sOACVWfRRT/dTMZK6JDEv5Hj54uLyyfO7CuWvXry0uLDpQCEAD8ZlHj/0q9g7Y1LtnumIsh4scsW74c+eVVx88enrw5ZebfAhpU+WYaTIwrp6lhpk5C6qUiUBDAtFW/VBrAjo5shyayWtuNioLSX9VA6NjOlu6WTLube5uDq/DH2fuHn1rl2NGfwcHV3KmnjNOHBRDo6AQNbMk/sGDhz29iGpBgp9zZhtVdiCaMuhXunRBNS6wph26NVBBohQMAg1Inw/9eDHu22PZGGnTA25OWEXxqmUPTsqnMapGCKNtHVgJhBs3bvybv/1377z7ztbmTjVfAMmgvEaJWsnxUGPoYWZ6u6lRWcnlCHer/zRBWkF0GKjUgCDvNwi4z11qbQKca2AgY/LwdBXa66q/Yipnkle23kX7D5cyoZNDk/RiSu0Gh32ganNBD/jk2rXrr732GkIMuqRHBFVOrnCQxW9sKKANfBXZg93iTl/0492gKQ3Lys8sEHc78AA3MwJbfZKYr7bCih/2xZREZ1IDk1N9jU9bmJVjAy3ayPhz5Qtrmj2EHrw8gRlO5pA4Hxi17aJtQ+DvKWvY8TxLzqL54j04RFB5vocu7EhfNuH07XM94IgqE8/ROka7pfUQsptktDNVrsOTfG12ZzsrsDQ/qpWh4cBA88GaD/5oz5Url+x2WLpv8ugRg8BjldirvgZ0ZE4pY2djDbvQCi39iOJWu0nZUSKvMLYSuMbeNw+s9vXRi543lhF9cZuhH9GUN8dV7dBawrRHzZ3O5ASJSW17A7SDkRJ8Yu5aCSkmelO90TAM6eFPxBsLXmUWGj7mR3jRefZZHwJL0hyjQda4Z9BGE7/aCutHh5+srzw82JnymRQtFWdET46ZoMumIlY3djaFhwRmokpUUFprpdCK9l0zzTLU/PAnfzYzO//b3/x6+elT+NB6aWDWqn6XIXOBCfhQ/EFEGAZmDQWne6cQ2fd9AH1lyZm9BmczDRi+h35pkyUI5NLakCRSMOM+240IQjS5Sfv9N9pGhaQPECmqK285SiZ+qXuGFmMPjBvKVpABj25EL13ToghkIVtHSsjAsbrpKAWxIFQ1u4SQO0o1sLVjCmdV2zWnQ1o6u7yEndylbp9Fyp999hmMfGgIhHTd8Ti4OMrS8YkZjSI1VtkSYTzIIES1HtJWyDTu8ZOlp7VOPuu8yqkP5Ktem5tfO/Y54YgnfuONOzcuXvzykw8efvu1NvWoxvjIThZpZt4/c6nI1gCPk84ytLQvcnU0FfcQujS991cddNwd4RuFQyjvwgyfn75y8eKlCxcv+/AaLnhj2n5uaubyufPn5+cn+eCxcR/Ltalia311zyFLfFE6LqF092BPT9NIrEZJyknVG7KoykcSOP8Mm29vckmkj7dWpviuPSYIite8oFzhhgZlRjuPjTE4a3nNIabb26s5NSMnTpCfjsrEpHF+S6NrSURkRJfMGpQmWGNtFca+rYsBx/0yFwDChVyi89KHLsLB/rDG2jsxO9tbPID1nflG5OBQnXzuW5CpcG+/8/bE5LvMD+6qdcKKjrlTtNKmjqag3Q+6di0e9q2e5VWRpvdS/TVSSDzHBqUjpZ4yWSUPmWWMtRHCvtJzrjF6G8XG/k49gkY8U2ZKUhJhpo8VHiddld/SFzrAewqlMLCn6J133n3l9p293YP79x8AXJMgXK8B3nwETNBBt3w32bomfvJS1D4mBc0lY9opv9RImn6Ae1QITyvU2FCAyJN6k9odLCOr4hkghWr3IBP2DGdcitwy2imZauMLKz/96dWLFy8YZzKchnUNTq7+YQMeFhLhRSshN2ycMZuUGkda0pGSAYd4sgSLXGMLJQ2KeRXsyB4/hn1JLuMrTh7LFAW/6fC5nMlqHm3cUE06vJkO0GNOdYa+wuUO9dZDgDXoBOl2Oljqf7pg6mTKSSuS8eKHpS8znpXFuNEYEhyKXaEDgagqMiEWRFqkAhhC74qvQV7pXhd80eXEmtFLmULngHvFdHLKm16IjHtSEZcOwPGJEyXtSDOgaHVGehTKYCKzqoVOH1j4MLNgBGx8ySfEvv762YNHyMNAh5SEscEP7vgfKlJOGJObqEUXwirUiE6iJtekINogFNF4w/BiUWgBVc70EvyWcUtsfAMLbPxzZGzGmtEsQdQZ57KsiMpeEyOBE46+HzqkZfQALdaM+glWKTnAW4AbIdaij0jZY6EeugoThbJfQS6eI99e5Hnj0WRPJT852Y2nPF5zMKdd5DknfHByYEbjPJyJnhS8KlWWGJHqEDCAHsFUuqaNTh4vwt/5miv9+adf/uPa0rJmUzEheHWWI9QrgW5pS+VamgBGdFEzqXia6mRtqxXCKysrBBLV03AIz8J7oV2VntGnanhykXEblNcPDNLqyJ23yRA2xWj7ExmXa5UKAxE5eYo7TJpoiy+5xyClZpTc09SNzJAdNfCbrajVqCh2h+lpBQQrSXp2kPIr+iSNQlby5du3Z+dmsd1RwCiNWviK6tNnamONd+a4DXG0FhCe73jU8MMWFGiKNM5+NoVrG4xCoE0drH0zNsCp45xeZXYWqW9ZTHtw/sLiwOBLVk6CuLi4sPRs6cGXX/z6H//u6bPHo5NT1nf48rph7IM93ch8UpDLMXwK/7m5fRO1upsKGtTj1GWsngOSHUBhS5NqJHGkxWGMT1y6dOXmzZcWz13krDPVWBxHtiWQE6NWxs7x0taF7W5uHuzszc/MIY0L5oORGVbrImLebEbpTe7a+/3119988dVXn3zy8cLiwuOlx3YbT4z51MHI3Ozs4vlzs/NzUGdYWTVCKbmUOsKP+BmA7NobooojNljv2cyGcxn30m8zlnr/7pfb2+vKJS4iQziNSOUJOaU4oTYS1C4p+6G6ARvDIH1cKVOo6oyOeEsGPmmgBU9ZxiZnFhfmLZ7Z2tn/+uuvf//79+30pWLaEGkE5SPQG9Ef+pC2Qvo0CWw+gdGJfBlcL0cbw0y/0nk3RkuHOH2HsbEcqJJ+ZypAlDbq3Jx5qI/Q40JKz0F1A2VPVmEV8lHIppyxwiG3M1v4oHDA5RIrlRbMG2+88dJLLztUZ2lpRUvO2woa54ZCWwgmoyPbVW5MvD8WwPJ76aVw3AIZ5WSevZ2g4T8Wli8I5kxuY0Xypc6qHS24FwKv11kl4opBR5+EkCcjJDQYIxEsw1MlhBzDZrMGoilnSyalzP43KyZdJRWljjOsMSvUoRjl/CL1C3tbotjZ/l+KDNuLWqC75fZgaGQMOW+Ab66qZADZmjai03SmJFEsFVzdYGRZ0zTjIj0gOJ00PIzgiSNvywm0LbVviuh0tAkl1S3mM9suImv9ADOEzbsUSsEqFOZd1LUojcY211XUx2aVkoQ0yeN5y+AmczHONVxqTAqguIdiQ8cLj0laoc/ZZG2R8S/07GRre8uwG7wxNope5xikKZQFroPnFhf3D/d+/ff/+Ong0Ob9B+tPnkhjJDT66hwT96UT4AsgBxGIlzmu25JkvQ26VXRlCmJS1w8QySdI6JqZ1zTSU9kqVko+JXD9p1/2aesHn4w7uGCXw3XGLVAaVZOONTJxbHdQSGOsWquFEDtONHhgFo9OLymlFxoOnlDB75omyTijHkCULnobWDRB7wofTArqD5n3syDL11syNx0GKCFUhUECSFEf1rkx3xOl0TxmnWmf+nTj1i1H3X5iMGJzK8qTdAyYJoTNGThigO+Y45QLqFg/4PlEUs+AHD1On4wQ+SpZ3TCIzmW2rkgSzi84qbfVhnDDNlHTigt+0WwPpeOyq6JCUFBOsz0pMIABqB6CQgHPmq9WXOEsC/ucFo+uZQkzoFsCJONonnsxQJZGpBQoAS+/t24gv7m5ZR8w+DWcTujZqEpRf/u73/nuUySSLNEbGhvKycSyqPFD3xGFIoIgsrNjxjSHawaHmImB2bm5K1evLl7wOUJRKmmssDHm11+7o2R2raHN4f3P//v/3WdffcGE5rzp0eG5uXnroPS90tOqdWE2RK2u6jduOUUequZVCTye3sma2eJth3wWmunSKZ0aqVNzs/MXLl6amVlwAum+PU4hPR8C0q22KfbGhUuHepZ7e+YxzPFGAr517YPGs3PAAh6768vkEyaDcxY3T2WowOr41c21x08frzvVYmfNpyYckzIxMq7/aBTBRyUKN8sD6m8ym/j8pQKfDGU30rbjXPbpiAFrE7m4fagSjTkMQUPF+ZuTn3z84e7eJjbCNCNf0LDscdL4nhas+YnIjHTKAWfFVulJqQ6bh35jAL4UZ5UqVmbmYtQEsFmA8+cWz59fNDy3u7+GFsOwX375BTVPf4XVZdeHM7dCKNEYPxVgTdz0SEsce9Kvql259E02E9Z4QjqQicSP0xsuVUxdpN4cLDAZt8koMwAJYnpFpKHZD2ngYnuFNCTLw0nLrKu7IHuj72vJkpHk9Y0Ny24BI02BA6a6LZRSqS/8ODRUgxgxfz6tbeE0/kj26quvWvTw61//8v79+7BrxEa5e6HhGXRLbdNJ7vGklyRUNOTz7rSW5b1cCorCZ4CdHpm1y2guOJiPY9oB0MArAZAGQfnhTkkU/v4hMDYwI6mFiNabmTpxnbPu4/LiTeAU6cSzYfRi8GTSmgTfL4p4LINIt6C4kgptyDhNNyvvMtKZUdloWSRl5Eyz0O7htLdgElS8H/SN0Ky6ZEfwziCL2hIhWx2Z+hi1DEUvItV7fv5NI19+hKXIIjtNgApRuAodc3ow/MYBtxARFraIwR0ZW3wgtErfS4mpKsb1a9eNOKVvSQaZx4qCEQxBUOrPv/hk+etvMrZ5915WZA0d744O6fTpBAYM1gcuaxokS1wd9E6KEWdVW+nqTaPAvaztPh2k4hDiJeEpVGpCaUxLAfx92SOEyTWSr9COnIyapccoe03MHbWVIDyOvWWiUxRhYEpaS51OR4hKTG3MICh9lCqKm58KhUanx6WO1axpFMKNK4uzQk4gUWQC95E2PQaL8AbzXZ8Yo7AjOAipa+3GFT55bJ05o9byGXagQD6KOTb25ptv6Ux/9sknu9sOdhdSDzvMB02BZA+S6kEuVYeDacELFiy8L5NqU5fUMqMZN4rK2DINqaOYV6fMyRLcOibLXih25HsTva8um3LJQnHRmPzhVMSRepH75INLJQgD0RQ9ly09tP3s78twUDWxMnUY0qu0TEbIDMgZrheZ0Z5A9gpTLIZ6+ZWXLNVRYkgtHfrVr37193//c0u0oRYMCnFw3aSDlVUefMa0kRFdz2LUsTZaI8RsrkFpvVs9pfW19SxgjQakcUagIxY3MesxbIHspK3NnS3V2AhLYK1vGY5Mgzo50v1VJIPlxh6I7d2MYXuEUaDG7TjpbHR2eo4XmxifwiVvndrPNbI2TnHddQBLRmDS5pUmR/mPT+ZM/wOzVj45fTwx7tCOKb5WK1I6koCVb0Psbu8dZwPbhnluoz4c0fjcxO6xoaAdX1A1v2zxie/n6elM6tSO82e+GbBpYH5rZ3Nkjeeb0A6wqss6LO0VDZql5RVtt9qCdxDlrtqKCVaxDE0NXrl6naXjprlDfRSaibosthp2FsgOS0fBMMZjpJo/FGFb1J/IMRiLcHVhwb7S8w/vfcW6S819+YTXm2++OTm9sLm9Z2OyPpjzT7SgCko0H2+qORbR1yO9EB8N2d/NDAXI7K0FFZrBqgAOp1XmYxvZbJU2JMG5WhOuviZzDEiyV0NUve5WQqSAFJGFnBkvytd/099igIyayJi83tcYpJQoqC66bQI43Q5XoQC+d6ypHPeMXnqI13rAsHJfS4Lksjw+vIn9GRrUeqM20euBAX7X4gYx7qVRopvvhGBSpKWeaWRIQLcTAgRrKVoZnx6Qs3CCeFZdsWoZrVH/MEk54g06PHr0GMBbL92qSgXJENx+OjQYnfAHAc0VBpk+hgWn//TcTRsdzZEmNj6Qnba1j79tbGjUXrrq4JhzPmK3sb4J+4npKS4Z/5rdgYI2j/YYD3VyNEd0mWAwOuMLHPvjdkdANaYzrQFzHEa7JkgLf/KFgpqySf2swG0z2SENSYU/kcK+PYfSLoTApIidLlPdkRJuPEdVPeBAJe/exFUo3vUsa4qNiu7CKSAACwUNZLv4DbuX/qVc9EQ8Gd3Nqa8ed7d2tp483tfCtv/z5Nhe/Ix7YlDKKtQKkaoh6KsXHVZVSKOcCNMwKMcSFYRalA9mWf9Z7AnRiVJmesGnRId72a+8x0f5qo8KzmkNDM1YLaKhZMjBZK1WkAqYoZFAoS6G9cLMTJzwLF3tPaM2PRR7v4qICidEq6OrMS2BlqkxhGUqM//4l1pMoSzGMUMZWnaOB3mO8z2wIhNij5pJgVEqv+m9tFkyCqpSDvli/I9//BOPhhP3d8gRczrNaD+Ey6Y05ciAZyHLCONkWBjrXydGYb/FhDUB69AuvVbDitqJEoQqZIQnJbgg5S+PglaKIloIwoHjXdBT4WGKId66r2syOlgDi5puBZJcxWj8bp3JBvnMlRRoVzjRIuVtN8FFYeV9LeO+e/fuN19/c/HyRWU1+Ah9+PChRyZNOkiVUoR6KLQRamw0dmMXDreokGr0647bG23pz9jsgu7g3LOnTy2myhncVV1dGcgJUxiZOuQAhowtv//+Hx48eKBc7QmrXLc26vPgHd/kiEBqPGLEZyRriBi8bvGICU7bVUnTamNmPGwJD6NQ/BpREGKZPmxoOmkPxY7t3JvbPKSvbeyrJrwvT8W+MI64wWzFknAI5sNMjTtN87pm8/XhqdHHXz6++/CeuWHzzgcbR+M+tXg0bx/l+LHuRayS4UWfE8qwYTWwNKExhI3b3Tt8+OTJ2rYRA0GrTlskFTRDA1GVLGm2Muz2K9MMnzqgeaDhonOvTZstQCYSDzcow4iFJOkcG0E7ynbc1F5OOPMN3jKF1Gb8eNTJGyyrZmE09cQxcBaTb+weOqA/p1xubu+g0N4w75o+AKiOZRzy1KZFFQWTLFbCp1Kn4SUyAwwsGKImyhMXr9ivKCruZWd/TQxEchUoWtWFDniARslS02HrCeqesrMhTdhQlVakKfx8fGyWKzVUoLOdalFZrB+OgSkHDHJMiN2RejMJFCv9me3tTbHciSvlC8pWkOD68eCTJ7TyKYqqPoLzXJDec9DLXwIisIJAUzEjryhStLXOjKvESQaTljGdXkYtOwTTFoxpVA2r0Yw+rYatzfVv796z/0xHPMavSpIXcNfS4XCosSl8Kn9cCVNQ0vzJUBnMFmVwwlTQ3uaWbVwOvbVLThtxbXWZntPWNkLCE2u7mPRjghkr/LMEBx7B5eh46niW5Bl0BaKXrNOKxeGcz2ToS/fDKeY4iTl5678mLIT/q3ii40yaEAtI6A/2+Rfd6fNEfELiW9CoIYzSiKCajC3kIWsII4wGtMW3B0xMQ7W8bepOdXRqdBMFh5vra/e/+cbhQccbmwf2me/vbh6r6wx8RqypZSsomBWNxaQY11Y8euLPI3lRBVsZHWqdEZbGi0KpXaNq8AxdZ0VbA/mbBxaY5rOD2Q18dDTGJ6r3BmD1G6xXtRnLgfZsDRtAiTIC4BIsWI1Wl4pLsMWrvPA2qCdUrUwTWNefoqYtzLaXt+VkqwkVjcs0VHkll1BPucPbcKBCWx8XHvjDwySrapKhXSkg45qprswOHpnGky6jDYMmxiauXr/+5Vcm3rYYjTCzJ/lUNXLKTpjUvaCRiWkt2uMxJ9hnw4kjGEGtwZmyfq2eyub0VSwyzeKaVUJ2LKdmFrZFe4oJr0tS4OYon0w2BoHGnFCKZ0bkgrzkmXv2I9pGaFkTKQOVaP06tjjmrMAaKWwy5zIj4koe/iO6HnsiqCJsDHVe09rGmvUslkNjecBYxOujsEtL6evUcHRG3M0DQDp/VsMXCVARmW06Dmruph5I08gnbi043+fcIkZkmVb4GYMFcgRjH7XIvQM7jj/44P0vPv/cof8hL4EqYUeNVERb0rarLs646h25BQWDuLGtJlzty52enlMoB1BDEZ12UVXuPc5WfxfbzPlwbCndZ5L3d+KArRBOR9M0MLCsh1FjxXMhAlQDCKm+VDM5YTwcUZ998cV/+I//QfW0TTKqPjx05fq1uYV5rNvY2ry4sDg/M3vp4kXfMDLlxu9SY55Ar5xnsI5Jg8YXRlUY4ot/LiWPm+cLtT59HCsL+VRd/iY9PIe/zI9P1nfQDwwk721bb78DJTquk50N0BbUGJBywELOqDURpWVqP5Tvw40szNsiN6erSMh45nTozz7/bGru/ML5i9isNlzeuzQ3O12ahFAcbbWmjbN59i8MIDM9RZ3y0i9p2HTygzWXSS5qkpY49qc9jJB0kXIqHICpQ0oXmsxiKMoOKCsKnHsdevPxutFoUiQ5RMDqPPCU2yjG3Oycqru0vyR5vFqxFG+NV7hSDDGqZ+pmqmf+JFHQ48c+TjU6NG7qmtpadXwTdp9++qkGGZRUz0ImI09QFUS6BliFui3YhVLVxCRrCbTI0ZzXyd5ydBk5WpGi/Gc1OmhloGJSMq/g8Oep7fv3Pvn0U8eDGJwI3C6EM2kMVb8ppi7cA8pd/jI3Zwip2IvFrS5U1vDYTXvlNlBihDIjE8eosu3uOvaGRHdyOtsWjFgNk3NWXRi/MWmBh6BkRZbhWA45gxxZDjs0NjgW9hxjqy+Qa89lWgK7qrVkSB1Fqh5ilXg4GEsV8bb6E+RgA7c8nwmFfnBOYsoSmgoo0kUgO5mExkFMcJuZ0SKeBahGKLSSO0xLWmk0o9kW2lTyKKa0RMDJvatl6+PSWRkInv8lKhlPjrfNLT148NEHf3j24P7M4IjGb77dOuhTYelaNDwLVC5lootIQg3CQYzgKQUtDUpVNB0I+UEy5QfHim/Xpj1yJLZHWKWpZ+k1cqykp8COJNLlYDTgERNqoNmMbA4n1G6NhjSCo3nZRKQucXhnfHC1GZM3BQUf6AQx3OSCM6NQkPPW/8IyfeA8pg8nIsMqOBa51F0cc6MsPy2LVgPtgJcMcvFReMLA2rNkPG+rjF1cUSZC8n2loYMjX8Fz7OH2TM5iDR3wqZZOmNxYEYxQnhJSjOg48/hmK5Ql56HSNFSpK0MGauxxT3/Al3kocyb5mAkptR2lZJcAMzwlOk11MMSUTZMJbwMAn6JDmWcpHigWN42qZZl95FvoRM3Fcx4m8UIqAqrOUwr1Q01tLA/m4WRCo6sefNn5YGfLmSt7mhCO6pckHex4o6NvvvlmdXml7AccWpu/KVCyhlelunWnTIPK0QPCgRAimRDjoAYNGeMImV5W6S7VRAwa3MMHlgN98AecIrOqH8yTprkRr4zUYjUVZUYtQmZ8HeyMVn6X2fVo1JF1NsArodl8EglnK8SO83NEzzBkvWPm7Dl10bZdRD9PzMOtT49bSGZH5KH53JXxpfPnzlmorLip6ZxppR+vN6BGccxU7qOPP/z3/8v/8x9/8V8oDELJa2JAC8DpHeN7+xorT3VrFmZm19ZXpm2rnJxePHfed+9nhkygHTge8vOvv3j45JGtXuYto8xoUzdzcgCp+sInuxo1io2Oix3kgTUUFrjRxUUKgqLllWdsB6N6YsJb73jKJ9WBygfm0u1IWw0MNdI3u471am5cv/bZp596BbZWv+ZkBhFP2GFHj60vL89fuDCfXnLaznHqtp+0auk5+hJjF/7b08xEYJq2d1bjMAn76tUOfVMcBSAlEGhyn/8emyCaeoqnmzBAbylg7mmEzztK4NsaqupQrcgNJiVEIlK48XszvBiDgqZ0unRuOGycyPLdEWsvYOFovB02hNSkZ4KsFTCyAiVjMSb4tRouX7Ya4ZrZvvfff39lZYlrMgGSWnkm9NEO8a0yiyom+IFkNLLhESUu8it7UvVIbvd5PP0rsjMkR77M6MDs7PQ777yt90HiAVCmOUazBFDlUAHPqRaKDCwDxLQmaCQHjqezQqF74fSuao0sGWSJLdG21z47UpgBEKMBWR1DhseHVsnv2RFv7Gh7esGqbHquzTowtGcHoeaj5kvO0osNQmpmYLC4vixO2ZBk1gCj4qezJyIHYDCBNpJCMAuuGcegG4GHQNTnrulA0SyWeQo5+BozRusah1M1Qn4JnSrUIicJYhN7EtMaOA1hiVDA2u0L12SLlh87HH1ldcUyYiRFhhmdwPfjxw8f/OPP/+7hvbtrS08y/FQfvbGRUI2ptcWx3JAsixvYRVluYnLiF3p4JU44+3j23os8Rj9yESK4ytIi21U5FjgNWhR7fnx6bmDUkXYW8+WDSIMn9kWZXakeUQdN9tKKgNNIc7A94PjVHHAfeERQzG4x7RqtzMAQlSJWGbVzg1uI6iFWKUUme8/LELx1GfFeoouKpCo0KnnvUhKNdA1kpVdFyhJBNG39aEVIFaH4eGs/kQqAifST+xTKZVP4jEW3b16O5WNcE/pS4zkq1EdL9/fzUYGWUV6gc87b8W763Wq77lB6AIyNf3nvW1Igg1aF8lB5qh58erWxc9lAn0Z+4eAt5I2a2cGZpnfxFiBp4uotUaNUqZjKKHaoaI2E/JwKPQ9dgGE2zpvfyFdfnLPItZU6DK5vbVmkE2Zls3cAyuKRe/SrxBSbExPNZsClTLUXVDTtDs3Pk4W5cz68o9hEYCDeqlQ4EAkGUV7/gZ7jw/s+NyRr5h6yzxIDiTM1NiVmlaIFnGmROz/I6mQG1nYaHYgA0dmxGNsqbh3D7TjgQj76TFAgtNrP1DrKM82jNslTLQKoOut40cgz0mrqUUN/ytixmcQJA6vIZGKOjP9wgw8fPnj06MmHH3303oe/3/JR0PA4mw4NnPz+97/Tg2Hr4cCo8XzxqvEiynPwuw1E+8zc05WVjz791AJMR88OWcoaOYdfpGzMrpQTe4c9pC1in71h/anJ1eWdzZ3t6QNO3CF0U5euXjfesru7RZd3d/YePXxgcDhWLwpQstDpz2yoydKpSxcNDNjkPJZpFF8RmzgYncS6rBQ2oK3qOH9e08TMdPpVJeBIE+7lTlMnEpuqgUBh6el9gk3XNIO/GYVtSVzrBiPDeQG2udZdiTGCjPuOPF3zE+j1l0smNVR6XA/v2tvqYmqi8qawijf2CmRduazPUJesYRtWg3Jn2HkwZ44ljI76wMlQTfeeaP9Y16aB9fD+fZ14B5L/6Ec/0uX71a9/6UgsiOBeDx+/XYC4V1VuFwOlisyj+xZITaRQ9IZbLZ6p6AcVgYgxrVo4mTDGCSTA8+rVK+cvXYB6ZcToZskCvwCgugN0Bl787p8MPRFEC4khQxTSw6cUOhBjH9RczZ6sJLU4wuE+J8P7hoLGDYnXWlxTI063IenYh6ykp5G1YkNbhn7FB5edQfiER7P4RV5GLTIZpwAUR9CJL/mmWGW3al0qABWcwY1CL5mkz/8EefyTOwrZi6w3Zy6dAz4TUxk7NkYeCb1ft9ClZhrcurU24scBk39t7rYG9R/+4R9+9ctfQnzMamf9pyixbw8UjlAglsgS9ELUQ/4ltgRXWORllRkciusd8XkbXJ4PpTcvRlayTrGsNr8wPX9han72yB6OmuJpAyHEsmePZigCsipXDKu/yh4cQi4C4+TcldCDfIdXIZI0/id/FvQgN0NzeVX499QvEUlWhOdOPTXZQ+y9FmyVy8IXO3pWoErqqAM1biAt64ZC40W4B14Ts1exLrCN5BPfqHPNeEwOdlFXZVfhFR/C7XNhjawLOTpc2NmeWVl+Qq6oCaoUL6QoQskGDJUNhMogYyDXC+shYJWtdaZfykSRsBbxUY0GaK7RUYM6WGMsiNKHwDaIS9UBj6sLx2LAM7wakWQAHMCUUSR0LAi23S3SwM1DlCkzzU4p0I2/cP4c26TW8SWffPwx+54EYGf5a0bc9Eo52MqtKMxyb+Q7Ws2OwIccUZ2WweDg+XPnnW0JDeOSEZC/FJxhi2QYGPzqy8//8IffL9tznEoYTPiecM5wSyityjlkZWX2lhgPF9CllTA2NgmSFCDVgME+H6MHDNWMmDHiwOWfTq+pqbRkarwRcH8GbLLC3wzu2sbS1vzMpLalUdtocmZ5vNvY2tAl5eFMNnOI27s73969+8XnX6yuO7/CV3oiVv8xht+/e/db7hliGgqbcYRpBDj6P+dU+TKMQ9O2t7/V0Hj8eGVjA9fNe+jUpCoPwy2UFoPlJPj0IPljzGAHx31FXiPPbi72OoMeg74zePHy3tLTJ7ocAG3vbEApc9T1IfQc2Bk+0oF4suWlhRs3rplA9eEQB3ihyGHqO/tHMws5qIsKV8inLSOdUodOJ8KIEIhRrkrW0czgvHUqcTloEB3cY+A1miKLEhjsQ6HGR0macpQWSlriTeWqlPQ6ed3TX3m0QOiqVGIKZppWlnKr6oaIVDcrUUAuiWbfAbUvfdxjAxSSxELGkki/bGoWdg3OL9jqk2VZPm/z4UcfcsBOZHv51q3XX3/Vgq3f/e69J08eBtHnQy/mxXi49QPdSzVPLzn0VjzkuxSNil48siRof+FSC6md1dhspgC0sC4qnffhGPYmBbuqloU5SqnfNJfSWAl7218ANXvUx5BeyYUrlhyCI7PEkgsEWi0dlTobd8N0idknk1xaNuWpg4GhGTKqzhCk8u23GC7iGNW03N3b0kkUv4jLs7MqxLaNfEZ2NRsdApPFj2dwCVEV0UWmxNYVDhsbh0QFD/8z9hBkoRys42Y0Wc6Ca/dpOgmNoZUhuVvk2Wte9QOGWpBiPeOeJbw4ZFMVyoYM93300YfqdPpIZcHTvkzZUV1TrGKj6Z2UySMk1X9F9Wl1kxdFWxjeKEmKyO8sbuUkCvd6mSpReSOhjv5qvGi87RwfrRp5MpO2s6WjSvTYFBMblxC4zG6sbrSjxB7CKhRo0E6DNMXciglS/jf7TUtY8WY7TtOfuQs7UlwcLV9GBw2PKOk0ifpwhsZColPLxqjCKQRGEeFW/cyKzJB1OBJrZFokHTbUl4XSkAyb1A90QoBC9kL0GEZcFv+norNx61iVb7kE2QgjmTO+lj5w2JQFTeFw3EImUOIiMnSzb7gHXkFBiJ8g7FatMp9sG7T1tYasFa0q6WQlKazSqMgftrLCVQqd0W9geTRUs2urYRvhdrey1kRS8lld7FQKmweMt45aYBoO2H305Mnv3vudHTOOi9J5FFCqCcAWKBTzVOEIG51pMFgdwBunMwFaWJjDmHwA7hwH4r4x0A9jixvIR7Z+4VdffrW8tKwmIDAToAx+WknghgVykYKeLvSwSIMVQwxIcnWcnBC6HEyZkRhtlJyZhSMjcQ9NmXVr7STY1E8qrsqxC3IaDYGMzIHNzYHVtdnB2cWUZWR22STFtuMumXUYYK0dTVzXo6ePv/32262NrTQ+ynUX7zvqpZPQcvjShUw5qyfbPrx16cqly1fG9ncsd3r46NG6YyYNIGrmGIH0IaPIPuwizcaiKFdk6aS8NBqyscwZ0UV7WJaP4xo+GJufv5DDuHa25udnDDDowjrXcK2O6ozPKpeAV6jdWN/AMZ/ZWXq2zDPp/ZLmrA3W41OGAmBonjuEZKQqp0W4Y3AhlLuwP3UAf1sMQYRJJWkxJF91F2pN12N2Ym9K3MlSoTRU4oQe1IAXiFitUVjdd2OMsgOIcCKgPBnV7na1Jb1mLzjGllGnoQS71MA4aWMWk1Zm2J2MqAKi7sYfpxYMD3/0wYdffPUlTTbw/rv3fmNgwPCvg2kdDa3WFHYhM+Q2A1ZR8PQbXJ8PIhVBQ2hRCT2pW5L2qr2N0Dru5acl8Uoo1upaaXLSAlqRJSBd6N8FasMqueNEEwCNOnQP7nt/9fb0ojyEszba17gkTzrhmWCqoEgNXY3vrOrIjIymUNpBe/u+vM2AqMSsicUbgxP6vDldRxvW5wAcRuyTNHsGYLTqNjIfNDky5kQ5RG1bVb68pNnpk5ejF6PbyitiQ5Kbjkc9QsOSxpRSgpp/OvOuvW5ATqOfu+s74Odi20OVF665EVqk8npS4USiy0QkRoX54osvfV+aa9NnlJiZos6xE2fyBl8qUgCR1nQl1i6qn5CM0QzPMUPp0KU5E0ILgbzsktH7WNouY3ozSebS2b5YMzb9ZP8xcINbUxYu7exbCJSt5cLYOP2nPYyGKpppBs0lOMG6p5JVs4JkFZ2LomHQf6wI1GuQqSk5UiP1SR0rdVX76X844F/dypjckNQlzWqLygppQAMX+Khjgc01JfoLlGDhDegFKxUj/Kuk3TVRGTaMEfSKG05DJI0KD/qvDRhkMyam+5uDX1IL0hc27HiYPvLiwmVnkWxtrWNjmBGYsmf2TQ+M27CSjmiNmpYXD2T/GXCqfjAYJ+dRDuWmxekhTc5EAmQxxfGogeLYIFtlQwFUWSJSJMt47lgjeW3LjHHL9hW72/R1CkKgtBC0MQytBuQxHy89zsw7lCenudrN+st//MU3X33F+lv44y30YvKjLsQyZACYKY81PDHdmB2E4IIZbfZpkVJrNk4PWOK0EOJNo5YlP2ljtgz/Li0xf2lqFFpRnJGh8fgzaNFIEdzGhM6uQSNHScSaMB7mEdpcLzXE5zqMCwqZ4i3pg5Y+OvqcMzCw64TIdPbSNIMIi28mOMAh4WjSkyfPHutk2GKEHbYb+NSm3t784oI9SQzQo2eP7z98sLy6YkhA+5evTNusKmgUK2S7Epb/cI66+vrRsxXfG13f2Fp/tvbMgC9vuOObUGSdVovlKjnCPo3XNLmIBucSNGBiBckz64yDYTu631dxY0FtKQkHneAxf/Pm6L373zxbWuGtL12+uHjukvONnz17ZiQfx8xhx2Jix8HB+Njk8Az5pt1m1P7SRWd/XdZ6W1pZMvtuWhQF6l5HR2OcB/Q0mRBn6pSG7vgrd1776P3fORSaZcroDgy1gFOtNMirWpWYK3cvMyl2wk0yr2IrysOlxCh6/iON1ZaAcuEhDc96AqNFcYfFZTgYYMiCCcvdL5i5pzzWRKuTsR0+R0YhDw4nT3IgaLQtAbi0w1DHjVj7Rmsoj7cW1pg4+Pjjjw1NS0evJOuFICmgKfiUTaibdgljEpsgK/jK8tfqV6gOufUn2r8opAxZoppsKmkGsLLLING5MzVuhJdRz6uqk2lSRpFE9G4qeZXatKXdeps6kx+p8yA+t/UAWGkc4AmBmCSe6mI/hfQWsZ/wpjH2GHeiEevEVZ45LMlIrWGTocMD8/TZZGloeWDIlMoelbY2wdZN28BQr3Uea6W5u+cgOZNwpGf9X+lOxNdXgWBWoSI7f1yEFqVJ6U0XuBIMI4j8FFN7b05/0y4oMitn7gK5JSZpZDsiJy2yWMcoXhhR/FDh7VUwMJdxxaGRtb1Na+IZIwtEpKXceKjUQC9uNpiNgfYKxLykoFOMoV7Aw35eowwljisyWghG4uERiHJHGL1IWUUmWawrioqMpNcsGjhZsl3heHBhaPRcDrvN+drWWDp2PkPnCjKlr+AaDo3vCkdiPQOMMeLLuJwCDqCQWDY6CaDAZ2X23hWjPYsFgeNraiSNlJCIL65QqpY73aB0JeONQlese0J0LLocv9ktpJI4L2iKEu0irkpQNNbETE0+dcUZY5A6ViWAkAVyvEGWpogRkYXG6aIcWOdnVNDRAOOai626qsiWyl66NLy2Nm6NIUPMy2ZFZnqBA9qLjhPkMw0lsFdoNlIj3myW/qWaiAQ3SqxilBg2Vh1MtRHUVNjUPb51taSZmzAkZtBpt9kaQgiMTgA7b3h6wK5M6QOiWNHqLNCkw8cQX9zTybHNqs5hUKG//vKrTz76yGwrW7E8eDI7O8/Vyax7CFvL31lHU5QkVobSWY85GyR8Dp8CWA28efOGwx/DzPpyQDm8vGeDw5bB4WdPnuxsbek984jYLh1RhFQZDlI5rVszGasJgTlw1MtRe9CboxMzZhCKDM8mhowyiQuCfK0vpRVy7GQpyOiSkplWkpnzhif9oIYxOAfH6xurpn2Hhhat+Exkmkr7fKc14ay2cxtM75f09Q79Nu1RJq10j+hIKvpCcWJGcpeKc3CyvLG0e7ijZYmuzPvmqDK8p/CjfKkOheOl0RWS/fCvJG43R6xyGjrVPc5CszQ7YjfSOjQ67dnC72vXb9DM1dV11efGjeu3bt22FPzeg3vOEN1dWTOSoY08Ojap4cjGA0/YqfVVsaacnWMPDzFZysBBOXFGD7iO+1UQOkJVBeyK1qBpZOTlV169fuOlh/fu7ec7yobZ9awiBEYLCH/0tmp3uNL4XOwJII84BlTUgKzLUyQ6ZdG+ONFUrvTFY8eEJE1iHKelPsZWnw+qBromiDbNyKhPW8ZqhYcskFlzYxc5DLV6vqiqYSArex3lZp2/YiCgihEEPiwtLa+t0bsiUMHRnFzbTcOhH9OPh57IRhBq4mJDXKiTpaM8xOM1AuqdJpulZkGV8c1gWOpQwVFJY/NzMIbmTHbZmnGMhfZWHQ4+YDaeRbmQigFuYhJjJSEQjWOwuhscU0SYFpDxITFOdG9UhrA7nEeCJDkcNpOfHEfsp+Rpj2eTmTqjLIuF7cjjfX2s3JlxkYeRwZORffuOMqakfWR7nPnjKHPWWucDB3IA7ovBzmih2RnsSyc/JSsV0Mar9NeKizBPmyy8T0Xqh5JCcb3QTS4wQhQIIa7dpy/iXV1zEyi9kMdUuKI4DErwsoEisHTvyUGvZlTtiAdTF9hn2dAa6XrbAT+FXCqbbk7Kcam//uvOzpYyNUQK267oXoZiBA40soMS/EKbWt94FGHHJrZ+nCaaSaCJGWvVhwaM0W0YvdofcVBRpt+PD8YyYIGO8lyxkFHHhnlsSljXIdi/abhhDoUKzlX3KrKwKO05xa+l7r1ukPGqZvvYVaWFBKElDIgKZ/LlNmgxloWeR5oXNcPrXvBYlbODBkZylQhiI1PPYyuw1KpZem08UJkMXOxjandGAJETooZGbeyxESsqkEbGsD06KVk/mAs+cKaVQVdBZziDxTG6enlGQtIpiTxKz1AEh4yV+AWA2XYDFdU2qIdvIQtmLAEYYKenYHOr2pTtf2bqjV4fK4aD8UZ2eKh2SjDUiTpdCOiLxIxYVB20/T2pjfwCbr5N5y9dD51hxmxsXIOSBYFpyKR/mBLmdOoafJzOMTJsZw40DsOlIN+ZkdJzAkfts6WnPgNukEUjDqdhwmVmq3cpjBKzFcLhayy9MYO4eIH3DYuQzC1RWfYrnOKxkkud0rhJs0ACC33HRm1TGYOttgkckz+d9TJyYW1Yh5ynS08d6qLLKyOeIM3U75Yx5JxxVqYOoQhjNkJv1Iyw8ypok43bGIGkqX9aA/ZdGRV3goEGBJ0ZynGulsHHKNWQiQPUR0eOIpEoi74vBtWuGzgVC32J2IevQyahYC/koyR6+gfWS/taxhQf/ODBPes5oX3r5kvnL1yenl84t7x0z2i5DxTs7M5OzzitJs2m/Szz3hu30t+k8aqbjDhTOHTaIR0CQI8JIswiDjUhRyhKQyD8LSI2jGNdGmn7y+BFbwdgU2YEQjWZe3UHh/uP7VUD266KdSPewhgtiVZ0XqV2peVBfEg2g72yvFJtSslGf/CDd5TB3bJKZhTI1Nu7394Nn1IP4ypURqP9briW+/eyVA0aYKJVIpFJGkzzv4WGSUovPNpNuzbMU0eKKw1tr8K3UjxCE9T+PEunEPOF0ZVKUh0CpbSXamkDm1n5A6evj6mM8UKVur2qa2q4XNBpkblPqu65j7aYzodVuvA0Zafi5VX7A7zal1wmKxGdLcgKkK4pdvhifMjoXhBCRv7VgI9E5atpSbYQtIlCQ9UaYjmE3dSvBa5qVyqEvIGfyRr2qXEsrEopwTz4lNzzkNdhUaEa+oN75UnN+o77a3zoXzNwJ3VfyQKpge4lCQPLB1cBiZWApfUttt2DI0faOh3eos6cpWOxxOysPb+OwiIpmcB+AVoPqt+SQ++5SRomFEVo0UGlkIFeL2HMR3gZJUmkxA1/98keWZwRdmx8tvRklsVg4MjYHFuxvbu8vYXvBiHHJk1fGPfRWAcnFTjkdSoYVpYDzk0LYbgkJQlXpZdtMS5XbIq0go8gPSb438enByN4updXnW+pK3Ei/3RIuamtqkekFjxlCCfEJCvyealUqBjqxGNPEOlCkPQ2djjHGXK3YbVkaMekwIi/Gco5QGmcnqyuL1kfw3k4H555B6vWrwa4bpxB3clJ7f9maEbSe60+RQaQM0gVrJoAIdS7iYgrNrYgFTrIZjoxc5s+nsvi6/gYIc7UaRTLLvycGeYwhzFf0FBl4FxZypoTQNhoWUK8n3Bie+CTJ0/SG57MkVjMfZxc6tSJQ+4tN5uZ9gXfVYcna0BDOYO/NZKJSY4JxjGYzczNXLxyCW7p10MUIdmQ4K9jJye35mQlZGJ1nadBFyLyIlnjkGeanprhTi1bx1P85rPRAiVsRjQ+hPCSRREUnVZgehc+s6b9kWnjXWOwMW4AVjDWoECmiTDCCa31Y/3dY0drea/cHPGxsxcsY6A5HcLsrEhuavoYpRDoXyWO5JMnkimBwAQSGd4Y3tlGi5XGYBG1rp5Wl3GvkSP7KjVxpE+ToSEEaoQQQlLttCh4ID0YwCODKtRbXJDPGUZWmVNnO7ifTDwlbIufr125biOyY4/StSp95cZuXL+OBseeGCl48vCR7kpt+cqXIWpoXfukFj+W7ezIqVoGPaFT/+GhhYUFzUW6hPmtAoXY/Evjj0z7eWWR0VuhQXCtXIkXWoL+jccodgW3KhcNPH9+1AYskB8/fmyhgGYHZdKomqs5+4zKGDznAI4Ol5fW6FhkeeIctnwW0goB+84049ZW123EoqKRf04bTcWmK4b3aS8yTlGp0oNucIann2ALn3pMDDwbUe3akdhzf73IAtEor/ZxAQnFEa2qVDoskuMiJhgkQVVoN98TOny+540ocAP6e0KHadJgvh8VAf3pd0d/ZEK+yh+Lwtq4pGmigtDj5jLwARCoaf2nfonX0C62pBeeJVpJSiFpehZTK6nYJUf1VhR8ilqHT/wqisq0pk2QBKeJnqOjalPLJpNEkc6Z0M0Bn4l57hY90AFEbLtTDdxbFnH56lXfSa35C9utRianZu7cfm1/a/Pxw5Pt9dXaq1cc6XEWi+FRrA75hXTgtr+UGm/VhTz2QsO+XQELi6vCNGjhafG4JS9WZ3SuMzqNLcnGHAyzBFP6S6OTuyNTe74TPDg27dF+JLs2zRIDEWKjZK04N2TTQyTo5d67aglVjcvgVQ/rF5Hv0leudn/22sCKAQ7IlBVTXz2V6GtDwU3KzQN2hkm5StnLXgyMNW+k5tsvqgcHKVPR3QB4S0krY8M7xqLLErBCFFpM+1W5fSc4h347N1Fp2a1otCD9GH21AQM7gq9uMH9O14th8FdNCiYDGJ/hK7o6TgZ+F0JmNRU0hRQWe420nIlg2DaCUp1GbMiZnJqen/MBH4uWciQVNxquhAmVSRHx8dm2EVmL5AQGR31Z8LPPPr/37QPGLhhNqIrhcPDIKK5xvUnjl+nf5+PtSsxgKQ+qEQwTO+eYTqsgL1+54tgKld3oky5qY1FaJcFP9zcda5+GJDYMUTrvG8T5IWO3bFL8bCBnr0BWlSfo+LqPbFjPdNVjTAMa+1NXUi8AdGYhU0A6IjRH+CQ4c95e8X57Q05C3suYbK0uJZDITGfOOHbGCxRiSBxjIJQuTOpCqgPQLIYzNmEYQQvhZ8oO76CXdJJXs0CUSJYsC9g5O5+yONofOcxujRw1xKmOT1o+H4IdKFZzy8hRFrzRFMAnPqKj8Wb6LT1gvsuMbuxlaW6KSwmDThlDl+4dlhGx3rYa6GCumYlpVYEInX9Eva5dvuSjznrfzjzRurIke21rY2l9We+/iMtqIGVHk0JTCMlPUdTuo2YjwzlM+tz5+/dW89b/iCV96Tz4y2PZ+aKgMoopjCt57HMPZpWBzclWkNqrREuzt+czJ855PaLGWgm0y1/GvBihgdG9XZ8BHc/chXkH/Kvz2OlGhgo0fMnSygZ90Wx03fvmm699fzD+jcRTVobx4Uy7jcwSQUMpOhQlyn9oNZSg0mgTXck6bBuSFRmbQDgELxLwMjbMs6IwM5kCs4hSUh6YqcTIl0n6fm84mStlwJwNPY6BIYEkSmo4n6YK2ypQ2ZSWIGWlrzwxGZxrdYmqqd0wMt6t/pvJc7YATtCQlIETlLw6FNELMiYmQzSUEtqFOVx0NmrjG85KHmJkY0vgW/MtGflOhQ/+ffwaat9zLdK71M+9/l6e9FJkCBofG9q9yD/6W1JhvEYcm3f16nVtclar+DlkvO3dd3906dzcf/n5f/p8cz1NkkgvAwPfDSgqRSheh+NJRJOEorYTT8MKP93EnCVZsvb8Y3JVZH5bKZmKBxC7eaCQlZDKX+jERg8MLU5Mjy8OsWdjw+MOpARyz6qcRltBbKB6kNvT6bUfr7IwOkG5exn0urx+WtExgS8GEIQg9p1QuoMheSnN2feNWoQW4KbKrYYkAuugk75gRi/lF+GablapblUZyCRpeYriNa2LsuKo+tcG0LASXiFq0Pd8LHh58vjRQfa+O/l8ZHgqI1SDQxs+vM7Wx1U4AmQ3n8HR3Wzt8YysBoZmcijoU9rIae5HselRltAju3DC+9KWiC4tXCczcMM+RWBgxfgK4JJLKmfYkhFPA8VsWvmWys/5PHr4+NNPPkVUzvKrzfUYg2iN4ma2VFKk2yWrrcO98TAchGVa1rW0oWk8mZmdu3j+YtY/F14pDYdCQBiKAWIkVpwbwGHhGrbRNIPM8YL7Qzs2MkwiAmTk1vEpLCt2Ryh6+SQjsiOn6QtwccE4E6MfVc+JE5txc7bU15wlVgDPW+nKgmCHZMbRSh0MPGQ/dAYnWz2CUVCNNPNbSsH6pQlbTEusv6DgXVIiOHExTjDIoHKZLaLRACBTUrOTzUptI7ce0g3OVIKORK7eo0f+OnJVR2UA+ZyO1ltgl9xihLEzraJARZhvXcCP+oqIFz5wrMo2iUzNTI9Pjs8sTlxbXLx6+dLM5LTRCY2btesbly5e+vjrL1jTq1ev6gYSd4Yiig1Nh3JfTGlXpRfnhy5euvTKK3cePfgmY4x4ANdqn4VixUeYDcvoWeGM6qBarElMj4xiFQbWapUuZdl/caljxXEt1K+++PzmzZuT46M7Nr+Y8knzdEhTw6rniDkuJeD9OrFI62bY+pREAqJN6+sLa59/+rHjZcRQWQmrLA4yWod7yin0ROeNcoUW4yb0tTd17b/qxUmY0HvsfsX0+UBDQYn5VXQRleGvmgfj1zLtVHOuCnoBSO8xeV4sINQVrLppKRMRJTyFIyKa3LOwLQvcYj3yAEeJY89wKsspW3MkDRWMrXddIRFaMToXWTxmMRu6jNHUyYe4KNZfqwY8by3t0buuvRKFogKDb/5DtWN7n3vBR+BhqFYkkTxdju9wuODl8mIPuAFpQM+CbuWJqRANoR9pCSEmpbLew7NTvjQ/8pvf/pNIZi7N5+JmKG5605NE4VbRwaGTDl7zZw0BEItMCZuPyBe/Wg2veFlS3yATAMIZNUuNKOa3Ny0Ns5RVcGp8zM/ATBZVlrmMkzgZd3QZnINuqEFbqqO//Ba7k6oLwCZhIQrnFF4qUvmqTBW7GC9/6kfuTwMoHnrA8tuQb4RHKYDvkpS6RFuok3sWOB9OAg5I9aL+gp8IpylpLU/PzoOg01J2sNQ3cEupQlHqbeiu2ZXEkpERLZbWfU7Erkaje/wN+YOT03Mz8wd2Teztm/Ez+jg6PTfv8Eute3vmqo2fUSj1UF3MeT2Ob0ydiVaUzypcPbeVKhxP1Y1yQ6pv0CwblDNdkieMCQOKQwM8sE9WbG6s1/n1M8al8/3O1B9CzvpMQ5scYkvMKOgo8Hara6upB+n/5s+tLKxX/LeQahs2tJNjoxGehgZMEQ852359ne80dJyRw9hywBv7AiON4zA7YDIOlqVVRsDM7pYaxTTEJBkv5+ytFLY8SpzpZqDq+JR4X7RRG9azOfWIJUKJzp2G3EfLkv3QUP+WCexq7eW7kFoIFsGW4ZNJtFWQ6NCD52aQm39gBnN6on+TIbloInbrp8eDIs2z//GzCo/aFSYNhRAbBKJ1DS1Xf8iMOuYv071pByAFoDAJ9XoRvmtr1jOjBtJrt0EqcuKFeckohrrJrxcMfT41XutNJzE8FWl6dnf7mWN8TgZ85v1HP/yhRTL766s5AKbkZxxmYW7h5ZeHZ89f+PHg0fT8rM640W4zL5ENfqXcyMlTkRa8wfWsL25O49ZLt3/9q0nH48bWVJOODhb7k7AznI0NBSB4hcIuFNjuvnEiDwGvPKn6HKvqdXK0tbnx6MH9Mm7e++bV5vLK05dvv2Q/A9XBtshp8MSBp84xNzNCFtyqP6pl1NoyOulNyHO2+KgQrSL/iNN9HiORormwCMnQglLIT2i4J3kvpsX3r/UmWFRMpBC4Sd2JqajqIgtKbIZWoOX92K21dLSQTd5BpUGRIRgUoEK0vFGLbaVIm7+kyTXKX4oVQbgLnFAVzxLFreDJCx3uepE3XonkfC1BrE3s5sq0alnAAe4nX+usbnB4XFwoDBSYVrI1P/rDhzkLkiODatxPlVO8JR7VKBWoXy/Dk6AdPkM7IazroSev59ASK9rUgA50UYlV2SpPiGskccBikrOuvcju909EhnagMx5VXFf7spr40ArGpZWV1PDSaSWlpkXNvxdYR4by4NfsSyu7sA3fwy1FcTYxLCW0gEqQRe12U1ka7wBqetSTWXurWjpnNgtccvgkAZoGqLlEQI6M2DIhDp4fzmm0waSkJWcge2xMbSV5Kn7FhqaapJ6kFepHaGkbQo2Qyt8h08UUt2Feiftx33NTuAOWP2pXo6GZs8BMlhSEFkwUunE4DjZtbmw7l8lAp4+UK7WYE16FL3l0ic4ylQjIizhBbCxdzXlcLUUUxR8MDbA76NWYqQVB5g/Hp6zpHbZUU6fG+jVeQSdSl6X1WW3u1C9s3cEMmZYHi0TS4QprtaLBjKhrW9FozmbNTCc8orTRlGJL2gPlv4MbB3awurqiK2Ax8/kLF9uqFvGSEwCScB6+nB9kHj56kI1L1g1Zp5yzzDjeWNoQk1G18IA7CjNERH4NIYfFBjkdLN9rvnj56uz8OX2MqLHo8mTFOhgmbwDmJvAIHz1u6j6urN34NeyohJTcY6x72GZ91pkjDxug4JG79puq7l5i+PqisK9w5PyeyYwE2Ftl/wlWKwh8h3zwvsY7sUT6MLcmMoI1PAXqgkMFmfvlpgvncLjhpaDYBMmgkDw5RsNKL8+UBT0SBEyUVkUsYYUBusVWveOi45xsyMz33gp42b0UDEhO0acWY+NpacE2DOsFDTBiNYWhVaF1B36ZFUp5aPn47Zdffvudt7/67HNn29pxtHWwrjE1M7dgKtr06uDEuD2F2fAe7MOs4liZi9DQsTKY173n0pMTAxuAW+aaDFGMyAsA3MrNC6EBEtleAdVJvpcu0MMfz71Sk7r+xAQfqz690jTDwq1tbbyVA1191YNyWetTRsxBxpevXn/85LFZf20NHTrsdTaZwXkHkVV7GFgCjapDNYPZUf6Sb7AXSr3LbBVCQamh0cOnw6riu0ufvoa8FEG6MTRUFHMqbWOOZG7SzEy1JdMT1gYJKawHHoaVI3m7JkaBQlGHcI/Pvd+uAAmiqaeIR1cCODpY0SUsT9VuKdz0SayXnJ4anJxKO3Nnb9BnB9RQ8qwcUp6BB8UyoGlLMi6Oi7L9pSiLo6kmTohP85710quOJUxMLFLylha5C6A+7wr99thdk6BLL2UXvKui5OxHpgfc8rRXvbR/9FcywVJSJjgL+YUMS2XQUMv/d7/73YMHD+lHUK1COm724CV9L6hvvejg0NDo37RXLbLZsMTIG331l9tWo0RH+V4MKV52KeHD9G8fHe5kJ9igHTPZfqS+VZcmaGSV/aizVlWIFxB+EWo9A0tW6RF27bCIIn9+w3i1OjcvBG8FxVHfs68Q4rFdm2T7byHZNuB5G6XPFksd3WxjyfcYhgZNkF6+fNUH1e2HufvtNxYAXr9+I9v8VdpikX5htDHYFXrZ2tSpgef0Pi0HjSNL17QR0S89bPdxG9/jW1hYWX6mWB8la5s19IWHJ61gmqoFTN7kpGJIWn5rf10RqvM5SioKx4zCQHHaDRFdukBgZ65Fp9qOACHKIGVcCCeiq1wj42C2oMKzTatra86pqWVVqf/aB7wRf+Yth1QQbE8lmex+gUYA94LH0okgQwpol0sVkxJKkoNj3le4eeuW0eNgU4PhDQFgWkZwkrtCSbOZ0Ob8AMsiJa8lKyOVzm6qQ7iulCxY42+QWW8bGNcogCziwQ7b6l5iKpD+hmWaeztGmA2PO0hgYoLM5woN73bWtuz+3UYV+Gm2F+0gMBcl/bAgDdlCQhqPKhEtrgl996Usyal8th8ODvlTQ+rIjxAb6RRiWfpej6xdLXzTyXWcrhlNM9a2ymSmgIal3pUy42I3WFoSDucbzbCxRXt97Wh5eYWOaVKQm6/xaiD7ItOVy1f/8md/deXypQ/e+11Gnn2Qbm3zaO/gmi826uekcXOwb+A5pxGGLoUVvX4T2r1ru2kx5GSF2tfffKM1mdZYmIMuN63ZVzm/cwGhiSZC+iOhX4r3layTILSqzcHf5tAVFerSpcvvvPsjYzmm6wcGud+smzPGs76yurW9p/3izBP6NeIcxYM9FVmbErfTqI0EUzHYD6W4r7Keq7OFatT2j4XgkBUMGT5sadzkvvfYKEyitIAjqRdAJXHV5rYUjCVuyRo+lfg0S9Tq/38hyBTEQrjuE5Pal4GwYasp3YeYKjPX5n2ZoBhB+srgyFA1UQ/Zr3X6pQNpBlHN8mf1WmEeWzc45cXlVOGn9MSspqIW6Nwl9F/HATZE+lHfd/OnesANptLPFq2ItNzEpnqSQocWNOwQuH/3/uGuA5U8RabxcYVWNZDCmFMEn8cGPEFc7wbspO3Ltb31mhLzvNgTrlQoSE0dT8EH5wrNNfO3uwNHGydOOs7SfnjZjeDUIvMGziIzZp/pFNUB0ODcoQFIh1YzjgWwQY6lSuhMHaz8eZ9S/yTfGyHqgMwtfThY2Lq238a9vI0adIH3zbqfzXUnH7Piizmn+Ly+nmbyhx++78wgkxZzswv6pdb57myumyVM9vwL20CrwE90j8pKvC1adRJfZHYmNEGgyue3rRtm5TfWljNmmM5rFFPQDE9jbPTwYDxnCSppMhuRnNufr9WFPViBnz2WlEg9JSa0poFc3VMx8IwXjInhlJngauSEzcqBDC44GlcPVV+Iw69GjL09cd7gsMbcs3I4UYELLJJTfFeWnwRFiymxRn+qNVSyyBDWsA+8TOrxO/JeUiVWtYsqCpU9iLabxgUPSZbeTHNRuerQeU6T1BaNoxMD2pOjYxmTNXeqaZDPtAxbcJvnCrI08MgslsUHC8Vko+hWeNOWQNbIUBBa5xcWtTzgsunjJz70s7amXmYteGgDgzK2kNVJddc0NHW5vcBA5GdRRIxWrZcgsvTmm1h9SYIP9gegMiX2F2IJtxFLXHL3+DwunujHA6/8WbprGbbS2hC0CUwkikFFZBcKB8jJcQIk51wJ2WnS9NSkHop5bgUqZ2tTh3HNcIEzBh7dfzQzMWX1ydTsrB5+kK8eWCeP8LB/q5CERmn/njTRf+nqlZn5ueWnj/VvilHGSMpUNuSCYEKpbXp4JO5N4xvdKQpakvA6/0RVyQ2BBqalJwr81F7EEzdU3Jeer165vrB4KYf+1NgZ3uKbo8CQ+S/+xb80F3NyuLu+tvyLX/4DcZeeZ3snjqkL1kNIv7y8DANFCM3LuCkkW3QPvT/y20vpNWo99Wiu9I2JUZcaJGuyTqJOOZNBQpyBW8blXBLKsDRGBicMDFLh14tiacXktSBnFVSRvQvm56/32PstWdRDmemwP8Vk+dThUGxCamOKa6+lLJVQcxqJnUfMOFuxjc8FQC0P+pSpdggEfkqGFUpVhvwmBk2pg4ISQPBX8S0u1/AoJcGpi8xDld2up0nrDvnd+o0XXvyxxxQcuWuJZpZLJz0GBmrpDhoMssnz2NfI1ME0opGg/xYahVzkhEcp7HMliCxxs8Whud71flvCLjJsSNo8YkcLDbLHKqeVEjPpX/jQssLEngpHS2yOHvvEfIbharUmbTaG5vBQrXSOqZNQAa5SclcFxgi18lwBJpYKwTZIVzEeirpWefvJn7tpKUviHcLPvX7uIZrRmNYKY7h9nc2Hyicmp5zl9+jx42fPlvgetnjx3KLPW2rpWcpR3UpeMUPTUaxwopCHZI7CJZjWogt7xKT5l0k7AwN4kFYgLJTYUVWLh80x7/vC8/YWFTCAqhdnl6uvjMSKVDh0esZxjmPUK+337ZpbjWgouv5WJ44wrf53uiBjhqwzratUfgTceFCg9bibmdeK5byszQIcZvwYq6QsctNX2NxYMyWrH1WRbF1G5/pKotyOA4UK+qghT2/20YngDVsWX3sRNfpiaMgCszCvBFCqBFyYKI2f6tU5W3h/e93S8BokjFYAhWlKd631RDk5Y3hoZ3o2I/Y1UQVhkx52PWTgvSdtydtTWC6g27MrYK1qOOVCvNqnncFXeevTAsi3Xce2K/Cy06fypq1F0Kl8XEs1gUSlpRW1bImSMm+iC3FKKStEJg/i7WRD66CvBeha5PwynHQYBhFgCBqjVzTG5l97wY2KWNnrS2NZC3AwfJhDx8IAyYNBd/xIJsxrVZ6y0mznjFmDEd92XaQktsmCqF3FR5rX0PFbXdn45ONP8fDp0jOnvTz4+pun9x/fuuKLxjcVxNLANlSEsJgUnAQ58jlz32NvfkOkUfWh4Xfe+aHVhP/5P/2v9775wpHj4VDUvi+Ls5kCLRlPJdWB6kpR3aNmZ/OCFqQKC1Zx1Gi5YWTUZUkg26jNmkn5IFremaLmsElvjcRfuHBxZtbHfI4+/MBRWRvV3iL3rlA/GojGCSzg75GZojqai/bC9Cw+z5HjoWUEs9HUgBd36EBnVL16geQ+lMpeCEV7VNz6q1rSsaFfOPn0iutn///lpqEEAcUSORYzVWW7nIusYUqfnFWQOSdv/PfOvzSiOcu0BYQQjfcEnjtMSFQNSeY5IfXAlkFqm013qkM0Q9El6Jakdw1If6lvBS7xjb0VX/cdf7ssXRk9AH5fHIKWP4h+N2FDP28QxFileW9Hon6kcpxhxPfSp0uXrjx59GB/ZyujjHFMdZBv7T0M1KKtwU45/kRVgWq9xgY6G196ZHSYVuG573hRWdo7JsONovMWm5olq5IKVqLVIT/qrE+9GIX2YcLYh+rKw17318Au7YvJ16bwInwsQaC18uJwD6X8Mm5WmqhLOnDpw5XQ5UrG3jWupHCDdMPXq0ixQIHSqXvBd6FVrayigu+JhjXnZlBU/bSF8fbLt2/fvvP0ybPfffr75dVVTDMt6oNxWQGhEKp0crS5sZHDE/KFs2GNpL5mFF4NwdR+w+/kmGfSNB/FqIUrQjo1MWsJQUtSctI8MWC4ub66trvN6+VQi5za40giCyASYKiVL4MptlhnHXB79Ur7G6RwKYwo+fcrZ7kIesGpZPdw2CyZZU0qV87sONzNmRVsN+4A6219Xi9Hf3D2eGUt8urSqsE60yL+lN5IQIOSqryoRd1GRYoul7wJe3O4hB5na4aHg/XZvozu5MG1qnjLJTOhBHK1wKqKZgVW87hgh1ynUWaQ1lHvDtPRJve9gW31eH4h07f28MjuVEcJwvvWMHJ3pgoHuUK4BszSTgSEZDPoE22LaIxMrm/kRFWrsazSEhe0Qh+UM00bhD27xD60uzxUFVRw1DOmKr5QDv2XVBNKJ+SdLRqZQB8eyIpOCyiy76WwDajWb4hZ89k3Vq8KJaOUF4YF4ZJjczEp1FRF7EYGCc2jZMMlvJxB57zPov2ZBV1Bo5oDUvA97/3mN4zJw3v3Z8ZHNTJ0lC2RxgEw7NLK/uuIIwJRWAiuix//ir3dNVhVgBdt1nR86+13Kc///f/2f1569iiskiN7yRKU7yoiYEtxFFGItXgp6n2uCWC2xDJVlvrJbRg1MT7pNO02vHDz1vVLF68unvcxwZzbBXVMkCpNRqZk1JdiDDv71Pf+6sqzf/7Nb58tPYvW65ZVkMYovUEgzRRuzxRQ9DztpFLJhlYV22hvCNR9SR+a+euH9j6RuStsvatEHR976ZMgmscyhjsox+/kkZ6GmxzRg59JSfnrF9ButPtSQorpge8wqaK61HmXwDG2JYP6cCxUJ8eU2M/vVlGiIvoCBTLr4aQW2qaNXhjI7VwfmaCcWpzZr6ROoQFnSr6u3hWGHsrFZlYy8Ls9ha2IUCVj5Ss0y2hhPgQSOpWpBBXRuwRmcgrFg1wL94qp+OeGoL0mzBQWAgO3Zc598nryooZOcuyc11VVY370hjKyduulW59+8uHe9jbuoCL6Ub3hdrhjBy1FhAVVRuKwzREe4BEksCkrxCQ05Wr4eGys72Mlpu5RBas8deS5b+wuMFUSiZrgPbb0IvvhdYDS9Stqa65uz4kBjld0voSs6kahF4snW1dslRbLla9zGPt1w0SSH2JTdOllFaxqiAk2rejGPVfWDUmQbNYKS/ktg+Khq5aoePQRN/AnRrPQJotN9DLyyZo9bnh9Y/M//of/uL2zx/WdO3deKipXOAZmeEUuTqqqWVhDndZGZfir2tuFPb6W0kS7ZSh5Vtk+7paRixzDYU9dPCUxMM37pstsBc4WHd+zqA/ajGQI0afRba9hJe3jnJr0pVWFx3ZnZCGODSQVj/tvIix5lIjKbFa5hVBXl92PRqEZnNhsw3BpUUHRTIHZ5bgrDaRo2AiOmWdkjvLd2XWHj68Zf12T2MA7saRVVAOjJXl+q+RQCgQIukIaJIHOmyCN5+yIt9orxHr1+nVTrGXhpQgONaqV5EJrRBClzZ3nFhaNZELD2ZStDaT9xqHhYbrV8TatMjkIaVNjWmMpHzIgfUD18oNc9ycu2ETx65qigiGtaOrnTXhbb4vZVMgHlPJJL3nLAWNyZMm452tSMOdTuZe8Cx0BHpOl8Z8KJtBSa6xDac0Vye11AEBGamQMmtDNWJvBWkWnEaQOVf4QVlBiwtSXCtEARbR3isg4QabA3eJwS5P1elkrnQElDAdjdnYGYB8JZn095ugbk6AjQyvLS/C6cvnK5YWFr/YOVx4+hZRGT+lnxIKkEBSBFj3t2vryTb7FkZDaCyVN0hp96fadV1593ZcMHCYRqrGlGJ46GytY9TdQU4cV0ffBaZIJjYPJEwmqYdLgcjnF3EhCRVWNSxcu01mf2/mbv/mrGzdeHhmdXt5QnbayIF0jR0PeUTM1ZZNevU7C3sEnn9rK/jkl0VYwrI9zJXEOeMYBYTmcNTpXLYdS9eCT8hMqOnpQkYnvvUudRKnHkhd9I4Fk6aVMrjJlJcJoQmUNVZkVSj+rlEcu3ICChoMu/sFedkkYj1EHgGjQGliCSW3GveihEMaWFtZNFd3KD8IkqvuTGgQMj+lSrcLisGSJBr6rEM1NgCtPjeLpRmj/t6GvlEVqANAlDdhyxmivCkRYRnOcFYVyeihZdN6nYlDXuJrCDPVklZYxxTwlTY3ZeArPydYClzCqaleSp8wgGSyF8IGx4wXdlpoq1HMTgVSN7+kBtwyFT+Pen7gGfstp2FOXn4mFpG/W5FA1tmw4R9UAqBg8xvVwv5j/QilqKqThiSCfUs7xND6r/MdDI+m7SBZYKLTQ3ufapSxcU4GKIXsDxztm0BzHgTfRxfDVmzw41SumQmShJZ465F3SiGwFIEfnktox9MXXpkmRQmNLym1STAHJL2NBCEq6XGTnWTNWPDEaU+NxqxEcExALlskyy27UxzqnsHbEmuYzDWY2cXp69uaFS9Yf43JUseCDnIxVYAC4NSzYOeAU1AI0oBRuBLHIqNDLvRI1ItNsghU0GNrjk30ednPDrK61P1riYUyOq2UD0e5MWu1OY7+rXukQWxbdAKeUwgeLdCypQIwy6jVXvEoUvW8aCoMkhZ5FPxr0VDQdYKcbqvIhyGYhS6WTG6OxyyrajJZrkWxbdrZlDa0Py3sNK60VU8Iac+q89NIAG3kiz18V2BVbz4nPc7ASdMpgcuPWTV88ZxNlx+DwMlMTAdICbWi6RP8vXLjw6WfZyytJOjEZLteixSjL7DEhDZpGK3esrcAYLCwgK+ghJRoWRqSgSLKKCevSeA0PI6dKFKPTA+Wm+YCMxNZi1MoC98pQWCrVo4IqKpcm8gISluSZoGXJyej8dRoLUEhshFNCC0Tu0yx74GEnawUdODFkupJSJUE6b5mJj3CKCz1M4F7dSmbH4sCA5aaaJOT1j9Zl2+/k7MyF8+e1FDUc7TrzoXH7v8Ey5PP2D37wo3feMiP64JtvdP6kDpXKzTLgLMXCTQFchQl5WY0J94V2ruKaMoS4dHFSy+bPnf/Jn//5Z599tLbyJACLId7Lj/iKKGYkP2DRpfx0StW9CsBeqNIhgPNxdbhhI/r8/MKtW7f0T86fX7RHL6sD09rbWFuzkiNnybEDpvN8m2F7a/v8uXOI0ux4/w9/YAzLwgRauK4+HhyYcqrNZrHAcO5oaxwNnsHKNQwpxWqP7RoKkyBVPz+hqqJ6hPfoSEXzOjoWAUeslQ7U4n3ySqtxroUZtpTpyLKAsLzHpWCsgBTVMgRme0pMLxRKYWyLkESplaeXIhi3/12MBEqKe21v9JWSnVqWZlq5nHjXSBmw+M5cUqcCvUqDd+IDMuAjV+1DKEZ2kqSboF5UTyAthuqvWCnDJsuQC/gB3CHlueCEfOsb0rsG3H8jwMnjvp+0l6X9nvaAmzQCukLyFIguowILYcULaNNJz+iUAm0FM904eIhoG0NT2dK3rIpd5FVJydWKdHUHeMOZ79HPExkj0HjST/edGwmKax3B3heSYqMKwaasQpUVJFNqnzW+He8vRxUc+ZhLcgRcVsOFKIORdeC3hSc17M/ORRRVQMEu1vga+2iaGvpr6aIlLq274NM0t1FMe0+p7XLnRyrOlj1IN02xOQNoleGiUvGAOdqCHcr2Sh8hFlJfnV884WBkH9sbffnlV3yjA/DArwJZcuWCjFhmA02N6nblJPbsYNHxlyHFFz3Blz7EF1ZsHmlwJibrLJjytYP6t2ZWDJNplOhwmxvFixx9taMrbGZrcmba11WdReejs9sMydjYvl0y6bumaVWAiysujT0QDga5VB0PQmVfIoX4e50xrEAPzmRkPw0JalQHjUlK3QMBn06s2fHNtpprzJCBIQyMMgaTLOxFEseOBo1qUlQdDJFISGSqZBQGwDiHLB87IdIbN284pQHL9V7VSCnTWGpNNakrxBqVbDX/r9244ZyQ+2vf2oUjMRzSOBmD8IBlMuBQKtai2Bv1NmBg2MDxJoSvIwfhRO5ZaJNFCGEUKD34jWnBNrFR1ryP9aGXER2jQVsoTjhemt48d8NTEcwHHSkD2lJYrBzRYGpoSEHNLLAr4mhVTFjaDdUVACFOPO2m+KyeRmeeO5Vex9lugnxYrJHsbJNxWAZSGI97fqz0jlbDBAmtkkqggJCRZVZZ2j2dI0cnJ0zwj4w+WL9vL6ymhTbu4eGsMXbNhJWNtc2dLedW+qJvJiq8hpiyUe2v6CxGhWcY2VjWCaxJrY1IeSuJjZ/pKgy/9PLt6zdvrqw+i5YRVNpMAKrU4WbjaWN+SSVUicxEdZNSIBfEKqIupXqpm3mC4czsjA2+PjhBO03ZcMBj+TaH01X3NzZ3HMBpf93yyjMfb+aatUK0O7/88mtf0ECcFj4RB6VqTUIIpy1Wy3x/mvHkgtQUdgafFCsWAdVa8jZEdfoBLQoUpMO2HuzAL+SfuyRBcTKvEzrD0k9UHjd1hBqQcVCNootI8AhDZSVEHqlI8PKU0roS86L9dRpeSo6eypZLvKBADSOT4Nngo6DSVKT40xx94KmlmpfO+ecPLSpREbFDjzHTchqdMRA020/BjAmoVkmScUU2uPMHfIL9dcVMqXuSDR5i9c9TSIz3KUHhbs93dLGF6XOXU3TTAxb6EkqzqiSETngVdxLTDy3e1WIQq+ZDT8hQ8UaNFWq9ahklF8T8BeNgW6R5SmhAE5vaOmj5gR6gekWQiXs+pLgzAbQXYwoK5klVr5K+6lIMROTTEChsGAjObetkf2Js2FIsfIr51WRh5TN0WQbHRqRUsLJNVfgZDNiOGgT1Ob6RcSKIpVYsxCNFAFthREkqEPEYf9Ci2W7TgGwKhY1CKf7oeHVltVUVatzVGYNw2YOpL5fmUbSv16Rt45wI7agKUQkepezj2W7kqgZ3ZmSrC5KEoapknF9wCpasqU6GmKtxkjHsWoGEI+fOnbt66dK584s6pOtra198+fnd+3d3t7dZUOO0mgYzM9Npge3srqwsa/fbqGrJNK8IZipJlBY6zQRYkRtdyXOFMLwwJ6mGvmd8KVbKrkpLndHUkq2qzuVktbNxOcS0oWNA9Cxgku4vO4vlfUaENx1fArVe5Ln9RU8wJqsZ9J7vvP7qa6+/ZiFMtYHgEw8NWhzwGYidA66egSOc3n7nnXV7NZefGT5IZ+Zg33HoZMxs0H1XPcumZyjltSx+tmqpdio72FgypxKyxgb6fW/AbDfFqImRJsz4ysbB50iCT7q+NSSB/EIzVZhSeYWD6Y1Xx7Rusoqt3GoNJIclsZX5yUqoNObCcwHKUeJIq1pB6QGItgkoYiGb8CH8K3HRmOh9Jt1JKZPolQDETPX4p2oMYsveXr4nQUnitIXqj0bjlHycCfIc3zI8Tldl0xFUCEflip/mF768+82Du19bpXDn9VfmF2cNGm/s744vTPv+ojG9UNKUSeGQC7p57qReL1No7yZcilCdf5bTNG/fef3jjz8cOKydo+Wr5JU2yXrKGapS4fAwcNJca4Tk6TTEI4ZHAVDX+Mi5rJmcV1GgpjpLDcb8/Pz582aR9ufmFi9fvmxjgwBhj9988+37739AAzOcCA7jwb5ksdswvbp88eLDhw8kjjhrIK3UpIxtIVKFdx5FUanULUXscEuBttIlalKaE5SCcq4hOQh6DBDvkz03oSv5kxXzMDl1p3rAkqi+CRFnWZLSI7dVhUs9tfACsVO0AhVwAljtr4oNaBro2guFFQQaDl3OwqpS9AmTJ7lazmBbCKfIzCJFTSAAoYZ+Yot8ChREk9G/NJYLSHwq+kS3ZCLLakqtC0CvY/W7tO2nEAnJIaCMRnsvYw+rSvjipXPAMBYU1sPhxXT956AL1W4xJPWIkJSuIqswPnLpqsizIWCTJqH3W9Io0duGb9TQt0b/W0I/+9nEpfeJSBEpKe5E8ISoVi4N8idq6/ho9fBgQncXRr46pYWuRZwv+WZTb6YBCCtK0+OfW8jGFA5OjExeOn/p5rWbL91++fLFK2ZrnLH+6OmTx0+fGCJmySW199X5DTmFV4ERur8EWLmqivoLxk7hWYDzirH0ljsIN5UL89g/0UIzr0nmHb1QOVsdqrkLMWlkJBtXTYAdmwO7lai41BS1o9fnCz6hKGkihnBFe+HQd4+ykJ95zRKhwanpmdfu3Pnrv/yXb7/1AyYDHSvLy3//87/7f/0v//7hw/sYN6T3my56JsSHR/itkw2f39nJhDG7g1I+2+hA2STNTQOvUc+Sc5FbGDY8PQPEQkFLpkYQCfadn3uEC9aXScylsAmmFbVacJnrnXVsoSOeq1KdlVxXLbsoWXkd9KZNq5QwJccyj1jb9vbb7/h8g1MjrGlqypO6mmmgSKUf1Dz3WMgQc2y3b78C4nu//c3jhw+31+2Q2llZXdc5Tm0+NM7hWzdYXznMPJpFI8RYKrCRoPc+OTkzj3QOVW9ofW3J5k+nW3TFKbw4dpYir8KZoAGLiD4/kWjTcTygNTU9N6JnrjuOWRlwoYz4KWfyxGMGeNmVYkjFglHykgUQA+rVh6bTwwdDB5CPPjOmA/sGOTOuosGxsrJkGyseylFC5B3AkixNEF90299ZPx4dNxpXJauPKRoeNRBzYj+7jzfTdh8+evrsiUkPs2tBSz0YGNza3om/GRldOLd4sBZPtb2/P3/+4sI4S3Xk28uRYgt1gykxgd8JhVJi3VQHPyOrKHT2hWWMa0tPKreXyZyfHtiyXWIiAcrlUejUo1LSKImxqzLlUknAzhzQlSvXL168+tXEXS3X3cOjOTsYFs5fvfnyzNQsls7NRR+ALgc3tLW18eEHHzx69KAGfTNrHnWt5YHY61NXrlRdWxPt8ZUx9WGUOzchr0K7d203LbLh2aV4PtnZyNw3nFrmgA7VBey0iIzCEGRMSvQw9qXZ22LeiwD/+DOszrzMQ2eve7HxxsGhyOspfeXp5YxROQ3uqTB8y+wynqoQBkX1varxhDQ6U05iAt2TRbiSFTHhZiUo+lJRQ7/04XYycg9uuAm4AxFpu+ahw0ii9pdSzuJ2iuWZu2qUVbJASklp1jZYeKoUmFYo1p4BKBJqxmHVlPBnyAaYbX0B7aE2OOJNKKy6RFRJnscYPXmbwKiUHmFXwBm0+jEvCL6fJKUXMvEVIdQlIRUheIWMwh4KeRXmYsvgiV2/m8eHW0cH45wc1lsUzaAPHo3ZMDEwYAVtFpSwU9gc0gqyGb2DYx9Oevetd//tv/43b735Ayf1WwCsGFM1j588+eCjD3/7m99+8vHHy8tL9mUeDGSzLLoA0zdTZ/iIhoZOmzoEdQob+BmoiedHjl1c9CCoZ2l6KVFJN3YiS6sci+CVlkqMb+lKR3LR3ThQ2pN5VMYtjT680c3CakPLGTmMYBk+zT7+J9bUv1IrP2nIWlyaofXjk/m5xZ/85Kf/47/6H9+488bi/AKcadn5cxd98MqJ///+3/8/DJ1ledfgDqCz8+lvcbo6Q+KNSNsBNWV5qy+bWqyZfURZEGSdPIaQTzQGCcElDI6aOVxxZopl0Zt0D1XtzKCfKpf2Q1yvRbCHVoE5AcmgSU5NMpxrzBz7RsfjyPTXcAHE50LprxgkCxiOOoAhEOJr1NGJFrdu3TTOb3QkTj1dt4DpYJV+9WGCF74HbEY5CPe119401ffRhx989eXXmlaGSLOaIUuxrLD2tbA5B0lub23FC5ILU3XkXFTr49xmyQnm2FSWIcr0k47XVp1nsxOxNL0l+Fi3xqtcheCWUGYlJpg6dCEcjru1170G/WI8PaaadzDC/pI2B5aoMKIpRhktGYiIM00nOuNvMWb5lEL1Xtxi9+hhTj4hkh1XR4UCzuFriMUNx3VHH3TfLJsrXh9ZLz82anoinjV4V5116699bSwb3Ld8Z2FLRpWm3L/l7hPGW3GGLm0tr969d8/Y0K1XXhmftU/Mlx5apUZ7z2A2HvSrRalCiO3HVALMpMzRpRFn2i86uGZt9RndiHRUoGJ7sKxQOeT3AJKrOng2pBlV7il1s91AvniIjaOPH69++c2Djd2jh0/Xvn3wTH4rCF997a13f/KT6dmFcCI8MPqWSu7Yqy8+//jwYJvlSBXXMQi/IRshkPLSypKGmuJ7OiBvHA7E+pH9my5N8I0uCe6+N9S72BpvyStpouQxEIBU6UEy0fowKm5YgXCt7xynKqO2pp24FR19yuvSUlcIF8xcYvVjm5CW9mfSVKcoRdWJZlHoQkA+JRcq0mb6I39RmwzXNGQ8SgDTtBkxIVUyZUgQpBsg7IkhzCesXWFrxtGEU6xLa5FWsnzfsJrjYJAwcsBJKYhEHkmmlgEQ/Fplq7Ia4yN6sMMeudjw7KQpiVR+d40Q2TuSAqkLqZlCI6nd/+lrUAkng1+UR93L4EzwNMNl13wrrpgTVJMq8ghUkf0gvXt1rN2UHgYIHiVpL7T0nrzqxXW/Xr0Q41Fc+OaiWxkFajhWQkjj7fBJNv7iMsYeW2B84pS/8aPhCWSU6zPsi4MZtyj4dTEJOvXuWz/8d//mb1+786qxIEYIU5Hmmy0zt16+cv7iGy/f+ed//uffvvfeR5+9v7S+aUPNwQ7Prl+9rYNYQ445uNGKFS1ZN3rMsmcCM6upq0/DQ4VGZVdDrap6Ywvsw0Z/UeH0XAq5M6R1fI4qnmWKXCyppoBOHTte7IgaxqTiFQAytorhVDbLvmQePJmfnf/Zz/7iX//rf2vX08SIb7ZURjtTB04unL/4P/1P/1s+75e//Edrj7NXcXNTd8sXZvBEhcTh8s0HzvbRYRGjC+7KUeXebIMzCaMRii+qM5qa5rPNxhyP6T1jzMw6AkOykM0aCUoHg1efMi9oJGMrx3Hgx9jY5JxR3xxjn4oqz/fpRSCBGQMQ51tPiUkvcHbeTO4cG8JYGDHmlZK6QlXP51nae+VXQhnU0UtXrs/Nn3v9zbdRbX14Vq5mUVm2tF69fuPrr7/+u//8n9KuYFIjwOq6K2340LJvGHH4tvFpq/kYriORjOdLjBwciKALn5it6GWocPVK8Fu3KiB2qSKC6DJI0ZaWQDXgufjbypiOZ4CkNkT0MRr+GjmuBTM/KQe46rcPW+jt3gIIjayj0YMDs9cHeyMjGlvOyYwk2yFoRxk6lpHaqV602zgvusudHI8cZY26OhGtjFvPxdEp/Hy6ttvbbW1jxqL0gqMy2VLCEg877dlxFoMDk6aL52ZtmO1ZtlDf+x8ShGJLu80VYuTd+BLWRa9iL8M+9Xdm7uU7r332xSf2uFerWw5ldqCkD/j/eigcCpN+WjROTy4sLF45PBq7cu32zNzF0A3yyaC2+9j4tJEvzkD6Mu+M5+577/320aOH2dZAIOXYaro8rSQyxWLHkohPZahh8KLgOeVsCIsHtl0R3JJ1iUt5+m/7Ny1xMsWfh5zGgwDKHYZFt3LTkQkQbcTYCJpOxwFXrpI/nkflopdZRlyqW0il/V/a5hrYxe52871X2Mc1tnfhX3x0GfgoeqIpGzYqFRIpLiEYx3e2DKVwaV2F3bjJvYYg7TDMT/Ml3h6AIt9TgVWGkDa9F7ESXrQ3ys96aE+ZT6s3edcxrsrvLoVgQTsb+/x954Cfj/xTTxFkfYiDW/FBFrYEdqoQYrVhd3czOxjUwt9QVSEA212aIHmVgEDWueMjoNG7qEt7+8K1y9V72yXCnbyI6ANQycXbYmI+0dKKCmu9Lpem1hvm1BAdH5mYMQO3vUlyRp51iC3taIPHsViFY8OHJK9du/azv/zZ66+/7t6OM+OU2cpkuXJqtxHRsSuXrvzVz/6FY+LN6/32g39aXlk+OHbYtw2Upvb2kMoH8VIqlh7hxYsXeSPi1W+IXTaOWtIm6BCTcbVI1n3DP7gjPKQ2HQixZ0MjsJIjtPuryJgeS8ZYzbir7CgNGEsLAiuq5Scuwa5dtyys9sGbb73105/+meXZ8qZtGFTANFQvy7FRtL/9d//uRz/+8ZdfffFf/uG/fPPtPeuw+BEnRGpPJOngQDtDQLdVofqpiGVS26Cco3w8ZnYrDVsYZVUNk3Jw6LM5ORmRFugQQAqurtAFEOSsIA0gnMm2P/Ya8Cb5EFyep9HUVaHkD7n5yw3U3OZeshBUqR0of+XKFU2DVs0oL3YkdcdHpSu/Za1MoEdRlewS/mXUQi92auqaVWkReZLFmssWGdPwkQ/e/+DR44ecaAWtCe1Ave18+TUL7xwfYBgMq3WLtT7ysaP4b5Yj5g3nmrU5rSBxtgopTBQY8oJmGcq6yaswp7yxt8B4gK9A4smRweReUy9ReY83qE+LMILISFAMRBxmlqIMjuWFURvKjO7Mp4xb5acfrCXEvzuKK1q9u2N5yB5oziUdO/CZsaz9YugYM80AVKkN9JLQ4eKJHAUkqwg60voqjlph0LmanZ1pS4U1vGbPL77+ox9qutqKY9AMi5mdkmdoFyLSEFhSrZjukrhECm46Rha7igdW0t2cm198urMdkTZFicF336Dl2iAH0H89VMaTjMtcuHjl1kt3pmbmSPH8pShJGhwpIm4sCz1Kt3GdUO7dvfv+++/jpPlwk+gRHDMUb5t7WxDhT+1BxyfpIRKsSr5VV74fs8K8Y1GX5fmEEiRNsa7eBP9gWjFnIYvs8a+BkCwpPcCnpBnloiG6t/ad0pN6GZ1CNWVupZBDSSOXMPdPBlh0lSbuNTUt/jjkV9aoATBpxVsmzp12ZRXMOF7qmJ884wLfk+0cpeeeu8W2UYq8DZvcNaaWb1UiEhPVgoJSYtRWcohVQ7PjVZcmifO2rnWfxA2xXpIzv8854Cr8zMs/cgtJ40LqAqOVapPRm2Hasbrs85w7yRRSvidEPsX9hmIZ1DMIVK4m+JY5rO2Fdu+KnPDFpaIkyWBNqmP1XINMrZfQwKzpRNSTmavQwKn8bUPrtLm3yRk7SKYnZnzblAnRy9OJ450CrpK704F949XX33rjzcnxSZvwMjxNAVzTemImU9usl5udn3/l1TubextPlx+vr61b1QtVhk0VkhibfL/OMVUTO7sWFV+/Pk05FJEzljdzZFWHXawK2dalUAgupUHisM/wfrOf/XSSyixwa/kpedP3ACyjAsms/PK9cf0Va7yHhq9dveoQ6a+++sqCpjSnmb7Ygswc3rxx85133rHBRg/NmQA1gBmWB3Cg525ufmHe8dDnFj//4gtnStgfpT9KB5TipB7V0g2/2xywK+piSBzmvJ/dQ6y5hUgZDxjxtRzvc96emkIf4sXH8j1jPj36HQ5nPKeqerFBFTrMvkPzHWX3B9YN2h7sLxweTs/M26EdFKMlYWFdS+FQB1TG+bNrMPoSB2lgY/yVV165fuOGTHq/8SFwLesmr7KrgZyuY0AJyE/ziAIQe7xjdMBbBEZMrdZKJBhj4KxOnFOwsLhgwa1zFaqtI23cG++Tw6VsYdJHyEbPeH5+SIs2ZqvWgKTnkKaLQtJeCWVNCGUXPAaT0lRvUmYXmv107YI08C5mgkPUSERLrR4Alh7mmwbxCFVAaZbq1a8DboDQyM7cUmyuFhKODAxqvczYOaT3VpYwriJfSzw4Wlp+5oQQCyxAJVPstrrKFyyDcpx0lv1H57BdCgc0ZiTM17i0ZvJGsgOmxbE5Od/b5xNGJy5SyQvga6K1Rn9YlsrXsaSJ3fVsaPwgphJd3oCeWleJwvCDA0e8aRA/ffTgbMYz982vtxyiQ36DFmRSa9rVrXu2h5hKaYeGHWvl29MH8K1Tz7qWVArPNLTUqaTVwtzb3fjd73/37OlT0iYgqsCDqSYmyOiW887VVjqfapJB4PBN3mRvhZ1Bt38LMfc9WvvRTWdOH9tdkp4JjW9FWjMtLaKRVvfAZJAQ7UmgDpt2gZ4xRRULYwtHlSlAO27npypJ4p4LhWlQaMX0bvLsP1ilr41ozI1FzQRVZ/YkV0wStToe0MqpFmVsiomP5PcXB+wP55ui462kcgW0/ylNUKVV3loqkNpRdScgnwuFTWztmfjGxUD5zp+8krb4MzlqzLVla1i/KK/kKPb0Cy/O+j63k/H32AekhUEOYFpfv3f/rj5PLShK5c1fEFRXC3h+wpZ03GMKi9SobBCgjM1I4FQrS7xQxUl+inRSe2STTPiyZfnn299Z42Glx+TAcL6Dk0WEY1uHxxvONMdJWcJl/1I00+s4DpulrDRenJgb9VEt4B0LHVwHzNCaBQ2/iumyTU9O37l1+8LCedNTnCqRZpoNvsSYSkRk+piOAj/kmGz787HSjz76UGGpYyDC3h1XNj5hXM0fBwxDVoyGrmZeJ1oh9KSM7pDoL0gopLGocKr7U27kfYdr8vewbqC6ZHKz4qZOjRM5b2RicuKNN97wIVUryDZt821rjmKrBy1gvnLl2rlzhsuQw0qAl3EkVAZy0GgqlztD6q+9/sbCufP6u19//c3K8ioXWyPNI9wwH4wiMayzgMb0nVILgpUqpK2Wxa5GqMxEjI1dunhxfX3DIIo6wxYrLAipKnJUluJQGGnuGUAdo7QrB3zfbUczQpdrYeHAODD22gSNF6ljctJNP3GRqaKAhBp6wFVMTrz66qt3Xn3NthDoHdGAqEnOToxnTbqMH1TmyKHlbW+wwfStt0DFgchY2AItYfCu5hn1IFvTDj/+yU+ePH167963cclR8bjg4TRLuChMqlMBgisco3vBEccz5lyuPt4TT4KDa4WUUeY+koFGe4z5iHCCdqFReMRSYypb4oc5Qp+iGFBGqyZhxYJcyKfc9FcD3F/BlR3BpQRIzmB20gen0cGRcQddHxgUsupMydrlc/Pjw6OTT548cGpEAfFpiqGdbQZjm4PRyoMb6aYE63fyQcMhObPlw+lOpWfBwaksZg9zSICV9rOFdjWkYeF1DQPmGS8rpniSS5HffwpNxdDEIBG3sRYIf16hcHx+3hK8zz7+8LhbCIpi9PaTnILq3bVXkYWy2rX3yi/uBQlje5cuXzaMjgilion2Z9hT+WRs0hEcfE6fzDLvzz77TAQlSlsuSks2qTBENeW87LGx9dVVUWoydvl1LZm3kpXxYjiLW+NJXRXYGdWWIXU8coCMEDgeAzwcSCmY1mJEwycJqp2Z1NHGJIseVztbjABvE0cGcdIjTRpBsvZXT/9tl4DGYfUlgyXZNwQc7NOMKh/aEC5gfFESN8B1iwrD+cMnYxkez/xSvtMbdfHnv1AmInxsudqVSqSSFE/cmTQEp9RYnYFNCZAQq7q0nD0az4L5nvto63eiTTiUi4ATsqDUBBQZFaIhKsJoFYMkBG+cP7u2vqp9ngntdMsGnz19vOrkGpxpFaJ4hbSWBeoxLj1M4RH4eQ5KLpIRdsxgL4jp3eZtdx+6Uxx362hze9qtfJ0aGJ4dHlvwNzoxOzLqU3kq+er+weebqzs+f1INgCosKMjuUOi9gYOd8eMta5RUBTtvfRicTx0ZcKCABdGMUjOAjKtJx3/5l//i3R+8Y5+i7ptE01PTbeS8OIZhmd+HISeXBtdYjs9NMf4QV7qAUbNz886RvHrjRs6LMIuJjcrIBxPwK6awzAJehNPpZFdWyQI69lJVpE6tv2LQoZkJDA4vJca94hHjaAjIMp90R6AQuH5BM7o3NQXOwuKiDa8OclLDdblcW3a4Oyrv0uVr5qZ9mGVk4tDnjljEFB0klJHSijOxeVOzM3/9r/4HgLW6vvr861/96lcfffSROWFwIKMp70Y7gyc2a67+cEVMSok4aCEBna72wly7fPmv/+ZvDMG997vfqymVMQeNldBTsOJxUyW3TMyyHz5XlSxblPYeKNY5Hew90oG07dI0M6GE+IhACf6ElJaI0m0j7a+/+ebtV25rRjB4uDxi7IMQW0cvBRbrSwx531BJRSSf9hgHVdwP/3uRKUcdTctZVDx0+H/z1kv/9m//9j/8r//vu99+m1osjVHZdOHMU1hObJBALXOyeq1YIUomIAxSa+BOR7K3OJDy010Lo6YqQLbYtsBF5xCbDwctVEeQ9QqxJ0kTZPjh+NCMGZfmyJmPBDQtYpQUy1lUJyBmBq7BLIa4NJTSg0PLMrCclc+h0tmKPvZZ0E9ySOvExUvXrIt7/OihGX0jI4MDXLTxlCNnz5tmgInl1WwbuNxuAjgZJE+vLrQbzSmemz4eGZ6YmpiJ66ymToiPpp/EjWtVh9/umkRSC3A+z12EVlUpbCNP6jS/sV2SCtHnI6sLrSDbzeJzne8kkqzBLIYXbyPtlF3amCLKs7sGA6FKrBvc1jwd026YYxLS4CKPSlepI/0Kkh2RhmbKe+/9ZnV1yWclT46dsS9trEJ0nTkaH5+empLekFIhkEsV6WXDJ2M5EriKKkJzk3dRvwBpb9GUJE0TgKg0rl0I1GAeFlaNa/GlOcnmMSlSjgQFKL2RjMIaQdO84uc07tWx5n0ruwLlyaBv8ueeiBuYQEoNKZwAreApwHsp3LP0Q2Whs31XKLAxvS1DewYI3sjzmMqe54wI0vWcEqedNzhIuj7TtjvscKyocFJlcWy1LLlBqZSUwXN5wc6ABTufdQz51DROpk6n4ORVS1ShDs2UWxQqHdD8lRIGN2Vp6QaflIA50CvuxRV5T42LM5FTqnoQCQoB5a/oDa97f9FC2TTatXBYufQa5Ds+evb4sS+0J6uMRV9xKigU0vAO6gW2exNKCol6bmjkNpzNT7tNTFGfrBDCBjON9vzPD4wsjI2dn5xaGJ+cGxydPRrS57Ltww4g+2NMo5hZw4oUGTPmX9S68D126PDqwJbjyBbs+s0qEYOAtswwFYMOamcY5ZNS8quXr/7khz9yZLwjA0xtnb8wPzM5TRKqldfVGEwDMIgxSLbjqMk2SNdixVgKVGSj0diVK1dfeuklXUxDS2X6CABC+ZMiZfVCTEQxIJHJnr+ILdFhirISqjXak1TT5hr0jGYYvbNbSerIK5REKkYMsiTKniIbUe/fd+LBeuv+Bq5DA2Zmb9685Sp9atTuvunqsYmRaEYMeZgZZPIb1BA3PuVLBLZSTL/77qyu/yeffPKLX/zi888/txaJZbEOmhJjiytPLBMhwAMk5VIh3rjGXA9Nrvv4q6XCf/jD+xaOC9oyVSdCbNAreaTYUK7at5NAZo7yiULda13tnEm7trJkEvX8eYd0Mvq0BpPMYZcDZgTCA9nxYfjq9WvEobkECVIMe8G1GcvxMr4yEGvbuB8ZtwCJ3k0XE+PRi+wlCseLRWWGwy/4p3F04+bNv/iLv3CMPoQlwJbyX95U1ctIAKViGmI1eLE024NvfF2VktJTXonCfREjJtH1P+/cCCHSJV3VVPlWgbzzHnqht8W5iszhY2kLhAWYFSll4KYFPNFEJ2UQOWcQchBZrZILxzAzcwc+ET3leNJMa2ckIZ+wvDiuJTy5trqUyfvhsQ3zLCdZZg4xz3rjod8K+YwEpeUKGGubqoFfrFA66LYRnxCvSWUItm0NPecZApMwZu00FKtbTFU9bxiMCsUTTAu3c6nySoInljVMzcz60EjFKR8DiqU9fganlBUeVYllS4vteXNafd2nMMjZxafvnkLDd3FhfRpdgRWRwj7jzYMDn37y7VdffxmxEJgFuDXsTBIYa9TKviUTwEyKUR+VF6vA1PpMVSq0CqWqHvWYgio0eqvkXkz3LhkLx/wE/bzvoCUqkYlvt+BXqkIbY1ru8C/vY/OGzRll9sTcUMvZyklTrj7hHtip9/4CtytTAWGG0KHX4rEF0DKBaQZKhWeJK/7E8VWgsqE5cgyAwqWkCl5XVlqvEX6JxwoxC291vbSwsgircIlE6UcpMWXM8dCVuGgPX6ODrEhUqZIG2yoxBbYy60UxMMWGuMKncMCjGPj0BVRzlDXckzH3BYyZk6PP1Yr7b7gUQs0ep05yxs+ePSvLohjxHXKtwMI1rCrqglXojuMOO3uldTfhWA1ba5YDpRUzcjSgnzphaDDn5w5OD43NjIxZ9nreqtGRsUlnnZhDOjjJNv4al6DlO0Mn+m5oi/1RcTOuk5ULhVuaIoYkdgf2j4bH+V9N8NLfVG0j11Zj6TLwyiqEKnTnlVcuXrzglROgfAQoW2t8zSaS99eY1wx8aOV1mDY8V3lUWG5H+cgw3zk9O2O3DJ1DMmySOu4hP1W3i2eKKaHlJ/yKNM+GVLxBTWSGWnqllzWoO4AAi84llESBKJGDoNzgah3plGOHsrvj448/toaZF8xbJufo2Fpiy5HUdjHK0aXRjLD8NVmzfAhBTcPABbipW4QYTgwNOLLjz/78z4zmffzJx7/8xS/YFMukVUsmgzkW3CQAk5aA0XxTR9bORhks+HIigTaBnUhOO9IrbZ1VlIDAXpsD02flBgzZagYtLMy99tqr87OzS8+efv7ZZ/fvPfA5HbSY0jvY3d1YXZmZMxRiqQ5VKl6GIXUD66FBc368L1z2LKhL/7IoKjeFF6HO/x7vY4qL1YmrEE56nQZ3fvsp66FYJLKyVKHJw1xg2Y0bTtp65cMPP6CKJcFwNq/Lt4WRcYwnFnQf6ZWm5RDYiks5Ce7SnsHAJuO8iGNIYWKSMqGBzU1DMfRFtQIhiWI3STRN7eh++rRN4XrIexIb7cwr6eIR/U8/QDlt2Kv5Y304DQbMHvcVpN3NTcdn2M5lqTs1u3DxkrZUHPrx4Nj49vCu056lL9bRg8zkZO16Gmj5dLTKzeYaPrGHSnMNnjqOlnbu7MzYoFUNKbAyLN9kU6T0GBjixOcx1IQNjW3PO+BKnnaDRCENSUNZC23y4unjRz1mlz40EA1IK7CKeOGSws6UVqXmUqM42ebblEtMkIusUrB/EeTwkC3UH3zwvoUR2v1OwKt5mjSbuAMHJGgrL8wvGMc2AazVY35MXSAA238K/UAnFQwGLQ9BvEnYzX9HiDoFYlOAU3oqusGJx5CspeyDDl0pN/XUckI3pX6hTshwi2NaWdMArkkUv/n7bggC/QBsAciecHXf/810QytjvGq4GUYGWITZ/iqyF586lcGEwrgBz210OrUsNPrxonBuBcK0ykhtssHBgh9fbc7J29VKTqb6C4t7WgiA2wbpebqKlykSrCAVHKTw2NI1anLWUp/sF26ee9GSFzlhcTANVAGfrbbQE2mGLDRKVuU1gEkaehNazGmhVXr0skGsdJA0azTp21sng4ujU4ss8smQb6bMquU+hjNkZ+sAz+Z+TCfcGmYrWZyOV5UzxKUQDebD3SNLWvSIwe6KT+nRMu2g4z19pRF94BqesPajqxoG+3xpfmT96IgzvvPS7R++/TavYJqT03YUMzT5Pw4YCdAGrhFb1ir88JLn9RWUYyu9nJEbQ+N30lZQQICSRl4hN/xzJvqYRSi6LyKKS0CHpLpvifFI/TTy1x5lTyBO5bW2NO8sJl0YP51lT5oqMSyolJY/8VNPnj3NirlKmjcjxwaKzy2e68/d0ryJY9jCMxOxNYBhbYgqFW1EbyoYRazxFb02VnZ8cvzqzauXrl166+03P/1Yf/iTDz/80EyzPVd6fvURw+xDgi1wytQ8BEN36+HDhz7ZpkcOoMBq6x5o77e1J0w5l6krkD3NR/zTyO2XXrpx45p+/OH+/k9//Ocfvv/R795778HDB5kZzmEdxnW3JmdO9PdJNULKohae1he2Bxfm5l9/1V6ymQx+V/MhQgi/wrzIJj9dSJRnDdgIor1JXB4xuelVL3H77Umv9Kz3KvQS5vDIrZdvO2ifDbBSiRmtSSrizwhroPKFmdKAphWawxnUHTCtjtP5wieOldHOjEcPsN84d6EQT4ZKBuEgB3CjJwjXXyUuhaEp6XUHMOESY4YCAiiXgtcaiAA3sEBmIhOoQKsUGKihjLkQs7qBohvX2Nk7GJs4dBA4CfJsdgFYZmD18ubWtl33pexBrBdMpicQun3DGq0g8cHcTa2/963JiCmlBbVkC03ln+FTtq/y14VrTVVqAgqbPJ+WlPi8CpTcABQD4ejx8QuXLn3+2UdlLWSPF+nXoEZuIxmEpvYpv/GgQFXhxNNPazFancumqCRMvCKLwVV4cEhbooag1IJ8WYQyll1pMstKRpZDVq9Y1yoihLvJNWbDX5AAvEfmc8RWlv/6pZc3YIs3hW5BhlhzV41hMQMV6mXuWl5XzV9BTEyEplWaZdU77jvOyujSzxtJ5q8rrjEPLY3DfhgKa+LHrADvdvlX3hhNCmETfTK2xmOJtUQKlXjY/ATnVKxYa+/E5oUuQ3gW1P3Fc9KzklDDJM0FjV+Txga+M8ALL7OYTR9cM0YjpIBWRHvuXVt0j09Rs+cCjNEfPnevMpPyp0NleR5OdCnRFM5mW8w2veM8cWWLLAxKORrcqiXxMHS65uQbI7zEGu0mmgqSY4w8Ot9XvIrhTP2LYxOXhydvWCMxZFo1J/roXWamiQ32YxjToKMBw7Gh+aNjQ8eCvCgzWbo7dLJ2sL91fKD7T5wpN43E1Djs5D4sfNg82l8/DmBrNMdKs+THbwVNEHwWUw9dvXBxYXbOCVAGwS6duzgybmmS2rCLegpGkniJFdhd5cc82cSp46jLa40NDWQRUA4Ub8cJLS6eY18bqo09wbnVuHbtCab/1k3yVwsX/IzMuk+JGSYMUwM/tKegdFloSXK0yGahouYV3JhMera0ZEQL0ZK2gAq1vTxfQPH0NsOY3D0+GUOBsQ3dSwJwamC+OnzsUOgNyHCQuqzyVfHpDYOj2jiohC9/++23f/KTn1hdIty9e3dtdcURFVs2/KpUDqbPBmhjlROmCf/w+99fPHdeFZHXZJJZ6vPnL7788st6xpZYf/nll4yRvuPc7AL7TmEWF+YVnfVsMwvnFi5fvWT8+/Yvf/nLDz78IKuj1RxD6Fu7eGCEsypDGIBJU9NTr7/5+oVLF2iwUYiO9nigkn1dutj2Tq7eTfutWtdF5f751BLju5L60cUZbQ2/6aY4rkR3a2NtNVXcWRA1U0unMpCfssxWjJoJcYwS84ubacWbJ+aeI876c1M+JumjC6nCVelycZvX6VdWfYNJKUQokx9yUZdYo0BTF+LbmP56W3U3Q0YN6bw/hUxVQlQiE4p21iwIqu3QtgQeoO0dMwIGJB1zcUidHMHhkTHzGZGxtVFKVWA6YuEIFJ4FM/Y2qzf4LQNFY3rCzAl9QJCb6HzKlzzGNTaihw6kTkNxyGOBTTQyT9/mMUQIIaEe0n8fG1cxMwx+UPanYdelkhKSQaPyBWDyFi/gILaVWSX2yzoxiqNCSVZC6dezwEgXRT5yGbbsceatt37w+NGDzbVVckiDsAK+2huNdVMTUzv7uxsbW2QKmkpJW4SWrF2r6FbQ2ei6D3s7kr/zrouAYYOQq/8ViuFRvwDoh1NIiT2b0T2cZTXjkIENs3GZaYjgRAZA6kox43mJeNFKjEx7ZYmJmnqstn741cOjQMSNNp5GESSrjMTSIzaIUj9Y5BuWZnNS3fC3ZoSDTReiTCXLylgqUYrBAKqeMGBCcD44pmbTydBQOUIwKGWH0ylJ4c+HRFTqjiz3aRrUco9eyv4ccCOiKVbvZelWA9IjDMAY+AwtaNqM6Iimj2fXjY/CgQ6PXkqlp9ywqqlpKWoh2cqKA7abU6eQKdbLATkrq7NFcmB2ZOzGxOzNwcmFfOfdtsCTlcHjrcHDzaHj1cHdg8GcQT89MPjy0PTc8ISP+CjIsg31mMe1G9E3BDYcM4klWSYSDUhlqwCpVpX5n+Wjff6MxfEmq7pUiEEfvuV9nU05bOjh0y8/Z/+uXr7x6quvsd3MgRaD3Yks/8SULjqYMWT5F+EMGbJ49syenG1VWt9cbGkltLIPyed7SJVW1kCe3KVyOFJSzXPxrquC4VTgNjbS46Cf9no8ZSUsFQ3pKT3pjEBTnNaXgk/Lkv5rrCw5SOXe5x+M4rKVvFr23uTz6Wmupvb7l04xTT0Y2HfUpLUzTvEdzEnFFlDbarc3OuQAPW3c0ZFnT589fPRobn7u8qXLRphhU3SEE0pT/fRZf/jDH3Kc777zjoHiP/zhD9ywcyrOn1s8f+ECC+WLBR71vqwe8Blj423Xrlx2gpSNyD6K4IginXJA+GDQbBcxuRudt4THjDLq1G2z2qNjFy9POsLi/PlLluDazrG6suJcjv18SnF3fDBfbEytQe/E+M1bt65cu8Zd4AMe4m+TBf6EkVGGsKp7dFf33aUem3RKKkla7K8XvdvEklSA9V72EhZ3xeruMFVZOMo+cL0+blFuMUvsnKXtDM+AGMzW4LSBrC8uj1OAg6DEza6p/O4UJLK0Q/XWq5UwITj4USCR8G8uqbikk/GeqEtGM3IeVipOxgjoR7M4QApJCVhshsoFocDq1LNKEEFdVPt0hAllesi4QjalaFTZ0nvIAA5os1rnfDIzk89rboUYziO9G+DzF6BoIKO0aMnE3BGjkp5mWV0zi9SxxqmkxAihqKqf1IEKxfCyky0myUDDhS5Bh3C4U3CDu5BkzDRHSKcdLtLYltiEaLJQ8qy0lb3SJL6XACSJ22OgSl8CzW0lc0lxeOVVQh51/TOM5ATyx48f/NMv/sE4YgBlng0Eosc/fZLM/grKkk3t9qpIDG2BW8Wl+Ba6uO6p/XhbZXr6vtd9CB2UsEgoikQFqVPwwT1BTPSi3rXXbA8esE7NAcfwRlGRw7hmgCeKG+sbcJWl/UaBA/GFoIYcHhk62370ZDAH0MKyJYtOxor2pVOgG8Dykk1v096FjSsbrcdl1BO6ioq240NqWGiIfrOZ2RYM3yoiGk9Up1UpJeSvC7kLiIRGQ3ALj1uca99OdONV3mBBxSZR8SGJa7Vh4EElZQRGByViafBTTml+0kFRhzVn7M0gz8okM2/LSzaybxfdwAAkZ6BVvth0wsxfiiio7VUadLaUOFHHruLs4ATaEqrR4xPnrM+cDE2fDNlGJxsv8fRk9+7g3vrYyeaggxsODHzNHNuHOHWO67SQMUyt+ssBW+dm6ujkaNeMUzMwgRxLG/aG+VEMh4hw0lPOwBocNmSpcjAA7NO4bpke8MHA+snxoye+9npy/ebL1284M3aOUPghBsFaKszMLF3YH0GnehyfrK6tfPPNN1ojYTS0cilhh7E5vEkWRpZ8Iz3YhNcxrsXzyMP/Vr2q6tfQJ6Y0tfA6t9UY142vFMktZGYzeNiVa6CPwbJ6j4o6MkS7ryptgEugQavZwzwaEjx3/oL3OrVz+aAC/Rsx5TE2EQOZKfDDEwc7O14wVpRbZw8cVXl44NR8vtAQLktqu+eTx4+2NtZtpRWlCwOLoKksSClvaIgHnZ2ZuXL5smP//unX/3Tv3t1bN6/bIvn6m288evjw/T/8funJY2vn5Dw3P/fjH//4wvVrfKShy9ooPHLl2tW/+Vf/ihW283hsYiwKEp7BT/UYhqemoJMoHaz/yquv6TGh/Z9+9WtrbgnEFlUxljHiFT939ca1l27fpgrN0jUVjZBwuCFdCupeXPjVu5b0KiLKHWl1tSVJuqyRdAk0cS22cjTYMG4AKfz29q71KtIGkX1n0ZgucUp0lIgH1ioa0PfNKgELvrX2qAOJxyQUCEwl8SbtlJjbGlMpPwi3NMIqMcpa1Yu+549McpxZ6gAQbY0aL2esh+zhrARv+MYiJCnkTPKEoE+acYXeNKWLIOq/rIQxdGJ0ZHBo1gloKqxJqX1zw7pB6UDYyzvuyE9HTgKEVSpIOXW/cb9VaExVC6oh08RFc0OEhRtWiBfh0XcQgkJVgHA96MW0uYFv64k0FMXnwMEeDR5jgVqO4IG32CLmxMe9RoZsGfIaQ0UVKrkknUGCsMZv3imqRQZW/jounb2Pr6lOOyplwEabrd27rdofzkVikmnK//TP/+zB/W+++Ph9zaNBB+OmXN2vfLUJJtozqnAR2vKm9KjHKRpB+IXQGKOcFl+P0aC+RMWDIrSUHhGQ/9FxGLSMqcRdbEVIn1RJ6hYDT4M5YPxUH0NV6aWWzejopPGMLE6ht1Gt0CZ4CBhJ0yYMmWdDXgwO+q78wwd3d5eWzlHWcITaWEEA6IRaraUS1iKwysrCHvpZ7XKgvNAgqGUm+fxRbQuxxrhIdilFSP0IR/Us0gxlMNMi9VY1qq5MB7/DrHRHaXFwIaByRgwtqoEshgerSiQJ99QK7RpfxUw5kJys/01D0EEgHE9IzgwGR30yMgZ5n9Zaz4Dki1xs6euajPUX+dE7P26gWTMceVuGWxoVYnZw7OLI1PnByekT0nNcc0rb3N9fHT9aixiGLOQYGTzR8d08OdqxVErV174It07s+t063v96e/OeU3TU37hlBcUw1bWUKOzxP2uGt/WTTDREhJnNShfAEb4DQ9MjY6tl/F5//dUf//iH+l74tboaMp2wr1Ga75nVCEuUKVpqNNG3GZ5ywCxPp8tl0SKAUmqfHDdWPz07pyoW+ekYwwTMqHJYwq12GAa/XsgLTKPEJeS8UGiFlN4L3vKSWwz8zp4uoBGY3f3dVntDb5gdfXeKCglOz+QER/Nt5y+c215ff/Zs2dKarZ3d6bmYi+oMa30POGjSYuYgU5YIGg5YsC1xYnh8dm769u1bPt7y4UfvLy0/tayJW9UywwqVKrUClvnPQ46bxP2rv/orm49//nd/Z2TowsULb7755muvvmou98vPP11+tmQ9rG+3vXvlyuyF8+ZuLTzhziFtZPP6zRtQQmdxhKzDjIjKGbT6LKkSRi+OzDG/dPPGX/zZn3375ZcPHt3PqkZfH7INxszkyBgJ3rnz6sz0jKM/AqgYV2zpsa9+Gz9bWUn1nRRKS95wPSrVDxITUxN1xmK+E5Ip2VR2g2I6N3rwZs4MymawjrB0Cr2Fswm1VHJMjP2K9psJkKnUII+FfWyc0LE5XjiGzFtVCoPC/9hBINVzfYCM7nhsFa1hV2KSov7oId/t9oziFcKp75XmOySdiYCbJ+k1IKDhVGcNPwNa1h5OT8/xxzYnzczMHx8/QDu3XPaj1YIm25QbBhXaIMS/Vq8dLQYDfbrAHHU4AE98Dp6oK8zqoeESKeRVH2a5U7hJWinkzJhVre6koO1FDkw3IzI2Zm6pjGUwSaaIseWTxZ/n5pCqCM9nPIcsCZXelTigbVIlg3V8QVSJWsgeRvW4VbtIBgettLJCfn97zahSnZ3MBZAkBu6vrq6ZMyorJooo4QO9JpEOt6Lsv+PShNXP4DGIf1+oeJco2/enOJOLqZE0Y5lpuWUlRxuHbkm8Kgi5pMRiwZnc3W0JJ4xVKdZ3d58+ezrmy8kO2KkcMkUuKsaYfnaBKsHEFKcTVuxJQdF8w/VO8RfSBfGjVCH1oQwpg9oTbtWo0pHWfq0OcanacwjKTT84i4zedIUpNGCKNIl7v1WJgmpGE9PGQPRzsHoP3+OAwylAAet+e2kb4zJUlSl3R9sAyXisra8/evS40RYO0N3kyKXh1igP59pfwSlWRMdjagw7FeqyzwyN3p4898b0wqWT0al8zfHE9KOe166O53jtD0oVcxT7sdmkveGhbSt7qzeoxbg9cPzkaO/Bztr9rc21EdsgwcNrTKtmZ8O/kAh6hYGvMmzoHen3apqKjJ/THzmZHhmeOcyCnXfuvHZ+bkHPd219084c2y3szM6Cv3WfDMvn3ymD/8cnu6sra5999umjR49IW7e8aMWE8KDRrTe6ub117vwlpjKlFa+qr1MMa/w6lVPyikvIGEBWanhJNWOBQ4XXvQRdqvTgVRXo7e3FA4tm2/2JpNDU1PoIxxdZC+1M5QlvxiZ8DW1lfcNkKdNtJPjcxfOG5EDXgTV5Z/XHhM9JlDsnWB1h3UpfBR4cnDNo4XCit9564733dr/88guzwq+99tpFp/+wZupHuU8404eqvnU0wSUHGl10Xqkha5Z65vy5+ZmZq1cufvvt3Xv37+0eHyzO2QaVYUyZwsGSU1QqtAZOLJDqWVaWEde2TWNh/3hsaDw7WkaHb750885rrz54cj+iP4Huod3P+l6vvfG6FaVxb8X2gEyonx4Xe5H1otjrdZAobid1Kra/VAEFi5e1EtRdl6UPOfqXRlXsW2dTmCfiYBJCXKBEsgLjpQ2mo39wRK8tY6gqUYtppZSIOeCJ+ukzsqc7m0ZZZsnSi2iFpLAwrOEZ1PUD/HEVMWEx4vW2oznjr7JqrXhrTLRR1tEUysOgLm3DN+TKAUz3GuAiBRXqDk3hyWZns3oZrzmd6elZ5gKavjvk3fbOOk2EVuvlx6ZVAX5ZghgEpOcv3sorOMdnZ4dkMyCVWqYYSMN6XXYJg4/owqvdy159+/aUF0EV7FR1t8lbYHO6pmqx7m3shXIrRHAw6lSx0qcCtpd51wt1f+axpLG7v2dtmxNc7YrAWSEktS535RUTEg71dAdfvfPa1PjoH373+7vf3tvN+bg5sR6JW5tZ3p8WZ0JAVFnBM20ULEq7KkUHWsX2kPrv+23INH1PUVGkRpFrbhP5HfgtjaugyeU6OcUeRwoYVZ0Uzcrkbdz70zg1zZWGsXJ1xo4pKv3Sw3KobohbTdC1jfhSG4uh+k6CU30MdOF8ykiBaa01LU1MAiRIPn/0Mn1yDBQy3GSwEZXt6Lu0gtU435oJk8+GsKK4ER1I1UtLQlTKRDswrd7lPqW10L/pRdSvNH6/xwE/l6rgimmpc5N/ySkgw5kIj588XlvVXcyYCXS6dy1F/xp2BKXSl7QIUv+yKVBQ53JwgADy/Pj0pek5e43yLQWmI2NPA1ZPGk+2uVdLMiiElfm0shmbrWhk5tctqlo92Lm7u/70YHuPlxr2DaJiQ9iU9CmqcE7u1igwBu5QkZz8cOIArGphEww1sutpYHZo1OkZL126ZgBl3bzpps8qTAzrDZbvhNtR2li22RhyGTa8/Ps/vP/b376nOYJIpYVil4YttLWFtFq2d0o1NaEiwtKzU4a5+15ZtcjoluCHyU3CLm3iSirYaCrr2o3rvqIqiTmCGy/dUh8cTMGFcniKAyL2s0CBwD9tfbNDAleuXNKqRAv9bl/ACdAITWCyqbhyTFXGB6sXrfPPnVy+fOndd9/WRnrw4L7xeZPlDsS2HsewcJomzetzF9oorMlWPnqjY+RV6LAga3z00rWrROmjr0urK1eu39SsiZts7PNTygaJkh6a3ZRyt/gM7NUJDdl+eqTfbdr4lg2+vxy29pZOUjGT96++/potQMau7Po1S9WBSnMr9aepbHh7JkhDs1xbXJfGAEUhksgoXvxIh1rSdol7N6o3Fkb2UnIqnBOGWL+9spzv35XY4lazwA2LrQEy5mx0Wt84SKah33nY0bHYjCAcH5zWfLTLo32jTgRTGYIRK1Q9YmWRc2lhEDwyEuSaFExWjFRkmSc0porkRlm8UDoLsW6nwX1RVqQoM4R0oWlRe4CVrDnkJovs0GnDnvE/2ILvkKsxkKem81HbrY0l9Th9cjuuQ1WqdIWCFN0s5KFXowD2xaVXTbSeO173kSounCIY9ThrNUFspILfVKgsEDsb3nVRCBrQOJi1LuHJg29hU1QmtjgUelteQAIwQkktdG14v3CtNKEiFk1XJR0uekYcncj6yEgj0iMRGhC5fMXMy8LjB4+ePn747Nmj3d3NXVuwrOrcywSwKgZeudvmZvDjrKCChaK/E5f4/64QuhoLXgT4PfT2+YBFtMwSGetL4vW0IM0HMfHWtUHzvx0twsHikRFwlqwR2dmenpxK5S6UXBkHFZsTrqIx0LqqLPmaGDdIkgm+Ymlhk+qt5IRic9jQHqBamnn2VVxXaE+NSK2JvvWU/ywD5ZFbjSJXaSUrVegryfdmOgvguftmjJ4TJCSCR0Ix8vSxBFwklNUJEoxHpnxomA0TmhFITRM7FbWnXUESWVjDRGKEgywuX74i48raqm5TmQxnr0ddpfO1cre+yWZxju771OHAztHBveOdtTHnR5JDWpDxn7zuwMCz3e3Rk5xob1ZzWbvxcG/H2ZMsIxmWX1fPpC4251o0lSzzkD+Y7qWbNLKrUTDsaK0cRSnS5/emrSYw78llWnm4l3FLL/YO7LY6toiX+BGoPirAl+o/+fSTX/zyFw8ePdRs0OzN5zJSF0rK0MGO1EKnMe8wVNAr3U41jvCK23gdfEp9ukvJoF2kYTczyphZ7dNQucNeGaXw1TfnPJt+U10vXvL1wLkUkbVKJvuz2iwGUilOayxgelFTdkEuLJ6/dMkmKwfZhFeWpNm9x4jLWp9KLNieJB8bOfY5ij19ZcmUygf7UgVN4Dzu3bunfviGkhncXVOvjiVJqA8y4t3JieHxjS0DCbu19F27KSYYUTNz1gYvgGmQQDH4Hw6gKvPlnYEOWoI3UGsMCN3asVlZduBYX71+2wZHBufPzdvtdJAOGIs//eYbb9155VWkEfywFmdBL92mwNUi68CVXesYmp8STQQUbCpNObC0dsSWK8PLDpkuQSWWvg+mIVuPGVI2Ef7WW299+cVnmp+NCEjo92ItsMaZtW+KpnTypc+kLa+vAwWH7LZ0SU2JAdIrrLPMsBEoskp7p1adlOSinNCL3HEZ5+zWQ3vTytAPpAtawtQc31ld81SPKEnklZB3lTJ608sT3pC+vAmIzjP91h5gHYetNISIOuRkYOdzbOtcql6jE7Y0LC49vQc+CjLjzQ/Lq4CSdrHcUyswPAPFYM30zFR6/Lig/RSCiI3dS8LCr2STp2CYKt0LIHDAvaf8putUIqM0iEsZms85qHXMFvYvPv7A1wCLKy1XMJJLogZEP8thNb5Z9OTJ4xZfr5QoXf0FILbE75crCEaFVipLDFeas2GjUNx1G4Q1FQnCyJDz8q5fu7q5uebPcYMspO80at8bNxJ2dp0IrdbYCmzRTE4vKdSeI7lg/391SX+6o7QxpzBMXBGVkYAW04fef3RjFMdGj5mN9ZBaDpi5yrh0P3X/RlRg9p+fu1EWaI7lWV5atsDoaPSQjaD2aVyVcHlHmh8ngG7Dn2bvx0aPHLqgTumi8f9VX7z1L81wL3LCSflNOhRQQh0+k5twL0Ly2zGyw6/6OaVrIrwiwSZCeSLJoB1hdrk6KppIuof+z/Np+tHmsYNNaSYCSzmJwW/JNk60QjSxgieMi+8NG1IfeNOf/sXPvvn6K1+mPzwwjriLRlYx9lrlLCIiwsCR72h6YuralSvGqaxuffLkmU/12fXogAVuEN+2B47unWw/3tPoyUlJFmHFww2d7Ck/3iArmAoYzI63D/fvb27s8bvHR3sOvyqk4UdTFBTeJBBHMMU0LxqR4TpxJi5h1yGTdRw8ozdK2mkeD5jLUgF++atf/sRBkufOZQBE2+Ig5/sZkmUp1VtNaY2Ijz/+5Ne/+eev7n5DzPxBpxcRGAzC+DAsV+uKMyIVHOpdMzwxQ2EObFJV3add1QSuSWeRTK41mx3bQb0pWZCHbTpLjcj4oWQ0m+XULbixXgBiqpQOHYnUMlNukNDIedmlABr0ZQUL6DZ2tydmZ7jXqBUGpqucIevMtseI9YY4lWD036d8csizIzJ2JDDffPXqtXfeeZeBuPfgvubojes3HNjJWpmCHd/fY1aOjyeYGIZkambK/qKXbuccjNIHtcIpDROvvPKqldDzC4shkeqUBkZ+peXFjUgrji8c8j9kYa4aIQl5VyvZshYLbwcnZ2cv5VN44zdfeuWdd39k/XPLQP4AgFPcNvSH2Kh4YoqRgdwL/TuRVWb9EGhKFogk0o0HKYGBQN8bqnkfSZX43QZlaTPUefPWjYXF+eWnz2hp9ZGDT8YpLXszYGlYPRnLs2E8/hoN0nc/cCBNTq08dJx3LJJp0bQVU0RqY7lldkkH1HR6vvOSceyQm2LBaapIZ7q/Rm5YFwognhXLmgBZ2BHGagYQfGxuq+shLfHYpUy5FV4ExlCkSZfmQMr3eYkRnljzwKJ0yTNtcehQ00zsX71+9ZuvP9ZPIlb0BLEcNcQUxloEk4wxoIi2RgkcBTU9PUn50uZBTopFTxq0QSbK2jE3v2FcLnXbXeQ4+5jXoKMhtdxtSI+aDw9ZSOh01bUVB9SqnkpQCnpqUIEaJvGJht2dV+4YT1paWkrmYoVrkIvTLaaG17Yd7uOIhm7NQqIstqBwKxwbTkxBeFiEpPWibV7DW8MDE3MzYzOT5y5dtkxyf2fX0XLGYzNbtLy0vm5WeJt9g1KAQqNHIpR6tx3RUc7S7m7crh4K87NcAQazm/pyddZp4isdS2jpgnzhKS99iNrJJAQF7bzoCbVEdfKGDYkBloSkT4ej5IKR0USvK09hn4ZxWBdU65WzwQ8Pcdj3BXTamN0hw9squF6p9nq0AEnpAUdz8k0R33QZcPzgnq6RcqOOAOsHQTQbrGv5aFaQ1oiqLTU1gp0FyIoLrsC5Vkb3ssJZPmVmV4C/rPOnLtV+kytqi4KU4i4Wv2EegEVBbGaj1yu8jP5SEvjibfQTZEot6AFXHSwhlWBgkpCX3xuUEVsfBF0FjXorXV997bU01jYtBH62/Ozpwe6mslQzJsXMltQZrs0IheHhdDatpFU/x8enZBKdQeTSpA2jcBl+IxWdzpNR69oocixlddbjuors1LUQxSTt8r5Z8JxOA5MWS1E8VUNDiHjtopg2oPqUhVWBZXCb2g8cjB8O+thRxq9A0Ed1IBFARwcPHj56aXVlbDbHMIFgs4LTGfd2dn3tdvdg39dfP/vqy08/+fzh40d7WdqKBsKsynqGhxgbcTn3aduRxXvW7OZlpBcWdzhFCfJQUmjxHk9lQCktgHIgVCWIFE+DXJXWhJ4VTLVvo5qLVMly4aykrYZH0zMiByJRKc65HDyV9d6ztvJYkqvTYYEDg8SiVMBBjIyJCX4xEPVh9YywbVvtNW60Pkd93blzh1L8/d///bfffsvjkg1IjrPc3qEXIyaMbRWdmBi+edPBz1cmp/VH9ebKaWa4YODSpcsXHZzk08Vp4BdPFKdSKhanop9BN5dgfcoXQq96xZVKlPEp35956913coTQ2JgxAD0oOLcjJ+UNoAbFbTGtIOby3SBl3JFQllqplTu2Kqa/oZT2dtIEz/zW/7qDp6ooKkHO46jQ8vKznWyrqHoXjBO8RJOnBp+s2TXUayrxpzmyMXP/mf0ivCzisibAljYD/fhf601kIRHDmYARFuYb065GjvoAtzBNaKjU1X24G38HZRqqdWD7VlZ7Me2pYHBqWYJ72jkxrSGvQr3MpdONLDiB2p7d+dVio4mwq+UdgSiPdQAGk51cuCMLtTRFcJKFCkEi3EN98QIjQny5RirNeRRzKlGzW0WOtN6lJvcClBv/exFn3lVUZ+PrHuYlJcXHOtoKzI6trTxpYlVCCqlrj+5jrvfy5WvaQw6Sq61BoT4sCCfhC3x+gLfvX9eLzpdj0esKnj3mnSJciHSaABnuRIybqEHhZbnv9PDY5OSMriT5Htw0NLvDDX/+2aeO9imfVTDqUpg8B7xEe5qggPcF2I8/jQkN5TubxAGkSgEbJSqsgtlp+j4IN8abzS4ZEjMBhR+MhxEpqxuSjVzqH/mqPNG4NB+iemchpLCatMJb69G0OZwEFB8etqS9BlRJhC+mK3EA3nNpeycHPkxtriULX/o1jlQkT8831T/KFcUuZBotqbkdu4Ct0KFTKMNYzyP/VI4qPMVXZQ/ahXsylaokIsryPEXSVQG5lKqkSp1N04agU6oie6nzWHD9ntXYxEuDCqqgwisQjrJJbGeOQwbGRm9l4YulO1tresP5GOzGtn6kVOZyWBN7NJ8+fVyrPqwG8pF2R+dscNBOFbYvaGd3m1djQpj/2pjBnNaUndUdIaE0VaF8crVNaItPkvoUiy2/OqTFw6KwOk5ytD+/xA3nZpsaacVCFSNysZJ2++BweiwNKILSNmZftco4IrCfPnsyuzivflpdpKwHD9e3drefrSx9c/fugyePny4v59sAxQblhY0t9HkIiRIN9PQI7cSYnpspu5x0xdESXLh7NgT3nlrknm179mzJbiiDBwHpfz+U1Nm46mY4bSsDQAgzuaixDKd+wmYdIi9hcnJlbQVjmBWGjInnRxk+E3iSlSs3j9tNV8vCsJQOpWCY46eWU8aij7Ml2tJoHxdy/OTPf/5zHzrkg6utoPqlf7+1PWDDrgowMWkN9vHm1rpjg+Mksuww9VFQRNb6Mqopp+xaRBXepfKehrP3jeHp5aeuHR9Z+2O1uWlgtMQ2Wp3eFlk8ByGwsCuqG/TyDwIiFVg3mAcF9du/VAGh4pNIpqoVoKcp45VEwTDvPMdPJC5P/tJdcF+PGaZ78uQJpnmBgVLhdPNtkilRlurRmyzQnqs2c2OFDu+YPWJTjAF1hTxttrjOAJKuJY+sqmnj0nDj8U3KSoSYErAl7Vg0KlHdaSJJ7yxOTqrCE+psb4Y93IFSKP+pS5KV1Bpp7REtitN6VoHtxwMQfjWaNar+KU4/eCsZ0gnAgTChcjYgQT9TUenv1GbP2HG5sAITw8g+N+s2AixW9xAt+fQe/Ia2s6EvG68aL5Bdgp6ZnFpcWPw25jvyijgiZz9eR+ASsldWCSbMzPm+E+TC4fovncRSFsNzUg1ZT03PGYYfOspa6IY4zhY6nhKqbRGWkQRTxMNEo5QfdY5Dzuid+Khj2sSW8Nm2NDMzff/e3a2cfRSOhJu90JdIL+K//tswiRC4p/K2YqBUYulDDjrfDdKcjSRNo4PYg1pss7tua3xDghCWEBiN2HAzBVZsD3Rhkq4zMyIwTfhTrq9ASKa6Mhw5Rm601EwU7uh0y6omlb6fRahxJ+qcmpHqWJxtUktm0TQo/A4uPUREUJwqumuFJlHUwlXobuq+kC5HKX2r+/W6Lv1chXvLd/rW3XMOGBbBr3SlSum0typAvWz00Iq8YVlqWyFqVBDNwjHHOBpOHpkcmzBtc7S/6wsohwv794+/3dneuXnjZbtQfJLMWbhrKyv20xp71kKpAYLDweN8Ay7N/IzE6AOBmK+0MBdhD8r8Tzs57MIqzHDjNMr5sUkFOXnjON+2i3ixJ+mSPrlCT0KTNRk8ZxDRa4BD40oXevL4aEwvTf/eamKzLKWNK6tL//Tz//zs8cOf/sWfn790+emzZx/+4YOHS0trTnHd3HB6q5MxyV7tSz0I9BKk0qtUIsqtzkHphuWMe/luF/yDRmFVFTJSLIxLRu2SqORqL1CWr7XjjyCpGhvIxRg3FRUvinOqbF6BrgKnPx4YxRBsgaymhU8YHVh8xdjhI0/pzCnfR2LsYu0y0W4QetjaLSmhqeSq6hFKCxJyn+qbnRIKgo14Hai3335nc3P7d79778GDR7dvvwxY8SGmVuuYVeIXCYbn5qFN76mk5aDhm2npyCvMTM8vWhcRRqDAyxV+NJtYSCRPQim996Up2oUEwC2FjuiIPxfJGNaAD0vLCpR8wppwpkEPjPbUfKyHtL9TsBBA3maMKwP6KTfxUX6ezL88+FcGPRg2jCq6pSQL58PUkbne4UkpTsYSWBPpNK3YFmkUDJPQAtVKqZFk2m96csR6b5w22q+tYg8WPuVYMVPbbGeakb5yQcHCcBxgdLIvOE/wptSYTBmN/iouI8zR24zJV71JJY5Yo2HV44dSnyEhIzxIVEVHeWMi/ZZOUs4McjmwRWaWpdaUocXx6pGsZMipj3AEUHG08iZzilFzUY3aWOAqx33UvLROjuJ5exUIFaQooXSPkjShBEQBaeV43cW3m3oVYcVmexXCaC+3qulaEUoOrLrvYIBQaxrG+T9ntS0tLYtJ3WeUgmTaCnHqKWrQYJXDAW21L9sy6HCvUl3utEOs0ZWKG21KHUuBlKrhXQRhSOwJ5hVL8aPai8FekUV7SaPE0rGgUR3M/2g4U0LhGnyTXjysmrCCZeNSgIe+IHfqGjrgZNfytuw0thkEUEKgPCogBTZWYTQ3lTlgMo4WshMZZYuFKqLcZTXJgfFnDHRfg5fNtpWJKWjUOciFCxhU48mYb5lLhBkkRdc1/FJe8aKr5jJVmqIlfM0UQUtcbyI9N6RFNFktGH8R9Kowl6TysgxbgPT0s8GvogpQivUUibYsflrh9bp3OXXAvZizv+DHLlRoQgICQsP6uz4zjpE1EpD38GA+7PdgWDXVTg52l/OBwpVJm4kGHzx5+sw33Knj1Pj0rWu3vtixktZypJzysrWjC3Uy7KxTHq8VlRlpxId7dQnBio82FvGNG+zr1MjIhbGxvdGdrYEDw9TSRDZ0ongeaERRDO0BTgwh12M4Er4mwcne8VGOW9QASITq0nrAQ1ZbrW+sffiH9548fjC1sLi+vf34wUPfgtdJt6rV+KAmRExYcGr/09oDPwgnpHyY+6/OkLW9TK7BNDan062GXvSm8vYfQ1IFKVUMQ2TsY0uUpqECQ2SCVLmaAc2CjkxGizLlnLH9MnBJVGLy1g0LvjtoJDBmmHE3PhHBxYREIyWAOpgiqhGauuB029ASniXAhNBDoinmg4PRg+iSDvrPfvYzEHwTyecZ6EM1E8AZ3c1yzgNLvoyhrq4tr6zmWxe+vWB1jpXPOSl6zPrnEw5IKQipCgyPdJuq9V+/MeWhVRSXhOLwN9WyrLUvl1l1mZh8eUfKTONV3Y7xCm+LY4V0Y304XOS4uK0UARA3S64o6Tng9ja8cSekZoXJJaOATVxeyhnc69GlKyGOPI2hDB3J2mTfXKNMRpRQJPFEjt/WxdWOiieIaza2lhZVdljaZj0x5lh0TZ8cKQqUuWEOmJgmbcB2pMyB5QzbTFgQrxD3msLChcIRbnxcwz2sa4SLdSMdP+Rq+a5HIbUl81URNGICK+D8lRHMeHiGvpMFDZrONXcopd1r09Nas4bRTS9XBfHV8I11AznNmIMNiTpSxcRzdvunOpanUS60wOTaW4mZ/6vClRSMewFNIetM6JssGUVHZc+GJqPEiEeyYQYiy4PhDM0PilcZqgeQxPWuICAq9SNhyBGbOvctb4OVtHWX9wODmpuPHj+amMzAoLH9oiYYRQ0reMhzdWawIq+YhdKbJApWuWSlWuiojBKV6cf6Qr4D1QC+cC3gz8V9N6bABrqSyFDh9RcLoHBXWVzZgBDOEJRl6AMNzhW8bYkpntFP1+gunekLp+DwJaCgLQrUG+huRTRD0oDorTn91zAqrBSgDScH9YyxapWJAAqfFB72JE2tuB8htojs+ZDqqFR1qDiJkBBMEP71xCFGKvD7WRt1qRZlFdBS7zyUDM+oXQRVIVCTqv2JKgQLUB/sCzfGAIuEoJZshVrAJF1yFpKBk5iUw1naojM1fX7hnAVFmZfAthIYI+pjQVbfSKTDNzU1u7G2penXJpY+/+oLcwKO/DUyrcvFDlnaZ8LJuuIIOg29FBgVqDIVj9ud+pFAjm0LdnDIQixjHRbvWKCS3R0+H5O1UVCUpKEeBQUtlVYE9gOWYpQRKiQugpIgz9nUtJPvNxw4mFEHWFTI9GWkURZx8Onezif3v91/8K17Jp0+VtctQ2tOCjEwFfuV3kTBj36l7PAL1jECCstwEhXWA0p3g1LntLnuc7zBKKAj3HbfXUk9FIs+4absu+V1sjitZlI6YlFQ+guHGHFtQWvEyiAGSBgQLQZdIKywo7duVhPCrC+7o1jZ0o3jIuS1rb2WQsQqFC1ELF/cP+QVKGXUFZkBzxGwOK32UoCf/vSnZnF8X4E+KALrgRHDhWTuf3KCwzYMa8mGkz1x2BnbhjOwS3NBF5BFjwpUKxr80AS00vIvjhlZrs1vG3HBOXhE644P1zZWd/a2vS3MIuXQi4x2kazP4BJWsvZDsbo9hVldfP0mVW5wIZyMpgli3dajArvQkqbidim8j1ijH8EFKj03E2nUwCwZhkDr+xxPPm20Nja2ZnUjXdSmYWi7r1aHXdbZgD7qExfZN+zjBzv7Trsw0quLbK0s5h0dOnMtq+W0IMyn5JxHBeNBtIKnFwqTUNPhqehgphZmOVbcFolH9MlIfWKR2dlS0Ir1Aoxe8JZuZHcAzCCYFtUY5bIQPmMPEaAl3JtPHt8zCVN1zi59bakcZlRTBPG+VW/idDUCjdtigZrtVPLDDLJkt1Xh4h6zglieVamwvx/E917Vb6auivm9RFL3btOgh3j+F0dOLIMw86ICBIaOZ4jO69h+QMqCwOrp0pLT1HEHYe0fANXlKy2NHE3QH/3mn3/z7Td3f/aX//LitRtHzmkKUDliW4SUkAvdwI/AD6xYHUC8L0V1g9KGRN7nznKAHQf9VdaAyJ2/LuBMwGbS8jQkTf41wqPCpwHYIMABa+JkoEIZuFH1vQEvbBLXWtuSdMUVnoVUEEsy+rhv+7OvoZiQHR6yqkZ7LkZJqogqhLbAIlSlNMoZ1LxJo8718Ghnc3Nnc83S2BijipSgyg9nwl1ccZM1/UiPZ5VXgxsYBwDGXrRi6nXQDW8jwPyUHw8OulhhbfCvJy9yF3bgR9DzJA6/rVMomFkCnPYfSHlffFBIsbB+GmKBV+V5TJ2Ox7R2Izn6xfU4ll5LA1R4KL2Q7HCqn4Imld9ADh1uGq5Jn78UnJc1Nay62B7BO6feOZXJyivfWjAh5Jzem9dunE83LttSWW2e2ArVbSbE0plSDBCDNRbKjO0BC8EUqYbnA3/x+laCHvks0qSFoApHZLXXJYUYSxUYyQcjUd1P7gImifKqCK3nwFBRywEfHqXeaaBlbZ/hOkfZ7U7YoX+8tm+nc6YrSwsAkomz0qrLvFpaAgEYVNkub0N+rFuVnhKSnmc73N8zrMl/w1srhC8NkklVKXsP+X0+IN+iUCqBu+GLCsEipsbqZGS/B475WL04HXNVyaS4LIypWtEZ054diSVtgo6KpV5ZMGOBDKZhrAAZuwd2zSdww2w8dg5pAdgTYoMvQ6/t369JoRl8H+5ifNVhbxcXzv/sL/7y408+4mDHRibpBvesx6ZPrGh4T0+nPBtULL8rEaf/BEjKVh6EMc+/rOSyXEcS7C6VqBYGVkHVImxZWP2wIeyjGAeOz9w/tGQ+Y7Kl7x0Tm9WJ9KvmNID1lDGepr0tKXLcpMgSCRuQ+AhXVBTfLW+bihikKj5sTLKkSD7pZWvamydBfKyI2fcpp7wMG631WKxT4WP+6D9ZSFUOLP4PfbXQIqLGVVfKDx8DB8ARuiF9jLXI+GjiRNeY98MFrlqkSsdpZidB9WTKd7CyxmtCP/wwSNdGjiq0EkWd06m2OKoIZdCwLa8gL1nRIXP7C4lIjb613d7cNhXMDu/EaB6FK+aRMqkfl261xP+nsDvZkaMIAjCMB3PhxGP4/V/ICAEHIy8SMhZGMHx/RHW5u5kxOT21ZEZExpaRS22//PzTX58/KUQ6TVFJiiKWfi0PoAhhvGWZFB2DIDEFADQGdoK77DkFvQbaUuXzG06PTZSg2U3GEQ7muCaKyWTstfEvPYmHN7O4qTyPam2rQXTRSOLDfdHZN0U+diH7klSev+B22oUWSqx/XMU0FxT3dMBRiA2rfEJ5qhvcVeEyVkaepVtPzE4qCNoWLgIjC2/nOZMbzn2K8oU+vIP4USGsyViAKXWeEVj5GmvEjWclfqvVE+Csczx62ORh1mr+/PzHx0+8T1jiBBxBhDuwcFBV/UVX6ixWVTADnMTUg797+9blbQ8V1zwGIJGqpFRDTg0SMhmvSBuPHN99sGLZglKcEoSr4iL+IC+tOLlLZQz4tpEBJqGw1gWs8X8gw02M3WFfTpfroTQUYnfMOGzYJPoh/XENeKnd8DMS3uRc6N/sTynQFURSffrsa4pqdZXvzbv3Vju1Rg3bHVj6VO+D+MHtWsKFgPLt3y9/JZvxeqPR2BqdF9eoPyE2pwO3RFmnBGq+Klh97+prg5hDD8vrno66Ezd6412x9ERSzJwV+edAOWF9J+jo+ad1jcZIvrgyjSFwBWnwOoVYwRZV+VF62XeKsjcnNIzK7arteTteE++YugS7ImLREEPf9UUhPed8r84dNb+96bkus0zLEHrOAWua6EggQCH+JhAcPdaOyVDrRlMNpl5ZooURTuTryRJ3xbUG+uh1Jbp5L+lGI1/Mja4S65vj1m6nfXmtwasXr358/Vr4BKUnRnbd4MG0VyQyp99HRYWcSxAHYymDRVp7tE9PPe61dRkYtSKXFrv0YqfIBB4j4y55IAoxFULsXSu//ElL7Yb7S5H9nVxniXzpJJinMR9HmUzMLEG8hZI3CN6HjnZvpE45Xu3J+Weqqo2kLyjLObOmwDG0LRH4eeoYmgsmH3madKuLYz2B/oAnjUsYIVl/+sb3ZWWCF5TcT93rYuZuY2zRWuMZuV1rMAGNR3SAQqS/oVYHLBV461ZQOuWe/DJKcJkAM7YKItSB7PBtoaWktPTw4f0Hj9O0ajI5ESpFh9UkZidIM5ouQxg5dHmvIUfOMGYNPuvbUYPqnGzBqgW1+QV3k4AN1uKeRbg6LFRf/mjYMnB4aJ51yDw79IlD2x52N46M6ak6M9dLBWS7EstJpY891+uzYIYjXmulIzrr/e8BlFEY9WTxLwC0kWfxhZKB4XKy7v0F7Pmj5e358mdLhqWEyipfZf4s1fwEAcOUB207lBc+TiPnrCMZCLAe3mPuDQDLvJjBks7vniydcAHrptpRUXUdCCGCOZBj1L9i9farA2aZfPBr6UrXd2BLR+YTyp6a/4fySW64eRr4X/wLYQ7vOyU/AAAAAElFTkSuQmCC", + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFoAoADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDN+GRC+LZ89NjVz/hi4ez+Iiyxtgi7kX89wra+HJH/AAmcqHoysK5q1Jh8dS44K3zD/wAeNdX2SOrPTNRDX2owxxDLSBVUe5r1K0sF0u30i0U58rKE+pKnP61wvguyF94jSWRdyW6bx9e1ej35CSWbkgBZhk+nBrOT1JieRfGcf8UhpHqLyQfzrzLSJibfYVG1e4611HxWvJJ5ghmLwLO3lDPAByeK5TS1xp28dSx5qkaNaDNdg/dQtngk1u/D5Q3jOwB6AZ/8drnLy4eZRGxyAeK6X4f/AC+M7D1K/wDstJbieiIPDtotz4w1mGQAgvLkEf7dbN5ZzaWI2d3eBGOyRBl4P8V9RUXhVoLf4g+IUm++XlEf13j+ldZfKmx8jntTe4dTl7m2s9dSKG82xXDf6i5j+6/0P81NcxrHh9rCN0vNqyKwWO7iJKuT0Dr/AA/WtjxUx0CeKZIVe3u874G+6cY5HofcVVlvHNjHLNKUkuUUJIz71Zeyv7j1qXYdjndO/tWxYtFBLLDn5lUEjOcdq+iPhr4tW+0FodSlS3e3YInn/IzLjvnr9a8Z8PXUFublprp7eSLG2FRkSZPJBroLe+hndmmuGcY4J7UKKYmaWq6UZfEV1cQyo0D3LMGB981bxg9axYtZb7S6tj7MnHLYz71edzs85MvGP0q0JmrAvFYVqp/tQ/7zVrafeRyLGrsN7n5VHWs61U/2kx/2mpsWxfIrL1wfuIV9WJrXxzWXrg/dwfU0mCLVumyyhB/uiiRxFC8h6KpNSJ/x7xj/AGRVTUzs06X3wP1oGjH0qHzr7eei/Ma3z1rP0SLbDLJ/eOB+FaRHftUrYZk6xNtRIFPLcmrmn2otrVQR87ctWbbr/aGrM7D5FOfwHSt1utADSQgLMcADJrJRX1S9LniFOPwqXVZmZks4uXf72K0LW2W2gWNe3U+ppBsSogUBVGAOlE06W6bnP0HrRLIsERkfoP1qhBDJfSmebIQdBTAtWs0tw+8xhU9auUiqAAAMAdqd3xSABS0AZNO2ikxCYpcYpcUcUgCikLCmlqBjqQmm5ozQMUmjNNooEKKKQUuKACkNLRQAlFFFABSUtGKAGkZp0D+TMsmM7elJVyys0uUkMj7QOh96aA2rLSJtZh3KN8Z43k8CqFxZ6h4S1SKdTuXPyuPuuO4NP0bWbjQL3Y+XtXPzr2+orvru2tNe0orkPFKuUcdj60N2YDtPvrbWtMEqANHIpV0PY9wa88vIJvCPiZJYwTDu3J/tIeoq3o13P4Y8QPY3RxBI21/T2YV0/izSRqujOyDM0I8xCO47iktGPc1ZUh1XS2UHdDcRcH2IrhPCF+NF1W/027YrzwMfxL/9atfwHqZuNPksZGy9ucrn+6f/AK9YPjWA6Z4mjvox8sybj9RwaIrWzDzM7x5qMeoarEY1x5cZU88157bvu8wkY+Y4rRvL9p5HeRz5s0hC1TkhwoC8AVTtfQERuyqwDMBn1NOV1L4BB+hqsI3d2bCk54JGcVLF5kMqN5YcL1A4zSGTyxNEwJBGaQNnvVr+0XdCr2ikH+8//wBaqQAEmSCF9jzTaAv2cPnzJH03HGTW74j0KLTNFtp1kZ5JJNp4wOlUtKvdJhdWmiuSynqpFavi3WrLUtGtIbRZQUlyd647Va2JZzVkvzivUfDYP2aP6V5jZffFeoeHOLaP6VUdhSOB8cH/AIrC8/4D/wCgiqNj95frVzxpz4vvvqv/AKCKq2I+daS3GvhOwvP+ReceuK8ojXbpGs/74/nXrF7xoDfhXlCnOg6sfWYUqh14XZnMacM6g1drKii2DYG7I5/GuM0wf8TB67d42a3X5Tg4xUQIrbDoF26rIcdZiapaUT/aWrnt5bVvW9vvndmwMSEg1IunQWlnfzRjLuhyxq5IrDuy1PLc7LjkdTWtd5Dx/wC4Kydu+4A961rw/On+5XLI9KGxnDibNEn+sNIxw4of71T0H1O5+HRB8djPcGubcCPx3degv2/9Cre8DuIfGyP6q1YzRmT4hXEfUtqOPzeuzoeCup9B+BLAW+m/aWBElwxP4DgVf8aTLDoDDdtdnG3nmtW0jWIrGihURcAAVxnxBui15aWuflVWb8SKj7QoHkPj9f8AiW2T9mI/lWNpYzpCH/aNdF4/QHwrp0mORKBn8KxvDyCXRGB7OatblMwpsmY/Wur8C5Xxvp/+7/SuXmX/AElx6Ma6XwWceNNNJ7xn+RqV8QPYfYEj4lawR2nlP/j1er6d4bn1GFJZSI2lUsisOoHf9a4nwJYQ3fxl1WOZFdEMzFWGQeRXuUihL22wMDaygD6D/CiTsyXufPvxW0y4tLHTpZY2VDI6g9v88V58l5EqRqbcEqMEh2Gffr1r2H416laS+HtPsUctPHcszccAc14+2kyNapc5GxlzSL6CxzOZNyyOB6E5rYjj1UWxmKF4dobeg6D3rJ03Smvby3t4pgjTyeWC2eDXRafqF9outzaPK6ytF8hU/db2B7daEhlQ31x9njUupQfNx1P1ro7DX5NTcCIrDPGmBHwI5B0wRVa90KK8jku9MBjlH+ttXGCD7Dsa5EtNazGSMskkbZK91Iod0I9G8LXynxlc293CbWZkxHFKwwOnQ960LXB1CZTjKuwyOR19a83TXLbVdXs59SBPluu8ocFlB5xXq7W1rDfyixTZa5LRjOeDzVJikJjms3W1PlwfU1qD71UtaT5ID9atkIljH7iP/dFUNayLJR6uK1EGIo/90Vna2v8AoKf7/wDSpGmGmR7dPj46kmnX7+TYSt0JGB+NTWS4sIB/s1S1xtttHGP4m/lSQxNFg8u0aU/ekP6Cr0sixRNI3RRmnW0XlWkSeiis/WZG8qO2T70rfpQHUj0mFp5pb2TqTha2MY5PQU23gEFukQ6KMVV1OcpEsEf35OPwpDK5Lale7RnyY611QKoVRgDpUFnbC2gCfxHlj70t3ci2i45kbhRSAS5uhDiOPmQ9vSn20Mg+eVyWPb0qKztdv72XmRuee1aAFIBAuBS0E8UxnoAcSBTC1MLUmaQxxOaSkpaQBmlzTaWgBaKQGimAtFJS0ALmjNIaSgBaWkooAWiiigQlTW05hkGeUJ5FRUUAehW/h3TNR00P5hl3rlJF42msrSLyfwzqraXfE/ZpW+R+w9x7VlaBr0ukXOGJa2c/Onp7iu11vTIdf0oPCymQDfDIP5Ur9GMp+L9GGo6cbqFf9IgGeP4l7ipPCGq/2lpAhlOZrf5Gz3HY0zwpqr3dtJp93/x823ykN1K9KxkQ+GfGoQfLaXZwPTB/wNHSwFRSPDPjkhjttpW/Da3+Bp/xBvra8gtViyWRm+b2Iq58Q7P93aXqjkExsf1H9a821HUpbi4fe33QqoD61atuxamXCVd3bghWIFOkGaYF8kccDqarG6YgsJIgD0BHvx3pDHswU9cUeaueGz+FS2Vq12kjFlyp4PTNRyxm3l2SrhqEAbt3AJzQq7RjJJ96s22GcFEYt2wKgb/WHPXNMDQ0yFZbmNWXIJGa6bxjBFBoVgscar+9PQe1YOjj/Sov94V0Xjn/AJA+nj/pq38q0WxL3OUsfvCvUPDv+oj+leY2Q+YV6d4e/wBRH9BTjsEjz7xgQ3i6/wAdnA/QVXsh84+tS+KDu8V6if8Aprj9KZZD51+tCWo+h1uoHGgNXkqMP+Ef1MdzMK9a1LC+HnY9q8gt/Ml0+/ijG4tIOPxqah14X4WY2kgtqTDHU4r1eb7J/ZkFtEgaVRkv6VyegaCLQNcXWDK/8PoK6QFQMAflUx0CUbvUcmQCowabdzbNNuhj/lmaaZooCAzfvG6KKyItSfUZb+3xgRxt0pt2Kirs4ReJwR61p3hO9P8AdrNUf6QPrWndjM6D/ZrmZ6ENjNb7/PrSyD95TZP9Zj3p8n3/AMKgHudX4R+XxfF+I/lWbJcfY/iPPPgHy9Q3YPs9afhbC+KoD6msPWzs8c6gfS7z+tdnQ8KO59L6V4mtLp/3hEef4s5FcL4l1RNT8QKyMGRXZRj06VzUGoyWsibGbDZyM8dKdasTexEn+MUk0aTUE1yEvjqwA+GFvdsAW+1Iqn04Oa5Dwuf+JXIv+1Xf+PV/4tBGO63y/wBa888Lt/oUq+9VHczexl3P/H7L/vGt3w0fL8WaS3qMfoa5+c/8TCUf7Zre0E48R6Of9ofzNT9oHsdn8Pzt+Nmrr6iX+leteIdSGnC3ZMGYliFPpjmvIPBUoh+OWpljhdspP/fINdt4g1L+0LkT7dqICqjPbmhq8hdTyv4jMZdPhkJ583P5g1iWu06PEMjd5XQ1tePRnRYj6SL/ACNcgpYWsG1iDs6UXsUzT8OER65pzEZ/0ofyrSuYFk+Kl/FMoZHGSD7oKydCbOqaY3f7YoNb+oDZ8XJ/9qJT/wCQxTXwi6ly4t7nT2WWN5ZIwSFkUZaMeh/vLVW9ax1FfPkt1+2GMhHjPyye49foea6VuYHHsf5V5FZX00FxL+9cLk8A8A1Nxno+htpreH0aeysJ7hFKuVgCuBjjPv705p0gINrJIWCBghkPK+vWuOt9duolCxTvkchWRSCfenR6lexk3M1vhzkFl6c07hY9Bsr9rqFz5oEyHgAcH296zrrWZWkSO6RQi5bcPvIP9odq5ey1jynQBwjYI3k42j0FP8Q38jmJlIETqCZBgeYfejmCx6NC6SwRyRsGUqCCKpa2mbOL/f8A6Vl+F71Zbd57m4/eEcRg/Ii9K2tYTdZwsMEFsg/hVXuiGrD7ZcWkI/2RWZrI3XFrH6n+tbFuo+zRf7orO1NAdTtR9P50AjQx0FZAX7T4gJPKwL+tbe3msrSF3vd3B6vKRSZRpHgEnoOay7JDe38l033E4WrepSeTYvj7z/KKlsbcW9oidyMn60mBIzLGjOxwAMms+1Rryc3Mv3QflFP1FzJLHaR9WOWq/FEsSKijhRikA5RxSk4pTwKid6QAz1GWzTS2aSpYx2aXNNooAdS0lFAC0UZozQAUUUUALRSUZoAWiiigAooopgLRSUtAgooooAWus8H62YZRptw37tz+6JPQ+lcnmhWKMHUkMpyCOxpDO38QW76NrMGuW4/dlgs6jvU3jK1W/wBAS/g5aEiRWH90/wCRVzT7iPxL4baOXG9lMcnsw7/1qp4dJu9Cu9Kuv9ZbloWB9D0oXcDF1zXo9S8JRo4VZDt6nksOuK8xkKyahIODsx+daWpytDNDG7HZE7ce/SsxgQWk7scmrdtkCFkGePWqMiDdg84OcelTJclx8sR5OAWOKV4JWhE4BCnjikBWMSE5K0bAWCoADn6U4Rk9WP51K8SpGCDkk0xnTeGbKKO7SaS6tlAHIaQZrmpsG7lxyN5/nWnomnpe3apIzBfasojEzj0Y03sI29GX/Sov96t7x3/yDNN/32/kKwtE5uo/rW747/5Bmm/77fyFaLYl7nMWP3hXpvh7/UJXmVj94V6Z4dz5KZojsEjzrxGc+KdRP/Tc0tifmX61Fr53eJdRP/Tw386ksh8y/Whbj6HU6uu7w4V6ZIGa43T9Jj0u0aT7zytksa7DWM/8I7/wIVzk0scdjC0zbVBOc96JG9BvlsRZ3ngYHdj0FU7vV4YFKRHHYue/0rL1fXUZvIgBI7KP61Xgs2k2zXRyT0WouayajuXLXz7m5WVFPlDks3U1n6VcCPUdSOSNyMK1recvMMcBUxisHTzuvL8n+41TPQvDtyTMVQWuB9a07sbZkP8As1lqcTL9a1r4ZmT/AHBXOzuiZL8zfjUkoxLgVC3E2PepZD+8pCe51fhr5fE9sf8Ab/pWJ4lG3xzqX/Xzn+Vbnh7/AJGK2I/vj+VYvi0bfHOpj/psD+grr6HhLc6ncDLGKtQNtuoj/tj+dZHnPHJGX/QVehlDlWB6EVA0O8e6lMPDI08sfLaYP19Ca5jwsf3Ug9zW58QV/wBCQ+4/mawPC7fI/wBTVx3KkileLjUZsf3zW3oPGu6Qf9sfzNZF2P8AiZzf7xrW0PjWNLPpKP8A0Kj7RL2NmyvRp/xmvmP/AC03x8f7SV3N+48oL/eNeb6gQnxeuCf+eoP/AI4K7u4nWaSLB7UN6i6o43x0P+JAp/6aL/WuQgUtFagd4z/M11/jrP8AYA/31/rXKWZGyy/65N/M1JbLOjfJqVhj/n8Suj1ddvxaz/et0P8A45XPaWv+mWZ9LuP+ddHrnHxXh97ZP/QTVfZJ6nRLyrj6/wAq8WZT58wzg7j/ADr2qPqwrxiQbb24HpI386got6dYSXlwsSS7WPc10emyva3lzp94wkCKAUbo2fQ9j9ay9AYJqELHsa6KwjiuvEurJKgZHijOD9KpaIXUw9V0PyYjeWTtLbk/MmPmjPoRWLBqBgcK6+bD0KGu5vkbSP8ASPMzD93c3PHow7/WufutEjbUJ51j2wSBJFHZQSM8Umhmv4TsLe71T5bsiBlyIsdSOx9BXoOoW4fTodpUFWPy+2K4+yt9I0uY3Nruik24UqcitKLVXkRpLi5R4xjBxgqD61SehD1N+FcQoB02iqF+udVtc+g/nUFreY1OG189VzliueH9MGr1+gbU7VlIIx1H1qhWsWX4R29ATWfoyY05T/eYn9a0ZR+4l/3D/KqmkrjTIfx/nSGtiDUQZb21g7E7jWkxCKWPAAzVLbv13/cjqTU3Mdi2OrnaKQFbTkM0st2/Vjha0aZbw+TbRx+g5p7nAqWMjdqhY5pzmo+9RcYClpKUUgClpKBQA4daWm06mAUUUUALmkoooAWiiigBc0UlFAC0UGkFAC0tJS0CClFJSimAUlFFAHReDr82msfZ2b93cDGP9odKn8S3D6Hr81yjMsVzBuYKcZI4rmYZmt5450+9GwYfhWh4y1iPVFtxhQREzYHXBpx3uM4u6ma5nt3PQgux9zUc6qwI7Gnwoz2yswAJHT2qkXn3HPyjPTA4H50AQsiI20LxTPJjPZvpuOKnSSOUcSjd3UHkU9Y42OC3600BXiheSby4kZj6AZrY1DTjaaLaSyQskskjAlgRkYrPGYJisbEe6nFXtRFy2nWss1xJIrOQqsxOMCmkBf8ADS/6YpHoa53rM/8AvGul8ODF0p/2T/KuaXmRvqaqWwlub+iAfao/rWz48P8AoWmL/tOf0FZOij/SYvrWp49/1OmD2c/yqlsJ7nO2H3hXpvh8Yijx6V5nYdRXpugf6qP6U47CkeYa4f8Aio9Q/wCvh/51PZH51+tV9Z58QX//AF8P/OrFivzL9aS3K6HUayfL8O7wM7SDivKdU1OS/wBGkZiQyy4616vrnHho59QK8fljX+wZXwcmcjNTVdjrwiTTuZGlsftD723N712Ebb/JH+elcbYfLdNXa2ybp4T0GD/Ks4MVWPukNhn7SR2wazdNCm61DPTa1bFqgE/B6qax9OwsuoHHO1hTqGmE+FmCmTOPrWreZEyZ/uCstSPOA9617/H2mP8A3BXOd8djGdf34HqalkG2TFJJxdr9aWU5mNLoD3Op8Of8h22P0/lWV4yGPHmo/wC+p/QVpeHmxrdsvcbR+lU/HahPH2oAdMp/6CK7Oh4K3N7AZBkDpVdgYnBQ856VOn3F/wB0VY0uxW9uJw2cpEzjHqKgFuVPiGcWkQ9VDfrXOeGGwHHvXT/EAbtJtnI58pT+tcp4dJG8iqWjLkR3bj+1phno1bGi/wDIV00/9NB/6FXPX526vOwz1ya39EbdqOmN6uP/AEKjqS9izrQ2/Fqb3dD/AOOCutiP75PqK5PxKdnxXYj+9F/6AK6tDh1PuKUtwMHxyMeHv+Br/M1x9gNy2ftG3867Px4P+JA3tIP5muN04/u7T6MKRTLumZNzbj/p6j/nXR+Ivl+Ktn72qfyNc3pn/H5CPS4jP/j1dN4p+X4paafW1T/2aq+yT1Ogi5c143crt1O6HpK3869khH7w149ejbrF6PSZv51BRoaQdtyh966bRif+Emvsnrboa5nRwGu4wema6fS8DxVdY6fZU/nVdCWP8XDOhv8A74rnZtcmkRE3JhU2fdPT0rpfFPzaLMvpg/rXn3lKzE7yKTGjThkuLlgkKmRhyAGNNmlvrOXbKskZ4O1vStXSPDU8ugXet214VFqhcoMgkAdjVuFoNb0pI71icrlJiPnj+vqKLaBcq2l3DdavZS2snlFsRyRseAfavUbqytLOOx8iUttj+cHse9eb6PoMOnXjSX7RgRkGKTdw3ofauoUus8iC7MxK7ghxwPrTiJnRblktpipz8h6fSqulDGnRfj/OsW01J21N7SCWMKYWkkaQ8KAORj1rd0kq+nQOhBVhkEdxVXFYbEmdYuD6IKbqSb3touzSc1PEMarc/wC6tFyu6/tfbcaTBEhHNV3fMjL6DmrbDg1nK27zH9WOKhjQjHJpKKKgocaKKKBBSikoFAC04U2lHSgBaKKPemApx07mkYhFLMcAViSvLf3RkRjGsXCgk9avJLNd2ksbKBKvHB6+9Bs6VlcfcXqLazSQnc0a56U2x1BLwLtZWyO1ZNw88Wl3JjA3ghH3dhmoLaa+We3CxKA/XAx27VLZuqCcTpYrmKZiqPkjsRino4fI6MpwRWZpZEtzJIoO1eMk0s6R3UpkNz5Sj5SAeRVdDB00pWNXqPWisWznmtZPIb5lDAHc3Un0raoInDlClpBTwuaDMbSilK4pMUwEopaKAE6g1jXjM1+0ec5j2/QVrzzxW0DTTOERepNYySpcTNdD7sgwp9RQMjeQJ8rYXHrWbOAZcqFOecnvVu62l95UntyarFxuPQg9PUU2CIeR6Ve022+0SrmSJBn+NwKrxjzG27ASe2adBCftBQjABxTQy7q0cSa1MkRQoNuChyOgqxq4xo2nD/po/wDSqd3EsOqSRJ91SP5Crms/8gnTR/tv/StEiS54dGJx/uH+VczH98/Wun0H/WH/AK5t/KuaQfP+NKWwLc6LQ1zdRZ9a0fH4+TS/Ta/9KoaJ/wAfUX1q94+POmL/ALDH9RVdCXuYOnjkV6boIxCn0rzTTxyK9M0IfuU+lNbBI8r1TnXb4/8ATd/51csh8y/WqOonOs3h/wCm7/zNXrA/Ov1pLcfQ6bXx/wAUy31FeSzceF397k163rvPhvHuK8jn3f8ACNyc/KLg1NU7cJ8LMKwGbpq7eyGXhH+wT+lcVpw/0t/wruLHiRT6Rt/Ks6YVvhIbYgXC4/umsaybB1LH91q1rRi10M+hrJslympkdgaqoVhPhZz6Z+1Cty8bNzH/ALgrHQYmUnua1rs5u07fIBXMegtjLY4vOaJD+9NLNhbykf8A1hpC6nTaHIv/AAktsyjAO1sVU8ct5njy+Yd9v8hVnR4mXWbSQKcAgH8qseItMaXxq4Kkb0U8/wC7XbbQ8BPUuKCsAbHRRV7wpIZNTlAznbg/QnFZ2yUxBXkkIxjGa1/CEQTV5lx1izz9RUW1KjuUPH640i3B6iMD8jXH+Hh8zCu4+IcLf2YpA4VTn/vquI8O/wCsNNblSKWpLjVrkVteH2zd6Z7SY/8AHhWfe2b3WsXSxEb8DCk4zxV3RA0N9YI33hNjj1yKOpLLni2dYfiW87Z2r5THH+6K6i0v7e9XzLd9wB5BGCK5fxbEG+IQSRTh44sj2xXQ6XYx2iybEZQ3dqUtwZD4+X/iQSf76n9a4fSyM2IJ43Nmu98ej/inHPrsP615xbMVFmR2LUija03A1Nf7vnKf/Hq3/FD5+JumE/8APBR+rVz2lsDeRn/pov8A6FW/4sBT4jaQ396Jf/QmqlsT1OpiH7w14/qYxr1+P+mzfzr2GH/XV5FrK7fEmoj/AKbN/OoGiXSyRcpj1rptKP8AxVE//Xov865rSlzdRj/arqtPi8rxhIuOtoD+tWthEnic/wDEomHqtcPalG3Ky5ya7fxUMabIPVTXDWn3ifepkUtj0jw7gfD7W0UY/cP+W2sCxkiHhi3bYRKkeUkHY810Phgb/BWtqOpgf/0E1y2mxhvDsYCSA+WTuY/LznoKqb0RVFJydyjFrtxPj/RYpFI2lCeCPpUj3l/bxNJJBJDHLwCDwfxp3hPw/FrXlh7iSImXyxsGe2a2CGtb2/0yR3ubW2l8o+aPvcdfY1NnYnS9iDw/d2l/4isf7UgcxiNomOdqtwcbsdRXex30UEEYttkkS/LxwBXBxLFo1wLiIeejcIrcMvrmtF/EVtDauI0HnMwwCvH44pp2E1c7W1mjuL2eWM8FV4p9wP8AT7b6NXNeEZ7+YzTOiJaA4Z2O5nPtXStJHPewMjAgK2faqIJJOI2PoKyo+IF9+a1rgYt5D/smsiPm3j+lZyKQopRSdqUVmUOoo7UUxBilAopRQAYpQKBS0AJVZr6NVLBJGjH3pFGQvvVl4xLG0bZwwwcVQlaKG0kjVhHZr8rueSx9BTNIRTM2ZZI7iSJHAI5yeMg1HFqVwkj29kiF9uWlbkRgfzNTyJLGW1HJSeQBYYMZJA6Cp7pJLXTlmukDvKQJI1AGM+/rUnZzLRPUw5p7i9P7x2mlHykD5Qfwqw0O+2tVM0i3EmQsZPQj3p1tYTsDcRxgxOPlJYDA/GpnW3jhihuCy3EXzb0Ukj0H0pGsppWSDT9SvLeFkURyGJcujDk464I71ahupdXkkntJUEMZ4jPUn1IqiZ45b8XKMVhLqMAYJJ4wP1q9E8umauYZ1SOyb/VuiBRn3IpoznFbpajYma7unmu1AiOMKg+9joK2Yp4pW2I2GA+6eoqgloY/MZH3KXzEw6Bge/tV23jRpnZ4VSdfvEe9NHPVaZYp69KbTwKo5RDzQBS0UANxRtp+KTFAHNeK9Pu79rOOIkWu7EmOx9TU8yCG2WOPaFUAAntW7LAs6FGzg1g3CmKWSEndtOAaBlGRi5VSQ2e4HAphj9xn6VN5Z/2qbEA9xtLBBn7zVQC2DpbThpIPOOem7FOgO+9ZguNzk49OadCoF7gEEBuo70trzfP/AL5/nVJALqP/ACG5/qP5CrGrn/iW6eP9p/6VDfj/AInk/wDvD+Qp+rnFvYL/AL/9KoRpaEMMx/6Zt/KuZT79dNopxv8A+uTfyrmY/viiWyBHS6J/x9RfWrfj0/vdM/65t/MVT0Q/6TF9at+PP9fpw/6ZN/On0F1MbT+or0vQj+4T6V5rp46V6VoQxAn0qlsKR5RfgnVbr/rs/wDOr9gDvXjvVK6OdRuT/wBNW/nV+xJDrUrcrodLrP8AyLje2K8kmGfDL/8AXya9a1xv+KaevJpD/wAUq2f+fk1NU7cH8LMHTz/pkn4V3FiPlDf9MyP0riLAf6ZL+FdzZwMloZsfKIzzWdMVf4SpbKRcvj0NZdi2231P/dNbFh+8lkOOcVj2QxBqn0qqhWE+FmCmWnT0BrWvv+PuP/dFZUYK3CD1Nat8QbxcdlFcx6ETNnx9sFNf/WU64H+limty9IXU7mwg2anD6b1z+dbGvbJPHCMv3QoX8lxWfA228cgfdZcfnV/VYDb+KrRWOWMas2fUivQPnY6s17rwxM9qj20iOWQHawwfzqPQ9B1Gw1Vbm4tysLoVLAggfXHSu1t7mKWwgWRBnylG5fpQIA8BZJBkDJU1m9z1Pq8XFNaHnnxEikXTRGoGGU5yOeorz3Q4WjkUsMBgcV7nq1iup6RcwOq/Mn3yuSuK8pktBataxjGQXUn1waa1MMRScPe6HO6khF9csCQQRz+FXIB5F7prDqZBn65FNv4x5l23+2v8qneHN9AO6TKR9PloZzsv+L5Fb4kWxAwFihB/KuuYbjwQfpXH+M7Nh45ijLHc8EZz6cmtOwS7sry0jifdEZR5v0zUvcC547TPhduOdi/zrzG3yUsx/ttXq3xBT/inpwB/Dn/x6vMtPtRLFauZFUK7ZBPJ9KTRRPo7/wDEwKHtID/48K6nxlMr+PNCI7RKp+u8/wCNclp4aHUZmYEbW7/7wrrvGVuIvGXh5v8AnpGG/wDHzVdCep1UI/0gCvI/EC7PFWoj/ps1evwD/SkH+1XkviZceLtTH/TU1mNBpfFzH/vCuutSD42QetmP51yOncXEf+8K62y58b22e9t/7NWkdhdSXximyxlXHY1xSadD9lE6X0fmd4iMGvQPHUWIZ8dMN/KuPYKtjCSo5QdvapmF9Dq/CMrR+GNVAGT9nl4+qkVj6f8AvPA1qkWDIA2R7c1ueBcPpuqxn7ptX/Pa1cro1zKPDyRLtChWA455zRP4TSiryNH4c8GA+l3/AOy1cnieHxF4l3kAecpOfQrmqHw8P7sH0uc/+OmtDWw//Caa6gOI98TMD3+QU38IQV6hxS3D3IYT3EuEcquPTNab6N5tl59pdNcOoyYyMMB7etaHgiOKS82zRK6G9YMpHBGKv65FFput6y1tuRYLr5Yl6BdoPHpStpcT1lZFHw3POiN/pMkESn/V5GSfUg9q6ttQNnq1vCschSRGYuo3bvTb9f0rgpdRn1G4WSCI8gYxgE1Ys9X1HTdQQknzEJ2xyDgZ9qEyWj1mR1l0uVujeWSVPUcVg2hLWMDeqA1Al9L9kS5uGSOSYbDtb5c+me1TWjf8S62O0gGMYzSkCJRTxTaUHisxjqKKBQIUU7pSLTqAClAopRTAUDmsCWKGW4t4vPdoY5Wby2AA9eveug25BAOCRjPpXMwoItQfM6BhIdwfkY/+vQzpw63NBEuBqDXEjDaR+5C44HvmoNcvGkQwLEWCENkHnNSahdaaUZVja4fGdkZxn3zWNNDfEKESfcuNu45K57Glsb04czUpdC9Z+VfW8MJlCsjfdY4ypqLVZYU1OdCy7iBtGT6e1ItoLqYviVGRQGZkxn14+tUEsjeb2SYnaeQqnlak1io83Ncs6bab57a6MgeFHOU7gj+dbGpA6oy2xEyowwApwN3qTWRbW8hCPDBJGjsQu08Kferdq7WrMJrWRlJO6UsQcj3poVTWXMnsaFhE9np7WcjguGI3DsPWrNg8TNIqNJJIPvu/eqVxqFs9uUimePJGcjnj3qzosDxRTO7Kyu26M99p9ao5Zq8XKRpAUoFFKKDkCjFLSgUwExSnCqWPAHU0U4U7AYd54ms7aeKKI+aXPJAPFVZXE0pmUAbucYyasNplvaanLNFEFeXknrUjp8jFuw69KaAz2yXVRnJ7U6a2Md0qOOSAaR0ZollIOCcAmnIm24UewpoBlsv+mkejUloP9Nc/7Z/nUloM3jf71FmM3jf75/nVIBL3nW7j/eH8hS63wunj/ZY/rS3f/Ibuf9+jXPvWA/6Zk/rVAjR0f7kx9IX/AJVzMX3xXT6OP3Nx/wBcH/lXMwj5hSlsC3Om0Rf9Ki+tWfHn/H3p4/6Yn+dRaL/x8x/WnePW/wBPsB6QH+dPoLqZmn/w16VohAt1+leY6cx4+tekaM58hP8AdprYUjyq451Gf/rq38607LqtZUpzezH/AKaN/Otax6rmktyuhva0d3h1xnt/SvKpB/xS31uDXqOrnOhMvsf5V5ZKT/wjAHb7QamoduE+FmLp53Xk2PavRRC8Ph9ZzJ8rLt215xp3F5MfevUBBJJ4WidpBsxwuOnFRSFifhMPTW+eXA7Vk2IzZ6s3tW1YII5ZR1wtY1mQNN1Q+vFOoVhfhZz6MfOj+taFyR9qU+wrNQZnU9ga0rpf38f0FcrPQjsUpiPthxTT9+rFxEBMH9agP+soF1PR4EJvZBjgsv8AOtDxP/yO1sQeNkf8qr2g/wBMnPcBTUF3K1x4gspX5ZtuTXos+cidJc3zW1jGbaZlkAGfSu4fSm/s+O5VsExKzDPcivOJ+bP8BXqskwXw9aE/xRp/Ks57o6KNWcXZMw5t9nbPkBkYEEHoa8ivgTcwH/prIP1r2XV4gbKRD2hUgfUV5DHbGSeziOcmZgPzpxOutJypXsc9e27PPcsCeCOB9KuPaST3cbJlWDA/oP8ACrXkZubhSP4hWzFB/psWAOxp2PPkx/iHT0uvFcMz/eSxTP1FPtLffdwY5G8Z/Or8m2bxVEHwVMew59M4rpJvD0MVx5tuPLKsCVHK0pI1p05TV0cn8QYiNAnAH/LP+orymxjzNp6nvIa9w8Z2RutKcKhZWjIOBnFeUT2S2t7og4AdiT+dTYqpFxdimk00iTCRtyq+0cdMEV1njch/Evhh/WH/ANnrmFjxa3ZHa4IrofFhLeIPDwPJSNR+oP8AWh7GS3OthB+1R4GfmFeT+Klx4z1L/rpXr+n86gn415L4uXHjXUv+ulTbQpFaxGJk+orrbLjxjaN6239a5Oy4mX611dsQfFdmwP8Ay7N/OqQnubPj2Im1mIPRSf8Ax2uDjmSewWMg5jUc/hXpHjJVmguwDx5RI/74FeZ2SkWUspU7Ng5xxSkCWh2fgCT/AIlGqSt2tZP/AEFv8aq+E7OJvCcc2PmKPn8M0/wA2dC1VSePsj/1qHwhNN/wjUaMoEBWRVPctyaJbDje+hR+HhzK6+s4/ka6Iwpd/ETxFI+CqNGNv/ARXM/D1gL0qf8An4T+eK6O2d18ceJHXBGUOPU44o+yJfEZHgnaNbdO39olf51panEtxeeLZ5BlxK2Pb5Ky/Bknl61cO+Ny3xJ+uDV+YvLJ4pXeVydxx3+Sh/CCvzGFpelQ/wDCO/2iWbzVt2kUA8AqaualJBHAFvVBu40Vo+fnwen1FN0t8+DWUfw2UufzqpqSNe6/YeZLkyWYbKgcYB4/SkxruRf27dJhc74ywYxunykj1Fd3Za+msWccsipCQRGMLtTPpWEtrZxwz2V448hdmyV8DDMucZ7GsM6ldWUEsdsHEGdu7ZxjPHNLYD0UK65DoVIOORS4JrL0/wASTanYb7lTK0RVTIi4HPt/WtVTlQcYzUySWwBinBaB1p1SAAYpQKXFKBTANppQMU+jFACAc1Um0iznkaR4iGb7xU4zV4CsfzLP7RdG7upkdZSFCyMMDAxgDiguHNfQ0ILG2tuYoVU+vU1IIIwztsBLHJzUMUk0OlNLKGLorMN3UgdM0yPTlliWWSeYzsA28SEAH2HTFNDd+rLMsEcybHX5fQHFC20Mbh0iVGAx8oxxUVvuvdNG9irnKll45Bxn9Kgjlmu5BauGQwkGZhxu9APr1oBJ9y9sQjG0Yznp3pQiBdu0bfTFQX84gtsBwjyERqScYJ71Dp0iKZbQTCXysFW3biVPrQSotxuSvpljI2Wtkz7cVYVEjUIihVHQCqzk/wBrQjJwYWOPxFWjQKTdtWAFLRRQSKKctJSimAuKMUtFMRDcQq6F84ZRmstm87gDjGST0rYmQPEw9qr6jbQwx2pik3O8ZMi4xtOeKdgMRwSq59acoH2v8BSuP3af71KB/pn4CqQENoP9Lb/eNJYc3h/3/wCtSWf/AB9Of9o1Dp5/0zP+3/WmgHXJ/wCJ1c/9dDRrR/e2X/XI/wA6Sc7tYuT/ANNDTdbP+kWf/XL+ppga2kkC3uT/ANMG/lXMwjLCuh01sWlyf+mD/wAq5y2OcVMug0dVop/0mP603x2QdVsx6W/9TTdHP7+Ok8akNq1qf+ncfzNV0J6lDTx0r0DSnK2689q4Gw4ArttMfEI+lNbBI84IzdSH/bP862LIcrWOObl/98/zrasuopLcp7GnqrY0SXvhT/KvMZV/4pZD6zmvTNU50SfPZD/KvNpOfCUP/Xwaiqd2E+EwdNA+1yg+teuoiN4YgiyORmvIrAf6TMfevXwixaBp57sn9KmkFeHNBnPwW+y4l44wa5+zj3aVqxHRTXXbVEshHOVNcvpo/wCJTrQqqgsI/cZysZ2zL7mtW4Q/aYwTk7QazIgDMPrWpcZF1HzzsFcrPRjsVZmyOeuaq/8ALSrEikykCoCMS4pE9T1Gx/4/Z/8AdFVJP+Qvp/4fzq1pj77uY+qCqkp/4mmnn3H869J6nziN1U3xBPavSZSTpmmwD+KJf5AV51CeUHtXpNqRNLYpjIWBW/Ss5dDWl8RX1VB9rKHo0O0fXtXkmozvFfqY8K8ExUYHQg165reA87E42wbs+nNeNxOb3VGWVss12QT9WFKJ3Oo1hmvQWG2dr2UMOSpY1oopN2mP7pq/qogj8RXL2oVomUoMcDpiq0YxeRj/AGSK0Wp509xVLDX4mAyfLYgevNdhYa9FKWTBjcfeV+R+dchE3/FR24/2WFX7aJ/tV0AvCg5/OokbUq0oaI6l8PCzE4ibuORg14/4kgRdX0lV+ZBJIAfUZNexRp/oDwY5WIYA9cV5JrA33OlMRyJnH6mkjrru9NMyLaxLJcnBx9oOK6zWdOjvNZsJGH+qQ/ooqlFCFt5eOsua3OH1KxDc7sg5/wB0VVjgTvIuaX82oxj1zXlXjKMjxtqPH8Wa92/sWK2uUuogyhT0ByDXnHjfRPI1TUL5wpE0JdCOvUVFjqdGUY3OCswVnXPTcK6TWr6LRNfsrpUDp9nIZScdTXP26kOPqKueOEZ/IbHAh6/8Co6GHU6WfxFpmtaVcGG5VJhCwMUpwx+XHHrXL2tuV0mTbKdrwbinoa5COLGDXcaXdC4097Z0GVhKqR6YqFK43psaPgZiul6l6G2ZfxzUvha2D+EopVkk3JvIXd8vftUPgnH9m369yhqx4UuHTwrGn2d2QlwZARgZP505bAtzH8A4N2/tcIf1rorANN4z14A4LxxEH3xXNeB22yXZ9JF/nXSaTII/GusFjwLeIn8BT+yL7RheH2aHUNRJxuW8OcfRq2Cj7vFJTGQF4P8A1zrG0Rg+pakwzhrvI/WulhtXaw8W3SrnaUT846Psh9o5rRT/AMUtcj/pylp99bLbeINIUKoJsNzYHU7TUeh8+HbhO/2OUfoa2vFemzWGv6E8sZQSadld2Mn5aOw11M7xQM6VqDektt/6BVvTrWGDyI5XYW01o80u75gNpA6dxVjXNOFx4I1u+DfNFPagD22j/Gr2j6eNSg2E48rR7lv1FJiuYMN4qCaGygJtV+7KnTHrn0rrLB5JLJHl7jhs9a5fQYYra1tbkx7k+ySyTAHrtx/jRZandapcSLCSsCrvSIjB2+melS0M7MdKUVHAjJAiuctjmpQKkBRTlFCrmrlpZvdSrHGpJJpiK4UmnhDXZ2/hCMRKZZTuPXFTjwpbD/lo1GgHDiM1ElkmydH+ZZmLEHtxj+ld8PCltnmRqqnw35zMbYxiNSRmTJ3EdenSjQcbnGRwFLcRSMZBjbkjqKqixnRfKjvGWHoF2AsB6A11t/psUEDEArKjbXXOefauT869kSWZBb+XG7DaQckA+tNotc1yxHGkMSxRjCqMCmRwiOeaXJJlxkemBio7i7ZdMW6hChn2439Bkjr+dLELgy/vJ4HXHIRSD/OgVpbiyW0c06SSgOEBARhkZPej7LCs6SxosbKCPkAAIPrUV1LcC7gt7do08xWYs6k9Me/vSwTTfantpzG7KgcPGCB9CKQe9YdPamaZJkneJ0UrlQDkH6/SpIY3jQh5mlOfvMAP5VFeSyxxqluFM8hwgbp7mpbeYTwJIOMjkeh7igTvy3JKWkpaZAtKKQCnAYFMBe1KBRSgUAI4/dt9DRrkEcVvp8iZ3SQMWz9aew/dt9DSa4d1tpo9IG/nTQjm2/1af71J/wAvx/CnSDEcX+9TF5vm/CqGJY8zufc1Bpx/0sf71T2P+uk+pqHTEzcg/wC1TQAxDapcH/pof503XT/pNmP+mP8AU0xW/wCJlP8A9dD/ADpddIN5ae0I/mafQEaGnnFlc/8AXB/5Vz9seRW1aHFhcf8AXJv5ViW/3hUy6FI6fSuJo6j8Xndq1v7QD+ZpdMOHQ1X8Tvu1WL2hH8zVvYlbjbI9K63T5NsX0FclY/w109n/AKs/Q00KRwyH983+8a27LtWIn+tP1NbVn2qVuU9jS1NsaHcH/pmf5V5xMmPCELetwa9F1T/kCXH/AFzP8q87m/5E2H/r4NTUO7CfCc9p5zdzD3r2CHbJ4WsHx8ynb+lePWOReS17HCoXwtZ4/vA/pUUtwxLap6FJYUKzOzlQqZHGcmuP0oZ0zWvpXq/hvRIdV0/UjMxAWMBcEDB5ryuzXybXWohzjIz+NOb1sLC/C0crCB5y59a1tUCx3MJXpsBNZCp+/T681sakB58ZHTYK5z0VsUJ5AZAV4zVbP7ypmCs9RMMSVPQnqelaY+2/x/eXFV5iRqNkTx8/9adZ8X4PsKW+XF/Y49v/AEKvQR84joIwVaLIODXo+hP5oib+7AozXGKqtpsJKgnHBrsfDg/0IuOmAo/KpmtC6b1ZU8WMV07UcHB+xORXinh2Yy3kbMSWEqsT+Ir2Txe2NOvzn/lycfoa8P8ACjlron0ZT/49RE3l8COrvLnbq7KBgZP86nhkDXkWPQ1m6kMa64/2j/Orlu228hPqSKpMwmSwH/iprb33V22iW8cupajGygjy/wCtcSpC+KLIezZruNHbZrWoj/pkf50S2JW6LMhe1bzO7dM/T/61eUainmGxlI/5eHP6mvXdbhI06TBwyWxZSPUV5Hevs06zZhljIT+pqYnZVqXgolrZ/o7e5Bq6XKX9oR2zj/vgVRWQPbD14q6vzXtvnszD/wAdq2cadmdRZ63JPLHbyRfM525Q8flWN47O6H7OQD/o7EHH0q5p6Y1dT2QFvyFVfGSb7O3nI627L/Ks0ejTlKdN3PNBbLGAcc5FXfFUQk0tiBlgoA/76FQSNkdOMiti/iWaEIwyCOn4ikcZ59babLK6jb1NdFb2rWOpXUA5aNGHP+7V5IFjcYXGDV290+QazcXSkGORDkHryKlKw7md4IJK3EQ/jRh/KrXhiK4/4R4/vSsSOwCYB3c81B4IhZb4huAQf5it/SII7HTvsu8b/mfGeeabWgRepxfg87XvRn+JT/49XU6dGG8aasjdHtYx+lcr4W4a/wDYr/6FXXaaM+OL30NnEab+EPtHP6Onk6pqkeSdt1jn8a7S3/5F3xii5yDC3T/pnXH2CD+0tcfPK3S4/M129pxoPjMH+7Af/IVFtAv7xwnh0A6JKD/z6zfyNdj8R54573ws6E5GnsCCCCPlFch4bGdGl/69Z/8A0Gu1+JR3SeEzjrYN/wCgil1QXKt8n/Fs/EYPaW0P6CrXg8ZR/wDa0i7/AJrUN8M/DfxPn+9aH9BVnwdyyj/qFXY/9Bo7i6GR4WtkudAmRhnGk3ePyWsiK6lsNLgu4CN6WQyCMg8oOR+NdB4LGdJceul3Y/8AHVrJtrIXHhG7kI/1embx+DR0mNHWLyqn1ANPUc1HF/qo/wDcH8qsIuTUASQxl3AAya77w7pItYBPIo8xume1YXhvSvtNwJXHyJzXdqoUAAcChuyAKMU6isyhKpIZbQGPyHkQElWTHQnPNXqYsiuzKp5U4P1poaOW1yJkieWQYeVgSM9BjAFcDHpqHzfPMvzSs2zzDtIJ9K9C8SSrJDhTnaxU/WuEk1CASMAk0gU4Z40JA/GtegJyd7EWowGXT2hjiD4K4ToCARxUVsqxzZTTPs+RguCv9Kv7o3hEsbhkI3ZHpUXmBrYTjOwrv6dsZpWBSaVmVrq0S5u7dpU3RorZ5xycYpLG2+xPLEqjyWO5Wz830PrUpuIltftJbEe3dn2pkV0ZZNht5o+Mguowf1oBOVrDZLV570zNLJGqLtj8tsdepNLa2zWssqB2eJzvBc5IbvSz3fkyrEsMkrspbCY4H4mnwStMpLQyRY7PjJ/I0BeVicHmnCmDrUi4xTMwp4puKcKAHinAUKKeBQIRlPlt9DVfWGzHZL/dgP8AOtBIDKrKoydprK1Y/Pbj0t6pAY0wzHFj+9TIx/p7VI/+ri+tEY/01qoCvZH9/J9TTdLB84fWizYCeT6mjTjiT8aEMqIc6hMf+mh/nRrH/H9B/wBch/M02H/j8kP+2f507VedQi/65ih7DL9vxp9x/wBcjWHAfnFbkPGnT/8AXM1hwf6wUpdBo6TTT8y1U8RHdqsf/XIf1q3p3VaqeIB/xNE/65iqfwiW47TxjFdRZ/6s/Q1zdiOldHaD90x/2T/KqiTI4VP9afrW1ZkcViR/6059a27MdKhblPYv6o3/ABJbgf8ATM/yrzqR8+EoUx/y8GvQtU/5A04/2D/KvNHY/wDCOoM8Cc1NU78GvdZnWS4vJ/wr1u0bf4Qs2z/EP5V5Ro6/ar+ZVUkEYyK9Ps7qK38PwWT7mkU7iBSp6EVk5QaXclg1G4s0uEhlZEkiIcKeoriNBHn22s5PSMnmuxjR5SR5eFK4yarvplrpmk3rxJhniO4+tVJJu6Cj7kbPc8wRt1wmema3dcCh7fb/AM8xWCgzMv1ra1PH2iEE5AQVy9z0V0M9LceXvzzVVuZDWmzKE2r3rMb/AFhpPYOp6HAcXf8AwGnXx/0qyJ9f61Wtpi9yOxxVnVSEnsfoD+td6Pm0dlC3/EuhHtXceH1C6HCR1Yk/rXAQSn7FCP8APU16B4eOdCg/4F/OpqbBHcwvGhxp92PW0f8Aka8R8Hj/AEmZuw2/+hV7V46z/Z9zjvav/I14v4NGZLs+ir/6FRHdHVL+Gjp9Ujzrrn3P86UnEsZHrVrU0X+1XP8AnrVN+JY/rVdTCRduF8vxTY+4JrtNLP8AxPL0DvFj/wAeFcVdtnxHp7f7P9K7LSj/AMVFcD+8g/mKHsEdzc10f6JMv/Ts4/Q14zqW7+zbHf8Ae80/zr2jXzi0mP8A0xYfoa8c1cbtPtG/6a4qY7Gs9kJGcRg1tOgS/g92P6rWKo/dCt+6GL20Psv/AKAKtLQw6mnaDbPdy/3IGP58VS8UXBOnm1+UgRb/AH+7VyPi2vz6xqP1FZHihc38R7NY/wBKy6nbTnywZwkmce3Fb8w4QH+4f5isOXjit64GAD/sn+lCOYpFRvFXprlGvpYS4JyAR3HGaz5JAD70MQdduXyAcJ1/3aEJol8MqF1MKo/jx+ta5jcyocII0DfN/ETzxVDw3EW1WQj/AJZtk/8AfQrQaGMzCQgll3Ac8Dk9qb2Ki7M4TwrEzSamB25/8eFdp9kEWo3F2TgyQRI30rnfDVo9s2qM4xu3AfgRXZMqsWDDIMUeR+dO3uhf3jkoLOS1uNXfbtiedduPrXYW4f8AsXxdwvl+Rblj3zsrLeAPDeRgYVXVsfSuqtLZH8OeIlA+aSCLP/fOKHH3Rc3vHmfhsf8AEjuP+vSf+Vdb8QGmeLwe8qIqmyIBVs5+Va57RbJrayu7bqRZy/qtdR8QYyNN8GHuLUg/98LUvoNO7ZFej/i3Pij/AK52jfyqfwWP3kPvpl2P/QKjvsnwB4oUf8+9oan8Fgefp4/vWF2P0Wl3EUPAyn+y8nvYXg/8cWq2mL/xRl6P72jMfyaOr3gcD+zYR62d2P8AxwVQ0sn/AIRCb/a0Wb9ClDGjdg5gi/3B/KtCyt2nnVFHJNZ9rzBD/uL/ACrsvClgJJjO4yF6VAzqtNtFs7NIgOcc1dFMpc81m9RodSZoPSkBpAOrOSO4a6uTHOI13jjZnsKv5pOlNDTscdrSOLK4Vn3P5r/NjHNcNa3cEVokckqRPEuHRjggivRfFWBbjAxk5rgphG77mjQsOhKgkVr0DnT3K9iX+yzEAqsjuyKewNRR6nAmjiB5FEyReWY/4t2MYxVktTMru3bV3euOaQ+ZPciKRppSxXAOxYwHx24qC3uSt1DHDe/ao3zuBwSgx1yP61c30gKr0UD6CgFMqX0iLqcJe6a3XymG5cc8jjkVatJY3jIjujcYPLEjI/KpMg+lKDQJyurEoNPBqFTUqmmQSrT1piVIo5piJVqZFzio0HNXbWEyyqoHU4oA2tDsNyyTOOAhA/KuI1fiWL2h/wAa9XtrcW9j5YH8PNeT6uf36f8AXH+poi7tjsZTf6uL60Rf8fr1HK37uH6mlhP+luasRTtf9bKfc07TOZB9aZa/fkP1p+l/foW5RUt/+Pp/98/zp2qc6gn+4KLUZum/3jS6oP8AiYL/ALgoewdS7Fxp0/8A1zNYcR+cVvRj/iXT/wDXM1hwxlmBFTLoCOi07+E1W17nVU/65irenocLVbWx/wATQZ/55rVv4RdSWy7V0ltxbv8A7h/lXOWRxiuht2/cP/uH+VXEUjhI/wDWfjW1Z9qxUP7w/Wte2PAqI7lPY072My6a8a/edSBXMWfg+T7F5E7B1Zt2OldX/BGe4NWHIjaPOMFc0SV9zoo1HGNkYFh4WtLCPCqAScnb/jWrHZxInCcDjJptzqUEKsGdQR2zzWc+vLt+VDj/AGjiotYvmkzZYER4C8Z61m6wD/ZN0PWM1Tj1ua5l8sMoXBOBWVaatLqcOoxMx3RxnrTvYqMW3c4WP/Xr9a19RG65j5/gFZEf/HwPrW1qZCXUWRn92K5n1PQWxnyYPAqmeJKuBhITt7daqN/rTUdBdTtbZxHPGT3OK0NcG2WxP+xn9aym4aPkDmtjxJ8p07BBzF1H1r0D5xHQ2z5sIPb/ABNej+Hv+QDb/wDAv515lYnOmQn/AD1r0vw6c6BB7Fv51M9hrcwvGnzW0q+ts/8AWvFvB3TUv9mNT/48K9q8UjeWU97d68W8HjH9rD0hH/oYpx6HQ9aZ1msT+Xq7L6xg/rWek2645/vcVa8QrjWojjrbg/rWUzlGDjswoe5jLY3LrjWtNb/ZNdrowLeJznvFn9RXD6hlNR0wt12k8e4rqI9RGm6qLgsq/ucZY4pvYnqdfr67rKbHXyz/ACNeNatKE0m1diP9fivSY9aGqWzqJFbIZRtbPQf/AF68t19T/YMHtcj+dTHY6ZL3EyaNt8YI6Gugvj+/sT6hf/QK5WByuBniukv5RmwPI+VTz/u1cdjne5sSPiC5T+9tFUPEyj7Rakd7I1Xu9d05JniNzGGwCV3c9KteImDpYSA5VrJiCPpWa3OmGsGcDMMHpW5Lk7Se6H+lYsxzW5KQ2z/cz/KgwKE0QOGFVr1durz4PUJ/Kr0nAxVe/jb+1pnx8uI+f+A0JDbNfwkoOoXeeu3P/jwq1JxIR7n+Zqn4UO3VboE9Yif1FRaxrNnpt2kU8oRnyQCpOfmPpTfwiW42wIf7WAOcyD+Vbkgxz3MSf1rF01QtzJjozyfyFaGqXUdpGzyNtRY48n8TVy+En7RNZW5m+3KeAwGDXSQSQW2mX0UjYW4jSNiOox6VlR3dvb2qFRjKgkjvWPc6i8kufMO08gVzTq9EdMKKerNnTfD9pIJHt7s73iMW11x1FX/G1or6RpKbd5tYfLLgcA8D+lZelzzmHerbnz8qgV0iT+bZsLhdylcMDUKq76mkqKtoc/cWm7wP4iQH5pLe3H5UzwhG0N1p6t/BaXak/wDAVq/q8KW2h3QhkYwzouc/7PSsdLv7Ba2s6kgl5I8gf39ordWkro5ZJxdmReCfl06Ht/o12P8AyHWdpZx4ROe+j3A/VKtuw02yQoxTBkjG3/aUL/WsK786y0K3tULNizkiO3vuI/wptAjsbAb4Lcesa/yr1HQ4FttOQcAkZNeEweONKtEjik+0LLEoVv3fccVpJ8VrJBgTXWPaP/69ZFWPdyw9RRuX1FeDSfFu1H3WvG/4CB/Wof8Ahb0H/PO9P4D/ABpWQanv+5fUUb19RXz+fi9B/wA8r78h/jTf+Fvw/wDPC+P4j/GiyDU+gd6/3h+dHmJ/eH518xz/ABW8Q+Y5hkhEe47VZCTj35psnxR8Rq0ZWeBwygtiM8eo60rILM9R8Z+PdJi1d9HxIZImCvKMbQfSsd3Dcg5B5BrirrUrPU2bUHtdk7/MVeZRvP5U+Lxm1whMelyhUIUnzF4q29AsdVNcRwRNJK4RFGSTWSPFGlF9ouCSSBnYa5zW/EJltZIXs8qykAiQHB+lctAl9gTfLs+8VLDJxU3HY9kBpc1wg8cvgY024J7/ADj/AAq1L4ykhVWfTpzu7JIDj9KYWOyBrJvvEkFjeC28p5DkBiO1Yi+MLmR/3emuQRkbpcH+VRC9utSSWXEVi55G9txPtjFNCsd2DkA9jUqmvKG8T+JEEytcSArwm2EYPP0qW18Wa7G6SSu0oXkow2hvyFF0Ox6wpqZTzXmK+PdWP3dJT8ZDUo+IGpRoTNYRqx4RVc5Jouhcp6gnWtzRBGLpXkIAHrXikXxG1UNtextx9Xb/ABq0PiXfp/y62w/7an/GjmQuU+i2vbYxsPNXoe9eS6sc3CEf88f8a5EfE7UGIX7NByccO1dVfnJhPrbqacbIbMqX/VxD/ap0P/H09Nm6Qj3NPh/4+XqySlaciQ+xqbSx82aZaD5Jfoak0s4JoQyrZrm5b/eNGqjGoqP9gUtl/wAfDf7xpuqn/iYL/uCjoHUvxNnT5v8Armax4OAta8H/AB4yj/YNZEPUClLoNHQWDfdqtrX/ACEwf9has6eOAaraz/yEh/uCrewluSWf3hXQW/NvJ/uH+Vc9ZnpW/bnNvIP9g/ypxEzh1GZD9a2LXoKyIh8341r2g6VC3KexfvZjb2XmL1UE1yV94muJNJW5RiQHKc8V1GrMF018/wBxv5VwFxEP+EQhP96dqVR2OzDRTiR2+uXN7JjCxg9W6muy/sKC3jt5J5GmaVA/zHpXnlhGQ3Fes3yMbLTiO0IzRT13IrNxjcbfWsFskQgjVMxbjgVw3h1jv1j1MbV3Ort+9g/64gVwugHbcasP+mbUVN0VhdYs5mM/6R+NbGpNuvIzjjYBWPFzP+Nal8xM8ef7orlfU9KOxSibE0gHeoG/1pqXP71itQ/8tKnoHU6ufPl5rY16VZYNKKHIEAB+tZFx9zHvVu9J+zWntx/KvQufOI6+xX/iVQn/AD1r0fw2wOgRjuGYH868+sF/4kVu31/nXe+FwTpDjt5h/lUz2En7xm+IozJIzD+GBq8W8HjE2tL6Qf8As4r3LV1UyTA9Pszn9a8Q8Ir/AKdrw9Ldv/QxVLc3veB3Wt2K3WsxgAbjpSuo9xiuNnOI2+td7cHOv2Z9dFrgLjmNvrR0MmzW1Cc3F/YSEAEKBgfStDxMwFsT6ItZVxxdWQ9h/KtHxGd9nKfRVoYhfBVwpWNO7XMij/v2KyNXx/YYJ/huf61HoFybUadKCcf2sFP0ZMU/WhjRLgf3bzj/AL6qIs7alvZxKuRvIA4re1G7W4ksSq4CpGnPfC1gdD71oTt+4tD/ALv8qtM43ucvr6R/2u2FGNq/yr0PV2DaVpJHH+hlf/HRXnOtFpdUKr97AH6V3t9MJdE0sjqtuR/44KzT1OukvckcjMecVtg713D+GIf0rAkJLE4P41u2yMsLBzyYv8KaOYrucsBWhq9lMmlfagoCO8fzZ/CqQhyc5rd1FP8AiTRET+Z+8i/cZ9xRdrYdkzN8OvEmpXhZgCYGCZ7nik1XwjqfiB4ry0SEwxjaxkkCkEHnj8RVSzyNZf5duXb5fSrOreOp/C8sVnDGz+aDJkbcdcc5HtTvdCW4QI63iQ5CuJmRvy5qxrFpcah5sFsxEjBMEdgGOTWbLcOwacH52lZj+I/+vV6+1SfS9OmuoeXa3EZ4GSGbB/nTb0sO2tyW5lNvbW7RyAkAZVuc8VmXB3XKLsPTIKnqKnMpS1HnACVowCuc4NVrKKW4kDImOeBnFcc9zshsdVYIz2JMA2SKOh6n8a1rO6luLZ7WY/vAn3qz0tnay3orBsYKnqD+FZaa59hvfKkXlevasmapHSfZ5P7BnhucMVUnPrXLagwXSoCeiXSk/wDfS101/eK9tsgcGOWMuMH2rmNUQjQUc4w9wMe3K11Udjkr/EQ6q++03eswP6iorpeYG9YR/Op9VQizYHqJR/Sm3C5S3Hfyv/Zq3Oc8w1e62azeLgcTN/OqP2456CrfiOaOTWriNLZImjkdXdSSZDk8nP8ASstW8h1kaJJF5+V84P5Vzy3Ny19q8w4H6UpkPqapRNzmp0y7YqREvmH1NODn1qs7FWIxnFIJm/u0AXlOanjBPQVnLO47CtOykuZgTFCDjvjNCQE6W8snRTXUeGfCkGsrcG5l8r7Ntmk+bGYud2PfpXKzajf29sJ1WEpv2HK9DSRa9q62z3EYiEWfLYqP0601oxnqX/CqbU25P9p7XXJbA3DByVz6cY/OnSfCazTUFjS7ucMWcMkO5Aoz8u7P3uOleWp4x1uItslC7hhsZ5HoeamTx3rqAKJlwDuA56+vWquuwj1VfhdZRojy6pcJ5il1QwDcoC7iGGeDU0/wtFtYSXEepByBuQGPGRxwfQ815QvxA8QhtxlhJPdkJ/rVpPij4mjXYstrt9DFx/OhNIR2w8Haggymx/pVO70O9tgfNt3GO4Fc6nxc8TpwDY/9+P8A69SP8XvEzxlSmn89/Iz/AFq+aIrMluYHXgism4jlDDywp9c1XvvG+tagCZlsxnuluBWUdYv3P+sT8EFQ2uhRvLuCDdgN7Vl6hMHuIkB+ZXFUzqV+3/LUf98CljDTRSzyNmRWXBqbAXZz+9P0qmetWOWwWOTiq560ICeA4YfUV7Rc/NHbn/p2WvFYjzXtDkNBbn/p3X+VXETKEinMPHenoP8ASHp0n/LKkT/j5cVoQVrZMJIR/dNJp/XFSWv3JB7GotP+/QMr2f8Ar2+tN1TnUV/3BTrT/Xn/AHjTdT/5CI/3BR0H1LluT9il/wBw1mw/eFaUHFlL/umsyEfMKTBHQWJ6VV1n/kJD/cFWbDtVbWvl1Nf9wVT2F1H2fat+D/j1kP8AsH+VYFockVvQki1l/wBw/wAqqOwmcTGcPz61r2f3hWPGMt+NbNmMYFQty3sWdWXNh/wFv5VwVwD/AMIjB/13au+1biw9sN/KvP7hj/wisQ7eeamod2F+Ao6aMtj1Nel61PJBBpyqcAwrmvPvD8H2i7VPeu98RAhrBfSIVVPYwrvSw7V5D5lr7wr/ACritD4uNV/65tXZauf31p7RL/KuO0TaLjVs/wBxv51NToa4X4WcymRccdzWrqfyzx/7grJBxcL9a09QO64TP9wVys9GOxRiIDsKY3+sNSIg3k1E/wDrKXQXU62blfxqzfH/AES1+pH8qquwHPvVm/ObS1PYsf6V3nziO6sDnw5an6/+hGu88NDGhg9y7VwOnHPhm1Ppu/8AQjXe+GjnQh/vtRPYS+Ioaw+Gn5/5dnrxnwkn/E419fS1k/8AQxXsWtnAuD/06yV5F4PX/ioNfHX/AEOU/qKa3NtoHePltXsiOp0WvPpzmJvrXoUYLatp59dFrzu4/wBU/wDvU3sZs1Lg/wCkWWOeB/KrmssX06c+y1RnPz2Z+n8q6fT9FGrArPkW+RuPr7VLEcdpdpczafaNBBJIU1ZHIVSeAvWtLxJZXEGkXhlgkQNdhgSpAxur2jSrG2srPbbwqiIPlVRir4hgvbdoriFJUPDK65BrNy5Tpc3KKR86FfnJq5cD9xa/7y/yrtfGvgldORtS0xD9m6yxddnuPauMvkMcVuD6of0q4tNXRg1ZnI6nKI9ey3QY/lXYmQnS4VP8MakfjEK4XxFxqbkeg/lXcLtbS0/vCCE5/wC2VR1Oyk/dZzTk7iM10Nk29eef3P8AhXPS/erf06KSVNsUbySGE7UQZJ6dBTRytEjbtuNhWp9QYx2xdThg0ZB/KqJtdSQFmsr2PHZ4GH9Ku6mrNYbtp5Mfb6VtT6ky0M6zdm1PcxySzEmua8etu1e0P/TE/wDoRrqNLg8zUZA2QVDMPwrmPGsDSatahf8Ankx/8fNZyKjudMyD7EhH8Q3f+OiqHijW7W10tbdWWWZ1XKg/dw2eaxpvEN01p5JREwMbl+mK5K9yGzknPOaUnoUkekLA9xbWziQATsmMHpuFaceiiN1QyzZPBKuRXDeDL64kult5ZXaFJIygPQc16ZF/a8Rea0sPttt1JPb8a5YUoVKknJX2Pd+tVqOFpeyla/N+ZoweB7holeLVJ9rDOwSMKqXXg6Wy1rTYHuGuZLsS/I5yBtXI5rodI1TWLvSftMelFjC23y1k+Zh+NVfEeuzWN/pGq3Vm1p9niuXVJWBJIj4/XFTWw9OKTS6r80aYTG4irOUJyuuWX/pLMrUbvydTtbJihlUujhOiYjPH1qheuDo6k9BcR/8AsteeaV4kn/tqW7v2Li4kd356MwIz+tdzqMiv4cLo2VM6YI/CuyCSVkfPVbuVy1qrZtJCRgmWmuwaS3QdRF/7NRrxxHN/12FRb9t3anuYx/OqIPKvEH/Ixah/13b+dVDuMIDDIxxVvxB/yMN//wBd2/nVXy2EHmZ+Xp1rCW5qQwjFTxcSVBGfmqaP/W1PUAbIkYikEpJYsASaJurVGv3aYEqnA6VvaFqf2JZg1uZg64UZwFPrWOkqBMFf0rb07UbeO2CeUcjqcVURPYrXrbtDlcrj/S+np8pqTTgH8NXAAGftA/lTp1+06NOFH37sY9vlNRxq0MIt45VVc5IPc0AVjYyyDKoPzqL+zJhE8jYUKa0VuPLDRhWLHr9aJkmKZWZSO6kdKdkBgPlcg0zrWnLbG4ARPlkBxj1rotA8P6QsRk1Zmkk7RjdtH5VjOcYu0mkdNHCV66bpQcrdk2cSetPTAYZr0K68I6Jqm+LTJGguypMSfMVcgZxzXn00bwymORSroSrA9iKcXGSvF3IrUKtCXLVi4vzVixNt+zrt/vGoYyN9R7sjmkX71UzEtqRuqSNysTp2Zhn8KSzjR9xZwuOme9Ko4/GgZd24x9KqnrV0jkfQ1SoAkjr2UHNrbf8AXuv8q8aToa9ji+aztj/07r/KqiJkUg/1VNT/AI+Hp7DJjpEH+kyVoZkdt/q5P901WsPv1YtT+7k+hqCw+9QUiGzIMp+tN1T/AJCI/wBwU+xGZm+tJqig6gP90UdB9S1D/wAeUv8AuGsuL7wrWjUCylwP4DWREfmFKQI6DT+q1U1rnVsf7Aq5YdVqprA/4m2f9gVT+ES3JLNfmFb8Q/0aUf7B/lWHZ8kVvxf8esv+4f5VUdhM4aA/NW1a9qxYB81bNqDxUrcpom1kn7AMeh/lXn9xz4Wh/wCu7V6BrKn+zjjsrH9K4CbnwtD/ANd2rOqz0MKrwLXhEAXJcD5hXXeJWzcWX/XIVyng7aJ5geu3ium8RN/pNn/1yFaQ+E5a/wARJqTZntif+ea/yrj9Ix9o1bj+Bq6u8Pm3FuB/cA/SuX0hMXGsA9djVFQ3wvws5yFYTIS+cjpV+9G6aLP9wVlJ/r6170Dz4s9NgrmZ6MdikF255qseWNWM5Ygcjmq2fnIqBdTqZfu496uX3/Hjaf7x/pVOToPrVu8P+hwf75/kK9A+cR2emSH/AIRy3HoW/nXf+F33aRIn9yT+YrzvSzjw/D7E/wA677wk27Trn/fH8qJbC6lLxCcRXRz/AMukleU+CufEmuAd7CQ/yr0/xNJtt7n/AK9ZR+leX/D87/E2qH106T+Qo6o3/wCXbPQbXm605vXRv615tP8A6uT616VZ/wDMPbuNHP8A6Ea84aIyl16DPWq6GRoQwSXdxYRRjJbH9K7C48QWehSLp6xTySogY+XHuHPeqnh6zjtbH7bID8q7VJFZEN6J/El3cTfdEIBx2Ga5q85RSUerPRy6hTqOcqquoq9r26r/ADO103x3aKuJLHVXB6hLUkVp/wDCw9JtlZ5bDVoo8jLPZlQO3JJqj4f1TTZdsUN4jOBnaDzSeOJxJ4SvdkgdCsZBBz/y0Wuer7SMHLm28jvw0cJWrQpeza5ml8Xd+h30sUd1btHIoaORcEHuDXiHi/TG0rVfsvJRHXYT3XHFewQXyiGByflKgGua+ImiG/0+LUIBl7c/Pjuv/wBaumn7r1PFkj568QoRfsccECuziYf2cqnqbWAj/visHXLNWm3N3OK2VGyOBeoNrH/6BV9TWHwswZQpfqa7LwfKIdZspDMkQUEmR22gcetcZMxLHiur8LyGPULSQdqEruxhex61c+KLO3jEcd7FcO4JPlncF/KuC1TTYBoWm3i3OZ7uZcwsevz9QK7rTLvf4nkgCv5ctqGAI+UEHn8ax10KKfSl1WaZgbRJIkjUccvnJqadQurblskeeH934jvkIAIlkHH1rkPHBcapZ7M58tun+8a3NY1AWXiHUZwQ5aeTHPHWuT1XU5r+YyzMCwyBgdBWnQzgVNW8iB1jtrjzsqCeMYPpWdNbyhGEg2FRkBxjP0qS2jE+oQxscKzjJrsLmGG6hKMoPHFLl5i72Od8Mt5DvJ6c/lXoln4jntLF4VnKxPz6DHpmvP7S1bTtQaGVh5EwIR+wPoa9G0HwZrN9pf2uG3gktc/L5shXd9MVzKTp1JXT1t0PYhTVbDU0pxTV73aXU9D8J6lDPoDMqmEMCwbeG/EV5v8AFTUZ7mCG1lcN5Cn5hxnJH+FdRHNreh6RNcPa6Tb28IwzSTtk/Qd68i8QeIBrVzczOzGWTChQPlGD2oqz542Se66eaNaNFUJSnKcbcsvtLrFpfiYtpbtM+1Rk11lvNcW2mnT5ZVNuSrgt/C2f5Vh2VxbWUQ86ZA57VduroXIiij3kMQc44rqilY8F6naatcR3VnLNEwZXlBGPpTZOJ7X/AK5j/wBCrm9NY3OrfYvtAjhAxz0Ldq6SfrAQQSo2nH+8KYnFpXPLvEBz4hvv+uzVA82dPEJAGGyDjk10d/4WvtU1a9ubUo0ZmYHrwfTpVS98J31jZNPdPHHEnGSG7/hWTTuVdGFb2zvG0oxtU806MYlFdDYeH/LtEnlnBilAYqB2rTudFsJ9Kea2RVmi5DDjPsamwzi5xh2qWxtHuX2jhepY9hXQaXBbrqkInjRwqOWVhn6VPdywmVhCiInooxSegJEsC2IgEX2ZZAABz1NMh0i18uU+Q4LZ8tlfIB9KpguZRtGK7fwvELu2ntdqsUw4JHTiiLKscZHbSLp0ke07kuskevymoptGnktVnWWLeefL3/MK6C4uYbmVhGPu3IjY4xkgGu6iS2SYKbOAjpzGKi83NxjbSx306OHjQjVq8zbbWlulu68zx9Yr2HOyIknqav21m0sEnnEKcZAY8k17LFaWMgGbO39/3YqS+0zTk0a8ZbKASCFyG8sZBwabVZK91+JUIYKUlG0tfNf5Hhlral5wzAgxtXd6DeCzaIMhKuQuB6npXPx2wG5gCWK7sAe1TJfPCsLqT+6cMMDPSojK8031RtOl7KhOnHpNr7kaXivxcI71VsI9k+nZDM2Mbm4/TFeZXeoTXd3LcT7WkkYsxx1Jq8kk+ojUpirPNPIGIA5JJNMt9LEok88vGyMF27cnJqVUUXNvv+iJr0J140IQ35G9XbaUm9WLbXtlNAYZ7OJZMcSKtZ7wskuApI7YFdkfA040sXXkssaKWZywBI+ldFaRWGi+EYbq5lbzY5NrIqZ3A9DWkKik+X9Dhr4KpRgptpp6aNP8mzy6IFGy0bFfpUyfNyBwWrvD4r0eS2niiSZmeNlAMY6kVxVug8vkc+ao/WtnFHJFtmhLbvFMY2UhgDx+FQ6fpct+xIZY4l+87dBXX6hFGdah+UYZWB/75qlYQfuo7cDCDJY/7VTsUVovCjTx77e7Rwe+0ivQliaGzgjbqkIUn6ViaU4hh8slfvkD3rqoZYr2ze3ypljXK+uMVUbCaMonBjz60ikfan9K53xjq82l2trHbttmlY8jqAKqeF7fXtbuDPZyO+37wmbaG+meKq4lG50tq37uT6GodP8Amc0+APF5kco2yLlWHoe9Raa2GphaxHZPiY/WjU3/AOJiv+4Kjs2/fE/7VGpnGoKf9gUX0DqaMb4sJvXYaxIWO8VrRMDYTc/wGsiEjcKmQ0dDYOciq+rZOp5P90VLYMOKj1U/8TEf7gqugupPZdRW/F/x7Sf7h/lWBZ9RW9D/AMe0n+4f5VcSZHDw/e/GtuzHIrDibDH61s2bE4qVuUy5q3/IOb/cb+VeeyHPhRPac16DqvOlyH0Rv5V54xx4YUf9NzWdU9DB/AHh2VortnH8Irq9fk3Xlo3rEDXN+FvLN6yyDIZTXR6+gF1bY6CIAVVPYwxHxCyufOtvoB+lc/pGftmrrn/lm1bchzLbn6Vi6SP+Jhqv/XNqVQ1wvws5aMfvsVq3vEsWTn5KylOJ/wAa1NR+9F/uCuZnox2KEALSNj3qL/loafAcOQKjbiQ1PQT3Ook7fWrd7/x5w/75/kKgkTjPvT7yQG3jX0bP6V3nzaOy03/kX4v95v513Xgxs6ddezj+VcBpr50GMe7fzrtPBUn/ABLr32kX+VD2DqVfFsgFpcE97eUfpXmnw358S3f+1psn8hXoPjCUfYpx/wBMJP5V5/8ADYbfEx3DHmaa+KOqOj/l2z0Kx5s9Ob/qFuP/AB81xVjZXlzMFgtiVLcuegrt9N50rTj/ANQ+Uf8Aj5rzq11wabeK1w7GBWPyhqroYI6Txlr8fh7RIreNd8zjCjt9awvh3ffbNTSa9CsJI9sm7ofmqjr+PGGrWS2u7Y7iPJ7DGTV6ysksNauLKL5VWMKv6VxV3dxfmfQYGj7OE11cG/xR6h4cTS5fEV1LaxQpGiFVAHLe9Z/i7Q9MtfC2oahZtIPNZMJvO0fvBnipfDWnahYS+as8TRNzkopOPTPWofE6bPB+pqJA4EqucdFzIKVdfupejJwEbYyl/ij+ZJb+IC3iO50gsNqAFB6cV1tvepJatbXPKsu059K8qurqK58ZNJYNlYyoL+pB5r0C4bdbM6nGVJ/Stoq+5wYqlyNeZ5P430eXTdRZCv7lnzG46EVG/EdsO/2WP/0Guw8U3cE2hsLzDMIwykjnJHGK4+Vf3Fq+etsv8q06nPHWDOfmfEhAxXYeE7Y3j2cYmeAyM6+bGcMvHUGuDmcmXmux0G9lsNHhvIQjSwmVlEgypIUdalbkI1Fiube+kS98SaqPLPyM1znP4CuuW/2eALzZITEqFPOb3OM/WvEJdf1dbuS6mNqWclsFGwPpxXbS+IYH+EtlbRXSC4Mjm4hHXOSR+FFkW02edatclbqRQ+4Bj8w71kSOWGc5FWVQ3ZdmbDZ5qGxjjlkkikOCOlMRSYkNuUkH2q1BrV5bgDeJFHZqtTaYE5Ukj0pi6VHcoTDLhx1RhRZ9AJ49ctrpTFdxbQ3U9RXTab4o1uysEtNP1u5NoOFjVg2B6CuM/swElWJVx1BFSRaWYmDw3DxuDlSvGDTjJp6lJ2Ou1+HVF0o3N7FdsJPuyTA4z+NczHppGGcHJ5wa3odT17xDJBpup6kJ4LZTInmHqB29zUErmVy56k1pKXOKUjJl0qGSMRhf3n96qbJfaZOBayMyeh5Fb+ABUZ2sD61HKibi20oOJWj2SEguB610FhNv+XPHBH5iuSSYi4dM8Fq3LSYo8ZzxkZqlqDO28C/2LYy6zNrU5SSW6PlROj4C/wB4YHer/wAQr7w/eeBr230srJdEoVCQPnAYZ5I9K8o1TU9YXVLlYdZuoow5CosxAUewzTINR1QQvJPrF1OOnltMxB+ozUc2tjN003c6aPV9K/s7ToTZR3EsMKq4mdo41bHU7eTQuu6NdJNHdaR9jkIIWaymZlJ7blbgiuct7iaYyZcl1Quv4VA1/d7GKSknHG7kU1Y1S7Fm8lSB3uQvLphcVi/a2LgkEE8j3p3mzyKY52G05O7GcVXjdLiJIJF2OhO1wf0NYSabN/ZOKNKC7ZZASN3rgdK9Q8GskdpNcp+62LuJYcsMV5xomkzzC6u3kWO2tI98jYzu9h710GgajfahJexQIIbcxFI8nIb6+9EYtvQjYju7pb7V5LpbdIFluA2yPpnHJ/GtjVn1S01TfamR0ZuMnK/lWT/Z8sNoLiVgDvBCg810sOpSCSPdHvIIbb6+1WqM4VJOS6L9Ts54ywdO380/ygaWrTarpVhb3UKD5gPMyM4/Cr1nfXuo6JdSSIGi8h/n2FP4T2q8dUa7sBM1mY0HylXIOaqT6iw025gRQqGF/wCRpz+FioRvUj6ooaTpsUWhwz7VMd1ABOx4Kjbjr6V5Ze65bxXNwIoS0YciPB7dq39U8a3i+HG0SG3EEYjVGuM8sMc4rz2TDJgHoc1zqnCUI8yvojoxGNrUa9SNKbj7z2bXU6Twjqbyaxm7kHk7SAxUYUnoa6u90a3m1W2iDf6xdzuh6le4rk/DcUE4ZI2XzCOR3rfhupbC+jeXJEWRj2NRUjGEVZWV1+ZWDrVcRWftJOTcZJXf916am9f2d/Dp0xTUJJrURkNHLyRx2NW7KzgvNMFrcwo8boCQfpVG816KbRplFtMqyKV8wr8ufrVnw5fLd2kbqQSp2EfSrjKM6rcexGIozo4SMais+Z/kjhvE2lJoksVxaoDbOWTJ5wwPSsSBi0LSHvKp/Wu01C+tGtdcsdRCLGJHMW4niXtj61x0EJTTRISpVpFwAeRg1qedOLi9TttRJGqWrAZ4P/oNZk84t4ppFzhMZFaOsXK2U0V0+CiLyPXK1y9rq8U93MlxGRBIDgZ70mZnT2kkF9bRpbkvISXTB5BA6Gtrw5d/6WXljaOQDDelef6TdCz1iS4iSQIEYRBj0JGOa3bXV5rS88w27yQt94A5poYeI7VdR+IkFrcyr9mG3aM8Yxkj8TXpMdlZaWLa3htwpCDyFR2Jb1yBXl95cxXfiX+0LdGR9oKhxwGAr0bw94nhvrb7RfyWkFzEdm3fgkDvjtSqTcVew4s5/e3nzk5yWbr1qvYPhqv6lNFcardXEAIikYsM9+OtZNo2Gqk3ZNkMWzf/AEg+madqbZvlP+wKr2pxMT707UW/0xf9wU76AaljteFhIflPBrodNh0+OACOGMn3XP61xfm/Pbx7iB1IHc11FkryuskZCOBhhnIrSDEzXitLWUyxiFMnkOgwQa5XVQV1LB6hQK6yzdAkjquFQhXPqawPFccaajBIgILpz781c17pK3IbNhxW/A+YH/3D/KuZtH6Vv2z/AOjsf9k1MRtHGxHLH61s2fasSE/OfrW1aN0qVuU9i7qh/wCJTL/uH+Vecsx/4R0Dt5xr0TU+dIm/3D/KvPGH/FOD/rtUVT0MH8BJ4ekSK+Uv90giup1z95NblTx5QNcXp3+uT612808MRi80jm3wpPrVU3pYxxEepTLMXgUDJrK0bjVNTU942rasrmKO4V3IwVIGaxdJOdY1M/7DVMy8LszmFx52Md61dUH72ED/AJ5iso8TH/erS1FsND/1zFc73PRjsULZQ1yfoahf/WGpLZwsxY+lRMcyE1PQT3Orkk+TFQ3UnIGfT+VNkfC5qpeTfOvPVRXcz51I7/SMtoaf7zfzrsvBBP2G/H+2v8jXFaC4bw7Ef9pv512Xgp9tnqH++v8AI0+gnuZvjA/6JN6+VJ/KuC+HcoHieDkY+wODxiu38Xvutp/+uT/yrx+w1WXSS88JIka1aEH03HrU3s0zoSvBnWax8RGtNMtdO0obZ4I5IZpnGRhmz8tecyXUkk4eR2b5snJqFmJJ5zTCNw4qJSuStD2b4U28Go6skTlRs3Ovr0rrPEngB5r6W6j68HIYgFa8J8M61e6VqMM1rM0UkTBgVP5ivq6a9i1Twwl3Cd63EAIKHoSKy5VJcsldHpSxlWEo1aTcdLaHlCeF2OopYws8kjcEpM+0frW74j8JaBoWhF5TO9xt/iuGwzfTNbXh7T5tOikvZyd7cjeOVWvNPG3igaprEzCTfDbtsRQeM9zQ8NSSvyo6aGYYqrWSdZqK1erMuz1FdIuGvXBYcjHc59K0tT+J0s9sLSwtPKXbtLyNk+/SuHvLySbLSNwOgFUFciQL/EeTWkE0tTizDFQr1b01ZI9Ln8Q2niHSTEY/KuYo8FCcggDqKqzf6i39Psy4/I1xlpcGKdXUkY4P0rr5H3QQY6fZlx+Rq+pyRsoSOTlb5811OlSMPDMjR/fUTY+u2uUl+9XV+HbeS90xrGFS0s3mIgXkklaXUyOVmvdanMbOrNtGBkoQPpUl1HPFo1urKA07McZGeD3A6VqX/hW9gjMM9neLJGOcW5OPyNYM9yZdWjTOUj+UcYqVe5tCo4Xt1M+2uUW9UtwrjYwqm0n2fUZNpyA3Wi+Ajv5AvTdmqm7dOx9eablYg6uNxcQBh1qtJEdwkjOHX9araVdYzGx47VoyYjkD/wAJrVO6JIzIJgH43YwfUUA46imumyTcp4NJv3DGKAL2hNu8Qwqx+UxSD/x00pODjFZ+1RPG3QjvVxjgihDbHM+2qjSKMup47ipnbjIrJuGKyNg8HtRJ2EhELGN5+5NbVjN5lujZ5rmrSVhHInVTWro03yNGex4qYy1G0UdcjKapI5ORJh6vadbhtBmmMLbTJtEwU4Ddhml8QQ7reOYfwnB+hr1zwDokH/Cv7WOaNX+1B5SGGev/AOqjl98TdkeT2TGK6jbPqD9DwaryoYi0Z7Hr7VZlTyrt4/7rkfkahmJmuJQO/SoqOx04aPNIg7D3OKpSRMsjYHerW8iNWwfvDPsatNGJbiIKP9YpU1zne4KS1N7Qpje+HzoBQxyyS75ZuwiHJJPtV6C9htYDa2cJWJQdrseSKyrGaSwtJYdw3SoEcj09Kqz6h9mdQQdh6n0rtp02ldnnVJwTaWpstKWtZGz0xn61JYu95pwZpHDEkgqdpH41QguoZ7XEbBgeoFbOl6Y13b4gmZSOCi8YroxntJTdSnG8Wl1XS/8AmaYX2E8PGnUqcsoyk9m9Hy9l5GvpNpfG3KNeXTRDkBpww/LrWgXLWdxvICpE2W/CsebRJLGBpri+eJPrjNZN1cXChoBdSNHuxgtwRXBerJP3PxR2Rjh6clJ1l90v8iFILe6t2juohJHkYzxg4rjtZsYLac/ZWk8s9nGCK7FZUwEDgY6D1qQw2903k3ESyKVyMj3rpp0b04xe9jzMTWU685x2bb/E82huZ7SYSwyNHIp4ZTzXSTeIZ9R0YeZKi3yyBOF5dfWruqeDUZGm0+U7uphf+hrmBbT2Nz88RDDjDDpWc6UobkxkdYQWgs7VLmV2Ub5gDkMx6KK0/Ct5Ja+IJLOaNoRJn92wxyOlJpmki20y3neUido8kZyBnoKn19GgFvqcXFzbFWOe4rR0/duR7S8hvia0gk1PVYpwMTRo8eTj5wOork7eUHThbyABIpQSw6kEjNbWpa5JrWsQR3MUSiKI7TGDznnmueRwkc8Z7tXM1ZnTVr+0jCNvhRq32ovqjHzceUpwiDgYFVVtYiTgdf0qtBICBz1bFXYTlzzQYCqGiIBOatxzMq5zwapSvgk095FW1znlatC3J7C9CX1xCwypCite3Mayq0qRuVxsfbzj3rlIrpDcSSAHeuM4GBjP61vWk+6MP1KkEj1HenuD0OpWUTNKo6oB/KqFmPmqDTzsv5pDMpeQkhN38PbirdpjdUsEQW4/fsPel1HP2xP9wUQD9+frWL4x1WWzmjgtT++ZASw52il0KLupOLOFbt5UVB94E8/hVKz+Iq6bMdsDTI3Bya4S4ku7hi87yO3qxzUQikP8BNJSa2Cx7DZ/EPTZ7Yu85gG77j9qs6pqUOozW7213HcRCPIKNnGfWvGFtJ2HEbYq5ZWmpQzLJbK6uDxg4q/aSasLl6nr1p1Fb9v/AKs/7prldBnnubVHuYjHKOGHv611UH+rP+6aqImcXGT5h+tbNo3SsWM4kP1Na9p1qVuNl7U3/wCJVJ/un+VcEcHw4faeu41Q/wDEsf6GuG3D/hHWH/TepqM9DB/AVbIneMdjW7qk+UtTnOExXPW0hjOR0q5PcmUqCeF6UQdiaqur+ZpxyZe3XP8AFTdKI/tnUf8Arm1UbWcm7hH+0KvaRj+3L8esbUTYYZWTOYY/vj/vVfvcExf7lZ7/AOvI/wBqr9yOY/8Acrne56EdihCMzEVGfvmnxNic4ph5c1PQT3NmaT5TVO7f50/3RUkrcEVUum+dP90V2s+fij0rwyd3hiI/7bfzrtfBgJtL8/7a/wAq4rwsQfC0X++3867nwXxp1/8A9dR/Kr6Ey3MTxaB5U+f+eT/yrwu4b90BmvcPFL5W6B6CN/5V4VeMEJX0rORsvhIEG7NJloZASKWA55qxLHvQcVK1AmtkxdRPEPlf9K+hvhVqcl14fm0+T5ltpAw74BHT86+cI2ubcqgYbCcZHavRPAPiyXw3JdROjyRzptKj+92NTtLU7acHUw8ox33PS/iL4he1jGnWr7HnHzleyj/GvFtTKpOI0AH8R9zWzea5Jq+syyXLHzccccY9K5q+l8y7kbPGcCne8vJHVOEcPgeVfFJ6ld2Lyhew61VVj5ssnvgVYUgBm74qjI/looHVjmtGeMaMLErXaqQ1pbHP/Lqo/Q1wduzMVXPJ4rrtNMiWRSTqoIH0xRc0UZuLaWhiSoQ/NdV4OuvsV/aSPIY0SRnL+gx1rm7hAG61espQIMdP3bj9Km+pnY9O8T/EPR1069+xyyySPHtjwmBnGM14JFMftqyE5y3JrU1q6X7NFEvpk1hqwZhtPNMYmpHN25qgGAlGavX5zJux1HNZrnLDFRLcZdjcxyAg10NpMs8GG61zi9R9K0rKbawXNXBiL8yFBw+RVYSbeTVp5F2kdTUIRJONoqwGSSY2NnvV4EPEGHOKpGJV+Q9O3tViD9w4Un5G4poQyVGQ7lJxVK5jZhuAPTmttlVV56Vl3khljbZkIP1pSQIx1WSBnSRGRv7rDBqzZTmK4Qj15rb8bHzruwvkXEc9qo/EVzUb4lU1lsyjqplFxZSJgElcge9Vk8Q63Y6QkEGpzxwBcKiPgL7VJYzK4HPFYupRtFevET8gOV+hrSb0uJI0UYyxCX5mB6sfXvUUTfv8g556Cr2lKbnS8Adyp+tZRHlSkEYZTWU72OrDOzJr0bI2ZPuswJBGCKsWEZkcyt92Njj3qOGXzjtbkd8+lXLWQPE4AACngUUoXlqb4mskvd6gHZ5cKCccmmSxiQFSM5q1NrE0VmdOaONoR8yHaAyknJ5qpHKHOa7ZPSx5ZntYzwuWhdl+hre8PXWrBpfs8ym5jwVVh94VCpU8GreihoPEthLH0MoVx6qetKi1GdxSd0X/ABTq99dXZs5CJPIwJGQYXf3wKgSP7VALlJNygAOO4pmoMsmp3L5yryMwPqCaqLEYJfOt2ZW7rnhvrWqfK3F7Ml3krmpFFGuCFBPqal3RrcxySBigyCE4JHtT0EM1kl3buCMYkTPKGon+eM4PNNxcWSnc1Uu9EkwPtN7bn/pogcfpXOeIrJXDXltKJo14YhcZ98VXklIzyeOtXNOuEeR4JsGOWPkGiWqsykZ0OpQy26EX8glXgxNHhR9DmtC71A6jbSoHxEIQjP6n2rmNUsm0zVXj2sIm5QkdRVrTS5nTgbT61y8zTsXZbl7SY1fWgr4+5jn6Vl3UYj1C4TqA5FXLYt9tjcMSRkZxVS4Ba8kOcHcTWUiktblVXCXChTkHmrtrLulkPYDFZkx2XOcY4qzbEiPNQUW5ZBvxn3qq7SSvjdhB2qZVyhJ6mnxKERyRTEV7U/aZWiQDcVwB645rS0m4BUqylW6EVj27va3KygdGyK0rpRbX/moAI3w/0zVrYGdPbW0N48BclXgbeCOp46Zq9agh/wAazdDnL3O0JuDKfm9K1bUAvSkJFeN1id5HOFXJNcNd3ZvruacnO5iR9O1dJ4huGt9LmC9ZH2E+1cZEwDCpZSJgQTjFToo9Kruux81OjcChDLSYxVqKTYM9KqR9DUu7ELVSYjotCv2iuQGJMbEA+3vXoFuMxnH9015Hp155d3F6Hg161aNmIf7tXFkyOLj/ANaf941r2nWsmMYlb61q2lQtx9Cxqp/4ljiuFH/IBkH/AE2ru9SH/EvI9f8ACuDCn+x5fTzamoejg/gKCHA/GppGAc0CEANtYHvUt1avCiOwPzjOCKmKdxVHeL9RlocXkRz/ABCtXSzjXrv3RqyII5YrqLehUFhjNa+nYXX7nv8AI1OQYfZnNv8A8fJ/3jWheA5T/cFZ8nFy3+9V+45dM/3Kwe53R2M5crKRSdWpR/rjmmg/NUiZckPvUN0PmjP+yKcx60t0v7qNvYCuxngo9E8Jc+FIv+uj/wA677wapGlXzesw/lXC+D4mbwnCV/56P/Ou88HXMcVpd2bsomMm8KepGK06Gb3OW8Xzi0hu5jxhCB9a8Gvpd0hPckmvXvi5rMSyx6bFtEgG6Qr+grxq5OTWM3qdb0pJFi3YFBxVxZOOBmsyB8R4qzHLjvSTMi556ZAdGA9QK047lMAxIwUjG9qxhLWlbSb7Mr1INTU1R35fUam4rqaqzCC1eXPasQybiSTUl3O4tAh4G7mqAm560U9EVmFZzcY9i4eVNZ1zJ/pKKOgFT+fxVGSQm6zWjZ5powzbSCAQRXY20xMAY45X8+K4eNmNdZYBlsEG7I29aiTtZnq5beSqU+6KlxKN1WrVs2wx3VwPyrLnPzGtPTFMtxZQZx5j7c/WqPKehmlgqjzOMetUJ57XkhC7f7Ip2r3Mn9pzJGwAjcqOOuDUUKyTLh5Dz2Xiqv0Azri581ySDzUZhKqjt/EMirt1ZGNhwcdyau6pHA7oYSCqgAY9MVLTuMxww4rRtoy67ohk96qGFQS2MmprWVraYE/dPWmtBF6TcFVwMdmFJHcBGG7Iz0z3q1vSaIlcEGoEWOUGF+varAS4kATfU8TpcoFDYYdKrPbOkbI3K9jUcEKjAYkH2o1uBfEUpfDsduOR60yYfKVHSpQS6FctuUcZqNlMgIxhu4qmI6PX9M+1eEYo1CmeCNJEHcjHNeb78EGvcTBHFfadEIQMQJvQ8gnFeSeIorX/AISPUFgQxxidgqjtzWc0NMdplyhyC4U+hrUuNOGogSDO9Vxhe4rnYIVBBVg3+yRXoHw7WP8At4CW2WVXjZVjbBA755pxd1YGVdDsDBatEykbWyQa5i/jkE0rOhQ+Y3XvzXsV5ZKfEE6/Z0hSSAbUXHbqeK574i6aI7fR9lqkQKFXdQPmPHPFVON4FUpWkcBBG0doXP3n6fSpLG4EchDfdPBq7dQfuvlHygcYrH+45570uXlQpS5mWr4MZD6gYB9RUVtIQOaffSv9iSaPkr8rfSqMMxAGTTlImxtxsWxWzoQzqgc/wRSP+SmsCKXKjFbOhTD7XOvf7NKB/wB8mri9SWh0iD+zbO5HIkG0n3p9tAbiUIpAz1JqrYS+bo9zp0iMZEYTQED8xTLW6uICcBkJGM7a6qk4uSl0M4xkk0bUeiyxzsyBcN1Ydx9Kgula0kw6nHY+tFtfTqpAYN3+bJNVdSupZo97gDHHFVOVHlvFO5MVO/vFCZJWSd1YKoJ4JqncTsihw2CcBeaWbUopDJam3JkbgSbulULmTfIiL2OK45TubJHS6+PtOkxM/LqAVPvjpWfoUU8ZN0tqZABgsz4Va3Yij2vlSRrJ+7BAYd6wNLhuEu5klELRp2mfAH096UlrcL9C3Bpd9qAlltI1ZRIQSJgvPXuahv8ASbrT1je7jRTITj94G5/CvQPBnh2HVLK7uAxiTzdqrjPatbU/h3FqVk8H2sK/WNivQ1k4tsu6PD7sbplG4F8YwvSrkUR2jjCjrUbWsun6xPbS7fNt3aNscjI4q3kyDnpUW1GRseOOlIzBYG+lPZBg4qCc/wCjMB1IoEIdksCMeApANbdxYibT41L/AL6IfICOHX0zXM29wAoRzwGzXRz6vbyhEQhTjjNa02rO4maPhu1lhuiefK8s1sWZ/eYrP8L3qTXbW2RllJUVp2SAyn60pJdARheIhGNJuPMPJcbPrmuFkO0ZrqPFZmwnP7nzCCPeuWkORis2Ui4r+bAD3FPjPFVLRsDaelWl4NAFtDxUyH921Vo24qxF8wIqkBV8wR3KqDyBmvXPDd8NQ0mKX+ILtb6ivHJh/p7hunGMdq9W8DwiLQ/M7yOT+VVFiZQiZTI2VB+Y1qWzgH7i1jRnEz/7xrUtT81Jbgy/qLCTTSqoA1cItpMNNuEeNwxkBUYrubtvLtFkGPlYHms/+1okdmeJG4xwKJq524afLEwNA0mKaVjd5RV5GTjNdk2iWV7CnmruCdPmrOEum3Kb/L2E+nakMljHgrdMg9CacXbQU4czvcW98N29y8ZhlZPK6A85rnbFAmv3aHsjCuqiTd+8iuwwI45rO/sXybye+80EspyKU9S6MfZ3TZwEnFy3+9V6fqp/2aoy/wDHy3+8at3B6f7tcr3PQhsUo/8AWnNN/iP1p0f+tNNPDmpJe5LK2BUtwf8AQovwqrI2RVifmyhP0rsPBO98KahBB4cijcjcHbg/Wtewvd2u2flzfZkZ8PNjAC9+TWR4JuETRzGUG5ZDzjrWZ4z8beXK+lWiZaMjzJM8A+gq76Csm7HNePLpbrxbfPHMZYxIVVz/ABAd65KTJq3c3DzOXbkk1TY5rnZtNpvQdFkA0/fihANtOCgHpQQCzsOgzWnp11clWSPauOc45qiqir+mriZmMiIAOdxolsb4ZtVVYmume4smc8sCM1jsWU81vSbBBJskVtwzxWU6rIKUdjbHRtJFVpCq1Gj5cnqaJRjiltly/TNUcJfhYbcFTj1rbttTtYoQrK6v93joayY1HHGKdcJuiwOuRVON1qb0MROi24dS477nyOlaenPt1HTuT/rR0+orJVWVQD2rSs2K31k3o4/nTRg3ck8V+GJNLu5LyJS1rM5YZOShPODWDCwB+8Aa9YvH+0200cyK6MpyCPavIuCSTgcn+dW9BJl8plPnyQe9VXMVvbPuJLs2FBHapIt/H73j0ovbGa5TKOv0oaGVowHHHNRNHIxwEqtG89vIR3HBBq4t0XHHB7iouBLaCSAkNgKe1XF8ubg9exqj5kTjJYhvc0RzKG+9+NUnYDULYjAbqKYYxuGO4qJ5w0RyfxpYZl2qGPNVcRdjwQC33h3q3ZxxT31ukv3WkUHHpmqSjvUVy8yhRDnfnqO1UB7O+kRJMl3cRyr5a5++uMe+a8N1BFutSupwmEkmZl55AJr0LxVq5tNGisXn3XNygDDP8Ixk1wAeMttGD7VLCJDbpChKMCGHqa7T4eWkE3iEyETN5MRYLGe54zXJlIpPvJyK7zwTbG20+S7XMbSnaCDg7RQkEnodPriz2t5Fe6dp93cymJo2G0nHpXL/ABAlt7i1srWJ5lu0j3yQP/BkD9a29U1t9HsHummdmJ2ouepryzUdRuNSnlurmRmmcZ3Zok9BR7kWn3kkB+z3QZV7FhxUtzp6SHzIpUAPPJ4rP2u6DeSzP0yeg9amt7WGFTJIxkx0BPFFxh5bvEYFG5m4wOalh8Lag20vJbx+zPyKtWVwDMOFUY4wKa2oushBPenaO7C51mg/DwS3A/tLUAqbchLdck/ieldppHgfQLO+SVbe+llXoztx+WAK53SNfKvHJ5yqjqASRnFaV54ttNLAmnuLiQryI1ON3tQmuhskrGp4i1Sy0zWre3Rbe0nZOZfLDMVHQVpabfQXa/8AH1bSg9VeICvD/EPiyfxB4hXULiLZFHhUiU9EB6Z9a2tF8Yol0YzsWMn5BIM4HpmjmBSWx6rrfh3Tb/Sp5BawQTxqWWWEY/OvKL6wnMLrs3ccEd66zU/FsK6Y1pAVMsv3mVsgCue+27kAzmtY2aMaj10PO1EiXriZSjgnIPapYvmv48qdm4c4rsb2OGZWYRRscjdleSKx9V03yZ0uLcYQfeB7Vm6dtRJm9GFSWLHTaBWI92LDXpVKueQRs606TWJoyivZsDgYIPB+lQX1z588GoLDIrf6tw3HI5FU5aCses/D3UNMuFvrW6WW32ESIgbHB689zXQ3s9nHckWv2h48Ag+aetefeHtQlnv4UkLbnjOQ4wTXXdOmR+FGhNzgPH2iafZSRahZRSxz3UjeaHfKk9ciuPRtrAOCh/Su3+I6yC3sJgW8sMykdga4Nbl2XBVWHvWE9GaR2LjL8pxzVB9x+WpBcNjGCBTGbJyetQMzZ4ykhxSRby3yjLVotGsjd/yqVLFY4pZDzhDikkM3fBGl3H9pJqNxIYIYMsuRzISMYFdnY2ErOXxgE5rntMvra30+2iuEUkID81dBbapZogIhQZ6datCZy+vQRSaffCZtvluSp988VwcsUyBDJEyB13KSOor0DX7nSogtpfyP/pOXLRqfkPY1w13CYZtgnWaLGY3UnBX8elSxkEXyuK0U+cZ2/rVBF9RVgKBikgLyx/L0p8bOk6AAbT15qBEUjOP1qzAqhuAKtAXrXwzJqmoeas6xwnG7+9+FepaXbRWlnHbxLiNFwBXC6HE000DLM0bRtnI7+xrv7U8D6VaVmTI4sH9+/wDvGtO1+8Kzdv8ApUn++f51p2qc1K3GXL4btPI965eaGRgzphgemDXUagp/syTb1rgbeSVdNv2DEFXGPaibsdmGV4mjALpdwkVlUdOKozzPub5TjNVdP1y9Mxiklyo6ZFay6grqRKkbY9RUXTNrtEdpPICNkh29xXQWT5ivMsWVl9ehxWWs1pGFJRQZOPlqxFPFb3MtqrfOwzg01oL4jiZ/+Ph/96rlx1X/AHaqT/8AH03+8auTnlP92ueW52w2KKcSUw/eNPAzIaaR85qRPcRu9Wp/+QZbn3qqRlSatT/8gyD612ngneeD7dv7I80SNhpDlcccVw/jfTItP8QSGOYSNOPNZf7hJ6V3ng8j/hHo8vj943GK4vx6kQ8SuYySWjUsT64qpL3RL4jkG+7UGNzgVYYUkMOQ8h6L0+tYFi7OOKad4qUGlzQBBub0qxaFWuUDDjNIcd1pVKhgR1FFioO0kzcW2C+ad+UYcL6VhzZRiB2NawnBiVgeorKu+JWz35qI9j0MaouEZRKrEnrVq0jwucdaighe4lWONGZj2UZNajWstoQk8TxH0dSP51okebYEWpRjcAfWmLjsalMZxG/YmrQiWQ4arVsf9Ksz/tj+dNeOyyC80x9ljH+NXrNLCWW32RzsyuAN5AH6UhHYSMzb0XLMQcAcmvNLvTbixO25jKOWOPzr0oiR+GdVU/wRDav+J/Gua8VRbjDEuAu0kY9asSOSUBSOa0rVhjbnk1kYIbB6irVtKY5Qc8URZRYv7MOPNjX515PuKz5rNiRPb4PcrW5brdahL5On2slzN3CKTis66t7/AEy/a3u4mtpj83lupApysCuZ7MrqRNEY39cVX8sE8E1ttJE5CTAK57HoaQWsZPAqeS4XMcCQDGc/Q1NDPPHwYw6dxWmLRPQUkMIyccfWjkaAW1uI34BZOPut2qcSopMxbIBB4qGWJcfvZAQOgAxVTmW6SGJNkWcnuTV3sBraxOuvao94ylBgLHjghRVI2IUbgx3g8MauBQigelIWHemkhXKbR3PmxquHDsFwB3Nes2cAsrGC3UcRoBzXF+GtLkur6O6KlbaJslj3I7Cu6PltyZSPwoJkzj/H0rGOyhGAp3N+PFcQziN49wJUnmu/8b2JmsIbqEGXySQ4A5APevP5hGbRmSRSf7ueRWctyo7DZ7gu21I8E8cUNlY9megpun3GcxuoJA4arEtpOql9hK9cjmhagVoLh1lGegFSTI8reZCN4PXFRqNhJx2psU5t5NwJH9aV+jGT/bru1QRRyFSe3pTBLLcMWndnf1Y1UXc0pc8kmtKGBzg4pRC5nyoQxqMhlGV4PrWrLbZXJGDTEtycrtyDTcQuVbe/nBwWz9a3La9Plgsee9YF1bPC2QDirFmd8L5cAnjBNOLaYPU6S1ugZgGBIarknLSZGVIxg96ytOdFmTcegrQlm5Bz3reL0M2Mto4DaTI+JoB8yqeq1t2vg+1uLW3e7kmt4ZU85AW564yax5Y4bWB7mM5EoxsHrWnPNc3Ph2zm+2SPIGWJYgMBUB7n8aTLgrs2LHw9dabrUU63gktUU4DcNyK6EM+fvD86ghmhmhRhKCNoGak/df8APRaCZ7mJ42tftnhG9DuoMQEqknuDXiYldSNrEfjX0LLDb3ELwzGOSNxhlbkEV4p4q0ZdF1+e1i/1B+eL/dPasqqvqOD6GObmb/noaBdz/wB+gRkio2UocGsSydLycdH/AEq//aDS2JiYYk3D5h3HpWSgzXb+GPC9pqMNnPfuUglkdc7tucAd6aA7jw/Z2U2g2klxaQs/lD5pYxn9awp9Uh067liYKuxjwuMY9q7GeZ9Mtha2tm9zCibEKMDkY4rz3xjqrQabBpSII5pB5kwI+ZR2FataXJvqcpr+qvrOqyXLDCqAiD0AqCKJfKXI5IqCPzFgkcJkH5c1cjHyqPasihu0ClfjFOK4NKy5AoAkjJ2VYtT++C+1QRjjFWbRM3APtVIDofD82yRc/wDPTBr0Cz6V5lpknlsWHVZQa9LsWyo9xWiFI5bpdy/75/nWna9qzWH+mTf75/nWjbcGp6gXb3/kHvXnkJ/0HUF7bwf1r0O6ydPkHtXncP8Ax66gP9ofzqKp3YP4TMigZJDN/CatMSJM+1VkdvNKZ+Xrip5shxj0rJHU1bUmik+dAf7wrSQb/EvJ/h/pWLGxMqH/AGhW5aYbxMnuv9KroJPmbOdux/pkg/2zVqfon+7Ve941GYH++f51Zn4Ef+7WUtzaJTQYeo/4qkT/AFppjD5jUg9w/wCWbVYm/wCQZB/vVX/garEw/wCJXB/vV2ngne+EZIl8PoGDZEjV534ivRfa/eTr9wvtX6Diu50O4js/B887Z3J5hH5V5i7mR2YnJY5NOXwhHcrynBq2ij7ACO5yaqyAscAZJ6AVcsQWtZkkBGwcA+tYlFfae1PjglkbCxsx9hW7YWaQ23mybC5559KhGoymRQCqrnkAUrs7Pq0IRjKq7XKsekXbdVVB/tGqksQikZGPIOK6KfUba3UlnDNjhQea52VxI7MerHNEW3uaYujQpRSpu7LdusclsBuIYNniquojEwI6EcUQTeXJtzw1WJgz+W6Y3qwIz0pbMSaqULdUevfDXwyum6ZDdyxL9tuPnJIyVTsK7jWdJstYsHgvIElUjjcvI+hrF0KWa1sYUml825ZAZGAwB7CtXUtatdP02a6uH2KikjPc+lbqxzWsj5q1y2Ol6/eWds77IZSq11umaOZ9Lg+2YDAbhg881zd/dfbtSuLtlw00hc/ia7PQ5DPo0TZyUyp/CkkYyZgSqN5GOAcVb03/AI+Iv+uq1UkOXb61b0//AFsfr5gpW1JudWWwSM1g+ImHmwZP8JroAgz05rB163nmvYESFmUqdpA71oJHPR6f9t1CCJDjzXCk+nvVGeHOsPp9s/mYlMasP4ucZrpLXSNWinSVIAhU5BLjj9ajsvDcuma7bXLFnk8zzCoGQBnnn8aixVz1vwTptro2kRxQxgTEZkkI5Y/WrniXwxp/ia2Iu4Ea5RSIpehU/Udqo6bctHIVHRhxWtDNJIrRNIUkP3Gq20F2ePa/4D1LR7c+dD9pt15E0OW2/Uda5RbeZD+4ug2P4WPSvoi11vbctY6hH5Vwo4/uyD1FZeveCtC12CSZYkt7nBImiGPzxSuB4kou3dItq75GCrjuTUmoWt1aX81pcA+bC21ivTpXc2Hw9F/ogu7S8YXMbnBbkNjuPQ10Oj+EdPu5m1W6DTySkblbpkDBouOx46InCmQQu7duCahjN3p0+buzkQPzllIIr6DsvDdhYhgiBgX3qGUfL7D2q1qmiadrVi9rfW6tkYV8cqfUGnYE1seCecroGU5BqWwspdTvFgh4zyzHoopl9pU2m+IptIQF3WQooA69wfyrutI0f+zLQJtzK3Mje/pTuTLQuWdtHZWUVrG42oOp7mrG1f8AnotRCJz/AAmnC3l/ummQShFII8xSPpVB/DmizSGSSytixOc7cVcFtNj7hpwtp/7jUBc878W+Hv7M1AX9oqC0lIBVOAjf4U2ylItXB6YrrfFlpcf8IzdsISdgVjx0AI5rg7Gf9yyse1C0K3MKR5PtLKSdpY1II881pS20bIWjXn1qtAAWKsMEVlylEMaYYVsQKGjHWqm2NvusM1dtcAYNXETGyx471HDw+K0XjDrxVAJtmwapolMsy26yLllGMVnzaXFjzVJHritfrb/hUUQByrfdPWm4phcyzYXNvLHJE5eFv0p8WqSsSoQZHHNbdrCcmEMChGVNYd5b/ZNVki24H3h+NHLYLluOaeTBcAegHSu00Czh1TQ2iuWwqydBxXL2CZArrvD6skEwVCV3DpWnL7txX1NuO0jjjCJKoCjAGKkFsD/y2T8qgDsP+WZpRI3/ADyNQDuTfZl/56LXC/ErT1+x2d8uCyOY2IHY8iu28xv+eZrA8axm68KXQEZzGVf8jzSkroFozydOlRXPDr9KmjGRTLlG+RsHaeM1zGo2PtXseh6Rajw9Yxz28cuUEhDjPJrx6IV7jYzrHp1qmOkSj9K1pEy2JZrqDRtNkm8tY7eBd20cD6V4rqV9LqeqT3UxLSzOTj0HYV7NeJBf2ctrcLuilXBrynUfC2qabdMyxNNEDlZI+ciqqbaExMm6R4UWI5DbdzD61ZQfIv0qpemdrl2kikXPHI7Vcj/1a/SsDQcRnFLjNHaimBJGOQKu2iYn/CqcPLCtCAfvM+xqogS2QxFMR2YGvRdMm3W0T9iorzux5hnr0Tw2scmkQMzqCOMGtBPYwX/4+5f98/zrQtR0qlMANQnA7SH+daFoOlR1EW7nI0+UgZwK86iP+j33u39a77Vr42VpEikbpjt59K4KEBo9Q55Bz+tTVO/B7My4z/pf4VeuVCqG9VqmsTCcORxjrVm+ceSmBj5cVhE6puybKkL5lUe9dJYLnxPDn+7/AErlIX/0hMf3hXVQHb4mt/cD+VWYUG3cwNTG3U5/+uh/nVif/VxH/ZqHVf8AkJ3H/XQ1LLzBEfas5bnZDYqJxIaYxw5pRxLTTzIagHuAOQatzf8AILg/3jRRXaeCd14UsjceHVZmUoZGG0jNX7jwPo89sZ2toRIOcIuM/lRRV9CHuceNI0Vb64t9rR3UT5gYNw2KwtaZYr10MWwMmeO5oorNm/QzRIzYy2adsO5eOGPFFFQUvesmVZ4RHM4znBqKU4QYoopCqfEyEuTWrbN50A9elFFRI3wr9+x01p8QbvSrAWptVeeMBUk3cY9x61kal4m1LXeLyclF5EY4UUUVomzKq7SaMwHmuy8KTf8AEuuF7K2f0ooq0zFmW/3iferVkrM8aocMZAAfSiijqI7BFdjwCT7VZ2KYV+UFxnIzyKKKtElQBg/3TVlYRc3UDYK7G6evFFFUI6G0eJBknG2tTdHOgaNvxooqGWRajpy6xZhNwju4juilA5B9D7Vj/aru3iKSgpL9xkPQmiioYI0bW+lsrdIBEvlgcFKtDUlgAXYAvXAGKKKaGSrqcbdRipvPWWPcp4ooppiONk+ynUJrzyVM7scybefSnG6X0NFFWibiC6QdjUgvUHY0UUyR636D+E1INQj9G/OiigZm+JL7d4b1BYtwYwn/AOvXkti+9wvqDRRSZSLccc0R4XcKW4sWYCeIfN/EtFFNIZXktSYvPiBGOop9pPxkmiilawjYtmEq+tVrpFE2cjI60UVYiRGzFUO5yCEQHNFFAi5p0UySZkYYPasrX7lJtYCofmiQI31oooeiGty9p8vyrXeaA6jTyT3c0UVq/gJ6mp5yelHmr/doorEGHmr/AHf1qvqAjuNLu4iow8LLyfaiigZ4fEO1bdxHbf8ACFBiP9IF7xjsCtFFYWNTGhTIyK9V8OahHqmkxsqMGhAicnuQO1FFVAT2NbYB2ppiz60UVrbUzKlzpNvco3mxI4xn5lFeWHAdgOgY0UVFRWRcWLmkJoorIontxufb7Zq/bfx+ymiiqiBNp/8AqJq77wbLCdNaOQAlZOM0UVqhPYyLhsalcBcEea2MfWtC0Y8ZFFFR1F0MLXb37Traxg/JF8oHv3rEgyBfCiisqj1PQwfwmekn77ac5xRqJ+RPpRRWa3N6nwyKMGfPT/eFdYvHia1+g/lRRVGWH6mNrAxqtwP9s1I//HrDRRWctzrhsUj/AKymNzIaKKgb3P/Z" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 18 }, { "cell_type": "markdown", @@ -194,17 +223,31 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2024-06-17T12:23:16.010277Z", + "start_time": "2024-06-17T12:23:15.813404Z" + } + }, "source": [ "dim = frames_tracked[0].size\n", "fourcc = cv2.VideoWriter_fourcc(*'FMP4') \n", "video_tracked = cv2.VideoWriter('video_tracked.mp4', fourcc, 25.0, dim)\n", "for frame in frames_tracked:\n", - " video_tracked.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))\n", + " video_tracked.write(np.asarray(frame)[:, :, ::-1])\n", "video_tracked.release()" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "OpenCV: FFMPEG: tag 0x34504d46/'FMP4' is not supported with codec id 12 and format 'mp4 / MP4 (MPEG-4 Part 14)'\n", + "OpenCV: FFMPEG: fallback to use tag 0x7634706d/'mp4v'\n" + ] + } + ], + "execution_count": 21 } ], "metadata": { diff --git a/examples/face_tracking_cn.ipynb b/examples/face_tracking_cn.ipynb index 3c921a59..082eed57 100644 --- a/examples/face_tracking_cn.ipynb +++ b/examples/face_tracking_cn.ipynb @@ -22,8 +22,8 @@ "source": [ "from facenet_pytorch import MTCNN\n", "import torch\n", - "import numpy as np\n", "import mmcv, cv2\n", + "import numpy as np\n", "from PIL import Image, ImageDraw\n", "from IPython import display" ] @@ -158,16 +158,16 @@ "frames_tracked = []\n", "for i, frame in enumerate(frames):\n", " print('\\r当前帧: {}'.format(i + 1), end='')\n", - " \n", + "\n", " # 检测人脸\n", " boxes, _ = mtcnn.detect(frame)\n", - " \n", + "\n", " # 绘制人脸框\n", " frame_draw = frame.copy()\n", " draw = ImageDraw.Draw(frame_draw)\n", - " for box in boxes:\n", + " for box in boxes[0]\n", " draw.rectangle(box.tolist(), outline=(255, 0, 0), width=6)\n", - " \n", + "\n", " # 添加到图像列表\n", " frames_tracked.append(frame_draw.resize((640, 360), Image.BILINEAR))\n", "print('\\n结束')" @@ -232,10 +232,10 @@ "outputs": [], "source": [ "dim = frames_tracked[0].size\n", - "fourcc = cv2.VideoWriter_fourcc(*'FMP4') \n", + "fourcc = cv2.VideoWriter_fourcc(*'FMP4')\n", "video_tracked = cv2.VideoWriter('video_tracked.mp4', fourcc, 25.0, dim)\n", "for frame in frames_tracked:\n", - " video_tracked.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))\n", + " video_tracked.write(np.asarray(frame)[:, :, ::-1])\n", "video_tracked.release()" ] } diff --git a/examples/infer.ipynb b/examples/infer.ipynb index 3218656c..0410f290 100644 --- a/examples/infer.ipynb +++ b/examples/infer.ipynb @@ -20,14 +20,13 @@ "metadata": {}, "outputs": [], "source": [ - "from pathlib import Path\n", - "import os\n", - "\n", "from facenet_pytorch import MTCNN, InceptionResnetV1\n", "import torch\n", "from torch.utils.data import DataLoader\n", "from torchvision import datasets\n", + "import numpy as np\n", "import pandas as pd\n", + "import os\n", "\n", "workers = 0 if os.name == 'nt' else 4" ] @@ -119,10 +118,7 @@ "def collate_fn(x):\n", " return x[0]\n", "\n", - "root_dir = Path(__file__).parent.parent\n", - "data_dir = root_dir / \"tests\" / \"data\" / \"test_images\"\n", - "\n", - "dataset = datasets.ImageFolder(data_dir)\n", + "dataset = datasets.ImageFolder('../data/test_images')\n", "dataset.idx_to_class = {i:c for c, i in dataset.class_to_idx.items()}\n", "loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=workers)" ] diff --git a/examples/infer_cn.ipynb b/examples/infer_cn.ipynb index cf69650a..114f0d07 100644 --- a/examples/infer_cn.ipynb +++ b/examples/infer_cn.ipynb @@ -26,14 +26,13 @@ }, "outputs": [], "source": [ - "from pathlib import Path\n", - "import os\n", - "\n", "from facenet_pytorch import MTCNN, InceptionResnetV1\n", "import torch\n", "from torch.utils.data import DataLoader\n", "from torchvision import datasets\n", + "import numpy as np\n", "import pandas as pd\n", + "import os\n", "\n", "workers = 0 if os.name == 'nt' else 4" ] @@ -145,10 +144,7 @@ "def collate_fn(x):\n", " return x[0]\n", "\n", - "root_dir = Path(__file__).parent.parent\n", - "data_dir = root_dir / \"tests\" / \"data\" / \"test_images\"\n", - "\n", - "dataset = datasets.ImageFolder(data_dir)\n", + "dataset = datasets.ImageFolder('../data/test_images')\n", "dataset.idx_to_class = {i:c for c, i in dataset.class_to_idx.items()}\n", "loader = DataLoader(dataset, collate_fn=collate_fn, num_workers=workers)" ] diff --git a/examples/lfw_evaluate.ipynb b/examples/lfw_evaluate.ipynb index ef1a1fdc..9be15498 100644 --- a/examples/lfw_evaluate.ipynb +++ b/examples/lfw_evaluate.ipynb @@ -15,12 +15,13 @@ "execution_count": 1, "outputs": [], "source": [ - "from facenet_pytorch import MTCNN, InceptionResnetV1, fixed_image_standardization, training, extract_face\n", + "from facenet_pytorch import MTCNN, InceptionResnetV1, fixed_image_standardization, training\n", "import torch\n", - "from torch.utils.data import DataLoader, SubsetRandomSampler, SequentialSampler\n", + "from torch.utils.data import DataLoader, SequentialSampler\n", "from torchvision import datasets, transforms\n", "import numpy as np\n", - "import os" + "import os\n", + "import math" ], "metadata": { "collapsed": false, @@ -487,8 +488,7 @@ ], "source": [ "print(accuracy)\n", - "np.mean(accuracy)\n", - "\n" + "np.mean(accuracy)" ], "metadata": { "collapsed": false, diff --git a/examples/lfw_evaluate_cn.ipynb b/examples/lfw_evaluate_cn.ipynb index 9096b4f7..fc470c7e 100644 --- a/examples/lfw_evaluate_cn.ipynb +++ b/examples/lfw_evaluate_cn.ipynb @@ -23,12 +23,13 @@ }, "outputs": [], "source": [ - "from facenet_pytorch import MTCNN, InceptionResnetV1, fixed_image_standardization, training, extract_face\n", + "from facenet_pytorch import MTCNN, InceptionResnetV1, fixed_image_standardization, training\n", "import torch\n", - "from torch.utils.data import DataLoader, SubsetRandomSampler, SequentialSampler\n", + "from torch.utils.data import DataLoader, SequentialSampler\n", "from torchvision import datasets, transforms\n", "import numpy as np\n", - "import os" + "import os\n", + "import math" ] }, { diff --git a/facenet_pytorch/__init__.py b/facenet_pytorch/__init__.py index f11d3287..8c108a7c 100644 --- a/facenet_pytorch/__init__.py +++ b/facenet_pytorch/__init__.py @@ -5,10 +5,18 @@ from facenet_pytorch.models.utils import training from facenet_pytorch.models.utils.detect_face import extract_face -__all__ = ["InceptionResnetV1", "MTCNN", "ONet", "PNet", "RNet", "fixed_image_standardization", "prewhiten", "training", "extract_face"] +__all__ = [ + "InceptionResnetV1", + "MTCNN", + "ONet", + "PNet", + "RNet", + "fixed_image_standardization", + "prewhiten", + "training", + "extract_face", +] warnings.filterwarnings( - action="ignore", - message="This overload of nonzero is deprecated:\n\tnonzero()", - category=UserWarning, + action="ignore", message="This overload of nonzero is deprecated:\n\tnonzero()", category=UserWarning ) diff --git a/facenet_pytorch/data/__init__.py b/facenet_pytorch/data/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/facenet_pytorch/models/__init__.py b/facenet_pytorch/models/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/facenet_pytorch/models/inception_resnet_v1.py b/facenet_pytorch/models/inception_resnet_v1.py index d167ac90..89ebfa8f 100644 --- a/facenet_pytorch/models/inception_resnet_v1.py +++ b/facenet_pytorch/models/inception_resnet_v1.py @@ -10,16 +10,10 @@ class BasicConv2d(nn.Module): - def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0): super().__init__() self.conv = nn.Conv2d( - in_planes, - out_planes, - kernel_size=kernel_size, - stride=stride, - padding=padding, - bias=False, + in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=False ) # verify bias false self.bn = nn.BatchNorm2d( out_planes, @@ -37,7 +31,6 @@ def forward(self, x): class Block35(nn.Module): - def __init__(self, scale=1.0): super().__init__() @@ -46,8 +39,7 @@ def __init__(self, scale=1.0): self.branch0 = BasicConv2d(256, 32, kernel_size=1, stride=1) self.branch1 = nn.Sequential( - BasicConv2d(256, 32, kernel_size=1, stride=1), - BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1), + BasicConv2d(256, 32, kernel_size=1, stride=1), BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1) ) self.branch2 = nn.Sequential( @@ -71,7 +63,6 @@ def forward(self, x): class Block17(nn.Module): - def __init__(self, scale=1.0): super().__init__() @@ -99,7 +90,6 @@ def forward(self, x): class Block8(nn.Module): - def __init__(self, scale=1.0, noReLU=False): super().__init__() @@ -130,7 +120,6 @@ def forward(self, x): class Mixed_6a(nn.Module): - def __init__(self): super().__init__() @@ -153,18 +142,15 @@ def forward(self, x): class Mixed_7a(nn.Module): - def __init__(self): super().__init__() self.branch0 = nn.Sequential( - BasicConv2d(896, 256, kernel_size=1, stride=1), - BasicConv2d(256, 384, kernel_size=3, stride=2), + BasicConv2d(896, 256, kernel_size=1, stride=1), BasicConv2d(256, 384, kernel_size=3, stride=2) ) self.branch1 = nn.Sequential( - BasicConv2d(896, 256, kernel_size=1, stride=1), - BasicConv2d(256, 256, kernel_size=3, stride=2), + BasicConv2d(896, 256, kernel_size=1, stride=1), BasicConv2d(256, 256, kernel_size=3, stride=2) ) self.branch2 = nn.Sequential( @@ -203,14 +189,7 @@ class InceptionResnetV1(nn.Module): dropout_prob {float} -- Dropout probability. (default: {0.6}) """ - def __init__( - self, - pretrained=None, - classify=False, - num_classes=None, - dropout_prob=0.6, - device=None, - ): + def __init__(self, pretrained=None, classify=False, num_classes=None, dropout_prob=0.6, device=None): super().__init__() # Set simple attributes @@ -234,11 +213,7 @@ def __init__( self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1) self.conv2d_4b = BasicConv2d(192, 256, kernel_size=3, stride=2) self.repeat_1 = nn.Sequential( - Block35(scale=0.17), - Block35(scale=0.17), - Block35(scale=0.17), - Block35(scale=0.17), - Block35(scale=0.17), + Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17), Block35(scale=0.17) ) self.mixed_6a = Mixed_6a() self.repeat_2 = nn.Sequential( @@ -255,11 +230,7 @@ def __init__( ) self.mixed_7a = Mixed_7a() self.repeat_3 = nn.Sequential( - Block8(scale=0.20), - Block8(scale=0.20), - Block8(scale=0.20), - Block8(scale=0.20), - Block8(scale=0.20), + Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20), Block8(scale=0.20) ) self.block8 = Block8(noReLU=True) self.avgpool_1a = nn.AdaptiveAvgPool2d(1) diff --git a/facenet_pytorch/models/mtcnn.py b/facenet_pytorch/models/mtcnn.py index 202943d0..f99f0c4c 100644 --- a/facenet_pytorch/models/mtcnn.py +++ b/facenet_pytorch/models/mtcnn.py @@ -1,12 +1,39 @@ -import os +from __future__ import annotations + import importlib.resources +import os +from typing import TYPE_CHECKING import numpy as np import torch from torch import nn -from facenet_pytorch.models.utils.detect_face import detect_face, extract_face import facenet_pytorch.data +from facenet_pytorch.models.utils.detect_face import detect_face, extract_face + +if TYPE_CHECKING: + from PIL.Image import Image + + +class Flatten(nn.Module): + def __init__(self) -> None: + super().__init__() + + self.training = False + + @staticmethod + def forward(x: torch.Tensor) -> torch.Tensor: + """Flatten. + + Arguments: + x: a float tensor with shape [batch_size, c, h, w]. + + Returns: + a float tensor with shape [batch_size, c*h*w]. + """ + # without this pretrained model isn't working + x = x.permute(0, 3, 2, 1).contiguous() + return x.view(x.shape[0], -1) class PNet(nn.Module): @@ -16,7 +43,7 @@ class PNet(nn.Module): pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ - def __init__(self, pretrained=True): + def __init__(self, *, pretrained: bool = True) -> None: super().__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=3) @@ -33,11 +60,20 @@ def __init__(self, pretrained=True): self.training = False if pretrained: - state_dict_path = importlib.resources.path(facenet_pytorch.data, "pnet.pt") - state_dict = torch.load(state_dict_path) + with importlib.resources.path(facenet_pytorch.data, "pnet.pt") as state_dict_path: + state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) - def forward(self, x): + def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: + """Forward pass of PNet. + + Arguments: + x: a float tensor with shape [batch_size, 3, h, w]. + + Returns: + b: a float tensor with shape [batch_size, 4, h', w']. + a: a float tensor with shape [batch_size, 2, h', w']. + """ x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) @@ -58,7 +94,7 @@ class RNet(nn.Module): pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ - def __init__(self, pretrained=True): + def __init__(self, *, pretrained: bool = True): super().__init__() self.conv1 = nn.Conv2d(3, 28, kernel_size=3) @@ -69,6 +105,7 @@ def __init__(self, pretrained=True): self.pool2 = nn.MaxPool2d(3, 2, ceil_mode=True) self.conv3 = nn.Conv2d(48, 64, kernel_size=2) self.prelu3 = nn.PReLU(64) + self.flatten3 = Flatten() self.dense4 = nn.Linear(576, 128) self.prelu4 = nn.PReLU(128) self.dense5_1 = nn.Linear(128, 2) @@ -78,11 +115,20 @@ def __init__(self, pretrained=True): self.training = False if pretrained: - state_dict_path = importlib.resources.path(facenet_pytorch.data, "rnet.pt") - state_dict = torch.load(state_dict_path) + with importlib.resources.path(facenet_pytorch.data, "rnet.pt") as state_dict_path: + state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) - def forward(self, x): + def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: + """Forward pass of RNet. + + Args: + x: a float tensor with shape [batch_size, 3, h, w]. + + Returns: + b: a float tensor with shape [batch_size, 4]. + a: a float tensor with shape [batch_size, 2]. + """ x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) @@ -91,8 +137,8 @@ def forward(self, x): x = self.pool2(x) x = self.conv3(x) x = self.prelu3(x) - x = x.permute(0, 3, 2, 1).contiguous() - x = self.dense4(x.view(x.shape[0], -1)) + x = self.flatten3(x) + x = self.dense4(x) x = self.prelu4(x) a = self.dense5_1(x) a = self.softmax5_1(a) @@ -107,7 +153,7 @@ class ONet(nn.Module): pretrained {bool} -- Whether or not to load saved pretrained weights (default: {True}) """ - def __init__(self, pretrained=True): + def __init__(self, *, pretrained: bool = True): super().__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3) @@ -121,6 +167,7 @@ def __init__(self, pretrained=True): self.pool3 = nn.MaxPool2d(2, 2, ceil_mode=True) self.conv4 = nn.Conv2d(64, 128, kernel_size=2) self.prelu4 = nn.PReLU(128) + self.flatten4 = Flatten() self.dense5 = nn.Linear(1152, 256) self.prelu5 = nn.PReLU(256) self.dense6_1 = nn.Linear(256, 2) @@ -131,11 +178,21 @@ def __init__(self, pretrained=True): self.training = False if pretrained: - state_dict_path = importlib.resources.path(facenet_pytorch.data, "onet.pt") - state_dict = torch.load(state_dict_path) + with importlib.resources.path(facenet_pytorch.data, "onet.pt") as state_dict_path: + state_dict = torch.load(state_dict_path) self.load_state_dict(state_dict) - def forward(self, x): + def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + """Forward pass of ONet. + + Args: + x: a float tensor with shape [batch_size, 3, h, w]. + + Returns: + c: a float tensor with shape [batch_size, 10]. + b: a float tensor with shape [batch_size, 4]. + a: a float tensor with shape [batch_size, 2]. + """ x = self.conv1(x) x = self.prelu1(x) x = self.pool1(x) @@ -147,14 +204,14 @@ def forward(self, x): x = self.pool3(x) x = self.conv4(x) x = self.prelu4(x) - x = x.permute(0, 3, 2, 1).contiguous() - x = self.dense5(x.view(x.shape[0], -1)) + x = self.flatten4(x) + x = self.dense5(x) x = self.prelu5(x) a = self.dense6_1(x) a = self.softmax6_1(a) b = self.dense6_2(x) c = self.dense6_3(x) - return b, c, a + return c, b, a class MTCNN(nn.Module): @@ -199,28 +256,28 @@ class MTCNN(nn.Module): def __init__( self, - image_size=160, - margin=0, - min_face_size=20, - thresholds=[0.6, 0.7, 0.7], - factor=0.709, - post_process=True, - select_largest=True, - selection_method=None, - keep_all=False, - device=None, + image_size: int = 160, + margin: int = 0, + min_face_size: int = 20, + thresholds: list[float] | None = None, + factor: float = 0.709, + post_process: bool = True, + selection_method: str = "largest", + keep_all: bool = False, + device: torch.device | str | None = None, ): super().