-
Notifications
You must be signed in to change notification settings - Fork 1
/
extractIce.py
executable file
·339 lines (251 loc) · 12.2 KB
/
extractIce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import numpy as np
from pylab import *
import string, os, sys
import datetime, types
from netCDF4 import Dataset
from subprocess import call
import mpl_util
import pandas as pd
import IOwrite
import brewer2mpl
from mpl_toolkits.basemap import Basemap, interp, shiftgrid, addcyclic
import datetime as datetime
__author__ = 'Trond Kristiansen'
__email__ = 'me (at) trondkristiansen.com'
__created__ = datetime.datetime(2014, 1, 23)
__modified__ = datetime.datetime(2014, 1, 23)
__version__ = "1.0"
__status__ = "Production"
"""This script reads
cdo sellonlatbox,0,360,-60,-90 filename.in.nc filename.out.nc
"""
def remove_border(axes=None, top=False, right=False, left=True, bottom=True):
"""
Minimize chartjunk by stripping out unnecesasry plot borders and axis ticks
The top/right/left/bottom keywords toggle whether the corresponding plot border is drawn
"""
ax = axes or plt.gca()
ax.spines['top'].set_visible(top)
ax.spines['right'].set_visible(right)
ax.spines['left'].set_visible(left)
ax.spines['bottom'].set_visible(bottom)
#turn off all ticks
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_ticks_position('none')
#now re-enable visibles
if top:
ax.xaxis.tick_top()
if bottom:
ax.xaxis.tick_bottom()
if left:
ax.yaxis.tick_left()
if right:
ax.yaxis.tick_right()
def plotTimeseries(ts,myvar):
ts_annual = ts.resample("A")
red_purple = brewer2mpl.get_map('RdPu', 'Sequential', 9).mpl_colormap
colors = red_purple(np.linspace(0, 1, 12))
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(111)
# Write data to file
mypath="%s_annualaverages.csv"%(myvar)
if os.path.exists(mypath):os.remove(mypath)
ts.to_csv(mypath)
print("Wrote timeseries to file: %s"%(mypath))
#for mymonth in xrange(12):
# ts[(ts.index.month==mymonth+1)].plot(marker='o', color=colors[mymonth],markersize=5, linewidth=0,alpha=0.8)
# hold(True)
ts_annual.plot(marker='o', color="#FA9D04", linewidth=0,alpha=1.0, markersize=7, label="Annual")
remove_border(top=False, right=False, left=True, bottom=True)
ylabel(r'Icea area (million km$^{2})$')
plotfile='figures/timeseries_'+str(myvar)+'.pdf'
plt.savefig(plotfile,dpi=300,bbox_inches="tight",pad_inches=0)
print('Saved figure file %s\n'%(plotfile))
plt.show()
"""Function that opens a CMIP5 file and reads the contents. The innput
is assumed to be on grid 0-360 so all values are shifted to new grid
on format -180 to 180 using the shiftgrid function of basemap."""
def openCMIP5file(selectedMonth,useSmoothing,CMIP5Hist,CMIP5Proj,myvar,yearsOfSmoothing,yearsToExtract,modelName,scenario,outfilenameResults):
if os.path.exists(CMIP5Hist):
myfileHist=Dataset(CMIP5Hist)
print("Opened CMIP5 file: %s"%(CMIP5Hist))
else:
print("Could not find CMIP5 input file %s : abort"%(CMIP5Hist))
sys.exit()
if os.path.exists(CMIP5Proj):
myfileProj=Dataset(CMIP5Proj)
print("Opened CMIP5 file: %s"%(CMIP5Proj))
else:
print("Could not find CMIP5 input file %s : abort"%(CMIP5Proj))
sys.exit()
timeHist=myfileHist.variables["time"][:]
timeProj=myfileProj.variables["time"][:]
refDateH=myfileHist.variables["time"].units
refDateP=myfileProj.variables["time"].units
refdateProj=datetime.datetime(int(refDateP[11:15]),1,1,0,0,0)
refdateHist=datetime.datetime(int(refDateH[11:15]),1,1,0,0,0)
startH=refdateHist + datetime.timedelta(days=float(timeHist[0]))
