forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare_2.py
189 lines (140 loc) · 6.19 KB
/
bikeshare_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import time
import pandas as pd
from pick import pick
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
title = 'Please choose a city: '
options = list(CITY_DATA)
city = pick(options, title)[0]
# get user input for month (all, january, february, ... , june)
title = 'Please choose a month: '
options = ['all', 'january', 'february', 'march', 'april', 'may', 'june']
month = pick(options, title)[0]
# get user input for day of week (all, monday, tuesday, ... sunday)
title = 'Please choose a day: '
options = ['all', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']
day = pick(options, title)[0]
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month)+1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
df['Start Time'] = pd.to_datetime(df['Start Time'])
# display the most common month
df['month'] = df['Start Time'].dt.month
popular_month = df['month'].mode()[0]
print("Most common month: {}".format(popular_month))
# display the most common day of week
df['day'] = df['Start Time'].dt.weekday_name
popular_day = df['day'].mode()[0]
print("Most common day: {}".format(popular_day))
# display the most common start hour
df['hour'] = df['Start Time'].dt.hour
popular_hour = df['hour'].mode()[0]
print("Most common hour: {}".format(popular_hour))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
start_station = df['Start Station'].value_counts().idxmax()
print("Most popular start station: {}".format(start_station))
# display most commonly used end station
end_station = df['End Station'].value_counts().idxmax()
print("Most popular end station: {}".format(end_station))
# display most frequent combination of start station and end station trip
df['trip']="{} <-> {}".format(df['Start Station'], df['End Station'])
combination = df['trip'].value_counts().idxmax()
print("Most popular combination: {}".format(combination))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# display total travel time
print('Total travel time: {}'.format(df['Trip Duration'].sum()))
# display mean travel time
print('Mean travel time: {}'.format(df['Trip Duration'].mean()))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
user_types = df['User Type'].value_counts()
print('Count of user types:\n{}\n'.format(user_types))
# Display counts of gender
genders = 'N\A'
if 'Gender' in df:
genders = df['Gender'].value_counts()
print('Count of genders:\n{}\n'.format(genders))
# Display earliest, most recent, and most common year of birth
if 'Birth Year' in df:
min_year = df['Birth Year'].min()
max_year = df['Birth Year'].max()
common_year = df['Birth Year'].mode()
print('Earliest birth year: {}'.format(int(min_year)))
print('Most recent birth year: {}'.format(int(max_year)))
print('Most common year: {}'.format(int(common_year)))
else:
print('Birth year statistics not available for your selection!')
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()