__init__() - self.image_size = image_size - self.margin = margin - self.min_face_size = min_face_size - self.thresholds = thresholds - self.factor = factor - self.post_process = post_process - self.select_largest = select_largest - self.keep_all = keep_all - self.selection_method = selection_method + if thresholds is None: + thresholds = [0.6, 0.7, 0.7] + self.image_size: int = image_size + self.margin: int = margin + self.min_face_size: int = min_face_size + self.thresholds: list[float] = thresholds + self.factor: float = factor + self.post_process: bool = post_process + self.keep_all: bool = keep_all + self.selection_method: str = selection_method self.pnet = PNet() self.rnet = RNet() @@ -231,16 +288,14 @@ def __init__( self.device = device self.to(device) - if not self.selection_method: - self.selection_method = "largest" if self.select_largest else "probability" + def forward(self, imgs: list[Image | np.ndarray | torch.Tensor], save_path: list[os.PathLike | str] | None = None): + """Run MTCNN face detection on a list of images. - def forward(self, img, save_path=None, return_prob=False): - """Run MTCNN face detection on a PIL image or numpy array. This method performs both - detection and extraction of faces, returning tensors representing detected faces rather + This method performs both detection and extraction of faces, returning tensors representing detected faces rather than the bounding boxes. To access bounding boxes, see the MTCNN.detect() method below. Arguments: - img {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. + imgs: list of images Keyword Arguments: save_path {str} -- An optional save path for the cropped image. Note that when @@ -262,29 +317,62 @@ def forward(self, img, save_path=None, return_prob=False): Example: >>> from facenet_pytorch import MTCNN >>> mtcnn = MTCNN() - >>> face_tensor, prob = mtcnn(img, save_path='face.png', return_prob=True) + >>> face_tensor, prob = mtcnn(imgs, save_path="face.png") """ - # Detect faces - batch_boxes, batch_probs, batch_points = self.detect(img, landmarks=True) + batch_boxes, batch_probs, batch_points = self.detect_impl(imgs) # Select faces if not self.keep_all: batch_boxes, batch_probs, batch_points = self.select_boxes( - batch_boxes, - batch_probs, - batch_points, - img, - method=self.selection_method, + batch_boxes, batch_probs, batch_points, imgs, method=self.selection_method ) # Extract faces - faces = self.extract(img, batch_boxes, save_path) + faces = self.extract(imgs, batch_boxes, save_path) - if return_prob: - return faces, batch_probs - else: - return faces + return faces, batch_probs + + def detect(self, imgs: list[Image | np.ndarray | torch.Tensor]) -> tuple[np.ndarray, np.ndarray, np.ndarray]: + """Detect all faces in PIL image and return bounding boxes and optional facial landmarks. + + This method is used by the forward method and is also useful for face detection tasks + that require lower-level handling of bounding boxes and facial landmarks (e.g., face + tracking). The functionality of the forward function can be emulated by using this method + followed by the extract_face() function. + + Arguments: + imgs: list of A PIL image, np.ndarray or torch.Tensor - def detect(self, img, landmarks=False): + Returns: + For each image, for N detected faces, a tuple containing a Nx4 array of bounding boxes and + a length N list of detection probabilities. Returned boxes will be sorted in descending + order by detection probability if self.select_largest=False, otherwise the largest face will + be returned first. The third item is the facial landmarks. + + Example: + >>> from PIL import Image, ImageDraw + >>> from facenet_pytorch import MTCNN, extract_face + >>> mtcnn = MTCNN(keep_all=True) + >>> boxes, probs, points = mtcnn.detect(imgs, landmarks=True) + >>> # Draw boxes and save faces + >>> img_draw = imgs.copy() + >>> draw = ImageDraw.Draw(img_draw) + >>> for i, (box, point) in enumerate(zip(boxes, points)): + ... draw.rectangle(box.tolist(), width=5) + ... for p in point: + ... draw.rectangle((p - 10).tolist() + (p + 10).tolist(), width=10) + ... extract_face(imgs, box, save_path=f"detected_face_{i}.png") + >>> img_draw.save("annotated_faces.png") + """ + batch_boxes, batch_probs, batch_points = self.detect_impl(imgs) + # Select faces + if not self.keep_all: + batch_boxes, batch_probs, batch_points = self.select_boxes( + batch_boxes, batch_probs, batch_points, imgs, method=self.selection_method + ) + + return batch_boxes, batch_probs, batch_points + + def detect_impl(self, imgs: list[Image | np.ndarray | torch.Tensor]) -> tuple[np.ndarray, np.ndarray, np.ndarray]: """Detect all faces in PIL image and return bounding boxes and optional facial landmarks. This method is used by the forward method and is also useful for face detection tasks @@ -293,47 +381,36 @@ def detect(self, img, landmarks=False): followed by the extract_face() function. Arguments: - img {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. + imgs: list of A PIL image, np.ndarray or torch.Tensor Keyword Arguments: landmarks {bool} -- Whether to return facial landmarks in addition to bounding boxes. (default: {False}) Returns: - tuple(numpy.ndarray, list) -- For N detected faces, a tuple containing an - Nx4 array of bounding boxes and a length N list of detection probabilities. - Returned boxes will be sorted in descending order by detection probability if - self.select_largest=False, otherwise the largest face will be returned first. - If `img` is a list of images, the items returned have an extra dimension - (batch) as the first dimension. Optionally, a third item, the facial landmarks, - are returned if `landmarks=True`. + For each image, for N detected faces, a tuple containing a Nx4 array of bounding boxes and + a length N list of detection probabilities. Returned boxes will be sorted in descending + order by detection probability if self.select_largest=False, otherwise the largest face will + be returned first. The third item is the facial landmarks. Example: >>> from PIL import Image, ImageDraw >>> from facenet_pytorch import MTCNN, extract_face >>> mtcnn = MTCNN(keep_all=True) - >>> boxes, probs, points = mtcnn.detect(img, landmarks=True) + >>> boxes, probs, points = mtcnn.detect(imgs, landmarks=True) >>> # Draw boxes and save faces - >>> img_draw = img.copy() + >>> img_draw = imgs.copy() >>> draw = ImageDraw.Draw(img_draw) >>> for i, (box, point) in enumerate(zip(boxes, points)): ... draw.rectangle(box.tolist(), width=5) ... for p in point: ... draw.rectangle((p - 10).tolist() + (p + 10).tolist(), width=10) - ... extract_face(img, box, save_path='detected_face_{}.png'.format(i)) - >>> img_draw.save('annotated_faces.png') + ... extract_face(imgs, box, save_path=f"detected_face_{i}.png") + >>> img_draw.save("annotated_faces.png") """ - with torch.no_grad(): batch_boxes, batch_points = detect_face( - img, - self.min_face_size, - self.pnet, - self.rnet, - self.onet, - self.thresholds, - self.factor, - self.device, + imgs, self.min_face_size, self.pnet, self.rnet, self.onet, self.thresholds, self.factor, self.device ) boxes, probs, points = [], [], [] @@ -344,54 +421,52 @@ def detect(self, img, landmarks=False): boxes.append(None) probs.append([None]) points.append(None) - elif self.select_largest: - box_order = np.argsort((box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]))[::-1] - box = box[box_order] - point = point[box_order] - boxes.append(box[:, :4]) - probs.append(box[:, 4]) - points.append(point) + # elif self.select_largest: + # box_order = np.argsort((box[:, 2] - box[:, 0]) * (box[:, 3] - box[:, 1]))[::-1] + # box = box[box_order] + # point = point[box_order] + # boxes.append(box[:, :4]) + # probs.append(box[:, 4]) + # points.append(point) else: boxes.append(box[:, :4]) probs.append(box[:, 4]) points.append(point) + boxes = np.array(boxes, dtype=object) probs = np.array(probs, dtype=object) points = np.array(points, dtype=object) - if ( - not isinstance(img, (list, tuple)) - and not (isinstance(img, np.ndarray) and len(img.shape) == 4) - and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) - ): - boxes = boxes[0] - probs = probs[0] - points = points[0] - - if landmarks: - return boxes, probs, points + # if ( + # not isinstance(img, (list, tuple)) + # and not (isinstance(img, np.ndarray) and len(img.shape) == 4) + # and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) + # ): + # boxes = boxes[0] + # probs = probs[0] + # points = points[0] - return boxes, probs + return boxes, probs, points def select_boxes( self, - all_boxes, - all_probs, - all_points, - imgs, - method="probability", - threshold=0.9, - center_weight=2.0, + all_boxes: np.ndarray, + all_probs: np.ndarray, + all_points: np.ndarray, + imgs: list[Image | np.ndarray | torch.Tensor], + method: str = "probability", + threshold: float = 0.9, + center_weight: float = 2.0, ): """Selects a single box from multiple for a given image using one of multiple heuristics. Arguments: all_boxes {np.ndarray} -- Ix0 ndarray where each element is a Nx4 ndarry of - bounding boxes for N detected faces in I images (output from self.detect). + bounding boxes for N detected faces in I images (output from self.detect_impl). all_probs {np.ndarray} -- Ix0 ndarray where each element is a Nx0 ndarry of - probabilities for N detected faces in I images (output from self.detect). + probabilities for N detected faces in I images (output from self.detect_impl). all_points {np.ndarray} -- Ix0 ndarray where each element is a Nx5x2 array of - points for N detected faces. (output from self.detect). + points for N detected faces. (output from self.detect_impl). imgs {PIL.Image, np.ndarray, or list} -- A PIL image, np.ndarray, torch.Tensor, or list. Keyword Arguments: @@ -409,33 +484,31 @@ def select_boxes( tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray) -- nx4 ndarray of bounding boxes for n images. Ix0 array of probabilities for each box, array of landmark points. """ - # copying batch detection from extract, but would be easier to ensure detect creates consistent output. batch_mode = True - if ( - not isinstance(imgs, (list, tuple)) - and not (isinstance(imgs, np.ndarray) and len(imgs.shape) == 4) - and not (isinstance(imgs, torch.Tensor) and len(imgs.shape) == 4) - ): - imgs = [imgs] - all_boxes = [all_boxes] - all_probs = [all_probs] - all_points = [all_points] - batch_mode = False + # if ( + # not isinstance(imgs, (list, tuple)) + # and not (isinstance(imgs, np.ndarray) and len(imgs.shape) == 4) + # and not (isinstance(imgs, torch.Tensor) and len(imgs.shape) == 4) + # ): + # imgs = [imgs] + # all_boxes = [all_boxes] + # all_probs = [all_probs] + # all_points = [all_points] + # batch_mode = False selected_boxes, selected_probs, selected_points = [], [], [] for boxes, points, probs, img in zip(all_boxes, all_points, all_probs, imgs): - if boxes is None: selected_boxes.append(None) selected_probs.append([None]) selected_points.append(None) continue - # If at least 1 box found - boxes = np.array(boxes) - probs = np.array(probs) - points = np.array(points) + # # If at least 1 box found + # boxes = np.array(boxes) + # probs = np.array(probs) + # points = np.array(points) if method == "largest": box_order = np.argsort((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]))[::-1] @@ -444,14 +517,7 @@ def select_boxes( elif method == "center_weighted_size": box_sizes = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) img_center = (img.width / 2, img.height / 2) - box_centers = np.array( - list( - zip( - (boxes[:, 0] + boxes[:, 2]) / 2, - (boxes[:, 1] + boxes[:, 3]) / 2, - ) - ) - ) + box_centers = np.array(list(zip((boxes[:, 0] + boxes[:, 2]) / 2, (boxes[:, 1] + boxes[:, 3]) / 2))) offsets = box_centers - img_center offset_dist_squared = np.sum(np.power(offsets, 2.0), 1) box_order = np.argsort(box_sizes - offset_dist_squared * center_weight)[::-1] @@ -464,6 +530,9 @@ def select_boxes( selected_probs.append([None]) selected_points.append(None) continue + else: + msg = f"Invalid selection method: {method}" + raise ValueError(msg) box = boxes[box_order][[0]] prob = probs[box_order][[0]] @@ -472,39 +541,45 @@ def select_boxes( selected_probs.append(prob) selected_points.append(point) - if batch_mode: - selected_boxes = np.array(selected_boxes) - selected_probs = np.array(selected_probs) - selected_points = np.array(selected_points) - else: - selected_boxes = selected_boxes[0] - selected_probs = selected_probs[0][0] - selected_points = selected_points[0] + # if batch_mode: + # selected_boxes = np.array(selected_boxes) + # selected_probs = np.array(selected_probs) + # selected_points = np.array(selected_points) return selected_boxes, selected_probs, selected_points - def extract(self, img, batch_boxes, save_path): + def extract( + self, + imgs: list[Image, np.ndarray, torch.Tensor], + batch_boxes: torch.Tensor, + save_path: list[os.PathLike | str] | None, + ): # Determine if a batch or single image was passed - batch_mode = True - if ( - not isinstance(img, (list, tuple)) - and not (isinstance(img, np.ndarray) and len(img.shape) == 4) - and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) - ): - img = [img] - batch_boxes = [batch_boxes] - batch_mode = False + # batch_mode = True + # if ( + # not isinstance(img, (list, tuple)) + # and not (isinstance(img, np.ndarray) and len(img.shape) == 4) + # and not (isinstance(img, torch.Tensor) and len(img.shape) == 4) + # ): + # img = [img] + # batch_boxes = [batch_boxes] + # batch_mode = False # Parse save path(s) if save_path is not None: - if isinstance(save_path, str): - save_path = [save_path] + if not isinstance(save_path, (list, tuple)): + msg = "save_path must be a list or tuple" + raise ValueError(msg) + + if len(save_path) != len(imgs): + msg = "Number of images and save_paths must match" + raise ValueError(msg) else: - save_path = [None for _ in range(len(img))] + save_path = [None] * len(imgs) # Process all bounding boxes faces = [] - for im, box_im, path_im in zip(img, batch_boxes, save_path): + for im, box_im, path_im in zip(imgs, batch_boxes, save_path): if box_im is None: faces.append(None) continue @@ -524,27 +599,23 @@ def extract(self, img, batch_boxes, save_path): face = fixed_image_standardization(face) faces_im.append(face) - if self.keep_all: - faces_im = torch.stack(faces_im) - else: - faces_im = faces_im[0] + faces_im = torch.stack(faces_im) if self.keep_all else faces_im[0] faces.append(faces_im) - if not batch_mode: - faces = faces[0] + # if not batch_mode: + # faces = faces[0] return faces -def fixed_image_standardization(image_tensor): - processed_tensor = (image_tensor - 127.5) / 128.0 - return processed_tensor +def fixed_image_standardization(image_tensor: torch.Tensor) -> torch.Tensor: + image_tensor = (image_tensor - 127.5) / 128.0 + return image_tensor def prewhiten(x): mean = x.mean() std = x.std() std_adj = std.clamp(min=1.0 / (float(x.numel()) ** 0.5)) - y = (x - mean) / std_adj - return y + return (x - mean) / std_adj # y diff --git a/facenet_pytorch/models/utils/detect_face.py b/facenet_pytorch/models/utils/detect_face.py index 9da7b66f..ad0c39b9 100644 --- a/facenet_pytorch/models/utils/detect_face.py +++ b/facenet_pytorch/models/utils/detect_face.py @@ -1,6 +1,11 @@ -import math +from __future__ import annotations + import os +from collections.abc import Sequence +from pathlib import Path +from typing import TYPE_CHECKING +import cv2 import numpy as np import torch from PIL import Image @@ -8,24 +13,107 @@ from torchvision.ops.boxes import batched_nms from torchvision.transforms import functional as F -# OpenCV is optional, but required if using numpy arrays instead of PIL -try: - import cv2 -except: - pass +if TYPE_CHECKING: + from facenet_pytorch.models.mtcnn import ONet, PNet, RNet + + +def normalize_uint8_tensor(tensor: torch.Tensor) -> torch.Tensor: + """Normalize tensor with values inside uint8 range to [-1, 1].""" + return (tensor - 127.5) * 0.0078125 # 1/128 + + +def fixed_batch_process( + im_data: torch.Tensor, model: torch.nn.Module, batch_size: int = 512 +) -> tuple[torch.Tensor, ...]: + """Process a batch of images through the model. + Args: + im_data: Batch of images. + model: Model to process the images with. + batch_size: Batch size. (default: {512}) -def fixed_batch_process(im_data, model): - batch_size = 512 - out = [] + Returns: + Tuple of processed images results. + + """ + out: list[torch.Tensor] = [] for i in range(0, len(im_data), batch_size): - batch = im_data[i : (i + batch_size)] + batch = im_data[i : i + batch_size] out.append(model(batch)) return tuple(torch.cat(v, dim=0) for v in zip(*out)) -def detect_face(imgs, minsize, pnet, rnet, onet, threshold, factor, device): +def get_image_boxes(bboxes: torch.Tensor, imgs: torch.Tensor, image_idxs: torch.Tensor, size: int = 24) -> torch.Tensor: + """Cut out boxes from the images. + + Arguments: + bboxes: a float numpy array of shape [n, 5]. + imgs: the images. + image_idxs: array of image indexes for each bbox, shape [n]. + size: an integer, size of cutouts. + + Returns: + a float numpy array of shape [n, 3, size, size]. + """ + width, height = imgs[0].size + + y, ey, x, ex = pad(bboxes, width, height) + im_datas = [] + for k in range(len(bboxes)): + if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1): + img_k = imgs[image_idxs[k], :, (y[k] - 1) : ey[k], (x[k] - 1) : ex[k]].unsqueeze(0) + im_datas.append(image_resample(img_k, (size, size))) + + return normalize_uint8_tensor(torch.cat(im_datas, dim=0)) + + +def calibrate_box(bboxes: torch.Tensor, offsets: torch.Tensor) -> torch.Tensor: + """Transform bounding boxes to be more like true bounding boxes. + + Arguments: + bboxes: shape [n, 5]. + offsets: shape [n, 4]. + + Returns: + shape [n, 5]. + """ + if offsets.shape[1] == 1: + offsets = torch.reshape(offsets, (offsets.shape[2], offsets.shape[3])) + raise RuntimeError("Shape of offsets is not correct.") + + x1 = bboxes[:, 0] + y1 = bboxes[:, 1] + x2 = bboxes[:, 2] + y2 = bboxes[:, 3] + + w = x2 - x1 + 1 + h = y2 - y1 + 1 + # w = np.expand_dims(w, 1) + # h = np.expand_dims(h, 1) + + # Are offsets always such that x1 < x2 and y1 < y2 ? + b1 = x1 + offsets[:, 0] * w + b2 = y1 + offsets[:, 1] * h + b3 = x2 + offsets[:, 2] * w + b4 = y2 + offsets[:, 3] * h + bboxes = torch.stack([b1, b2, b3, b4, bboxes[:, 4]]).permute(1, 0) + + # translation = torch.hstack([w, h, w, h]) * offsets.permute(1, 0) + # bboxes[:, :4] += bboxes[:, :4] + translation + return bboxes + + +def detect_face( + imgs: list[Image.Image | np.ndarray | torch.Tensor], + min_size: int, + pnet: PNet, + rnet: RNet, + onet: ONet, + threshold: Sequence[float], + factor: float, + device: str | torch.device, +): if isinstance(imgs, (np.ndarray, torch.Tensor)): if isinstance(imgs, np.ndarray): imgs = torch.as_tensor(imgs.copy(), device=device) @@ -40,246 +128,284 @@ def detect_face(imgs, minsize, pnet, rnet, onet, threshold, factor, device): imgs = [imgs] if any(img.size != imgs[0].size for img in imgs): raise Exception("MTCNN batch processing only compatible with equal-dimension images.") - imgs = np.stack([np.uint8(img) for img in imgs]) - imgs = torch.as_tensor(imgs.copy(), device=device) + if isinstance(imgs[0], (Image.Image, np.ndarray)): + imgs = np.stack([np.uint8(img) for img in imgs]) + imgs = torch.as_tensor(imgs.copy(), device=device) + elif isinstance(imgs[0], torch.Tensor): + imgs = torch.stack(imgs) + + assert len(imgs.shape) == 4, "Input images must be 4-dimensional." model_dtype = next(pnet.parameters()).dtype imgs = imgs.permute(0, 3, 1, 2).type(model_dtype) - batch_size = len(imgs) + # Scales the image so that + # minimum size that we can detect equals to + # minimum face size that we want to detect + min_detection_size = 12 h, w = imgs.shape[2:4] - m = 12.0 / minsize - minl = min(h, w) - minl = minl * m + m = min_detection_size / min_size + min_length = min(h, w) + min_length *= m # Create scale pyramid scale_i = m scales = [] - while minl >= 12: + while min_length > min_detection_size: scales.append(scale_i) scale_i = scale_i * factor - minl = minl * factor + min_length = min_length * factor # First stage - boxes = [] - image_inds = [] + bboxes = [] + image_idxs = [] scale_picks = [] - all_i = 0 offset = 0 for scale in scales: - im_data = imresample(imgs, (int(h * scale + 1), int(w * scale + 1))) - im_data = (im_data - 127.5) * 0.0078125 + im_data: torch.Tensor = image_resample(imgs, (int(h * scale + 1), int(w * scale + 1))) + im_data = normalize_uint8_tensor(im_data) reg, probs = pnet(im_data) - boxes_scale, image_inds_scale = generateBoundingBox(reg, probs[:, 1], scale, threshold[0]) - boxes.append(boxes_scale) - image_inds.append(image_inds_scale) + boxes_scale, image_idxs_scale = generate_bbox(reg, probs[:, 1], scale, threshold[0]) + bboxes.append(boxes_scale) + image_idxs.append(image_idxs_scale) - pick = batched_nms(boxes_scale[:, :4], boxes_scale[:, 4], image_inds_scale, 0.5) + pick = batched_nms(boxes_scale[:, :4], boxes_scale[:, 4], image_idxs_scale, 0.5) scale_picks.append(pick + offset) offset += boxes_scale.shape[0] - boxes = torch.cat(boxes, dim=0) - image_inds = torch.cat(image_inds, dim=0) - + bboxes = torch.cat(bboxes, dim=0) + image_idxs = torch.cat(image_idxs, dim=0) scale_picks = torch.cat(scale_picks, dim=0) # NMS within each scale + image - boxes, image_inds = boxes[scale_picks], image_inds[scale_picks] + bboxes, image_idxs = bboxes[scale_picks], image_idxs[scale_picks] # NMS within each image - pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) - boxes, image_inds = boxes[pick], image_inds[pick] - - regw = boxes[:, 2] - boxes[:, 0] - regh = boxes[:, 3] - boxes[:, 1] - qq1 = boxes[:, 0] + boxes[:, 5] * regw - qq2 = boxes[:, 1] + boxes[:, 6] * regh - qq3 = boxes[:, 2] + boxes[:, 7] * regw - qq4 = boxes[:, 3] + boxes[:, 8] * regh - boxes = torch.stack([qq1, qq2, qq3, qq4, boxes[:, 4]]).permute(1, 0) - boxes = rerec(boxes) - y, ey, x, ex = pad(boxes, w, h) + pick = batched_nms(bboxes[:, :4], bboxes[:, 4], image_idxs, 0.7) + bboxes, image_idxs = bboxes[pick], image_idxs[pick] + + # use offsets predicted by pnet to transform bounding boxes + bboxes = calibrate_box(bboxes[:, 0:5], bboxes[:, 5:]) + bboxes = convert_to_square(bboxes) # Second stage - if len(boxes) > 0: - im_data = [] + if len(bboxes) > 0: + y, ey, x, ex = pad(bboxes, w, h) + im_datas = [] for k in range(len(y)): if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1): - img_k = imgs[image_inds[k], :, (y[k] - 1) : ey[k], (x[k] - 1) : ex[k]].unsqueeze(0) - im_data.append(imresample(img_k, (24, 24))) - im_data = torch.cat(im_data, dim=0) - im_data = (im_data - 127.5) * 0.0078125 + img_k = imgs[image_idxs[k], :, (y[k] - 1) : ey[k], (x[k] - 1) : ex[k]].unsqueeze(0) + im_datas.append(image_resample(img_k, (24, 24))) + im_data = torch.cat(im_datas, dim=0) + del im_datas + im_data = normalize_uint8_tensor(im_data) # This is equivalent to out = rnet(im_data) to avoid GPU out of memory. out = fixed_batch_process(im_data, rnet) - out0 = out[0].permute(1, 0) - out1 = out[1].permute(1, 0) - score = out1[1, :] - ipass = score > threshold[1] - boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1) - image_inds = image_inds[ipass] - mv = out0[:, ipass].permute(1, 0) + offsets = out[0].permute(1, 0) # offsets, shape [4, n] + probs = out[1].permute(1, 0) # probs, shape [2, n] + prob = probs[1, :] + ipass = prob > threshold[1] + bboxes = torch.cat((bboxes[ipass, :4], prob[ipass].unsqueeze(1)), dim=1) + image_idxs = image_idxs[ipass] + offsets = offsets[:, ipass].permute(1, 0) # NMS within each image - pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) - boxes, image_inds, mv = boxes[pick], image_inds[pick], mv[pick] - boxes = bbreg(boxes, mv) - boxes = rerec(boxes) + pick = batched_nms(bboxes[:, :4], bboxes[:, 4], image_idxs, 0.7) + bboxes, image_idxs, offsets = bboxes[pick], image_idxs[pick], offsets[pick] + bboxes = calibrate_box(bboxes, offsets) + bboxes = convert_to_square(bboxes) # Third stage - points = torch.zeros(0, 5, 2, device=device) - if len(boxes) > 0: - y, ey, x, ex = pad(boxes, w, h) - im_data = [] + if len(bboxes) > 0: + y, ey, x, ex = pad(bboxes, w, h) + im_datas = [] for k in range(len(y)): if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1): - img_k = imgs[image_inds[k], :, (y[k] - 1) : ey[k], (x[k] - 1) : ex[k]].unsqueeze(0) - im_data.append(imresample(img_k, (48, 48))) - im_data = torch.cat(im_data, dim=0) - im_data = (im_data - 127.5) * 0.0078125 + img_k = imgs[image_idxs[k], :, (y[k] - 1) : ey[k], (x[k] - 1) : ex[k]].unsqueeze(0) + im_datas.append(image_resample(img_k, (48, 48))) + im_data = torch.cat(im_datas, dim=0) + del im_datas + im_data = normalize_uint8_tensor(im_data) # This is equivalent to out = onet(im_data) to avoid GPU out of memory. out = fixed_batch_process(im_data, onet) - out0 = out[0].permute(1, 0) - out1 = out[1].permute(1, 0) - out2 = out[2].permute(1, 0) - score = out2[1, :] - points = out1 - ipass = score > threshold[2] - points = points[:, ipass] - boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1) - image_inds = image_inds[ipass] - mv = out0[:, ipass].permute(1, 0) - - w_i = boxes[:, 2] - boxes[:, 0] + 1 - h_i = boxes[:, 3] - boxes[:, 1] + 1 - points_x = w_i.repeat(5, 1) * points[:5, :] + boxes[:, 0].repeat(5, 1) - 1 - points_y = h_i.repeat(5, 1) * points[5:10, :] + boxes[:, 1].repeat(5, 1) - 1 - points = torch.stack((points_x, points_y)).permute(2, 1, 0) - boxes = bbreg(boxes, mv) + landmarks = out[0].permute(1, 0) # landmarks, shape [10, n] + offsets = out[1].permute(1, 0) # offsets, shape [4, n] + probs = out[2].permute(1, 0) # probs, shape [2, n] + score = probs[1, :] - # NMS within each image using "Min" strategy - # pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7) - pick = batched_nms_numpy(boxes[:, :4], boxes[:, 4], image_inds, 0.7, "Min") - boxes, image_inds, points = boxes[pick], image_inds[pick], points[pick] + ipass = score > threshold[2] + bboxes = torch.cat((bboxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1) + image_idxs = image_idxs[ipass] + landmarks = landmarks[:, ipass] + offsets = offsets[:, ipass].permute(1, 0) - boxes = boxes.cpu().numpy() - points = points.cpu().numpy() + # compute landmark points + w_i = bboxes[:, 2] - bboxes[:, 0] + 1 + h_i = bboxes[:, 3] - bboxes[:, 1] + 1 + x_min, y_min = bboxes[:, 0], bboxes[:, 1] - image_inds = image_inds.cpu() + landmarks_x = w_i.repeat(5, 1) * landmarks[:5, :] + x_min.repeat(5, 1) - 1 + landmarks_y = h_i.repeat(5, 1) * landmarks[5:10, :] + y_min.repeat(5, 1) - 1 + landmarks = torch.stack((landmarks_x, landmarks_y)).permute(2, 1, 0) - batch_boxes = [] - batch_points = [] - for b_i in range(batch_size): - b_i_inds = np.where(image_inds == b_i) - batch_boxes.append(boxes[b_i_inds].copy()) - batch_points.append(points[b_i_inds].copy()) + bboxes = calibrate_box(bboxes, offsets) + # NMS within each image using "min" strategy + pick = batched_nms_numpy(bboxes[:, :4], bboxes[:, 4], image_idxs, 0.7, "min") + bboxes, image_idxs, landmarks = bboxes[pick], image_idxs[pick], landmarks[pick] - batch_boxes, batch_points = np.array(batch_boxes, dtype=object), np.array(batch_points, dtype=object) + bboxes_np = bboxes.cpu().numpy() + del bboxes + landmarks_np = landmarks.cpu().numpy() + del landmarks - return batch_boxes, batch_points + image_idxs = image_idxs.cpu() + batch_boxes = [] + batch_landmarks = [] + for b_i in range(len(imgs)): + b_i_inds = np.where(image_idxs == b_i) + batch_boxes.append(bboxes_np[b_i_inds]) + batch_landmarks.append(landmarks_np[b_i_inds]) -def bbreg(boundingbox, reg): - if reg.shape[1] == 1: - reg = torch.reshape(reg, (reg.shape[2], reg.shape[3])) + batch_boxes, batch_landmarks = np.array(batch_boxes, dtype=object), np.array(batch_landmarks, dtype=object) - w = boundingbox[:, 2] - boundingbox[:, 0] + 1 - h = boundingbox[:, 3] - boundingbox[:, 1] + 1 - b1 = boundingbox[:, 0] + reg[:, 0] * w - b2 = boundingbox[:, 1] + reg[:, 1] * h - b3 = boundingbox[:, 2] + reg[:, 2] * w - b4 = boundingbox[:, 3] + reg[:, 3] * h - boundingbox[:, :4] = torch.stack([b1, b2, b3, b4]).permute(1, 0) + return batch_boxes, batch_landmarks - return boundingbox +def generate_bbox( + reg: torch.Tensor, probs: torch.Tensor, scale: float, threshold: float, stride: int = 2, cell_size: int = 12 +) -> tuple[torch.Tensor, torch.Tensor]: + """Generate bounding boxes at places where there is probably a face. -def generateBoundingBox(reg, probs, scale, thresh): - stride = 2 - cellsize = 12 + Arguments: + reg: a float numpy array of shape [batch_size, 4, n, m]. + probs: a float numpy array of shape [batch_size, n, m]. + scale: this number scaled a float number, width and height of the image. + threshold: a float number. + stride: an integer. + cell_size: an integer. + Returns: + Bounding boxes and image indices. + """ reg = reg.permute(1, 0, 2, 3) - mask = probs >= thresh - mask_inds = mask.nonzero() - image_inds = mask_inds[:, 0] - score = probs[mask] + mask: torch.Tensor = probs >= threshold + mask_idxs = mask.nonzero() + image_idxs = mask_idxs[:, 0] + scores = probs[mask] reg = reg[:, mask].permute(1, 0) - bb = mask_inds[:, 1:].type(reg.dtype).flip(1) + bb = mask_idxs[:, 1:].type(reg.dtype).flip(1) q1 = ((stride * bb + 1) / scale).floor() - q2 = ((stride * bb + cellsize - 1 + 1) / scale).floor() - boundingbox = torch.cat([q1, q2, score.unsqueeze(1), reg], dim=1) - return boundingbox, image_inds + q2 = ((stride * bb + cell_size - 1 + 1) / scale).floor() + bbox = torch.cat([q1, q2, scores.unsqueeze(1), reg], dim=1) + return bbox, image_idxs + + +def nms_numpy(bboxes: np.ndarray, scores: np.ndarray, threshold: float, method: str) -> np.ndarray: + """Non-maximum suppression. + Arguments: + bboxes: a float numpy array of shape [n, 4], + where each row is (xmin, ymin, xmax, ymax, score). + scores: a float numpy array of shape [n]. + threshold: the threshold for deciding whether boxes overlap too much with respect to IOU. + mode: 'union' or 'min'. -def nms_numpy(boxes, scores, threshold, method): - if boxes.size == 0: + Returns: + List with indices of the selected boxes + """ + if bboxes.size == 0: return np.empty((0, 3)) - x1 = boxes[:, 0].copy() - y1 = boxes[:, 1].copy() - x2 = boxes[:, 2].copy() - y2 = boxes[:, 3].copy() - s = scores + x1 = bboxes[:, 0] + y1 = bboxes[:, 1] + x2 = bboxes[:, 2] + y2 = bboxes[:, 3] area = (x2 - x1 + 1) * (y2 - y1 + 1) - I = np.argsort(s) - pick = np.zeros_like(s, dtype=np.int16) + scores_idx = np.argsort(scores) + # list of picked indices + pick = np.zeros_like(scores, dtype=np.int16) counter = 0 - while I.size > 0: - i = I[-1] + while scores_idx.size > 0: + i = scores_idx[-1] pick[counter] = i counter += 1 - idx = I[0:-1] + idx = scores_idx[0:-1] + + # Compute intersections of the box with the largest score with the rest of the boxes + + # Left top corner of intersection boxes + ix1 = np.maximum(x1[i], x1[idx]) + iy1 = np.maximum(y1[i], y1[idx]) - xx1 = np.maximum(x1[i], x1[idx]).copy() - yy1 = np.maximum(y1[i], y1[idx]).copy() - xx2 = np.minimum(x2[i], x2[idx]).copy() - yy2 = np.minimum(y2[i], y2[idx]).copy() + # Right bottom corner of intersection boxes + ix2 = np.minimum(x2[i], x2[idx]) + iy2 = np.minimum(y2[i], y2[idx]) - w = np.maximum(0.0, xx2 - xx1 + 1).copy() - h = np.maximum(0.0, yy2 - yy1 + 1).copy() + # Width and height of intersection boxes + w = np.maximum(0.0, ix2 - ix1 + 1) + h = np.maximum(0.0, iy2 - iy1 + 1) inter = w * h - if method == "Min": - o = inter / np.minimum(area[i], area[idx]) + if method.lower() == "min": + overlap = inter / np.minimum(area[i], area[i]) + elif method.lower() == "union": + # intersection over union (IoU) + overlap = inter / (area[i] + area[i] - inter) else: - o = inter / (area[i] + area[idx] - inter) - I = I[np.where(o <= threshold)] + msg = f"Unknown NMS method: {method}" + raise ValueError(msg) - pick = pick[:counter].copy() - return pick + scores_idx = scores_idx[np.where(overlap <= threshold)] + return pick[:counter] -def batched_nms_numpy(boxes, scores, idxs, threshold, method): - device = boxes.device - if boxes.numel() == 0: - return torch.empty((0,), dtype=torch.int64, device=device) - # strategy: in order to perform NMS independently per class. - # we add an offset to all the boxes. The offset is dependent - # only on the class idx, and is large enough so that boxes + +def batched_nms_numpy( + bboxes: torch.Tensor, scores: torch.Tensor, idxs: torch.Tensor, threshold: float, method: str +) -> torch.Tensor: + device = bboxes.device + if bboxes.numel() == 0: + return torch.empty((0,), dtype=torch.long, device=device) + # Strategy: to perform NMS independently per class. + # We add an offset to all the boxes. + # The offset is dependent only on the class idx, and is large enough so that boxes # from different classes do not overlap - max_coordinate = boxes.max() - offsets = idxs.to(boxes) * (max_coordinate + 1) - boxes_for_nms = boxes + offsets[:, None] - boxes_for_nms = boxes_for_nms.cpu().numpy() + max_coordinate = bboxes.max() + offsets = idxs.to(bboxes) * (max_coordinate + 1) + boxes_for_nms = bboxes + offsets[:, None] + boxes_for_nms_np = boxes_for_nms.cpu().numpy() + del boxes_for_nms scores = scores.cpu().numpy() - keep = nms_numpy(boxes_for_nms, scores, threshold, method) + keep = nms_numpy(boxes_for_nms_np, scores, threshold, method) return torch.as_tensor(keep, dtype=torch.long, device=device) -def pad(boxes, w, h): - boxes = boxes.trunc().int().cpu().numpy() - x = boxes[:, 0] - y = boxes[:, 1] - ex = boxes[:, 2] - ey = boxes[:, 3] +def pad(bboxes: torch.Tensor, w: int, h: int) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: + """Compute the padding coordinates (pad the bounding boxes to square). + + Arguments: + bboxes: a float numpy array of shape [n, 5]. + w: width of the original image. + h: height of the original image. + + Returns: + y, ey, x, ex: + """ + bboxes = bboxes.trunc().int().cpu().numpy() + x = bboxes[:, 0] + y = bboxes[:, 1] + ex = bboxes[:, 2] + ey = bboxes[:, 3] x[x < 1] = 1 y[y < 1] = 1 @@ -289,74 +415,108 @@ def pad(boxes, w, h): return y, ey, x, ex -def rerec(bboxA): - h = bboxA[:, 3] - bboxA[:, 1] - w = bboxA[:, 2] - bboxA[:, 0] +def convert_to_square(bboxes: torch.Tensor) -> torch.Tensor: + """Convert bounding boxes to a square form. + + Arguments: + bboxes: shape [n, 5]. + + Returns: + squared bounding boxes, shape [n, 5] + """ + h = bboxes[:, 3] - bboxes[:, 1] + w = bboxes[:, 2] - bboxes[:, 0] l = torch.max(w, h) - bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5 - bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5 - bboxA[:, 2:4] = bboxA[:, :2] + l.repeat(2, 1).permute(1, 0) + bboxes[:, 0] = bboxes[:, 0] + w * 0.5 - l * 0.5 + bboxes[:, 1] = bboxes[:, 1] + h * 0.5 - l * 0.5 + bboxes[:, 2:4] = bboxes[:, :2] + l.repeat(2, 1).permute(1, 0) + return bboxes + + +def image_resample(img: torch.Tensor, sz: tuple[int, int] | int | None) -> torch.Tensor: + """Resample image to size using torch.nn.functional.interpolate. - return bboxA + Arguments: + img: Image tensor to be resampled. + sz: Output size (sz x sz). + Returns: + Resampled image tensor. + """ + return interpolate(img, size=sz, mode="area") -def imresample(img, sz): - im_data = interpolate(img, size=sz, mode="area") - return im_data +def crop_resize(img: np.ndarray | torch.Tensor, box: list[int], image_size: int | None) -> np.ndarray | torch.Tensor: + """Crop and resize face image. -def crop_resize(img, box, image_size): - if isinstance(img, np.ndarray): - img = img[box[1] : box[3], box[0] : box[2]] - out = cv2.resize(img, (image_size, image_size), interpolation=cv2.INTER_AREA).copy() - elif isinstance(img, torch.Tensor): - img = img[box[1] : box[3], box[0] : box[2]] - out = ( - imresample(img.permute(2, 0, 1).unsqueeze(0).float(), (image_size, image_size)) - .byte() - .squeeze(0) - .permute(1, 2, 0) - ) - else: - out = img.crop(box).copy().resize((image_size, image_size), Image.BILINEAR) - return out + Arguments: + img: Image to be cropped and resized. + box: Bounding box around face. + image_size: Image size, both height and width are the same. + Returns: + Cropped and resized image. + """ + if isinstance(img, Image.Image): + return img.crop(box).copy().resize((image_size, image_size), Image.Resampling.BILINEAR) -def save_img(img, path): + img = img[box[1] : box[3], box[0] : box[2]] if isinstance(img, np.ndarray): - cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) - else: - img.save(path) + return cv2.resize(img.copy(), (image_size, image_size), interpolation=cv2.INTER_AREA) + # torch.Tensor + return ( + image_resample(img.permute(2, 0, 1).unsqueeze(0).float(), (image_size, image_size)) + .byte() + .squeeze(0) + .permute(1, 2, 0) + ) -def get_size(img): - if isinstance(img, (np.ndarray, torch.Tensor)): - return img.shape[1::-1] - else: + +def save_img(img: Image | np.ndarray | torch.Tensor, path: os.PathLike) -> bool: + """Save image to file.""" + if isinstance(img, Image.Image): + try: + img.save(path) + except Exception: # noqa: BLE001 + return False + + return True + + return cv2.imwrite(str(path), img[:, :, ::-1]) # BGR to RGB + + +def get_size(img: Image | np.ndarray | torch.Tensor) -> tuple[int, int]: + if isinstance(img, Image.Image): return img.size + return img.shape[1::-1] + -def extract_face(img, box, image_size=160, margin=0, save_path=None): +def extract_face( + img: np.ndarray | torch.Tensor, + box: np.ndarray, + image_size: int = 160, + margin: int = 0, + save_path: os.PathLike | str | None = None, +) -> torch.Tensor: """Extract face + margin from PIL Image given bounding box. Arguments: - img {PIL.Image} -- A PIL Image. - box {numpy.ndarray} -- Four-element bounding box. - image_size {int} -- Output image size in pixels. The image will be square. - margin {int} -- Margin to add to bounding box, in terms of pixels in the final image. + img: A PIL Image. + box: Four-element bounding box. + image_size: Output image size in pixels. The image will be square. + margin: Margin to add to bounding box, in terms of pixels in the final image. Note that the application of the margin differs slightly from the davidsandberg/facenet repo, which applies the margin to the original image before resizing, making the margin dependent on the original image size. - save_path {str} -- Save path for extracted face image. (default: {None}) + save_path: Save path for extracted face image. (default: {None}) Returns: - torch.tensor -- tensor representing the extracted face. + Tensor representing the extracted face. """ - margin = [ - margin * (box[2] - box[0]) / (image_size - margin), - margin * (box[3] - box[1]) / (image_size - margin), - ] + margin = [margin * (box[2] - box[0]) / (image_size - margin), margin * (box[3] - box[1]) / (image_size - margin)] raw_image_size = get_size(img) box = [ int(max(box[0] - margin[0] / 2, 0)), @@ -368,9 +528,8 @@ def extract_face(img, box, image_size=160, margin=0, save_path=None): face = crop_resize(img, box, image_size) if save_path is not None: - os.makedirs(os.path.dirname(save_path) + "/", exist_ok=True) + save_path = Path(save_path) + save_path.parent.mkdir(parents=True, exist_ok=True) save_img(face, save_path) - face = F.to_tensor(np.float32(face)) - - return face + return F.to_tensor(np.float32(face)) diff --git a/facenet_pytorch/models/utils/download.py b/facenet_pytorch/models/utils/download.py index 8f5659aa..72c51bf1 100644 --- a/facenet_pytorch/models/utils/download.py +++ b/facenet_pytorch/models/utils/download.py @@ -1,3 +1,5 @@ +from __future__ import annotations + import hashlib import os import shutil @@ -11,8 +13,9 @@ from tqdm import tqdm -def download_url_to_file(url, dst, hash_prefix=None, progress=True): - r"""Download object at the given URL to a local path. +def download_url_to_file(url: str, dst: PathLike | str, hash_prefix=None, progress: bool = True) -> None: + """Download object at the given URL to a local path. + Args: url (string): URL of the object to download dst (string): Full path where object will be saved, e.g. `/tmp/temporary_file` @@ -46,13 +49,7 @@ def download_url_to_file(url, dst, hash_prefix=None, progress=True): try: if hash_prefix is not None: sha256 = hashlib.sha256() - with tqdm( - total=file_size, - disable=not progress, - unit="B", - unit_scale=True, - unit_divisor=1024, - ) as pbar: + with tqdm(total=file_size, disable=not progress, unit="B", unit_scale=True, unit_divisor=1024) as pbar: while True: buffer = u.read(8192) if len(buffer) == 0: diff --git a/facenet_pytorch/models/utils/tensorflow2pytorch.py b/facenet_pytorch/models/utils/tensorflow2pytorch.py index a55e2634..7fa255df 100644 --- a/facenet_pytorch/models/utils/tensorflow2pytorch.py +++ b/facenet_pytorch/models/utils/tensorflow2pytorch.py @@ -216,10 +216,7 @@ def compare_model_outputs(pt_mdl, sess, test_data): images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") - feed_dict = { - images_placeholder: test_data.numpy(), - phase_train_placeholder: False, - } + feed_dict = {images_placeholder: test_data.numpy(), phase_train_placeholder: False} tf_output = torch.tensor(sess.run(embeddings, feed_dict=feed_dict)) else: tf_output = sess(test_data) @@ -310,10 +307,7 @@ def tensorflow2pytorch(): state_dict = mdl.state_dict() torch.save(state_dict, f"{tf_mdl_dir}-{data_name}.pt") torch.save( - { - "logits.weight": state_dict["logits.weight"], - "logits.bias": state_dict["logits.bias"], - }, + {"logits.weight": state_dict["logits.weight"], "logits.bias": state_dict["logits.bias"]}, f"{tf_mdl_dir}-{data_name}-logits.pt", ) state_dict.pop("logits.weight") @@ -328,10 +322,7 @@ def tensorflow2pytorch(): state_dict = mdl.state_dict() torch.save(state_dict, f"{tf_mdl_dir}-{data_name}.pt") torch.save( - { - "logits.weight": state_dict["logits.weight"], - "logits.bias": state_dict["logits.bias"], - }, + {"logits.weight": state_dict["logits.weight"], "logits.bias": state_dict["logits.bias"]}, f"{tf_mdl_dir}-{data_name}-logits.pt", ) state_dict.pop("logits.weight") diff --git a/facenet_pytorch/models/utils/training.py b/facenet_pytorch/models/utils/training.py index 9af1218f..a6fc651d 100644 --- a/facenet_pytorch/models/utils/training.py +++ b/facenet_pytorch/models/utils/training.py @@ -4,8 +4,7 @@ import torch -class Logger(object): - +class Logger: def __init__(self, mode, length, calculate_mean=False): self.mode = mode self.length = length diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 00000000..827c33ed --- /dev/null +++ b/poetry.lock @@ -0,0 +1,3965 @@ +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. + +[[package]] +name = "addict" +version = "2.4.0" +description = "Addict is a dictionary whose items can be set using both attribute and item syntax." +optional = false +python-versions = "*" +files = [ + {file = "addict-2.4.0-py3-none-any.whl", hash = "sha256:249bb56bbfd3cdc2a004ea0ff4c2b6ddc84d53bc2194761636eb314d5cfa5dfc"}, + {file = "addict-2.4.0.tar.gz", hash = "sha256:b3b2210e0e067a281f5646c8c5db92e99b7231ea8b0eb5f74dbdf9e259d4e494"}, +] + +[[package]] +name = "anyio" +version = "4.4.0" +description = "High level compatibility layer for multiple asynchronous event loop implementations" +optional = false +python-versions = ">=3.8" +files = [ + {file = "anyio-4.4.0-py3-none-any.whl", hash = "sha256:c1b2d8f46a8a812513012e1107cb0e68c17159a7a594208005a57dc776e1bdc7"}, + {file = "anyio-4.4.0.tar.gz", hash = "sha256:5aadc6a1bbb7cdb0bede386cac5e2940f5e2ff3aa20277e991cf028e0585ce94"}, +] + +[package.dependencies] +exceptiongroup = {version = ">=1.0.2", markers = "python_version < \"3.11\""} +idna = ">=2.8" +sniffio = ">=1.1" +typing-extensions = {version = ">=4.1", markers = "python_version < \"3.11\""} + +[package.extras] +doc = ["Sphinx (>=7)", "packaging", "sphinx-autodoc-typehints (>=1.2.0)", "sphinx-rtd-theme"] +test = ["anyio[trio]", "coverage[toml] (>=7)", "exceptiongroup (>=1.2.0)", "hypothesis (>=4.0)", "psutil (>=5.9)", "pytest (>=7.0)", "pytest-mock (>=3.6.1)", "trustme", "uvloop (>=0.17)"] +trio = ["trio (>=0.23)"] + +[[package]] +name = "appnope" +version = "0.1.4" +description = "Disable App Nap on macOS >= 10.9" +optional = false +python-versions = ">=3.6" +files = [ + {file = "appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c"}, + {file = "appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee"}, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +description = "Argon2 for Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea"}, + {file = "argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08"}, +] + +[package.dependencies] +argon2-cffi-bindings = "*" + +[package.extras] +dev = ["argon2-cffi[tests,typing]", "tox (>4)"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-copybutton", "sphinx-notfound-page"] +tests = ["hypothesis", "pytest"] +typing = ["mypy"] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +description = "Low-level CFFI bindings for Argon2" +optional = false +python-versions = ">=3.6" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] + +[package.dependencies] +cffi = ">=1.0.1" + +[package.extras] +dev = ["cogapp", "pre-commit", "pytest", "wheel"] +tests = ["pytest"] + +[[package]] +name = "arrow" +version = "1.3.0" +description = "Better dates & times for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80"}, + {file = "arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85"}, +] + +[package.dependencies] +python-dateutil = ">=2.7.0" +types-python-dateutil = ">=2.8.10" + +[package.extras] +doc = ["doc8", "sphinx (>=7.0.0)", "sphinx-autobuild", "sphinx-autodoc-typehints", "sphinx_rtd_theme (>=1.3.0)"] +test = ["dateparser (==1.*)", "pre-commit", "pytest", "pytest-cov", "pytest-mock", "pytz (==2021.1)", "simplejson (==3.*)"] + +[[package]] +name = "asttokens" +version = "2.4.1" +description = "Annotate AST trees with source code positions" +optional = false +python-versions = "*" +files = [ + {file = "asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24"}, + {file = "asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0"}, +] + +[package.dependencies] +six = ">=1.12.0" + +[package.extras] +astroid = ["astroid (>=1,<2)", "astroid (>=2,<4)"] +test = ["astroid (>=1,<2)", "astroid (>=2,<4)", "pytest"] + +[[package]] +name = "async-lru" +version = "2.0.4" +description = "Simple LRU cache for asyncio" +optional = false +python-versions = ">=3.8" +files = [ + {file = "async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627"}, + {file = "async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224"}, +] + +[package.dependencies] +typing-extensions = {version = ">=4.0.0", markers = "python_version < \"3.11\""} + +[[package]] +name = "attrs" +version = "23.2.0" +description = "Classes Without Boilerplate" +optional = false +python-versions = ">=3.7" +files = [ + {file = "attrs-23.2.0-py3-none-any.whl", hash = "sha256:99b87a485a5820b23b879f04c2305b44b951b502fd64be915879d77a7e8fc6f1"}, + {file = "attrs-23.2.0.tar.gz", hash = "sha256:935dc3b529c262f6cf76e50877d35a4bd3c1de194fd41f47a2b7ae8f19971f30"}, +] + +[package.extras] +cov = ["attrs[tests]", "coverage[toml] (>=5.3)"] +dev = ["attrs[tests]", "pre-commit"] +docs = ["furo", "myst-parser", "sphinx", "sphinx-notfound-page", "sphinxcontrib-towncrier", "towncrier", "zope-interface"] +tests = ["attrs[tests-no-zope]", "zope-interface"] +tests-mypy = ["mypy (>=1.6)", "pytest-mypy-plugins"] +tests-no-zope = ["attrs[tests-mypy]", "cloudpickle", "hypothesis", "pympler", "pytest (>=4.3.0)", "pytest-xdist[psutil]"] + +[[package]] +name = "babel" +version = "2.15.0" +description = "Internationalization utilities" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Babel-2.15.0-py3-none-any.whl", hash = "sha256:08706bdad8d0a3413266ab61bd6c34d0c28d6e1e7badf40a2cebe67644e2e1fb"}, + {file = "babel-2.15.0.tar.gz", hash = "sha256:8daf0e265d05768bc6c7a314cf1321e9a123afc328cc635c18622a2f30a04413"}, +] + +[package.dependencies] +pytz = {version = ">=2015.7", markers = "python_version < \"3.9\""} + +[package.extras] +dev = ["freezegun (>=1.0,<2.0)", "pytest (>=6.0)", "pytest-cov"] + +[[package]] +name = "backcall" +version = "0.2.0" +description = "Specifications for callback functions passed in to an API" +optional = false +python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] + +[[package]] +name = "beautifulsoup4" +version = "4.12.3" +description = "Screen-scraping library" +optional = false +python-versions = ">=3.6.0" +files = [ + {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, + {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, +] + +[package.dependencies] +soupsieve = ">1.2" + +[package.extras] +cchardet = ["cchardet"] +chardet = ["chardet"] +charset-normalizer = ["charset-normalizer"] +html5lib = ["html5lib"] +lxml = ["lxml"] + +[[package]] +name = "bleach" +version = "6.1.0" +description = "An easy safelist-based HTML-sanitizing tool." +optional = false +python-versions = ">=3.8" +files = [ + {file = "bleach-6.1.0-py3-none-any.whl", hash = "sha256:3225f354cfc436b9789c66c4ee030194bee0568fbf9cbdad3bc8b5c26c5f12b6"}, + {file = "bleach-6.1.0.tar.gz", hash = "sha256:0a31f1837963c41d46bbf1331b8778e1308ea0791db03cc4e7357b97cf42a8fe"}, +] + +[package.dependencies] +six = ">=1.9.0" +webencodings = "*" + +[package.extras] +css = ["tinycss2 (>=1.1.0,<1.3)"] + +[[package]] +name = "cattrs" +version = "23.2.3" +description = "Composable complex class support for attrs and dataclasses." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cattrs-23.2.3-py3-none-any.whl", hash = "sha256:0341994d94971052e9ee70662542699a3162ea1e0c62f7ce1b4a57f563685108"}, + {file = "cattrs-23.2.3.tar.gz", hash = "sha256:a934090d95abaa9e911dac357e3a8699e0b4b14f8529bcc7d2b1ad9d51672b9f"}, +] + +[package.dependencies] +attrs = ">=23.1.0" +exceptiongroup = {version = ">=1.1.1", markers = "python_version < \"3.11\""} +typing-extensions = {version = ">=4.1.0,<4.6.3 || >4.6.3", markers = "python_version < \"3.11\""} + +[package.extras] +bson = ["pymongo (>=4.4.0)"] +cbor2 = ["cbor2 (>=5.4.6)"] +msgpack = ["msgpack (>=1.0.5)"] +orjson = ["orjson (>=3.9.2)"] +pyyaml = ["pyyaml (>=6.0)"] +tomlkit = ["tomlkit (>=0.11.8)"] +ujson = ["ujson (>=5.7.0)"] + +[[package]] +name = "certifi" +version = "2024.6.2" +description = "Python package for providing Mozilla's CA Bundle." +optional = false +python-versions = ">=3.6" +files = [ + {file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"}, + {file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"}, +] + +[[package]] +name = "cffi" +version = "1.16.0" +description = "Foreign Function Interface for Python calling C code." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"}, + {file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"}, + {file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"}, + {file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"}, + {file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"}, + {file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"}, + {file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"}, + {file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"}, + {file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"}, + {file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"}, + {file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"}, + {file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"}, + {file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"}, + {file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"}, + {file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"}, + {file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"}, + {file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"}, + {file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"}, + {file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"}, + {file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"}, + {file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"}, + {file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"}, + {file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"}, + {file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"}, + {file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"}, + {file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"}, +] + +[package.dependencies] +pycparser = "*" + +[[package]] +name = "cfgv" +version = "3.4.0" +description = "Validate configuration and produce human readable error messages." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9"}, + {file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"}, +] + +[[package]] +name = "charset-normalizer" +version = "3.3.2" +description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"}, + {file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"}, + {file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"}, + {file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"}, + {file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"}, + {file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"}, + {file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"}, + {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, +] + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "comm" +version = "0.2.2" +description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." +optional = false +python-versions = ">=3.8" +files = [ + {file = "comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3"}, + {file = "comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e"}, +] + +[package.dependencies] +traitlets = ">=4" + +[package.extras] +test = ["pytest"] + +[[package]] +name = "contourpy" +version = "1.1.1" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.8" +files = [ + {file = "contourpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:46e24f5412c948d81736509377e255f6040e94216bf1a9b5ea1eaa9d29f6ec1b"}, + {file = "contourpy-1.1.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:0e48694d6a9c5a26ee85b10130c77a011a4fedf50a7279fa0bdaf44bafb4299d"}, + {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a66045af6cf00e19d02191ab578a50cb93b2028c3eefed999793698e9ea768ae"}, + {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ebf42695f75ee1a952f98ce9775c873e4971732a87334b099dde90b6af6a916"}, + {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f6aec19457617ef468ff091669cca01fa7ea557b12b59a7908b9474bb9674cf0"}, + {file = "contourpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:462c59914dc6d81e0b11f37e560b8a7c2dbab6aca4f38be31519d442d6cde1a1"}, + {file = "contourpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6d0a8efc258659edc5299f9ef32d8d81de8b53b45d67bf4bfa3067f31366764d"}, + {file = "contourpy-1.1.1-cp310-cp310-win32.whl", hash = "sha256:d6ab42f223e58b7dac1bb0af32194a7b9311065583cc75ff59dcf301afd8a431"}, + {file = "contourpy-1.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:549174b0713d49871c6dee90a4b499d3f12f5e5f69641cd23c50a4542e2ca1eb"}, + {file = "contourpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:407d864db716a067cc696d61fa1ef6637fedf03606e8417fe2aeed20a061e6b2"}, + {file = "contourpy-1.1.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe80c017973e6a4c367e037cb31601044dd55e6bfacd57370674867d15a899b"}, + {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e30aaf2b8a2bac57eb7e1650df1b3a4130e8d0c66fc2f861039d507a11760e1b"}, + {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3de23ca4f381c3770dee6d10ead6fff524d540c0f662e763ad1530bde5112532"}, + {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:566f0e41df06dfef2431defcfaa155f0acfa1ca4acbf8fd80895b1e7e2ada40e"}, + {file = "contourpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b04c2f0adaf255bf756cf08ebef1be132d3c7a06fe6f9877d55640c5e60c72c5"}, + {file = "contourpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d0c188ae66b772d9d61d43c6030500344c13e3f73a00d1dc241da896f379bb62"}, + {file = "contourpy-1.1.1-cp311-cp311-win32.whl", hash = "sha256:0683e1ae20dc038075d92e0e0148f09ffcefab120e57f6b4c9c0f477ec171f33"}, + {file = "contourpy-1.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:8636cd2fc5da0fb102a2504fa2c4bea3cbc149533b345d72cdf0e7a924decc45"}, + {file = "contourpy-1.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:560f1d68a33e89c62da5da4077ba98137a5e4d3a271b29f2f195d0fba2adcb6a"}, + {file = "contourpy-1.1.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:24216552104ae8f3b34120ef84825400b16eb6133af2e27a190fdc13529f023e"}, + {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56de98a2fb23025882a18b60c7f0ea2d2d70bbbcfcf878f9067234b1c4818442"}, + {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:07d6f11dfaf80a84c97f1a5ba50d129d9303c5b4206f776e94037332e298dda8"}, + {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f1eaac5257a8f8a047248d60e8f9315c6cff58f7803971170d952555ef6344a7"}, + {file = "contourpy-1.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19557fa407e70f20bfaba7d55b4d97b14f9480856c4fb65812e8a05fe1c6f9bf"}, + {file = "contourpy-1.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:081f3c0880712e40effc5f4c3b08feca6d064cb8cfbb372ca548105b86fd6c3d"}, + {file = "contourpy-1.1.1-cp312-cp312-win32.whl", hash = "sha256:059c3d2a94b930f4dafe8105bcdc1b21de99b30b51b5bce74c753686de858cb6"}, + {file = "contourpy-1.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:f44d78b61740e4e8c71db1cf1fd56d9050a4747681c59ec1094750a658ceb970"}, + {file = "contourpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:70e5a10f8093d228bb2b552beeb318b8928b8a94763ef03b858ef3612b29395d"}, + {file = "contourpy-1.1.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8394e652925a18ef0091115e3cc191fef350ab6dc3cc417f06da66bf98071ae9"}, + {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5bd5680f844c3ff0008523a71949a3ff5e4953eb7701b28760805bc9bcff217"}, + {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:66544f853bfa85c0d07a68f6c648b2ec81dafd30f272565c37ab47a33b220684"}, + {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e0c02b75acfea5cab07585d25069207e478d12309557f90a61b5a3b4f77f46ce"}, + {file = "contourpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41339b24471c58dc1499e56783fedc1afa4bb018bcd035cfb0ee2ad2a7501ef8"}, + {file = "contourpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f29fb0b3f1217dfe9362ec55440d0743fe868497359f2cf93293f4b2701b8251"}, + {file = "contourpy-1.1.1-cp38-cp38-win32.whl", hash = "sha256:f9dc7f933975367251c1b34da882c4f0e0b2e24bb35dc906d2f598a40b72bfc7"}, + {file = "contourpy-1.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:498e53573e8b94b1caeb9e62d7c2d053c263ebb6aa259c81050766beb50ff8d9"}, + {file = "contourpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ba42e3810999a0ddd0439e6e5dbf6d034055cdc72b7c5c839f37a7c274cb4eba"}, + {file = "contourpy-1.1.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:6c06e4c6e234fcc65435223c7b2a90f286b7f1b2733058bdf1345d218cc59e34"}, + {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca6fab080484e419528e98624fb5c4282148b847e3602dc8dbe0cb0669469887"}, + {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:93df44ab351119d14cd1e6b52a5063d3336f0754b72736cc63db59307dabb718"}, + {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eafbef886566dc1047d7b3d4b14db0d5b7deb99638d8e1be4e23a7c7ac59ff0f"}, + {file = "contourpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efe0fab26d598e1ec07d72cf03eaeeba8e42b4ecf6b9ccb5a356fde60ff08b85"}, + {file = "contourpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f08e469821a5e4751c97fcd34bcb586bc243c39c2e39321822060ba902eac49e"}, + {file = "contourpy-1.1.1-cp39-cp39-win32.whl", hash = "sha256:bfc8a5e9238232a45ebc5cb3bfee71f1167064c8d382cadd6076f0d51cff1da0"}, + {file = "contourpy-1.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:c84fdf3da00c2827d634de4fcf17e3e067490c4aea82833625c4c8e6cdea0887"}, + {file = "contourpy-1.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:229a25f68046c5cf8067d6d6351c8b99e40da11b04d8416bf8d2b1d75922521e"}, + {file = "contourpy-1.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a10dab5ea1bd4401c9483450b5b0ba5416be799bbd50fc7a6cc5e2a15e03e8a3"}, + {file = "contourpy-1.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:4f9147051cb8fdb29a51dc2482d792b3b23e50f8f57e3720ca2e3d438b7adf23"}, + {file = "contourpy-1.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a75cc163a5f4531a256f2c523bd80db509a49fc23721b36dd1ef2f60ff41c3cb"}, + {file = "contourpy-1.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b53d5769aa1f2d4ea407c65f2d1d08002952fac1d9e9d307aa2e1023554a163"}, + {file = "contourpy-1.1.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11b836b7dbfb74e049c302bbf74b4b8f6cb9d0b6ca1bf86cfa8ba144aedadd9c"}, + {file = "contourpy-1.1.1.tar.gz", hash = "sha256:96ba37c2e24b7212a77da85004c38e7c4d155d3e72a45eeaf22c1f03f607e8ab"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.16,<2.0", markers = "python_version <= \"3.11\""}, + {version = ">=1.26.0rc1,<2.0", markers = "python_version >= \"3.12\""}, +] + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.4.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "wurlitzer"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "debugpy" +version = "1.8.1" +description = "An implementation of the Debug Adapter Protocol for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "debugpy-1.8.1-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:3bda0f1e943d386cc7a0e71bfa59f4137909e2ed947fb3946c506e113000f741"}, + {file = "debugpy-1.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dda73bf69ea479c8577a0448f8c707691152e6c4de7f0c4dec5a4bc11dee516e"}, + {file = "debugpy-1.8.1-cp310-cp310-win32.whl", hash = "sha256:3a79c6f62adef994b2dbe9fc2cc9cc3864a23575b6e387339ab739873bea53d0"}, + {file = "debugpy-1.8.1-cp310-cp310-win_amd64.whl", hash = "sha256:7eb7bd2b56ea3bedb009616d9e2f64aab8fc7000d481faec3cd26c98a964bcdd"}, + {file = "debugpy-1.8.1-cp311-cp311-macosx_11_0_universal2.whl", hash = "sha256:016a9fcfc2c6b57f939673c874310d8581d51a0fe0858e7fac4e240c5eb743cb"}, + {file = "debugpy-1.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd97ed11a4c7f6d042d320ce03d83b20c3fb40da892f994bc041bbc415d7a099"}, + {file = "debugpy-1.8.1-cp311-cp311-win32.whl", hash = "sha256:0de56aba8249c28a300bdb0672a9b94785074eb82eb672db66c8144fff673146"}, + {file = "debugpy-1.8.1-cp311-cp311-win_amd64.whl", hash = "sha256:1a9fe0829c2b854757b4fd0a338d93bc17249a3bf69ecf765c61d4c522bb92a8"}, + {file = "debugpy-1.8.1-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3ebb70ba1a6524d19fa7bb122f44b74170c447d5746a503e36adc244a20ac539"}, + {file = "debugpy-1.8.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a2e658a9630f27534e63922ebf655a6ab60c370f4d2fc5c02a5b19baf4410ace"}, + {file = "debugpy-1.8.1-cp312-cp312-win32.whl", hash = "sha256:caad2846e21188797a1f17fc09c31b84c7c3c23baf2516fed5b40b378515bbf0"}, + {file = "debugpy-1.8.1-cp312-cp312-win_amd64.whl", hash = "sha256:edcc9f58ec0fd121a25bc950d4578df47428d72e1a0d66c07403b04eb93bcf98"}, + {file = "debugpy-1.8.1-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:7a3afa222f6fd3d9dfecd52729bc2e12c93e22a7491405a0ecbf9e1d32d45b39"}, + {file = "debugpy-1.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d915a18f0597ef685e88bb35e5d7ab968964b7befefe1aaea1eb5b2640b586c7"}, + {file = "debugpy-1.8.1-cp38-cp38-win32.whl", hash = "sha256:92116039b5500633cc8d44ecc187abe2dfa9b90f7a82bbf81d079fcdd506bae9"}, + {file = "debugpy-1.8.1-cp38-cp38-win_amd64.whl", hash = "sha256:e38beb7992b5afd9d5244e96ad5fa9135e94993b0c551ceebf3fe1a5d9beb234"}, + {file = "debugpy-1.8.1-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:bfb20cb57486c8e4793d41996652e5a6a885b4d9175dd369045dad59eaacea42"}, + {file = "debugpy-1.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efd3fdd3f67a7e576dd869c184c5dd71d9aaa36ded271939da352880c012e703"}, + {file = "debugpy-1.8.1-cp39-cp39-win32.whl", hash = "sha256:58911e8521ca0c785ac7a0539f1e77e0ce2df753f786188f382229278b4cdf23"}, + {file = "debugpy-1.8.1-cp39-cp39-win_amd64.whl", hash = "sha256:6df9aa9599eb05ca179fb0b810282255202a66835c6efb1d112d21ecb830ddd3"}, + {file = "debugpy-1.8.1-py2.py3-none-any.whl", hash = "sha256:28acbe2241222b87e255260c76741e1fbf04fdc3b6d094fcf57b6c6f75ce1242"}, + {file = "debugpy-1.8.1.zip", hash = "sha256:f696d6be15be87aef621917585f9bb94b1dc9e8aced570db1b8a6fc14e8f9b42"}, +] + +[[package]] +name = "decorator" +version = "5.1.1" +description = "Decorators for Humans" +optional = false +python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] + +[[package]] +name = "defusedxml" +version = "0.7.1" +description = "XML bomb protection for Python stdlib modules" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] + +[[package]] +name = "distlib" +version = "0.3.8" +description = "Distribution utilities" +optional = false +python-versions = "*" +files = [ + {file = "distlib-0.3.8-py2.py3-none-any.whl", hash = "sha256:034db59a0b96f8ca18035f36290806a9a6e6bd9d1ff91e45a7f172eb17e51784"}, + {file = "distlib-0.3.8.tar.gz", hash = "sha256:1530ea13e350031b6312d8580ddb6b27a104275a31106523b8f123787f494f64"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.1" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.1-py3-none-any.whl", hash = "sha256:5258b9ed329c5bbdd31a309f53cbfb0b155341807f6ff7606a1e801a891b29ad"}, + {file = "exceptiongroup-1.2.1.tar.gz", hash = "sha256:a4785e48b045528f5bfe627b6ad554ff32def154f42372786903b7abcfe1aa16"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "executing" +version = "2.0.1" +description = "Get the currently executing AST node of a frame, and other information" +optional = false +python-versions = ">=3.5" +files = [ + {file = "executing-2.0.1-py2.py3-none-any.whl", hash = "sha256:eac49ca94516ccc753f9fb5ce82603156e590b27525a8bc32cce8ae302eb61bc"}, + {file = "executing-2.0.1.tar.gz", hash = "sha256:35afe2ce3affba8ee97f2d69927fa823b08b472b7b994e36a52a964b93d16147"}, +] + +[package.extras] +tests = ["asttokens (>=2.1.0)", "coverage", "coverage-enable-subprocess", "ipython", "littleutils", "pytest", "rich"] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +description = "Fastest Python implementation of JSON schema" +optional = false +python-versions = "*" +files = [ + {file = "fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a"}, + {file = "fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23"}, +] + +[package.extras] +devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] + +[[package]] +name = "filelock" +version = "3.15.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.15.1-py3-none-any.whl", hash = "sha256:71b3102950e91dfc1bb4209b64be4dc8854f40e5f534428d8684f953ac847fac"}, + {file = "filelock-3.15.1.tar.gz", hash = "sha256:58a2549afdf9e02e10720eaa4d4470f56386d7a6f72edd7d0596337af8ed7ad8"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] +typing = ["typing-extensions (>=4.8)"] + +[[package]] +name = "fonttools" +version = "4.53.0" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.53.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:52a6e0a7a0bf611c19bc8ec8f7592bdae79c8296c70eb05917fd831354699b20"}, + {file = "fonttools-4.53.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:099634631b9dd271d4a835d2b2a9e042ccc94ecdf7e2dd9f7f34f7daf333358d"}, + {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e40013572bfb843d6794a3ce076c29ef4efd15937ab833f520117f8eccc84fd6"}, + {file = "fonttools-4.53.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:715b41c3e231f7334cbe79dfc698213dcb7211520ec7a3bc2ba20c8515e8a3b5"}, + {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:74ae2441731a05b44d5988d3ac2cf784d3ee0a535dbed257cbfff4be8bb49eb9"}, + {file = "fonttools-4.53.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:95db0c6581a54b47c30860d013977b8a14febc206c8b5ff562f9fe32738a8aca"}, + {file = "fonttools-4.53.0-cp310-cp310-win32.whl", hash = "sha256:9cd7a6beec6495d1dffb1033d50a3f82dfece23e9eb3c20cd3c2444d27514068"}, + {file = "fonttools-4.53.0-cp310-cp310-win_amd64.whl", hash = "sha256:daaef7390e632283051e3cf3e16aff2b68b247e99aea916f64e578c0449c9c68"}, + {file = "fonttools-4.53.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a209d2e624ba492df4f3bfad5996d1f76f03069c6133c60cd04f9a9e715595ec"}, + {file = "fonttools-4.53.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4f520d9ac5b938e6494f58a25c77564beca7d0199ecf726e1bd3d56872c59749"}, + {file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eceef49f457253000e6a2d0f7bd08ff4e9fe96ec4ffce2dbcb32e34d9c1b8161"}, + {file = "fonttools-4.53.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1f3e34373aa16045484b4d9d352d4c6b5f9f77ac77a178252ccbc851e8b2ee"}, + {file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:28d072169fe8275fb1a0d35e3233f6df36a7e8474e56cb790a7258ad822b6fd6"}, + {file = "fonttools-4.53.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:4a2a6ba400d386e904fd05db81f73bee0008af37799a7586deaa4aef8cd5971e"}, + {file = "fonttools-4.53.0-cp311-cp311-win32.whl", hash = "sha256:bb7273789f69b565d88e97e9e1da602b4ee7ba733caf35a6c2affd4334d4f005"}, + {file = "fonttools-4.53.0-cp311-cp311-win_amd64.whl", hash = "sha256:9fe9096a60113e1d755e9e6bda15ef7e03391ee0554d22829aa506cdf946f796"}, + {file = "fonttools-4.53.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d8f191a17369bd53a5557a5ee4bab91d5330ca3aefcdf17fab9a497b0e7cff7a"}, + {file = "fonttools-4.53.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:93156dd7f90ae0a1b0e8871032a07ef3178f553f0c70c386025a808f3a63b1f4"}, + {file = "fonttools-4.53.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bff98816cb144fb7b85e4b5ba3888a33b56ecef075b0e95b95bcd0a5fbf20f06"}, + {file = "fonttools-4.53.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:973d030180eca8255b1bce6ffc09ef38a05dcec0e8320cc9b7bcaa65346f341d"}, + {file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c4ee5a24e281fbd8261c6ab29faa7fd9a87a12e8c0eed485b705236c65999109"}, + {file = "fonttools-4.53.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd5bc124fae781a4422f61b98d1d7faa47985f663a64770b78f13d2c072410c2"}, + {file = "fonttools-4.53.0-cp312-cp312-win32.whl", hash = "sha256:a239afa1126b6a619130909c8404070e2b473dd2b7fc4aacacd2e763f8597fea"}, + {file = "fonttools-4.53.0-cp312-cp312-win_amd64.whl", hash = "sha256:45b4afb069039f0366a43a5d454bc54eea942bfb66b3fc3e9a2c07ef4d617380"}, + {file = "fonttools-4.53.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:93bc9e5aaa06ff928d751dc6be889ff3e7d2aa393ab873bc7f6396a99f6fbb12"}, + {file = "fonttools-4.53.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:2367d47816cc9783a28645bc1dac07f8ffc93e0f015e8c9fc674a5b76a6da6e4"}, + {file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:907fa0b662dd8fc1d7c661b90782ce81afb510fc4b7aa6ae7304d6c094b27bce"}, + {file = "fonttools-4.53.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e0ad3c6ea4bd6a289d958a1eb922767233f00982cf0fe42b177657c86c80a8f"}, + {file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:73121a9b7ff93ada888aaee3985a88495489cc027894458cb1a736660bdfb206"}, + {file = "fonttools-4.53.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:ee595d7ba9bba130b2bec555a40aafa60c26ce68ed0cf509983e0f12d88674fd"}, + {file = "fonttools-4.53.0-cp38-cp38-win32.whl", hash = "sha256:fca66d9ff2ac89b03f5aa17e0b21a97c21f3491c46b583bb131eb32c7bab33af"}, + {file = "fonttools-4.53.0-cp38-cp38-win_amd64.whl", hash = "sha256:31f0e3147375002aae30696dd1dc596636abbd22fca09d2e730ecde0baad1d6b"}, + {file = "fonttools-4.53.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7d6166192dcd925c78a91d599b48960e0a46fe565391c79fe6de481ac44d20ac"}, + {file = "fonttools-4.53.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ef50ec31649fbc3acf6afd261ed89d09eb909b97cc289d80476166df8438524d"}, + {file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7f193f060391a455920d61684a70017ef5284ccbe6023bb056e15e5ac3de11d1"}, + {file = "fonttools-4.53.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba9f09ff17f947392a855e3455a846f9855f6cf6bec33e9a427d3c1d254c712f"}, + {file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:0c555e039d268445172b909b1b6bdcba42ada1cf4a60e367d68702e3f87e5f64"}, + {file = "fonttools-4.53.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:5a4788036201c908079e89ae3f5399b33bf45b9ea4514913f4dbbe4fac08efe0"}, + {file = "fonttools-4.53.0-cp39-cp39-win32.whl", hash = "sha256:d1a24f51a3305362b94681120c508758a88f207fa0a681c16b5a4172e9e6c7a9"}, + {file = "fonttools-4.53.0-cp39-cp39-win_amd64.whl", hash = "sha256:1e677bfb2b4bd0e5e99e0f7283e65e47a9814b0486cb64a41adf9ef110e078f2"}, + {file = "fonttools-4.53.0-py3-none-any.whl", hash = "sha256:6b4f04b1fbc01a3569d63359f2227c89ab294550de277fd09d8fca6185669fa4"}, + {file = "fonttools-4.53.0.tar.gz", hash = "sha256:c93ed66d32de1559b6fc348838c7572d5c0ac1e4a258e76763a5caddd8944002"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "fqdn" +version = "1.5.1" +description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" +optional = false +python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] + +[[package]] +name = "fsspec" +version = "2024.6.0" +description = "File-system specification" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fsspec-2024.6.0-py3-none-any.whl", hash = "sha256:58d7122eb8a1a46f7f13453187bfea4972d66bf01618d37366521b1998034cee"}, + {file = "fsspec-2024.6.0.tar.gz", hash = "sha256:f579960a56e6d8038a9efc8f9c77279ec12e6299aa86b0769a7e9c46b94527c2"}, +] + +[package.extras] +abfs = ["adlfs"] +adl = ["adlfs"] +arrow = ["pyarrow (>=1)"] +dask = ["dask", "distributed"] +dev = ["pre-commit", "ruff"] +doc = ["numpydoc", "sphinx", "sphinx-design", "sphinx-rtd-theme", "yarl"] +dropbox = ["dropbox", "dropboxdrivefs", "requests"] +full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"] +fuse = ["fusepy"] +gcs = ["gcsfs"] +git = ["pygit2"] +github = ["requests"] +gs = ["gcsfs"] +gui = ["panel"] +hdfs = ["pyarrow (>=1)"] +http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"] +libarchive = ["libarchive-c"] +oci = ["ocifs"] +s3 = ["s3fs"] +sftp = ["paramiko"] +smb = ["smbprotocol"] +ssh = ["paramiko"] +test = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "numpy", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "requests"] +test-downstream = ["aiobotocore (>=2.5.4,<3.0.0)", "dask-expr", "dask[dataframe,test]", "moto[server] (>4,<5)", "pytest-timeout", "xarray"] +test-full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "cloudpickle", "dask", "distributed", "dropbox", "dropboxdrivefs", "fastparquet", "fusepy", "gcsfs", "jinja2", "kerchunk", "libarchive-c", "lz4", "notebook", "numpy", "ocifs", "pandas", "panel", "paramiko", "pyarrow", "pyarrow (>=1)", "pyftpdlib", "pygit2", "pytest", "pytest-asyncio (!=0.22.0)", "pytest-benchmark", "pytest-cov", "pytest-mock", "pytest-recording", "pytest-rerunfailures", "python-snappy", "requests", "smbprotocol", "tqdm", "urllib3", "zarr", "zstandard"] +tqdm = ["tqdm"] + +[[package]] +name = "h11" +version = "0.14.0" +description = "A pure-Python, bring-your-own-I/O implementation of HTTP/1.1" +optional = false +python-versions = ">=3.7" +files = [ + {file = "h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761"}, + {file = "h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d"}, +] + +[[package]] +name = "httpcore" +version = "1.0.5" +description = "A minimal low-level HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpcore-1.0.5-py3-none-any.whl", hash = "sha256:421f18bac248b25d310f3cacd198d55b8e6125c107797b609ff9b7a6ba7991b5"}, + {file = "httpcore-1.0.5.tar.gz", hash = "sha256:34a38e2f9291467ee3b44e89dd52615370e152954ba21721378a87b2960f7a61"}, +] + +[package.dependencies] +certifi = "*" +h11 = ">=0.13,<0.15" + +[package.extras] +asyncio = ["anyio (>=4.0,<5.0)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] +trio = ["trio (>=0.22.0,<0.26.0)"] + +[[package]] +name = "httpx" +version = "0.27.0" +description = "The next generation HTTP client." +optional = false +python-versions = ">=3.8" +files = [ + {file = "httpx-0.27.0-py3-none-any.whl", hash = "sha256:71d5465162c13681bff01ad59b2cc68dd838ea1f10e51574bac27103f00c91a5"}, + {file = "httpx-0.27.0.tar.gz", hash = "sha256:a0cb88a46f32dc874e04ee956e4c2764aba2aa228f650b06788ba6bda2962ab5"}, +] + +[package.dependencies] +anyio = "*" +certifi = "*" +httpcore = "==1.*" +idna = "*" +sniffio = "*" + +[package.extras] +brotli = ["brotli", "brotlicffi"] +cli = ["click (==8.*)", "pygments (==2.*)", "rich (>=10,<14)"] +http2 = ["h2 (>=3,<5)"] +socks = ["socksio (==1.*)"] + +[[package]] +name = "identify" +version = "2.5.36" +description = "File identification library for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "identify-2.5.36-py2.py3-none-any.whl", hash = "sha256:37d93f380f4de590500d9dba7db359d0d3da95ffe7f9de1753faa159e71e7dfa"}, + {file = "identify-2.5.36.tar.gz", hash = "sha256:e5e00f54165f9047fbebeb4a560f9acfb8af4c88232be60a488e9b68d122745d"}, +] + +[package.extras] +license = ["ukkonen"] + +[[package]] +name = "idna" +version = "3.7" +description = "Internationalized Domain Names in Applications (IDNA)" +optional = false +python-versions = ">=3.5" +files = [ + {file = "idna-3.7-py3-none-any.whl", hash = "sha256:82fee1fc78add43492d3a1898bfa6d8a904cc97d8427f683ed8e798d07761aa0"}, + {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, +] + +[[package]] +name = "importlib-metadata" +version = "7.1.0" +description = "Read metadata from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"}, + {file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"}, +] + +[package.dependencies] +zipp = ">=0.5" + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +perf = ["ipython"] +testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"] + +[[package]] +name = "importlib-resources" +version = "6.4.0" +description = "Read resources from Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"}, + {file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"}, +] + +[package.dependencies] +zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] +testing = ["jaraco.test (>=5.4)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] + +[[package]] +name = "intel-openmp" +version = "2021.4.0" +description = "Intel OpenMP* Runtime Library" +optional = false +python-versions = "*" +files = [ + {file = "intel_openmp-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:41c01e266a7fdb631a7609191709322da2bbf24b252ba763f125dd651bcc7675"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:3b921236a38384e2016f0f3d65af6732cf2c12918087128a9163225451e776f2"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:e2240ab8d01472fed04f3544a878cda5da16c26232b7ea1b59132dbfb48b186e"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:6e863d8fd3d7e8ef389d52cf97a50fe2afe1a19247e8c0d168ce021546f96fc9"}, + {file = "intel_openmp-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:eef4c8bcc8acefd7f5cd3b9384dbf73d59e2c99fc56545712ded913f43c4a94f"}, +] + +[[package]] +name = "ipykernel" +version = "6.29.4" +description = "IPython Kernel for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.4-py3-none-any.whl", hash = "sha256:1181e653d95c6808039c509ef8e67c4126b3b3af7781496c7cbfb5ed938a27da"}, + {file = "ipykernel-6.29.4.tar.gz", hash = "sha256:3d44070060f9475ac2092b760123fadf105d2e2493c24848b6691a7c4f42af5c"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "platform_system == \"Darwin\""} +comm = ">=0.1.1" +debugpy = ">=1.6.5" +ipython = ">=7.23.1" +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +matplotlib-inline = ">=0.1" +nest-asyncio = "*" +packaging = "*" +psutil = "*" +pyzmq = ">=24" +tornado = ">=6.1" +traitlets = ">=5.4.0" + +[package.extras] +cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "ipython" +version = "8.12.3" +description = "IPython: Productive Interactive Computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "ipython-8.12.3-py3-none-any.whl", hash = "sha256:b0340d46a933d27c657b211a329d0be23793c36595acf9e6ef4164bc01a1804c"}, + {file = "ipython-8.12.3.tar.gz", hash = "sha256:3910c4b54543c2ad73d06579aa771041b7d5707b033bd488669b4cf544e3b363"}, +] + +[package.dependencies] +appnope = {version = "*", markers = "sys_platform == \"darwin\""} +backcall = "*" +colorama = {version = "*", markers = "sys_platform == \"win32\""} +decorator = "*" +jedi = ">=0.16" +matplotlib-inline = "*" +pexpect = {version = ">4.3", markers = "sys_platform != \"win32\""} +pickleshare = "*" +prompt-toolkit = ">=3.0.30,<3.0.37 || >3.0.37,<3.1.0" +pygments = ">=2.4.0" +stack-data = "*" +traitlets = ">=5" +typing-extensions = {version = "*", markers = "python_version < \"3.10\""} + +[package.extras] +all = ["black", "curio", "docrepr", "ipykernel", "ipyparallel", "ipywidgets", "matplotlib", "matplotlib (!=3.2.0)", "nbconvert", "nbformat", "notebook", "numpy (>=1.21)", "pandas", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "qtconsole", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "trio", "typing-extensions"] +black = ["black"] +doc = ["docrepr", "ipykernel", "matplotlib", "pytest (<7)", "pytest (<7.1)", "pytest-asyncio", "setuptools (>=18.5)", "sphinx (>=1.3)", "sphinx-rtd-theme", "stack-data", "testpath", "typing-extensions"] +kernel = ["ipykernel"] +nbconvert = ["nbconvert"] +nbformat = ["nbformat"] +notebook = ["ipywidgets", "notebook"] +parallel = ["ipyparallel"] +qtconsole = ["qtconsole"] +test = ["pytest (<7.1)", "pytest-asyncio", "testpath"] +test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.21)", "pandas", "pytest (<7.1)", "pytest-asyncio", "testpath", "trio"] + +[[package]] +name = "ipywidgets" +version = "8.1.3" +description = "Jupyter interactive widgets" +optional = false +python-versions = ">=3.7" +files = [ + {file = "ipywidgets-8.1.3-py3-none-any.whl", hash = "sha256:efafd18f7a142248f7cb0ba890a68b96abd4d6e88ddbda483c9130d12667eaf2"}, + {file = "ipywidgets-8.1.3.tar.gz", hash = "sha256:f5f9eeaae082b1823ce9eac2575272952f40d748893972956dc09700a6392d9c"}, +] + +[package.dependencies] +comm = ">=0.1.3" +ipython = ">=6.1.0" +jupyterlab-widgets = ">=3.0.11,<3.1.0" +traitlets = ">=4.3.1" +widgetsnbextension = ">=4.0.11,<4.1.0" + +[package.extras] +test = ["ipykernel", "jsonschema", "pytest (>=3.6.0)", "pytest-cov", "pytz"] + +[[package]] +name = "isoduration" +version = "20.11.0" +description = "Operations with ISO 8601 durations" +optional = false +python-versions = ">=3.7" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] + +[package.dependencies] +arrow = ">=0.15.0" + +[[package]] +name = "jedi" +version = "0.19.1" +description = "An autocompletion tool for Python that can be used for text editors." +optional = false +python-versions = ">=3.6" +files = [ + {file = "jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0"}, + {file = "jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd"}, +] + +[package.dependencies] +parso = ">=0.8.3,<0.9.0" + +[package.extras] +docs = ["Jinja2 (==2.11.3)", "MarkupSafe (==1.1.1)", "Pygments (==2.8.1)", "alabaster (==0.7.12)", "babel (==2.9.1)", "chardet (==4.0.0)", "commonmark (==0.8.1)", "docutils (==0.17.1)", "future (==0.18.2)", "idna (==2.10)", "imagesize (==1.2.0)", "mock (==1.0.1)", "packaging (==20.9)", "pyparsing (==2.4.7)", "pytz (==2021.1)", "readthedocs-sphinx-ext (==2.1.4)", "recommonmark (==0.5.0)", "requests (==2.25.1)", "six (==1.15.0)", "snowballstemmer (==2.1.0)", "sphinx (==1.8.5)", "sphinx-rtd-theme (==0.4.3)", "sphinxcontrib-serializinghtml (==1.1.4)", "sphinxcontrib-websupport (==1.2.4)", "urllib3 (==1.26.4)"] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] + +[[package]] +name = "jinja2" +version = "3.1.4" +description = "A very fast and expressive template engine." +optional = false +python-versions = ">=3.7" +files = [ + {file = "jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d"}, + {file = "jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369"}, +] + +[package.dependencies] +MarkupSafe = ">=2.0" + +[package.extras] +i18n = ["Babel (>=2.7)"] + +[[package]] +name = "joblib" +version = "1.4.2" +description = "Lightweight pipelining with Python functions" +optional = false +python-versions = ">=3.8" +files = [ + {file = "joblib-1.4.2-py3-none-any.whl", hash = "sha256:06d478d5674cbc267e7496a410ee875abd68e4340feff4490bcb7afb88060ae6"}, + {file = "joblib-1.4.2.tar.gz", hash = "sha256:2382c5816b2636fbd20a09e0f4e9dad4736765fdfb7dca582943b9c1366b3f0e"}, +] + +[[package]] +name = "json5" +version = "0.9.25" +description = "A Python implementation of the JSON5 data format." +optional = false +python-versions = ">=3.8" +files = [ + {file = "json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f"}, + {file = "json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae"}, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +description = "Identify specific nodes in a JSON document (RFC 6901)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"}, + {file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"}, +] + +[[package]] +name = "jsonschema" +version = "4.22.0" +description = "An implementation of JSON Schema validation for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema-4.22.0-py3-none-any.whl", hash = "sha256:ff4cfd6b1367a40e7bc6411caec72effadd3db0bbe5017de188f2d6108335802"}, + {file = "jsonschema-4.22.0.tar.gz", hash = "sha256:5b22d434a45935119af990552c862e5d6d564e8f6601206b305a61fdf661a2b7"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +fqdn = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +idna = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} +isoduration = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +jsonpointer = {version = ">1.13", optional = true, markers = "extra == \"format-nongpl\""} +jsonschema-specifications = ">=2023.03.6" +pkgutil-resolve-name = {version = ">=1.3.10", markers = "python_version < \"3.9\""} +referencing = ">=0.28.4" +rfc3339-validator = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +rfc3986-validator = {version = ">0.1.0", optional = true, markers = "extra == \"format-nongpl\""} +rpds-py = ">=0.7.1" +uri-template = {version = "*", optional = true, markers = "extra == \"format-nongpl\""} +webcolors = {version = ">=1.11", optional = true, markers = "extra == \"format-nongpl\""} + +[package.extras] +format = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3987", "uri-template", "webcolors (>=1.11)"] +format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339-validator", "rfc3986-validator (>0.1.0)", "uri-template", "webcolors (>=1.11)"] + +[[package]] +name = "jsonschema-specifications" +version = "2023.12.1" +description = "The JSON Schema meta-schemas and vocabularies, exposed as a Registry" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jsonschema_specifications-2023.12.1-py3-none-any.whl", hash = "sha256:87e4fdf3a94858b8a2ba2778d9ba57d8a9cafca7c7489c46ba0d30a8bc6a9c3c"}, + {file = "jsonschema_specifications-2023.12.1.tar.gz", hash = "sha256:48a76787b3e70f5ed53f1160d2b81f586e4ca6d1548c5de7085d1682674764cc"}, +] + +[package.dependencies] +importlib-resources = {version = ">=1.4.0", markers = "python_version < \"3.9\""} +referencing = ">=0.31.0" + +[[package]] +name = "jupyter" +version = "1.0.0" +description = "Jupyter metapackage. Install all the Jupyter components in one go." +optional = false +python-versions = "*" +files = [ + {file = "jupyter-1.0.0-py2.py3-none-any.whl", hash = "sha256:5b290f93b98ffbc21c0c7e749f054b3267782166d72fa5e3ed1ed4eaf34a2b78"}, + {file = "jupyter-1.0.0.tar.gz", hash = "sha256:d9dc4b3318f310e34c82951ea5d6683f67bed7def4b259fafbfe4f1beb1d8e5f"}, + {file = "jupyter-1.0.0.zip", hash = "sha256:3e1f86076bbb7c8c207829390305a2b1fe836d471ed54be66a3b8c41e7f46cc7"}, +] + +[package.dependencies] +ipykernel = "*" +ipywidgets = "*" +jupyter-console = "*" +nbconvert = "*" +notebook = "*" +qtconsole = "*" + +[[package]] +name = "jupyter-client" +version = "8.6.2" +description = "Jupyter protocol implementation and client libraries" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_client-8.6.2-py3-none-any.whl", hash = "sha256:50cbc5c66fd1b8f65ecb66bc490ab73217993632809b6e505687de18e9dea39f"}, + {file = "jupyter_client-8.6.2.tar.gz", hash = "sha256:2bda14d55ee5ba58552a8c53ae43d215ad9868853489213f37da060ced54d8df"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +python-dateutil = ">=2.8.2" +pyzmq = ">=23.0" +tornado = ">=6.2" +traitlets = ">=5.3" + +[package.extras] +docs = ["ipykernel", "myst-parser", "pydata-sphinx-theme", "sphinx (>=4)", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["coverage", "ipykernel (>=6.14)", "mypy", "paramiko", "pre-commit", "pytest (<8.2.0)", "pytest-cov", "pytest-jupyter[client] (>=0.4.1)", "pytest-timeout"] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +description = "Jupyter terminal console" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485"}, + {file = "jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539"}, +] + +[package.dependencies] +ipykernel = ">=6.14" +ipython = "*" +jupyter-client = ">=7.0.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +prompt-toolkit = ">=3.0.30" +pygments = "*" +pyzmq = ">=17" +traitlets = ">=5.4" + +[package.extras] +test = ["flaky", "pexpect", "pytest"] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +description = "Jupyter core package. A base package on which Jupyter projects rely." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409"}, + {file = "jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9"}, +] + +[package.dependencies] +platformdirs = ">=2.5" +pywin32 = {version = ">=300", markers = "sys_platform == \"win32\" and platform_python_implementation != \"PyPy\""} +traitlets = ">=5.3" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "traitlets"] +test = ["ipykernel", "pre-commit", "pytest (<8)", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "jupyter-events" +version = "0.10.0" +description = "Jupyter Event System library" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960"}, + {file = "jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22"}, +] + +[package.dependencies] +jsonschema = {version = ">=4.18.0", extras = ["format-nongpl"]} +python-json-logger = ">=2.0.4" +pyyaml = ">=5.3" +referencing = "*" +rfc3339-validator = "*" +rfc3986-validator = ">=0.1.1" +traitlets = ">=5.3" + +[package.extras] +cli = ["click", "rich"] +docs = ["jupyterlite-sphinx", "myst-parser", "pydata-sphinx-theme", "sphinxcontrib-spelling"] +test = ["click", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.19.0)", "pytest-console-scripts", "rich"] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +description = "Multi-Language Server WebSocket proxy for Jupyter Notebook/Lab server" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001"}, + {file = "jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da"}, +] + +[package.dependencies] +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jupyter-server = ">=1.1.2" + +[[package]] +name = "jupyter-server" +version = "2.14.1" +description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server-2.14.1-py3-none-any.whl", hash = "sha256:16f7177c3a4ea8fe37784e2d31271981a812f0b2874af17339031dc3510cc2a5"}, + {file = "jupyter_server-2.14.1.tar.gz", hash = "sha256:12558d158ec7a0653bf96cc272bc7ad79e0127d503b982ed144399346694f726"}, +] + +[package.dependencies] +anyio = ">=3.1.0" +argon2-cffi = ">=21.1" +jinja2 = ">=3.0.3" +jupyter-client = ">=7.4.4" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +jupyter-events = ">=0.9.0" +jupyter-server-terminals = ">=0.4.4" +nbconvert = ">=6.4.4" +nbformat = ">=5.3.0" +overrides = ">=5.0" +packaging = ">=22.0" +prometheus-client = ">=0.9" +pywinpty = {version = ">=2.0.1", markers = "os_name == \"nt\""} +pyzmq = ">=24" +send2trash = ">=1.8.2" +terminado = ">=0.8.3" +tornado = ">=6.2.0" +traitlets = ">=5.6.0" +websocket-client = ">=1.7" + +[package.extras] +docs = ["ipykernel", "jinja2", "jupyter-client", "myst-parser", "nbformat", "prometheus-client", "pydata-sphinx-theme", "send2trash", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-openapi (>=0.8.0)", "sphinxcontrib-spelling", "sphinxemoji", "tornado", "typing-extensions"] +test = ["flaky", "ipykernel", "pre-commit", "pytest (>=7.0,<9)", "pytest-console-scripts", "pytest-jupyter[server] (>=0.7)", "pytest-timeout", "requests"] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +description = "A Jupyter Server Extension Providing Terminals." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa"}, + {file = "jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269"}, +] + +[package.dependencies] +pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} +terminado = ">=0.8.3" + +[package.extras] +docs = ["jinja2", "jupyter-server", "mistune (<4.0)", "myst-parser", "nbformat", "packaging", "pydata-sphinx-theme", "sphinxcontrib-github-alt", "sphinxcontrib-openapi", "sphinxcontrib-spelling", "sphinxemoji", "tornado"] +test = ["jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-jupyter[server] (>=0.5.3)", "pytest-timeout"] + +[[package]] +name = "jupyterlab" +version = "4.2.2" +description = "JupyterLab computational environment" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab-4.2.2-py3-none-any.whl", hash = "sha256:59ee9b839f43308c3dfd55d72d1f1a299ed42a7f91f2d1afe9c12a783f9e525f"}, + {file = "jupyterlab-4.2.2.tar.gz", hash = "sha256:a534b6a25719a92a40d514fb133a9fe8f0d9981b0bbce5d8a5fcaa33344a3038"}, +] + +[package.dependencies] +async-lru = ">=1.0.0" +httpx = ">=0.25.0" +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +importlib-resources = {version = ">=1.4", markers = "python_version < \"3.9\""} +ipykernel = ">=6.5.0" +jinja2 = ">=3.0.3" +jupyter-core = "*" +jupyter-lsp = ">=2.0.0" +jupyter-server = ">=2.4.0,<3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2" +packaging = "*" +setuptools = ">=40.1.0" +tomli = {version = ">=1.2.2", markers = "python_version < \"3.11\""} +tornado = ">=6.2.0" +traitlets = "*" + +[package.extras] +dev = ["build", "bump2version", "coverage", "hatch", "pre-commit", "pytest-cov", "ruff (==0.3.5)"] +docs = ["jsx-lexer", "myst-parser", "pydata-sphinx-theme (>=0.13.0)", "pytest", "pytest-check-links", "pytest-jupyter", "sphinx (>=1.8,<7.3.0)", "sphinx-copybutton"] +docs-screenshots = ["altair (==5.3.0)", "ipython (==8.16.1)", "ipywidgets (==8.1.2)", "jupyterlab-geojson (==3.4.0)", "jupyterlab-language-pack-zh-cn (==4.1.post2)", "matplotlib (==3.8.3)", "nbconvert (>=7.0.0)", "pandas (==2.2.1)", "scipy (==1.12.0)", "vega-datasets (==0.9.0)"] +test = ["coverage", "pytest (>=7.0)", "pytest-check-links (>=0.7)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter (>=0.5.3)", "pytest-timeout", "pytest-tornasync", "requests", "requests-cache", "virtualenv"] +upgrade-extension = ["copier (>=8,<10)", "jinja2-time (<0.3)", "pydantic (<2.0)", "pyyaml-include (<2.0)", "tomli-w (<2.0)"] + +[[package]] +name = "jupyterlab-pygments" +version = "0.3.0" +description = "Pygments theme using JupyterLab CSS variables" +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780"}, + {file = "jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d"}, +] + +[[package]] +name = "jupyterlab-server" +version = "2.27.2" +description = "A set of server components for JupyterLab and JupyterLab like applications." +optional = false +python-versions = ">=3.8" +files = [ + {file = "jupyterlab_server-2.27.2-py3-none-any.whl", hash = "sha256:54aa2d64fd86383b5438d9f0c032f043c4d8c0264b8af9f60bd061157466ea43"}, + {file = "jupyterlab_server-2.27.2.tar.gz", hash = "sha256:15cbb349dc45e954e09bacf81b9f9bcb10815ff660fb2034ecd7417db3a7ea27"}, +] + +[package.dependencies] +babel = ">=2.10" +importlib-metadata = {version = ">=4.8.3", markers = "python_version < \"3.10\""} +jinja2 = ">=3.0.3" +json5 = ">=0.9.0" +jsonschema = ">=4.18.0" +jupyter-server = ">=1.21,<3" +packaging = ">=21.3" +requests = ">=2.31" + +[package.extras] +docs = ["autodoc-traits", "jinja2 (<3.2.0)", "mistune (<4)", "myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-copybutton", "sphinxcontrib-openapi (>0.8)"] +openapi = ["openapi-core (>=0.18.0,<0.19.0)", "ruamel-yaml"] +test = ["hatch", "ipykernel", "openapi-core (>=0.18.0,<0.19.0)", "openapi-spec-validator (>=0.6.0,<0.8.0)", "pytest (>=7.0,<8)", "pytest-console-scripts", "pytest-cov", "pytest-jupyter[server] (>=0.6.2)", "pytest-timeout", "requests-mock", "ruamel-yaml", "sphinxcontrib-spelling", "strict-rfc3339", "werkzeug"] + +[[package]] +name = "jupyterlab-widgets" +version = "3.0.11" +description = "Jupyter interactive widgets for JupyterLab" +optional = false +python-versions = ">=3.7" +files = [ + {file = "jupyterlab_widgets-3.0.11-py3-none-any.whl", hash = "sha256:78287fd86d20744ace330a61625024cf5521e1c012a352ddc0a3cdc2348becd0"}, + {file = "jupyterlab_widgets-3.0.11.tar.gz", hash = "sha256:dd5ac679593c969af29c9bed054c24f26842baa51352114736756bc035deee27"}, +] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "lsprotocol" +version = "2023.0.1" +description = "Python implementation of the Language Server Protocol." +optional = false +python-versions = ">=3.7" +files = [ + {file = "lsprotocol-2023.0.1-py3-none-any.whl", hash = "sha256:c75223c9e4af2f24272b14c6375787438279369236cd568f596d4951052a60f2"}, + {file = "lsprotocol-2023.0.1.tar.gz", hash = "sha256:cc5c15130d2403c18b734304339e51242d3018a05c4f7d0f198ad6e0cd21861d"}, +] + +[package.dependencies] +attrs = ">=21.3.0" +cattrs = "!