endH=refdateHist + datetime.timedelta(days=float(timeHist[-1]))
startP=refdateProj + datetime.timedelta(days=float(timeProj[0]))
endP=refdateProj + datetime.timedelta(days=float(timeProj[-1]))
print("Found Historical to start in year %s and end in %s"%(startH.year,endH.year))
print("Found Projections to start in year %s and end in %s"%(startP.year,endP.year))
"""Now extract the data for given year"""
if myvar=="sic":
myTEMPHIST=np.squeeze(myfileHist.variables[myvar][:])
myTEMPHIST=np.ma.masked_where(myTEMPHIST==myTEMPHIST.fill_value,myTEMPHIST)
myTEMPPROJ=np.squeeze(myfileProj.variables[myvar][:])
myTEMPPROJ=np.ma.masked_where(myTEMPPROJ==myTEMPHIST.fill_value,myTEMPPROJ)
lonCMIP5=np.squeeze(myfileHist.variables["lon"][:])
latCMIP5=np.squeeze(myfileHist.variables["lat"][:])
"""Combine the time arrays"""
timeFull = np.ma.concatenate((timeHist,timeProj),axis=0)
"""Combine the myvarname arrays"""
dataFull = np.ma.concatenate((myTEMPHIST,myTEMPPROJ),axis=0)
dataFull = dataFull
"""Make sure that we have continous data around the globe"""
dataFull, loncyclicCMIP5 = addcyclic(dataFull, lonCMIP5)
lons,lats=np.meshgrid(loncyclicCMIP5,latCMIP5)
"""Create the datetime objects for pandas"""
mydates=[]
for t in timeHist:
mydates.append(refdateHist + datetime.timedelta(days=t))
for t in timeProj:
mydates.append(refdateProj + datetime.timedelta(days=t))
"""Calculate the climatology 1961-1990"""
startI=False; endI=False; startIndex=-99; endIndex=99999999
for index,mydate in enumerate(mydates):
if startI==False and mydate.year==1961:
startIndex=index
startI=True
if endI==False and mydate.year==1990:
endIndex=index
endI=True
print("Climatology will be calculated for period: %s to %s"%(mydates[startIndex].year, mydates[endIndex].year))
climatology=np.ma.zeros((dataFull.shape[1],dataFull.shape[2]))
for i in range(dataFull.shape[1]):
for j in range(dataFull.shape[2]):
climatology[i,j]=np.ma.mean(dataFull[startIndex:endIndex,i,j])
"""Calculate running mean for entire timeseries"""
dataSmooth=np.ma.zeros(np.shape(dataFull))
"""Now extract only the data for the years we ware interested in saving to file:"""
dataSmoothSelected=np.ma.zeros(((len(yearsToExtract)+1)*12,dataSmooth.shape[1],dataSmooth.shape[2]), dtype=np.float)
iceArea=[]
iceTime=[]
counter=0
for index,mydate in enumerate(mydates):
if (mydate.year in yearsToExtract):
dataSmoothSelected[counter,:,:]=dataFull[index,:,:]
dataSmoothSelected[counter,:,:]=np.ma.masked_invalid(dataSmoothSelected[counter,:,:])
# if mydate.month == selectedMonth:
# plotMap(lons,lats,np.ma.masked_invalid(dataSmoothSelected[counter,:,:]),modelName,scenario,mydate,"regular")
#print " -> Extracted data for year/month %s/%s - %3.3f"%(mydate.year,mydate.month,np.sum(dataSmoothSelected[counter,:,:])-np.sum(climatology))
iceArea.append(calculateTotalIceArea(mydate.month,mydate.year,dataSmoothSelected[counter,:,:],loncyclicCMIP5,latCMIP5))
iceTime.append(mydate)
counter+=1
ts=pd.Series(iceArea,iceTime)
plotTimeseries(ts,"icearea")
"""Map related functions:"""
def plotMap(lon,lat,mydata,modelName,scenario,mydate,mytype):
plt.figure(figsize=(12,12),frameon=False)
mymap = Basemap(projection='npstere',lon_0=0,boundinglat=65)
x, y = mymap(lon,lat)
if mytype=="anomalies":
levels=np.arange(np.min(mydata),np.max(mydata),1)
#levels=np.arange(-2,5,0.1)
else:
levels=np.arange(np.min(mydata),np.max(mydata),5)
#levels=np.arange(-2,15,0.5)
CS1 = mymap.contourf(x,y,mydata,levels,
cmap=mpl_util.LevelColormap(levels,cmap=cm.RdBu_r),