=23.2.1" + +[[package]] +name = "markdown-it-py" +version = "3.0.0" +description = "Python port of markdown-it. Markdown parsing, done right!" +optional = false +python-versions = ">=3.8" +files = [ + {file = "markdown-it-py-3.0.0.tar.gz", hash = "sha256:e3f60a94fa066dc52ec76661e37c851cb232d92f9886b15cb560aaada2df8feb"}, + {file = "markdown_it_py-3.0.0-py3-none-any.whl", hash = "sha256:355216845c60bd96232cd8d8c40e8f9765cc86f46880e43a8fd22dc1a1a8cab1"}, +] + +[package.dependencies] +mdurl = ">=0.1,<1.0" + +[package.extras] +benchmarking = ["psutil", "pytest", "pytest-benchmark"] +code-style = ["pre-commit (>=3.0,<4.0)"] +compare = ["commonmark (>=0.9,<1.0)", "markdown (>=3.4,<4.0)", "mistletoe (>=1.0,<2.0)", "mistune (>=2.0,<3.0)", "panflute (>=2.3,<3.0)"] +linkify = ["linkify-it-py (>=1,<3)"] +plugins = ["mdit-py-plugins"] +profiling = ["gprof2dot"] +rtd = ["jupyter_sphinx", "mdit-py-plugins", "myst-parser", "pyyaml", "sphinx", "sphinx-copybutton", "sphinx-design", "sphinx_book_theme"] +testing = ["coverage", "pytest", "pytest-cov", "pytest-regressions"] + +[[package]] +name = "markupsafe" +version = "2.1.5" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"}, + {file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"}, + {file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"}, + {file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"}, + {file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"}, + {file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"}, + {file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"}, + {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, +] + +[[package]] +name = "matplotlib" +version = "3.7.5" +description = "Python plotting package" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:4a87b69cb1cb20943010f63feb0b2901c17a3b435f75349fd9865713bfa63925"}, + {file = "matplotlib-3.7.5-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d3ce45010fefb028359accebb852ca0c21bd77ec0f281952831d235228f15810"}, + {file = "matplotlib-3.7.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fbea1e762b28400393d71be1a02144aa16692a3c4c676ba0178ce83fc2928fdd"}, + {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec0e1adc0ad70ba8227e957551e25a9d2995e319c29f94a97575bb90fa1d4469"}, + {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6738c89a635ced486c8a20e20111d33f6398a9cbebce1ced59c211e12cd61455"}, + {file = "matplotlib-3.7.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1210b7919b4ed94b5573870f316bca26de3e3b07ffdb563e79327dc0e6bba515"}, + {file = "matplotlib-3.7.5-cp310-cp310-win32.whl", hash = "sha256:068ebcc59c072781d9dcdb82f0d3f1458271c2de7ca9c78f5bd672141091e9e1"}, + {file = "matplotlib-3.7.5-cp310-cp310-win_amd64.whl", hash = "sha256:f098ffbaab9df1e3ef04e5a5586a1e6b1791380698e84938d8640961c79b1fc0"}, + {file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:f65342c147572673f02a4abec2d5a23ad9c3898167df9b47c149f32ce61ca078"}, + {file = "matplotlib-3.7.5-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:4ddf7fc0e0dc553891a117aa083039088d8a07686d4c93fb8a810adca68810af"}, + {file = "matplotlib-3.7.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0ccb830fc29442360d91be48527809f23a5dcaee8da5f4d9b2d5b867c1b087b8"}, + {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:efc6bb28178e844d1f408dd4d6341ee8a2e906fc9e0fa3dae497da4e0cab775d"}, + {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3b15c4c2d374f249f324f46e883340d494c01768dd5287f8bc00b65b625ab56c"}, + {file = "matplotlib-3.7.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d028555421912307845e59e3de328260b26d055c5dac9b182cc9783854e98fb"}, + {file = "matplotlib-3.7.5-cp311-cp311-win32.whl", hash = "sha256:fe184b4625b4052fa88ef350b815559dd90cc6cc8e97b62f966e1ca84074aafa"}, + {file = "matplotlib-3.7.5-cp311-cp311-win_amd64.whl", hash = "sha256:084f1f0f2f1010868c6f1f50b4e1c6f2fb201c58475494f1e5b66fed66093647"}, + {file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_universal2.whl", hash = "sha256:34bceb9d8ddb142055ff27cd7135f539f2f01be2ce0bafbace4117abe58f8fe4"}, + {file = "matplotlib-3.7.5-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:c5a2134162273eb8cdfd320ae907bf84d171de948e62180fa372a3ca7cf0f433"}, + {file = "matplotlib-3.7.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:039ad54683a814002ff37bf7981aa1faa40b91f4ff84149beb53d1eb64617980"}, + {file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d742ccd1b09e863b4ca58291728db645b51dab343eebb08d5d4b31b308296ce"}, + {file = "matplotlib-3.7.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:743b1c488ca6a2bc7f56079d282e44d236bf375968bfd1b7ba701fd4d0fa32d6"}, + {file = "matplotlib-3.7.5-cp312-cp312-win_amd64.whl", hash = "sha256:fbf730fca3e1f23713bc1fae0a57db386e39dc81ea57dc305c67f628c1d7a342"}, + {file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:cfff9b838531698ee40e40ea1a8a9dc2c01edb400b27d38de6ba44c1f9a8e3d2"}, + {file = "matplotlib-3.7.5-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:1dbcca4508bca7847fe2d64a05b237a3dcaec1f959aedb756d5b1c67b770c5ee"}, + {file = "matplotlib-3.7.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4cdf4ef46c2a1609a50411b66940b31778db1e4b73d4ecc2eaa40bd588979b13"}, + {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:167200ccfefd1674b60e957186dfd9baf58b324562ad1a28e5d0a6b3bea77905"}, + {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:53e64522934df6e1818b25fd48cf3b645b11740d78e6ef765fbb5fa5ce080d02"}, + {file = "matplotlib-3.7.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3e3bc79b2d7d615067bd010caff9243ead1fc95cf735c16e4b2583173f717eb"}, + {file = "matplotlib-3.7.5-cp38-cp38-win32.whl", hash = "sha256:6b641b48c6819726ed47c55835cdd330e53747d4efff574109fd79b2d8a13748"}, + {file = "matplotlib-3.7.5-cp38-cp38-win_amd64.whl", hash = "sha256:f0b60993ed3488b4532ec6b697059897891927cbfc2b8d458a891b60ec03d9d7"}, + {file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:090964d0afaff9c90e4d8de7836757e72ecfb252fb02884016d809239f715651"}, + {file = "matplotlib-3.7.5-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:9fc6fcfbc55cd719bc0bfa60bde248eb68cf43876d4c22864603bdd23962ba25"}, + {file = "matplotlib-3.7.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7cc3078b019bb863752b8b60e8b269423000f1603cb2299608231996bd9d54"}, + {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1e4e9a868e8163abaaa8259842d85f949a919e1ead17644fb77a60427c90473c"}, + {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fa7ebc995a7d747dacf0a717d0eb3aa0f0c6a0e9ea88b0194d3a3cd241a1500f"}, + {file = "matplotlib-3.7.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3785bfd83b05fc0e0c2ae4c4a90034fe693ef96c679634756c50fe6efcc09856"}, + {file = "matplotlib-3.7.5-cp39-cp39-win32.whl", hash = "sha256:29b058738c104d0ca8806395f1c9089dfe4d4f0f78ea765c6c704469f3fffc81"}, + {file = "matplotlib-3.7.5-cp39-cp39-win_amd64.whl", hash = "sha256:fd4028d570fa4b31b7b165d4a685942ae9cdc669f33741e388c01857d9723eab"}, + {file = "matplotlib-3.7.5-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:2a9a3f4d6a7f88a62a6a18c7e6a84aedcaf4faf0708b4ca46d87b19f1b526f88"}, + {file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b9b3fd853d4a7f008a938df909b96db0b454225f935d3917520305b90680579c"}, + {file = "matplotlib-3.7.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f0ad550da9f160737d7890217c5eeed4337d07e83ca1b2ca6535078f354e7675"}, + {file = "matplotlib-3.7.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:20da7924a08306a861b3f2d1da0d1aa9a6678e480cf8eacffe18b565af2813e7"}, + {file = "matplotlib-3.7.5-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:b45c9798ea6bb920cb77eb7306409756a7fab9db9b463e462618e0559aecb30e"}, + {file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a99866267da1e561c7776fe12bf4442174b79aac1a47bd7e627c7e4d077ebd83"}, + {file = "matplotlib-3.7.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b6aa62adb6c268fc87d80f963aca39c64615c31830b02697743c95590ce3fbb"}, + {file = "matplotlib-3.7.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:e530ab6a0afd082d2e9c17eb1eb064a63c5b09bb607b2b74fa41adbe3e162286"}, + {file = "matplotlib-3.7.5.tar.gz", hash = "sha256:1e5c971558ebc811aa07f54c7b7c677d78aa518ef4c390e14673a09e0860184a"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +importlib-resources = {version = ">=3.2.0", markers = "python_version < \"3.10\""} +kiwisolver = ">=1.0.1" +numpy = ">=1.20,<2" +packaging = ">=20.0" +pillow = ">=6.2.0" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.8" +files = [ + {file = "matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca"}, + {file = "matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90"}, +] + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mdurl" +version = "0.1.2" +description = "Markdown URL utilities" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8"}, + {file = "mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba"}, +] + +[[package]] +name = "mistune" +version = "3.0.2" +description = "A sane and fast Markdown parser with useful plugins and renderers" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205"}, + {file = "mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8"}, +] + +[[package]] +name = "mkl" +version = "2021.4.0" +description = "Intel® oneAPI Math Kernel Library" +optional = false +python-versions = "*" +files = [ + {file = "mkl-2021.4.0-py2.py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.whl", hash = "sha256:67460f5cd7e30e405b54d70d1ed3ca78118370b65f7327d495e9c8847705e2fb"}, + {file = "mkl-2021.4.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:636d07d90e68ccc9630c654d47ce9fdeb036bb46e2b193b3a9ac8cfea683cce5"}, + {file = "mkl-2021.4.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:398dbf2b0d12acaf54117a5210e8f191827f373d362d796091d161f610c1ebfb"}, + {file = "mkl-2021.4.0-py2.py3-none-win32.whl", hash = "sha256:439c640b269a5668134e3dcbcea4350459c4a8bc46469669b2d67e07e3d330e8"}, + {file = "mkl-2021.4.0-py2.py3-none-win_amd64.whl", hash = "sha256:ceef3cafce4c009dd25f65d7ad0d833a0fbadc3d8903991ec92351fe5de1e718"}, +] + +[package.dependencies] +intel-openmp = "==2021.*" +tbb = "==2021.*" + +[[package]] +name = "mmcv" +version = "2.2.0" +description = "OpenMMLab Computer Vision Foundation" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mmcv-2.2.0.tar.gz", hash = "sha256:ac479247e808d8802f89eadf04d4118de86bdfe81361ec5aed0cc1bf731c67c9"}, +] + +[package.dependencies] +addict = "*" +mmengine = ">=0.3.0" +numpy = "*" +opencv-python = ">=3" +packaging = "*" +Pillow = "*" +pyyaml = "*" +regex = {version = "*", markers = "sys_platform == \"win32\""} +yapf = "*" + +[package.extras] +all = ["Pillow", "PyTurboJPEG", "addict", "coverage", "lmdb", "mmengine (>=0.3.0)", "ninja", "numpy", "onnx", "onnxoptimizer", "onnxruntime", "packaging", "psutil", "pytest", "pytest-runner", "pyyaml", "regex", "scipy", "tifffile", "yapf"] +build = ["pytest-runner"] +optional = ["ninja", "psutil"] +tests = ["PyTurboJPEG", "coverage", "lmdb", "onnx", "onnxoptimizer", "onnxruntime", "pytest", "scipy", "tifffile"] + +[[package]] +name = "mmengine" +version = "0.10.4" +description = "Engine of OpenMMLab projects" +optional = false +python-versions = ">=3.7" +files = [ + {file = "mmengine-0.10.4-py3-none-any.whl", hash = "sha256:18b681ef36b00dc6f5cc1912031e82814dcc39b9f22f82cb63be0af321fcf7b5"}, + {file = "mmengine-0.10.4.tar.gz", hash = "sha256:d3ee2148935826fd08c2541d3a23120805884341d0fafe85185327cdc9bf07b7"}, +] + +[package.dependencies] +addict = "*" +matplotlib = "*" +numpy = "*" +opencv-python = ">=3" +pyyaml = "*" +regex = {version = "*", markers = "sys_platform == \"win32\""} +rich = "*" +termcolor = "*" +yapf = "*" + +[package.extras] +all = ["addict", "aim (<=3.17.5)", "bitsandbytes", "clearml", "coverage", "dadaptation", "dvclive", "lion-pytorch", "lmdb", "matplotlib", "mlflow", "numpy", "parameterized", "pydantic (==1.10.9)", "pytest", "pyyaml", "regex", "rich", "termcolor", "transformers", "yapf"] +tests = ["aim (<=3.17.5)", "bitsandbytes", "clearml", "coverage", "dadaptation", "dvclive", "lion-pytorch", "lmdb", "mlflow", "parameterized", "pydantic (==1.10.9)", "pytest", "transformers"] + +[[package]] +name = "mpmath" +version = "1.3.0" +description = "Python library for arbitrary-precision floating-point arithmetic" +optional = false +python-versions = "*" +files = [ + {file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"}, + {file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"}, +] + +[package.extras] +develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"] +docs = ["sphinx"] +gmpy = ["gmpy2 (>=2.1.0a4)"] +tests = ["pytest (>=4.6)"] + +[[package]] +name = "nbclient" +version = "0.10.0" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f"}, + {file = "nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09"}, +] + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.4" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme", "sphinxcontrib-spelling"] +test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0,<8)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.16.4" +description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)." +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3"}, + {file = "nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4"}, +] + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "!=5.0.0" +defusedxml = "*" +importlib-metadata = {version = ">=3.6", markers = "python_version < \"3.10\""} +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<4" +nbclient = ">=0.5.0" +nbformat = ">=5.7" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.1" + +[package.extras] +all = ["flaky", "ipykernel", "ipython", "ipywidgets (>=7.5)", "myst-parser", "nbsphinx (>=0.2.12)", "playwright", "pydata-sphinx-theme", "pyqtwebengine (>=5.15)", "pytest (>=7)", "sphinx (==5.0.2)", "sphinxcontrib-spelling", "tornado (>=6.1)"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)", "sphinxcontrib-spelling"] +qtpdf = ["pyqtwebengine (>=5.15)"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest (>=7)"] +webpdf = ["playwright"] + +[[package]] +name = "nbformat" +version = "5.10.4" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.8" +files = [ + {file = "nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b"}, + {file = "nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a"}, +] + +[package.dependencies] +fastjsonschema = ">=2.15" +jsonschema = ">=2.6" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ + {file = "nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c"}, + {file = "nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe"}, +] + +[[package]] +name = "networkx" +version = "3.1" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.8" +files = [ + {file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"}, + {file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"}, +] + +[package.extras] +default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] +developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"] +doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] +test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "nodeenv" +version = "1.9.1" +description = "Node.js virtual environment builder" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "nodeenv-1.9.1-py2.py3-none-any.whl", hash = "sha256:ba11c9782d29c27c70ffbdda2d7415098754709be8a7056d79a737cd901155c9"}, + {file = "nodeenv-1.9.1.tar.gz", hash = "sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f"}, +] + +[[package]] +name = "notebook" +version = "7.2.1" +description = "Jupyter Notebook - A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.8" +files = [ + {file = "notebook-7.2.1-py3-none-any.whl", hash = "sha256:f45489a3995746f2195a137e0773e2130960b51c9ac3ce257dbc2705aab3a6ca"}, + {file = "notebook-7.2.1.tar.gz", hash = "sha256:4287b6da59740b32173d01d641f763d292f49c30e7a51b89c46ba8473126341e"}, +] + +[package.dependencies] +jupyter-server = ">=2.4.0,<3" +jupyterlab = ">=4.2.0,<4.3" +jupyterlab-server = ">=2.27.1,<3" +notebook-shim = ">=0.2,<0.3" +tornado = ">=6.2.0" + +[package.extras] +dev = ["hatch", "pre-commit"] +docs = ["myst-parser", "nbsphinx", "pydata-sphinx-theme", "sphinx (>=1.3.6)", "sphinxcontrib-github-alt", "sphinxcontrib-spelling"] +test = ["importlib-resources (>=5.0)", "ipykernel", "jupyter-server[test] (>=2.4.0,<3)", "jupyterlab-server[test] (>=2.27.1,<3)", "nbval", "pytest (>=7.0)", "pytest-console-scripts", "pytest-timeout", "pytest-tornasync", "requests"] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +files = [ + {file = "notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef"}, + {file = "notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb"}, +] + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-jupyter", "pytest-tornasync"] + +[[package]] +name = "numpy" +version = "1.24.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64"}, + {file = "numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4"}, + {file = "numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6"}, + {file = "numpy-1.24.4-cp310-cp310-win32.whl", hash = "sha256:4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc"}, + {file = "numpy-1.24.4-cp310-cp310-win_amd64.whl", hash = "sha256:b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810"}, + {file = "numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7"}, + {file = "numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5"}, + {file = "numpy-1.24.4-cp311-cp311-win32.whl", hash = "sha256:4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d"}, + {file = "numpy-1.24.4-cp311-cp311-win_amd64.whl", hash = "sha256:b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61"}, + {file = "numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e"}, + {file = "numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc"}, + {file = "numpy-1.24.4-cp38-cp38-win32.whl", hash = "sha256:4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2"}, + {file = "numpy-1.24.4-cp38-cp38-win_amd64.whl", hash = "sha256:692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400"}, + {file = "numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9"}, + {file = "numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d"}, + {file = "numpy-1.24.4-cp39-cp39-win32.whl", hash = "sha256:6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835"}, + {file = "numpy-1.24.4-cp39-cp39-win_amd64.whl", hash = "sha256:befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a"}, + {file = "numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2"}, + {file = "numpy-1.24.4.tar.gz", hash = "sha256:80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463"}, +] + +[[package]] +name = "numpy" +version = "1.26.4" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"}, + {file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"}, + {file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"}, + {file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"}, + {file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"}, + {file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"}, + {file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"}, + {file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"}, + {file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"}, + {file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"}, + {file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"}, + {file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"}, + {file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"}, + {file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"}, + {file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"}, + {file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"}, + {file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"}, + {file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"}, + {file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"}, + {file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"}, + {file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"}, + {file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"}, + {file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"}, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.1.3.1" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl", hash = "sha256:ee53ccca76a6fc08fb9701aa95b6ceb242cdaab118c3bb152af4e579af792728"}, + {file = "nvidia_cublas_cu12-12.1.3.1-py3-none-win_amd64.whl", hash = "sha256:2b964d60e8cf11b5e1073d179d85fa340c120e99b3067558f3cf98dd69d02906"}, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.1.105" +description = "CUDA profiling tools runtime libs." +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:e54fde3983165c624cb79254ae9818a456eb6e87a7fd4d56a2352c24ee542d7e"}, + {file = "nvidia_cuda_cupti_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:bea8236d13a0ac7190bd2919c3e8e6ce1e402104276e6f9694479e48bb0eb2a4"}, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.1.105" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:339b385f50c309763ca65456ec75e17bbefcbbf2893f462cb8b90584cd27a1c2"}, + {file = "nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:0a98a522d9ff138b96c010a65e145dc1b4850e9ecb75a0172371793752fd46ed"}, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.1.105" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:6e258468ddf5796e25f1dc591a31029fa317d97a0a94ed93468fc86301d61e40"}, + {file = "nvidia_cuda_runtime_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:dfb46ef84d73fababab44cf03e3b83f80700d27ca300e537f85f636fac474344"}, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "8.9.2.26" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl", hash = "sha256:5ccb288774fdfb07a7e7025ffec286971c06d8d7b4fb162525334616d7629ff9"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.0.2.54" +description = "CUFFT native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl", hash = "sha256:794e3948a1aa71fd817c3775866943936774d1c14e7628c74f6f7417224cdf56"}, + {file = "nvidia_cufft_cu12-11.0.2.54-py3-none-win_amd64.whl", hash = "sha256:d9ac353f78ff89951da4af698f80870b1534ed69993f10a4cf1d96f21357e253"}, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.2.106" +description = "CURAND native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:9d264c5036dde4e64f1de8c50ae753237c12e0b1348738169cd0f8a536c0e1e0"}, + {file = "nvidia_curand_cu12-10.3.2.106-py3-none-win_amd64.whl", hash = "sha256:75b6b0c574c0037839121317e17fd01f8a69fd2ef8e25853d826fec30bdba74a"}, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.4.5.107" +description = "CUDA solver native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl", hash = "sha256:8a7ec542f0412294b15072fa7dab71d31334014a69f953004ea7a118206fe0dd"}, + {file = "nvidia_cusolver_cu12-11.4.5.107-py3-none-win_amd64.whl", hash = "sha256:74e0c3a24c78612192a74fcd90dd117f1cf21dea4822e66d89e8ea80e3cd2da5"}, +] + +[package.dependencies] +nvidia-cublas-cu12 = "*" +nvidia-cusparse-cu12 = "*" +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.1.0.106" +description = "CUSPARSE native runtime libraries" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl", hash = "sha256:f3b50f42cf363f86ab21f720998517a659a48131e8d538dc02f8768237bd884c"}, + {file = "nvidia_cusparse_cu12-12.1.0.106-py3-none-win_amd64.whl", hash = "sha256:b798237e81b9719373e8fae8d4f091b70a0cf09d9d85c95a557e11df2d8e9a5a"}, +] + +[package.dependencies] +nvidia-nvjitlink-cu12 = "*" + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.20.5" +description = "NVIDIA Collective Communication Library (NCCL) Runtime" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_aarch64.whl", hash = "sha256:1fc150d5c3250b170b29410ba682384b14581db722b2531b0d8d33c595f33d01"}, + {file = "nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl", hash = "sha256:057f6bf9685f75215d0c53bf3ac4a10b3e6578351de307abad9e18a99182af56"}, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.5.40" +description = "Nvidia JIT LTO Library" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-manylinux2014_x86_64.whl", hash = "sha256:d9714f27c1d0f0895cd8915c07a87a1d0029a0aa36acaf9156952ec2a8a12189"}, + {file = "nvidia_nvjitlink_cu12-12.5.40-py3-none-win_amd64.whl", hash = "sha256:c3401dc8543b52d3a8158007a0c1ab4e9c768fcbd24153a48c86972102197ddd"}, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.1.105" +description = "NVIDIA Tools Extension" +optional = false +python-versions = ">=3" +files = [ + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl", hash = "sha256:dc21cf308ca5691e7c04d962e213f8a4aa9bbfa23d95412f452254c2caeb09e5"}, + {file = "nvidia_nvtx_cu12-12.1.105-py3-none-win_amd64.whl", hash = "sha256:65f4d98982b31b60026e0e6de73fbdfc09d08a96f4656dd3665ca616a11e1e82"}, +] + +[[package]] +name = "opencv-python" +version = "4.10.0.84" +description = "Wrapper package for OpenCV python bindings." +optional = false +python-versions = ">=3.6" +files = [ + {file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.21.0", markers = "python_version <= \"3.9\" and platform_system == \"Darwin\" and platform_machine == \"arm64\" and python_version >= \"3.8\""}, + {version = ">=1.19.3", markers = "platform_system == \"Linux\" and platform_machine == \"aarch64\" and python_version >= \"3.8\" and python_version < \"3.10\" or python_version > \"3.9\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_system != \"Darwin\" and python_version < \"3.10\" or python_version >= \"3.9\" and platform_machine != \"arm64\" and python_version < \"3.10\""}, + {version = ">=1.17.3", markers = "(platform_system != \"Darwin\" and platform_system != \"Linux\") and python_version >= \"3.8\" and python_version < \"3.9\" or platform_system != \"Darwin\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_machine != \"aarch64\" or platform_machine != \"arm64\" and python_version >= \"3.8\" and python_version < \"3.9\" and platform_system != \"Linux\" or (platform_machine != \"arm64\" and platform_machine != \"aarch64\") and python_version >= \"3.8\" and python_version < \"3.9\""}, + {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, + {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, +] + +[[package]] +name = "overrides" +version = "7.7.0" +description = "A decorator to automatically detect mismatch when overriding a method." +optional = false +python-versions = ">=3.6" +files = [ + {file = "overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49"}, + {file = "overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a"}, +] + +[[package]] +name = "packaging" +version = "24.1" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"}, + {file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"}, +] + +[[package]] +name = "pandas" +version = "2.0.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e4c7c9f27a4185304c7caf96dc7d91bc60bc162221152de697c98eb0b2648dd8"}, + {file = "pandas-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f167beed68918d62bffb6ec64f2e1d8a7d297a038f86d4aed056b9493fca407f"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce0c6f76a0f1ba361551f3e6dceaff06bde7514a374aa43e33b588ec10420183"}, + {file = "pandas-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba619e410a21d8c387a1ea6e8a0e49bb42216474436245718d7f2e88a2f8d7c0"}, + {file = "pandas-2.0.3-cp310-cp310-win32.whl", hash = "sha256:3ef285093b4fe5058eefd756100a367f27029913760773c8bf1d2d8bebe5d210"}, + {file = "pandas-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:9ee1a69328d5c36c98d8e74db06f4ad518a1840e8ccb94a4ba86920986bb617e"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b084b91d8d66ab19f5bb3256cbd5ea661848338301940e17f4492b2ce0801fe8"}, + {file = "pandas-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:37673e3bdf1551b95bf5d4ce372b37770f9529743d2498032439371fc7b7eb26"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9cb1e14fdb546396b7e1b923ffaeeac24e4cedd14266c3497216dd4448e4f2d"}, + {file = "pandas-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d9cd88488cceb7635aebb84809d087468eb33551097d600c6dad13602029c2df"}, + {file = "pandas-2.0.3-cp311-cp311-win32.whl", hash = "sha256:694888a81198786f0e164ee3a581df7d505024fbb1f15202fc7db88a71d84ebd"}, + {file = "pandas-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6a21ab5c89dcbd57f78d0ae16630b090eec626360085a4148693def5452d8a6b"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9e4da0d45e7f34c069fe4d522359df7d23badf83abc1d1cef398895822d11061"}, + {file = "pandas-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:32fca2ee1b0d93dd71d979726b12b61faa06aeb93cf77468776287f41ff8fdc5"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:258d3624b3ae734490e4d63c430256e716f488c4fcb7c8e9bde2d3aa46c29089"}, + {file = "pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eae3dc34fa1aa7772dd3fc60270d13ced7346fcbcfee017d3132ec625e23bb0"}, + {file = "pandas-2.0.3-cp38-cp38-win32.whl", hash = "sha256:f3421a7afb1a43f7e38e82e844e2bca9a6d793d66c1a7f9f0ff39a795bbc5e02"}, + {file = "pandas-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:69d7f3884c95da3a31ef82b7618af5710dba95bb885ffab339aad925c3e8ce78"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5247fb1ba347c1261cbbf0fcfba4a3121fbb4029d95d9ef4dc45406620b25c8b"}, + {file = "pandas-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81af086f4543c9d8bb128328b5d32e9986e0c84d3ee673a2ac6fb57fd14f755e"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1994c789bf12a7c5098277fb43836ce090f1073858c10f9220998ac74f37c69b"}, + {file = "pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ec591c48e29226bcbb316e0c1e9423622bc7a4eaf1ef7c3c9fa1a3981f89641"}, + {file = "pandas-2.0.3-cp39-cp39-win32.whl", hash = "sha256:04dbdbaf2e4d46ca8da896e1805bc04eb85caa9a82e259e8eed00254d5e0c682"}, + {file = "pandas-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:1168574b036cd8b93abc746171c9b4f1b83467438a5e45909fed645cf8692dbc"}, + {file = "pandas-2.0.3.tar.gz", hash = "sha256:c02f372a88e0d17f36d3093a644c73cfc1788e876a7c4bcb4020a77512e2043c"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.20.3", markers = "python_version < \"3.10\""}, + {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, + {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, +] +python-dateutil = ">=2.8.2" +pytz = ">=2020.1" +tzdata = ">=2022.1" + +[package.extras] +all = ["PyQt5 (>=5.15.1)", "SQLAlchemy (>=1.4.16)", "beautifulsoup4 (>=4.9.3)", "bottleneck (>=1.3.2)", "brotlipy (>=0.7.0)", "fastparquet (>=0.6.3)", "fsspec (>=2021.07.0)", "gcsfs (>=2021.07.0)", "html5lib (>=1.1)", "hypothesis (>=6.34.2)", "jinja2 (>=3.0.0)", "lxml (>=4.6.3)", "matplotlib (>=3.6.1)", "numba (>=0.53.1)", "numexpr (>=2.7.3)", "odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pandas-gbq (>=0.15.0)", "psycopg2 (>=2.8.6)", "pyarrow (>=7.0.0)", "pymysql (>=1.0.2)", "pyreadstat (>=1.1.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)", "python-snappy (>=0.6.0)", "pyxlsb (>=1.0.8)", "qtpy (>=2.2.0)", "s3fs (>=2021.08.0)", "scipy (>=1.7.1)", "tables (>=3.6.1)", "tabulate (>=0.8.9)", "xarray (>=0.21.0)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)", "zstandard (>=0.15.2)"] +aws = ["s3fs (>=2021.08.0)"] +clipboard = ["PyQt5 (>=5.15.1)", "qtpy (>=2.2.0)"] +compression = ["brotlipy (>=0.7.0)", "python-snappy (>=0.6.0)", "zstandard (>=0.15.2)"] +computation = ["scipy (>=1.7.1)", "xarray (>=0.21.0)"] +excel = ["odfpy (>=1.4.1)", "openpyxl (>=3.0.7)", "pyxlsb (>=1.0.8)", "xlrd (>=2.0.1)", "xlsxwriter (>=1.4.3)"] +feather = ["pyarrow (>=7.0.0)"] +fss = ["fsspec (>=2021.07.0)"] +gcp = ["gcsfs (>=2021.07.0)", "pandas-gbq (>=0.15.0)"] +hdf5 = ["tables (>=3.6.1)"] +html = ["beautifulsoup4 (>=4.9.3)", "html5lib (>=1.1)", "lxml (>=4.6.3)"] +mysql = ["SQLAlchemy (>=1.4.16)", "pymysql (>=1.0.2)"] +output-formatting = ["jinja2 (>=3.0.0)", "tabulate (>=0.8.9)"] +parquet = ["pyarrow (>=7.0.0)"] +performance = ["bottleneck (>=1.3.2)", "numba (>=0.53.1)", "numexpr (>=2.7.1)"] +plot = ["matplotlib (>=3.6.1)"] +postgresql = ["SQLAlchemy (>=1.4.16)", "psycopg2 (>=2.8.6)"] +spss = ["pyreadstat (>=1.1.2)"] +sql-other = ["SQLAlchemy (>=1.4.16)"] +test = ["hypothesis (>=6.34.2)", "pytest (>=7.3.2)", "pytest-asyncio (>=0.17.0)", "pytest-xdist (>=2.2.0)"] +xml = ["lxml (>=4.6.3)"] + +[[package]] +name = "pandocfilters" +version = "1.5.1" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc"}, + {file = "pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e"}, +] + +[[package]] +name = "parso" +version = "0.8.4" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ + {file = "parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18"}, + {file = "parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d"}, +] + +[package.extras] +qa = ["flake8 (==5.0.4)", "mypy (==0.971)", "types-setuptools (==67.2.0.1)"] +testing = ["docopt", "pytest"] + +[[package]] +name = "pexpect" +version = "4.9.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ + {file = "pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523"}, + {file = "pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f"}, +] + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ + {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, + {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, +] + +[[package]] +name = "pillow" +version = "10.3.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.3.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:90b9e29824800e90c84e4022dd5cc16eb2d9605ee13f05d47641eb183cd73d45"}, + {file = "pillow-10.3.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a2c405445c79c3f5a124573a051062300936b0281fee57637e706453e452746c"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78618cdbccaa74d3f88d0ad6cb8ac3007f1a6fa5c6f19af64b55ca170bfa1edf"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261ddb7ca91fcf71757979534fb4c128448b5b4c55cb6152d280312062f69599"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ce49c67f4ea0609933d01c0731b34b8695a7a748d6c8d186f95e7d085d2fe475"}, + {file = "pillow-10.3.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b14f16f94cbc61215115b9b1236f9c18403c15dd3c52cf629072afa9d54c1cbf"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d33891be6df59d93df4d846640f0e46f1a807339f09e79a8040bc887bdcd7ed3"}, + {file = "pillow-10.3.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b50811d664d392f02f7761621303eba9d1b056fb1868c8cdf4231279645c25f5"}, + {file = "pillow-10.3.0-cp310-cp310-win32.whl", hash = "sha256:ca2870d5d10d8726a27396d3ca4cf7976cec0f3cb706debe88e3a5bd4610f7d2"}, + {file = "pillow-10.3.0-cp310-cp310-win_amd64.whl", hash = "sha256:f0d0591a0aeaefdaf9a5e545e7485f89910c977087e7de2b6c388aec32011e9f"}, + {file = "pillow-10.3.0-cp310-cp310-win_arm64.whl", hash = "sha256:ccce24b7ad89adb5a1e34a6ba96ac2530046763912806ad4c247356a8f33a67b"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:5f77cf66e96ae734717d341c145c5949c63180842a545c47a0ce7ae52ca83795"}, + {file = "pillow-10.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e4b878386c4bf293578b48fc570b84ecfe477d3b77ba39a6e87150af77f40c57"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fdcbb4068117dfd9ce0138d068ac512843c52295ed996ae6dd1faf537b6dbc27"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9797a6c8fe16f25749b371c02e2ade0efb51155e767a971c61734b1bf6293994"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:9e91179a242bbc99be65e139e30690e081fe6cb91a8e77faf4c409653de39451"}, + {file = "pillow-10.3.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:1b87bd9d81d179bd8ab871603bd80d8645729939f90b71e62914e816a76fc6bd"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:81d09caa7b27ef4e61cb7d8fbf1714f5aec1c6b6c5270ee53504981e6e9121ad"}, + {file = "pillow-10.3.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:048ad577748b9fa4a99a0548c64f2cb8d672d5bf2e643a739ac8faff1164238c"}, + {file = "pillow-10.3.0-cp311-cp311-win32.whl", hash = "sha256:7161ec49ef0800947dc5570f86568a7bb36fa97dd09e9827dc02b718c5643f09"}, + {file = "pillow-10.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:8eb0908e954d093b02a543dc963984d6e99ad2b5e36503d8a0aaf040505f747d"}, + {file = "pillow-10.3.0-cp311-cp311-win_arm64.whl", hash = "sha256:4e6f7d1c414191c1199f8996d3f2282b9ebea0945693fb67392c75a3a320941f"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:e46f38133e5a060d46bd630faa4d9fa0202377495df1f068a8299fd78c84de84"}, + {file = "pillow-10.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:50b8eae8f7334ec826d6eeffaeeb00e36b5e24aa0b9df322c247539714c6df19"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9d3bea1c75f8c53ee4d505c3e67d8c158ad4df0d83170605b50b64025917f338"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19aeb96d43902f0a783946a0a87dbdad5c84c936025b8419da0a0cd7724356b1"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:74d28c17412d9caa1066f7a31df8403ec23d5268ba46cd0ad2c50fb82ae40462"}, + {file = "pillow-10.3.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:ff61bfd9253c3915e6d41c651d5f962da23eda633cf02262990094a18a55371a"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d886f5d353333b4771d21267c7ecc75b710f1a73d72d03ca06df49b09015a9ef"}, + {file = "pillow-10.3.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b5ec25d8b17217d635f8935dbc1b9aa5907962fae29dff220f2659487891cd3"}, + {file = "pillow-10.3.0-cp312-cp312-win32.whl", hash = "sha256:51243f1ed5161b9945011a7360e997729776f6e5d7005ba0c6879267d4c5139d"}, + {file = "pillow-10.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:412444afb8c4c7a6cc11a47dade32982439925537e483be7c0ae0cf96c4f6a0b"}, + {file = "pillow-10.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:798232c92e7665fe82ac085f9d8e8ca98826f8e27859d9a96b41d519ecd2e49a"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:4eaa22f0d22b1a7e93ff0a596d57fdede2e550aecffb5a1ef1106aaece48e96b"}, + {file = "pillow-10.3.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:cd5e14fbf22a87321b24c88669aad3a51ec052eb145315b3da3b7e3cc105b9a2"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1530e8f3a4b965eb6a7785cf17a426c779333eb62c9a7d1bbcf3ffd5bf77a4aa"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d512aafa1d32efa014fa041d38868fda85028e3f930a96f85d49c7d8ddc0383"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:339894035d0ede518b16073bdc2feef4c991ee991a29774b33e515f1d308e08d"}, + {file = "pillow-10.3.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:aa7e402ce11f0885305bfb6afb3434b3cd8f53b563ac065452d9d5654c7b86fd"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:0ea2a783a2bdf2a561808fe4a7a12e9aa3799b701ba305de596bc48b8bdfce9d"}, + {file = "pillow-10.3.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:c78e1b00a87ce43bb37642c0812315b411e856a905d58d597750eb79802aaaa3"}, + {file = "pillow-10.3.0-cp38-cp38-win32.whl", hash = "sha256:72d622d262e463dfb7595202d229f5f3ab4b852289a1cd09650362db23b9eb0b"}, + {file = "pillow-10.3.0-cp38-cp38-win_amd64.whl", hash = "sha256:2034f6759a722da3a3dbd91a81148cf884e91d1b747992ca288ab88c1de15999"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:2ed854e716a89b1afcedea551cd85f2eb2a807613752ab997b9974aaa0d56936"}, + {file = "pillow-10.3.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:dc1a390a82755a8c26c9964d457d4c9cbec5405896cba94cf51f36ea0d855002"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4203efca580f0dd6f882ca211f923168548f7ba334c189e9eab1178ab840bf60"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3102045a10945173d38336f6e71a8dc71bcaeed55c3123ad4af82c52807b9375"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:6fb1b30043271ec92dc65f6d9f0b7a830c210b8a96423074b15c7bc999975f57"}, + {file = "pillow-10.3.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:1dfc94946bc60ea375cc39cff0b8da6c7e5f8fcdc1d946beb8da5c216156ddd8"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:b09b86b27a064c9624d0a6c54da01c1beaf5b6cadfa609cf63789b1d08a797b9"}, + {file = "pillow-10.3.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d3b2348a78bc939b4fed6552abfd2e7988e0f81443ef3911a4b8498ca084f6eb"}, + {file = "pillow-10.3.0-cp39-cp39-win32.whl", hash = "sha256:45ebc7b45406febf07fef35d856f0293a92e7417ae7933207e90bf9090b70572"}, + {file = "pillow-10.3.0-cp39-cp39-win_amd64.whl", hash = "sha256:0ba26351b137ca4e0db0342d5d00d2e355eb29372c05afd544ebf47c0956ffeb"}, + {file = "pillow-10.3.0-cp39-cp39-win_arm64.whl", hash = "sha256:50fd3f6b26e3441ae07b7c979309638b72abc1a25da31a81a7fbd9495713ef4f"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:6b02471b72526ab8a18c39cb7967b72d194ec53c1fd0a70b050565a0f366d355"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8ab74c06ffdab957d7670c2a5a6e1a70181cd10b727cd788c4dd9005b6a8acd9"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:048eeade4c33fdf7e08da40ef402e748df113fd0b4584e32c4af74fe78baaeb2"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e2ec1e921fd07c7cda7962bad283acc2f2a9ccc1b971ee4b216b75fad6f0463"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:4c8e73e99da7db1b4cad7f8d682cf6abad7844da39834c288fbfa394a47bbced"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:16563993329b79513f59142a6b02055e10514c1a8e86dca8b48a893e33cf91e3"}, + {file = "pillow-10.3.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:dd78700f5788ae180b5ee8902c6aea5a5726bac7c364b202b4b3e3ba2d293170"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:aff76a55a8aa8364d25400a210a65ff59d0168e0b4285ba6bf2bd83cf675ba32"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:b7bc2176354defba3edc2b9a777744462da2f8e921fbaf61e52acb95bafa9828"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:793b4e24db2e8742ca6423d3fde8396db336698c55cd34b660663ee9e45ed37f"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d93480005693d247f8346bc8ee28c72a2191bdf1f6b5db469c096c0c867ac015"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:c83341b89884e2b2e55886e8fbbf37c3fa5efd6c8907124aeb72f285ae5696e5"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1a1d1915db1a4fdb2754b9de292642a39a7fb28f1736699527bb649484fb966a"}, + {file = "pillow-10.3.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a0eaa93d054751ee9964afa21c06247779b90440ca41d184aeb5d410f20ff591"}, + {file = "pillow-10.3.0.tar.gz", hash = "sha256:9d2455fbf44c914840c793e89aa82d0e1763a14253a000743719ae5946814b2d"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + +[[package]] +name = "pkgutil-resolve-name" +version = "1.3.10" +description = "Resolve a name to an object." +optional = false +python-versions = ">=3.6" +files = [ + {file = "pkgutil_resolve_name-1.3.10-py3-none-any.whl", hash = "sha256:ca27cc078d25c5ad71a9de0a7a330146c4e014c2462d9af19c6b828280649c5e"}, + {file = "pkgutil_resolve_name-1.3.10.tar.gz", hash = "sha256:357d6c9e6a755653cfd78893817c0853af365dd51ec97f3d358a819373bbd174"}, +] + +[[package]] +name = "platformdirs" +version = "4.2.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a `user data dir`." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.2-py3-none-any.whl", hash = "sha256:2d7a1657e36a80ea911db832a8a6ece5ee53d8de21edd5cc5879af6530b1bfee"}, + {file = "platformdirs-4.2.2.tar.gz", hash = "sha256:38b7b51f512eed9e84a22788b4bce1de17c0adb134d6becb09836e37d8654cd3"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] +type = ["mypy (>=1.8)"] + +[[package]] +name = "pre-commit" +version = "3.5.0" +description = "A framework for managing and maintaining multi-language pre-commit hooks." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pre_commit-3.5.0-py2.py3-none-any.whl", hash = "sha256:841dc9aef25daba9a0238cd27984041fa0467b4199fc4852e27950664919f660"}, + {file = "pre_commit-3.5.0.tar.gz", hash = "sha256:5804465c675b659b0862f07907f96295d490822a450c4c40e747d0b1c6ebcb32"}, +] + +[package.dependencies] +cfgv = ">=2.0.0" +identify = ">=1.0.0" +nodeenv = ">=0.11.1" +pyyaml = ">=5.1" +virtualenv = ">=20.10.0" + +[[package]] +name = "prometheus-client" +version = "0.20.0" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.8" +files = [ + {file = "prometheus_client-0.20.0-py3-none-any.whl", hash = "sha256:cde524a85bce83ca359cc837f28b8c0db5cac7aa653a588fd7e84ba061c329e7"}, + {file = "prometheus_client-0.20.0.tar.gz", hash = "sha256:287629d00b147a32dcb2be0b9df905da599b2d82f80377083ec8463309a4bb89"}, +] + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.47" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "prompt_toolkit-3.0.47-py3-none-any.whl", hash = "sha256:0d7bfa67001d5e39d02c224b663abc33687405033a8c422d0d675a5a13361d10"}, + {file = "prompt_toolkit-3.0.47.tar.gz", hash = "sha256:1e1b29cb58080b1e69f207c893a1a7bf16d127a5c30c9d17a25a5d77792e5360"}, +] + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.8" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ + {file = "psutil-5.9.8-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:26bd09967ae00920df88e0352a91cff1a78f8d69b3ecabbfe733610c0af486c8"}, + {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:05806de88103b25903dff19bb6692bd2e714ccf9e668d050d144012055cbca73"}, + {file = "psutil-5.9.8-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:611052c4bc70432ec770d5d54f64206aa7203a101ec273a0cd82418c86503bb7"}, + {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:50187900d73c1381ba1454cf40308c2bf6f34268518b3f36a9b663ca87e65e36"}, + {file = "psutil-5.9.8-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:02615ed8c5ea222323408ceba16c60e99c3f91639b07da6373fb7e6539abc56d"}, + {file = "psutil-5.9.8-cp27-none-win32.whl", hash = "sha256:36f435891adb138ed3c9e58c6af3e2e6ca9ac2f365efe1f9cfef2794e6c93b4e"}, + {file = "psutil-5.9.8-cp27-none-win_amd64.whl", hash = "sha256:bd1184ceb3f87651a67b2708d4c3338e9b10c5df903f2e3776b62303b26cb631"}, + {file = "psutil-5.9.8-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:aee678c8720623dc456fa20659af736241f575d79429a0e5e9cf88ae0605cc81"}, + {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8cb6403ce6d8e047495a701dc7c5bd788add903f8986d523e3e20b98b733e421"}, + {file = "psutil-5.9.8-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d06016f7f8625a1825ba3732081d77c94589dca78b7a3fc072194851e88461a4"}, + {file = "psutil-5.9.8-cp36-cp36m-win32.whl", hash = "sha256:7d79560ad97af658a0f6adfef8b834b53f64746d45b403f225b85c5c2c140eee"}, + {file = "psutil-5.9.8-cp36-cp36m-win_amd64.whl", hash = "sha256:27cc40c3493bb10de1be4b3f07cae4c010ce715290a5be22b98493509c6299e2"}, + {file = "psutil-5.9.8-cp37-abi3-win32.whl", hash = "sha256:bc56c2a1b0d15aa3eaa5a60c9f3f8e3e565303b465dbf57a1b730e7a2b9844e0"}, + {file = "psutil-5.9.8-cp37-abi3-win_amd64.whl", hash = "sha256:8db4c1b57507eef143a15a6884ca10f7c73876cdf5d51e713151c1236a0e68cf"}, + {file = "psutil-5.9.8-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:d16bbddf0693323b8c6123dd804100241da461e41d6e332fb0ba6058f630f8c8"}, + {file = "psutil-5.9.8.tar.gz", hash = "sha256:6be126e3225486dff286a8fb9a06246a5253f4c7c53b475ea5f5ac934e64194c"}, +] + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ + {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, + {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, +] + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ + {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, + {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, +] + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "pycparser" +version = "2.22" +description = "C parser in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"}, + {file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"}, +] + +[[package]] +name = "pygls" +version = "1.3.1" +description = "A pythonic generic language server (pronounced like 'pie glass')" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygls-1.3.1-py3-none-any.whl", hash = "sha256:6e00f11efc56321bdeb6eac04f6d86131f654c7d49124344a9ebb968da3dd91e"}, + {file = "pygls-1.3.1.tar.gz", hash = "sha256:140edceefa0da0e9b3c533547c892a42a7d2fd9217ae848c330c53d266a55018"}, +] + +[package.dependencies] +cattrs = ">=23.1.2" +lsprotocol = "2023.0.1" + +[package.extras] +ws = ["websockets (>=11.0.3)"] + +[[package]] +name = "pygments" +version = "2.18.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pygments-2.18.0-py3-none-any.whl", hash = "sha256:b8e6aca0523f3ab76fee51799c488e38782ac06eafcf95e7ba832985c8e7b13a"}, + {file = "pygments-2.18.0.tar.gz", hash = "sha256:786ff802f32e91311bff3889f6e9a86e81505fe99f2735bb6d60ae0c5004f199"}, +] + +[package.extras] +windows-terminal = ["colorama (>=0.4.6)"] + +[[package]] +name = "pyparsing" +version = "3.1.2" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3"}, + {file = "python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-json-logger" +version = "2.0.7" +description = "A python library adding a json log formatter" +optional = false +python-versions = ">=3.6" +files = [ + {file = "python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c"}, + {file = "python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd"}, +] + +[[package]] +name = "pytz" +version = "2024.1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2024.1-py2.py3-none-any.whl", hash = "sha256:328171f4e3623139da4983451950b28e95ac706e13f3f2630a879749e7a8b319"}, + {file = "pytz-2024.1.tar.gz", hash = "sha256:2a29735ea9c18baf14b448846bde5a48030ed267578472d8955cd0e7443a9812"}, +] + +[[package]] +name = "pywin32" +version = "306" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ + {file = "pywin32-306-cp310-cp310-win32.whl", hash = "sha256:06d3420a5155ba65f0b72f2699b5bacf3109f36acbe8923765c22938a69dfc8d"}, + {file = "pywin32-306-cp310-cp310-win_amd64.whl", hash = "sha256:84f4471dbca1887ea3803d8848a1616429ac94a4a8d05f4bc9c5dcfd42ca99c8"}, + {file = "pywin32-306-cp311-cp311-win32.whl", hash = "sha256:e65028133d15b64d2ed8f06dd9fbc268352478d4f9289e69c190ecd6818b6407"}, + {file = "pywin32-306-cp311-cp311-win_amd64.whl", hash = "sha256:a7639f51c184c0272e93f244eb24dafca9b1855707d94c192d4a0b4c01e1100e"}, + {file = "pywin32-306-cp311-cp311-win_arm64.whl", hash = "sha256:70dba0c913d19f942a2db25217d9a1b726c278f483a919f1abfed79c9cf64d3a"}, + {file = "pywin32-306-cp312-cp312-win32.whl", hash = "sha256:383229d515657f4e3ed1343da8be101000562bf514591ff383ae940cad65458b"}, + {file = "pywin32-306-cp312-cp312-win_amd64.whl", hash = "sha256:37257794c1ad39ee9be652da0462dc2e394c8159dfd913a8a4e8eb6fd346da0e"}, + {file = "pywin32-306-cp312-cp312-win_arm64.whl", hash = "sha256:5821ec52f6d321aa59e2db7e0a35b997de60c201943557d108af9d4ae1ec7040"}, + {file = "pywin32-306-cp37-cp37m-win32.whl", hash = "sha256:1c73ea9a0d2283d889001998059f5eaaba3b6238f767c9cf2833b13e6a685f65"}, + {file = "pywin32-306-cp37-cp37m-win_amd64.whl", hash = "sha256:72c5f621542d7bdd4fdb716227be0dd3f8565c11b280be6315b06ace35487d36"}, + {file = "pywin32-306-cp38-cp38-win32.whl", hash = "sha256:e4c092e2589b5cf0d365849e73e02c391c1349958c5ac3e9d5ccb9a28e017b3a"}, + {file = "pywin32-306-cp38-cp38-win_amd64.whl", hash = "sha256:e8ac1ae3601bee6ca9f7cb4b5363bf1c0badb935ef243c4733ff9a393b1690c0"}, + {file = "pywin32-306-cp39-cp39-win32.whl", hash = "sha256:e25fd5b485b55ac9c057f67d94bc203f3f6595078d1fb3b458c9c28b7153a802"}, + {file = "pywin32-306-cp39-cp39-win_amd64.whl", hash = "sha256:39b61c15272833b5c329a2989999dcae836b1eed650252ab1b7bfbe1d59f30f4"}, +] + +[[package]] +name = "pywinpty" +version = "2.0.13" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pywinpty-2.0.13-cp310-none-win_amd64.whl", hash = "sha256:697bff211fb5a6508fee2dc6ff174ce03f34a9a233df9d8b5fe9c8ce4d5eaf56"}, + {file = "pywinpty-2.0.13-cp311-none-win_amd64.whl", hash = "sha256:b96fb14698db1284db84ca38c79f15b4cfdc3172065b5137383910567591fa99"}, + {file = "pywinpty-2.0.13-cp312-none-win_amd64.whl", hash = "sha256:2fd876b82ca750bb1333236ce98488c1be96b08f4f7647cfdf4129dfad83c2d4"}, + {file = "pywinpty-2.0.13-cp38-none-win_amd64.whl", hash = "sha256:61d420c2116c0212808d31625611b51caf621fe67f8a6377e2e8b617ea1c1f7d"}, + {file = "pywinpty-2.0.13-cp39-none-win_amd64.whl", hash = "sha256:71cb613a9ee24174730ac7ae439fd179ca34ccb8c5349e8d7b72ab5dea2c6f4b"}, + {file = "pywinpty-2.0.13.tar.gz", hash = "sha256:c34e32351a3313ddd0d7da23d27f835c860d32fe4ac814d372a3ea9594f41dde"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.1" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:326c013efe8048858a6d312ddd31d56e468118ad4cdeda36c719bf5bb6192290"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e7d73685e87afe9f3b36c799222440d6cf362062f78be1013661b00c5c6f678b"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"}, + {file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"}, + {file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"}, + {file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"}, + {file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"}, + {file = "PyYAML-6.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:0d3304d8c0adc42be59c5f8a4d9e3d7379e6955ad754aa9d6ab7a398b59dd1df"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:49a183be227561de579b4a36efbb21b3eab9651dd81b1858589f796549873dd6"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:04ac92ad1925b2cff1db0cfebffb6ffc43457495c9b3c39d3fcae417d7125dc5"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, +] + +[[package]] +name = "pyzmq" +version = "26.0.3" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:44dd6fc3034f1eaa72ece33588867df9e006a7303725a12d64c3dff92330f625"}, + {file = "pyzmq-26.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:acb704195a71ac5ea5ecf2811c9ee19ecdc62b91878528302dd0be1b9451cc90"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dbb9c997932473a27afa93954bb77a9f9b786b4ccf718d903f35da3232317de"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6bcb34f869d431799c3ee7d516554797f7760cb2198ecaa89c3f176f72d062be"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:38ece17ec5f20d7d9b442e5174ae9f020365d01ba7c112205a4d59cf19dc38ee"}, + {file = "pyzmq-26.0.3-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ba6e5e6588e49139a0979d03a7deb9c734bde647b9a8808f26acf9c547cab1bf"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3bf8b000a4e2967e6dfdd8656cd0757d18c7e5ce3d16339e550bd462f4857e59"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:2136f64fbb86451dbbf70223635a468272dd20075f988a102bf8a3f194a411dc"}, + {file = "pyzmq-26.0.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e8918973fbd34e7814f59143c5f600ecd38b8038161239fd1a3d33d5817a38b8"}, + {file = "pyzmq-26.0.3-cp310-cp310-win32.whl", hash = "sha256:0aaf982e68a7ac284377d051c742610220fd06d330dcd4c4dbb4cdd77c22a537"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:f1a9b7d00fdf60b4039f4455afd031fe85ee8305b019334b72dcf73c567edc47"}, + {file = "pyzmq-26.0.3-cp310-cp310-win_arm64.whl", hash = "sha256:80b12f25d805a919d53efc0a5ad7c0c0326f13b4eae981a5d7b7cc343318ebb7"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:a72a84570f84c374b4c287183debc776dc319d3e8ce6b6a0041ce2e400de3f32"}, + {file = "pyzmq-26.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7ca684ee649b55fd8f378127ac8462fb6c85f251c2fb027eb3c887e8ee347bcd"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e222562dc0f38571c8b1ffdae9d7adb866363134299264a1958d077800b193b7"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f17cde1db0754c35a91ac00b22b25c11da6eec5746431d6e5092f0cd31a3fea9"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7c0c0b3244bb2275abe255d4a30c050d541c6cb18b870975553f1fb6f37527"}, + {file = "pyzmq-26.0.3-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:ac97a21de3712afe6a6c071abfad40a6224fd14fa6ff0ff8d0c6e6cd4e2f807a"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:88b88282e55fa39dd556d7fc04160bcf39dea015f78e0cecec8ff4f06c1fc2b5"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:72b67f966b57dbd18dcc7efbc1c7fc9f5f983e572db1877081f075004614fcdd"}, + {file = "pyzmq-26.0.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f4b6cecbbf3b7380f3b61de3a7b93cb721125dc125c854c14ddc91225ba52f83"}, + {file = "pyzmq-26.0.3-cp311-cp311-win32.whl", hash = "sha256:eed56b6a39216d31ff8cd2f1d048b5bf1700e4b32a01b14379c3b6dde9ce3aa3"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:3191d312c73e3cfd0f0afdf51df8405aafeb0bad71e7ed8f68b24b63c4f36500"}, + {file = "pyzmq-26.0.3-cp311-cp311-win_arm64.whl", hash = "sha256:b6907da3017ef55139cf0e417c5123a84c7332520e73a6902ff1f79046cd3b94"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:068ca17214038ae986d68f4a7021f97e187ed278ab6dccb79f837d765a54d753"}, + {file = "pyzmq-26.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:7821d44fe07335bea256b9f1f41474a642ca55fa671dfd9f00af8d68a920c2d4"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:eeb438a26d87c123bb318e5f2b3d86a36060b01f22fbdffd8cf247d52f7c9a2b"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:69ea9d6d9baa25a4dc9cef5e2b77b8537827b122214f210dd925132e34ae9b12"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7daa3e1369355766dea11f1d8ef829905c3b9da886ea3152788dc25ee6079e02"}, + {file = "pyzmq-26.0.3-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6ca7a9a06b52d0e38ccf6bca1aeff7be178917893f3883f37b75589d42c4ac20"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1b7d0e124948daa4d9686d421ef5087c0516bc6179fdcf8828b8444f8e461a77"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:e746524418b70f38550f2190eeee834db8850088c834d4c8406fbb9bc1ae10b2"}, + {file = "pyzmq-26.0.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:6b3146f9ae6af82c47a5282ac8803523d381b3b21caeae0327ed2f7ecb718798"}, + {file = "pyzmq-26.0.3-cp312-cp312-win32.whl", hash = "sha256:2b291d1230845871c00c8462c50565a9cd6026fe1228e77ca934470bb7d70ea0"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:926838a535c2c1ea21c903f909a9a54e675c2126728c21381a94ddf37c3cbddf"}, + {file = "pyzmq-26.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:5bf6c237f8c681dfb91b17f8435b2735951f0d1fad10cc5dfd96db110243370b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c0991f5a96a8e620f7691e61178cd8f457b49e17b7d9cfa2067e2a0a89fc1d5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:dbf012d8fcb9f2cf0643b65df3b355fdd74fc0035d70bb5c845e9e30a3a4654b"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:01fbfbeb8249a68d257f601deb50c70c929dc2dfe683b754659569e502fbd3aa"}, + {file = "pyzmq-26.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c8eb19abe87029c18f226d42b8a2c9efdd139d08f8bf6e085dd9075446db450"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5344b896e79800af86ad643408ca9aa303a017f6ebff8cee5a3163c1e9aec987"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:204e0f176fd1d067671157d049466869b3ae1fc51e354708b0dc41cf94e23a3a"}, + {file = "pyzmq-26.0.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a42db008d58530efa3b881eeee4991146de0b790e095f7ae43ba5cc612decbc5"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win32.whl", hash = "sha256:8d7a498671ca87e32b54cb47c82a92b40130a26c5197d392720a1bce1b3c77cf"}, + {file = "pyzmq-26.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:3b4032a96410bdc760061b14ed6a33613ffb7f702181ba999df5d16fb96ba16a"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_15_universal2.whl", hash = "sha256:2cc4e280098c1b192c42a849de8de2c8e0f3a84086a76ec5b07bfee29bda7d18"}, + {file = "pyzmq-26.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bde86a2ed3ce587fa2b207424ce15b9a83a9fa14422dcc1c5356a13aed3df9d"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:34106f68e20e6ff253c9f596ea50397dbd8699828d55e8fa18bd4323d8d966e6"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ebbbd0e728af5db9b04e56389e2299a57ea8b9dd15c9759153ee2455b32be6ad"}, + {file = "pyzmq-26.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6b1d1c631e5940cac5a0b22c5379c86e8df6a4ec277c7a856b714021ab6cfad"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:e891ce81edd463b3b4c3b885c5603c00141151dd9c6936d98a680c8c72fe5c67"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:9b273ecfbc590a1b98f014ae41e5cf723932f3b53ba9367cfb676f838038b32c"}, + {file = "pyzmq-26.0.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b32bff85fb02a75ea0b68f21e2412255b5731f3f389ed9aecc13a6752f58ac97"}, + {file = "pyzmq-26.0.3-cp38-cp38-win32.whl", hash = "sha256:f6c21c00478a7bea93caaaef9e7629145d4153b15a8653e8bb4609d4bc70dbfc"}, + {file = "pyzmq-26.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:3401613148d93ef0fd9aabdbddb212de3db7a4475367f49f590c837355343972"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_15_universal2.whl", hash = "sha256:2ed8357f4c6e0daa4f3baf31832df8a33334e0fe5b020a61bc8b345a3db7a606"}, + {file = "pyzmq-26.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c1c8f2a2ca45292084c75bb6d3a25545cff0ed931ed228d3a1810ae3758f975f"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:b63731993cdddcc8e087c64e9cf003f909262b359110070183d7f3025d1c56b5"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b3cd31f859b662ac5d7f4226ec7d8bd60384fa037fc02aee6ff0b53ba29a3ba8"}, + {file = "pyzmq-26.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:115f8359402fa527cf47708d6f8a0f8234f0e9ca0cab7c18c9c189c194dbf620"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:715bdf952b9533ba13dfcf1f431a8f49e63cecc31d91d007bc1deb914f47d0e4"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:e1258c639e00bf5e8a522fec6c3eaa3e30cf1c23a2f21a586be7e04d50c9acab"}, + {file = "pyzmq-26.0.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:15c59e780be8f30a60816a9adab900c12a58d79c1ac742b4a8df044ab2a6d920"}, + {file = "pyzmq-26.0.3-cp39-cp39-win32.whl", hash = "sha256:d0cdde3c78d8ab5b46595054e5def32a755fc028685add5ddc7403e9f6de9879"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:ce828058d482ef860746bf532822842e0ff484e27f540ef5c813d516dd8896d2"}, + {file = "pyzmq-26.0.3-cp39-cp39-win_arm64.whl", hash = "sha256:788f15721c64109cf720791714dc14afd0f449d63f3a5487724f024345067381"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:2c18645ef6294d99b256806e34653e86236eb266278c8ec8112622b61db255de"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7e6bc96ebe49604df3ec2c6389cc3876cabe475e6bfc84ced1bf4e630662cb35"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:971e8990c5cc4ddcff26e149398fc7b0f6a042306e82500f5e8db3b10ce69f84"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8416c23161abd94cc7da80c734ad7c9f5dbebdadfdaa77dad78244457448223"}, + {file = "pyzmq-26.0.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:082a2988364b60bb5de809373098361cf1dbb239623e39e46cb18bc035ed9c0c"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d57dfbf9737763b3a60d26e6800e02e04284926329aee8fb01049635e957fe81"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:77a85dca4c2430ac04dc2a2185c2deb3858a34fe7f403d0a946fa56970cf60a1"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:4c82a6d952a1d555bf4be42b6532927d2a5686dd3c3e280e5f63225ab47ac1f5"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4496b1282c70c442809fc1b151977c3d967bfb33e4e17cedbf226d97de18f709"}, + {file = "pyzmq-26.0.3-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:e4946d6bdb7ba972dfda282f9127e5756d4f299028b1566d1245fa0d438847e6"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:03c0ae165e700364b266876d712acb1ac02693acd920afa67da2ebb91a0b3c09"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:3e3070e680f79887d60feeda051a58d0ac36622e1759f305a41059eff62c6da7"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6ca08b840fe95d1c2bd9ab92dac5685f949fc6f9ae820ec16193e5ddf603c3b2"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e76654e9dbfb835b3518f9938e565c7806976c07b37c33526b574cc1a1050480"}, + {file = "pyzmq-26.0.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:871587bdadd1075b112e697173e946a07d722459d20716ceb3d1bd6c64bd08ce"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d0a2d1bd63a4ad79483049b26514e70fa618ce6115220da9efdff63688808b17"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0270b49b6847f0d106d64b5086e9ad5dc8a902413b5dbbb15d12b60f9c1747a4"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:703c60b9910488d3d0954ca585c34f541e506a091a41930e663a098d3b794c67"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74423631b6be371edfbf7eabb02ab995c2563fee60a80a30829176842e71722a"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:4adfbb5451196842a88fda3612e2c0414134874bffb1c2ce83ab4242ec9e027d"}, + {file = "pyzmq-26.0.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3516119f4f9b8671083a70b6afaa0a070f5683e431ab3dc26e9215620d7ca1ad"}, + {file = "pyzmq-26.0.3.tar.gz", hash = "sha256:dba7d9f2e047dfa2bca3b01f4f84aa5246725203d6284e3790f2ca15fba6b40a"}, +] + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "qtconsole" +version = "5.5.2" +description = "Jupyter Qt console" +optional = false +python-versions = ">=3.8" +files = [ + {file = "qtconsole-5.5.2-py3-none-any.whl", hash = "sha256:42d745f3d05d36240244a04e1e1ec2a86d5d9b6edb16dbdef582ccb629e87e0b"}, + {file = "qtconsole-5.5.2.tar.gz", hash = "sha256:6b5fb11274b297463706af84dcbbd5c92273b1f619e6d25d08874b0a88516989"}, +] + +[package.dependencies] +ipykernel = ">=4.1" +jupyter-client = ">=4.1" +jupyter-core = "*" +packaging = "*" +pygments = "*" +pyzmq = ">=17.1" +qtpy = ">=2.4.0" +traitlets = "<5.2.1 || >5.2.1,<5.2.2 || >5.2.2" + +[package.extras] +doc = ["Sphinx (>=1.3)"] +test = ["flaky", "pytest", "pytest-qt"] + +[[package]] +name = "qtpy" +version = "2.4.1" +description = "Provides an abstraction layer on top of the various Qt bindings (PyQt5/6 and PySide2/6)." +optional = false +python-versions = ">=3.7" +files = [ + {file = "QtPy-2.4.1-py3-none-any.whl", hash = "sha256:1c1d8c4fa2c884ae742b069151b0abe15b3f70491f3972698c683b8e38de839b"}, + {file = "QtPy-2.4.1.tar.gz", hash = "sha256:a5a15ffd519550a1361bdc56ffc07fda56a6af7292f17c7b395d4083af632987"}, +] + +[package.dependencies] +packaging = "*" + +[package.extras] +test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] + +[[package]] +name = "referencing" +version = "0.35.1" +description = "JSON Referencing + Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de"}, + {file = "referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c"}, +] + +[package.dependencies] +attrs = ">=22.2.0" +rpds-py = ">=0.7.0" + +[[package]] +name = "regex" +version = "2024.5.15" +description = "Alternative regular expression module, to replace re." +optional = false +python-versions = ">=3.8" +files = [ + {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a81e3cfbae20378d75185171587cbf756015ccb14840702944f014e0d93ea09f"}, + {file = "regex-2024.5.15-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7b59138b219ffa8979013be7bc85bb60c6f7b7575df3d56dc1e403a438c7a3f6"}, + {file = "regex-2024.5.15-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a0bd000c6e266927cb7a1bc39d55be95c4b4f65c5be53e659537537e019232b1"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5eaa7ddaf517aa095fa8da0b5015c44d03da83f5bd49c87961e3c997daed0de7"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ba68168daedb2c0bab7fd7e00ced5ba90aebf91024dea3c88ad5063c2a562cca"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6e8d717bca3a6e2064fc3a08df5cbe366369f4b052dcd21b7416e6d71620dca1"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1337b7dbef9b2f71121cdbf1e97e40de33ff114801263b275aafd75303bd62b5"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9ebd0a36102fcad2f03696e8af4ae682793a5d30b46c647eaf280d6cfb32796"}, + {file = "regex-2024.5.15-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:9efa1a32ad3a3ea112224897cdaeb6aa00381627f567179c0314f7b65d354c62"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:1595f2d10dff3d805e054ebdc41c124753631b6a471b976963c7b28543cf13b0"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:b802512f3e1f480f41ab5f2cfc0e2f761f08a1f41092d6718868082fc0d27143"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:a0981022dccabca811e8171f913de05720590c915b033b7e601f35ce4ea7019f"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:19068a6a79cf99a19ccefa44610491e9ca02c2be3305c7760d3831d38a467a6f"}, + {file = "regex-2024.5.15-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:1b5269484f6126eee5e687785e83c6b60aad7663dafe842b34691157e5083e53"}, + {file = "regex-2024.5.15-cp310-cp310-win32.whl", hash = "sha256:ada150c5adfa8fbcbf321c30c751dc67d2f12f15bd183ffe4ec7cde351d945b3"}, + {file = "regex-2024.5.15-cp310-cp310-win_amd64.whl", hash = "sha256:ac394ff680fc46b97487941f5e6ae49a9f30ea41c6c6804832063f14b2a5a145"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:f5b1dff3ad008dccf18e652283f5e5339d70bf8ba7c98bf848ac33db10f7bc7a"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6a2b494a76983df8e3d3feea9b9ffdd558b247e60b92f877f93a1ff43d26656"}, + {file = "regex-2024.5.15-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a32b96f15c8ab2e7d27655969a23895eb799de3665fa94349f3b2fbfd547236f"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:10002e86e6068d9e1c91eae8295ef690f02f913c57db120b58fdd35a6bb1af35"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ec54d5afa89c19c6dd8541a133be51ee1017a38b412b1321ccb8d6ddbeb4cf7d"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10e4ce0dca9ae7a66e6089bb29355d4432caed736acae36fef0fdd7879f0b0cb"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3e507ff1e74373c4d3038195fdd2af30d297b4f0950eeda6f515ae3d84a1770f"}, + {file = "regex-2024.5.15-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1f059a4d795e646e1c37665b9d06062c62d0e8cc3c511fe01315973a6542e40"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0721931ad5fe0dda45d07f9820b90b2148ccdd8e45bb9e9b42a146cb4f695649"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:833616ddc75ad595dee848ad984d067f2f31be645d603e4d158bba656bbf516c"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:287eb7f54fc81546346207c533ad3c2c51a8d61075127d7f6d79aaf96cdee890"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:19dfb1c504781a136a80ecd1fff9f16dddf5bb43cec6871778c8a907a085bb3d"}, + {file = "regex-2024.5.15-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:119af6e56dce35e8dfb5222573b50c89e5508d94d55713c75126b753f834de68"}, + {file = "regex-2024.5.15-cp311-cp311-win32.whl", hash = "sha256:1c1c174d6ec38d6c8a7504087358ce9213d4332f6293a94fbf5249992ba54efa"}, + {file = "regex-2024.5.15-cp311-cp311-win_amd64.whl", hash = "sha256:9e717956dcfd656f5055cc70996ee2cc82ac5149517fc8e1b60261b907740201"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:632b01153e5248c134007209b5c6348a544ce96c46005d8456de1d552455b014"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e64198f6b856d48192bf921421fdd8ad8eb35e179086e99e99f711957ffedd6e"}, + {file = "regex-2024.5.15-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68811ab14087b2f6e0fc0c2bae9ad689ea3584cad6917fc57be6a48bbd012c49"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ec0c2fea1e886a19c3bee0cd19d862b3aa75dcdfb42ebe8ed30708df64687a"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d0c0c0003c10f54a591d220997dd27d953cd9ccc1a7294b40a4be5312be8797b"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2431b9e263af1953c55abbd3e2efca67ca80a3de8a0437cb58e2421f8184717a"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a605586358893b483976cffc1723fb0f83e526e8f14c6e6614e75919d9862cf"}, + {file = "regex-2024.5.15-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:391d7f7f1e409d192dba8bcd42d3e4cf9e598f3979cdaed6ab11288da88cb9f2"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:9ff11639a8d98969c863d4617595eb5425fd12f7c5ef6621a4b74b71ed8726d5"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:4eee78a04e6c67e8391edd4dad3279828dd66ac4b79570ec998e2155d2e59fd5"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:8fe45aa3f4aa57faabbc9cb46a93363edd6197cbc43523daea044e9ff2fea83e"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:d0a3d8d6acf0c78a1fff0e210d224b821081330b8524e3e2bc5a68ef6ab5803d"}, + {file = "regex-2024.5.15-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c486b4106066d502495b3025a0a7251bf37ea9540433940a23419461ab9f2a80"}, + {file = "regex-2024.5.15-cp312-cp312-win32.whl", hash = "sha256:c49e15eac7c149f3670b3e27f1f28a2c1ddeccd3a2812cba953e01be2ab9b5fe"}, + {file = "regex-2024.5.15-cp312-cp312-win_amd64.whl", hash = "sha256:673b5a6da4557b975c6c90198588181029c60793835ce02f497ea817ff647cb2"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87e2a9c29e672fc65523fb47a90d429b70ef72b901b4e4b1bd42387caf0d6835"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c3bea0ba8b73b71b37ac833a7f3fd53825924165da6a924aec78c13032f20850"}, + {file = "regex-2024.5.15-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:bfc4f82cabe54f1e7f206fd3d30fda143f84a63fe7d64a81558d6e5f2e5aaba9"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5bb9425fe881d578aeca0b2b4b3d314ec88738706f66f219c194d67179337cb"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:64c65783e96e563103d641760664125e91bd85d8e49566ee560ded4da0d3e704"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cf2430df4148b08fb4324b848672514b1385ae3807651f3567871f130a728cc3"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5397de3219a8b08ae9540c48f602996aa6b0b65d5a61683e233af8605c42b0f2"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:455705d34b4154a80ead722f4f185b04c4237e8e8e33f265cd0798d0e44825fa"}, + {file = "regex-2024.5.15-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b2b6f1b3bb6f640c1a92be3bbfbcb18657b125b99ecf141fb3310b5282c7d4ed"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:3ad070b823ca5890cab606c940522d05d3d22395d432f4aaaf9d5b1653e47ced"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5b5467acbfc153847d5adb21e21e29847bcb5870e65c94c9206d20eb4e99a384"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_ppc64le.whl", hash = "sha256:e6662686aeb633ad65be2a42b4cb00178b3fbf7b91878f9446075c404ada552f"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_s390x.whl", hash = "sha256:2b4c884767504c0e2401babe8b5b7aea9148680d2e157fa28f01529d1f7fcf67"}, + {file = "regex-2024.5.15-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:3cd7874d57f13bf70078f1ff02b8b0aa48d5b9ed25fc48547516c6aba36f5741"}, + {file = "regex-2024.5.15-cp38-cp38-win32.whl", hash = "sha256:e4682f5ba31f475d58884045c1a97a860a007d44938c4c0895f41d64481edbc9"}, + {file = "regex-2024.5.15-cp38-cp38-win_amd64.whl", hash = "sha256:d99ceffa25ac45d150e30bd9ed14ec6039f2aad0ffa6bb87a5936f5782fc1569"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:13cdaf31bed30a1e1c2453ef6015aa0983e1366fad2667657dbcac7b02f67133"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cac27dcaa821ca271855a32188aa61d12decb6fe45ffe3e722401fe61e323cd1"}, + {file = "regex-2024.5.15-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:7dbe2467273b875ea2de38ded4eba86cbcbc9a1a6d0aa11dcf7bd2e67859c435"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64f18a9a3513a99c4bef0e3efd4c4a5b11228b48aa80743be822b71e132ae4f5"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d347a741ea871c2e278fde6c48f85136c96b8659b632fb57a7d1ce1872547600"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1878b8301ed011704aea4c806a3cadbd76f84dece1ec09cc9e4dc934cfa5d4da"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4babf07ad476aaf7830d77000874d7611704a7fcf68c9c2ad151f5d94ae4bfc4"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cb514e137cb3488bce23352af3e12fb0dbedd1ee6e60da053c69fb1b29cc6c"}, + {file = "regex-2024.5.15-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:cdd09d47c0b2efee9378679f8510ee6955d329424c659ab3c5e3a6edea696294"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:72d7a99cd6b8f958e85fc6ca5b37c4303294954eac1376535b03c2a43eb72629"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:a094801d379ab20c2135529948cb84d417a2169b9bdceda2a36f5f10977ebc16"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_ppc64le.whl", hash = "sha256:c0c18345010870e58238790a6779a1219b4d97bd2e77e1140e8ee5d14df071aa"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_s390x.whl", hash = "sha256:16093f563098448ff6b1fa68170e4acbef94e6b6a4e25e10eae8598bb1694b5d"}, + {file = "regex-2024.5.15-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:e38a7d4e8f633a33b4c7350fbd8bad3b70bf81439ac67ac38916c4a86b465456"}, + {file = "regex-2024.5.15-cp39-cp39-win32.whl", hash = "sha256:71a455a3c584a88f654b64feccc1e25876066c4f5ef26cd6dd711308aa538694"}, + {file = "regex-2024.5.15-cp39-cp39-win_amd64.whl", hash = "sha256:cab12877a9bdafde5500206d1020a584355a97884dfd388af3699e9137bf7388"}, + {file = "regex-2024.5.15.tar.gz", hash = "sha256:d3ee02d9e5f482cc8309134a91eeaacbdd2261ba111b0fef3748eeb4913e6a2c"}, +] + +[[package]] +name = "requests" +version = "2.32.3" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.8" +files = [ + {file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"}, + {file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"}, +] + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<4" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<3" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, + {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, +] + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, + {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, +] + +[[package]] +name = "rich" +version = "13.7.1" +description = "Render rich text, tables, progress bars, syntax highlighting, markdown and more to the terminal" +optional = false +python-versions = ">=3.7.0" +files = [ + {file = "rich-13.7.1-py3-none-any.whl", hash = "sha256:4edbae314f59eb482f54e9e30bf00d33350aaa94f4bfcd4e9e3110e64d0d7222"}, + {file = "rich-13.7.1.tar.gz", hash = "sha256:9be308cb1fe2f1f57d67ce99e95af38a1e2bc71ad9813b0e247cf7ffbcc3a432"}, +] + +[package.dependencies] +markdown-it-py = ">=2.2.0" +pygments = ">=2.13.0,<3.0.0" +typing-extensions = {version = ">=4.0.0,<5.0", markers = "python_version < \"3.9\""} + +[package.extras] +jupyter = ["ipywidgets (>=7.5.1,<9)"] + +[[package]] +name = "rpds-py" +version = "0.18.1" +description = "Python bindings to Rust's persistent data structures (rpds)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "rpds_py-0.18.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:d31dea506d718693b6b2cffc0648a8929bdc51c70a311b2770f09611caa10d53"}, + {file = "rpds_py-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:732672fbc449bab754e0b15356c077cc31566df874964d4801ab14f71951ea80"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4a98a1f0552b5f227a3d6422dbd61bc6f30db170939bd87ed14f3c339aa6c7c9"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:7f1944ce16401aad1e3f7d312247b3d5de7981f634dc9dfe90da72b87d37887d"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:38e14fb4e370885c4ecd734f093a2225ee52dc384b86fa55fe3f74638b2cfb09"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:08d74b184f9ab6289b87b19fe6a6d1a97fbfea84b8a3e745e87a5de3029bf944"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d70129cef4a8d979caa37e7fe957202e7eee8ea02c5e16455bc9808a59c6b2f0"}, + {file = "rpds_py-0.18.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ce0bb20e3a11bd04461324a6a798af34d503f8d6f1aa3d2aa8901ceaf039176d"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:81c5196a790032e0fc2464c0b4ab95f8610f96f1f2fa3d4deacce6a79852da60"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:f3027be483868c99b4985fda802a57a67fdf30c5d9a50338d9db646d590198da"}, + {file = "rpds_py-0.18.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:d44607f98caa2961bab4fa3c4309724b185b464cdc3ba6f3d7340bac3ec97cc1"}, + {file = "rpds_py-0.18.1-cp310-none-win32.whl", hash = "sha256:c273e795e7a0f1fddd46e1e3cb8be15634c29ae8ff31c196debb620e1edb9333"}, + {file = "rpds_py-0.18.1-cp310-none-win_amd64.whl", hash = "sha256:8352f48d511de5f973e4f2f9412736d7dea76c69faa6d36bcf885b50c758ab9a"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:6b5ff7e1d63a8281654b5e2896d7f08799378e594f09cf3674e832ecaf396ce8"}, + {file = "rpds_py-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8927638a4d4137a289e41d0fd631551e89fa346d6dbcfc31ad627557d03ceb6d"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:154bf5c93d79558b44e5b50cc354aa0459e518e83677791e6adb0b039b7aa6a7"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:07f2139741e5deb2c5154a7b9629bc5aa48c766b643c1a6750d16f865a82c5fc"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c7672e9fba7425f79019db9945b16e308ed8bc89348c23d955c8c0540da0a07"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:489bdfe1abd0406eba6b3bb4fdc87c7fa40f1031de073d0cfb744634cc8fa261"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c20f05e8e3d4fc76875fc9cb8cf24b90a63f5a1b4c5b9273f0e8225e169b100"}, + {file = "rpds_py-0.18.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:967342e045564cef76dfcf1edb700b1e20838d83b1aa02ab313e6a497cf923b8"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2cc7c1a47f3a63282ab0f422d90ddac4aa3034e39fc66a559ab93041e6505da7"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:f7afbfee1157e0f9376c00bb232e80a60e59ed716e3211a80cb8506550671e6e"}, + {file = "rpds_py-0.18.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9e6934d70dc50f9f8ea47081ceafdec09245fd9f6032669c3b45705dea096b88"}, + {file = "rpds_py-0.18.1-cp311-none-win32.whl", hash = "sha256:c69882964516dc143083d3795cb508e806b09fc3800fd0d4cddc1df6c36e76bb"}, + {file = "rpds_py-0.18.1-cp311-none-win_amd64.whl", hash = "sha256:70a838f7754483bcdc830444952fd89645569e7452e3226de4a613a4c1793fb2"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:3dd3cd86e1db5aadd334e011eba4e29d37a104b403e8ca24dcd6703c68ca55b3"}, + {file = "rpds_py-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:05f3d615099bd9b13ecf2fc9cf2d839ad3f20239c678f461c753e93755d629ee"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35b2b771b13eee8729a5049c976197ff58a27a3829c018a04341bcf1ae409b2b"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ee17cd26b97d537af8f33635ef38be873073d516fd425e80559f4585a7b90c43"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b646bf655b135ccf4522ed43d6902af37d3f5dbcf0da66c769a2b3938b9d8184"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19ba472b9606c36716062c023afa2484d1e4220548751bda14f725a7de17b4f6"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e30ac5e329098903262dc5bdd7e2086e0256aa762cc8b744f9e7bf2a427d3f8"}, + {file = "rpds_py-0.18.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d58ad6317d188c43750cb76e9deacf6051d0f884d87dc6518e0280438648a9ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e1735502458621921cee039c47318cb90b51d532c2766593be6207eec53e5c4c"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:f5bab211605d91db0e2995a17b5c6ee5edec1270e46223e513eaa20da20076ac"}, + {file = "rpds_py-0.18.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2fc24a329a717f9e2448f8cd1f960f9dac4e45b6224d60734edeb67499bab03a"}, + {file = "rpds_py-0.18.1-cp312-none-win32.whl", hash = "sha256:1805d5901779662d599d0e2e4159d8a82c0b05faa86ef9222bf974572286b2b6"}, + {file = "rpds_py-0.18.1-cp312-none-win_amd64.whl", hash = "sha256:720edcb916df872d80f80a1cc5ea9058300b97721efda8651efcd938a9c70a72"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:c827576e2fa017a081346dce87d532a5310241648eb3700af9a571a6e9fc7e74"}, + {file = "rpds_py-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:aa3679e751408d75a0b4d8d26d6647b6d9326f5e35c00a7ccd82b78ef64f65f8"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0abeee75434e2ee2d142d650d1e54ac1f8b01e6e6abdde8ffd6eeac6e9c38e20"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ed402d6153c5d519a0faf1bb69898e97fb31613b49da27a84a13935ea9164dfc"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:338dee44b0cef8b70fd2ef54b4e09bb1b97fc6c3a58fea5db6cc083fd9fc2724"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7750569d9526199c5b97e5a9f8d96a13300950d910cf04a861d96f4273d5b104"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:607345bd5912aacc0c5a63d45a1f73fef29e697884f7e861094e443187c02be5"}, + {file = "rpds_py-0.18.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:207c82978115baa1fd8d706d720b4a4d2b0913df1c78c85ba73fe6c5804505f0"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:6d1e42d2735d437e7e80bab4d78eb2e459af48c0a46e686ea35f690b93db792d"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:5463c47c08630007dc0fe99fb480ea4f34a89712410592380425a9b4e1611d8e"}, + {file = "rpds_py-0.18.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:06d218939e1bf2ca50e6b0ec700ffe755e5216a8230ab3e87c059ebb4ea06afc"}, + {file = "rpds_py-0.18.1-cp38-none-win32.whl", hash = "sha256:312fe69b4fe1ffbe76520a7676b1e5ac06ddf7826d764cc10265c3b53f96dbe9"}, + {file = "rpds_py-0.18.1-cp38-none-win_amd64.whl", hash = "sha256:9437ca26784120a279f3137ee080b0e717012c42921eb07861b412340f85bae2"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:19e515b78c3fc1039dd7da0a33c28c3154458f947f4dc198d3c72db2b6b5dc93"}, + {file = "rpds_py-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a7b28c5b066bca9a4eb4e2f2663012debe680f097979d880657f00e1c30875a0"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:673fdbbf668dd958eff750e500495ef3f611e2ecc209464f661bc82e9838991e"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:d960de62227635d2e61068f42a6cb6aae91a7fe00fca0e3aeed17667c8a34611"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:352a88dc7892f1da66b6027af06a2e7e5d53fe05924cc2cfc56495b586a10b72"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4e0ee01ad8260184db21468a6e1c37afa0529acc12c3a697ee498d3c2c4dcaf3"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4c39ad2f512b4041343ea3c7894339e4ca7839ac38ca83d68a832fc8b3748ab"}, + {file = "rpds_py-0.18.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aaa71ee43a703c321906813bb252f69524f02aa05bf4eec85f0c41d5d62d0f4c"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:6cd8098517c64a85e790657e7b1e509b9fe07487fd358e19431cb120f7d96338"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:4adec039b8e2928983f885c53b7cc4cda8965b62b6596501a0308d2703f8af1b"}, + {file = "rpds_py-0.18.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:32b7daaa3e9389db3695964ce8e566e3413b0c43e3394c05e4b243a4cd7bef26"}, + {file = "rpds_py-0.18.1-cp39-none-win32.whl", hash = "sha256:2625f03b105328729f9450c8badda34d5243231eef6535f80064d57035738360"}, + {file = "rpds_py-0.18.1-cp39-none-win_amd64.whl", hash = "sha256:bf18932d0003c8c4d51a39f244231986ab23ee057d235a12b2684ea26a353590"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:cbfbea39ba64f5e53ae2915de36f130588bba71245b418060ec3330ebf85678e"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:a3d456ff2a6a4d2adcdf3c1c960a36f4fd2fec6e3b4902a42a384d17cf4e7a65"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7700936ef9d006b7ef605dc53aa364da2de5a3aa65516a1f3ce73bf82ecfc7ae"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:51584acc5916212e1bf45edd17f3a6b05fe0cbb40482d25e619f824dccb679de"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:942695a206a58d2575033ff1e42b12b2aece98d6003c6bc739fbf33d1773b12f"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b906b5f58892813e5ba5c6056d6a5ad08f358ba49f046d910ad992196ea61397"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6f8e3fecca256fefc91bb6765a693d96692459d7d4c644660a9fff32e517843"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:7732770412bab81c5a9f6d20aeb60ae943a9b36dcd990d876a773526468e7163"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:bd1105b50ede37461c1d51b9698c4f4be6e13e69a908ab7751e3807985fc0346"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:618916f5535784960f3ecf8111581f4ad31d347c3de66d02e728de460a46303c"}, + {file = "rpds_py-0.18.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:17c6d2155e2423f7e79e3bb18151c686d40db42d8645e7977442170c360194d4"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:6c4c4c3f878df21faf5fac86eda32671c27889e13570645a9eea0a1abdd50922"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:fab6ce90574645a0d6c58890e9bcaac8d94dff54fb51c69e5522a7358b80ab64"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:531796fb842b53f2695e94dc338929e9f9dbf473b64710c28af5a160b2a8927d"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:740884bc62a5e2bbb31e584f5d23b32320fd75d79f916f15a788d527a5e83644"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:998125738de0158f088aef3cb264a34251908dd2e5d9966774fdab7402edfab7"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e2be6e9dd4111d5b31ba3b74d17da54a8319d8168890fbaea4b9e5c3de630ae5"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0cee71bc618cd93716f3c1bf56653740d2d13ddbd47673efa8bf41435a60daa"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2c3caec4ec5cd1d18e5dd6ae5194d24ed12785212a90b37f5f7f06b8bedd7139"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:27bba383e8c5231cd559affe169ca0b96ec78d39909ffd817f28b166d7ddd4d8"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:a888e8bdb45916234b99da2d859566f1e8a1d2275a801bb8e4a9644e3c7e7909"}, + {file = "rpds_py-0.18.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:6031b25fb1b06327b43d841f33842b383beba399884f8228a6bb3df3088485ff"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:48c2faaa8adfacefcbfdb5f2e2e7bdad081e5ace8d182e5f4ade971f128e6bb3"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:d85164315bd68c0806768dc6bb0429c6f95c354f87485ee3593c4f6b14def2bd"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6afd80f6c79893cfc0574956f78a0add8c76e3696f2d6a15bca2c66c415cf2d4"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:fa242ac1ff583e4ec7771141606aafc92b361cd90a05c30d93e343a0c2d82a89"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d21be4770ff4e08698e1e8e0bce06edb6ea0626e7c8f560bc08222880aca6a6f"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c45a639e93a0c5d4b788b2613bd637468edd62f8f95ebc6fcc303d58ab3f0a8"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:910e71711d1055b2768181efa0a17537b2622afeb0424116619817007f8a2b10"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b9bb1f182a97880f6078283b3505a707057c42bf55d8fca604f70dedfdc0772a"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1d54f74f40b1f7aaa595a02ff42ef38ca654b1469bef7d52867da474243cc633"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:8d2e182c9ee01135e11e9676e9a62dfad791a7a467738f06726872374a83db49"}, + {file = "rpds_py-0.18.