extend='max',
antialiased=False)
mymap.drawparallels(np.arange(-90.,120.,15.),labels=[1,0,0,0]) # draw parallels
mymap.drawmeridians(np.arange(0.,420.,30.),labels=[0,1,0,1]) # draw meridians
mymap.drawcoastlines()
mymap.drawcountries()
mymap.fillcontinents(color='grey')
plt.colorbar(CS1,shrink=0.5)
if (mytype=="anomalies"):
title('Model:'+str(modelName)+' Year:'+str(mydate.year)+' Month:'+str(mydate.month))
if (mytype=="regular"):
title('Model:'+str(modelName)+' Year:'+str(mydate.year)+' Month:'+str(mydate.month))
#CS1.axis='tight'
#plt.show()
if not os.path.exists("Figures"):
os.mkdir("Figures/")
if (mytype=="anomalies"):
plotfile='figures/map_anomalies_'+str(modelName)+'_'+str(mydate.year)+'_'+str(mydate.month)+'.png'
else:
plotfile='figures/map_'+str(modelName)+'_'+str(mydate.year)+'_'+str(mydate.month)+'.png'
plt.savefig(plotfile,dpi=300)
plt.clf()
plt.close()
#
def calculateTotalIceArea(month,year,icedata,lon,lat):
totalarea=0
for x in range(len(lon)-1):
lon0=lon[x]
lon1=lon[x+1]
for y in range(len(lat)-1):
lat0=lat[y]
lat1=lat[y+1]
ice=float(icedata[y,x])
if ice > 0:
area = calculateArea(lat0,lat1,lon0,lon1,ice,month)
totalarea+=area
print("Total area with ice for month: %s year: %s -> %s "%(month,year,totalarea))
return totalarea
def calculateArea(lat0,lat1,lon0,lon1,areaIce,month):
earthRadius = 6371000
rad = np.pi / 180.0
""" -180 <= lon0 < lon1 <= 180
-90 <= lat0 < lat1 <= 90
areaIce is in percent
"""
area = earthRadius**2 * (np.sin(lat1*rad)-np.sin(lat0*rad)) * (lon1 - lon0) * rad
# Convert from m2 to km2 by dividing by 1.e6
return (area * (areaIce/ 100.0))/1.e6
def main():
"""Decide on what variable and LME to use:"""
var="SeaIceConcentration"
yearsOfSmoothing=1
useSmoothing=False
scenarios=["RCP85"]
selectedMonths=[9]
yearsToExtract=np.arange(1850,2100,1)
if var=="SeaIceConcentration": myvarname="sic"
for selectedMonth in selectedMonths:
for scenario in scenarios:
print("-----------------------")
print("Running scenario: %s"%(scenario))
print("-----------------------")
if var=="SeaIceConcentration":
if scenario=="RCP85":
modelsRCP = ["sic_OImon_NorESM1-M_rcp85_r1i1p1_200601-210012_rectangular.nc"]
modelsHIST = ["sic_OImon_NorESM1-M_historical_r1i1p1_185001-200512_rectangular.nc"]
modelNames = ["NorESM1-M"]
"""Loop over all models of interest:"""
for index in range(len(modelsRCP)):
print("------------------------------\n")
print("Extracting data from model: %s"%(modelNames[index]))
print("------------------------------\n")
if var=="SeaIceConcentration":
if scenario=="RCP85":
workDir="/Users/trondkr/Projects/RegScen/NorESM/RCP85/"
workDirHist="/Users/trondkr/Projects/RegScen/NorESM/Historical/"
CMIP5file=workDir+modelsRCP[index]
CMIP5HISTfile=workDirHist+modelsHIST[index]
"""Prepare output file:"""
"""Save filenames and paths for creating output filenames"""
if not os.path.exists("SUBSET"):
os.mkdir("SUBSET/")
outfilenameProj="SUBSET/"+os.path.basename(CMIP5file)[0:-4]+"_Arctic.nc"
outfilenameHist="SUBSET/"+os.path.basename(CMIP5HISTfile)[0:-4]+"_Arctic.nc"
call(["cdo","sellonlatbox,0,360,60,90",CMIP5file,outfilenameProj])
call(["cdo","sellonlatbox,0,360,60,90",CMIP5HISTfile,outfilenameHist])
if not os.path.exists("RESULTS"):
os.mkdir("RESULTS/")
outfilenameResults="RESULTS/"+os.path.basename(CMIP5file)[0:-4]+"_Arctic_runningMeanSelectedYears.nc"
openCMIP5file(selectedMonth,useSmoothing,outfilenameHist,outfilenameProj,myvarname,yearsOfSmoothing,yearsToExtract,modelNames[index],scenario,outfilenameResults)
main()