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:636a15acc588f70fda1661234761f9ed9ad79ebed3f2125d44be0862708b666e"}, + {file = "rpds_py-0.18.1.tar.gz", hash = "sha256:dc48b479d540770c811fbd1eb9ba2bb66951863e448efec2e2c102625328e92f"}, +] + +[[package]] +name = "ruff" +version = "0.4.9" +description = "An extremely fast Python linter and code formatter, written in Rust." +optional = false +python-versions = ">=3.7" +files = [ + {file = "ruff-0.4.9-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b262ed08d036ebe162123170b35703aaf9daffecb698cd367a8d585157732991"}, + {file = "ruff-0.4.9-py3-none-macosx_11_0_arm64.whl", hash = "sha256:98ec2775fd2d856dc405635e5ee4ff177920f2141b8e2d9eb5bd6efd50e80317"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4555056049d46d8a381f746680db1c46e67ac3b00d714606304077682832998e"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e91175fbe48f8a2174c9aad70438fe9cb0a5732c4159b2a10a3565fea2d94cde"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0e8e7b95673f22e0efd3571fb5b0cf71a5eaaa3cc8a776584f3b2cc878e46bff"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:2d45ddc6d82e1190ea737341326ecbc9a61447ba331b0a8962869fcada758505"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:78de3fdb95c4af084087628132336772b1c5044f6e710739d440fc0bccf4d321"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:06b60f91bfa5514bb689b500a25ba48e897d18fea14dce14b48a0c40d1635893"}, + {file = "ruff-0.4.9-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88bffe9c6a454bf8529f9ab9091c99490578a593cc9f9822b7fc065ee0712a06"}, + {file = "ruff-0.4.9-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:673bddb893f21ab47a8334c8e0ea7fd6598ecc8e698da75bcd12a7b9d0a3206e"}, + {file = "ruff-0.4.9-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:8c1aff58c31948cc66d0b22951aa19edb5af0a3af40c936340cd32a8b1ab7438"}, + {file = "ruff-0.4.9-py3-none-musllinux_1_2_i686.whl", hash = "sha256:784d3ec9bd6493c3b720a0b76f741e6c2d7d44f6b2be87f5eef1ae8cc1d54c84"}, + {file = "ruff-0.4.9-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:732dd550bfa5d85af8c3c6cbc47ba5b67c6aed8a89e2f011b908fc88f87649db"}, + {file = "ruff-0.4.9-py3-none-win32.whl", hash = "sha256:8064590fd1a50dcf4909c268b0e7c2498253273309ad3d97e4a752bb9df4f521"}, + {file = "ruff-0.4.9-py3-none-win_amd64.whl", hash = "sha256:e0a22c4157e53d006530c902107c7f550b9233e9706313ab57b892d7197d8e52"}, + {file = "ruff-0.4.9-py3-none-win_arm64.whl", hash = "sha256:5d5460f789ccf4efd43f265a58538a2c24dbce15dbf560676e430375f20a8198"}, + {file = "ruff-0.4.9.tar.gz", hash = "sha256:f1cb0828ac9533ba0135d148d214e284711ede33640465e706772645483427e3"}, +] + +[[package]] +name = "ruff-lsp" +version = "0.0.53" +description = "A Language Server Protocol implementation for Ruff." +optional = false +python-versions = ">=3.7" +files = [ + {file = "ruff_lsp-0.0.53-py3-none-any.whl", hash = "sha256:5ea39968510d046b3c62dc5a7e3b52e867c2de14af34a406883fe05d55bab2b0"}, + {file = "ruff_lsp-0.0.53.tar.gz", hash = "sha256:de38eccd06020350630ac3518fe04a9640c8f66908758d8a623b5ea021bf84b0"}, +] + +[package.dependencies] +lsprotocol = ">=2023.0.0" +packaging = ">=23.1" +pygls = ">=1.1.0" +ruff = ">=0.0.274" +typing-extensions = "*" + +[package.extras] +dev = ["mypy (==1.4.1)", "pip-tools (>=6.13.0,<7.0.0)", "pytest (>=7.3.1,<8.0.0)", "pytest-asyncio (==0.21.1)", "python-lsp-jsonrpc (==1.0.0)"] + +[[package]] +name = "scikit-learn" +version = "1.3.2" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.8" +files = [ + {file = "scikit-learn-1.3.2.tar.gz", hash = "sha256:a2f54c76accc15a34bfb9066e6c7a56c1e7235dda5762b990792330b52ccfb05"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e326c0eb5cf4d6ba40f93776a20e9a7a69524c4db0757e7ce24ba222471ee8a1"}, + {file = "scikit_learn-1.3.2-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:535805c2a01ccb40ca4ab7d081d771aea67e535153e35a1fd99418fcedd1648a"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1215e5e58e9880b554b01187b8c9390bf4dc4692eedeaf542d3273f4785e342c"}, + {file = "scikit_learn-1.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ee107923a623b9f517754ea2f69ea3b62fc898a3641766cb7deb2f2ce450161"}, + {file = "scikit_learn-1.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:35a22e8015048c628ad099da9df5ab3004cdbf81edc75b396fd0cff8699ac58c"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6fb6bc98f234fda43163ddbe36df8bcde1d13ee176c6dc9b92bb7d3fc842eb66"}, + {file = "scikit_learn-1.3.2-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:18424efee518a1cde7b0b53a422cde2f6625197de6af36da0b57ec502f126157"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3271552a5eb16f208a6f7f617b8cc6d1f137b52c8a1ef8edf547db0259b2c9fb"}, + {file = "scikit_learn-1.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fc4144a5004a676d5022b798d9e573b05139e77f271253a4703eed295bde0433"}, + {file = "scikit_learn-1.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:67f37d708f042a9b8d59551cf94d30431e01374e00dc2645fa186059c6c5d78b"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8db94cd8a2e038b37a80a04df8783e09caac77cbe052146432e67800e430c028"}, + {file = "scikit_learn-1.3.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:61a6efd384258789aa89415a410dcdb39a50e19d3d8410bd29be365bcdd512d5"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb06f8dce3f5ddc5dee1715a9b9f19f20d295bed8e3cd4fa51e1d050347de525"}, + {file = "scikit_learn-1.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5b2de18d86f630d68fe1f87af690d451388bb186480afc719e5f770590c2ef6c"}, + {file = "scikit_learn-1.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:0402638c9a7c219ee52c94cbebc8fcb5eb9fe9c773717965c1f4185588ad3107"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a19f90f95ba93c1a7f7924906d0576a84da7f3b2282ac3bfb7a08a32801add93"}, + {file = "scikit_learn-1.3.2-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:b8692e395a03a60cd927125eef3a8e3424d86dde9b2370d544f0ea35f78a8073"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15e1e94cc23d04d39da797ee34236ce2375ddea158b10bee3c343647d615581d"}, + {file = "scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:785a2213086b7b1abf037aeadbbd6d67159feb3e30263434139c98425e3dcfcf"}, + {file = "scikit_learn-1.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:64381066f8aa63c2710e6b56edc9f0894cc7bf59bd71b8ce5613a4559b6145e0"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c43290337f7a4b969d207e620658372ba3c1ffb611f8bc2b6f031dc5c6d1d03"}, + {file = "scikit_learn-1.3.2-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:dc9002fc200bed597d5d34e90c752b74df516d592db162f756cc52836b38fe0e"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d08ada33e955c54355d909b9c06a4789a729977f165b8bae6f225ff0a60ec4a"}, + {file = "scikit_learn-1.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:763f0ae4b79b0ff9cca0bf3716bcc9915bdacff3cebea15ec79652d1cc4fa5c9"}, + {file = "scikit_learn-1.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:ed932ea780517b00dae7431e031faae6b49b20eb6950918eb83bd043237950e0"}, +] + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3,<2.0" +scipy = ">=1.5.0" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.10.1)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=23.3.0)", "matplotlib (>=3.1.3)", "mypy (>=1.3)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.0.272)", "scikit-image (>=0.16.2)"] + +[[package]] +name = "scikit-learn" +version = "1.5.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:12e40ac48555e6b551f0a0a5743cc94cc5a765c9513fe708e01f0aa001da2801"}, + {file = "scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f405c4dae288f5f6553b10c4ac9ea7754d5180ec11e296464adb5d6ac68b6ef5"}, + {file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:df8ccabbf583315f13160a4bb06037bde99ea7d8211a69787a6b7c5d4ebb6fc3"}, + {file = "scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c75ea812cd83b1385bbfa94ae971f0d80adb338a9523f6bbcb5e0b0381151d4"}, + {file = "scikit_learn-1.5.0-cp310-cp310-win_amd64.whl", hash = "sha256:a90c5da84829a0b9b4bf00daf62754b2be741e66b5946911f5bdfaa869fcedd6"}, + {file = "scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2a65af2d8a6cce4e163a7951a4cfbfa7fceb2d5c013a4b593686c7f16445cf9d"}, + {file = "scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:4c0c56c3005f2ec1db3787aeaabefa96256580678cec783986836fc64f8ff622"}, + {file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f77547165c00625551e5c250cefa3f03f2fc92c5e18668abd90bfc4be2e0bff"}, + {file = "scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:118a8d229a41158c9f90093e46b3737120a165181a1b58c03461447aa4657415"}, + {file = "scikit_learn-1.5.0-cp311-cp311-win_amd64.whl", hash = "sha256:a03b09f9f7f09ffe8c5efffe2e9de1196c696d811be6798ad5eddf323c6f4d40"}, + {file = "scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:460806030c666addee1f074788b3978329a5bfdc9b7d63e7aad3f6d45c67a210"}, + {file = "scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:1b94d6440603752b27842eda97f6395f570941857456c606eb1d638efdb38184"}, + {file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d82c2e573f0f2f2f0be897e7a31fcf4e73869247738ab8c3ce7245549af58ab8"}, + {file = "scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a3a10e1d9e834e84d05e468ec501a356226338778769317ee0b84043c0d8fb06"}, + {file = "scikit_learn-1.5.0-cp312-cp312-win_amd64.whl", hash = "sha256:855fc5fa8ed9e4f08291203af3d3e5fbdc4737bd617a371559aaa2088166046e"}, + {file = "scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:40fb7d4a9a2db07e6e0cae4dc7bdbb8fada17043bac24104d8165e10e4cff1a2"}, + {file = "scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:47132440050b1c5beb95f8ba0b2402bbd9057ce96ec0ba86f2f445dd4f34df67"}, + {file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:174beb56e3e881c90424e21f576fa69c4ffcf5174632a79ab4461c4c960315ac"}, + {file = "scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:261fe334ca48f09ed64b8fae13f9b46cc43ac5f580c4a605cbb0a517456c8f71"}, + {file = "scikit_learn-1.5.0-cp39-cp39-win_amd64.whl", hash = "sha256:057b991ac64b3e75c9c04b5f9395eaf19a6179244c089afdebaad98264bff37c"}, + {file = "scikit_learn-1.5.0.tar.gz", hash = "sha256:789e3db01c750ed6d496fa2db7d50637857b451e57bcae863bff707c1247bef7"}, +] + +[package.dependencies] +joblib = ">=1.2.0" +numpy = ">=1.19.5" +scipy = ">=1.6.0" +threadpoolctl = ">=3.1.0" + +[package.extras] +benchmark = ["matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "pandas (>=1.1.5)"] +build = ["cython (>=3.0.10)", "meson-python (>=0.15.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.3.4)", "memory_profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)", "sphinx (>=6.0.0)", "sphinx-copybutton (>=0.5.2)", "sphinx-gallery (>=0.15.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.3.4)", "pandas (>=1.1.5)", "plotly (>=5.14.0)", "pooch (>=1.6.0)", "scikit-image (>=0.17.2)", "seaborn (>=0.9.0)"] +install = ["joblib (>=1.2.0)", "numpy (>=1.19.5)", "scipy (>=1.6.0)", "threadpoolctl (>=3.1.0)"] +maintenance = ["conda-lock (==2.5.6)"] +tests = ["black (>=24.3.0)", "matplotlib (>=3.3.4)", "mypy (>=1.9)", "numpydoc (>=1.2.0)", "pandas (>=1.1.5)", "polars (>=0.20.23)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pyarrow (>=12.0.0)", "pytest (>=7.1.2)", "pytest-cov (>=2.9.0)", "ruff (>=0.2.1)", "scikit-image (>=0.17.2)"] + +[[package]] +name = "scipy" +version = "1.10.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = "<3.12,>=3.8" +files = [ + {file = "scipy-1.10.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e7354fd7527a4b0377ce55f286805b34e8c54b91be865bac273f527e1b839019"}, + {file = "scipy-1.10.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4b3f429188c66603a1a5c549fb414e4d3bdc2a24792e061ffbd607d3d75fd84e"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1553b5dcddd64ba9a0d95355e63fe6c3fc303a8fd77c7bc91e77d61363f7433f"}, + {file = "scipy-1.10.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4c0ff64b06b10e35215abce517252b375e580a6125fd5fdf6421b98efbefb2d2"}, + {file = "scipy-1.10.1-cp310-cp310-win_amd64.whl", hash = "sha256:fae8a7b898c42dffe3f7361c40d5952b6bf32d10c4569098d276b4c547905ee1"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0f1564ea217e82c1bbe75ddf7285ba0709ecd503f048cb1236ae9995f64217bd"}, + {file = "scipy-1.10.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:d925fa1c81b772882aa55bcc10bf88324dadb66ff85d548c71515f6689c6dac5"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaea0a6be54462ec027de54fca511540980d1e9eea68b2d5c1dbfe084797be35"}, + {file = "scipy-1.10.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15a35c4242ec5f292c3dd364a7c71a61be87a3d4ddcc693372813c0b73c9af1d"}, + {file = "scipy-1.10.1-cp311-cp311-win_amd64.whl", hash = "sha256:43b8e0bcb877faf0abfb613d51026cd5cc78918e9530e375727bf0625c82788f"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5678f88c68ea866ed9ebe3a989091088553ba12c6090244fdae3e467b1139c35"}, + {file = "scipy-1.10.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:39becb03541f9e58243f4197584286e339029e8908c46f7221abeea4b749fa88"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bce5869c8d68cf383ce240e44c1d9ae7c06078a9396df68ce88a1230f93a30c1"}, + {file = "scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07c3457ce0b3ad5124f98a86533106b643dd811dd61b548e78cf4c8786652f6f"}, + {file = "scipy-1.10.1-cp38-cp38-win_amd64.whl", hash = "sha256:049a8bbf0ad95277ffba9b3b7d23e5369cc39e66406d60422c8cfef40ccc8415"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:cd9f1027ff30d90618914a64ca9b1a77a431159df0e2a195d8a9e8a04c78abf9"}, + {file = "scipy-1.10.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:79c8e5a6c6ffaf3a2262ef1be1e108a035cf4f05c14df56057b64acc5bebffb6"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:51af417a000d2dbe1ec6c372dfe688e041a7084da4fdd350aeb139bd3fb55353"}, + {file = "scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b4735d6c28aad3cdcf52117e0e91d6b39acd4272f3f5cd9907c24ee931ad601"}, + {file = "scipy-1.10.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ff7f37b1bf4417baca958d254e8e2875d0cc23aaadbe65b3d5b3077b0eb23ea"}, + {file = "scipy-1.10.1.tar.gz", hash = "sha256:2cf9dfb80a7b4589ba4c40ce7588986d6d5cebc5457cad2c2880f6bc2d42f3a5"}, +] + +[package.dependencies] +numpy = ">=1.19.5,<1.27.0" + +[package.extras] +dev = ["click", "doit (>=0.36.0)", "flake8", "mypy", "pycodestyle", "pydevtool", "rich-click", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "scipy" +version = "1.13.1" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:20335853b85e9a49ff7572ab453794298bcf0354d8068c5f6775a0eabf350aca"}, + {file = "scipy-1.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d605e9c23906d1994f55ace80e0125c587f96c020037ea6aa98d01b4bd2e222f"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cfa31f1def5c819b19ecc3a8b52d28ffdcc7ed52bb20c9a7589669dd3c250989"}, + {file = "scipy-1.13.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f26264b282b9da0952a024ae34710c2aff7d27480ee91a2e82b7b7073c24722f"}, + {file = "scipy-1.13.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:eccfa1906eacc02de42d70ef4aecea45415f5be17e72b61bafcfd329bdc52e94"}, + {file = "scipy-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:2831f0dc9c5ea9edd6e51e6e769b655f08ec6db6e2e10f86ef39bd32eb11da54"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:27e52b09c0d3a1d5b63e1105f24177e544a222b43611aaf5bc44d4a0979e32f9"}, + {file = "scipy-1.13.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:54f430b00f0133e2224c3ba42b805bfd0086fe488835effa33fa291561932326"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e89369d27f9e7b0884ae559a3a956e77c02114cc60a6058b4e5011572eea9299"}, + {file = "scipy-1.13.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a78b4b3345f1b6f68a763c6e25c0c9a23a9fd0f39f5f3d200efe8feda560a5fa"}, + {file = "scipy-1.13.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:45484bee6d65633752c490404513b9ef02475b4284c4cfab0ef946def50b3f59"}, + {file = "scipy-1.13.1-cp311-cp311-win_amd64.whl", hash = "sha256:5713f62f781eebd8d597eb3f88b8bf9274e79eeabf63afb4a737abc6c84ad37b"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5d72782f39716b2b3509cd7c33cdc08c96f2f4d2b06d51e52fb45a19ca0c86a1"}, + {file = "scipy-1.13.1-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:017367484ce5498445aade74b1d5ab377acdc65e27095155e448c88497755a5d"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:949ae67db5fa78a86e8fa644b9a6b07252f449dcf74247108c50e1d20d2b4627"}, + {file = "scipy-1.13.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de3ade0e53bc1f21358aa74ff4830235d716211d7d077e340c7349bc3542e884"}, + {file = "scipy-1.13.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2ac65fb503dad64218c228e2dc2d0a0193f7904747db43014645ae139c8fad16"}, + {file = "scipy-1.13.1-cp312-cp312-win_amd64.whl", hash = "sha256:cdd7dacfb95fea358916410ec61bbc20440f7860333aee6d882bb8046264e949"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:436bbb42a94a8aeef855d755ce5a465479c721e9d684de76bf61a62e7c2b81d5"}, + {file = "scipy-1.13.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:8335549ebbca860c52bf3d02f80784e91a004b71b059e3eea9678ba994796a24"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d533654b7d221a6a97304ab63c41c96473ff04459e404b83275b60aa8f4b7004"}, + {file = "scipy-1.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:637e98dcf185ba7f8e663e122ebf908c4702420477ae52a04f9908707456ba4d"}, + {file = "scipy-1.13.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a014c2b3697bde71724244f63de2476925596c24285c7a637364761f8710891c"}, + {file = "scipy-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:392e4ec766654852c25ebad4f64e4e584cf19820b980bc04960bca0b0cd6eaa2"}, + {file = "scipy-1.13.1.tar.gz", hash = "sha256:095a87a0312b08dfd6a6155cbbd310a8c51800fc931b8c0b84003014b874ed3c"}, +] + +[package.dependencies] +numpy = ">=1.22.4,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.12.0)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "send2trash" +version = "1.8.3" +description = "Send file to trash natively under Mac OS X, Windows and Linux" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,>=2.7" +files = [ + {file = "Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9"}, + {file = "Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf"}, +] + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "70.0.0" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-70.0.0-py3-none-any.whl", hash = "sha256:54faa7f2e8d2d11bcd2c07bed282eef1046b5c080d1c32add737d7b5817b1ad4"}, + {file = "setuptools-70.0.0.tar.gz", hash = "sha256:f211a66637b8fa059bb28183da127d4e86396c991a942b028c6650d4319c3fd0"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "pyproject-hooks (!=1.1)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.14)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pyproject-hooks (!=1.1)", "pytest (>=6,!=8.1.1)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-subprocess", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ + {file = "sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2"}, + {file = "sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc"}, +] + +[[package]] +name = "soupsieve" +version = "2.5" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.8" +files = [ + {file = "soupsieve-2.5-py3-none-any.whl", hash = "sha256:eaa337ff55a1579b6549dc679565eac1e3d000563bcb1c8ab0d0fefbc0c2cdc7"}, + {file = "soupsieve-2.5.tar.gz", hash = "sha256:5663d5a7b3bfaeee0bc4372e7fc48f9cff4940b3eec54a6451cc5299f1097690"}, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ + {file = "stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695"}, + {file = "stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9"}, +] + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "sympy" +version = "1.12.1" +description = "Computer algebra system (CAS) in Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "sympy-1.12.1-py3-none-any.whl", hash = "sha256:9b2cbc7f1a640289430e13d2a56f02f867a1da0190f2f99d8968c2f74da0e515"}, + {file = "sympy-1.12.1.tar.gz", hash = "sha256:2877b03f998cd8c08f07cd0de5b767119cd3ef40d09f41c30d722f6686b0fb88"}, +] + +[package.dependencies] +mpmath = ">=1.1.0,<1.4.0" + +[[package]] +name = "tbb" +version = "2021.12.0" +description = "Intel® oneAPI Threading Building Blocks (oneTBB)" +optional = false +python-versions = "*" +files = [ + {file = "tbb-2021.12.0-py2.py3-none-manylinux1_i686.whl", hash = "sha256:f2cc9a7f8ababaa506cbff796ce97c3bf91062ba521e15054394f773375d81d8"}, + {file = "tbb-2021.12.0-py2.py3-none-manylinux1_x86_64.whl", hash = "sha256:a925e9a7c77d3a46ae31c34b0bb7f801c4118e857d137b68f68a8e458fcf2bd7"}, + {file = "tbb-2021.12.0-py3-none-win32.whl", hash = "sha256:b1725b30c174048edc8be70bd43bb95473f396ce895d91151a474d0fa9f450a8"}, + {file = "tbb-2021.12.0-py3-none-win_amd64.whl", hash = "sha256:fc2772d850229f2f3df85f1109c4844c495a2db7433d38200959ee9265b34789"}, +] + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "terminado" +version = "0.18.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.8" +files = [ + {file = "terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0"}, + {file = "terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e"}, +] + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] +typing = ["mypy (>=1.6,<2.0)", "traitlets (>=5.11.1)"] + +[[package]] +name = "threadpoolctl" +version = "3.5.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.8" +files = [ + {file = "threadpoolctl-3.5.0-py3-none-any.whl", hash = "sha256:56c1e26c150397e58c4926da8eeee87533b1e32bef131bd4bf6a2f45f3185467"}, + {file = "threadpoolctl-3.5.0.tar.gz", hash = "sha256:082433502dd922bf738de0d8bcc4fdcbf0979ff44c42bd40f5af8a282f6fa107"}, +] + +[[package]] +name = "tinycss2" +version = "1.3.0" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.8" +files = [ + {file = "tinycss2-1.3.0-py3-none-any.whl", hash = "sha256:54a8dbdffb334d536851be0226030e9505965bb2f30f21a4a82c55fb2a80fae7"}, + {file = "tinycss2-1.3.0.tar.gz", hash = "sha256:152f9acabd296a8375fbca5b84c961ff95971fcfc32e79550c8df8e29118c54d"}, +] + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["pytest", "ruff"] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + +[[package]] +name = "torch" +version = "2.3.1" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "torch-2.3.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:605a25b23944be5ab7c3467e843580e1d888b8066e5aaf17ff7bf9cc30001cc3"}, + {file = "torch-2.3.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:f2357eb0965583a0954d6f9ad005bba0091f956aef879822274b1bcdb11bd308"}, + {file = "torch-2.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:32b05fe0d1ada7f69c9f86c14ff69b0ef1957a5a54199bacba63d22d8fab720b"}, + {file = "torch-2.3.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:7c09a94362778428484bcf995f6004b04952106aee0ef45ff0b4bab484f5498d"}, + {file = "torch-2.3.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:b2ec81b61bb094ea4a9dee1cd3f7b76a44555375719ad29f05c0ca8ef596ad39"}, + {file = "torch-2.3.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:490cc3d917d1fe0bd027057dfe9941dc1d6d8e3cae76140f5dd9a7e5bc7130ab"}, + {file = "torch-2.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:5802530783bd465fe66c2df99123c9a54be06da118fbd785a25ab0a88123758a"}, + {file = "torch-2.3.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:a7dd4ed388ad1f3d502bf09453d5fe596c7b121de7e0cfaca1e2017782e9bbac"}, + {file = "torch-2.3.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:a486c0b1976a118805fc7c9641d02df7afbb0c21e6b555d3bb985c9f9601b61a"}, + {file = "torch-2.3.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:224259821fe3e4c6f7edf1528e4fe4ac779c77addaa74215eb0b63a5c474d66c"}, + {file = "torch-2.3.1-cp312-cp312-win_amd64.whl", hash = "sha256:e5fdccbf6f1334b2203a61a0e03821d5845f1421defe311dabeae2fc8fbeac2d"}, + {file = "torch-2.3.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:3c333dc2ebc189561514eda06e81df22bf8fb64e2384746b2cb9f04f96d1d4c8"}, + {file = "torch-2.3.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:07e9ba746832b8d069cacb45f312cadd8ad02b81ea527ec9766c0e7404bb3feb"}, + {file = "torch-2.3.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:462d1c07dbf6bb5d9d2f3316fee73a24f3d12cd8dacf681ad46ef6418f7f6626"}, + {file = "torch-2.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:ff60bf7ce3de1d43ad3f6969983f321a31f0a45df3690921720bcad6a8596cc4"}, + {file = "torch-2.3.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:bee0bd33dc58aa8fc8a7527876e9b9a0e812ad08122054a5bff2ce5abf005b10"}, + {file = "torch-2.3.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:aaa872abde9a3d4f91580f6396d54888620f4a0b92e3976a6034759df4b961ad"}, + {file = "torch-2.3.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:3d7a7f7ef21a7520510553dc3938b0c57c116a7daee20736a9e25cbc0e832bdc"}, + {file = "torch-2.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:4777f6cefa0c2b5fa87223c213e7b6f417cf254a45e5829be4ccd1b2a4ee1011"}, + {file = "torch-2.3.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:2bb5af780c55be68fe100feb0528d2edebace1d55cb2e351de735809ba7391eb"}, +] + +[package.dependencies] +filelock = "*" +fsspec = "*" +jinja2 = "*" +mkl = {version = ">=2021.1.1,<=2021.4.0", markers = "platform_system == \"Windows\""} +networkx = "*" +nvidia-cublas-cu12 = {version = "12.1.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-cupti-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-nvrtc-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cuda-runtime-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cudnn-cu12 = {version = "8.9.2.26", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cufft-cu12 = {version = "11.0.2.54", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-curand-cu12 = {version = "10.3.2.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusolver-cu12 = {version = "11.4.5.107", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-cusparse-cu12 = {version = "12.1.0.106", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nccl-cu12 = {version = "2.20.5", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +nvidia-nvtx-cu12 = {version = "12.1.105", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\""} +sympy = "*" +triton = {version = "2.3.1", markers = "platform_system == \"Linux\" and platform_machine == \"x86_64\" and python_version < \"3.12\""} +typing-extensions = ">=4.8.0" + +[package.extras] +opt-einsum = ["opt-einsum (>=3.3)"] +optree = ["optree (>=0.9.1)"] + +[[package]] +name = "torchvision" +version = "0.18.1" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.8" +files = [ + {file = "torchvision-0.18.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:3e694e54b0548dad99c12af6bf0c8e4f3350137d391dcd19af22a1c5f89322b3"}, + {file = "torchvision-0.18.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:0b3bda0aa5b416eeb547143b8eeaf17720bdba9cf516dc991aacb81811aa96a5"}, + {file = "torchvision-0.18.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:573ff523c739405edb085f65cb592f482d28a30e29b0be4c4ba08040b3ae785f"}, + {file = "torchvision-0.18.1-cp310-cp310-win_amd64.whl", hash = "sha256:ef7bbbc60b38e831a75e547c66ca1784f2ac27100f9e4ddbe9614cef6cbcd942"}, + {file = "torchvision-0.18.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:80b5d794dd0fdba787adc22f1a367a5ead452327686473cb260dd94364bc56a6"}, + {file = "torchvision-0.18.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:9077cf590cdb3a5e8fdf5cdb71797f8c67713f974cf0228ecb17fcd670ab42f9"}, + {file = "torchvision-0.18.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:ceb993a882f1ae7ae373ed39c28d7e3e802205b0e59a7ed84ef4028f0bba8d7f"}, + {file = "torchvision-0.18.1-cp311-cp311-win_amd64.whl", hash = "sha256:52f7436140045dc2239cdc502aa76b2bd8bd676d64244ff154d304aa69852046"}, + {file = "torchvision-0.18.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2be6f0bf7c455c89a51a1dbb6f668d36c6edc479f49ac912d745d10df5715657"}, + {file = "torchvision-0.18.1-cp312-cp312-manylinux1_x86_64.whl", hash = "sha256:f118d887bfde3a948a41d56587525401e5cac1b7db2eaca203324d6ed2b1caca"}, + {file = "torchvision-0.18.1-cp312-cp312-manylinux2014_aarch64.whl", hash = "sha256:13d24d904f65e62d66a1e0c41faec630bc193867b8a4a01166769e8a8e8df8e9"}, + {file = "torchvision-0.18.1-cp312-cp312-win_amd64.whl", hash = "sha256:ed6340b69a63a625e512a66127210d412551d9c5f2ad2978130c6a45bf56cd4a"}, + {file = "torchvision-0.18.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b1c3864fa9378c88bce8ad0ef3599f4f25397897ce612e1c245c74b97092f35e"}, + {file = "torchvision-0.18.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:02085a2ffc7461f5c0edb07d6f3455ee1806561f37736b903da820067eea58c7"}, + {file = "torchvision-0.18.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:9726c316a2501df8503e5a5dc46a631afd4c515a958972e5b7f7b9c87d2125c0"}, + {file = "torchvision-0.18.1-cp38-cp38-win_amd64.whl", hash = "sha256:64a2662dbf30db9055d8b201d6e56f312a504e5ccd9d144c57c41622d3c524cb"}, + {file = "torchvision-0.18.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:975b8594c0f5288875408acbb74946eea786c5b008d129c0d045d0ead23742bc"}, + {file = "torchvision-0.18.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:da83c8bbd34d8bee48bfa1d1b40e0844bc3cba10ed825a5a8cbe3ce7b62264cd"}, + {file = "torchvision-0.18.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:54bfcd352abb396d5c9c237d200167c178bd136051b138e1e8ef46ce367c2773"}, + {file = "torchvision-0.18.1-cp39-cp39-win_amd64.whl", hash = "sha256:5c8366a1aeee49e9ea9e64b30d199debdf06b1bd7610a76165eb5d7869c3bde5"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +torch = "2.3.1" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.4.1" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">=3.8" +files = [ + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8"}, + {file = "tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842"}, + {file = "tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4"}, + {file = "tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698"}, + {file = "tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d"}, + {file = "tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7"}, + {file = "tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9"}, +] + +[[package]] +name = "tqdm" +version = "4.66.4" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tqdm-4.66.4-py3-none-any.whl", hash = "sha256:b75ca56b413b030bc3f00af51fd2c1a1a5eac6a0c1cca83cbb37a5c52abce644"}, + {file = "tqdm-4.66.4.tar.gz", hash = "sha256:e4d936c9de8727928f3be6079590e97d9abfe8d39a590be678eb5919ffc186bb"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.14.3" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.8" +files = [ + {file = "traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f"}, + {file = "traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7"}, +] + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0,<8.2)", "pytest-mock", "pytest-mypy-testing"] + +[[package]] +name = "triton" +version = "2.3.1" +description = "A language and compiler for custom Deep Learning operations" +optional = false +python-versions = "*" +files = [ + {file = "triton-2.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c84595cbe5e546b1b290d2a58b1494df5a2ef066dd890655e5b8a8a92205c33"}, + {file = "triton-2.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9d64ae33bcb3a7a18081e3a746e8cf87ca8623ca13d2c362413ce7a486f893e"}, + {file = "triton-2.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eaf80e8761a9e3498aa92e7bf83a085b31959c61f5e8ac14eedd018df6fccd10"}, + {file = "triton-2.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b13bf35a2b659af7159bf78e92798dc62d877aa991de723937329e2d382f1991"}, + {file = "triton-2.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:63381e35ded3304704ea867ffde3b7cfc42c16a55b3062d41e017ef510433d66"}, + {file = "triton-2.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1d968264523c7a07911c8fb51b4e0d1b920204dae71491b1fe7b01b62a31e124"}, +] + +[package.dependencies] +filelock = "*" + +[package.extras] +build = ["cmake (>=3.20)", "lit"] +tests = ["autopep8", "flake8", "isort", "numpy", "pytest", "scipy (>=1.7.1)", "torch"] +tutorials = ["matplotlib", "pandas", "tabulate", "torch"] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20240316" +description = "Typing stubs for python-dateutil" +optional = false +python-versions = ">=3.8" +files = [ + {file = "types-python-dateutil-2.9.0.20240316.tar.gz", hash = "sha256:5d2f2e240b86905e40944dd787db6da9263f0deabef1076ddaed797351ec0202"}, + {file = "types_python_dateutil-2.9.0.20240316-py3-none-any.whl", hash = "sha256:6b8cb66d960771ce5ff974e9dd45e38facb81718cc1e208b10b1baccbfdbee3b"}, +] + +[[package]] +name = "typing-extensions" +version = "4.12.2" +description = "Backported and Experimental Type Hints for Python 3.8+" +optional = false +python-versions = ">=3.8" +files = [ + {file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"}, + {file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"}, +] + +[[package]] +name = "tzdata" +version = "2024.1" +description = "Provider of IANA time zone data" +optional = false +python-versions = ">=2" +files = [ + {file = "tzdata-2024.1-py2.py3-none-any.whl", hash = "sha256:9068bc196136463f5245e51efda838afa15aaeca9903f49050dfa2679db4d252"}, + {file = "tzdata-2024.1.tar.gz", hash = "sha256:2674120f8d891909751c38abcdfd386ac0a5a1127954fbc332af6b5ceae07efd"}, +] + +[[package]] +name = "uri-template" +version = "1.3.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.7" +files = [ + {file = "uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7"}, + {file = "uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363"}, +] + +[package.extras] +dev = ["flake8", "flake8-annotations", "flake8-bandit", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-modern-annotations", "flake8-noqa", "flake8-pyproject", "flake8-requirements", "flake8-typechecking-import", "flake8-use-fstring", "mypy", "pep8-naming", "types-PyYAML"] + +[[package]] +name = "urllib3" +version = "2.2.2" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=3.8" +files = [ + {file = "urllib3-2.2.2-py3-none-any.whl", hash = "sha256:a448b2f64d686155468037e1ace9f2d2199776e17f0a46610480d311f73e3472"}, + {file = "urllib3-2.2.2.tar.gz", hash = "sha256:dd505485549a7a552833da5e6063639d0d177c04f23bc3864e41e5dc5f612168"}, +] + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"] +h2 = ["h2 (>=4,<5)"] +socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"] +zstd = ["zstandard (>=0.18.0)"] + +[[package]] +name = "virtualenv" +version = "20.26.2" +description = "Virtual Python Environment builder" +optional = false +python-versions = ">=3.7" +files = [ + {file = "virtualenv-20.26.2-py3-none-any.whl", hash = "sha256:a624db5e94f01ad993d476b9ee5346fdf7b9de43ccaee0e0197012dc838a0e9b"}, + {file = "virtualenv-20.26.2.tar.gz", hash = "sha256:82bf0f4eebbb78d36ddaee0283d43fe5736b53880b8a8cdcd37390a07ac3741c"}, +] + +[package.dependencies] +distlib = ">=0.3.7,<1" +filelock = ">=3.12.2,<4" +platformdirs = ">=3.9.1,<5" + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2,!=7.3)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] +test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] + +[[package]] +name = "wcwidth" +version = "0.2.13" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ + {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, + {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, +] + +[[package]] +name = "webcolors" +version = "24.6.0" +description = "A library for working with the color formats defined by HTML and CSS." +optional = false +python-versions = ">=3.8" +files = [ + {file = "webcolors-24.6.0-py3-none-any.whl", hash = "sha256:8cf5bc7e28defd1d48b9e83d5fc30741328305a8195c29a8e668fa45586568a1"}, + {file = "webcolors-24.6.0.tar.gz", hash = "sha256:1d160d1de46b3e81e58d0a280d0c78b467dc80f47294b91b1ad8029d2cedb55b"}, +] + +[package.extras] +docs = ["furo", "sphinx", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-notfound-page", "sphinxext-opengraph"] +tests = ["coverage[toml]"] + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +files = [ + {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, + {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, +] + +[[package]] +name = "websocket-client" +version = "1.8.0" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.8" +files = [ + {file = "websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526"}, + {file = "websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da"}, +] + +[package.extras] +docs = ["Sphinx (>=6.0)", "myst-parser (>=2.0.0)", "sphinx-rtd-theme (>=1.1.0)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "widgetsnbextension" +version = "4.0.11" +description = "Jupyter interactive widgets for Jupyter Notebook" +optional = false +python-versions = ">=3.7" +files = [ + {file = "widgetsnbextension-4.0.11-py3-none-any.whl", hash = "sha256:55d4d6949d100e0d08b94948a42efc3ed6dfdc0e9468b2c4b128c9a2ce3a7a36"}, + {file = "widgetsnbextension-4.0.11.tar.gz", hash = "sha256:8b22a8f1910bfd188e596fe7fc05dcbd87e810c8a4ba010bdb3da86637398474"}, +] + +[[package]] +name = "yapf" +version = "0.40.2" +description = "A formatter for Python code" +optional = false +python-versions = ">=3.7" +files = [ + {file = "yapf-0.40.2-py3-none-any.whl", hash = "sha256:adc8b5dd02c0143108878c499284205adb258aad6db6634e5b869e7ee2bd548b"}, + {file = "yapf-0.40.2.tar.gz", hash = "sha256:4dab8a5ed7134e26d57c1647c7483afb3f136878b579062b786c9ba16b94637b"}, +] + +[package.dependencies] +importlib-metadata = ">=6.6.0" +platformdirs = ">=3.5.1" +tomli = ">=2.0.1" + +[[package]] +name = "zipp" +version = "3.19.2" +description = "Backport of pathlib-compatible object wrapper for zip files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"}, + {file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"}, +] + +[package.extras] +doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"] +test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.8.1,<3.13" +content-hash = "7b3923ff85c3ad4a289c0a90b50baab87dcb43ed32d565cc8ab07e9440f7af7a" diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 00000000..9d38b66e --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,222 @@ +[tool.poetry] +name = "facenet-pytorch" +version = "2.5.2" +description = "Pretrained Pytorch face detection and recognition models" +readme = "README.md" +repository = "https://github.com/timesler/facenet-pytorch" +authors = [ + "Tim Esler ", + "Matthijs van der Burgh ", +] +maintainers = [ + "Matthijs van der Burgh ", +] +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", +] +include = [{ path = "facenet_pytorch/data/*.pt" }] +packages = [{ include = "facenet_pytorch" }] + +[tool.poetry.dependencies] +python = ">=3.8.1,<3.13" +numpy = [ + {version = ">=1.21,<1.25", python = "<3.9"}, + {version = ">=1.21,<1.27", python = ">=3.9"}, +] + +#mypy = {version = "^1.0"} +#pytest = {version = "^8.0"} +#pytest-cov = {version = "^5.0"} +torch = "^2.3.0" +torchvision = "^0.18.0" +tqdm = "^4.0.0" +pillow = "^10.3.0" +jupyter = "^1.0.0" + + +[tool.poetry.group.dev.dependencies] +# mmcv +# cv2 +# pandas +# Pillow +pandas = "^2.0" +pre-commit = "^3.0" +ruff = "~0.4.0" +ruff-lsp = "~0.0.53" +mmcv = "^2.2.0" +opencv-python = "^4.10.0.82" +scikit-learn = [ + {version = ">=1.3,<1.4", python = "<3.9"}, + {version = "^1.4", python = ">=3.9"}, +] +scipy = [ + {version = ">=1.10,<1.11", python = "<3.9"}, + {version = "^1.11", python = ">=3.9"}, +] +ipython = "^8.0.0" + +[build-system] +requires = ["poetry-core>=1.9"] +build-backend = "poetry.core.masonry.api" + +[tool.ruff] +force-exclude = true +line-length = 120 +output-format = "full" +target-version = "py38" # Should match the minumum version in pyproject.toml +exclude = [ + ".git", + ".svn", + ".mypy_cache", + ".mypy", + ".pytest_cache", + ".ruff_cache", + "__pycache__", + ".coverage", + "coverage", + ".tox", + ".idea", + ".venv", + "node_modules", + "tests/*.py", + "setup.py", +] + +[tool.ruff.lint] +select = [ + # Pyflakes + "F", + # PYcodestyle + "E", # Errors + "W", # Warnings + # mccabe + # "C90", + # isort + "I", + # pep8-naming + "N", + # pydocstyle + "D", + # pyupgrade + "UP", + # flake8 + "YTT", # flake8-2020 + "ANN", # flake8-annotations + "ASYNC", # flake8-async + "S", # flake8-bandit + "BLE", # flake8-blind-except + "FBT", #flake8-boolean-trap + "B", # flake8-bugbear + "A", # flake8-builtins + "COM", # flake8-commas + # "CPY", # flake8-copyright + "C4", # flake8-comprehensions + "DTZ", # flake8-datetimez + "T10", # flake8-debugger + # "DJ", # flake8-django + "EM", # flake8-errmsg + "EXE", # flake8-executable + "FA", # flake8-future-annotations + "ISC", # flake8-implicit-str-concat + "ICN", # flake8-import-conventions + "LOG", # flake8-logging + "G", # flake8-logging-format + "INP", # flake8-no-pep420 + "PIE", # flake8-pie + "T20", # flake8-print + "PYI", # flake8-pyi + "PT", # flake8-pytest-style + "Q", # flake8-quotes + "RSE", # flake8-raise + "RET", # flake8-return + "SLF", # flake8-self + "SLOT", # flake8-slots + "SIM", # flake8-simplify + "TID", # flake8-tidy-imports + "TCH", # flake8-type-checking + "INT", # flake8-gettext + "ARG", # flake8-unsued-arguments + "PTH", # flake8-use-pathlib + "TD", # flake8-todos + # "FIX", # flake8-fixme + # eradicate (remove commented code) + # "ERA", + # pandas-vet + "PD", + # pygrep-hooks + "PGH", + # Pylint + "PL", + # "PLC", # Convention + # "PLE", # Error + # "PLR", # Refactor + # "PLW", # Warning + # tryceratrops (exception handling linting) + "TRY", + # flynt + "FLY", + # NumPy-specific rules + "NPY", + # Airflow + # "AIR", + # Perflint + "PERF", + # refurb + # "FURB", # in preview + # Ruff-specific rules + "RUF", +] +# Ignore codes such as "F401" +ignore = [ + "ANN002", # Don't annotate *args + "ANN003", # Don't annotate **kwargs + "ANN101", # Don't annotate self + "ANN102", # Don't annotate cls + "COM812", # Possibly conflicting with the formatter; Missing trailing comma + "D100", # Missing docstring in public module + "D104", # Missing docstring in public package + "D206", # Fixed by the formatter; Docstring should be indented with spaces, not tabs + "D300", # Fixed by the formatter; Use """triple double quotes""" (found '''triple single quotes''') + "E111", # Fixed by the formatter; Indentation is not a multiple of four + "E114", # Fixed by the formatter; Indentation is not a multiple of four (comment) + "E117", # Fixed by the formatter; Over-indented + "ISC001", # Possibly conflicting with the formatter; Avoid implicit string concatenation + "Q000", # Fixed by the formatter; Fix bad inline quotes + "Q001", # Fixed by the formatter; Fix bad multiline quotes + "Q002", # Fixed by the formatter; Fix bad docstring quotes + "Q003", # Fixed by the formatter; Fix avoidable escape quotes + "RET501", # Allow explicit return of None, even when None is the only optional return value + "TD003", # No need add a link following a TODO + "W191", # Fixed by the formatter; Indentation contains tabs +] + +[tool.ruff.lint.flake8-annotations] +allow-star-arg-any = true +mypy-init-return = true +suppress-dummy-args = true + +[tool.ruff.lint.flake8-quotes] +docstring-quotes = "double" +inline-quotes = "double" +multiline-quotes = "double" + +[tool.ruff.lint.flake8-type-checking] +quote-annotations = false + +[tool.ruff.lint.isort] +case-sensitive = true +combine-as-imports = true +split-on-trailing-comma = false + +[tool.ruff.lint.pep8-naming] +ignore-names = ["i", "j", "k", "ex", "_", "pk", "x", "y", "z", "e", "x1", "x2", "y1", "y2", "w", "h", "cx", "cy", "iou", "k", "v", "f", "ft"] + +[tool.ruff.lint.pydocstyle] +convention = "google" + +[tool.ruff.format] +indent-style = "space" +quote-style = "double" +skip-magic-trailing-comma = true diff --git a/setup.py b/setup.py index b7086667..f293af2f 100644 --- a/setup.py +++ b/setup.py @@ -24,13 +24,8 @@ long_description=long_description, long_description_content_type="text/markdown", url=GITHUB_URL, - packages=[ - "facenet_pytorch", - "facenet_pytorch.models", - "facenet_pytorch.models.utils", - "facenet_pytorch.data", - ], - package_data={"": ["*net.pt"]}, + packages=["facenet_pytorch", "facenet_pytorch.models", "facenet_pytorch.models.utils", "facenet_pytorch.data"], + package_data={"": ["*net*.pt"]}, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", diff --git a/tests/actions_test.py b/tests/actions_test.py index ce575228..ad17ee18 100644 --- a/tests/actions_test.py +++ b/tests/actions_test.py @@ -37,7 +37,9 @@ root_dir = test_dir.parent example_dir = root_dir / "examples" -os.system(f"jupyter nbconvert --to python --stdout {example_dir}/infer.ipynb {example_dir}/finetune.ipynb > {example_dir}/tmptest.py") +os.system( + f"jupyter nbconvert --to python --stdout {example_dir}/infer.ipynb {example_dir}/finetune.ipynb > {example_dir}/tmptest.py" +) exec((example_dir / "tmptest.py").open().read()) os.chdir(test_dir) @@ -144,7 +146,6 @@ def get_image(path, trans): assert total_error < 1e-2 assert total_error_fromfile < 1e-2 - #### TEST CLASSIFICATION #### resnet_pt = InceptionResnetV1(pretrained=ds, classify=True).eval() prob = resnet_pt(aligned) @@ -184,7 +185,6 @@ def get_image(path, trans): # half is not supported on CPUs, only GPUs if torch.cuda.is_available(): - mtcnn = MTCNN(keep_all=True, device="cuda").half() boxes_test, _ = mtcnn.detect(img) _ = mtcnn(img) diff --git a/tests/perf_test.py b/tests/perf_test.py index 2b2eb39b..02440c5a 100644 --- a/tests/perf_test.py +++ b/tests/perf_test.py @@ -1,4 +1,5 @@ import time +from pathlib import Path import torch from facenet_pytorch import MTCNN, training @@ -16,7 +17,9 @@ def main(): batch_size = 32 # Generate data loader - ds = datasets.ImageFolder(root="data/test_images/", transform=transforms.Resize((512, 512))) + test_dir = Path(__file__).parent + data_dir = test_dir / "data" + ds = datasets.ImageFolder(root=data_dir / "test_images", transform=transforms.Resize((512, 512))) dl = DataLoader( dataset=ds, num_workers=4,